xref: /dflybsd-src/sys/dev/netif/bce/if_bce.c (revision f41d807a0c7c535d8f66f0593fb6e95fa20f82d4)
1 /*-
2  * Copyright (c) 2006-2007 Broadcom Corporation
3  *	David Christensen <davidch@broadcom.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written consent.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
22  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
28  * THE POSSIBILITY OF SUCH DAMAGE.
29  *
30  * $FreeBSD: src/sys/dev/bce/if_bce.c,v 1.31 2007/05/16 23:34:11 davidch Exp $
31  */
32 
33 /*
34  * The following controllers are supported by this driver:
35  *   BCM5706C A2, A3
36  *   BCM5706S A2, A3
37  *   BCM5708C B1, B2
38  *   BCM5708S B1, B2
39  *   BCM5709C A1, C0
40  *   BCM5716  C0
41  *
42  * The following controllers are not supported by this driver:
43  *   BCM5706C A0, A1
44  *   BCM5706S A0, A1
45  *   BCM5708C A0, B0
46  *   BCM5708S A0, B0
47  *   BCM5709C A0, B0, B1
48  *   BCM5709S A0, A1, B0, B1, B2, C0
49  */
50 
51 #include "opt_bce.h"
52 #include "opt_polling.h"
53 
54 #include <sys/param.h>
55 #include <sys/bus.h>
56 #include <sys/endian.h>
57 #include <sys/kernel.h>
58 #include <sys/interrupt.h>
59 #include <sys/mbuf.h>
60 #include <sys/malloc.h>
61 #include <sys/queue.h>
62 #ifdef BCE_DEBUG
63 #include <sys/random.h>
64 #endif
65 #include <sys/rman.h>
66 #include <sys/serialize.h>
67 #include <sys/socket.h>
68 #include <sys/sockio.h>
69 #include <sys/sysctl.h>
70 
71 #include <net/bpf.h>
72 #include <net/ethernet.h>
73 #include <net/if.h>
74 #include <net/if_arp.h>
75 #include <net/if_dl.h>
76 #include <net/if_media.h>
77 #include <net/if_types.h>
78 #include <net/ifq_var.h>
79 #include <net/vlan/if_vlan_var.h>
80 #include <net/vlan/if_vlan_ether.h>
81 
82 #include <dev/netif/mii_layer/mii.h>
83 #include <dev/netif/mii_layer/miivar.h>
84 
85 #include <bus/pci/pcireg.h>
86 #include <bus/pci/pcivar.h>
87 
88 #include "miibus_if.h"
89 
90 #include <dev/netif/bce/if_bcereg.h>
91 #include <dev/netif/bce/if_bcefw.h>
92 
93 /****************************************************************************/
94 /* BCE Debug Options                                                        */
95 /****************************************************************************/
96 #ifdef BCE_DEBUG
97 
98 static uint32_t	bce_debug = BCE_WARN;
99 
100 /*
101  *          0 = Never
102  *          1 = 1 in 2,147,483,648
103  *        256 = 1 in     8,388,608
104  *       2048 = 1 in     1,048,576
105  *      65536 = 1 in        32,768
106  *    1048576 = 1 in         2,048
107  *  268435456 = 1 in             8
108  *  536870912 = 1 in             4
109  * 1073741824 = 1 in             2
110  *
111  * bce_debug_l2fhdr_status_check:
112  *     How often the l2_fhdr frame error check will fail.
113  *
114  * bce_debug_unexpected_attention:
115  *     How often the unexpected attention check will fail.
116  *
117  * bce_debug_mbuf_allocation_failure:
118  *     How often to simulate an mbuf allocation failure.
119  *
120  * bce_debug_dma_map_addr_failure:
121  *     How often to simulate a DMA mapping failure.
122  *
123  * bce_debug_bootcode_running_failure:
124  *     How often to simulate a bootcode failure.
125  */
126 static int	bce_debug_l2fhdr_status_check = 0;
127 static int	bce_debug_unexpected_attention = 0;
128 static int	bce_debug_mbuf_allocation_failure = 0;
129 static int	bce_debug_dma_map_addr_failure = 0;
130 static int	bce_debug_bootcode_running_failure = 0;
131 
132 #endif	/* BCE_DEBUG */
133 
134 
135 /****************************************************************************/
136 /* PCI Device ID Table                                                      */
137 /*                                                                          */
138 /* Used by bce_probe() to identify the devices supported by this driver.    */
139 /****************************************************************************/
140 #define BCE_DEVDESC_MAX		64
141 
142 static struct bce_type bce_devs[] = {
143 	/* BCM5706C Controllers and OEM boards. */
144 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3101,
145 		"HP NC370T Multifunction Gigabit Server Adapter" },
146 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3106,
147 		"HP NC370i Multifunction Gigabit Server Adapter" },
148 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3070,
149 		"HP NC380T PCIe DP Multifunc Gig Server Adapter" },
150 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x1709,
151 		"HP NC371i Multifunction Gigabit Server Adapter" },
152 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  PCI_ANY_ID,  PCI_ANY_ID,
153 		"Broadcom NetXtreme II BCM5706 1000Base-T" },
154 
155 	/* BCM5706S controllers and OEM boards. */
156 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102,
157 		"HP NC370F Multifunction Gigabit Server Adapter" },
158 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID,  PCI_ANY_ID,
159 		"Broadcom NetXtreme II BCM5706 1000Base-SX" },
160 
161 	/* BCM5708C controllers and OEM boards. */
162 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7037,
163 		"HP NC373T PCIe Multifunction Gig Server Adapter" },
164 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7038,
165 		"HP NC373i Multifunction Gigabit Server Adapter" },
166 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7045,
167 		"HP NC374m PCIe Multifunction Adapter" },
168 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  PCI_ANY_ID,  PCI_ANY_ID,
169 		"Broadcom NetXtreme II BCM5708 1000Base-T" },
170 
171 	/* BCM5708S controllers and OEM boards. */
172 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x1706,
173 		"HP NC373m Multifunction Gigabit Server Adapter" },
174 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703b,
175 		"HP NC373i Multifunction Gigabit Server Adapter" },
176 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703d,
177 		"HP NC373F PCIe Multifunc Giga Server Adapter" },
178 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  PCI_ANY_ID,  PCI_ANY_ID,
179 		"Broadcom NetXtreme II BCM5708S 1000Base-T" },
180 
181 	/* BCM5709C controllers and OEM boards. */
182 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7055,
183 		"HP NC382i DP Multifunction Gigabit Server Adapter" },
184 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7059,
185 		"HP NC382T PCIe DP Multifunction Gigabit Server Adapter" },
186 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  PCI_ANY_ID,  PCI_ANY_ID,
187 		"Broadcom NetXtreme II BCM5709 1000Base-T" },
188 
189 	/* BCM5709S controllers and OEM boards. */
190 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x171d,
191 		"HP NC382m DP 1GbE Multifunction BL-c Adapter" },
192 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x7056,
193 		"HP NC382i DP Multifunction Gigabit Server Adapter" },
194 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  PCI_ANY_ID,  PCI_ANY_ID,
195 		"Broadcom NetXtreme II BCM5709 1000Base-SX" },
196 
197 	/* BCM5716 controllers and OEM boards. */
198 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5716,   PCI_ANY_ID,  PCI_ANY_ID,
199 		"Broadcom NetXtreme II BCM5716 1000Base-T" },
200 
201 	{ 0, 0, 0, 0, NULL }
202 };
203 
204 
205 /****************************************************************************/
206 /* Supported Flash NVRAM device data.                                       */
207 /****************************************************************************/
208 static const struct flash_spec flash_table[] =
209 {
210 #define BUFFERED_FLAGS		(BCE_NV_BUFFERED | BCE_NV_TRANSLATE)
211 #define NONBUFFERED_FLAGS	(BCE_NV_WREN)
212 
213 	/* Slow EEPROM */
214 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
215 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
216 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
217 	 "EEPROM - slow"},
218 	/* Expansion entry 0001 */
219 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
220 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
221 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
222 	 "Entry 0001"},
223 	/* Saifun SA25F010 (non-buffered flash) */
224 	/* strap, cfg1, & write1 need updates */
225 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
226 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
227 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
228 	 "Non-buffered flash (128kB)"},
229 	/* Saifun SA25F020 (non-buffered flash) */
230 	/* strap, cfg1, & write1 need updates */
231 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
232 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
233 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
234 	 "Non-buffered flash (256kB)"},
235 	/* Expansion entry 0100 */
236 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
237 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
238 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
239 	 "Entry 0100"},
240 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
241 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
242 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
243 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
244 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
245 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
246 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
247 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
248 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
249 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
250 	/* Saifun SA25F005 (non-buffered flash) */
251 	/* strap, cfg1, & write1 need updates */
252 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
253 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
254 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
255 	 "Non-buffered flash (64kB)"},
256 	/* Fast EEPROM */
257 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
258 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
259 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
260 	 "EEPROM - fast"},
261 	/* Expansion entry 1001 */
262 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
263 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
264 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
265 	 "Entry 1001"},
266 	/* Expansion entry 1010 */
267 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
268 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
269 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
270 	 "Entry 1010"},
271 	/* ATMEL AT45DB011B (buffered flash) */
272 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
273 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
274 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
275 	 "Buffered flash (128kB)"},
276 	/* Expansion entry 1100 */
277 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
278 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
279 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
280 	 "Entry 1100"},
281 	/* Expansion entry 1101 */
282 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
283 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
284 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
285 	 "Entry 1101"},
286 	/* Ateml Expansion entry 1110 */
287 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
288 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
289 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
290 	 "Entry 1110 (Atmel)"},
291 	/* ATMEL AT45DB021B (buffered flash) */
292 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
293 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
294 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
295 	 "Buffered flash (256kB)"},
296 };
297 
298 /*
299  * The BCM5709 controllers transparently handle the
300  * differences between Atmel 264 byte pages and all
301  * flash devices which use 256 byte pages, so no
302  * logical-to-physical mapping is required in the
303  * driver.
304  */
305 static struct flash_spec flash_5709 = {
306 	.flags		= BCE_NV_BUFFERED,
307 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
308 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
309 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
310 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
311 	.name		= "5709/5716 buffered flash (256kB)",
312 };
313 
314 
315 /****************************************************************************/
316 /* DragonFly device entry points.                                           */
317 /****************************************************************************/
318 static int	bce_probe(device_t);
319 static int	bce_attach(device_t);
320 static int	bce_detach(device_t);
321 static void	bce_shutdown(device_t);
322 
323 /****************************************************************************/
324 /* BCE Debug Data Structure Dump Routines                                   */
325 /****************************************************************************/
326 #ifdef BCE_DEBUG
327 static void	bce_dump_mbuf(struct bce_softc *, struct mbuf *);
328 static void	bce_dump_tx_mbuf_chain(struct bce_softc *, int, int);
329 static void	bce_dump_rx_mbuf_chain(struct bce_softc *, int, int);
330 static void	bce_dump_txbd(struct bce_softc *, int, struct tx_bd *);
331 static void	bce_dump_rxbd(struct bce_softc *, int, struct rx_bd *);
332 static void	bce_dump_l2fhdr(struct bce_softc *, int,
333 				struct l2_fhdr *) __unused;
334 static void	bce_dump_tx_chain(struct bce_softc *, int, int);
335 static void	bce_dump_rx_chain(struct bce_softc *, int, int);
336 static void	bce_dump_status_block(struct bce_softc *);
337 static void	bce_dump_driver_state(struct bce_softc *);
338 static void	bce_dump_stats_block(struct bce_softc *) __unused;
339 static void	bce_dump_hw_state(struct bce_softc *);
340 static void	bce_dump_txp_state(struct bce_softc *);
341 static void	bce_dump_rxp_state(struct bce_softc *) __unused;
342 static void	bce_dump_tpat_state(struct bce_softc *) __unused;
343 static void	bce_freeze_controller(struct bce_softc *) __unused;
344 static void	bce_unfreeze_controller(struct bce_softc *) __unused;
345 static void	bce_breakpoint(struct bce_softc *);
346 #endif	/* BCE_DEBUG */
347 
348 
349 /****************************************************************************/
350 /* BCE Register/Memory Access Routines                                      */
351 /****************************************************************************/
352 static uint32_t	bce_reg_rd_ind(struct bce_softc *, uint32_t);
353 static void	bce_reg_wr_ind(struct bce_softc *, uint32_t, uint32_t);
354 static void	bce_shmem_wr(struct bce_softc *, uint32_t, uint32_t);
355 static uint32_t	bce_shmem_rd(struct bce_softc *, u32);
356 static void	bce_ctx_wr(struct bce_softc *, uint32_t, uint32_t, uint32_t);
357 static int	bce_miibus_read_reg(device_t, int, int);
358 static int	bce_miibus_write_reg(device_t, int, int, int);
359 static void	bce_miibus_statchg(device_t);
360 
361 
362 /****************************************************************************/
363 /* BCE NVRAM Access Routines                                                */
364 /****************************************************************************/
365 static int	bce_acquire_nvram_lock(struct bce_softc *);
366 static int	bce_release_nvram_lock(struct bce_softc *);
367 static void	bce_enable_nvram_access(struct bce_softc *);
368 static void	bce_disable_nvram_access(struct bce_softc *);
369 static int	bce_nvram_read_dword(struct bce_softc *, uint32_t, uint8_t *,
370 				     uint32_t);
371 static int	bce_init_nvram(struct bce_softc *);
372 static int	bce_nvram_read(struct bce_softc *, uint32_t, uint8_t *, int);
373 static int	bce_nvram_test(struct bce_softc *);
374 
375 /****************************************************************************/
376 /* BCE DMA Allocate/Free Routines                                           */
377 /****************************************************************************/
378 static int	bce_dma_alloc(struct bce_softc *);
379 static void	bce_dma_free(struct bce_softc *);
380 static void	bce_dma_map_addr(void *, bus_dma_segment_t *, int, int);
381 
382 /****************************************************************************/
383 /* BCE Firmware Synchronization and Load                                    */
384 /****************************************************************************/
385 static int	bce_fw_sync(struct bce_softc *, uint32_t);
386 static void	bce_load_rv2p_fw(struct bce_softc *, uint32_t *,
387 				 uint32_t, uint32_t);
388 static void	bce_load_cpu_fw(struct bce_softc *, struct cpu_reg *,
389 				struct fw_info *);
390 static void	bce_start_cpu(struct bce_softc *, struct cpu_reg *);
391 static void	bce_halt_cpu(struct bce_softc *, struct cpu_reg *);
392 static void	bce_start_rxp_cpu(struct bce_softc *);
393 static void	bce_init_rxp_cpu(struct bce_softc *);
394 static void	bce_init_txp_cpu(struct bce_softc *);
395 static void	bce_init_tpat_cpu(struct bce_softc *);
396 static void	bce_init_cp_cpu(struct bce_softc *);
397 static void	bce_init_com_cpu(struct bce_softc *);
398 static void	bce_init_cpus(struct bce_softc *);
399 
400 static void	bce_stop(struct bce_softc *);
401 static int	bce_reset(struct bce_softc *, uint32_t);
402 static int	bce_chipinit(struct bce_softc *);
403 static int	bce_blockinit(struct bce_softc *);
404 static int	bce_newbuf_std(struct bce_softc *, uint16_t *, uint16_t *,
405 			       uint32_t *, int);
406 static void	bce_setup_rxdesc_std(struct bce_softc *, uint16_t, uint32_t *);
407 static void	bce_probe_pci_caps(struct bce_softc *);
408 static void	bce_print_adapter_info(struct bce_softc *);
409 static void	bce_get_media(struct bce_softc *);
410 
411 static void	bce_init_tx_context(struct bce_softc *);
412 static int	bce_init_tx_chain(struct bce_softc *);
413 static void	bce_init_rx_context(struct bce_softc *);
414 static int	bce_init_rx_chain(struct bce_softc *);
415 static void	bce_free_rx_chain(struct bce_softc *);
416 static void	bce_free_tx_chain(struct bce_softc *);
417 
418 static int	bce_encap(struct bce_softc *, struct mbuf **);
419 static void	bce_start(struct ifnet *);
420 static int	bce_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
421 static void	bce_watchdog(struct ifnet *);
422 static int	bce_ifmedia_upd(struct ifnet *);
423 static void	bce_ifmedia_sts(struct ifnet *, struct ifmediareq *);
424 static void	bce_init(void *);
425 static void	bce_mgmt_init(struct bce_softc *);
426 
427 static int	bce_init_ctx(struct bce_softc *);
428 static void	bce_get_mac_addr(struct bce_softc *);
429 static void	bce_set_mac_addr(struct bce_softc *);
430 static void	bce_phy_intr(struct bce_softc *);
431 static void	bce_rx_intr(struct bce_softc *, int);
432 static void	bce_tx_intr(struct bce_softc *);
433 static void	bce_disable_intr(struct bce_softc *);
434 static void	bce_enable_intr(struct bce_softc *, int);
435 
436 #ifdef DEVICE_POLLING
437 static void	bce_poll(struct ifnet *, enum poll_cmd, int);
438 #endif
439 static void	bce_intr(void *);
440 static void	bce_set_rx_mode(struct bce_softc *);
441 static void	bce_stats_update(struct bce_softc *);
442 static void	bce_tick(void *);
443 static void	bce_tick_serialized(struct bce_softc *);
444 static void	bce_pulse(void *);
445 static void	bce_add_sysctls(struct bce_softc *);
446 
447 static void	bce_coal_change(struct bce_softc *);
448 static int	bce_sysctl_tx_bds_int(SYSCTL_HANDLER_ARGS);
449 static int	bce_sysctl_tx_bds(SYSCTL_HANDLER_ARGS);
450 static int	bce_sysctl_tx_ticks_int(SYSCTL_HANDLER_ARGS);
451 static int	bce_sysctl_tx_ticks(SYSCTL_HANDLER_ARGS);
452 static int	bce_sysctl_rx_bds_int(SYSCTL_HANDLER_ARGS);
453 static int	bce_sysctl_rx_bds(SYSCTL_HANDLER_ARGS);
454 static int	bce_sysctl_rx_ticks_int(SYSCTL_HANDLER_ARGS);
455 static int	bce_sysctl_rx_ticks(SYSCTL_HANDLER_ARGS);
456 static int	bce_sysctl_coal_change(SYSCTL_HANDLER_ARGS,
457 				       uint32_t *, uint32_t);
458 
459 /*
460  * NOTE:
461  * Don't set bce_tx_ticks_int/bce_tx_ticks to 1023.  Linux's bnx2
462  * takes 1023 as the TX ticks limit.  However, using 1023 will
463  * cause 5708(B2) to generate extra interrupts (~2000/s) even when
464  * there is _no_ network activity on the NIC.
465  */
466 static uint32_t	bce_tx_bds_int = 255;		/* bcm: 20 */
467 static uint32_t	bce_tx_bds = 255;		/* bcm: 20 */
468 static uint32_t	bce_tx_ticks_int = 1022;	/* bcm: 80 */
469 static uint32_t	bce_tx_ticks = 1022;		/* bcm: 80 */
470 static uint32_t	bce_rx_bds_int = 128;		/* bcm: 6 */
471 static uint32_t	bce_rx_bds = 128;		/* bcm: 6 */
472 static uint32_t	bce_rx_ticks_int = 125;		/* bcm: 18 */
473 static uint32_t	bce_rx_ticks = 125;		/* bcm: 18 */
474 
475 TUNABLE_INT("hw.bce.tx_bds_int", &bce_tx_bds_int);
476 TUNABLE_INT("hw.bce.tx_bds", &bce_tx_bds);
477 TUNABLE_INT("hw.bce.tx_ticks_int", &bce_tx_ticks_int);
478 TUNABLE_INT("hw.bce.tx_ticks", &bce_tx_ticks);
479 TUNABLE_INT("hw.bce.rx_bds_int", &bce_rx_bds_int);
480 TUNABLE_INT("hw.bce.rx_bds", &bce_rx_bds);
481 TUNABLE_INT("hw.bce.rx_ticks_int", &bce_rx_ticks_int);
482 TUNABLE_INT("hw.bce.rx_ticks", &bce_rx_ticks);
483 
484 /****************************************************************************/
485 /* DragonFly device dispatch table.                                         */
486 /****************************************************************************/
487 static device_method_t bce_methods[] = {
488 	/* Device interface */
489 	DEVMETHOD(device_probe,		bce_probe),
490 	DEVMETHOD(device_attach,	bce_attach),
491 	DEVMETHOD(device_detach,	bce_detach),
492 	DEVMETHOD(device_shutdown,	bce_shutdown),
493 
494 	/* bus interface */
495 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
496 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
497 
498 	/* MII interface */
499 	DEVMETHOD(miibus_readreg,	bce_miibus_read_reg),
500 	DEVMETHOD(miibus_writereg,	bce_miibus_write_reg),
501 	DEVMETHOD(miibus_statchg,	bce_miibus_statchg),
502 
503 	{ 0, 0 }
504 };
505 
506 static driver_t bce_driver = {
507 	"bce",
508 	bce_methods,
509 	sizeof(struct bce_softc)
510 };
511 
512 static devclass_t bce_devclass;
513 
514 
515 DECLARE_DUMMY_MODULE(if_bce);
516 MODULE_DEPEND(bce, miibus, 1, 1, 1);
517 DRIVER_MODULE(if_bce, pci, bce_driver, bce_devclass, NULL, NULL);
518 DRIVER_MODULE(miibus, bce, miibus_driver, miibus_devclass, NULL, NULL);
519 
520 
521 /****************************************************************************/
522 /* Device probe function.                                                   */
523 /*                                                                          */
524 /* Compares the device to the driver's list of supported devices and        */
525 /* reports back to the OS whether this is the right driver for the device.  */
526 /*                                                                          */
527 /* Returns:                                                                 */
528 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
529 /****************************************************************************/
530 static int
531 bce_probe(device_t dev)
532 {
533 	struct bce_type *t;
534 	uint16_t vid, did, svid, sdid;
535 
536 	/* Get the data for the device to be probed. */
537 	vid  = pci_get_vendor(dev);
538 	did  = pci_get_device(dev);
539 	svid = pci_get_subvendor(dev);
540 	sdid = pci_get_subdevice(dev);
541 
542 	/* Look through the list of known devices for a match. */
543 	for (t = bce_devs; t->bce_name != NULL; ++t) {
544 		if (vid == t->bce_vid && did == t->bce_did &&
545 		    (svid == t->bce_svid || t->bce_svid == PCI_ANY_ID) &&
546 		    (sdid == t->bce_sdid || t->bce_sdid == PCI_ANY_ID)) {
547 		    	uint32_t revid = pci_read_config(dev, PCIR_REVID, 4);
548 			char *descbuf;
549 
550 			descbuf = kmalloc(BCE_DEVDESC_MAX, M_TEMP, M_WAITOK);
551 
552 			/* Print out the device identity. */
553 			ksnprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d)",
554 				  t->bce_name,
555 				  ((revid & 0xf0) >> 4) + 'A', revid & 0xf);
556 
557 			device_set_desc_copy(dev, descbuf);
558 			kfree(descbuf, M_TEMP);
559 			return 0;
560 		}
561 	}
562 	return ENXIO;
563 }
564 
565 
566 /****************************************************************************/
567 /* PCI Capabilities Probe Function.                                         */
568 /*                                                                          */
569 /* Walks the PCI capabiites list for the device to find what features are   */
570 /* supported.                                                               */
571 /*                                                                          */
572 /* Returns:                                                                 */
573 /*   None.                                                                  */
574 /****************************************************************************/
575 static void
576 bce_print_adapter_info(struct bce_softc *sc)
577 {
578 	device_printf(sc->bce_dev, "ASIC (0x%08X); ", sc->bce_chipid);
579 
580 	kprintf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >> 12) + 'A',
581 		((BCE_CHIP_ID(sc) & 0x0ff0) >> 4));
582 
583 	/* Bus info. */
584 	if (sc->bce_flags & BCE_PCIE_FLAG) {
585 		kprintf("Bus (PCIe x%d, ", sc->link_width);
586 		switch (sc->link_speed) {
587 		case 1:
588 			kprintf("2.5Gbps); ");
589 			break;
590 		case 2:
591 			kprintf("5Gbps); ");
592 			break;
593 		default:
594 			kprintf("Unknown link speed); ");
595 			break;
596 		}
597 	} else {
598 		kprintf("Bus (PCI%s, %s, %dMHz); ",
599 		    ((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""),
600 		    ((sc->bce_flags & BCE_PCI_32BIT_FLAG) ? "32-bit" : "64-bit"),
601 		    sc->bus_speed_mhz);
602 	}
603 
604 	/* Firmware version and device features. */
605 	kprintf("B/C (%s)", sc->bce_bc_ver);
606 
607 	if ((sc->bce_flags & BCE_MFW_ENABLE_FLAG) ||
608 	    (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)) {
609 		kprintf("; Flags(");
610 		if (sc->bce_flags & BCE_MFW_ENABLE_FLAG)
611 			kprintf("MFW[%s]", sc->bce_mfw_ver);
612 		if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)
613 			kprintf(" 2.5G");
614 		kprintf(")");
615 	}
616 	kprintf("\n");
617 }
618 
619 
620 /****************************************************************************/
621 /* PCI Capabilities Probe Function.                                         */
622 /*                                                                          */
623 /* Walks the PCI capabiites list for the device to find what features are   */
624 /* supported.                                                               */
625 /*                                                                          */
626 /* Returns:                                                                 */
627 /*   None.                                                                  */
628 /****************************************************************************/
629 static void
630 bce_probe_pci_caps(struct bce_softc *sc)
631 {
632 	device_t dev = sc->bce_dev;
633 	uint8_t ptr;
634 
635 	if (pci_is_pcix(dev))
636 		sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG;
637 
638 	ptr = pci_get_pciecap_ptr(dev);
639 	if (ptr) {
640 		uint16_t link_status = pci_read_config(dev, ptr + 0x12, 2);
641 
642 		sc->link_speed = link_status & 0xf;
643 		sc->link_width = (link_status >> 4) & 0x3f;
644 		sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG;
645 		sc->bce_flags |= BCE_PCIE_FLAG;
646 	}
647 }
648 
649 
650 /****************************************************************************/
651 /* Device attach function.                                                  */
652 /*                                                                          */
653 /* Allocates device resources, performs secondary chip identification,      */
654 /* resets and initializes the hardware, and initializes driver instance     */
655 /* variables.                                                               */
656 /*                                                                          */
657 /* Returns:                                                                 */
658 /*   0 on success, positive value on failure.                               */
659 /****************************************************************************/
660 static int
661 bce_attach(device_t dev)
662 {
663 	struct bce_softc *sc = device_get_softc(dev);
664 	struct ifnet *ifp = &sc->arpcom.ac_if;
665 	uint32_t val;
666 	int rid, rc = 0;
667 	int i, j;
668 #ifdef notyet
669 	int count;
670 #endif
671 
672 	sc->bce_dev = dev;
673 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
674 
675 	pci_enable_busmaster(dev);
676 
677 	bce_probe_pci_caps(sc);
678 
679 	/* Allocate PCI memory resources. */
680 	rid = PCIR_BAR(0);
681 	sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
682 						 RF_ACTIVE | PCI_RF_DENSE);
683 	if (sc->bce_res_mem == NULL) {
684 		device_printf(dev, "PCI memory allocation failed\n");
685 		return ENXIO;
686 	}
687 	sc->bce_btag = rman_get_bustag(sc->bce_res_mem);
688 	sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem);
689 
690 	/* Allocate PCI IRQ resources. */
691 #ifdef notyet
692 	count = pci_msi_count(dev);
693 	if (count == 1 && pci_alloc_msi(dev, &count) == 0) {
694 		rid = 1;
695 		sc->bce_flags |= BCE_USING_MSI_FLAG;
696 	} else
697 #endif
698 	rid = 0;
699 	sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
700 						 RF_SHAREABLE | RF_ACTIVE);
701 	if (sc->bce_res_irq == NULL) {
702 		device_printf(dev, "PCI map interrupt failed\n");
703 		rc = ENXIO;
704 		goto fail;
705 	}
706 
707 	/*
708 	 * Configure byte swap and enable indirect register access.
709 	 * Rely on CPU to do target byte swapping on big endian systems.
710 	 * Access to registers outside of PCI configurtion space are not
711 	 * valid until this is done.
712 	 */
713 	pci_write_config(dev, BCE_PCICFG_MISC_CONFIG,
714 			 BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
715 			 BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4);
716 
717 	/* Save ASIC revsion info. */
718 	sc->bce_chipid =  REG_RD(sc, BCE_MISC_ID);
719 
720 	/* Weed out any non-production controller revisions. */
721 	switch (BCE_CHIP_ID(sc)) {
722 	case BCE_CHIP_ID_5706_A0:
723 	case BCE_CHIP_ID_5706_A1:
724 	case BCE_CHIP_ID_5708_A0:
725 	case BCE_CHIP_ID_5708_B0:
726 	case BCE_CHIP_ID_5709_A0:
727 	case BCE_CHIP_ID_5709_B0:
728 	case BCE_CHIP_ID_5709_B1:
729 #ifdef foo
730 	/* 5709C B2 seems to work fine */
731 	case BCE_CHIP_ID_5709_B2:
732 #endif
733 		device_printf(dev, "Unsupported chip id 0x%08x!\n",
734 			      BCE_CHIP_ID(sc));
735 		rc = ENODEV;
736 		goto fail;
737 	}
738 
739 	/*
740 	 * Find the base address for shared memory access.
741 	 * Newer versions of bootcode use a signature and offset
742 	 * while older versions use a fixed address.
743 	 */
744 	val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE);
745 	if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) ==
746 	    BCE_SHM_HDR_SIGNATURE_SIG) {
747 		/* Multi-port devices use different offsets in shared memory. */
748 		sc->bce_shmem_base = REG_RD_IND(sc,
749 		    BCE_SHM_HDR_ADDR_0 + (pci_get_function(sc->bce_dev) << 2));
750 	} else {
751 		sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE;
752 	}
753 	DBPRINT(sc, BCE_INFO, "bce_shmem_base = 0x%08X\n", sc->bce_shmem_base);
754 
755 	/* Fetch the bootcode revision. */
756 	val = bce_shmem_rd(sc, BCE_DEV_INFO_BC_REV);
757 	for (i = 0, j = 0; i < 3; i++) {
758 		uint8_t num;
759 		int k, skip0;
760 
761 		num = (uint8_t)(val >> (24 - (i * 8)));
762 		for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
763 			if (num >= k || !skip0 || k == 1) {
764 				sc->bce_bc_ver[j++] = (num / k) + '0';
765 				skip0 = 0;
766 			}
767 		}
768 		if (i != 2)
769 			sc->bce_bc_ver[j++] = '.';
770 	}
771 
772 	/* Check if any management firwmare is running. */
773 	val = bce_shmem_rd(sc, BCE_PORT_FEATURE);
774 	if (val & BCE_PORT_FEATURE_ASF_ENABLED) {
775 		sc->bce_flags |= BCE_MFW_ENABLE_FLAG;
776 
777 		/* Allow time for firmware to enter the running state. */
778 		for (i = 0; i < 30; i++) {
779 			val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
780 			if (val & BCE_CONDITION_MFW_RUN_MASK)
781 				break;
782 			DELAY(10000);
783 		}
784 	}
785 
786 	/* Check the current bootcode state. */
787 	val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION) &
788 	    BCE_CONDITION_MFW_RUN_MASK;
789 	if (val != BCE_CONDITION_MFW_RUN_UNKNOWN &&
790 	    val != BCE_CONDITION_MFW_RUN_NONE) {
791 		uint32_t addr = bce_shmem_rd(sc, BCE_MFW_VER_PTR);
792 
793 		for (i = 0, j = 0; j < 3; j++) {
794 			val = bce_reg_rd_ind(sc, addr + j * 4);
795 			val = bswap32(val);
796 			memcpy(&sc->bce_mfw_ver[i], &val, 4);
797 			i += 4;
798 		}
799 	}
800 
801 	/* Get PCI bus information (speed and type). */
802 	val = REG_RD(sc, BCE_PCICFG_MISC_STATUS);
803 	if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) {
804 		uint32_t clkreg;
805 
806 		sc->bce_flags |= BCE_PCIX_FLAG;
807 
808 		clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS) &
809 			 BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
810 		switch (clkreg) {
811 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
812 			sc->bus_speed_mhz = 133;
813 			break;
814 
815 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
816 			sc->bus_speed_mhz = 100;
817 			break;
818 
819 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
820 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
821 			sc->bus_speed_mhz = 66;
822 			break;
823 
824 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
825 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
826 			sc->bus_speed_mhz = 50;
827 			break;
828 
829 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
830 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
831 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
832 			sc->bus_speed_mhz = 33;
833 			break;
834 		}
835 	} else {
836 		if (val & BCE_PCICFG_MISC_STATUS_M66EN)
837 			sc->bus_speed_mhz = 66;
838 		else
839 			sc->bus_speed_mhz = 33;
840 	}
841 
842 	if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET)
843 		sc->bce_flags |= BCE_PCI_32BIT_FLAG;
844 
845 	/* Reset the controller. */
846 	rc = bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
847 	if (rc != 0)
848 		goto fail;
849 
850 	/* Initialize the controller. */
851 	rc = bce_chipinit(sc);
852 	if (rc != 0) {
853 		device_printf(dev, "Controller initialization failed!\n");
854 		goto fail;
855 	}
856 
857 	/* Perform NVRAM test. */
858 	rc = bce_nvram_test(sc);
859 	if (rc != 0) {
860 		device_printf(dev, "NVRAM test failed!\n");
861 		goto fail;
862 	}
863 
864 	/* Fetch the permanent Ethernet MAC address. */
865 	bce_get_mac_addr(sc);
866 
867 	/*
868 	 * Trip points control how many BDs
869 	 * should be ready before generating an
870 	 * interrupt while ticks control how long
871 	 * a BD can sit in the chain before
872 	 * generating an interrupt.  Set the default
873 	 * values for the RX and TX rings.
874 	 */
875 
876 #ifdef BCE_DRBUG
877 	/* Force more frequent interrupts. */
878 	sc->bce_tx_quick_cons_trip_int = 1;
879 	sc->bce_tx_quick_cons_trip     = 1;
880 	sc->bce_tx_ticks_int           = 0;
881 	sc->bce_tx_ticks               = 0;
882 
883 	sc->bce_rx_quick_cons_trip_int = 1;
884 	sc->bce_rx_quick_cons_trip     = 1;
885 	sc->bce_rx_ticks_int           = 0;
886 	sc->bce_rx_ticks               = 0;
887 #else
888 	sc->bce_tx_quick_cons_trip_int = bce_tx_bds_int;
889 	sc->bce_tx_quick_cons_trip     = bce_tx_bds;
890 	sc->bce_tx_ticks_int           = bce_tx_ticks_int;
891 	sc->bce_tx_ticks               = bce_tx_ticks;
892 
893 	sc->bce_rx_quick_cons_trip_int = bce_rx_bds_int;
894 	sc->bce_rx_quick_cons_trip     = bce_rx_bds;
895 	sc->bce_rx_ticks_int           = bce_rx_ticks_int;
896 	sc->bce_rx_ticks               = bce_rx_ticks;
897 #endif
898 
899 	/* Update statistics once every second. */
900 	sc->bce_stats_ticks = 1000000 & 0xffff00;
901 
902 	/* Find the media type for the adapter. */
903 	bce_get_media(sc);
904 
905 	/* Allocate DMA memory resources. */
906 	rc = bce_dma_alloc(sc);
907 	if (rc != 0) {
908 		device_printf(dev, "DMA resource allocation failed!\n");
909 		goto fail;
910 	}
911 
912 	/* Initialize the ifnet interface. */
913 	ifp->if_softc = sc;
914 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
915 	ifp->if_ioctl = bce_ioctl;
916 	ifp->if_start = bce_start;
917 	ifp->if_init = bce_init;
918 	ifp->if_watchdog = bce_watchdog;
919 #ifdef DEVICE_POLLING
920 	ifp->if_poll = bce_poll;
921 #endif
922 	ifp->if_mtu = ETHERMTU;
923 	ifp->if_hwassist = BCE_IF_HWASSIST;
924 	ifp->if_capabilities = BCE_IF_CAPABILITIES;
925 	ifp->if_capenable = ifp->if_capabilities;
926 	ifq_set_maxlen(&ifp->if_snd, USABLE_TX_BD);
927 	ifq_set_ready(&ifp->if_snd);
928 
929 	if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)
930 		ifp->if_baudrate = IF_Gbps(2.5);
931 	else
932 		ifp->if_baudrate = IF_Gbps(1);
933 
934 	/* Assume a standard 1500 byte MTU size for mbuf allocations. */
935 	sc->mbuf_alloc_size  = MCLBYTES;
936 
937 	/* Look for our PHY. */
938 	rc = mii_phy_probe(dev, &sc->bce_miibus,
939 			   bce_ifmedia_upd, bce_ifmedia_sts);
940 	if (rc != 0) {
941 		device_printf(dev, "PHY probe failed!\n");
942 		goto fail;
943 	}
944 
945 	/* Attach to the Ethernet interface list. */
946 	ether_ifattach(ifp, sc->eaddr, NULL);
947 
948 	callout_init(&sc->bce_tick_callout);
949 	callout_init(&sc->bce_pulse_callout);
950 
951 	/* Hookup IRQ last. */
952 	rc = bus_setup_intr(dev, sc->bce_res_irq, INTR_MPSAFE, bce_intr, sc,
953 			    &sc->bce_intrhand, ifp->if_serializer);
954 	if (rc != 0) {
955 		device_printf(dev, "Failed to setup IRQ!\n");
956 		ether_ifdetach(ifp);
957 		goto fail;
958 	}
959 
960 	ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->bce_res_irq));
961 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
962 
963 	/* Print some important debugging info. */
964 	DBRUN(BCE_INFO, bce_dump_driver_state(sc));
965 
966 	/* Add the supported sysctls to the kernel. */
967 	bce_add_sysctls(sc);
968 
969 	/*
970 	 * The chip reset earlier notified the bootcode that
971 	 * a driver is present.  We now need to start our pulse
972 	 * routine so that the bootcode is reminded that we're
973 	 * still running.
974 	 */
975 	bce_pulse(sc);
976 
977 	/* Get the firmware running so IPMI still works */
978 	bce_mgmt_init(sc);
979 
980 	if (bootverbose)
981 		bce_print_adapter_info(sc);
982 
983 	return 0;
984 fail:
985 	bce_detach(dev);
986 	return(rc);
987 }
988 
989 
990 /****************************************************************************/
991 /* Device detach function.                                                  */
992 /*                                                                          */
993 /* Stops the controller, resets the controller, and releases resources.     */
994 /*                                                                          */
995 /* Returns:                                                                 */
996 /*   0 on success, positive value on failure.                               */
997 /****************************************************************************/
998 static int
999 bce_detach(device_t dev)
1000 {
1001 	struct bce_softc *sc = device_get_softc(dev);
1002 
1003 	if (device_is_attached(dev)) {
1004 		struct ifnet *ifp = &sc->arpcom.ac_if;
1005 		uint32_t msg;
1006 
1007 		/* Stop and reset the controller. */
1008 		lwkt_serialize_enter(ifp->if_serializer);
1009 		callout_stop(&sc->bce_pulse_callout);
1010 		bce_stop(sc);
1011 		if (sc->bce_flags & BCE_NO_WOL_FLAG)
1012 			msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1013 		else
1014 			msg = BCE_DRV_MSG_CODE_UNLOAD;
1015 		bce_reset(sc, msg);
1016 		bus_teardown_intr(dev, sc->bce_res_irq, sc->bce_intrhand);
1017 		lwkt_serialize_exit(ifp->if_serializer);
1018 
1019 		ether_ifdetach(ifp);
1020 	}
1021 
1022 	/* If we have a child device on the MII bus remove it too. */
1023 	if (sc->bce_miibus)
1024 		device_delete_child(dev, sc->bce_miibus);
1025 	bus_generic_detach(dev);
1026 
1027 	if (sc->bce_res_irq != NULL) {
1028 		bus_release_resource(dev, SYS_RES_IRQ,
1029 			sc->bce_flags & BCE_USING_MSI_FLAG ? 1 : 0,
1030 			sc->bce_res_irq);
1031 	}
1032 
1033 #ifdef notyet
1034 	if (sc->bce_flags & BCE_USING_MSI_FLAG)
1035 		pci_release_msi(dev);
1036 #endif
1037 
1038 	if (sc->bce_res_mem != NULL) {
1039 		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
1040 				     sc->bce_res_mem);
1041 	}
1042 
1043 	bce_dma_free(sc);
1044 
1045 	if (sc->bce_sysctl_tree != NULL)
1046 		sysctl_ctx_free(&sc->bce_sysctl_ctx);
1047 
1048 	return 0;
1049 }
1050 
1051 
1052 /****************************************************************************/
1053 /* Device shutdown function.                                                */
1054 /*                                                                          */
1055 /* Stops and resets the controller.                                         */
1056 /*                                                                          */
1057 /* Returns:                                                                 */
1058 /*   Nothing                                                                */
1059 /****************************************************************************/
1060 static void
1061 bce_shutdown(device_t dev)
1062 {
1063 	struct bce_softc *sc = device_get_softc(dev);
1064 	struct ifnet *ifp = &sc->arpcom.ac_if;
1065 	uint32_t msg;
1066 
1067 	lwkt_serialize_enter(ifp->if_serializer);
1068 	bce_stop(sc);
1069 	if (sc->bce_flags & BCE_NO_WOL_FLAG)
1070 		msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1071 	else
1072 		msg = BCE_DRV_MSG_CODE_UNLOAD;
1073 	bce_reset(sc, msg);
1074 	lwkt_serialize_exit(ifp->if_serializer);
1075 }
1076 
1077 
1078 /****************************************************************************/
1079 /* Indirect register read.                                                  */
1080 /*                                                                          */
1081 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
1082 /* configuration space.  Using this mechanism avoids issues with posted     */
1083 /* reads but is much slower than memory-mapped I/O.                         */
1084 /*                                                                          */
1085 /* Returns:                                                                 */
1086 /*   The value of the register.                                             */
1087 /****************************************************************************/
1088 static uint32_t
1089 bce_reg_rd_ind(struct bce_softc *sc, uint32_t offset)
1090 {
1091 	device_t dev = sc->bce_dev;
1092 
1093 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1094 #ifdef BCE_DEBUG
1095 	{
1096 		uint32_t val;
1097 		val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1098 		DBPRINT(sc, BCE_EXCESSIVE,
1099 			"%s(); offset = 0x%08X, val = 0x%08X\n",
1100 			__func__, offset, val);
1101 		return val;
1102 	}
1103 #else
1104 	return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1105 #endif
1106 }
1107 
1108 
1109 /****************************************************************************/
1110 /* Indirect register write.                                                 */
1111 /*                                                                          */
1112 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
1113 /* configuration space.  Using this mechanism avoids issues with posted     */
1114 /* writes but is muchh slower than memory-mapped I/O.                       */
1115 /*                                                                          */
1116 /* Returns:                                                                 */
1117 /*   Nothing.                                                               */
1118 /****************************************************************************/
1119 static void
1120 bce_reg_wr_ind(struct bce_softc *sc, uint32_t offset, uint32_t val)
1121 {
1122 	device_t dev = sc->bce_dev;
1123 
1124 	DBPRINT(sc, BCE_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
1125 		__func__, offset, val);
1126 
1127 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1128 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4);
1129 }
1130 
1131 
1132 /****************************************************************************/
1133 /* Shared memory write.                                                     */
1134 /*                                                                          */
1135 /* Writes NetXtreme II shared memory region.                                */
1136 /*                                                                          */
1137 /* Returns:                                                                 */
1138 /*   Nothing.                                                               */
1139 /****************************************************************************/
1140 static void
1141 bce_shmem_wr(struct bce_softc *sc, uint32_t offset, uint32_t val)
1142 {
1143 	bce_reg_wr_ind(sc, sc->bce_shmem_base + offset, val);
1144 }
1145 
1146 
1147 /****************************************************************************/
1148 /* Shared memory read.                                                      */
1149 /*                                                                          */
1150 /* Reads NetXtreme II shared memory region.                                 */
1151 /*                                                                          */
1152 /* Returns:                                                                 */
1153 /*   The 32 bit value read.                                                 */
1154 /****************************************************************************/
1155 static u32
1156 bce_shmem_rd(struct bce_softc *sc, uint32_t offset)
1157 {
1158 	return bce_reg_rd_ind(sc, sc->bce_shmem_base + offset);
1159 }
1160 
1161 
1162 /****************************************************************************/
1163 /* Context memory write.                                                    */
1164 /*                                                                          */
1165 /* The NetXtreme II controller uses context memory to track connection      */
1166 /* information for L2 and higher network protocols.                         */
1167 /*                                                                          */
1168 /* Returns:                                                                 */
1169 /*   Nothing.                                                               */
1170 /****************************************************************************/
1171 static void
1172 bce_ctx_wr(struct bce_softc *sc, uint32_t cid_addr, uint32_t ctx_offset,
1173     uint32_t ctx_val)
1174 {
1175 	uint32_t idx, offset = ctx_offset + cid_addr;
1176 	uint32_t val, retry_cnt = 5;
1177 
1178 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
1179 	    BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
1180 		REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val);
1181 		REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ));
1182 
1183 		for (idx = 0; idx < retry_cnt; idx++) {
1184 			val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1185 			if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0)
1186 				break;
1187 			DELAY(5);
1188 		}
1189 
1190 		if (val & BCE_CTX_CTX_CTRL_WRITE_REQ) {
1191 			device_printf(sc->bce_dev,
1192 			    "Unable to write CTX memory: "
1193 			    "cid_addr = 0x%08X, offset = 0x%08X!\n",
1194 			    cid_addr, ctx_offset);
1195 		}
1196 	} else {
1197 		REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1198 		REG_WR(sc, BCE_CTX_DATA, ctx_val);
1199 	}
1200 }
1201 
1202 
1203 /****************************************************************************/
1204 /* PHY register read.                                                       */
1205 /*                                                                          */
1206 /* Implements register reads on the MII bus.                                */
1207 /*                                                                          */
1208 /* Returns:                                                                 */
1209 /*   The value of the register.                                             */
1210 /****************************************************************************/
1211 static int
1212 bce_miibus_read_reg(device_t dev, int phy, int reg)
1213 {
1214 	struct bce_softc *sc = device_get_softc(dev);
1215 	uint32_t val;
1216 	int i;
1217 
1218 	/* Make sure we are accessing the correct PHY address. */
1219 	if (phy != sc->bce_phy_addr) {
1220 		DBPRINT(sc, BCE_VERBOSE,
1221 			"Invalid PHY address %d for PHY read!\n", phy);
1222 		return 0;
1223 	}
1224 
1225 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1226 		val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1227 		val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1228 
1229 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1230 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1231 
1232 		DELAY(40);
1233 	}
1234 
1235 	val = BCE_MIPHY(phy) | BCE_MIREG(reg) |
1236 	      BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT |
1237 	      BCE_EMAC_MDIO_COMM_START_BUSY;
1238 	REG_WR(sc, BCE_EMAC_MDIO_COMM, val);
1239 
1240 	for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1241 		DELAY(10);
1242 
1243 		val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1244 		if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1245 			DELAY(5);
1246 
1247 			val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1248 			val &= BCE_EMAC_MDIO_COMM_DATA;
1249 			break;
1250 		}
1251 	}
1252 
1253 	if (val & BCE_EMAC_MDIO_COMM_START_BUSY) {
1254 		if_printf(&sc->arpcom.ac_if,
1255 			  "Error: PHY read timeout! phy = %d, reg = 0x%04X\n",
1256 			  phy, reg);
1257 		val = 0x0;
1258 	} else {
1259 		val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1260 	}
1261 
1262 	DBPRINT(sc, BCE_EXCESSIVE,
1263 		"%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n",
1264 		__func__, phy, (uint16_t)reg & 0xffff, (uint16_t) val & 0xffff);
1265 
1266 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1267 		val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1268 		val |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1269 
1270 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1271 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1272 
1273 		DELAY(40);
1274 	}
1275 	return (val & 0xffff);
1276 }
1277 
1278 
1279 /****************************************************************************/
1280 /* PHY register write.                                                      */
1281 /*                                                                          */
1282 /* Implements register writes on the MII bus.                               */
1283 /*                                                                          */
1284 /* Returns:                                                                 */
1285 /*   The value of the register.                                             */
1286 /****************************************************************************/
1287 static int
1288 bce_miibus_write_reg(device_t dev, int phy, int reg, int val)
1289 {
1290 	struct bce_softc *sc = device_get_softc(dev);
1291 	uint32_t val1;
1292 	int i;
1293 
1294 	/* Make sure we are accessing the correct PHY address. */
1295 	if (phy != sc->bce_phy_addr) {
1296 		DBPRINT(sc, BCE_WARN,
1297 			"Invalid PHY address %d for PHY write!\n", phy);
1298 		return(0);
1299 	}
1300 
1301 	DBPRINT(sc, BCE_EXCESSIVE,
1302 		"%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n",
1303 		__func__, phy, (uint16_t)(reg & 0xffff),
1304 		(uint16_t)(val & 0xffff));
1305 
1306 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1307 		val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1308 		val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1309 
1310 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1311 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1312 
1313 		DELAY(40);
1314 	}
1315 
1316 	val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val |
1317 		BCE_EMAC_MDIO_COMM_COMMAND_WRITE |
1318 		BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT;
1319 	REG_WR(sc, BCE_EMAC_MDIO_COMM, val1);
1320 
1321 	for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1322 		DELAY(10);
1323 
1324 		val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1325 		if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1326 			DELAY(5);
1327 			break;
1328 		}
1329 	}
1330 
1331 	if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY)
1332 		if_printf(&sc->arpcom.ac_if, "PHY write timeout!\n");
1333 
1334 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1335 		val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1336 		val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1337 
1338 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1339 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1340 
1341 		DELAY(40);
1342 	}
1343 	return 0;
1344 }
1345 
1346 
1347 /****************************************************************************/
1348 /* MII bus status change.                                                   */
1349 /*                                                                          */
1350 /* Called by the MII bus driver when the PHY establishes link to set the    */
1351 /* MAC interface registers.                                                 */
1352 /*                                                                          */
1353 /* Returns:                                                                 */
1354 /*   Nothing.                                                               */
1355 /****************************************************************************/
1356 static void
1357 bce_miibus_statchg(device_t dev)
1358 {
1359 	struct bce_softc *sc = device_get_softc(dev);
1360 	struct mii_data *mii = device_get_softc(sc->bce_miibus);
1361 
1362 	DBPRINT(sc, BCE_INFO, "mii_media_active = 0x%08X\n",
1363 		mii->mii_media_active);
1364 
1365 #ifdef BCE_DEBUG
1366 	/* Decode the interface media flags. */
1367 	if_printf(&sc->arpcom.ac_if, "Media: ( ");
1368 	switch(IFM_TYPE(mii->mii_media_active)) {
1369 	case IFM_ETHER:
1370 		kprintf("Ethernet )");
1371 		break;
1372 	default:
1373 		kprintf("Unknown )");
1374 		break;
1375 	}
1376 
1377 	kprintf(" Media Options: ( ");
1378 	switch(IFM_SUBTYPE(mii->mii_media_active)) {
1379 	case IFM_AUTO:
1380 		kprintf("Autoselect )");
1381 		break;
1382 	case IFM_MANUAL:
1383 		kprintf("Manual )");
1384 		break;
1385 	case IFM_NONE:
1386 		kprintf("None )");
1387 		break;
1388 	case IFM_10_T:
1389 		kprintf("10Base-T )");
1390 		break;
1391 	case IFM_100_TX:
1392 		kprintf("100Base-TX )");
1393 		break;
1394 	case IFM_1000_SX:
1395 		kprintf("1000Base-SX )");
1396 		break;
1397 	case IFM_1000_T:
1398 		kprintf("1000Base-T )");
1399 		break;
1400 	default:
1401 		kprintf("Other )");
1402 		break;
1403 	}
1404 
1405 	kprintf(" Global Options: (");
1406 	if (mii->mii_media_active & IFM_FDX)
1407 		kprintf(" FullDuplex");
1408 	if (mii->mii_media_active & IFM_HDX)
1409 		kprintf(" HalfDuplex");
1410 	if (mii->mii_media_active & IFM_LOOP)
1411 		kprintf(" Loopback");
1412 	if (mii->mii_media_active & IFM_FLAG0)
1413 		kprintf(" Flag0");
1414 	if (mii->mii_media_active & IFM_FLAG1)
1415 		kprintf(" Flag1");
1416 	if (mii->mii_media_active & IFM_FLAG2)
1417 		kprintf(" Flag2");
1418 	kprintf(" )\n");
1419 #endif
1420 
1421 	BCE_CLRBIT(sc, BCE_EMAC_MODE, BCE_EMAC_MODE_PORT);
1422 
1423 	/*
1424 	 * Set MII or GMII interface based on the speed negotiated
1425 	 * by the PHY.
1426 	 */
1427 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1428 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
1429 		DBPRINT(sc, BCE_INFO, "Setting GMII interface.\n");
1430 		BCE_SETBIT(sc, BCE_EMAC_MODE, BCE_EMAC_MODE_PORT_GMII);
1431 	} else {
1432 		DBPRINT(sc, BCE_INFO, "Setting MII interface.\n");
1433 		BCE_SETBIT(sc, BCE_EMAC_MODE, BCE_EMAC_MODE_PORT_MII);
1434 	}
1435 
1436 	/*
1437 	 * Set half or full duplex based on the duplicity negotiated
1438 	 * by the PHY.
1439 	 */
1440 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1441 		DBPRINT(sc, BCE_INFO, "Setting Full-Duplex interface.\n");
1442 		BCE_CLRBIT(sc, BCE_EMAC_MODE, BCE_EMAC_MODE_HALF_DUPLEX);
1443 	} else {
1444 		DBPRINT(sc, BCE_INFO, "Setting Half-Duplex interface.\n");
1445 		BCE_SETBIT(sc, BCE_EMAC_MODE, BCE_EMAC_MODE_HALF_DUPLEX);
1446 	}
1447 }
1448 
1449 
1450 /****************************************************************************/
1451 /* Acquire NVRAM lock.                                                      */
1452 /*                                                                          */
1453 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
1454 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1455 /* for use by the driver.                                                   */
1456 /*                                                                          */
1457 /* Returns:                                                                 */
1458 /*   0 on success, positive value on failure.                               */
1459 /****************************************************************************/
1460 static int
1461 bce_acquire_nvram_lock(struct bce_softc *sc)
1462 {
1463 	uint32_t val;
1464 	int j;
1465 
1466 	DBPRINT(sc, BCE_VERBOSE, "Acquiring NVRAM lock.\n");
1467 
1468 	/* Request access to the flash interface. */
1469 	REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2);
1470 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1471 		val = REG_RD(sc, BCE_NVM_SW_ARB);
1472 		if (val & BCE_NVM_SW_ARB_ARB_ARB2)
1473 			break;
1474 
1475 		DELAY(5);
1476 	}
1477 
1478 	if (j >= NVRAM_TIMEOUT_COUNT) {
1479 		DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n");
1480 		return EBUSY;
1481 	}
1482 	return 0;
1483 }
1484 
1485 
1486 /****************************************************************************/
1487 /* Release NVRAM lock.                                                      */
1488 /*                                                                          */
1489 /* When the caller is finished accessing NVRAM the lock must be released.   */
1490 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1491 /* for use by the driver.                                                   */
1492 /*                                                                          */
1493 /* Returns:                                                                 */
1494 /*   0 on success, positive value on failure.                               */
1495 /****************************************************************************/
1496 static int
1497 bce_release_nvram_lock(struct bce_softc *sc)
1498 {
1499 	int j;
1500 	uint32_t val;
1501 
1502 	DBPRINT(sc, BCE_VERBOSE, "Releasing NVRAM lock.\n");
1503 
1504 	/*
1505 	 * Relinquish nvram interface.
1506 	 */
1507 	REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2);
1508 
1509 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1510 		val = REG_RD(sc, BCE_NVM_SW_ARB);
1511 		if (!(val & BCE_NVM_SW_ARB_ARB_ARB2))
1512 			break;
1513 
1514 		DELAY(5);
1515 	}
1516 
1517 	if (j >= NVRAM_TIMEOUT_COUNT) {
1518 		DBPRINT(sc, BCE_WARN, "Timeout reeasing NVRAM lock!\n");
1519 		return EBUSY;
1520 	}
1521 	return 0;
1522 }
1523 
1524 
1525 /****************************************************************************/
1526 /* Enable NVRAM access.                                                     */
1527 /*                                                                          */
1528 /* Before accessing NVRAM for read or write operations the caller must      */
1529 /* enabled NVRAM access.                                                    */
1530 /*                                                                          */
1531 /* Returns:                                                                 */
1532 /*   Nothing.                                                               */
1533 /****************************************************************************/
1534 static void
1535 bce_enable_nvram_access(struct bce_softc *sc)
1536 {
1537 	uint32_t val;
1538 
1539 	DBPRINT(sc, BCE_VERBOSE, "Enabling NVRAM access.\n");
1540 
1541 	val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
1542 	/* Enable both bits, even on read. */
1543 	REG_WR(sc, BCE_NVM_ACCESS_ENABLE,
1544 	       val | BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN);
1545 }
1546 
1547 
1548 /****************************************************************************/
1549 /* Disable NVRAM access.                                                    */
1550 /*                                                                          */
1551 /* When the caller is finished accessing NVRAM access must be disabled.     */
1552 /*                                                                          */
1553 /* Returns:                                                                 */
1554 /*   Nothing.                                                               */
1555 /****************************************************************************/
1556 static void
1557 bce_disable_nvram_access(struct bce_softc *sc)
1558 {
1559 	uint32_t val;
1560 
1561 	DBPRINT(sc, BCE_VERBOSE, "Disabling NVRAM access.\n");
1562 
1563 	val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
1564 
1565 	/* Disable both bits, even after read. */
1566 	REG_WR(sc, BCE_NVM_ACCESS_ENABLE,
1567 	       val & ~(BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN));
1568 }
1569 
1570 
1571 /****************************************************************************/
1572 /* Read a dword (32 bits) from NVRAM.                                       */
1573 /*                                                                          */
1574 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
1575 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
1576 /*                                                                          */
1577 /* Returns:                                                                 */
1578 /*   0 on success and the 32 bit value read, positive value on failure.     */
1579 /****************************************************************************/
1580 static int
1581 bce_nvram_read_dword(struct bce_softc *sc, uint32_t offset, uint8_t *ret_val,
1582 		     uint32_t cmd_flags)
1583 {
1584 	uint32_t cmd;
1585 	int i, rc = 0;
1586 
1587 	/* Build the command word. */
1588 	cmd = BCE_NVM_COMMAND_DOIT | cmd_flags;
1589 
1590 	/* Calculate the offset for buffered flash. */
1591 	if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
1592 		offset = ((offset / sc->bce_flash_info->page_size) <<
1593 			  sc->bce_flash_info->page_bits) +
1594 			 (offset % sc->bce_flash_info->page_size);
1595 	}
1596 
1597 	/*
1598 	 * Clear the DONE bit separately, set the address to read,
1599 	 * and issue the read.
1600 	 */
1601 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
1602 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
1603 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
1604 
1605 	/* Wait for completion. */
1606 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1607 		uint32_t val;
1608 
1609 		DELAY(5);
1610 
1611 		val = REG_RD(sc, BCE_NVM_COMMAND);
1612 		if (val & BCE_NVM_COMMAND_DONE) {
1613 			val = REG_RD(sc, BCE_NVM_READ);
1614 
1615 			val = be32toh(val);
1616 			memcpy(ret_val, &val, 4);
1617 			break;
1618 		}
1619 	}
1620 
1621 	/* Check for errors. */
1622 	if (i >= NVRAM_TIMEOUT_COUNT) {
1623 		if_printf(&sc->arpcom.ac_if,
1624 			  "Timeout error reading NVRAM at offset 0x%08X!\n",
1625 			  offset);
1626 		rc = EBUSY;
1627 	}
1628 	return rc;
1629 }
1630 
1631 
1632 /****************************************************************************/
1633 /* Initialize NVRAM access.                                                 */
1634 /*                                                                          */
1635 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
1636 /* access that device.                                                      */
1637 /*                                                                          */
1638 /* Returns:                                                                 */
1639 /*   0 on success, positive value on failure.                               */
1640 /****************************************************************************/
1641 static int
1642 bce_init_nvram(struct bce_softc *sc)
1643 {
1644 	uint32_t val;
1645 	int j, entry_count, rc = 0;
1646 	const struct flash_spec *flash;
1647 
1648 	DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __func__);
1649 
1650 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
1651 	    BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
1652 		sc->bce_flash_info = &flash_5709;
1653 		goto bce_init_nvram_get_flash_size;
1654 	}
1655 
1656 	/* Determine the selected interface. */
1657 	val = REG_RD(sc, BCE_NVM_CFG1);
1658 
1659 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1660 
1661 	/*
1662 	 * Flash reconfiguration is required to support additional
1663 	 * NVRAM devices not directly supported in hardware.
1664 	 * Check if the flash interface was reconfigured
1665 	 * by the bootcode.
1666 	 */
1667 
1668 	if (val & 0x40000000) {
1669 		/* Flash interface reconfigured by bootcode. */
1670 
1671 		DBPRINT(sc, BCE_INFO_LOAD,
1672 			"%s(): Flash WAS reconfigured.\n", __func__);
1673 
1674 		for (j = 0, flash = flash_table; j < entry_count;
1675 		     j++, flash++) {
1676 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
1677 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1678 				sc->bce_flash_info = flash;
1679 				break;
1680 			}
1681 		}
1682 	} else {
1683 		/* Flash interface not yet reconfigured. */
1684 		uint32_t mask;
1685 
1686 		DBPRINT(sc, BCE_INFO_LOAD,
1687 			"%s(): Flash was NOT reconfigured.\n", __func__);
1688 
1689 		if (val & (1 << 23))
1690 			mask = FLASH_BACKUP_STRAP_MASK;
1691 		else
1692 			mask = FLASH_STRAP_MASK;
1693 
1694 		/* Look for the matching NVRAM device configuration data. */
1695 		for (j = 0, flash = flash_table; j < entry_count;
1696 		     j++, flash++) {
1697 			/* Check if the device matches any of the known devices. */
1698 			if ((val & mask) == (flash->strapping & mask)) {
1699 				/* Found a device match. */
1700 				sc->bce_flash_info = flash;
1701 
1702 				/* Request access to the flash interface. */
1703 				rc = bce_acquire_nvram_lock(sc);
1704 				if (rc != 0)
1705 					return rc;
1706 
1707 				/* Reconfigure the flash interface. */
1708 				bce_enable_nvram_access(sc);
1709 				REG_WR(sc, BCE_NVM_CFG1, flash->config1);
1710 				REG_WR(sc, BCE_NVM_CFG2, flash->config2);
1711 				REG_WR(sc, BCE_NVM_CFG3, flash->config3);
1712 				REG_WR(sc, BCE_NVM_WRITE1, flash->write1);
1713 				bce_disable_nvram_access(sc);
1714 				bce_release_nvram_lock(sc);
1715 				break;
1716 			}
1717 		}
1718 	}
1719 
1720 	/* Check if a matching device was found. */
1721 	if (j == entry_count) {
1722 		sc->bce_flash_info = NULL;
1723 		if_printf(&sc->arpcom.ac_if, "Unknown Flash NVRAM found!\n");
1724 		return ENODEV;
1725 	}
1726 
1727 bce_init_nvram_get_flash_size:
1728 	/* Write the flash config data to the shared memory interface. */
1729 	val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG2) &
1730 	    BCE_SHARED_HW_CFG2_NVM_SIZE_MASK;
1731 	if (val)
1732 		sc->bce_flash_size = val;
1733 	else
1734 		sc->bce_flash_size = sc->bce_flash_info->total_size;
1735 
1736 	DBPRINT(sc, BCE_INFO_LOAD, "%s() flash->total_size = 0x%08X\n",
1737 		__func__, sc->bce_flash_info->total_size);
1738 
1739 	DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __func__);
1740 
1741 	return rc;
1742 }
1743 
1744 
1745 /****************************************************************************/
1746 /* Read an arbitrary range of data from NVRAM.                              */
1747 /*                                                                          */
1748 /* Prepares the NVRAM interface for access and reads the requested data     */
1749 /* into the supplied buffer.                                                */
1750 /*                                                                          */
1751 /* Returns:                                                                 */
1752 /*   0 on success and the data read, positive value on failure.             */
1753 /****************************************************************************/
1754 static int
1755 bce_nvram_read(struct bce_softc *sc, uint32_t offset, uint8_t *ret_buf,
1756 	       int buf_size)
1757 {
1758 	uint32_t cmd_flags, offset32, len32, extra;
1759 	int rc = 0;
1760 
1761 	if (buf_size == 0)
1762 		return 0;
1763 
1764 	/* Request access to the flash interface. */
1765 	rc = bce_acquire_nvram_lock(sc);
1766 	if (rc != 0)
1767 		return rc;
1768 
1769 	/* Enable access to flash interface */
1770 	bce_enable_nvram_access(sc);
1771 
1772 	len32 = buf_size;
1773 	offset32 = offset;
1774 	extra = 0;
1775 
1776 	cmd_flags = 0;
1777 
1778 	/* XXX should we release nvram lock if read_dword() fails? */
1779 	if (offset32 & 3) {
1780 		uint8_t buf[4];
1781 		uint32_t pre_len;
1782 
1783 		offset32 &= ~3;
1784 		pre_len = 4 - (offset & 3);
1785 
1786 		if (pre_len >= len32) {
1787 			pre_len = len32;
1788 			cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST;
1789 		} else {
1790 			cmd_flags = BCE_NVM_COMMAND_FIRST;
1791 		}
1792 
1793 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
1794 		if (rc)
1795 			return rc;
1796 
1797 		memcpy(ret_buf, buf + (offset & 3), pre_len);
1798 
1799 		offset32 += 4;
1800 		ret_buf += pre_len;
1801 		len32 -= pre_len;
1802 	}
1803 
1804 	if (len32 & 3) {
1805 		extra = 4 - (len32 & 3);
1806 		len32 = (len32 + 4) & ~3;
1807 	}
1808 
1809 	if (len32 == 4) {
1810 		uint8_t buf[4];
1811 
1812 		if (cmd_flags)
1813 			cmd_flags = BCE_NVM_COMMAND_LAST;
1814 		else
1815 			cmd_flags = BCE_NVM_COMMAND_FIRST |
1816 				    BCE_NVM_COMMAND_LAST;
1817 
1818 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
1819 
1820 		memcpy(ret_buf, buf, 4 - extra);
1821 	} else if (len32 > 0) {
1822 		uint8_t buf[4];
1823 
1824 		/* Read the first word. */
1825 		if (cmd_flags)
1826 			cmd_flags = 0;
1827 		else
1828 			cmd_flags = BCE_NVM_COMMAND_FIRST;
1829 
1830 		rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1831 
1832 		/* Advance to the next dword. */
1833 		offset32 += 4;
1834 		ret_buf += 4;
1835 		len32 -= 4;
1836 
1837 		while (len32 > 4 && rc == 0) {
1838 			rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0);
1839 
1840 			/* Advance to the next dword. */
1841 			offset32 += 4;
1842 			ret_buf += 4;
1843 			len32 -= 4;
1844 		}
1845 
1846 		if (rc)
1847 			goto bce_nvram_read_locked_exit;
1848 
1849 		cmd_flags = BCE_NVM_COMMAND_LAST;
1850 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
1851 
1852 		memcpy(ret_buf, buf, 4 - extra);
1853 	}
1854 
1855 bce_nvram_read_locked_exit:
1856 	/* Disable access to flash interface and release the lock. */
1857 	bce_disable_nvram_access(sc);
1858 	bce_release_nvram_lock(sc);
1859 
1860 	return rc;
1861 }
1862 
1863 
1864 /****************************************************************************/
1865 /* Verifies that NVRAM is accessible and contains valid data.               */
1866 /*                                                                          */
1867 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
1868 /* correct.                                                                 */
1869 /*                                                                          */
1870 /* Returns:                                                                 */
1871 /*   0 on success, positive value on failure.                               */
1872 /****************************************************************************/
1873 static int
1874 bce_nvram_test(struct bce_softc *sc)
1875 {
1876 	uint32_t buf[BCE_NVRAM_SIZE / 4];
1877 	uint32_t magic, csum;
1878 	uint8_t *data = (uint8_t *)buf;
1879 	int rc = 0;
1880 
1881 	/*
1882 	 * Check that the device NVRAM is valid by reading
1883 	 * the magic value at offset 0.
1884 	 */
1885 	rc = bce_nvram_read(sc, 0, data, 4);
1886 	if (rc != 0)
1887 		return rc;
1888 
1889 	magic = be32toh(buf[0]);
1890 	if (magic != BCE_NVRAM_MAGIC) {
1891 		if_printf(&sc->arpcom.ac_if,
1892 			  "Invalid NVRAM magic value! Expected: 0x%08X, "
1893 			  "Found: 0x%08X\n", BCE_NVRAM_MAGIC, magic);
1894 		return ENODEV;
1895 	}
1896 
1897 	/*
1898 	 * Verify that the device NVRAM includes valid
1899 	 * configuration data.
1900 	 */
1901 	rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE);
1902 	if (rc != 0)
1903 		return rc;
1904 
1905 	csum = ether_crc32_le(data, 0x100);
1906 	if (csum != BCE_CRC32_RESIDUAL) {
1907 		if_printf(&sc->arpcom.ac_if,
1908 			  "Invalid Manufacturing Information NVRAM CRC! "
1909 			  "Expected: 0x%08X, Found: 0x%08X\n",
1910 			  BCE_CRC32_RESIDUAL, csum);
1911 		return ENODEV;
1912 	}
1913 
1914 	csum = ether_crc32_le(data + 0x100, 0x100);
1915 	if (csum != BCE_CRC32_RESIDUAL) {
1916 		if_printf(&sc->arpcom.ac_if,
1917 			  "Invalid Feature Configuration Information "
1918 			  "NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
1919 			  BCE_CRC32_RESIDUAL, csum);
1920 		rc = ENODEV;
1921 	}
1922 	return rc;
1923 }
1924 
1925 
1926 /****************************************************************************/
1927 /* Identifies the current media type of the controller and sets the PHY     */
1928 /* address.                                                                 */
1929 /*                                                                          */
1930 /* Returns:                                                                 */
1931 /*   Nothing.                                                               */
1932 /****************************************************************************/
1933 static void
1934 bce_get_media(struct bce_softc *sc)
1935 {
1936 	uint32_t val;
1937 
1938 	sc->bce_phy_addr = 1;
1939 
1940 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
1941 	    BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
1942  		uint32_t val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL);
1943 		uint32_t bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID;
1944 		uint32_t strap;
1945 
1946 		/*
1947 		 * The BCM5709S is software configurable
1948 		 * for Copper or SerDes operation.
1949 		 */
1950 		if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
1951 			return;
1952 		} else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
1953 			sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
1954 			return;
1955 		}
1956 
1957 		if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE) {
1958 			strap = (val & BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
1959 		} else {
1960 			strap =
1961 			(val & BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
1962 		}
1963 
1964 		if (pci_get_function(sc->bce_dev) == 0) {
1965 			switch (strap) {
1966 			case 0x4:
1967 			case 0x5:
1968 			case 0x6:
1969 				sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
1970 				break;
1971 			}
1972 		} else {
1973 			switch (strap) {
1974 			case 0x1:
1975 			case 0x2:
1976 			case 0x4:
1977 				sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
1978 				break;
1979 			}
1980 		}
1981 	} else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT) {
1982 		sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
1983 	}
1984 
1985 	if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) {
1986 		sc->bce_flags |= BCE_NO_WOL_FLAG;
1987 		if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
1988 			sc->bce_phy_addr = 2;
1989 			val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
1990 			if (val & BCE_SHARED_HW_CFG_PHY_2_5G)
1991 				sc->bce_phy_flags |= BCE_PHY_2_5G_CAPABLE_FLAG;
1992 		}
1993 	} else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) ||
1994 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)) {
1995 		sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG;
1996 	}
1997 }
1998 
1999 
2000 /****************************************************************************/
2001 /* Free any DMA memory owned by the driver.                                 */
2002 /*                                                                          */
2003 /* Scans through each data structre that requires DMA memory and frees      */
2004 /* the memory if allocated.                                                 */
2005 /*                                                                          */
2006 /* Returns:                                                                 */
2007 /*   Nothing.                                                               */
2008 /****************************************************************************/
2009 static void
2010 bce_dma_free(struct bce_softc *sc)
2011 {
2012 	int i;
2013 
2014 	/* Destroy the status block. */
2015 	if (sc->status_tag != NULL) {
2016 		if (sc->status_block != NULL) {
2017 			bus_dmamap_unload(sc->status_tag, sc->status_map);
2018 			bus_dmamem_free(sc->status_tag, sc->status_block,
2019 					sc->status_map);
2020 		}
2021 		bus_dma_tag_destroy(sc->status_tag);
2022 	}
2023 
2024 
2025 	/* Destroy the statistics block. */
2026 	if (sc->stats_tag != NULL) {
2027 		if (sc->stats_block != NULL) {
2028 			bus_dmamap_unload(sc->stats_tag, sc->stats_map);
2029 			bus_dmamem_free(sc->stats_tag, sc->stats_block,
2030 					sc->stats_map);
2031 		}
2032 		bus_dma_tag_destroy(sc->stats_tag);
2033 	}
2034 
2035 	/* Destroy the CTX DMA stuffs. */
2036 	if (sc->ctx_tag != NULL) {
2037 		for (i = 0; i < sc->ctx_pages; i++) {
2038 			if (sc->ctx_block[i] != NULL) {
2039 				bus_dmamap_unload(sc->ctx_tag, sc->ctx_map[i]);
2040 				bus_dmamem_free(sc->ctx_tag, sc->ctx_block[i],
2041 						sc->ctx_map[i]);
2042 			}
2043 		}
2044 		bus_dma_tag_destroy(sc->ctx_tag);
2045 	}
2046 
2047 	/* Destroy the TX buffer descriptor DMA stuffs. */
2048 	if (sc->tx_bd_chain_tag != NULL) {
2049 		for (i = 0; i < TX_PAGES; i++) {
2050 			if (sc->tx_bd_chain[i] != NULL) {
2051 				bus_dmamap_unload(sc->tx_bd_chain_tag,
2052 						  sc->tx_bd_chain_map[i]);
2053 				bus_dmamem_free(sc->tx_bd_chain_tag,
2054 						sc->tx_bd_chain[i],
2055 						sc->tx_bd_chain_map[i]);
2056 			}
2057 		}
2058 		bus_dma_tag_destroy(sc->tx_bd_chain_tag);
2059 	}
2060 
2061 	/* Destroy the RX buffer descriptor DMA stuffs. */
2062 	if (sc->rx_bd_chain_tag != NULL) {
2063 		for (i = 0; i < RX_PAGES; i++) {
2064 			if (sc->rx_bd_chain[i] != NULL) {
2065 				bus_dmamap_unload(sc->rx_bd_chain_tag,
2066 						  sc->rx_bd_chain_map[i]);
2067 				bus_dmamem_free(sc->rx_bd_chain_tag,
2068 						sc->rx_bd_chain[i],
2069 						sc->rx_bd_chain_map[i]);
2070 			}
2071 		}
2072 		bus_dma_tag_destroy(sc->rx_bd_chain_tag);
2073 	}
2074 
2075 	/* Destroy the TX mbuf DMA stuffs. */
2076 	if (sc->tx_mbuf_tag != NULL) {
2077 		for (i = 0; i < TOTAL_TX_BD; i++) {
2078 			/* Must have been unloaded in bce_stop() */
2079 			KKASSERT(sc->tx_mbuf_ptr[i] == NULL);
2080 			bus_dmamap_destroy(sc->tx_mbuf_tag,
2081 					   sc->tx_mbuf_map[i]);
2082 		}
2083 		bus_dma_tag_destroy(sc->tx_mbuf_tag);
2084 	}
2085 
2086 	/* Destroy the RX mbuf DMA stuffs. */
2087 	if (sc->rx_mbuf_tag != NULL) {
2088 		for (i = 0; i < TOTAL_RX_BD; i++) {
2089 			/* Must have been unloaded in bce_stop() */
2090 			KKASSERT(sc->rx_mbuf_ptr[i] == NULL);
2091 			bus_dmamap_destroy(sc->rx_mbuf_tag,
2092 					   sc->rx_mbuf_map[i]);
2093 		}
2094 		bus_dmamap_destroy(sc->rx_mbuf_tag, sc->rx_mbuf_tmpmap);
2095 		bus_dma_tag_destroy(sc->rx_mbuf_tag);
2096 	}
2097 
2098 	/* Destroy the parent tag */
2099 	if (sc->parent_tag != NULL)
2100 		bus_dma_tag_destroy(sc->parent_tag);
2101 }
2102 
2103 
2104 /****************************************************************************/
2105 /* Get DMA memory from the OS.                                              */
2106 /*                                                                          */
2107 /* Validates that the OS has provided DMA buffers in response to a          */
2108 /* bus_dmamap_load() call and saves the physical address of those buffers.  */
2109 /* When the callback is used the OS will return 0 for the mapping function  */
2110 /* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any  */
2111 /* failures back to the caller.                                             */
2112 /*                                                                          */
2113 /* Returns:                                                                 */
2114 /*   Nothing.                                                               */
2115 /****************************************************************************/
2116 static void
2117 bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2118 {
2119 	bus_addr_t *busaddr = arg;
2120 
2121 	/*
2122 	 * Simulate a mapping failure.
2123 	 * XXX not correct.
2124 	 */
2125 	DBRUNIF(DB_RANDOMTRUE(bce_debug_dma_map_addr_failure),
2126 		kprintf("bce: %s(%d): Simulating DMA mapping error.\n",
2127 			__FILE__, __LINE__);
2128 		error = ENOMEM);
2129 
2130 	/* Check for an error and signal the caller that an error occurred. */
2131 	if (error)
2132 		return;
2133 
2134 	KASSERT(nseg == 1, ("only one segment is allowed\n"));
2135 	*busaddr = segs->ds_addr;
2136 }
2137 
2138 
2139 /****************************************************************************/
2140 /* Allocate any DMA memory needed by the driver.                            */
2141 /*                                                                          */
2142 /* Allocates DMA memory needed for the various global structures needed by  */
2143 /* hardware.                                                                */
2144 /*                                                                          */
2145 /* Memory alignment requirements:                                           */
2146 /* -----------------+----------+----------+----------+----------+           */
2147 /*  Data Structure  |   5706   |   5708   |   5709   |   5716   |           */
2148 /* -----------------+----------+----------+----------+----------+           */
2149 /* Status Block     | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |           */
2150 /* Statistics Block | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |           */
2151 /* RX Buffers       | 16 bytes | 16 bytes | 16 bytes | 16 bytes |           */
2152 /* PG Buffers       |   none   |   none   |   none   |   none   |           */
2153 /* TX Buffers       |   none   |   none   |   none   |   none   |           */
2154 /* Chain Pages(1)   |   4KiB   |   4KiB   |   4KiB   |   4KiB   |           */
2155 /* Context Pages(1) |   N/A    |   N/A    |   4KiB   |   4KiB   |           */
2156 /* -----------------+----------+----------+----------+----------+           */
2157 /*                                                                          */
2158 /* (1) Must align with CPU page size (BCM_PAGE_SZIE).                       */
2159 /*                                                                          */
2160 /* Returns:                                                                 */
2161 /*   0 for success, positive value for failure.                             */
2162 /****************************************************************************/
2163 static int
2164 bce_dma_alloc(struct bce_softc *sc)
2165 {
2166 	struct ifnet *ifp = &sc->arpcom.ac_if;
2167 	int i, j, rc = 0;
2168 	bus_addr_t busaddr, max_busaddr;
2169 	bus_size_t status_align, stats_align;
2170 
2171 	/*
2172 	 * The embedded PCIe to PCI-X bridge (EPB)
2173 	 * in the 5708 cannot address memory above
2174 	 * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043).
2175 	 */
2176 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)
2177 		max_busaddr = BCE_BUS_SPACE_MAXADDR;
2178 	else
2179 		max_busaddr = BUS_SPACE_MAXADDR;
2180 
2181 	/*
2182 	 * BCM5709 and BCM5716 uses host memory as cache for context memory.
2183 	 */
2184 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
2185 	    BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
2186 		sc->ctx_pages = BCE_CTX_BLK_SZ / BCM_PAGE_SIZE;
2187 		if (sc->ctx_pages == 0)
2188 			sc->ctx_pages = 1;
2189 		if (sc->ctx_pages > BCE_CTX_PAGES) {
2190 			device_printf(sc->bce_dev, "excessive ctx pages %d\n",
2191 			    sc->ctx_pages);
2192 			return ENOMEM;
2193 		}
2194 		status_align = 16;
2195 		stats_align = 16;
2196 	} else {
2197 		status_align = 8;
2198 		stats_align = 8;
2199 	}
2200 
2201 	/*
2202 	 * Allocate the parent bus DMA tag appropriate for PCI.
2203 	 */
2204 	rc = bus_dma_tag_create(NULL, 1, BCE_DMA_BOUNDARY,
2205 				max_busaddr, BUS_SPACE_MAXADDR,
2206 				NULL, NULL,
2207 				BUS_SPACE_MAXSIZE_32BIT, 0,
2208 				BUS_SPACE_MAXSIZE_32BIT,
2209 				0, &sc->parent_tag);
2210 	if (rc != 0) {
2211 		if_printf(ifp, "Could not allocate parent DMA tag!\n");
2212 		return rc;
2213 	}
2214 
2215 	/*
2216 	 * Allocate status block.
2217 	 */
2218 	sc->status_block = bus_dmamem_coherent_any(sc->parent_tag,
2219 				status_align, BCE_STATUS_BLK_SZ,
2220 				BUS_DMA_WAITOK | BUS_DMA_ZERO,
2221 				&sc->status_tag, &sc->status_map,
2222 				&sc->status_block_paddr);
2223 	if (sc->status_block == NULL) {
2224 		if_printf(ifp, "Could not allocate status block!\n");
2225 		return ENOMEM;
2226 	}
2227 
2228 	/*
2229 	 * Allocate statistics block.
2230 	 */
2231 	sc->stats_block = bus_dmamem_coherent_any(sc->parent_tag,
2232 				stats_align, BCE_STATS_BLK_SZ,
2233 				BUS_DMA_WAITOK | BUS_DMA_ZERO,
2234 				&sc->stats_tag, &sc->stats_map,
2235 				&sc->stats_block_paddr);
2236 	if (sc->stats_block == NULL) {
2237 		if_printf(ifp, "Could not allocate statistics block!\n");
2238 		return ENOMEM;
2239 	}
2240 
2241 	/*
2242 	 * Allocate context block, if needed
2243 	 */
2244 	if (sc->ctx_pages != 0) {
2245 		rc = bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, 0,
2246 					BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
2247 					NULL, NULL,
2248 					BCM_PAGE_SIZE, 1, BCM_PAGE_SIZE,
2249 					0, &sc->ctx_tag);
2250 		if (rc != 0) {
2251 			if_printf(ifp, "Could not allocate "
2252 				  "context block DMA tag!\n");
2253 			return rc;
2254 		}
2255 
2256 		for (i = 0; i < sc->ctx_pages; i++) {
2257 			rc = bus_dmamem_alloc(sc->ctx_tag,
2258 					      (void **)&sc->ctx_block[i],
2259 					      BUS_DMA_WAITOK | BUS_DMA_ZERO |
2260 					      BUS_DMA_COHERENT,
2261 					      &sc->ctx_map[i]);
2262 			if (rc != 0) {
2263 				if_printf(ifp, "Could not allocate %dth context "
2264 					  "DMA memory!\n", i);
2265 				return rc;
2266 			}
2267 
2268 			rc = bus_dmamap_load(sc->ctx_tag, sc->ctx_map[i],
2269 					     sc->ctx_block[i], BCM_PAGE_SIZE,
2270 					     bce_dma_map_addr, &busaddr,
2271 					     BUS_DMA_WAITOK);
2272 			if (rc != 0) {
2273 				if (rc == EINPROGRESS) {
2274 					panic("%s coherent memory loading "
2275 					      "is still in progress!", ifp->if_xname);
2276 				}
2277 				if_printf(ifp, "Could not map %dth context "
2278 					  "DMA memory!\n", i);
2279 				bus_dmamem_free(sc->ctx_tag, sc->ctx_block[i],
2280 						sc->ctx_map[i]);
2281 				sc->ctx_block[i] = NULL;
2282 				return rc;
2283 			}
2284 			sc->ctx_paddr[i] = busaddr;
2285 		}
2286 	}
2287 
2288 	/*
2289 	 * Create a DMA tag for the TX buffer descriptor chain,
2290 	 * allocate and clear the  memory, and fetch the
2291 	 * physical address of the block.
2292 	 */
2293 	rc = bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, 0,
2294 				BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
2295 				NULL, NULL,
2296 				BCE_TX_CHAIN_PAGE_SZ, 1, BCE_TX_CHAIN_PAGE_SZ,
2297 				0, &sc->tx_bd_chain_tag);
2298 	if (rc != 0) {
2299 		if_printf(ifp, "Could not allocate "
2300 			  "TX descriptor chain DMA tag!\n");
2301 		return rc;
2302 	}
2303 
2304 	for (i = 0; i < TX_PAGES; i++) {
2305 		rc = bus_dmamem_alloc(sc->tx_bd_chain_tag,
2306 				      (void **)&sc->tx_bd_chain[i],
2307 				      BUS_DMA_WAITOK | BUS_DMA_ZERO |
2308 				      BUS_DMA_COHERENT,
2309 				      &sc->tx_bd_chain_map[i]);
2310 		if (rc != 0) {
2311 			if_printf(ifp, "Could not allocate %dth TX descriptor "
2312 				  "chain DMA memory!\n", i);
2313 			return rc;
2314 		}
2315 
2316 		rc = bus_dmamap_load(sc->tx_bd_chain_tag,
2317 				     sc->tx_bd_chain_map[i],
2318 				     sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ,
2319 				     bce_dma_map_addr, &busaddr,
2320 				     BUS_DMA_WAITOK);
2321 		if (rc != 0) {
2322 			if (rc == EINPROGRESS) {
2323 				panic("%s coherent memory loading "
2324 				      "is still in progress!", ifp->if_xname);
2325 			}
2326 			if_printf(ifp, "Could not map %dth TX descriptor "
2327 				  "chain DMA memory!\n", i);
2328 			bus_dmamem_free(sc->tx_bd_chain_tag,
2329 					sc->tx_bd_chain[i],
2330 					sc->tx_bd_chain_map[i]);
2331 			sc->tx_bd_chain[i] = NULL;
2332 			return rc;
2333 		}
2334 
2335 		sc->tx_bd_chain_paddr[i] = busaddr;
2336 		/* DRC - Fix for 64 bit systems. */
2337 		DBPRINT(sc, BCE_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
2338 			i, (uint32_t)sc->tx_bd_chain_paddr[i]);
2339 	}
2340 
2341 	/* Create a DMA tag for TX mbufs. */
2342 	rc = bus_dma_tag_create(sc->parent_tag, 1, 0,
2343 				BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
2344 				NULL, NULL,
2345 				/* BCE_MAX_JUMBO_ETHER_MTU_VLAN */MCLBYTES,
2346 				BCE_MAX_SEGMENTS, MCLBYTES,
2347 				BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK |
2348 				BUS_DMA_ONEBPAGE,
2349 				&sc->tx_mbuf_tag);
2350 	if (rc != 0) {
2351 		if_printf(ifp, "Could not allocate TX mbuf DMA tag!\n");
2352 		return rc;
2353 	}
2354 
2355 	/* Create DMA maps for the TX mbufs clusters. */
2356 	for (i = 0; i < TOTAL_TX_BD; i++) {
2357 		rc = bus_dmamap_create(sc->tx_mbuf_tag,
2358 				       BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2359 				       &sc->tx_mbuf_map[i]);
2360 		if (rc != 0) {
2361 			for (j = 0; j < i; ++j) {
2362 				bus_dmamap_destroy(sc->tx_mbuf_tag,
2363 						   sc->tx_mbuf_map[i]);
2364 			}
2365 			bus_dma_tag_destroy(sc->tx_mbuf_tag);
2366 			sc->tx_mbuf_tag = NULL;
2367 
2368 			if_printf(ifp, "Unable to create "
2369 				  "%dth TX mbuf DMA map!\n", i);
2370 			return rc;
2371 		}
2372 	}
2373 
2374 	/*
2375 	 * Create a DMA tag for the RX buffer descriptor chain,
2376 	 * allocate and clear the  memory, and fetch the physical
2377 	 * address of the blocks.
2378 	 */
2379 	rc = bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, 0,
2380 				BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
2381 				NULL, NULL,
2382 				BCE_RX_CHAIN_PAGE_SZ, 1, BCE_RX_CHAIN_PAGE_SZ,
2383 				0, &sc->rx_bd_chain_tag);
2384 	if (rc != 0) {
2385 		if_printf(ifp, "Could not allocate "
2386 			  "RX descriptor chain DMA tag!\n");
2387 		return rc;
2388 	}
2389 
2390 	for (i = 0; i < RX_PAGES; i++) {
2391 		rc = bus_dmamem_alloc(sc->rx_bd_chain_tag,
2392 				      (void **)&sc->rx_bd_chain[i],
2393 				      BUS_DMA_WAITOK | BUS_DMA_ZERO |
2394 				      BUS_DMA_COHERENT,
2395 				      &sc->rx_bd_chain_map[i]);
2396 		if (rc != 0) {
2397 			if_printf(ifp, "Could not allocate %dth RX descriptor "
2398 				  "chain DMA memory!\n", i);
2399 			return rc;
2400 		}
2401 
2402 		rc = bus_dmamap_load(sc->rx_bd_chain_tag,
2403 				     sc->rx_bd_chain_map[i],
2404 				     sc->rx_bd_chain[i], BCE_RX_CHAIN_PAGE_SZ,
2405 				     bce_dma_map_addr, &busaddr,
2406 				     BUS_DMA_WAITOK);
2407 		if (rc != 0) {
2408 			if (rc == EINPROGRESS) {
2409 				panic("%s coherent memory loading "
2410 				      "is still in progress!", ifp->if_xname);
2411 			}
2412 			if_printf(ifp, "Could not map %dth RX descriptor "
2413 				  "chain DMA memory!\n", i);
2414 			bus_dmamem_free(sc->rx_bd_chain_tag,
2415 					sc->rx_bd_chain[i],
2416 					sc->rx_bd_chain_map[i]);
2417 			sc->rx_bd_chain[i] = NULL;
2418 			return rc;
2419 		}
2420 
2421 		sc->rx_bd_chain_paddr[i] = busaddr;
2422 		/* DRC - Fix for 64 bit systems. */
2423 		DBPRINT(sc, BCE_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
2424 			i, (uint32_t)sc->rx_bd_chain_paddr[i]);
2425 	}
2426 
2427 	/* Create a DMA tag for RX mbufs. */
2428 	rc = bus_dma_tag_create(sc->parent_tag, BCE_DMA_RX_ALIGN, 0,
2429 				BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
2430 				NULL, NULL,
2431 				MCLBYTES, 1, MCLBYTES,
2432 				BUS_DMA_ALLOCNOW | BUS_DMA_ALIGNED |
2433 				BUS_DMA_WAITOK,
2434 				&sc->rx_mbuf_tag);
2435 	if (rc != 0) {
2436 		if_printf(ifp, "Could not allocate RX mbuf DMA tag!\n");
2437 		return rc;
2438 	}
2439 
2440 	/* Create tmp DMA map for RX mbuf clusters. */
2441 	rc = bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_WAITOK,
2442 			       &sc->rx_mbuf_tmpmap);
2443 	if (rc != 0) {
2444 		bus_dma_tag_destroy(sc->rx_mbuf_tag);
2445 		sc->rx_mbuf_tag = NULL;
2446 
2447 		if_printf(ifp, "Could not create RX mbuf tmp DMA map!\n");
2448 		return rc;
2449 	}
2450 
2451 	/* Create DMA maps for the RX mbuf clusters. */
2452 	for (i = 0; i < TOTAL_RX_BD; i++) {
2453 		rc = bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_WAITOK,
2454 				       &sc->rx_mbuf_map[i]);
2455 		if (rc != 0) {
2456 			for (j = 0; j < i; ++j) {
2457 				bus_dmamap_destroy(sc->rx_mbuf_tag,
2458 						   sc->rx_mbuf_map[j]);
2459 			}
2460 			bus_dma_tag_destroy(sc->rx_mbuf_tag);
2461 			sc->rx_mbuf_tag = NULL;
2462 
2463 			if_printf(ifp, "Unable to create "
2464 				  "%dth RX mbuf DMA map!\n", i);
2465 			return rc;
2466 		}
2467 	}
2468 	return 0;
2469 }
2470 
2471 
2472 /****************************************************************************/
2473 /* Firmware synchronization.                                                */
2474 /*                                                                          */
2475 /* Before performing certain events such as a chip reset, synchronize with  */
2476 /* the firmware first.                                                      */
2477 /*                                                                          */
2478 /* Returns:                                                                 */
2479 /*   0 for success, positive value for failure.                             */
2480 /****************************************************************************/
2481 static int
2482 bce_fw_sync(struct bce_softc *sc, uint32_t msg_data)
2483 {
2484 	int i, rc = 0;
2485 	uint32_t val;
2486 
2487 	/* Don't waste any time if we've timed out before. */
2488 	if (sc->bce_fw_timed_out)
2489 		return EBUSY;
2490 
2491 	/* Increment the message sequence number. */
2492 	sc->bce_fw_wr_seq++;
2493 	msg_data |= sc->bce_fw_wr_seq;
2494 
2495  	DBPRINT(sc, BCE_VERBOSE, "bce_fw_sync(): msg_data = 0x%08X\n", msg_data);
2496 
2497 	/* Send the message to the bootcode driver mailbox. */
2498 	bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
2499 
2500 	/* Wait for the bootcode to acknowledge the message. */
2501 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2502 		/* Check for a response in the bootcode firmware mailbox. */
2503 		val = bce_shmem_rd(sc, BCE_FW_MB);
2504 		if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ))
2505 			break;
2506 		DELAY(1000);
2507 	}
2508 
2509 	/* If we've timed out, tell the bootcode that we've stopped waiting. */
2510 	if ((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ) &&
2511 	    (msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0) {
2512 		if_printf(&sc->arpcom.ac_if,
2513 			  "Firmware synchronization timeout! "
2514 			  "msg_data = 0x%08X\n", msg_data);
2515 
2516 		msg_data &= ~BCE_DRV_MSG_CODE;
2517 		msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT;
2518 
2519 		bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
2520 
2521 		sc->bce_fw_timed_out = 1;
2522 		rc = EBUSY;
2523 	}
2524 	return rc;
2525 }
2526 
2527 
2528 /****************************************************************************/
2529 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
2530 /*                                                                          */
2531 /* Returns:                                                                 */
2532 /*   Nothing.                                                               */
2533 /****************************************************************************/
2534 static void
2535 bce_load_rv2p_fw(struct bce_softc *sc, uint32_t *rv2p_code,
2536 		 uint32_t rv2p_code_len, uint32_t rv2p_proc)
2537 {
2538 	int i;
2539 	uint32_t val;
2540 
2541 	for (i = 0; i < rv2p_code_len; i += 8) {
2542 		REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code);
2543 		rv2p_code++;
2544 		REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code);
2545 		rv2p_code++;
2546 
2547 		if (rv2p_proc == RV2P_PROC1) {
2548 			val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR;
2549 			REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
2550 		} else {
2551 			val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR;
2552 			REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
2553 		}
2554 	}
2555 
2556 	/* Reset the processor, un-stall is done later. */
2557 	if (rv2p_proc == RV2P_PROC1)
2558 		REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET);
2559 	else
2560 		REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET);
2561 }
2562 
2563 
2564 /****************************************************************************/
2565 /* Load RISC processor firmware.                                            */
2566 /*                                                                          */
2567 /* Loads firmware from the file if_bcefw.h into the scratchpad memory       */
2568 /* associated with a particular processor.                                  */
2569 /*                                                                          */
2570 /* Returns:                                                                 */
2571 /*   Nothing.                                                               */
2572 /****************************************************************************/
2573 static void
2574 bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg,
2575 		struct fw_info *fw)
2576 {
2577 	uint32_t offset;
2578 	int j;
2579 
2580 	bce_halt_cpu(sc, cpu_reg);
2581 
2582 	/* Load the Text area. */
2583 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2584 	if (fw->text) {
2585 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2586 			REG_WR_IND(sc, offset, fw->text[j]);
2587 	}
2588 
2589 	/* Load the Data area. */
2590 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2591 	if (fw->data) {
2592 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2593 			REG_WR_IND(sc, offset, fw->data[j]);
2594 	}
2595 
2596 	/* Load the SBSS area. */
2597 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2598 	if (fw->sbss) {
2599 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2600 			REG_WR_IND(sc, offset, fw->sbss[j]);
2601 	}
2602 
2603 	/* Load the BSS area. */
2604 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2605 	if (fw->bss) {
2606 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2607 			REG_WR_IND(sc, offset, fw->bss[j]);
2608 	}
2609 
2610 	/* Load the Read-Only area. */
2611 	offset = cpu_reg->spad_base +
2612 		(fw->rodata_addr - cpu_reg->mips_view_base);
2613 	if (fw->rodata) {
2614 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2615 			REG_WR_IND(sc, offset, fw->rodata[j]);
2616 	}
2617 
2618 	/* Clear the pre-fetch instruction and set the FW start address. */
2619 	REG_WR_IND(sc, cpu_reg->inst, 0);
2620 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2621 }
2622 
2623 
2624 /****************************************************************************/
2625 /* Starts the RISC processor.                                               */
2626 /*                                                                          */
2627 /* Assumes the CPU starting address has already been set.                   */
2628 /*                                                                          */
2629 /* Returns:                                                                 */
2630 /*   Nothing.                                                               */
2631 /****************************************************************************/
2632 static void
2633 bce_start_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
2634 {
2635 	uint32_t val;
2636 
2637 	/* Start the CPU. */
2638 	val = REG_RD_IND(sc, cpu_reg->mode);
2639 	val &= ~cpu_reg->mode_value_halt;
2640 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2641 	REG_WR_IND(sc, cpu_reg->mode, val);
2642 }
2643 
2644 
2645 /****************************************************************************/
2646 /* Halts the RISC processor.                                                */
2647 /*                                                                          */
2648 /* Returns:                                                                 */
2649 /*   Nothing.                                                               */
2650 /****************************************************************************/
2651 static void
2652 bce_halt_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
2653 {
2654 	uint32_t val;
2655 
2656 	/* Halt the CPU. */
2657 	val = REG_RD_IND(sc, cpu_reg->mode);
2658 	val |= cpu_reg->mode_value_halt;
2659 	REG_WR_IND(sc, cpu_reg->mode, val);
2660 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2661 }
2662 
2663 
2664 /****************************************************************************/
2665 /* Start the RX CPU.                                                        */
2666 /*                                                                          */
2667 /* Returns:                                                                 */
2668 /*   Nothing.                                                               */
2669 /****************************************************************************/
2670 static void
2671 bce_start_rxp_cpu(struct bce_softc *sc)
2672 {
2673 	struct cpu_reg cpu_reg;
2674 
2675 	cpu_reg.mode = BCE_RXP_CPU_MODE;
2676 	cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
2677 	cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
2678 	cpu_reg.state = BCE_RXP_CPU_STATE;
2679 	cpu_reg.state_value_clear = 0xffffff;
2680 	cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
2681 	cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
2682 	cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
2683 	cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
2684 	cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
2685 	cpu_reg.spad_base = BCE_RXP_SCRATCH;
2686 	cpu_reg.mips_view_base = 0x8000000;
2687 
2688 	bce_start_cpu(sc, &cpu_reg);
2689 }
2690 
2691 
2692 /****************************************************************************/
2693 /* Initialize the RX CPU.                                                   */
2694 /*                                                                          */
2695 /* Returns:                                                                 */
2696 /*   Nothing.                                                               */
2697 /****************************************************************************/
2698 static void
2699 bce_init_rxp_cpu(struct bce_softc *sc)
2700 {
2701 	struct cpu_reg cpu_reg;
2702 	struct fw_info fw;
2703 
2704 	cpu_reg.mode = BCE_RXP_CPU_MODE;
2705 	cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
2706 	cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
2707 	cpu_reg.state = BCE_RXP_CPU_STATE;
2708 	cpu_reg.state_value_clear = 0xffffff;
2709 	cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
2710 	cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
2711 	cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
2712 	cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
2713 	cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
2714 	cpu_reg.spad_base = BCE_RXP_SCRATCH;
2715 	cpu_reg.mips_view_base = 0x8000000;
2716 
2717 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
2718 	    BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
2719  		fw.ver_major = bce_RXP_b09FwReleaseMajor;
2720 		fw.ver_minor = bce_RXP_b09FwReleaseMinor;
2721 		fw.ver_fix = bce_RXP_b09FwReleaseFix;
2722 		fw.start_addr = bce_RXP_b09FwStartAddr;
2723 
2724 		fw.text_addr = bce_RXP_b09FwTextAddr;
2725 		fw.text_len = bce_RXP_b09FwTextLen;
2726 		fw.text_index = 0;
2727 		fw.text = bce_RXP_b09FwText;
2728 
2729 		fw.data_addr = bce_RXP_b09FwDataAddr;
2730 		fw.data_len = bce_RXP_b09FwDataLen;
2731 		fw.data_index = 0;
2732 		fw.data = bce_RXP_b09FwData;
2733 
2734 		fw.sbss_addr = bce_RXP_b09FwSbssAddr;
2735 		fw.sbss_len = bce_RXP_b09FwSbssLen;
2736 		fw.sbss_index = 0;
2737 		fw.sbss = bce_RXP_b09FwSbss;
2738 
2739 		fw.bss_addr = bce_RXP_b09FwBssAddr;
2740 		fw.bss_len = bce_RXP_b09FwBssLen;
2741 		fw.bss_index = 0;
2742 		fw.bss = bce_RXP_b09FwBss;
2743 
2744 		fw.rodata_addr = bce_RXP_b09FwRodataAddr;
2745 		fw.rodata_len = bce_RXP_b09FwRodataLen;
2746 		fw.rodata_index = 0;
2747 		fw.rodata = bce_RXP_b09FwRodata;
2748 	} else {
2749 		fw.ver_major = bce_RXP_b06FwReleaseMajor;
2750 		fw.ver_minor = bce_RXP_b06FwReleaseMinor;
2751 		fw.ver_fix = bce_RXP_b06FwReleaseFix;
2752 		fw.start_addr = bce_RXP_b06FwStartAddr;
2753 
2754 		fw.text_addr = bce_RXP_b06FwTextAddr;
2755 		fw.text_len = bce_RXP_b06FwTextLen;
2756 		fw.text_index = 0;
2757 		fw.text = bce_RXP_b06FwText;
2758 
2759 		fw.data_addr = bce_RXP_b06FwDataAddr;
2760 		fw.data_len = bce_RXP_b06FwDataLen;
2761 		fw.data_index = 0;
2762 		fw.data = bce_RXP_b06FwData;
2763 
2764 		fw.sbss_addr = bce_RXP_b06FwSbssAddr;
2765 		fw.sbss_len = bce_RXP_b06FwSbssLen;
2766 		fw.sbss_index = 0;
2767 		fw.sbss = bce_RXP_b06FwSbss;
2768 
2769 		fw.bss_addr = bce_RXP_b06FwBssAddr;
2770 		fw.bss_len = bce_RXP_b06FwBssLen;
2771 		fw.bss_index = 0;
2772 		fw.bss = bce_RXP_b06FwBss;
2773 
2774 		fw.rodata_addr = bce_RXP_b06FwRodataAddr;
2775 		fw.rodata_len = bce_RXP_b06FwRodataLen;
2776 		fw.rodata_index = 0;
2777 		fw.rodata = bce_RXP_b06FwRodata;
2778 	}
2779 
2780 	DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n");
2781 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
2782 	/* Delay RXP start until initialization is complete. */
2783 }
2784 
2785 
2786 /****************************************************************************/
2787 /* Initialize the TX CPU.                                                   */
2788 /*                                                                          */
2789 /* Returns:                                                                 */
2790 /*   Nothing.                                                               */
2791 /****************************************************************************/
2792 static void
2793 bce_init_txp_cpu(struct bce_softc *sc)
2794 {
2795 	struct cpu_reg cpu_reg;
2796 	struct fw_info fw;
2797 
2798 	cpu_reg.mode = BCE_TXP_CPU_MODE;
2799 	cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT;
2800 	cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA;
2801 	cpu_reg.state = BCE_TXP_CPU_STATE;
2802 	cpu_reg.state_value_clear = 0xffffff;
2803 	cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE;
2804 	cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK;
2805 	cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER;
2806 	cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION;
2807 	cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT;
2808 	cpu_reg.spad_base = BCE_TXP_SCRATCH;
2809 	cpu_reg.mips_view_base = 0x8000000;
2810 
2811 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
2812 	    BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
2813 		fw.ver_major = bce_TXP_b09FwReleaseMajor;
2814 		fw.ver_minor = bce_TXP_b09FwReleaseMinor;
2815 		fw.ver_fix = bce_TXP_b09FwReleaseFix;
2816 		fw.start_addr = bce_TXP_b09FwStartAddr;
2817 
2818 		fw.text_addr = bce_TXP_b09FwTextAddr;
2819 		fw.text_len = bce_TXP_b09FwTextLen;
2820 		fw.text_index = 0;
2821 		fw.text = bce_TXP_b09FwText;
2822 
2823 		fw.data_addr = bce_TXP_b09FwDataAddr;
2824 		fw.data_len = bce_TXP_b09FwDataLen;
2825 		fw.data_index = 0;
2826 		fw.data = bce_TXP_b09FwData;
2827 
2828 		fw.sbss_addr = bce_TXP_b09FwSbssAddr;
2829 		fw.sbss_len = bce_TXP_b09FwSbssLen;
2830 		fw.sbss_index = 0;
2831 		fw.sbss = bce_TXP_b09FwSbss;
2832 
2833 		fw.bss_addr = bce_TXP_b09FwBssAddr;
2834 		fw.bss_len = bce_TXP_b09FwBssLen;
2835 		fw.bss_index = 0;
2836 		fw.bss = bce_TXP_b09FwBss;
2837 
2838 		fw.rodata_addr = bce_TXP_b09FwRodataAddr;
2839 		fw.rodata_len = bce_TXP_b09FwRodataLen;
2840 		fw.rodata_index = 0;
2841 		fw.rodata = bce_TXP_b09FwRodata;
2842 	} else {
2843 		fw.ver_major = bce_TXP_b06FwReleaseMajor;
2844 		fw.ver_minor = bce_TXP_b06FwReleaseMinor;
2845 		fw.ver_fix = bce_TXP_b06FwReleaseFix;
2846 		fw.start_addr = bce_TXP_b06FwStartAddr;
2847 
2848 		fw.text_addr = bce_TXP_b06FwTextAddr;
2849 		fw.text_len = bce_TXP_b06FwTextLen;
2850 		fw.text_index = 0;
2851 		fw.text = bce_TXP_b06FwText;
2852 
2853 		fw.data_addr = bce_TXP_b06FwDataAddr;
2854 		fw.data_len = bce_TXP_b06FwDataLen;
2855 		fw.data_index = 0;
2856 		fw.data = bce_TXP_b06FwData;
2857 
2858 		fw.sbss_addr = bce_TXP_b06FwSbssAddr;
2859 		fw.sbss_len = bce_TXP_b06FwSbssLen;
2860 		fw.sbss_index = 0;
2861 		fw.sbss = bce_TXP_b06FwSbss;
2862 
2863 		fw.bss_addr = bce_TXP_b06FwBssAddr;
2864 		fw.bss_len = bce_TXP_b06FwBssLen;
2865 		fw.bss_index = 0;
2866 		fw.bss = bce_TXP_b06FwBss;
2867 
2868 		fw.rodata_addr = bce_TXP_b06FwRodataAddr;
2869 		fw.rodata_len = bce_TXP_b06FwRodataLen;
2870 		fw.rodata_index = 0;
2871 		fw.rodata = bce_TXP_b06FwRodata;
2872 	}
2873 
2874 	DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n");
2875 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
2876 	bce_start_cpu(sc, &cpu_reg);
2877 }
2878 
2879 
2880 /****************************************************************************/
2881 /* Initialize the TPAT CPU.                                                 */
2882 /*                                                                          */
2883 /* Returns:                                                                 */
2884 /*   Nothing.                                                               */
2885 /****************************************************************************/
2886 static void
2887 bce_init_tpat_cpu(struct bce_softc *sc)
2888 {
2889 	struct cpu_reg cpu_reg;
2890 	struct fw_info fw;
2891 
2892 	cpu_reg.mode = BCE_TPAT_CPU_MODE;
2893 	cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT;
2894 	cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA;
2895 	cpu_reg.state = BCE_TPAT_CPU_STATE;
2896 	cpu_reg.state_value_clear = 0xffffff;
2897 	cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE;
2898 	cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK;
2899 	cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER;
2900 	cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION;
2901 	cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT;
2902 	cpu_reg.spad_base = BCE_TPAT_SCRATCH;
2903 	cpu_reg.mips_view_base = 0x8000000;
2904 
2905 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
2906 	    BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
2907 		fw.ver_major = bce_TPAT_b09FwReleaseMajor;
2908 		fw.ver_minor = bce_TPAT_b09FwReleaseMinor;
2909 		fw.ver_fix = bce_TPAT_b09FwReleaseFix;
2910 		fw.start_addr = bce_TPAT_b09FwStartAddr;
2911 
2912 		fw.text_addr = bce_TPAT_b09FwTextAddr;
2913 		fw.text_len = bce_TPAT_b09FwTextLen;
2914 		fw.text_index = 0;
2915 		fw.text = bce_TPAT_b09FwText;
2916 
2917 		fw.data_addr = bce_TPAT_b09FwDataAddr;
2918 		fw.data_len = bce_TPAT_b09FwDataLen;
2919 		fw.data_index = 0;
2920 		fw.data = bce_TPAT_b09FwData;
2921 
2922 		fw.sbss_addr = bce_TPAT_b09FwSbssAddr;
2923 		fw.sbss_len = bce_TPAT_b09FwSbssLen;
2924 		fw.sbss_index = 0;
2925 		fw.sbss = bce_TPAT_b09FwSbss;
2926 
2927 		fw.bss_addr = bce_TPAT_b09FwBssAddr;
2928 		fw.bss_len = bce_TPAT_b09FwBssLen;
2929 		fw.bss_index = 0;
2930 		fw.bss = bce_TPAT_b09FwBss;
2931 
2932 		fw.rodata_addr = bce_TPAT_b09FwRodataAddr;
2933 		fw.rodata_len = bce_TPAT_b09FwRodataLen;
2934 		fw.rodata_index = 0;
2935 		fw.rodata = bce_TPAT_b09FwRodata;
2936 	} else {
2937 		fw.ver_major = bce_TPAT_b06FwReleaseMajor;
2938 		fw.ver_minor = bce_TPAT_b06FwReleaseMinor;
2939 		fw.ver_fix = bce_TPAT_b06FwReleaseFix;
2940 		fw.start_addr = bce_TPAT_b06FwStartAddr;
2941 
2942 		fw.text_addr = bce_TPAT_b06FwTextAddr;
2943 		fw.text_len = bce_TPAT_b06FwTextLen;
2944 		fw.text_index = 0;
2945 		fw.text = bce_TPAT_b06FwText;
2946 
2947 		fw.data_addr = bce_TPAT_b06FwDataAddr;
2948 		fw.data_len = bce_TPAT_b06FwDataLen;
2949 		fw.data_index = 0;
2950 		fw.data = bce_TPAT_b06FwData;
2951 
2952 		fw.sbss_addr = bce_TPAT_b06FwSbssAddr;
2953 		fw.sbss_len = bce_TPAT_b06FwSbssLen;
2954 		fw.sbss_index = 0;
2955 		fw.sbss = bce_TPAT_b06FwSbss;
2956 
2957 		fw.bss_addr = bce_TPAT_b06FwBssAddr;
2958 		fw.bss_len = bce_TPAT_b06FwBssLen;
2959 		fw.bss_index = 0;
2960 		fw.bss = bce_TPAT_b06FwBss;
2961 
2962 		fw.rodata_addr = bce_TPAT_b06FwRodataAddr;
2963 		fw.rodata_len = bce_TPAT_b06FwRodataLen;
2964 		fw.rodata_index = 0;
2965 		fw.rodata = bce_TPAT_b06FwRodata;
2966 	}
2967 
2968 	DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n");
2969 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
2970 	bce_start_cpu(sc, &cpu_reg);
2971 }
2972 
2973 
2974 /****************************************************************************/
2975 /* Initialize the CP CPU.                                                   */
2976 /*                                                                          */
2977 /* Returns:                                                                 */
2978 /*   Nothing.                                                               */
2979 /****************************************************************************/
2980 static void
2981 bce_init_cp_cpu(struct bce_softc *sc)
2982 {
2983 	struct cpu_reg cpu_reg;
2984 	struct fw_info fw;
2985 
2986 	cpu_reg.mode = BCE_CP_CPU_MODE;
2987 	cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT;
2988 	cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA;
2989 	cpu_reg.state = BCE_CP_CPU_STATE;
2990 	cpu_reg.state_value_clear = 0xffffff;
2991 	cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE;
2992 	cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK;
2993 	cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER;
2994 	cpu_reg.inst = BCE_CP_CPU_INSTRUCTION;
2995 	cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT;
2996 	cpu_reg.spad_base = BCE_CP_SCRATCH;
2997 	cpu_reg.mips_view_base = 0x8000000;
2998 
2999 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3000 	    BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3001 		fw.ver_major = bce_CP_b09FwReleaseMajor;
3002 		fw.ver_minor = bce_CP_b09FwReleaseMinor;
3003 		fw.ver_fix = bce_CP_b09FwReleaseFix;
3004 		fw.start_addr = bce_CP_b09FwStartAddr;
3005 
3006 		fw.text_addr = bce_CP_b09FwTextAddr;
3007 		fw.text_len = bce_CP_b09FwTextLen;
3008 		fw.text_index = 0;
3009 		fw.text = bce_CP_b09FwText;
3010 
3011 		fw.data_addr = bce_CP_b09FwDataAddr;
3012 		fw.data_len = bce_CP_b09FwDataLen;
3013 		fw.data_index = 0;
3014 		fw.data = bce_CP_b09FwData;
3015 
3016 		fw.sbss_addr = bce_CP_b09FwSbssAddr;
3017 		fw.sbss_len = bce_CP_b09FwSbssLen;
3018 		fw.sbss_index = 0;
3019 		fw.sbss = bce_CP_b09FwSbss;
3020 
3021 		fw.bss_addr = bce_CP_b09FwBssAddr;
3022 		fw.bss_len = bce_CP_b09FwBssLen;
3023 		fw.bss_index = 0;
3024 		fw.bss = bce_CP_b09FwBss;
3025 
3026 		fw.rodata_addr = bce_CP_b09FwRodataAddr;
3027 		fw.rodata_len = bce_CP_b09FwRodataLen;
3028 		fw.rodata_index = 0;
3029 		fw.rodata = bce_CP_b09FwRodata;
3030 	} else {
3031 		fw.ver_major = bce_CP_b06FwReleaseMajor;
3032 		fw.ver_minor = bce_CP_b06FwReleaseMinor;
3033 		fw.ver_fix = bce_CP_b06FwReleaseFix;
3034 		fw.start_addr = bce_CP_b06FwStartAddr;
3035 
3036 		fw.text_addr = bce_CP_b06FwTextAddr;
3037 		fw.text_len = bce_CP_b06FwTextLen;
3038 		fw.text_index = 0;
3039 		fw.text = bce_CP_b06FwText;
3040 
3041 		fw.data_addr = bce_CP_b06FwDataAddr;
3042 		fw.data_len = bce_CP_b06FwDataLen;
3043 		fw.data_index = 0;
3044 		fw.data = bce_CP_b06FwData;
3045 
3046 		fw.sbss_addr = bce_CP_b06FwSbssAddr;
3047 		fw.sbss_len = bce_CP_b06FwSbssLen;
3048 		fw.sbss_index = 0;
3049 		fw.sbss = bce_CP_b06FwSbss;
3050 
3051 		fw.bss_addr = bce_CP_b06FwBssAddr;
3052 		fw.bss_len = bce_CP_b06FwBssLen;
3053 		fw.bss_index = 0;
3054 		fw.bss = bce_CP_b06FwBss;
3055 
3056 		fw.rodata_addr = bce_CP_b06FwRodataAddr;
3057 		fw.rodata_len = bce_CP_b06FwRodataLen;
3058 		fw.rodata_index = 0;
3059 		fw.rodata = bce_CP_b06FwRodata;
3060 	}
3061 
3062 	DBPRINT(sc, BCE_INFO_RESET, "Loading CP firmware.\n");
3063 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
3064 	bce_start_cpu(sc, &cpu_reg);
3065 }
3066 
3067 
3068 /****************************************************************************/
3069 /* Initialize the COM CPU.                                                 */
3070 /*                                                                          */
3071 /* Returns:                                                                 */
3072 /*   Nothing.                                                               */
3073 /****************************************************************************/
3074 static void
3075 bce_init_com_cpu(struct bce_softc *sc)
3076 {
3077 	struct cpu_reg cpu_reg;
3078 	struct fw_info fw;
3079 
3080 	cpu_reg.mode = BCE_COM_CPU_MODE;
3081 	cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT;
3082 	cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA;
3083 	cpu_reg.state = BCE_COM_CPU_STATE;
3084 	cpu_reg.state_value_clear = 0xffffff;
3085 	cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE;
3086 	cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK;
3087 	cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER;
3088 	cpu_reg.inst = BCE_COM_CPU_INSTRUCTION;
3089 	cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT;
3090 	cpu_reg.spad_base = BCE_COM_SCRATCH;
3091 	cpu_reg.mips_view_base = 0x8000000;
3092 
3093 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3094 	    BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3095 		fw.ver_major = bce_COM_b09FwReleaseMajor;
3096 		fw.ver_minor = bce_COM_b09FwReleaseMinor;
3097 		fw.ver_fix = bce_COM_b09FwReleaseFix;
3098 		fw.start_addr = bce_COM_b09FwStartAddr;
3099 
3100 		fw.text_addr = bce_COM_b09FwTextAddr;
3101 		fw.text_len = bce_COM_b09FwTextLen;
3102 		fw.text_index = 0;
3103 		fw.text = bce_COM_b09FwText;
3104 
3105 		fw.data_addr = bce_COM_b09FwDataAddr;
3106 		fw.data_len = bce_COM_b09FwDataLen;
3107 		fw.data_index = 0;
3108 		fw.data = bce_COM_b09FwData;
3109 
3110 		fw.sbss_addr = bce_COM_b09FwSbssAddr;
3111 		fw.sbss_len = bce_COM_b09FwSbssLen;
3112 		fw.sbss_index = 0;
3113 		fw.sbss = bce_COM_b09FwSbss;
3114 
3115 		fw.bss_addr = bce_COM_b09FwBssAddr;
3116 		fw.bss_len = bce_COM_b09FwBssLen;
3117 		fw.bss_index = 0;
3118 		fw.bss = bce_COM_b09FwBss;
3119 
3120 		fw.rodata_addr = bce_COM_b09FwRodataAddr;
3121 		fw.rodata_len = bce_COM_b09FwRodataLen;
3122 		fw.rodata_index = 0;
3123 		fw.rodata = bce_COM_b09FwRodata;
3124 	} else {
3125 		fw.ver_major = bce_COM_b06FwReleaseMajor;
3126 		fw.ver_minor = bce_COM_b06FwReleaseMinor;
3127 		fw.ver_fix = bce_COM_b06FwReleaseFix;
3128 		fw.start_addr = bce_COM_b06FwStartAddr;
3129 
3130 		fw.text_addr = bce_COM_b06FwTextAddr;
3131 		fw.text_len = bce_COM_b06FwTextLen;
3132 		fw.text_index = 0;
3133 		fw.text = bce_COM_b06FwText;
3134 
3135 		fw.data_addr = bce_COM_b06FwDataAddr;
3136 		fw.data_len = bce_COM_b06FwDataLen;
3137 		fw.data_index = 0;
3138 		fw.data = bce_COM_b06FwData;
3139 
3140 		fw.sbss_addr = bce_COM_b06FwSbssAddr;
3141 		fw.sbss_len = bce_COM_b06FwSbssLen;
3142 		fw.sbss_index = 0;
3143 		fw.sbss = bce_COM_b06FwSbss;
3144 
3145 		fw.bss_addr = bce_COM_b06FwBssAddr;
3146 		fw.bss_len = bce_COM_b06FwBssLen;
3147 		fw.bss_index = 0;
3148 		fw.bss = bce_COM_b06FwBss;
3149 
3150 		fw.rodata_addr = bce_COM_b06FwRodataAddr;
3151 		fw.rodata_len = bce_COM_b06FwRodataLen;
3152 		fw.rodata_index = 0;
3153 		fw.rodata = bce_COM_b06FwRodata;
3154 	}
3155 
3156 	DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n");
3157 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
3158 	bce_start_cpu(sc, &cpu_reg);
3159 }
3160 
3161 
3162 /****************************************************************************/
3163 /* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs.                     */
3164 /*                                                                          */
3165 /* Loads the firmware for each CPU and starts the CPU.                      */
3166 /*                                                                          */
3167 /* Returns:                                                                 */
3168 /*   Nothing.                                                               */
3169 /****************************************************************************/
3170 static void
3171 bce_init_cpus(struct bce_softc *sc)
3172 {
3173 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3174 	    BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3175 		if (BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax) {
3176 			bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc1,
3177 			    sizeof(bce_xi90_rv2p_proc1), RV2P_PROC1);
3178 			bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc2,
3179 			    sizeof(bce_xi90_rv2p_proc2), RV2P_PROC2);
3180 		} else {
3181 			bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1,
3182 			    sizeof(bce_xi_rv2p_proc1), RV2P_PROC1);
3183 			bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2,
3184 			    sizeof(bce_xi_rv2p_proc2), RV2P_PROC2);
3185 		}
3186 	} else {
3187 		bce_load_rv2p_fw(sc, bce_rv2p_proc1,
3188 		    sizeof(bce_rv2p_proc1), RV2P_PROC1);
3189 		bce_load_rv2p_fw(sc, bce_rv2p_proc2,
3190 		    sizeof(bce_rv2p_proc2), RV2P_PROC2);
3191 	}
3192 
3193 	bce_init_rxp_cpu(sc);
3194 	bce_init_txp_cpu(sc);
3195 	bce_init_tpat_cpu(sc);
3196 	bce_init_com_cpu(sc);
3197 	bce_init_cp_cpu(sc);
3198 }
3199 
3200 
3201 /****************************************************************************/
3202 /* Initialize context memory.                                               */
3203 /*                                                                          */
3204 /* Clears the memory associated with each Context ID (CID).                 */
3205 /*                                                                          */
3206 /* Returns:                                                                 */
3207 /*   Nothing.                                                               */
3208 /****************************************************************************/
3209 static int
3210 bce_init_ctx(struct bce_softc *sc)
3211 {
3212 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3213 	    BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3214 		/* DRC: Replace this constant value with a #define. */
3215 		int i, retry_cnt = 10;
3216 		uint32_t val;
3217 
3218 		/*
3219 		 * BCM5709 context memory may be cached
3220 		 * in host memory so prepare the host memory
3221 		 * for access.
3222 		 */
3223 		val = BCE_CTX_COMMAND_ENABLED | BCE_CTX_COMMAND_MEM_INIT |
3224 		    (1 << 12);
3225 		val |= (BCM_PAGE_BITS - 8) << 16;
3226 		REG_WR(sc, BCE_CTX_COMMAND, val);
3227 
3228 		/* Wait for mem init command to complete. */
3229 		for (i = 0; i < retry_cnt; i++) {
3230 			val = REG_RD(sc, BCE_CTX_COMMAND);
3231 			if (!(val & BCE_CTX_COMMAND_MEM_INIT))
3232 				break;
3233 			DELAY(2);
3234 		}
3235 		if (i == retry_cnt) {
3236 			device_printf(sc->bce_dev,
3237 			    "Context memory initialization failed!\n");
3238 			return ETIMEDOUT;
3239 		}
3240 
3241 		for (i = 0; i < sc->ctx_pages; i++) {
3242 			int j;
3243 
3244 			/*
3245 			 * Set the physical address of the context
3246 			 * memory cache.
3247 			 */
3248 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0,
3249 			    BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) |
3250 			    BCE_CTX_HOST_PAGE_TBL_DATA0_VALID);
3251 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1,
3252 			    BCE_ADDR_HI(sc->ctx_paddr[i]));
3253 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL,
3254 			    i | BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
3255 
3256 			/*
3257 			 * Verify that the context memory write was successful.
3258 			 */
3259 			for (j = 0; j < retry_cnt; j++) {
3260 				val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL);
3261 				if ((val &
3262 				    BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
3263 					break;
3264 				DELAY(5);
3265 			}
3266 			if (j == retry_cnt) {
3267 				device_printf(sc->bce_dev,
3268 				    "Failed to initialize context page!\n");
3269 				return ETIMEDOUT;
3270 			}
3271 		}
3272 	} else {
3273 		uint32_t vcid_addr, offset;
3274 
3275 		/*
3276 		 * For the 5706/5708, context memory is local to
3277 		 * the controller, so initialize the controller
3278 		 * context memory.
3279 		 */
3280 
3281 		vcid_addr = GET_CID_ADDR(96);
3282 		while (vcid_addr) {
3283 			vcid_addr -= PHY_CTX_SIZE;
3284 
3285 			REG_WR(sc, BCE_CTX_VIRT_ADDR, 0);
3286 			REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
3287 
3288 			for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
3289 				CTX_WR(sc, 0x00, offset, 0);
3290 
3291 			REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr);
3292 			REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
3293 		}
3294 	}
3295 	return 0;
3296 }
3297 
3298 
3299 /****************************************************************************/
3300 /* Fetch the permanent MAC address of the controller.                       */
3301 /*                                                                          */
3302 /* Returns:                                                                 */
3303 /*   Nothing.                                                               */
3304 /****************************************************************************/
3305 static void
3306 bce_get_mac_addr(struct bce_softc *sc)
3307 {
3308 	uint32_t mac_lo = 0, mac_hi = 0;
3309 
3310 	/*
3311 	 * The NetXtreme II bootcode populates various NIC
3312 	 * power-on and runtime configuration items in a
3313 	 * shared memory area.  The factory configured MAC
3314 	 * address is available from both NVRAM and the
3315 	 * shared memory area so we'll read the value from
3316 	 * shared memory for speed.
3317 	 */
3318 
3319 	mac_hi = bce_shmem_rd(sc,  BCE_PORT_HW_CFG_MAC_UPPER);
3320 	mac_lo = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_LOWER);
3321 
3322 	if (mac_lo == 0 && mac_hi == 0) {
3323 		if_printf(&sc->arpcom.ac_if, "Invalid Ethernet address!\n");
3324 	} else {
3325 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
3326 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
3327 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
3328 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
3329 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
3330 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
3331 	}
3332 
3333 	DBPRINT(sc, BCE_INFO, "Permanent Ethernet address = %6D\n", sc->eaddr, ":");
3334 }
3335 
3336 
3337 /****************************************************************************/
3338 /* Program the MAC address.                                                 */
3339 /*                                                                          */
3340 /* Returns:                                                                 */
3341 /*   Nothing.                                                               */
3342 /****************************************************************************/
3343 static void
3344 bce_set_mac_addr(struct bce_softc *sc)
3345 {
3346 	const uint8_t *mac_addr = sc->eaddr;
3347 	uint32_t val;
3348 
3349 	DBPRINT(sc, BCE_INFO, "Setting Ethernet address = %6D\n",
3350 		sc->eaddr, ":");
3351 
3352 	val = (mac_addr[0] << 8) | mac_addr[1];
3353 	REG_WR(sc, BCE_EMAC_MAC_MATCH0, val);
3354 
3355 	val = (mac_addr[2] << 24) |
3356 	      (mac_addr[3] << 16) |
3357 	      (mac_addr[4] << 8) |
3358 	      mac_addr[5];
3359 	REG_WR(sc, BCE_EMAC_MAC_MATCH1, val);
3360 }
3361 
3362 
3363 /****************************************************************************/
3364 /* Stop the controller.                                                     */
3365 /*                                                                          */
3366 /* Returns:                                                                 */
3367 /*   Nothing.                                                               */
3368 /****************************************************************************/
3369 static void
3370 bce_stop(struct bce_softc *sc)
3371 {
3372 	struct ifnet *ifp = &sc->arpcom.ac_if;
3373 
3374 	ASSERT_SERIALIZED(ifp->if_serializer);
3375 
3376 	callout_stop(&sc->bce_tick_callout);
3377 
3378 	/* Disable the transmit/receive blocks. */
3379 	REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT);
3380 	REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
3381 	DELAY(20);
3382 
3383 	bce_disable_intr(sc);
3384 
3385 	/* Free the RX lists. */
3386 	bce_free_rx_chain(sc);
3387 
3388 	/* Free TX buffers. */
3389 	bce_free_tx_chain(sc);
3390 
3391 	sc->bce_link = 0;
3392 	sc->bce_coalchg_mask = 0;
3393 
3394 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3395 	ifp->if_timer = 0;
3396 }
3397 
3398 
3399 static int
3400 bce_reset(struct bce_softc *sc, uint32_t reset_code)
3401 {
3402 	uint32_t val;
3403 	int i, rc = 0;
3404 
3405 	/* Wait for pending PCI transactions to complete. */
3406 	REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS,
3407 	       BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
3408 	       BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
3409 	       BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
3410 	       BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
3411 	val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
3412 	DELAY(5);
3413 
3414 	/* Disable DMA */
3415 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3416 	    BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3417 		val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
3418 		val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
3419 		REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
3420 	}
3421 
3422 	/* Assume bootcode is running. */
3423 	sc->bce_fw_timed_out = 0;
3424 	sc->bce_drv_cardiac_arrest = 0;
3425 
3426 	/* Give the firmware a chance to prepare for the reset. */
3427 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code);
3428 	if (rc) {
3429 		if_printf(&sc->arpcom.ac_if,
3430 			  "Firmware is not ready for reset\n");
3431 		return rc;
3432 	}
3433 
3434 	/* Set a firmware reminder that this is a soft reset. */
3435 	bce_shmem_wr(sc, BCE_DRV_RESET_SIGNATURE,
3436 	    BCE_DRV_RESET_SIGNATURE_MAGIC);
3437 
3438 	/* Dummy read to force the chip to complete all current transactions. */
3439 	val = REG_RD(sc, BCE_MISC_ID);
3440 
3441 	/* Chip reset. */
3442 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3443 	    BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3444 		REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET);
3445 		REG_RD(sc, BCE_MISC_COMMAND);
3446 		DELAY(5);
3447 
3448 		val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3449 		    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3450 
3451 		pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4);
3452 	} else {
3453 		val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3454 		    BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3455 		    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3456 		REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val);
3457 
3458 		/* Allow up to 30us for reset to complete. */
3459 		for (i = 0; i < 10; i++) {
3460 			val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG);
3461 			if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3462 			    BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
3463 				break;
3464 			DELAY(10);
3465 		}
3466 
3467 		/* Check that reset completed successfully. */
3468 		if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3469 		    BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
3470 			if_printf(&sc->arpcom.ac_if, "Reset failed!\n");
3471 			return EBUSY;
3472 		}
3473 	}
3474 
3475 	/* Make sure byte swapping is properly configured. */
3476 	val = REG_RD(sc, BCE_PCI_SWAP_DIAG0);
3477 	if (val != 0x01020304) {
3478 		if_printf(&sc->arpcom.ac_if, "Byte swap is incorrect!\n");
3479 		return ENODEV;
3480 	}
3481 
3482 	/* Just completed a reset, assume that firmware is running again. */
3483 	sc->bce_fw_timed_out = 0;
3484 	sc->bce_drv_cardiac_arrest = 0;
3485 
3486 	/* Wait for the firmware to finish its initialization. */
3487 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code);
3488 	if (rc) {
3489 		if_printf(&sc->arpcom.ac_if,
3490 			  "Firmware did not complete initialization!\n");
3491 	}
3492 	return rc;
3493 }
3494 
3495 
3496 static int
3497 bce_chipinit(struct bce_softc *sc)
3498 {
3499 	uint32_t val;
3500 	int rc = 0;
3501 
3502 	/* Make sure the interrupt is not active. */
3503 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT);
3504 	REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
3505 
3506 	/*
3507 	 * Initialize DMA byte/word swapping, configure the number of DMA
3508 	 * channels and PCI clock compensation delay.
3509 	 */
3510 	val = BCE_DMA_CONFIG_DATA_BYTE_SWAP |
3511 	      BCE_DMA_CONFIG_DATA_WORD_SWAP |
3512 #if BYTE_ORDER == BIG_ENDIAN
3513 	      BCE_DMA_CONFIG_CNTL_BYTE_SWAP |
3514 #endif
3515 	      BCE_DMA_CONFIG_CNTL_WORD_SWAP |
3516 	      DMA_READ_CHANS << 12 |
3517 	      DMA_WRITE_CHANS << 16;
3518 
3519 	val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY;
3520 
3521 	if ((sc->bce_flags & BCE_PCIX_FLAG) && sc->bus_speed_mhz == 133)
3522 		val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP;
3523 
3524 	/*
3525 	 * This setting resolves a problem observed on certain Intel PCI
3526 	 * chipsets that cannot handle multiple outstanding DMA operations.
3527 	 * See errata E9_5706A1_65.
3528 	 */
3529 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706 &&
3530 	    BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0 &&
3531 	    !(sc->bce_flags & BCE_PCIX_FLAG))
3532 		val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA;
3533 
3534 	REG_WR(sc, BCE_DMA_CONFIG, val);
3535 
3536 	/* Enable the RX_V2P and Context state machines before access. */
3537 	REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
3538 	       BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
3539 	       BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
3540 	       BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
3541 
3542 	/* Initialize context mapping and zero out the quick contexts. */
3543 	rc = bce_init_ctx(sc);
3544 	if (rc != 0)
3545 		return rc;
3546 
3547 	/* Initialize the on-boards CPUs */
3548 	bce_init_cpus(sc);
3549 
3550 	/* Enable management frames (NC-SI) to flow to the MCP. */
3551 	if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
3552 		val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) |
3553 		    BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
3554 		REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
3555 	}
3556 
3557 	/* Prepare NVRAM for access. */
3558 	rc = bce_init_nvram(sc);
3559 	if (rc != 0)
3560 		return rc;
3561 
3562 	/* Set the kernel bypass block size */
3563 	val = REG_RD(sc, BCE_MQ_CONFIG);
3564 	val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE;
3565 	val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
3566 
3567 	/* Enable bins used on the 5709/5716. */
3568 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3569 	    BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3570 		val |= BCE_MQ_CONFIG_BIN_MQ_MODE;
3571 		if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1)
3572 			val |= BCE_MQ_CONFIG_HALT_DIS;
3573 	}
3574 
3575 	REG_WR(sc, BCE_MQ_CONFIG, val);
3576 
3577 	val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
3578 	REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val);
3579 	REG_WR(sc, BCE_MQ_KNL_WIND_END, val);
3580 
3581 	/* Set the page size and clear the RV2P processor stall bits. */
3582 	val = (BCM_PAGE_BITS - 8) << 24;
3583 	REG_WR(sc, BCE_RV2P_CONFIG, val);
3584 
3585 	/* Configure page size. */
3586 	val = REG_RD(sc, BCE_TBDR_CONFIG);
3587 	val &= ~BCE_TBDR_CONFIG_PAGE_SIZE;
3588 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
3589 	REG_WR(sc, BCE_TBDR_CONFIG, val);
3590 
3591 	/* Set the perfect match control register to default. */
3592 	REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0);
3593 
3594 	return 0;
3595 }
3596 
3597 
3598 /****************************************************************************/
3599 /* Initialize the controller in preparation to send/receive traffic.        */
3600 /*                                                                          */
3601 /* Returns:                                                                 */
3602 /*   0 for success, positive value for failure.                             */
3603 /****************************************************************************/
3604 static int
3605 bce_blockinit(struct bce_softc *sc)
3606 {
3607 	uint32_t reg, val;
3608 	int rc = 0;
3609 
3610 	/* Load the hardware default MAC address. */
3611 	bce_set_mac_addr(sc);
3612 
3613 	/* Set the Ethernet backoff seed value */
3614 	val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
3615 	      sc->eaddr[3] + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
3616 	REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val);
3617 
3618 	sc->last_status_idx = 0;
3619 	sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE;
3620 
3621 	/* Set up link change interrupt generation. */
3622 	REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK);
3623 
3624 	/* Program the physical address of the status block. */
3625 	REG_WR(sc, BCE_HC_STATUS_ADDR_L, BCE_ADDR_LO(sc->status_block_paddr));
3626 	REG_WR(sc, BCE_HC_STATUS_ADDR_H, BCE_ADDR_HI(sc->status_block_paddr));
3627 
3628 	/* Program the physical address of the statistics block. */
3629 	REG_WR(sc, BCE_HC_STATISTICS_ADDR_L,
3630 	       BCE_ADDR_LO(sc->stats_block_paddr));
3631 	REG_WR(sc, BCE_HC_STATISTICS_ADDR_H,
3632 	       BCE_ADDR_HI(sc->stats_block_paddr));
3633 
3634 	/* Program various host coalescing parameters. */
3635 	REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
3636 	       (sc->bce_tx_quick_cons_trip_int << 16) |
3637 	       sc->bce_tx_quick_cons_trip);
3638 	REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
3639 	       (sc->bce_rx_quick_cons_trip_int << 16) |
3640 	       sc->bce_rx_quick_cons_trip);
3641 	REG_WR(sc, BCE_HC_COMP_PROD_TRIP,
3642 	       (sc->bce_comp_prod_trip_int << 16) | sc->bce_comp_prod_trip);
3643 	REG_WR(sc, BCE_HC_TX_TICKS,
3644 	       (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
3645 	REG_WR(sc, BCE_HC_RX_TICKS,
3646 	       (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
3647 	REG_WR(sc, BCE_HC_COM_TICKS,
3648 	       (sc->bce_com_ticks_int << 16) | sc->bce_com_ticks);
3649 	REG_WR(sc, BCE_HC_CMD_TICKS,
3650 	       (sc->bce_cmd_ticks_int << 16) | sc->bce_cmd_ticks);
3651 	REG_WR(sc, BCE_HC_STATS_TICKS, (sc->bce_stats_ticks & 0xffff00));
3652 	REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8);	/* 3ms */
3653 	REG_WR(sc, BCE_HC_CONFIG,
3654 	       BCE_HC_CONFIG_TX_TMR_MODE |
3655 	       BCE_HC_CONFIG_COLLECT_STATS);
3656 
3657 	/* Clear the internal statistics counters. */
3658 	REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
3659 
3660 	/* Verify that bootcode is running. */
3661 	reg = bce_shmem_rd(sc, BCE_DEV_INFO_SIGNATURE);
3662 
3663 	DBRUNIF(DB_RANDOMTRUE(bce_debug_bootcode_running_failure),
3664 		if_printf(&sc->arpcom.ac_if,
3665 			  "%s(%d): Simulating bootcode failure.\n",
3666 			  __FILE__, __LINE__);
3667 		reg = 0);
3668 
3669 	if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
3670 	    BCE_DEV_INFO_SIGNATURE_MAGIC) {
3671 		if_printf(&sc->arpcom.ac_if,
3672 			  "Bootcode not running! Found: 0x%08X, "
3673 			  "Expected: 08%08X\n",
3674 			  reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK,
3675 			  BCE_DEV_INFO_SIGNATURE_MAGIC);
3676 		return ENODEV;
3677 	}
3678 
3679 	/* Enable DMA */
3680 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3681 	    BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3682 		val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
3683 		val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
3684 		REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
3685 	}
3686 
3687 	/* Allow bootcode to apply any additional fixes before enabling MAC. */
3688 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 | BCE_DRV_MSG_CODE_RESET);
3689 
3690 	/* Enable link state change interrupt generation. */
3691 	REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3692 
3693 	/* Enable the RXP. */
3694 	bce_start_rxp_cpu(sc);
3695 
3696 	/* Disable management frames (NC-SI) from flowing to the MCP. */
3697 	if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
3698 		val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) &
3699 		    ~BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
3700 		REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
3701 	}
3702 
3703 	/* Enable all remaining blocks in the MAC. */
3704 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3705 	    BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3706 		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
3707 		    BCE_MISC_ENABLE_DEFAULT_XI);
3708 	} else {
3709 		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT);
3710 	}
3711 	REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
3712 	DELAY(20);
3713 
3714 	/* Save the current host coalescing block settings. */
3715 	sc->hc_command = REG_RD(sc, BCE_HC_COMMAND);
3716 
3717 	return 0;
3718 }
3719 
3720 
3721 /****************************************************************************/
3722 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
3723 /*                                                                          */
3724 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
3725 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
3726 /* necessary.                                                               */
3727 /*                                                                          */
3728 /* Returns:                                                                 */
3729 /*   0 for success, positive value for failure.                             */
3730 /****************************************************************************/
3731 static int
3732 bce_newbuf_std(struct bce_softc *sc, uint16_t *prod, uint16_t *chain_prod,
3733 	       uint32_t *prod_bseq, int init)
3734 {
3735 	bus_dmamap_t map;
3736 	bus_dma_segment_t seg;
3737 	struct mbuf *m_new;
3738 	int error, nseg;
3739 #ifdef BCE_DEBUG
3740 	uint16_t debug_chain_prod = *chain_prod;
3741 #endif
3742 
3743 	/* Make sure the inputs are valid. */
3744 	DBRUNIF((*chain_prod > MAX_RX_BD),
3745 		if_printf(&sc->arpcom.ac_if, "%s(%d): "
3746 			  "RX producer out of range: 0x%04X > 0x%04X\n",
3747 			  __FILE__, __LINE__,
3748 			  *chain_prod, (uint16_t)MAX_RX_BD));
3749 
3750 	DBPRINT(sc, BCE_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = 0x%04X, "
3751 		"prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod, *prod_bseq);
3752 
3753 	DBRUNIF(DB_RANDOMTRUE(bce_debug_mbuf_allocation_failure),
3754 		if_printf(&sc->arpcom.ac_if, "%s(%d): "
3755 			  "Simulating mbuf allocation failure.\n",
3756 			  __FILE__, __LINE__);
3757 		sc->mbuf_alloc_failed++;
3758 		return ENOBUFS);
3759 
3760 	/* This is a new mbuf allocation. */
3761 	m_new = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
3762 	if (m_new == NULL)
3763 		return ENOBUFS;
3764 	DBRUNIF(1, sc->rx_mbuf_alloc++);
3765 
3766 	m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
3767 
3768 	/* Map the mbuf cluster into device memory. */
3769 	error = bus_dmamap_load_mbuf_segment(sc->rx_mbuf_tag,
3770 			sc->rx_mbuf_tmpmap, m_new, &seg, 1, &nseg,
3771 			BUS_DMA_NOWAIT);
3772 	if (error) {
3773 		m_freem(m_new);
3774 		if (init) {
3775 			if_printf(&sc->arpcom.ac_if,
3776 				  "Error mapping mbuf into RX chain!\n");
3777 		}
3778 		DBRUNIF(1, sc->rx_mbuf_alloc--);
3779 		return error;
3780 	}
3781 
3782 	if (sc->rx_mbuf_ptr[*chain_prod] != NULL) {
3783 		bus_dmamap_unload(sc->rx_mbuf_tag,
3784 				  sc->rx_mbuf_map[*chain_prod]);
3785 	}
3786 
3787 	map = sc->rx_mbuf_map[*chain_prod];
3788 	sc->rx_mbuf_map[*chain_prod] = sc->rx_mbuf_tmpmap;
3789 	sc->rx_mbuf_tmpmap = map;
3790 
3791 	/* Watch for overflow. */
3792 	DBRUNIF((sc->free_rx_bd > USABLE_RX_BD),
3793 		if_printf(&sc->arpcom.ac_if, "%s(%d): "
3794 			  "Too many free rx_bd (0x%04X > 0x%04X)!\n",
3795 			  __FILE__, __LINE__, sc->free_rx_bd,
3796 			  (uint16_t)USABLE_RX_BD));
3797 
3798 	/* Update some debug statistic counters */
3799 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3800 		sc->rx_low_watermark = sc->free_rx_bd);
3801 	DBRUNIF((sc->free_rx_bd == 0), sc->rx_empty_count++);
3802 
3803 	/* Save the mbuf and update our counter. */
3804 	sc->rx_mbuf_ptr[*chain_prod] = m_new;
3805 	sc->rx_mbuf_paddr[*chain_prod] = seg.ds_addr;
3806 	sc->free_rx_bd--;
3807 
3808 	bce_setup_rxdesc_std(sc, *chain_prod, prod_bseq);
3809 
3810 	DBRUN(BCE_VERBOSE_RECV,
3811 	      bce_dump_rx_mbuf_chain(sc, debug_chain_prod, 1));
3812 
3813 	DBPRINT(sc, BCE_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod = 0x%04X, "
3814 		"prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod, *prod_bseq);
3815 
3816 	return 0;
3817 }
3818 
3819 
3820 static void
3821 bce_setup_rxdesc_std(struct bce_softc *sc, uint16_t chain_prod, uint32_t *prod_bseq)
3822 {
3823 	struct rx_bd *rxbd;
3824 	bus_addr_t paddr;
3825 	int len;
3826 
3827 	paddr = sc->rx_mbuf_paddr[chain_prod];
3828 	len = sc->rx_mbuf_ptr[chain_prod]->m_len;
3829 
3830 	/* Setup the rx_bd for the first segment. */
3831 	rxbd = &sc->rx_bd_chain[RX_PAGE(chain_prod)][RX_IDX(chain_prod)];
3832 
3833 	rxbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(paddr));
3834 	rxbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(paddr));
3835 	rxbd->rx_bd_len = htole32(len);
3836 	rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START);
3837 	*prod_bseq += len;
3838 
3839 	rxbd->rx_bd_flags |= htole32(RX_BD_FLAGS_END);
3840 }
3841 
3842 
3843 /****************************************************************************/
3844 /* Initialize the TX context memory.                                        */
3845 /*                                                                          */
3846 /* Returns:                                                                 */
3847 /*   Nothing                                                                */
3848 /****************************************************************************/
3849 static void
3850 bce_init_tx_context(struct bce_softc *sc)
3851 {
3852 	uint32_t val;
3853 
3854 	/* Initialize the context ID for an L2 TX chain. */
3855 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3856 	    BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3857 		/* Set the CID type to support an L2 connection. */
3858 		val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2;
3859 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE_XI, val);
3860 		val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16);
3861 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE_XI, val);
3862 
3863 		/* Point the hardware to the first page in the chain. */
3864 		val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
3865 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
3866 		    BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val);
3867 		val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
3868 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
3869 		    BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val);
3870 	} else {
3871 		/* Set the CID type to support an L2 connection. */
3872 		val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2;
3873 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE, val);
3874 		val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16);
3875 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE, val);
3876 
3877 		/* Point the hardware to the first page in the chain. */
3878 		val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
3879 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
3880 		    BCE_L2CTX_TX_TBDR_BHADDR_HI, val);
3881 		val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
3882 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
3883 		    BCE_L2CTX_TX_TBDR_BHADDR_LO, val);
3884 	}
3885 }
3886 
3887 
3888 /****************************************************************************/
3889 /* Allocate memory and initialize the TX data structures.                   */
3890 /*                                                                          */
3891 /* Returns:                                                                 */
3892 /*   0 for success, positive value for failure.                             */
3893 /****************************************************************************/
3894 static int
3895 bce_init_tx_chain(struct bce_softc *sc)
3896 {
3897 	struct tx_bd *txbd;
3898 	int i, rc = 0;
3899 
3900 	DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __func__);
3901 
3902 	/* Set the initial TX producer/consumer indices. */
3903 	sc->tx_prod = 0;
3904 	sc->tx_cons = 0;
3905 	sc->tx_prod_bseq   = 0;
3906 	sc->used_tx_bd = 0;
3907 	sc->max_tx_bd = USABLE_TX_BD;
3908 	DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
3909 	DBRUNIF(1, sc->tx_full_count = 0);
3910 
3911 	/*
3912 	 * The NetXtreme II supports a linked-list structre called
3913 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
3914 	 * consists of a series of 1 or more chain pages, each of which
3915 	 * consists of a fixed number of BD entries.
3916 	 * The last BD entry on each page is a pointer to the next page
3917 	 * in the chain, and the last pointer in the BD chain
3918 	 * points back to the beginning of the chain.
3919 	 */
3920 
3921 	/* Set the TX next pointer chain entries. */
3922 	for (i = 0; i < TX_PAGES; i++) {
3923 		int j;
3924 
3925 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
3926 
3927 		/* Check if we've reached the last page. */
3928 		if (i == (TX_PAGES - 1))
3929 			j = 0;
3930 		else
3931 			j = i + 1;
3932 
3933 		txbd->tx_bd_haddr_hi =
3934 			htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j]));
3935 		txbd->tx_bd_haddr_lo =
3936 			htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j]));
3937 	}
3938 	bce_init_tx_context(sc);
3939 
3940 	return(rc);
3941 }
3942 
3943 
3944 /****************************************************************************/
3945 /* Free memory and clear the TX data structures.                            */
3946 /*                                                                          */
3947 /* Returns:                                                                 */
3948 /*   Nothing.                                                               */
3949 /****************************************************************************/
3950 static void
3951 bce_free_tx_chain(struct bce_softc *sc)
3952 {
3953 	int i;
3954 
3955 	DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __func__);
3956 
3957 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
3958 	for (i = 0; i < TOTAL_TX_BD; i++) {
3959 		if (sc->tx_mbuf_ptr[i] != NULL) {
3960 			bus_dmamap_unload(sc->tx_mbuf_tag, sc->tx_mbuf_map[i]);
3961 			m_freem(sc->tx_mbuf_ptr[i]);
3962 			sc->tx_mbuf_ptr[i] = NULL;
3963 			DBRUNIF(1, sc->tx_mbuf_alloc--);
3964 		}
3965 	}
3966 
3967 	/* Clear each TX chain page. */
3968 	for (i = 0; i < TX_PAGES; i++)
3969 		bzero(sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ);
3970 	sc->used_tx_bd = 0;
3971 
3972 	/* Check if we lost any mbufs in the process. */
3973 	DBRUNIF((sc->tx_mbuf_alloc),
3974 		if_printf(&sc->arpcom.ac_if,
3975 			  "%s(%d): Memory leak! "
3976 			  "Lost %d mbufs from tx chain!\n",
3977 			  __FILE__, __LINE__, sc->tx_mbuf_alloc));
3978 
3979 	DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __func__);
3980 }
3981 
3982 
3983 /****************************************************************************/
3984 /* Initialize the RX context memory.                                        */
3985 /*                                                                          */
3986 /* Returns:                                                                 */
3987 /*   Nothing                                                                */
3988 /****************************************************************************/
3989 static void
3990 bce_init_rx_context(struct bce_softc *sc)
3991 {
3992 	uint32_t val;
3993 
3994 	/* Initialize the context ID for an L2 RX chain. */
3995 	val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
3996 	    BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
3997 
3998 	/*
3999 	 * Set the level for generating pause frames
4000 	 * when the number of available rx_bd's gets
4001 	 * too low (the low watermark) and the level
4002 	 * when pause frames can be stopped (the high
4003 	 * watermark).
4004 	 */
4005 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
4006 	    BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
4007 		uint32_t lo_water, hi_water;
4008 
4009 		lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT;
4010 		hi_water = USABLE_RX_BD / 4;
4011 
4012 		lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE;
4013 		hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE;
4014 
4015 		if (hi_water > 0xf)
4016 			hi_water = 0xf;
4017 		else if (hi_water == 0)
4018 			lo_water = 0;
4019 		val |= lo_water |
4020 		    (hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT);
4021 	}
4022 
4023  	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_CTX_TYPE, val);
4024 
4025 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
4026 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
4027 	    BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
4028 		val = REG_RD(sc, BCE_MQ_MAP_L2_5);
4029 		REG_WR(sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM);
4030 	}
4031 
4032 	/* Point the hardware to the first page in the chain. */
4033 	val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]);
4034 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_HI, val);
4035 	val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]);
4036 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_LO, val);
4037 }
4038 
4039 
4040 /****************************************************************************/
4041 /* Allocate memory and initialize the RX data structures.                   */
4042 /*                                                                          */
4043 /* Returns:                                                                 */
4044 /*   0 for success, positive value for failure.                             */
4045 /****************************************************************************/
4046 static int
4047 bce_init_rx_chain(struct bce_softc *sc)
4048 {
4049 	struct rx_bd *rxbd;
4050 	int i, rc = 0;
4051 	uint16_t prod, chain_prod;
4052 	uint32_t prod_bseq;
4053 
4054 	DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __func__);
4055 
4056 	/* Initialize the RX producer and consumer indices. */
4057 	sc->rx_prod = 0;
4058 	sc->rx_cons = 0;
4059 	sc->rx_prod_bseq = 0;
4060 	sc->free_rx_bd = USABLE_RX_BD;
4061 	sc->max_rx_bd = USABLE_RX_BD;
4062 	DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
4063 	DBRUNIF(1, sc->rx_empty_count = 0);
4064 
4065 	/* Initialize the RX next pointer chain entries. */
4066 	for (i = 0; i < RX_PAGES; i++) {
4067 		int j;
4068 
4069 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
4070 
4071 		/* Check if we've reached the last page. */
4072 		if (i == (RX_PAGES - 1))
4073 			j = 0;
4074 		else
4075 			j = i + 1;
4076 
4077 		/* Setup the chain page pointers. */
4078 		rxbd->rx_bd_haddr_hi =
4079 			htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j]));
4080 		rxbd->rx_bd_haddr_lo =
4081 			htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j]));
4082 	}
4083 
4084 	/* Allocate mbuf clusters for the rx_bd chain. */
4085 	prod = prod_bseq = 0;
4086 	while (prod < TOTAL_RX_BD) {
4087 		chain_prod = RX_CHAIN_IDX(prod);
4088 		if (bce_newbuf_std(sc, &prod, &chain_prod, &prod_bseq, 1)) {
4089 			if_printf(&sc->arpcom.ac_if,
4090 				  "Error filling RX chain: rx_bd[0x%04X]!\n",
4091 				  chain_prod);
4092 			rc = ENOBUFS;
4093 			break;
4094 		}
4095 		prod = NEXT_RX_BD(prod);
4096 	}
4097 
4098 	/* Save the RX chain producer index. */
4099 	sc->rx_prod = prod;
4100 	sc->rx_prod_bseq = prod_bseq;
4101 
4102 	/* Tell the chip about the waiting rx_bd's. */
4103 	REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BDIDX,
4104 	    sc->rx_prod);
4105 	REG_WR(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BSEQ,
4106 	    sc->rx_prod_bseq);
4107 
4108 	bce_init_rx_context(sc);
4109 
4110 	return(rc);
4111 }
4112 
4113 
4114 /****************************************************************************/
4115 /* Free memory and clear the RX data structures.                            */
4116 /*                                                                          */
4117 /* Returns:                                                                 */
4118 /*   Nothing.                                                               */
4119 /****************************************************************************/
4120 static void
4121 bce_free_rx_chain(struct bce_softc *sc)
4122 {
4123 	int i;
4124 
4125 	DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __func__);
4126 
4127 	/* Free any mbufs still in the RX mbuf chain. */
4128 	for (i = 0; i < TOTAL_RX_BD; i++) {
4129 		if (sc->rx_mbuf_ptr[i] != NULL) {
4130 			bus_dmamap_unload(sc->rx_mbuf_tag, sc->rx_mbuf_map[i]);
4131 			m_freem(sc->rx_mbuf_ptr[i]);
4132 			sc->rx_mbuf_ptr[i] = NULL;
4133 			DBRUNIF(1, sc->rx_mbuf_alloc--);
4134 		}
4135 	}
4136 
4137 	/* Clear each RX chain page. */
4138 	for (i = 0; i < RX_PAGES; i++)
4139 		bzero(sc->rx_bd_chain[i], BCE_RX_CHAIN_PAGE_SZ);
4140 
4141 	/* Check if we lost any mbufs in the process. */
4142 	DBRUNIF((sc->rx_mbuf_alloc),
4143 		if_printf(&sc->arpcom.ac_if,
4144 			  "%s(%d): Memory leak! "
4145 			  "Lost %d mbufs from rx chain!\n",
4146 			  __FILE__, __LINE__, sc->rx_mbuf_alloc));
4147 
4148 	DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __func__);
4149 }
4150 
4151 
4152 /****************************************************************************/
4153 /* Set media options.                                                       */
4154 /*                                                                          */
4155 /* Returns:                                                                 */
4156 /*   0 for success, positive value for failure.                             */
4157 /****************************************************************************/
4158 static int
4159 bce_ifmedia_upd(struct ifnet *ifp)
4160 {
4161 	struct bce_softc *sc = ifp->if_softc;
4162 	struct mii_data *mii = device_get_softc(sc->bce_miibus);
4163 	int error = 0;
4164 
4165 	/*
4166 	 * 'mii' will be NULL, when this function is called on following
4167 	 * code path: bce_attach() -> bce_mgmt_init()
4168 	 */
4169 	if (mii != NULL) {
4170 		/* Make sure the MII bus has been enumerated. */
4171 		sc->bce_link = 0;
4172 		if (mii->mii_instance) {
4173 			struct mii_softc *miisc;
4174 
4175 			LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
4176 				mii_phy_reset(miisc);
4177 		}
4178 		error = mii_mediachg(mii);
4179 	}
4180 	return error;
4181 }
4182 
4183 
4184 /****************************************************************************/
4185 /* Reports current media status.                                            */
4186 /*                                                                          */
4187 /* Returns:                                                                 */
4188 /*   Nothing.                                                               */
4189 /****************************************************************************/
4190 static void
4191 bce_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4192 {
4193 	struct bce_softc *sc = ifp->if_softc;
4194 	struct mii_data *mii = device_get_softc(sc->bce_miibus);
4195 
4196 	mii_pollstat(mii);
4197 	ifmr->ifm_active = mii->mii_media_active;
4198 	ifmr->ifm_status = mii->mii_media_status;
4199 }
4200 
4201 
4202 /****************************************************************************/
4203 /* Handles PHY generated interrupt events.                                  */
4204 /*                                                                          */
4205 /* Returns:                                                                 */
4206 /*   Nothing.                                                               */
4207 /****************************************************************************/
4208 static void
4209 bce_phy_intr(struct bce_softc *sc)
4210 {
4211 	uint32_t new_link_state, old_link_state;
4212 	struct ifnet *ifp = &sc->arpcom.ac_if;
4213 
4214 	ASSERT_SERIALIZED(ifp->if_serializer);
4215 
4216 	new_link_state = sc->status_block->status_attn_bits &
4217 			 STATUS_ATTN_BITS_LINK_STATE;
4218 	old_link_state = sc->status_block->status_attn_bits_ack &
4219 			 STATUS_ATTN_BITS_LINK_STATE;
4220 
4221 	/* Handle any changes if the link state has changed. */
4222 	if (new_link_state != old_link_state) {	/* XXX redundant? */
4223 		DBRUN(BCE_VERBOSE_INTR, bce_dump_status_block(sc));
4224 
4225 		/* Update the status_attn_bits_ack field in the status block. */
4226 		if (new_link_state) {
4227 			REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD,
4228 			       STATUS_ATTN_BITS_LINK_STATE);
4229 			if (bootverbose)
4230 				if_printf(ifp, "Link is now UP.\n");
4231 		} else {
4232 			REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD,
4233 			       STATUS_ATTN_BITS_LINK_STATE);
4234 			if (bootverbose)
4235 				if_printf(ifp, "Link is now DOWN.\n");
4236 		}
4237 
4238 		/*
4239 		 * Assume link is down and allow tick routine to
4240 		 * update the state based on the actual media state.
4241 		 */
4242 		sc->bce_link = 0;
4243 		callout_stop(&sc->bce_tick_callout);
4244 		bce_tick_serialized(sc);
4245 	}
4246 
4247 	/* Acknowledge the link change interrupt. */
4248 	REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE);
4249 }
4250 
4251 
4252 /****************************************************************************/
4253 /* Reads the receive consumer value from the status block (skipping over    */
4254 /* chain page pointer if necessary).                                        */
4255 /*                                                                          */
4256 /* Returns:                                                                 */
4257 /*   hw_cons                                                                */
4258 /****************************************************************************/
4259 static __inline uint16_t
4260 bce_get_hw_rx_cons(struct bce_softc *sc)
4261 {
4262 	uint16_t hw_cons = sc->status_block->status_rx_quick_consumer_index0;
4263 
4264 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
4265 		hw_cons++;
4266 	return hw_cons;
4267 }
4268 
4269 
4270 /****************************************************************************/
4271 /* Handles received frame interrupt events.                                 */
4272 /*                                                                          */
4273 /* Returns:                                                                 */
4274 /*   Nothing.                                                               */
4275 /****************************************************************************/
4276 static void
4277 bce_rx_intr(struct bce_softc *sc, int count)
4278 {
4279 	struct ifnet *ifp = &sc->arpcom.ac_if;
4280 	uint16_t hw_cons, sw_cons, sw_chain_cons, sw_prod, sw_chain_prod;
4281 	uint32_t sw_prod_bseq;
4282 	struct mbuf_chain chain[MAXCPU];
4283 
4284 	ASSERT_SERIALIZED(ifp->if_serializer);
4285 
4286 	ether_input_chain_init(chain);
4287 
4288 	DBRUNIF(1, sc->rx_interrupts++);
4289 
4290 	/* Get the hardware's view of the RX consumer index. */
4291 	hw_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
4292 
4293 	/* Get working copies of the driver's view of the RX indices. */
4294 	sw_cons = sc->rx_cons;
4295 	sw_prod = sc->rx_prod;
4296 	sw_prod_bseq = sc->rx_prod_bseq;
4297 
4298 	DBPRINT(sc, BCE_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
4299 		"sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
4300 		__func__, sw_prod, sw_cons, sw_prod_bseq);
4301 
4302 	/* Prevent speculative reads from getting ahead of the status block. */
4303 	bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
4304 			  BUS_SPACE_BARRIER_READ);
4305 
4306 	/* Update some debug statistics counters */
4307 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
4308 		sc->rx_low_watermark = sc->free_rx_bd);
4309 	DBRUNIF((sc->free_rx_bd == 0), sc->rx_empty_count++);
4310 
4311 	/* Scan through the receive chain as long as there is work to do. */
4312 	while (sw_cons != hw_cons) {
4313 		struct mbuf *m = NULL;
4314 		struct l2_fhdr *l2fhdr = NULL;
4315 		struct rx_bd *rxbd;
4316 		unsigned int len;
4317 		uint32_t status = 0;
4318 
4319 #ifdef DEVICE_POLLING
4320 		if (count >= 0 && count-- == 0) {
4321 			sc->hw_rx_cons = sw_cons;
4322 			break;
4323 		}
4324 #endif
4325 
4326 		/*
4327 		 * Convert the producer/consumer indices
4328 		 * to an actual rx_bd index.
4329 		 */
4330 		sw_chain_cons = RX_CHAIN_IDX(sw_cons);
4331 		sw_chain_prod = RX_CHAIN_IDX(sw_prod);
4332 
4333 		/* Get the used rx_bd. */
4334 		rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)]
4335 				       [RX_IDX(sw_chain_cons)];
4336 		sc->free_rx_bd++;
4337 
4338 		DBRUN(BCE_VERBOSE_RECV,
4339 		      if_printf(ifp, "%s(): ", __func__);
4340 		      bce_dump_rxbd(sc, sw_chain_cons, rxbd));
4341 
4342 		/* The mbuf is stored with the last rx_bd entry of a packet. */
4343 		if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
4344 			/* Validate that this is the last rx_bd. */
4345 			DBRUNIF((!(rxbd->rx_bd_flags & RX_BD_FLAGS_END)),
4346 				if_printf(ifp, "%s(%d): "
4347 				"Unexpected mbuf found in rx_bd[0x%04X]!\n",
4348 				__FILE__, __LINE__, sw_chain_cons);
4349 				bce_breakpoint(sc));
4350 
4351 			if (sw_chain_cons != sw_chain_prod) {
4352 				if_printf(ifp, "RX cons(%d) != prod(%d), "
4353 					  "drop!\n", sw_chain_cons,
4354 					  sw_chain_prod);
4355 				ifp->if_ierrors++;
4356 
4357 				bce_setup_rxdesc_std(sc, sw_chain_cons,
4358 						     &sw_prod_bseq);
4359 				m = NULL;
4360 				goto bce_rx_int_next_rx;
4361 			}
4362 
4363 			/* Unmap the mbuf from DMA space. */
4364 			bus_dmamap_sync(sc->rx_mbuf_tag,
4365 					sc->rx_mbuf_map[sw_chain_cons],
4366 					BUS_DMASYNC_POSTREAD);
4367 
4368 			/* Save the mbuf from the driver's chain. */
4369 			m = sc->rx_mbuf_ptr[sw_chain_cons];
4370 
4371 			/*
4372 			 * Frames received on the NetXteme II are prepended
4373 			 * with an l2_fhdr structure which provides status
4374 			 * information about the received frame (including
4375 			 * VLAN tags and checksum info).  The frames are also
4376 			 * automatically adjusted to align the IP header
4377 			 * (i.e. two null bytes are inserted before the
4378 			 * Ethernet header).  As a result the data DMA'd by
4379 			 * the controller into the mbuf is as follows:
4380 			 *
4381 			 * +---------+-----+---------------------+-----+
4382 			 * | l2_fhdr | pad | packet data         | FCS |
4383 			 * +---------+-----+---------------------+-----+
4384 			 *
4385 			 * The l2_fhdr needs to be checked and skipped and the
4386 			 * FCS needs to be stripped before sending the packet
4387 			 * up the stack.
4388 			 */
4389 			l2fhdr = mtod(m, struct l2_fhdr *);
4390 
4391 			len = l2fhdr->l2_fhdr_pkt_len;
4392 			status = l2fhdr->l2_fhdr_status;
4393 
4394 			DBRUNIF(DB_RANDOMTRUE(bce_debug_l2fhdr_status_check),
4395 				if_printf(ifp,
4396 				"Simulating l2_fhdr status error.\n");
4397 				status = status | L2_FHDR_ERRORS_PHY_DECODE);
4398 
4399 			/* Watch for unusual sized frames. */
4400 			DBRUNIF((len < BCE_MIN_MTU ||
4401 				 len > BCE_MAX_JUMBO_ETHER_MTU_VLAN),
4402 				if_printf(ifp,
4403 				"%s(%d): Unusual frame size found. "
4404 				"Min(%d), Actual(%d), Max(%d)\n",
4405 				__FILE__, __LINE__,
4406 				(int)BCE_MIN_MTU, len,
4407 				(int)BCE_MAX_JUMBO_ETHER_MTU_VLAN);
4408 				bce_dump_mbuf(sc, m);
4409 		 		bce_breakpoint(sc));
4410 
4411 			len -= ETHER_CRC_LEN;
4412 
4413 			/* Check the received frame for errors. */
4414 			if (status & (L2_FHDR_ERRORS_BAD_CRC |
4415 				      L2_FHDR_ERRORS_PHY_DECODE |
4416 				      L2_FHDR_ERRORS_ALIGNMENT |
4417 				      L2_FHDR_ERRORS_TOO_SHORT |
4418 				      L2_FHDR_ERRORS_GIANT_FRAME)) {
4419 				ifp->if_ierrors++;
4420 				DBRUNIF(1, sc->l2fhdr_status_errors++);
4421 
4422 				/* Reuse the mbuf for a new frame. */
4423 				bce_setup_rxdesc_std(sc, sw_chain_prod,
4424 						     &sw_prod_bseq);
4425 				m = NULL;
4426 				goto bce_rx_int_next_rx;
4427 			}
4428 
4429 			/*
4430 			 * Get a new mbuf for the rx_bd.   If no new
4431 			 * mbufs are available then reuse the current mbuf,
4432 			 * log an ierror on the interface, and generate
4433 			 * an error in the system log.
4434 			 */
4435 			if (bce_newbuf_std(sc, &sw_prod, &sw_chain_prod,
4436 					   &sw_prod_bseq, 0)) {
4437 				DBRUN(BCE_WARN,
4438 				      if_printf(ifp,
4439 				      "%s(%d): Failed to allocate new mbuf, "
4440 				      "incoming frame dropped!\n",
4441 				      __FILE__, __LINE__));
4442 
4443 				ifp->if_ierrors++;
4444 
4445 				/* Try and reuse the exisitng mbuf. */
4446 				bce_setup_rxdesc_std(sc, sw_chain_prod,
4447 						     &sw_prod_bseq);
4448 				m = NULL;
4449 				goto bce_rx_int_next_rx;
4450 			}
4451 
4452 			/*
4453 			 * Skip over the l2_fhdr when passing
4454 			 * the data up the stack.
4455 			 */
4456 			m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
4457 
4458 			m->m_pkthdr.len = m->m_len = len;
4459 			m->m_pkthdr.rcvif = ifp;
4460 
4461 			DBRUN(BCE_VERBOSE_RECV,
4462 			      struct ether_header *eh;
4463 			      eh = mtod(m, struct ether_header *);
4464 			      if_printf(ifp, "%s(): to: %6D, from: %6D, "
4465 			      		"type: 0x%04X\n", __func__,
4466 					eh->ether_dhost, ":",
4467 					eh->ether_shost, ":",
4468 					htons(eh->ether_type)));
4469 
4470 			/* Validate the checksum if offload enabled. */
4471 			if (ifp->if_capenable & IFCAP_RXCSUM) {
4472 				/* Check for an IP datagram. */
4473 				if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
4474 					m->m_pkthdr.csum_flags |=
4475 						CSUM_IP_CHECKED;
4476 
4477 					/* Check if the IP checksum is valid. */
4478 					if ((l2fhdr->l2_fhdr_ip_xsum ^
4479 					     0xffff) == 0) {
4480 						m->m_pkthdr.csum_flags |=
4481 							CSUM_IP_VALID;
4482 					} else {
4483 						DBPRINT(sc, BCE_WARN_RECV,
4484 							"%s(): Invalid IP checksum = 0x%04X!\n",
4485 							__func__, l2fhdr->l2_fhdr_ip_xsum);
4486 					}
4487 				}
4488 
4489 				/* Check for a valid TCP/UDP frame. */
4490 				if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
4491 					      L2_FHDR_STATUS_UDP_DATAGRAM)) {
4492 
4493 					/* Check for a good TCP/UDP checksum. */
4494 					if ((status &
4495 					     (L2_FHDR_ERRORS_TCP_XSUM |
4496 					      L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
4497 						m->m_pkthdr.csum_data =
4498 						l2fhdr->l2_fhdr_tcp_udp_xsum;
4499 						m->m_pkthdr.csum_flags |=
4500 							CSUM_DATA_VALID |
4501 							CSUM_PSEUDO_HDR;
4502 					} else {
4503 						DBPRINT(sc, BCE_WARN_RECV,
4504 							"%s(): Invalid TCP/UDP checksum = 0x%04X!\n",
4505 							__func__, l2fhdr->l2_fhdr_tcp_udp_xsum);
4506 					}
4507 				}
4508 			}
4509 
4510 			ifp->if_ipackets++;
4511 bce_rx_int_next_rx:
4512 			sw_prod = NEXT_RX_BD(sw_prod);
4513 		}
4514 
4515 		sw_cons = NEXT_RX_BD(sw_cons);
4516 
4517 		/* If we have a packet, pass it up the stack */
4518 		if (m) {
4519 			DBPRINT(sc, BCE_VERBOSE_RECV,
4520 				"%s(): Passing received frame up.\n", __func__);
4521 
4522 			if (status & L2_FHDR_STATUS_L2_VLAN_TAG) {
4523 				m->m_flags |= M_VLANTAG;
4524 				m->m_pkthdr.ether_vlantag =
4525 					l2fhdr->l2_fhdr_vlan_tag;
4526 			}
4527 			ether_input_chain(ifp, m, NULL, chain);
4528 
4529 			DBRUNIF(1, sc->rx_mbuf_alloc--);
4530 		}
4531 
4532 		/*
4533 		 * If polling(4) is not enabled, refresh hw_cons to see
4534 		 * whether there's new work.
4535 		 *
4536 		 * If polling(4) is enabled, i.e count >= 0, refreshing
4537 		 * should not be performed, so that we would not spend
4538 		 * too much time in RX processing.
4539 		 */
4540 		if (count < 0 && sw_cons == hw_cons)
4541 			hw_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
4542 
4543 		/*
4544 		 * Prevent speculative reads from getting ahead
4545 		 * of the status block.
4546 		 */
4547 		bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
4548 				  BUS_SPACE_BARRIER_READ);
4549 	}
4550 
4551 	ether_input_dispatch(chain);
4552 
4553 	sc->rx_cons = sw_cons;
4554 	sc->rx_prod = sw_prod;
4555 	sc->rx_prod_bseq = sw_prod_bseq;
4556 
4557 	REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BDIDX,
4558 	    sc->rx_prod);
4559 	REG_WR(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BSEQ,
4560 	    sc->rx_prod_bseq);
4561 
4562 	DBPRINT(sc, BCE_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
4563 		"rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
4564 		__func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
4565 }
4566 
4567 
4568 /****************************************************************************/
4569 /* Reads the transmit consumer value from the status block (skipping over   */
4570 /* chain page pointer if necessary).                                        */
4571 /*                                                                          */
4572 /* Returns:                                                                 */
4573 /*   hw_cons                                                                */
4574 /****************************************************************************/
4575 static __inline uint16_t
4576 bce_get_hw_tx_cons(struct bce_softc *sc)
4577 {
4578 	uint16_t hw_cons = sc->status_block->status_tx_quick_consumer_index0;
4579 
4580 	if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
4581 		hw_cons++;
4582 	return hw_cons;
4583 }
4584 
4585 
4586 /****************************************************************************/
4587 /* Handles transmit completion interrupt events.                            */
4588 /*                                                                          */
4589 /* Returns:                                                                 */
4590 /*   Nothing.                                                               */
4591 /****************************************************************************/
4592 static void
4593 bce_tx_intr(struct bce_softc *sc)
4594 {
4595 	struct ifnet *ifp = &sc->arpcom.ac_if;
4596 	uint16_t hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
4597 
4598 	ASSERT_SERIALIZED(ifp->if_serializer);
4599 
4600 	DBRUNIF(1, sc->tx_interrupts++);
4601 
4602 	/* Get the hardware's view of the TX consumer index. */
4603 	hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
4604 	sw_tx_cons = sc->tx_cons;
4605 
4606 	/* Prevent speculative reads from getting ahead of the status block. */
4607 	bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
4608 			  BUS_SPACE_BARRIER_READ);
4609 
4610 	/* Cycle through any completed TX chain page entries. */
4611 	while (sw_tx_cons != hw_tx_cons) {
4612 #ifdef BCE_DEBUG
4613 		struct tx_bd *txbd = NULL;
4614 #endif
4615 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
4616 
4617 		DBPRINT(sc, BCE_INFO_SEND,
4618 			"%s(): hw_tx_cons = 0x%04X, sw_tx_cons = 0x%04X, "
4619 			"sw_tx_chain_cons = 0x%04X\n",
4620 			__func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
4621 
4622 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
4623 			if_printf(ifp, "%s(%d): "
4624 				  "TX chain consumer out of range! "
4625 				  " 0x%04X > 0x%04X\n",
4626 				  __FILE__, __LINE__, sw_tx_chain_cons,
4627 				  (int)MAX_TX_BD);
4628 			bce_breakpoint(sc));
4629 
4630 		DBRUNIF(1, txbd = &sc->tx_bd_chain[TX_PAGE(sw_tx_chain_cons)]
4631 				[TX_IDX(sw_tx_chain_cons)]);
4632 
4633 		DBRUNIF((txbd == NULL),
4634 			if_printf(ifp, "%s(%d): "
4635 				  "Unexpected NULL tx_bd[0x%04X]!\n",
4636 				  __FILE__, __LINE__, sw_tx_chain_cons);
4637 			bce_breakpoint(sc));
4638 
4639 		DBRUN(BCE_INFO_SEND,
4640 		      if_printf(ifp, "%s(): ", __func__);
4641 		      bce_dump_txbd(sc, sw_tx_chain_cons, txbd));
4642 
4643 		/*
4644 		 * Free the associated mbuf. Remember
4645 		 * that only the last tx_bd of a packet
4646 		 * has an mbuf pointer and DMA map.
4647 		 */
4648 		if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
4649 			/* Validate that this is the last tx_bd. */
4650 			DBRUNIF((!(txbd->tx_bd_flags & TX_BD_FLAGS_END)),
4651 				if_printf(ifp, "%s(%d): "
4652 				"tx_bd END flag not set but "
4653 				"txmbuf == NULL!\n", __FILE__, __LINE__);
4654 				bce_breakpoint(sc));
4655 
4656 			DBRUN(BCE_INFO_SEND,
4657 			      if_printf(ifp, "%s(): Unloading map/freeing mbuf "
4658 			      		"from tx_bd[0x%04X]\n", __func__,
4659 					sw_tx_chain_cons));
4660 
4661 			/* Unmap the mbuf. */
4662 			bus_dmamap_unload(sc->tx_mbuf_tag,
4663 					  sc->tx_mbuf_map[sw_tx_chain_cons]);
4664 
4665 			/* Free the mbuf. */
4666 			m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
4667 			sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
4668 			DBRUNIF(1, sc->tx_mbuf_alloc--);
4669 
4670 			ifp->if_opackets++;
4671 		}
4672 
4673 		sc->used_tx_bd--;
4674 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
4675 
4676 		if (sw_tx_cons == hw_tx_cons) {
4677 			/* Refresh hw_cons to see if there's new work. */
4678 			hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
4679 		}
4680 
4681 		/*
4682 		 * Prevent speculative reads from getting
4683 		 * ahead of the status block.
4684 		 */
4685 		bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
4686 				  BUS_SPACE_BARRIER_READ);
4687 	}
4688 
4689 	if (sc->used_tx_bd == 0) {
4690 		/* Clear the TX timeout timer. */
4691 		ifp->if_timer = 0;
4692 	}
4693 
4694 	/* Clear the tx hardware queue full flag. */
4695 	if (sc->max_tx_bd - sc->used_tx_bd >= BCE_TX_SPARE_SPACE) {
4696 		DBRUNIF((ifp->if_flags & IFF_OACTIVE),
4697 			DBPRINT(sc, BCE_WARN_SEND,
4698 				"%s(): Open TX chain! %d/%d (used/total)\n",
4699 				__func__, sc->used_tx_bd, sc->max_tx_bd));
4700 		ifp->if_flags &= ~IFF_OACTIVE;
4701 	}
4702 	sc->tx_cons = sw_tx_cons;
4703 }
4704 
4705 
4706 /****************************************************************************/
4707 /* Disables interrupt generation.                                           */
4708 /*                                                                          */
4709 /* Returns:                                                                 */
4710 /*   Nothing.                                                               */
4711 /****************************************************************************/
4712 static void
4713 bce_disable_intr(struct bce_softc *sc)
4714 {
4715 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT);
4716 	REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
4717 	lwkt_serialize_handler_disable(sc->arpcom.ac_if.if_serializer);
4718 }
4719 
4720 
4721 /****************************************************************************/
4722 /* Enables interrupt generation.                                            */
4723 /*                                                                          */
4724 /* Returns:                                                                 */
4725 /*   Nothing.                                                               */
4726 /****************************************************************************/
4727 static void
4728 bce_enable_intr(struct bce_softc *sc, int coal_now)
4729 {
4730 	lwkt_serialize_handler_enable(sc->arpcom.ac_if.if_serializer);
4731 
4732 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
4733 	       BCE_PCICFG_INT_ACK_CMD_INDEX_VALID |
4734 	       BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4735 
4736 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
4737 	       BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
4738 
4739 	if (coal_now) {
4740 		REG_WR(sc, BCE_HC_COMMAND,
4741 		    sc->hc_command | BCE_HC_COMMAND_COAL_NOW);
4742 	}
4743 }
4744 
4745 
4746 /****************************************************************************/
4747 /* Handles controller initialization.                                       */
4748 /*                                                                          */
4749 /* Returns:                                                                 */
4750 /*   Nothing.                                                               */
4751 /****************************************************************************/
4752 static void
4753 bce_init(void *xsc)
4754 {
4755 	struct bce_softc *sc = xsc;
4756 	struct ifnet *ifp = &sc->arpcom.ac_if;
4757 	uint32_t ether_mtu;
4758 	int error;
4759 
4760 	ASSERT_SERIALIZED(ifp->if_serializer);
4761 
4762 	/* Check if the driver is still running and bail out if it is. */
4763 	if (ifp->if_flags & IFF_RUNNING)
4764 		return;
4765 
4766 	bce_stop(sc);
4767 
4768 	error = bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
4769 	if (error) {
4770 		if_printf(ifp, "Controller reset failed!\n");
4771 		goto back;
4772 	}
4773 
4774 	error = bce_chipinit(sc);
4775 	if (error) {
4776 		if_printf(ifp, "Controller initialization failed!\n");
4777 		goto back;
4778 	}
4779 
4780 	error = bce_blockinit(sc);
4781 	if (error) {
4782 		if_printf(ifp, "Block initialization failed!\n");
4783 		goto back;
4784 	}
4785 
4786 	/* Load our MAC address. */
4787 	bcopy(IF_LLADDR(ifp), sc->eaddr, ETHER_ADDR_LEN);
4788 	bce_set_mac_addr(sc);
4789 
4790 	/* Calculate and program the Ethernet MTU size. */
4791 	ether_mtu = ETHER_HDR_LEN + EVL_ENCAPLEN + ifp->if_mtu + ETHER_CRC_LEN;
4792 
4793 	DBPRINT(sc, BCE_INFO, "%s(): setting mtu = %d\n", __func__, ether_mtu);
4794 
4795 	/*
4796 	 * Program the mtu, enabling jumbo frame
4797 	 * support if necessary.  Also set the mbuf
4798 	 * allocation count for RX frames.
4799 	 */
4800 	if (ether_mtu > ETHER_MAX_LEN + EVL_ENCAPLEN) {
4801 #ifdef notyet
4802 		REG_WR(sc, BCE_EMAC_RX_MTU_SIZE,
4803 		       min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) |
4804 		       BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA);
4805 		sc->mbuf_alloc_size = MJUM9BYTES;
4806 #else
4807 		panic("jumbo buffer is not supported yet\n");
4808 #endif
4809 	} else {
4810 		REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu);
4811 		sc->mbuf_alloc_size = MCLBYTES;
4812 	}
4813 
4814 	/* Calculate the RX Ethernet frame size for rx_bd's. */
4815 	sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
4816 
4817 	DBPRINT(sc, BCE_INFO,
4818 		"%s(): mclbytes = %d, mbuf_alloc_size = %d, "
4819 		"max_frame_size = %d\n",
4820 		__func__, (int)MCLBYTES, sc->mbuf_alloc_size,
4821 		sc->max_frame_size);
4822 
4823 	/* Program appropriate promiscuous/multicast filtering. */
4824 	bce_set_rx_mode(sc);
4825 
4826 	/* Init RX buffer descriptor chain. */
4827 	bce_init_rx_chain(sc);	/* XXX return value */
4828 
4829 	/* Init TX buffer descriptor chain. */
4830 	bce_init_tx_chain(sc);	/* XXX return value */
4831 
4832 #ifdef DEVICE_POLLING
4833 	/* Disable interrupts if we are polling. */
4834 	if (ifp->if_flags & IFF_POLLING) {
4835 		bce_disable_intr(sc);
4836 
4837 		REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
4838 		       (1 << 16) | sc->bce_rx_quick_cons_trip);
4839 		REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
4840 		       (1 << 16) | sc->bce_tx_quick_cons_trip);
4841 	} else
4842 #endif
4843 	/* Enable host interrupts. */
4844 	bce_enable_intr(sc, 1);
4845 
4846 	bce_ifmedia_upd(ifp);
4847 
4848 	ifp->if_flags |= IFF_RUNNING;
4849 	ifp->if_flags &= ~IFF_OACTIVE;
4850 
4851 	callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
4852 back:
4853 	if (error)
4854 		bce_stop(sc);
4855 }
4856 
4857 
4858 /****************************************************************************/
4859 /* Initialize the controller just enough so that any management firmware    */
4860 /* running on the device will continue to operate corectly.                 */
4861 /*                                                                          */
4862 /* Returns:                                                                 */
4863 /*   Nothing.                                                               */
4864 /****************************************************************************/
4865 static void
4866 bce_mgmt_init(struct bce_softc *sc)
4867 {
4868 	struct ifnet *ifp = &sc->arpcom.ac_if;
4869 
4870 	/* Bail out if management firmware is not running. */
4871 	if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG))
4872 		return;
4873 
4874 	/* Enable all critical blocks in the MAC. */
4875 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
4876 	    BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
4877 		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
4878 		    BCE_MISC_ENABLE_DEFAULT_XI);
4879 	} else {
4880 		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT);
4881 	}
4882 	REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
4883 	DELAY(20);
4884 
4885 	bce_ifmedia_upd(ifp);
4886 }
4887 
4888 
4889 /****************************************************************************/
4890 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
4891 /* memory visible to the controller.                                        */
4892 /*                                                                          */
4893 /* Returns:                                                                 */
4894 /*   0 for success, positive value for failure.                             */
4895 /****************************************************************************/
4896 static int
4897 bce_encap(struct bce_softc *sc, struct mbuf **m_head)
4898 {
4899 	bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
4900 	bus_dmamap_t map, tmp_map;
4901 	struct mbuf *m0 = *m_head;
4902 	struct tx_bd *txbd = NULL;
4903 	uint16_t vlan_tag = 0, flags = 0;
4904 	uint16_t chain_prod, chain_prod_start, prod;
4905 	uint32_t prod_bseq;
4906 	int i, error, maxsegs, nsegs;
4907 #ifdef BCE_DEBUG
4908 	uint16_t debug_prod;
4909 #endif
4910 
4911 	/* Transfer any checksum offload flags to the bd. */
4912 	if (m0->m_pkthdr.csum_flags) {
4913 		if (m0->m_pkthdr.csum_flags & CSUM_IP)
4914 			flags |= TX_BD_FLAGS_IP_CKSUM;
4915 		if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
4916 			flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
4917 	}
4918 
4919 	/* Transfer any VLAN tags to the bd. */
4920 	if (m0->m_flags & M_VLANTAG) {
4921 		flags |= TX_BD_FLAGS_VLAN_TAG;
4922 		vlan_tag = m0->m_pkthdr.ether_vlantag;
4923 	}
4924 
4925 	prod = sc->tx_prod;
4926 	chain_prod_start = chain_prod = TX_CHAIN_IDX(prod);
4927 
4928 	/* Map the mbuf into DMAable memory. */
4929 	map = sc->tx_mbuf_map[chain_prod_start];
4930 
4931 	maxsegs = sc->max_tx_bd - sc->used_tx_bd;
4932 	KASSERT(maxsegs >= BCE_TX_SPARE_SPACE,
4933 		("not enough segements %d\n", maxsegs));
4934 	if (maxsegs > BCE_MAX_SEGMENTS)
4935 		maxsegs = BCE_MAX_SEGMENTS;
4936 
4937 	/* Map the mbuf into our DMA address space. */
4938 	error = bus_dmamap_load_mbuf_defrag(sc->tx_mbuf_tag, map, m_head,
4939 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
4940 	if (error)
4941 		goto back;
4942 	bus_dmamap_sync(sc->tx_mbuf_tag, map, BUS_DMASYNC_PREWRITE);
4943 
4944 	/* Reset m0 */
4945 	m0 = *m_head;
4946 
4947 	/* prod points to an empty tx_bd at this point. */
4948 	prod_bseq  = sc->tx_prod_bseq;
4949 
4950 #ifdef BCE_DEBUG
4951 	debug_prod = chain_prod;
4952 #endif
4953 
4954 	DBPRINT(sc, BCE_INFO_SEND,
4955 		"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
4956 		"prod_bseq = 0x%08X\n",
4957 		__func__, prod, chain_prod, prod_bseq);
4958 
4959 	/*
4960 	 * Cycle through each mbuf segment that makes up
4961 	 * the outgoing frame, gathering the mapping info
4962 	 * for that segment and creating a tx_bd to for
4963 	 * the mbuf.
4964 	 */
4965 	for (i = 0; i < nsegs; i++) {
4966 		chain_prod = TX_CHAIN_IDX(prod);
4967 		txbd= &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
4968 
4969 		txbd->tx_bd_haddr_lo = htole32(BCE_ADDR_LO(segs[i].ds_addr));
4970 		txbd->tx_bd_haddr_hi = htole32(BCE_ADDR_HI(segs[i].ds_addr));
4971 		txbd->tx_bd_mss_nbytes = htole16(segs[i].ds_len);
4972 		txbd->tx_bd_vlan_tag = htole16(vlan_tag);
4973 		txbd->tx_bd_flags = htole16(flags);
4974 		prod_bseq += segs[i].ds_len;
4975 		if (i == 0)
4976 			txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
4977 		prod = NEXT_TX_BD(prod);
4978 	}
4979 
4980 	/* Set the END flag on the last TX buffer descriptor. */
4981 	txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
4982 
4983 	DBRUN(BCE_EXCESSIVE_SEND,
4984 	      bce_dump_tx_chain(sc, debug_prod, nsegs));
4985 
4986 	DBPRINT(sc, BCE_INFO_SEND,
4987 		"%s(): End: prod = 0x%04X, chain_prod = %04X, "
4988 		"prod_bseq = 0x%08X\n",
4989 		__func__, prod, chain_prod, prod_bseq);
4990 
4991 	/*
4992 	 * Ensure that the mbuf pointer for this transmission
4993 	 * is placed at the array index of the last
4994 	 * descriptor in this chain.  This is done
4995 	 * because a single map is used for all
4996 	 * segments of the mbuf and we don't want to
4997 	 * unload the map before all of the segments
4998 	 * have been freed.
4999 	 */
5000 	sc->tx_mbuf_ptr[chain_prod] = m0;
5001 
5002 	tmp_map = sc->tx_mbuf_map[chain_prod];
5003 	sc->tx_mbuf_map[chain_prod] = map;
5004 	sc->tx_mbuf_map[chain_prod_start] = tmp_map;
5005 
5006 	sc->used_tx_bd += nsegs;
5007 
5008 	/* Update some debug statistic counters */
5009 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
5010 		sc->tx_hi_watermark = sc->used_tx_bd);
5011 	DBRUNIF((sc->used_tx_bd == sc->max_tx_bd), sc->tx_full_count++);
5012 	DBRUNIF(1, sc->tx_mbuf_alloc++);
5013 
5014 	DBRUN(BCE_VERBOSE_SEND,
5015 	      bce_dump_tx_mbuf_chain(sc, chain_prod, nsegs));
5016 
5017 	/* prod points to the next free tx_bd at this point. */
5018 	sc->tx_prod = prod;
5019 	sc->tx_prod_bseq = prod_bseq;
5020 back:
5021 	if (error) {
5022 		m_freem(*m_head);
5023 		*m_head = NULL;
5024 	}
5025 	return error;
5026 }
5027 
5028 
5029 /****************************************************************************/
5030 /* Main transmit routine when called from another routine with a lock.      */
5031 /*                                                                          */
5032 /* Returns:                                                                 */
5033 /*   Nothing.                                                               */
5034 /****************************************************************************/
5035 static void
5036 bce_start(struct ifnet *ifp)
5037 {
5038 	struct bce_softc *sc = ifp->if_softc;
5039 	int count = 0;
5040 
5041 	ASSERT_SERIALIZED(ifp->if_serializer);
5042 
5043 	/* If there's no link or the transmit queue is empty then just exit. */
5044 	if (!sc->bce_link) {
5045 		ifq_purge(&ifp->if_snd);
5046 		return;
5047 	}
5048 
5049 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
5050 		return;
5051 
5052 	DBPRINT(sc, BCE_INFO_SEND,
5053 		"%s(): Start: tx_prod = 0x%04X, tx_chain_prod = %04zX, "
5054 		"tx_prod_bseq = 0x%08X\n",
5055 		__func__,
5056 		sc->tx_prod, TX_CHAIN_IDX(sc->tx_prod), sc->tx_prod_bseq);
5057 
5058 	for (;;) {
5059 		struct mbuf *m_head;
5060 
5061 		/*
5062 		 * We keep BCE_TX_SPARE_SPACE entries, so bce_encap() is
5063 		 * unlikely to fail.
5064 		 */
5065 		if (sc->max_tx_bd - sc->used_tx_bd < BCE_TX_SPARE_SPACE) {
5066 			ifp->if_flags |= IFF_OACTIVE;
5067 			break;
5068 		}
5069 
5070 		/* Check for any frames to send. */
5071 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
5072 		if (m_head == NULL)
5073 			break;
5074 
5075 		/*
5076 		 * Pack the data into the transmit ring. If we
5077 		 * don't have room, place the mbuf back at the
5078 		 * head of the queue and set the OACTIVE flag
5079 		 * to wait for the NIC to drain the chain.
5080 		 */
5081 		if (bce_encap(sc, &m_head)) {
5082 			ifp->if_oerrors++;
5083 			if (sc->used_tx_bd == 0) {
5084 				continue;
5085 			} else {
5086 				ifp->if_flags |= IFF_OACTIVE;
5087 				break;
5088 			}
5089 		}
5090 
5091 		count++;
5092 
5093 		/* Send a copy of the frame to any BPF listeners. */
5094 		ETHER_BPF_MTAP(ifp, m_head);
5095 	}
5096 
5097 	if (count == 0) {
5098 		/* no packets were dequeued */
5099 		DBPRINT(sc, BCE_VERBOSE_SEND,
5100 			"%s(): No packets were dequeued\n", __func__);
5101 		return;
5102 	}
5103 
5104 	DBPRINT(sc, BCE_INFO_SEND,
5105 		"%s(): End: tx_prod = 0x%04X, tx_chain_prod = 0x%04zX, "
5106 		"tx_prod_bseq = 0x%08X\n",
5107 		__func__,
5108 		sc->tx_prod, TX_CHAIN_IDX(sc->tx_prod), sc->tx_prod_bseq);
5109 
5110 	REG_WR(sc, BCE_MQ_COMMAND,
5111 	    REG_RD(sc, BCE_MQ_COMMAND) | BCE_MQ_COMMAND_NO_MAP_ERROR);
5112 
5113 	/* Start the transmit. */
5114 	REG_WR16(sc, MB_GET_CID_ADDR(TX_CID) + BCE_L2CTX_TX_HOST_BIDX, sc->tx_prod);
5115 	REG_WR(sc, MB_GET_CID_ADDR(TX_CID) + BCE_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
5116 
5117 	/* Set the tx timeout. */
5118 	ifp->if_timer = BCE_TX_TIMEOUT;
5119 }
5120 
5121 
5122 /****************************************************************************/
5123 /* Handles any IOCTL calls from the operating system.                       */
5124 /*                                                                          */
5125 /* Returns:                                                                 */
5126 /*   0 for success, positive value for failure.                             */
5127 /****************************************************************************/
5128 static int
5129 bce_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
5130 {
5131 	struct bce_softc *sc = ifp->if_softc;
5132 	struct ifreq *ifr = (struct ifreq *)data;
5133 	struct mii_data *mii;
5134 	int mask, error = 0;
5135 
5136 	ASSERT_SERIALIZED(ifp->if_serializer);
5137 
5138 	switch(command) {
5139 	case SIOCSIFMTU:
5140 		/* Check that the MTU setting is supported. */
5141 		if (ifr->ifr_mtu < BCE_MIN_MTU ||
5142 #ifdef notyet
5143 		    ifr->ifr_mtu > BCE_MAX_JUMBO_MTU
5144 #else
5145 		    ifr->ifr_mtu > ETHERMTU
5146 #endif
5147 		   ) {
5148 			error = EINVAL;
5149 			break;
5150 		}
5151 
5152 		DBPRINT(sc, BCE_INFO, "Setting new MTU of %d\n", ifr->ifr_mtu);
5153 
5154 		ifp->if_mtu = ifr->ifr_mtu;
5155 		ifp->if_flags &= ~IFF_RUNNING;	/* Force reinitialize */
5156 		bce_init(sc);
5157 		break;
5158 
5159 	case SIOCSIFFLAGS:
5160 		if (ifp->if_flags & IFF_UP) {
5161 			if (ifp->if_flags & IFF_RUNNING) {
5162 				mask = ifp->if_flags ^ sc->bce_if_flags;
5163 
5164 				if (mask & (IFF_PROMISC | IFF_ALLMULTI))
5165 					bce_set_rx_mode(sc);
5166 			} else {
5167 				bce_init(sc);
5168 			}
5169 		} else if (ifp->if_flags & IFF_RUNNING) {
5170 			bce_stop(sc);
5171 
5172 			/* If MFW is running, restart the controller a bit. */
5173 			if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
5174 				bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
5175 				bce_chipinit(sc);
5176 				bce_mgmt_init(sc);
5177 			}
5178 		}
5179 		sc->bce_if_flags = ifp->if_flags;
5180 		break;
5181 
5182 	case SIOCADDMULTI:
5183 	case SIOCDELMULTI:
5184 		if (ifp->if_flags & IFF_RUNNING)
5185 			bce_set_rx_mode(sc);
5186 		break;
5187 
5188 	case SIOCSIFMEDIA:
5189 	case SIOCGIFMEDIA:
5190 		DBPRINT(sc, BCE_VERBOSE, "bce_phy_flags = 0x%08X\n",
5191 			sc->bce_phy_flags);
5192 		DBPRINT(sc, BCE_VERBOSE, "Copper media set/get\n");
5193 
5194 		mii = device_get_softc(sc->bce_miibus);
5195 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
5196 		break;
5197 
5198 	case SIOCSIFCAP:
5199 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
5200 		DBPRINT(sc, BCE_INFO, "Received SIOCSIFCAP = 0x%08X\n",
5201 			(uint32_t) mask);
5202 
5203 		if (mask & IFCAP_HWCSUM) {
5204 			ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
5205 			if (IFCAP_HWCSUM & ifp->if_capenable)
5206 				ifp->if_hwassist = BCE_IF_HWASSIST;
5207 			else
5208 				ifp->if_hwassist = 0;
5209 		}
5210 		break;
5211 
5212 	default:
5213 		error = ether_ioctl(ifp, command, data);
5214 		break;
5215 	}
5216 	return error;
5217 }
5218 
5219 
5220 /****************************************************************************/
5221 /* Transmit timeout handler.                                                */
5222 /*                                                                          */
5223 /* Returns:                                                                 */
5224 /*   Nothing.                                                               */
5225 /****************************************************************************/
5226 static void
5227 bce_watchdog(struct ifnet *ifp)
5228 {
5229 	struct bce_softc *sc = ifp->if_softc;
5230 
5231 	ASSERT_SERIALIZED(ifp->if_serializer);
5232 
5233 	DBRUN(BCE_VERBOSE_SEND,
5234 	      bce_dump_driver_state(sc);
5235 	      bce_dump_status_block(sc));
5236 
5237 	/*
5238 	 * If we are in this routine because of pause frames, then
5239 	 * don't reset the hardware.
5240 	 */
5241 	if (REG_RD(sc, BCE_EMAC_TX_STATUS) & BCE_EMAC_TX_STATUS_XOFFED)
5242 		return;
5243 
5244 	if_printf(ifp, "Watchdog timeout occurred, resetting!\n");
5245 
5246 	/* DBRUN(BCE_FATAL, bce_breakpoint(sc)); */
5247 
5248 	ifp->if_flags &= ~IFF_RUNNING;	/* Force reinitialize */
5249 	bce_init(sc);
5250 
5251 	ifp->if_oerrors++;
5252 
5253 	if (!ifq_is_empty(&ifp->if_snd))
5254 		if_devstart(ifp);
5255 }
5256 
5257 
5258 #ifdef DEVICE_POLLING
5259 
5260 static void
5261 bce_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
5262 {
5263 	struct bce_softc *sc = ifp->if_softc;
5264 	struct status_block *sblk = sc->status_block;
5265 	uint16_t hw_tx_cons, hw_rx_cons;
5266 
5267 	ASSERT_SERIALIZED(ifp->if_serializer);
5268 
5269 	switch (cmd) {
5270 	case POLL_REGISTER:
5271 		bce_disable_intr(sc);
5272 
5273 		REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
5274 		       (1 << 16) | sc->bce_rx_quick_cons_trip);
5275 		REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
5276 		       (1 << 16) | sc->bce_tx_quick_cons_trip);
5277 		return;
5278 	case POLL_DEREGISTER:
5279 		bce_enable_intr(sc, 1);
5280 
5281 		REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
5282 		       (sc->bce_tx_quick_cons_trip_int << 16) |
5283 		       sc->bce_tx_quick_cons_trip);
5284 		REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
5285 		       (sc->bce_rx_quick_cons_trip_int << 16) |
5286 		       sc->bce_rx_quick_cons_trip);
5287 		return;
5288 	default:
5289 		break;
5290 	}
5291 
5292 	if (cmd == POLL_AND_CHECK_STATUS) {
5293 		uint32_t status_attn_bits;
5294 
5295 		status_attn_bits = sblk->status_attn_bits;
5296 
5297 		DBRUNIF(DB_RANDOMTRUE(bce_debug_unexpected_attention),
5298 			if_printf(ifp,
5299 			"Simulating unexpected status attention bit set.");
5300 			status_attn_bits |= STATUS_ATTN_BITS_PARITY_ERROR);
5301 
5302 		/* Was it a link change interrupt? */
5303 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5304 		    (sblk->status_attn_bits_ack & STATUS_ATTN_BITS_LINK_STATE))
5305 			bce_phy_intr(sc);
5306 
5307 		/* Clear any transient status updates during link state change. */
5308 		REG_WR(sc, BCE_HC_COMMAND,
5309 		    sc->hc_command | BCE_HC_COMMAND_COAL_NOW_WO_INT);
5310 		REG_RD(sc, BCE_HC_COMMAND);
5311 
5312 		/*
5313 		 * If any other attention is asserted then
5314 		 * the chip is toast.
5315 		 */
5316 		if ((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
5317 		     (sblk->status_attn_bits_ack &
5318 		      ~STATUS_ATTN_BITS_LINK_STATE)) {
5319 			DBRUN(1, sc->unexpected_attentions++);
5320 
5321 			if_printf(ifp, "Fatal attention detected: 0x%08X\n",
5322 				  sblk->status_attn_bits);
5323 
5324 			DBRUN(BCE_FATAL,
5325 			if (bce_debug_unexpected_attention == 0)
5326 				bce_breakpoint(sc));
5327 
5328 			bce_init(sc);
5329 			return;
5330 		}
5331 	}
5332 
5333 	hw_rx_cons = bce_get_hw_rx_cons(sc);
5334 	hw_tx_cons = bce_get_hw_tx_cons(sc);
5335 
5336 	/* Check for any completed RX frames. */
5337 	if (hw_rx_cons != sc->hw_rx_cons)
5338 		bce_rx_intr(sc, count);
5339 
5340 	/* Check for any completed TX frames. */
5341 	if (hw_tx_cons != sc->hw_tx_cons)
5342 		bce_tx_intr(sc);
5343 
5344 	/* Check for new frames to transmit. */
5345 	if (!ifq_is_empty(&ifp->if_snd))
5346 		if_devstart(ifp);
5347 }
5348 
5349 #endif	/* DEVICE_POLLING */
5350 
5351 
5352 /*
5353  * Interrupt handler.
5354  */
5355 /****************************************************************************/
5356 /* Main interrupt entry point.  Verifies that the controller generated the  */
5357 /* interrupt and then calls a separate routine for handle the various       */
5358 /* interrupt causes (PHY, TX, RX).                                          */
5359 /*                                                                          */
5360 /* Returns:                                                                 */
5361 /*   0 for success, positive value for failure.                             */
5362 /****************************************************************************/
5363 static void
5364 bce_intr(void *xsc)
5365 {
5366 	struct bce_softc *sc = xsc;
5367 	struct ifnet *ifp = &sc->arpcom.ac_if;
5368 	struct status_block *sblk;
5369 	uint16_t hw_rx_cons, hw_tx_cons;
5370 
5371 	ASSERT_SERIALIZED(ifp->if_serializer);
5372 
5373 	DBPRINT(sc, BCE_EXCESSIVE, "Entering %s()\n", __func__);
5374 	DBRUNIF(1, sc->interrupts_generated++);
5375 
5376 	sblk = sc->status_block;
5377 
5378 	/*
5379 	 * If the hardware status block index matches the last value
5380 	 * read by the driver and we haven't asserted our interrupt
5381 	 * then there's nothing to do.
5382 	 */
5383 	if (sblk->status_idx == sc->last_status_idx &&
5384 	    (REG_RD(sc, BCE_PCICFG_MISC_STATUS) &
5385 	     BCE_PCICFG_MISC_STATUS_INTA_VALUE))
5386 		return;
5387 
5388 	/* Ack the interrupt and stop others from occuring. */
5389 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
5390 	       BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
5391 	       BCE_PCICFG_INT_ACK_CMD_MASK_INT);
5392 
5393 	/* Check if the hardware has finished any work. */
5394 	hw_rx_cons = bce_get_hw_rx_cons(sc);
5395 	hw_tx_cons = bce_get_hw_tx_cons(sc);
5396 
5397 	/* Keep processing data as long as there is work to do. */
5398 	for (;;) {
5399 		uint32_t status_attn_bits;
5400 
5401 		status_attn_bits = sblk->status_attn_bits;
5402 
5403 		DBRUNIF(DB_RANDOMTRUE(bce_debug_unexpected_attention),
5404 			if_printf(ifp,
5405 			"Simulating unexpected status attention bit set.");
5406 			status_attn_bits |= STATUS_ATTN_BITS_PARITY_ERROR);
5407 
5408 		/* Was it a link change interrupt? */
5409 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5410 		    (sblk->status_attn_bits_ack & STATUS_ATTN_BITS_LINK_STATE)) {
5411 			bce_phy_intr(sc);
5412 
5413 			/*
5414 			 * Clear any transient status updates during link state
5415 			 * change.
5416 			 */
5417 			REG_WR(sc, BCE_HC_COMMAND,
5418 			    sc->hc_command | BCE_HC_COMMAND_COAL_NOW_WO_INT);
5419 			REG_RD(sc, BCE_HC_COMMAND);
5420 		}
5421 
5422 		/*
5423 		 * If any other attention is asserted then
5424 		 * the chip is toast.
5425 		 */
5426 		if ((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
5427 		     (sblk->status_attn_bits_ack &
5428 		      ~STATUS_ATTN_BITS_LINK_STATE)) {
5429 			DBRUN(1, sc->unexpected_attentions++);
5430 
5431 			if_printf(ifp, "Fatal attention detected: 0x%08X\n",
5432 				  sblk->status_attn_bits);
5433 
5434 			DBRUN(BCE_FATAL,
5435 			if (bce_debug_unexpected_attention == 0)
5436 				bce_breakpoint(sc));
5437 
5438 			bce_init(sc);
5439 			return;
5440 		}
5441 
5442 		/* Check for any completed RX frames. */
5443 		if (hw_rx_cons != sc->hw_rx_cons)
5444 			bce_rx_intr(sc, -1);
5445 
5446 		/* Check for any completed TX frames. */
5447 		if (hw_tx_cons != sc->hw_tx_cons)
5448 			bce_tx_intr(sc);
5449 
5450 		/*
5451 		 * Save the status block index value
5452 		 * for use during the next interrupt.
5453 		 */
5454 		sc->last_status_idx = sblk->status_idx;
5455 
5456 		/*
5457 		 * Prevent speculative reads from getting
5458 		 * ahead of the status block.
5459 		 */
5460 		bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
5461 				  BUS_SPACE_BARRIER_READ);
5462 
5463 		/*
5464 		 * If there's no work left then exit the
5465 		 * interrupt service routine.
5466 		 */
5467 		hw_rx_cons = bce_get_hw_rx_cons(sc);
5468 		hw_tx_cons = bce_get_hw_tx_cons(sc);
5469 		if ((hw_rx_cons == sc->hw_rx_cons) && (hw_tx_cons == sc->hw_tx_cons))
5470 			break;
5471 	}
5472 
5473 	/* Re-enable interrupts. */
5474 	bce_enable_intr(sc, 0);
5475 
5476 	if (sc->bce_coalchg_mask)
5477 		bce_coal_change(sc);
5478 
5479 	/* Handle any frames that arrived while handling the interrupt. */
5480 	if (!ifq_is_empty(&ifp->if_snd))
5481 		if_devstart(ifp);
5482 }
5483 
5484 
5485 /****************************************************************************/
5486 /* Programs the various packet receive modes (broadcast and multicast).     */
5487 /*                                                                          */
5488 /* Returns:                                                                 */
5489 /*   Nothing.                                                               */
5490 /****************************************************************************/
5491 static void
5492 bce_set_rx_mode(struct bce_softc *sc)
5493 {
5494 	struct ifnet *ifp = &sc->arpcom.ac_if;
5495 	struct ifmultiaddr *ifma;
5496 	uint32_t hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
5497 	uint32_t rx_mode, sort_mode;
5498 	int h, i;
5499 
5500 	ASSERT_SERIALIZED(ifp->if_serializer);
5501 
5502 	/* Initialize receive mode default settings. */
5503 	rx_mode = sc->rx_mode &
5504 		  ~(BCE_EMAC_RX_MODE_PROMISCUOUS |
5505 		    BCE_EMAC_RX_MODE_KEEP_VLAN_TAG);
5506 	sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN;
5507 
5508 	/*
5509 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
5510 	 * be enbled.
5511 	 */
5512 	if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) &&
5513 	    !(sc->bce_flags & BCE_MFW_ENABLE_FLAG))
5514 		rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG;
5515 
5516 	/*
5517 	 * Check for promiscuous, all multicast, or selected
5518 	 * multicast address filtering.
5519 	 */
5520 	if (ifp->if_flags & IFF_PROMISC) {
5521 		DBPRINT(sc, BCE_INFO, "Enabling promiscuous mode.\n");
5522 
5523 		/* Enable promiscuous mode. */
5524 		rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS;
5525 		sort_mode |= BCE_RPM_SORT_USER0_PROM_EN;
5526 	} else if (ifp->if_flags & IFF_ALLMULTI) {
5527 		DBPRINT(sc, BCE_INFO, "Enabling all multicast mode.\n");
5528 
5529 		/* Enable all multicast addresses. */
5530 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
5531 			REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4),
5532 			       0xffffffff);
5533 		}
5534 		sort_mode |= BCE_RPM_SORT_USER0_MC_EN;
5535 	} else {
5536 		/* Accept one or more multicast(s). */
5537 		DBPRINT(sc, BCE_INFO, "Enabling selective multicast mode.\n");
5538 
5539 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
5540 			if (ifma->ifma_addr->sa_family != AF_LINK)
5541 				continue;
5542 			h = ether_crc32_le(
5543 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
5544 			    ETHER_ADDR_LEN) & 0xFF;
5545 			hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
5546 		}
5547 
5548 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
5549 			REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4),
5550 			       hashes[i]);
5551 		}
5552 		sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN;
5553 	}
5554 
5555 	/* Only make changes if the recive mode has actually changed. */
5556 	if (rx_mode != sc->rx_mode) {
5557 		DBPRINT(sc, BCE_VERBOSE, "Enabling new receive mode: 0x%08X\n",
5558 			rx_mode);
5559 
5560 		sc->rx_mode = rx_mode;
5561 		REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode);
5562 	}
5563 
5564 	/* Disable and clear the exisitng sort before enabling a new sort. */
5565 	REG_WR(sc, BCE_RPM_SORT_USER0, 0x0);
5566 	REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode);
5567 	REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA);
5568 }
5569 
5570 
5571 /****************************************************************************/
5572 /* Called periodically to updates statistics from the controllers           */
5573 /* statistics block.                                                        */
5574 /*                                                                          */
5575 /* Returns:                                                                 */
5576 /*   Nothing.                                                               */
5577 /****************************************************************************/
5578 static void
5579 bce_stats_update(struct bce_softc *sc)
5580 {
5581 	struct ifnet *ifp = &sc->arpcom.ac_if;
5582 	struct statistics_block *stats = sc->stats_block;
5583 
5584 	DBPRINT(sc, BCE_EXCESSIVE, "Entering %s()\n", __func__);
5585 
5586 	ASSERT_SERIALIZED(ifp->if_serializer);
5587 
5588 	/*
5589 	 * Certain controllers don't report carrier sense errors correctly.
5590 	 * See errata E11_5708CA0_1165.
5591 	 */
5592 	if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
5593 	    !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0)) {
5594 		ifp->if_oerrors +=
5595 			(u_long)stats->stat_Dot3StatsCarrierSenseErrors;
5596 	}
5597 
5598 	/*
5599 	 * Update the sysctl statistics from the hardware statistics.
5600 	 */
5601 	sc->stat_IfHCInOctets =
5602 		((uint64_t)stats->stat_IfHCInOctets_hi << 32) +
5603 		 (uint64_t)stats->stat_IfHCInOctets_lo;
5604 
5605 	sc->stat_IfHCInBadOctets =
5606 		((uint64_t)stats->stat_IfHCInBadOctets_hi << 32) +
5607 		 (uint64_t)stats->stat_IfHCInBadOctets_lo;
5608 
5609 	sc->stat_IfHCOutOctets =
5610 		((uint64_t)stats->stat_IfHCOutOctets_hi << 32) +
5611 		 (uint64_t)stats->stat_IfHCOutOctets_lo;
5612 
5613 	sc->stat_IfHCOutBadOctets =
5614 		((uint64_t)stats->stat_IfHCOutBadOctets_hi << 32) +
5615 		 (uint64_t)stats->stat_IfHCOutBadOctets_lo;
5616 
5617 	sc->stat_IfHCInUcastPkts =
5618 		((uint64_t)stats->stat_IfHCInUcastPkts_hi << 32) +
5619 		 (uint64_t)stats->stat_IfHCInUcastPkts_lo;
5620 
5621 	sc->stat_IfHCInMulticastPkts =
5622 		((uint64_t)stats->stat_IfHCInMulticastPkts_hi << 32) +
5623 		 (uint64_t)stats->stat_IfHCInMulticastPkts_lo;
5624 
5625 	sc->stat_IfHCInBroadcastPkts =
5626 		((uint64_t)stats->stat_IfHCInBroadcastPkts_hi << 32) +
5627 		 (uint64_t)stats->stat_IfHCInBroadcastPkts_lo;
5628 
5629 	sc->stat_IfHCOutUcastPkts =
5630 		((uint64_t)stats->stat_IfHCOutUcastPkts_hi << 32) +
5631 		 (uint64_t)stats->stat_IfHCOutUcastPkts_lo;
5632 
5633 	sc->stat_IfHCOutMulticastPkts =
5634 		((uint64_t)stats->stat_IfHCOutMulticastPkts_hi << 32) +
5635 		 (uint64_t)stats->stat_IfHCOutMulticastPkts_lo;
5636 
5637 	sc->stat_IfHCOutBroadcastPkts =
5638 		((uint64_t)stats->stat_IfHCOutBroadcastPkts_hi << 32) +
5639 		 (uint64_t)stats->stat_IfHCOutBroadcastPkts_lo;
5640 
5641 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
5642 		stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
5643 
5644 	sc->stat_Dot3StatsCarrierSenseErrors =
5645 		stats->stat_Dot3StatsCarrierSenseErrors;
5646 
5647 	sc->stat_Dot3StatsFCSErrors =
5648 		stats->stat_Dot3StatsFCSErrors;
5649 
5650 	sc->stat_Dot3StatsAlignmentErrors =
5651 		stats->stat_Dot3StatsAlignmentErrors;
5652 
5653 	sc->stat_Dot3StatsSingleCollisionFrames =
5654 		stats->stat_Dot3StatsSingleCollisionFrames;
5655 
5656 	sc->stat_Dot3StatsMultipleCollisionFrames =
5657 		stats->stat_Dot3StatsMultipleCollisionFrames;
5658 
5659 	sc->stat_Dot3StatsDeferredTransmissions =
5660 		stats->stat_Dot3StatsDeferredTransmissions;
5661 
5662 	sc->stat_Dot3StatsExcessiveCollisions =
5663 		stats->stat_Dot3StatsExcessiveCollisions;
5664 
5665 	sc->stat_Dot3StatsLateCollisions =
5666 		stats->stat_Dot3StatsLateCollisions;
5667 
5668 	sc->stat_EtherStatsCollisions =
5669 		stats->stat_EtherStatsCollisions;
5670 
5671 	sc->stat_EtherStatsFragments =
5672 		stats->stat_EtherStatsFragments;
5673 
5674 	sc->stat_EtherStatsJabbers =
5675 		stats->stat_EtherStatsJabbers;
5676 
5677 	sc->stat_EtherStatsUndersizePkts =
5678 		stats->stat_EtherStatsUndersizePkts;
5679 
5680 	sc->stat_EtherStatsOverrsizePkts =
5681 		stats->stat_EtherStatsOverrsizePkts;
5682 
5683 	sc->stat_EtherStatsPktsRx64Octets =
5684 		stats->stat_EtherStatsPktsRx64Octets;
5685 
5686 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
5687 		stats->stat_EtherStatsPktsRx65Octetsto127Octets;
5688 
5689 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
5690 		stats->stat_EtherStatsPktsRx128Octetsto255Octets;
5691 
5692 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
5693 		stats->stat_EtherStatsPktsRx256Octetsto511Octets;
5694 
5695 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
5696 		stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
5697 
5698 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
5699 		stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
5700 
5701 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
5702 		stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
5703 
5704 	sc->stat_EtherStatsPktsTx64Octets =
5705 		stats->stat_EtherStatsPktsTx64Octets;
5706 
5707 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
5708 		stats->stat_EtherStatsPktsTx65Octetsto127Octets;
5709 
5710 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
5711 		stats->stat_EtherStatsPktsTx128Octetsto255Octets;
5712 
5713 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
5714 		stats->stat_EtherStatsPktsTx256Octetsto511Octets;
5715 
5716 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
5717 		stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
5718 
5719 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
5720 		stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
5721 
5722 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
5723 		stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
5724 
5725 	sc->stat_XonPauseFramesReceived =
5726 		stats->stat_XonPauseFramesReceived;
5727 
5728 	sc->stat_XoffPauseFramesReceived =
5729 		stats->stat_XoffPauseFramesReceived;
5730 
5731 	sc->stat_OutXonSent =
5732 		stats->stat_OutXonSent;
5733 
5734 	sc->stat_OutXoffSent =
5735 		stats->stat_OutXoffSent;
5736 
5737 	sc->stat_FlowControlDone =
5738 		stats->stat_FlowControlDone;
5739 
5740 	sc->stat_MacControlFramesReceived =
5741 		stats->stat_MacControlFramesReceived;
5742 
5743 	sc->stat_XoffStateEntered =
5744 		stats->stat_XoffStateEntered;
5745 
5746 	sc->stat_IfInFramesL2FilterDiscards =
5747 		stats->stat_IfInFramesL2FilterDiscards;
5748 
5749 	sc->stat_IfInRuleCheckerDiscards =
5750 		stats->stat_IfInRuleCheckerDiscards;
5751 
5752 	sc->stat_IfInFTQDiscards =
5753 		stats->stat_IfInFTQDiscards;
5754 
5755 	sc->stat_IfInMBUFDiscards =
5756 		stats->stat_IfInMBUFDiscards;
5757 
5758 	sc->stat_IfInRuleCheckerP4Hit =
5759 		stats->stat_IfInRuleCheckerP4Hit;
5760 
5761 	sc->stat_CatchupInRuleCheckerDiscards =
5762 		stats->stat_CatchupInRuleCheckerDiscards;
5763 
5764 	sc->stat_CatchupInFTQDiscards =
5765 		stats->stat_CatchupInFTQDiscards;
5766 
5767 	sc->stat_CatchupInMBUFDiscards =
5768 		stats->stat_CatchupInMBUFDiscards;
5769 
5770 	sc->stat_CatchupInRuleCheckerP4Hit =
5771 		stats->stat_CatchupInRuleCheckerP4Hit;
5772 
5773 	sc->com_no_buffers = REG_RD_IND(sc, 0x120084);
5774 
5775 	/*
5776 	 * Update the interface statistics from the
5777 	 * hardware statistics.
5778 	 */
5779 	ifp->if_collisions = (u_long)sc->stat_EtherStatsCollisions;
5780 
5781 	ifp->if_ierrors = (u_long)sc->stat_EtherStatsUndersizePkts +
5782 	    (u_long)sc->stat_EtherStatsOverrsizePkts +
5783 	    (u_long)sc->stat_IfInMBUFDiscards +
5784 	    (u_long)sc->stat_Dot3StatsAlignmentErrors +
5785 	    (u_long)sc->stat_Dot3StatsFCSErrors +
5786 	    (u_long)sc->stat_IfInRuleCheckerDiscards +
5787 	    (u_long)sc->stat_IfInFTQDiscards +
5788 	    (u_long)sc->com_no_buffers;
5789 
5790 	ifp->if_oerrors =
5791 	    (u_long)sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
5792 	    (u_long)sc->stat_Dot3StatsExcessiveCollisions +
5793 	    (u_long)sc->stat_Dot3StatsLateCollisions;
5794 
5795 	DBPRINT(sc, BCE_EXCESSIVE, "Exiting %s()\n", __func__);
5796 }
5797 
5798 
5799 /****************************************************************************/
5800 /* Periodic function to notify the bootcode that the driver is still        */
5801 /* present.                                                                 */
5802 /*                                                                          */
5803 /* Returns:                                                                 */
5804 /*   Nothing.                                                               */
5805 /****************************************************************************/
5806 static void
5807 bce_pulse(void *xsc)
5808 {
5809 	struct bce_softc *sc = xsc;
5810 	struct ifnet *ifp = &sc->arpcom.ac_if;
5811 	uint32_t msg;
5812 
5813 	lwkt_serialize_enter(ifp->if_serializer);
5814 
5815 	/* Tell the firmware that the driver is still running. */
5816 	msg = (uint32_t)++sc->bce_fw_drv_pulse_wr_seq;
5817 	bce_shmem_wr(sc, BCE_DRV_PULSE_MB, msg);
5818 
5819 	/* Update the bootcode condition. */
5820 	sc->bc_state = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
5821 
5822 	/* Report whether the bootcode still knows the driver is running. */
5823 	if (!sc->bce_drv_cardiac_arrest) {
5824 		if (!(sc->bc_state & BCE_CONDITION_DRV_PRESENT)) {
5825 			sc->bce_drv_cardiac_arrest = 1;
5826 			if_printf(ifp, "Bootcode lost the driver pulse! "
5827 			    "(bc_state = 0x%08X)\n", sc->bc_state);
5828 		}
5829 	} else {
5830  		/*
5831  		 * Not supported by all bootcode versions.
5832  		 * (v5.0.11+ and v5.2.1+)  Older bootcode
5833  		 * will require the driver to reset the
5834  		 * controller to clear this condition.
5835 		 */
5836 		if (sc->bc_state & BCE_CONDITION_DRV_PRESENT) {
5837 			sc->bce_drv_cardiac_arrest = 0;
5838 			if_printf(ifp, "Bootcode found the driver pulse! "
5839 			    "(bc_state = 0x%08X)\n", sc->bc_state);
5840 		}
5841 	}
5842 
5843 	/* Schedule the next pulse. */
5844 	callout_reset(&sc->bce_pulse_callout, hz, bce_pulse, sc);
5845 
5846 	lwkt_serialize_exit(ifp->if_serializer);
5847 }
5848 
5849 
5850 /****************************************************************************/
5851 /* Periodic function to perform maintenance tasks.                          */
5852 /*                                                                          */
5853 /* Returns:                                                                 */
5854 /*   Nothing.                                                               */
5855 /****************************************************************************/
5856 static void
5857 bce_tick_serialized(struct bce_softc *sc)
5858 {
5859 	struct ifnet *ifp = &sc->arpcom.ac_if;
5860 	struct mii_data *mii;
5861 
5862 	ASSERT_SERIALIZED(ifp->if_serializer);
5863 
5864 	/* Update the statistics from the hardware statistics block. */
5865 	bce_stats_update(sc);
5866 
5867 	/* Schedule the next tick. */
5868 	callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
5869 
5870 	/* If link is up already up then we're done. */
5871 	if (sc->bce_link)
5872 		return;
5873 
5874 	mii = device_get_softc(sc->bce_miibus);
5875 	mii_tick(mii);
5876 
5877 	/* Check if the link has come up. */
5878 	if ((mii->mii_media_status & IFM_ACTIVE) &&
5879 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
5880 		sc->bce_link++;
5881 		/* Now that link is up, handle any outstanding TX traffic. */
5882 		if (!ifq_is_empty(&ifp->if_snd))
5883 			if_devstart(ifp);
5884 	}
5885 }
5886 
5887 
5888 static void
5889 bce_tick(void *xsc)
5890 {
5891 	struct bce_softc *sc = xsc;
5892 	struct ifnet *ifp = &sc->arpcom.ac_if;
5893 
5894 	lwkt_serialize_enter(ifp->if_serializer);
5895 	bce_tick_serialized(sc);
5896 	lwkt_serialize_exit(ifp->if_serializer);
5897 }
5898 
5899 
5900 #ifdef BCE_DEBUG
5901 /****************************************************************************/
5902 /* Allows the driver state to be dumped through the sysctl interface.       */
5903 /*                                                                          */
5904 /* Returns:                                                                 */
5905 /*   0 for success, positive value for failure.                             */
5906 /****************************************************************************/
5907 static int
5908 bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS)
5909 {
5910         int error;
5911         int result;
5912         struct bce_softc *sc;
5913 
5914         result = -1;
5915         error = sysctl_handle_int(oidp, &result, 0, req);
5916 
5917         if (error || !req->newptr)
5918                 return (error);
5919 
5920         if (result == 1) {
5921                 sc = (struct bce_softc *)arg1;
5922                 bce_dump_driver_state(sc);
5923         }
5924 
5925         return error;
5926 }
5927 
5928 
5929 /****************************************************************************/
5930 /* Allows the hardware state to be dumped through the sysctl interface.     */
5931 /*                                                                          */
5932 /* Returns:                                                                 */
5933 /*   0 for success, positive value for failure.                             */
5934 /****************************************************************************/
5935 static int
5936 bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS)
5937 {
5938         int error;
5939         int result;
5940         struct bce_softc *sc;
5941 
5942         result = -1;
5943         error = sysctl_handle_int(oidp, &result, 0, req);
5944 
5945         if (error || !req->newptr)
5946                 return (error);
5947 
5948         if (result == 1) {
5949                 sc = (struct bce_softc *)arg1;
5950                 bce_dump_hw_state(sc);
5951         }
5952 
5953         return error;
5954 }
5955 
5956 
5957 /****************************************************************************/
5958 /* Provides a sysctl interface to allows dumping the RX chain.              */
5959 /*                                                                          */
5960 /* Returns:                                                                 */
5961 /*   0 for success, positive value for failure.                             */
5962 /****************************************************************************/
5963 static int
5964 bce_sysctl_dump_rx_chain(SYSCTL_HANDLER_ARGS)
5965 {
5966         int error;
5967         int result;
5968         struct bce_softc *sc;
5969 
5970         result = -1;
5971         error = sysctl_handle_int(oidp, &result, 0, req);
5972 
5973         if (error || !req->newptr)
5974                 return (error);
5975 
5976         if (result == 1) {
5977                 sc = (struct bce_softc *)arg1;
5978                 bce_dump_rx_chain(sc, 0, USABLE_RX_BD);
5979         }
5980 
5981         return error;
5982 }
5983 
5984 
5985 /****************************************************************************/
5986 /* Provides a sysctl interface to allows dumping the TX chain.              */
5987 /*                                                                          */
5988 /* Returns:                                                                 */
5989 /*   0 for success, positive value for failure.                             */
5990 /****************************************************************************/
5991 static int
5992 bce_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS)
5993 {
5994         int error;
5995         int result;
5996         struct bce_softc *sc;
5997 
5998         result = -1;
5999         error = sysctl_handle_int(oidp, &result, 0, req);
6000 
6001         if (error || !req->newptr)
6002                 return (error);
6003 
6004         if (result == 1) {
6005                 sc = (struct bce_softc *)arg1;
6006                 bce_dump_tx_chain(sc, 0, USABLE_TX_BD);
6007         }
6008 
6009         return error;
6010 }
6011 
6012 
6013 /****************************************************************************/
6014 /* Provides a sysctl interface to allow reading arbitrary registers in the  */
6015 /* device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                            */
6016 /*                                                                          */
6017 /* Returns:                                                                 */
6018 /*   0 for success, positive value for failure.                             */
6019 /****************************************************************************/
6020 static int
6021 bce_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
6022 {
6023 	struct bce_softc *sc;
6024 	int error;
6025 	uint32_t val, result;
6026 
6027 	result = -1;
6028 	error = sysctl_handle_int(oidp, &result, 0, req);
6029 	if (error || (req->newptr == NULL))
6030 		return (error);
6031 
6032 	/* Make sure the register is accessible. */
6033 	if (result < 0x8000) {
6034 		sc = (struct bce_softc *)arg1;
6035 		val = REG_RD(sc, result);
6036 		if_printf(&sc->arpcom.ac_if, "reg 0x%08X = 0x%08X\n",
6037 			  result, val);
6038 	} else if (result < 0x0280000) {
6039 		sc = (struct bce_softc *)arg1;
6040 		val = REG_RD_IND(sc, result);
6041 		if_printf(&sc->arpcom.ac_if, "reg 0x%08X = 0x%08X\n",
6042 			  result, val);
6043 	}
6044 	return (error);
6045 }
6046 
6047 
6048 /****************************************************************************/
6049 /* Provides a sysctl interface to allow reading arbitrary PHY registers in  */
6050 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
6051 /*                                                                          */
6052 /* Returns:                                                                 */
6053 /*   0 for success, positive value for failure.                             */
6054 /****************************************************************************/
6055 static int
6056 bce_sysctl_phy_read(SYSCTL_HANDLER_ARGS)
6057 {
6058 	struct bce_softc *sc;
6059 	device_t dev;
6060 	int error, result;
6061 	uint16_t val;
6062 
6063 	result = -1;
6064 	error = sysctl_handle_int(oidp, &result, 0, req);
6065 	if (error || (req->newptr == NULL))
6066 		return (error);
6067 
6068 	/* Make sure the register is accessible. */
6069 	if (result < 0x20) {
6070 		sc = (struct bce_softc *)arg1;
6071 		dev = sc->bce_dev;
6072 		val = bce_miibus_read_reg(dev, sc->bce_phy_addr, result);
6073 		if_printf(&sc->arpcom.ac_if,
6074 			  "phy 0x%02X = 0x%04X\n", result, val);
6075 	}
6076 	return (error);
6077 }
6078 
6079 
6080 /****************************************************************************/
6081 /* Provides a sysctl interface to forcing the driver to dump state and      */
6082 /* enter the debugger.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                */
6083 /*                                                                          */
6084 /* Returns:                                                                 */
6085 /*   0 for success, positive value for failure.                             */
6086 /****************************************************************************/
6087 static int
6088 bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS)
6089 {
6090         int error;
6091         int result;
6092         struct bce_softc *sc;
6093 
6094         result = -1;
6095         error = sysctl_handle_int(oidp, &result, 0, req);
6096 
6097         if (error || !req->newptr)
6098                 return (error);
6099 
6100         if (result == 1) {
6101                 sc = (struct bce_softc *)arg1;
6102                 bce_breakpoint(sc);
6103         }
6104 
6105         return error;
6106 }
6107 #endif
6108 
6109 
6110 /****************************************************************************/
6111 /* Adds any sysctl parameters for tuning or debugging purposes.             */
6112 /*                                                                          */
6113 /* Returns:                                                                 */
6114 /*   0 for success, positive value for failure.                             */
6115 /****************************************************************************/
6116 static void
6117 bce_add_sysctls(struct bce_softc *sc)
6118 {
6119 	struct sysctl_ctx_list *ctx;
6120 	struct sysctl_oid_list *children;
6121 
6122 	sysctl_ctx_init(&sc->bce_sysctl_ctx);
6123 	sc->bce_sysctl_tree = SYSCTL_ADD_NODE(&sc->bce_sysctl_ctx,
6124 					      SYSCTL_STATIC_CHILDREN(_hw),
6125 					      OID_AUTO,
6126 					      device_get_nameunit(sc->bce_dev),
6127 					      CTLFLAG_RD, 0, "");
6128 	if (sc->bce_sysctl_tree == NULL) {
6129 		device_printf(sc->bce_dev, "can't add sysctl node\n");
6130 		return;
6131 	}
6132 
6133 	ctx = &sc->bce_sysctl_ctx;
6134 	children = SYSCTL_CHILDREN(sc->bce_sysctl_tree);
6135 
6136 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_bds_int",
6137 			CTLTYPE_INT | CTLFLAG_RW,
6138 			sc, 0, bce_sysctl_tx_bds_int, "I",
6139 			"Send max coalesced BD count during interrupt");
6140 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_bds",
6141 			CTLTYPE_INT | CTLFLAG_RW,
6142 			sc, 0, bce_sysctl_tx_bds, "I",
6143 			"Send max coalesced BD count");
6144 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_ticks_int",
6145 			CTLTYPE_INT | CTLFLAG_RW,
6146 			sc, 0, bce_sysctl_tx_ticks_int, "I",
6147 			"Send coalescing ticks during interrupt");
6148 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_ticks",
6149 			CTLTYPE_INT | CTLFLAG_RW,
6150 			sc, 0, bce_sysctl_tx_ticks, "I",
6151 			"Send coalescing ticks");
6152 
6153 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_bds_int",
6154 			CTLTYPE_INT | CTLFLAG_RW,
6155 			sc, 0, bce_sysctl_rx_bds_int, "I",
6156 			"Receive max coalesced BD count during interrupt");
6157 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_bds",
6158 			CTLTYPE_INT | CTLFLAG_RW,
6159 			sc, 0, bce_sysctl_rx_bds, "I",
6160 			"Receive max coalesced BD count");
6161 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_ticks_int",
6162 			CTLTYPE_INT | CTLFLAG_RW,
6163 			sc, 0, bce_sysctl_rx_ticks_int, "I",
6164 			"Receive coalescing ticks during interrupt");
6165 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_ticks",
6166 			CTLTYPE_INT | CTLFLAG_RW,
6167 			sc, 0, bce_sysctl_rx_ticks, "I",
6168 			"Receive coalescing ticks");
6169 
6170 #ifdef BCE_DEBUG
6171 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
6172 		"rx_low_watermark",
6173 		CTLFLAG_RD, &sc->rx_low_watermark,
6174 		0, "Lowest level of free rx_bd's");
6175 
6176 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
6177 		"rx_empty_count",
6178 		CTLFLAG_RD, &sc->rx_empty_count,
6179 		0, "Number of times the RX chain was empty");
6180 
6181 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
6182 		"tx_hi_watermark",
6183 		CTLFLAG_RD, &sc->tx_hi_watermark,
6184 		0, "Highest level of used tx_bd's");
6185 
6186 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
6187 		"tx_full_count",
6188 		CTLFLAG_RD, &sc->tx_full_count,
6189 		0, "Number of times the TX chain was full");
6190 
6191 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
6192 		"l2fhdr_status_errors",
6193 		CTLFLAG_RD, &sc->l2fhdr_status_errors,
6194 		0, "l2_fhdr status errors");
6195 
6196 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
6197 		"unexpected_attentions",
6198 		CTLFLAG_RD, &sc->unexpected_attentions,
6199 		0, "unexpected attentions");
6200 
6201 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
6202 		"lost_status_block_updates",
6203 		CTLFLAG_RD, &sc->lost_status_block_updates,
6204 		0, "lost status block updates");
6205 
6206 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
6207 		"mbuf_alloc_failed",
6208 		CTLFLAG_RD, &sc->mbuf_alloc_failed,
6209 		0, "mbuf cluster allocation failures");
6210 #endif
6211 
6212 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
6213 		"stat_IfHCInOctets",
6214 		CTLFLAG_RD, &sc->stat_IfHCInOctets,
6215 		"Bytes received");
6216 
6217 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
6218 		"stat_IfHCInBadOctets",
6219 		CTLFLAG_RD, &sc->stat_IfHCInBadOctets,
6220 		"Bad bytes received");
6221 
6222 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
6223 		"stat_IfHCOutOctets",
6224 		CTLFLAG_RD, &sc->stat_IfHCOutOctets,
6225 		"Bytes sent");
6226 
6227 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
6228 		"stat_IfHCOutBadOctets",
6229 		CTLFLAG_RD, &sc->stat_IfHCOutBadOctets,
6230 		"Bad bytes sent");
6231 
6232 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
6233 		"stat_IfHCInUcastPkts",
6234 		CTLFLAG_RD, &sc->stat_IfHCInUcastPkts,
6235 		"Unicast packets received");
6236 
6237 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
6238 		"stat_IfHCInMulticastPkts",
6239 		CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts,
6240 		"Multicast packets received");
6241 
6242 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
6243 		"stat_IfHCInBroadcastPkts",
6244 		CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts,
6245 		"Broadcast packets received");
6246 
6247 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
6248 		"stat_IfHCOutUcastPkts",
6249 		CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts,
6250 		"Unicast packets sent");
6251 
6252 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
6253 		"stat_IfHCOutMulticastPkts",
6254 		CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts,
6255 		"Multicast packets sent");
6256 
6257 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
6258 		"stat_IfHCOutBroadcastPkts",
6259 		CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts,
6260 		"Broadcast packets sent");
6261 
6262 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6263 		"stat_emac_tx_stat_dot3statsinternalmactransmiterrors",
6264 		CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors,
6265 		0, "Internal MAC transmit errors");
6266 
6267 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6268 		"stat_Dot3StatsCarrierSenseErrors",
6269 		CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors,
6270 		0, "Carrier sense errors");
6271 
6272 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6273 		"stat_Dot3StatsFCSErrors",
6274 		CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors,
6275 		0, "Frame check sequence errors");
6276 
6277 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6278 		"stat_Dot3StatsAlignmentErrors",
6279 		CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors,
6280 		0, "Alignment errors");
6281 
6282 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6283 		"stat_Dot3StatsSingleCollisionFrames",
6284 		CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames,
6285 		0, "Single Collision Frames");
6286 
6287 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6288 		"stat_Dot3StatsMultipleCollisionFrames",
6289 		CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames,
6290 		0, "Multiple Collision Frames");
6291 
6292 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6293 		"stat_Dot3StatsDeferredTransmissions",
6294 		CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions,
6295 		0, "Deferred Transmissions");
6296 
6297 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6298 		"stat_Dot3StatsExcessiveCollisions",
6299 		CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions,
6300 		0, "Excessive Collisions");
6301 
6302 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6303 		"stat_Dot3StatsLateCollisions",
6304 		CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions,
6305 		0, "Late Collisions");
6306 
6307 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6308 		"stat_EtherStatsCollisions",
6309 		CTLFLAG_RD, &sc->stat_EtherStatsCollisions,
6310 		0, "Collisions");
6311 
6312 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6313 		"stat_EtherStatsFragments",
6314 		CTLFLAG_RD, &sc->stat_EtherStatsFragments,
6315 		0, "Fragments");
6316 
6317 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6318 		"stat_EtherStatsJabbers",
6319 		CTLFLAG_RD, &sc->stat_EtherStatsJabbers,
6320 		0, "Jabbers");
6321 
6322 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6323 		"stat_EtherStatsUndersizePkts",
6324 		CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts,
6325 		0, "Undersize packets");
6326 
6327 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6328 		"stat_EtherStatsOverrsizePkts",
6329 		CTLFLAG_RD, &sc->stat_EtherStatsOverrsizePkts,
6330 		0, "stat_EtherStatsOverrsizePkts");
6331 
6332 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6333 		"stat_EtherStatsPktsRx64Octets",
6334 		CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets,
6335 		0, "Bytes received in 64 byte packets");
6336 
6337 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6338 		"stat_EtherStatsPktsRx65Octetsto127Octets",
6339 		CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets,
6340 		0, "Bytes received in 65 to 127 byte packets");
6341 
6342 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6343 		"stat_EtherStatsPktsRx128Octetsto255Octets",
6344 		CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets,
6345 		0, "Bytes received in 128 to 255 byte packets");
6346 
6347 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6348 		"stat_EtherStatsPktsRx256Octetsto511Octets",
6349 		CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets,
6350 		0, "Bytes received in 256 to 511 byte packets");
6351 
6352 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6353 		"stat_EtherStatsPktsRx512Octetsto1023Octets",
6354 		CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets,
6355 		0, "Bytes received in 512 to 1023 byte packets");
6356 
6357 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6358 		"stat_EtherStatsPktsRx1024Octetsto1522Octets",
6359 		CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets,
6360 		0, "Bytes received in 1024 t0 1522 byte packets");
6361 
6362 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6363 		"stat_EtherStatsPktsRx1523Octetsto9022Octets",
6364 		CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets,
6365 		0, "Bytes received in 1523 to 9022 byte packets");
6366 
6367 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6368 		"stat_EtherStatsPktsTx64Octets",
6369 		CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets,
6370 		0, "Bytes sent in 64 byte packets");
6371 
6372 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6373 		"stat_EtherStatsPktsTx65Octetsto127Octets",
6374 		CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets,
6375 		0, "Bytes sent in 65 to 127 byte packets");
6376 
6377 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6378 		"stat_EtherStatsPktsTx128Octetsto255Octets",
6379 		CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets,
6380 		0, "Bytes sent in 128 to 255 byte packets");
6381 
6382 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6383 		"stat_EtherStatsPktsTx256Octetsto511Octets",
6384 		CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets,
6385 		0, "Bytes sent in 256 to 511 byte packets");
6386 
6387 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6388 		"stat_EtherStatsPktsTx512Octetsto1023Octets",
6389 		CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets,
6390 		0, "Bytes sent in 512 to 1023 byte packets");
6391 
6392 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6393 		"stat_EtherStatsPktsTx1024Octetsto1522Octets",
6394 		CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets,
6395 		0, "Bytes sent in 1024 to 1522 byte packets");
6396 
6397 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6398 		"stat_EtherStatsPktsTx1523Octetsto9022Octets",
6399 		CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets,
6400 		0, "Bytes sent in 1523 to 9022 byte packets");
6401 
6402 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6403 		"stat_XonPauseFramesReceived",
6404 		CTLFLAG_RD, &sc->stat_XonPauseFramesReceived,
6405 		0, "XON pause frames receved");
6406 
6407 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6408 		"stat_XoffPauseFramesReceived",
6409 		CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived,
6410 		0, "XOFF pause frames received");
6411 
6412 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6413 		"stat_OutXonSent",
6414 		CTLFLAG_RD, &sc->stat_OutXonSent,
6415 		0, "XON pause frames sent");
6416 
6417 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6418 		"stat_OutXoffSent",
6419 		CTLFLAG_RD, &sc->stat_OutXoffSent,
6420 		0, "XOFF pause frames sent");
6421 
6422 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6423 		"stat_FlowControlDone",
6424 		CTLFLAG_RD, &sc->stat_FlowControlDone,
6425 		0, "Flow control done");
6426 
6427 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6428 		"stat_MacControlFramesReceived",
6429 		CTLFLAG_RD, &sc->stat_MacControlFramesReceived,
6430 		0, "MAC control frames received");
6431 
6432 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6433 		"stat_XoffStateEntered",
6434 		CTLFLAG_RD, &sc->stat_XoffStateEntered,
6435 		0, "XOFF state entered");
6436 
6437 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6438 		"stat_IfInFramesL2FilterDiscards",
6439 		CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards,
6440 		0, "Received L2 packets discarded");
6441 
6442 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6443 		"stat_IfInRuleCheckerDiscards",
6444 		CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards,
6445 		0, "Received packets discarded by rule");
6446 
6447 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6448 		"stat_IfInFTQDiscards",
6449 		CTLFLAG_RD, &sc->stat_IfInFTQDiscards,
6450 		0, "Received packet FTQ discards");
6451 
6452 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6453 		"stat_IfInMBUFDiscards",
6454 		CTLFLAG_RD, &sc->stat_IfInMBUFDiscards,
6455 		0, "Received packets discarded due to lack of controller buffer memory");
6456 
6457 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6458 		"stat_IfInRuleCheckerP4Hit",
6459 		CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit,
6460 		0, "Received packets rule checker hits");
6461 
6462 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6463 		"stat_CatchupInRuleCheckerDiscards",
6464 		CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards,
6465 		0, "Received packets discarded in Catchup path");
6466 
6467 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6468 		"stat_CatchupInFTQDiscards",
6469 		CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards,
6470 		0, "Received packets discarded in FTQ in Catchup path");
6471 
6472 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6473 		"stat_CatchupInMBUFDiscards",
6474 		CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards,
6475 		0, "Received packets discarded in controller buffer memory in Catchup path");
6476 
6477 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6478 		"stat_CatchupInRuleCheckerP4Hit",
6479 		CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit,
6480 		0, "Received packets rule checker hits in Catchup path");
6481 
6482 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6483 		"com_no_buffers",
6484 		CTLFLAG_RD, &sc->com_no_buffers,
6485 		0, "Valid packets received but no RX buffers available");
6486 
6487 #ifdef BCE_DEBUG
6488 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
6489 		"driver_state", CTLTYPE_INT | CTLFLAG_RW,
6490 		(void *)sc, 0,
6491 		bce_sysctl_driver_state, "I", "Drive state information");
6492 
6493 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
6494 		"hw_state", CTLTYPE_INT | CTLFLAG_RW,
6495 		(void *)sc, 0,
6496 		bce_sysctl_hw_state, "I", "Hardware state information");
6497 
6498 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
6499 		"dump_rx_chain", CTLTYPE_INT | CTLFLAG_RW,
6500 		(void *)sc, 0,
6501 		bce_sysctl_dump_rx_chain, "I", "Dump rx_bd chain");
6502 
6503 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
6504 		"dump_tx_chain", CTLTYPE_INT | CTLFLAG_RW,
6505 		(void *)sc, 0,
6506 		bce_sysctl_dump_tx_chain, "I", "Dump tx_bd chain");
6507 
6508 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
6509 		"breakpoint", CTLTYPE_INT | CTLFLAG_RW,
6510 		(void *)sc, 0,
6511 		bce_sysctl_breakpoint, "I", "Driver breakpoint");
6512 
6513 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
6514 		"reg_read", CTLTYPE_INT | CTLFLAG_RW,
6515 		(void *)sc, 0,
6516 		bce_sysctl_reg_read, "I", "Register read");
6517 
6518 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
6519 		"phy_read", CTLTYPE_INT | CTLFLAG_RW,
6520 		(void *)sc, 0,
6521 		bce_sysctl_phy_read, "I", "PHY register read");
6522 
6523 #endif
6524 
6525 }
6526 
6527 
6528 /****************************************************************************/
6529 /* BCE Debug Routines                                                       */
6530 /****************************************************************************/
6531 #ifdef BCE_DEBUG
6532 
6533 /****************************************************************************/
6534 /* Freezes the controller to allow for a cohesive state dump.               */
6535 /*                                                                          */
6536 /* Returns:                                                                 */
6537 /*   Nothing.                                                               */
6538 /****************************************************************************/
6539 static void
6540 bce_freeze_controller(struct bce_softc *sc)
6541 {
6542 	uint32_t val;
6543 
6544 	val = REG_RD(sc, BCE_MISC_COMMAND);
6545 	val |= BCE_MISC_COMMAND_DISABLE_ALL;
6546 	REG_WR(sc, BCE_MISC_COMMAND, val);
6547 }
6548 
6549 
6550 /****************************************************************************/
6551 /* Unfreezes the controller after a freeze operation.  This may not always  */
6552 /* work and the controller will require a reset!                            */
6553 /*                                                                          */
6554 /* Returns:                                                                 */
6555 /*   Nothing.                                                               */
6556 /****************************************************************************/
6557 static void
6558 bce_unfreeze_controller(struct bce_softc *sc)
6559 {
6560 	uint32_t val;
6561 
6562 	val = REG_RD(sc, BCE_MISC_COMMAND);
6563 	val |= BCE_MISC_COMMAND_ENABLE_ALL;
6564 	REG_WR(sc, BCE_MISC_COMMAND, val);
6565 }
6566 
6567 
6568 /****************************************************************************/
6569 /* Prints out information about an mbuf.                                    */
6570 /*                                                                          */
6571 /* Returns:                                                                 */
6572 /*   Nothing.                                                               */
6573 /****************************************************************************/
6574 static void
6575 bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m)
6576 {
6577 	struct ifnet *ifp = &sc->arpcom.ac_if;
6578 	uint32_t val_hi, val_lo;
6579 	struct mbuf *mp = m;
6580 
6581 	if (m == NULL) {
6582 		/* Index out of range. */
6583 		if_printf(ifp, "mbuf: null pointer\n");
6584 		return;
6585 	}
6586 
6587 	while (mp) {
6588 		val_hi = BCE_ADDR_HI(mp);
6589 		val_lo = BCE_ADDR_LO(mp);
6590 		if_printf(ifp, "mbuf: vaddr = 0x%08X:%08X, m_len = %d, "
6591 			  "m_flags = ( ", val_hi, val_lo, mp->m_len);
6592 
6593 		if (mp->m_flags & M_EXT)
6594 			kprintf("M_EXT ");
6595 		if (mp->m_flags & M_PKTHDR)
6596 			kprintf("M_PKTHDR ");
6597 		if (mp->m_flags & M_EOR)
6598 			kprintf("M_EOR ");
6599 #ifdef M_RDONLY
6600 		if (mp->m_flags & M_RDONLY)
6601 			kprintf("M_RDONLY ");
6602 #endif
6603 
6604 		val_hi = BCE_ADDR_HI(mp->m_data);
6605 		val_lo = BCE_ADDR_LO(mp->m_data);
6606 		kprintf(") m_data = 0x%08X:%08X\n", val_hi, val_lo);
6607 
6608 		if (mp->m_flags & M_PKTHDR) {
6609 			if_printf(ifp, "- m_pkthdr: flags = ( ");
6610 			if (mp->m_flags & M_BCAST)
6611 				kprintf("M_BCAST ");
6612 			if (mp->m_flags & M_MCAST)
6613 				kprintf("M_MCAST ");
6614 			if (mp->m_flags & M_FRAG)
6615 				kprintf("M_FRAG ");
6616 			if (mp->m_flags & M_FIRSTFRAG)
6617 				kprintf("M_FIRSTFRAG ");
6618 			if (mp->m_flags & M_LASTFRAG)
6619 				kprintf("M_LASTFRAG ");
6620 #ifdef M_VLANTAG
6621 			if (mp->m_flags & M_VLANTAG)
6622 				kprintf("M_VLANTAG ");
6623 #endif
6624 #ifdef M_PROMISC
6625 			if (mp->m_flags & M_PROMISC)
6626 				kprintf("M_PROMISC ");
6627 #endif
6628 			kprintf(") csum_flags = ( ");
6629 			if (mp->m_pkthdr.csum_flags & CSUM_IP)
6630 				kprintf("CSUM_IP ");
6631 			if (mp->m_pkthdr.csum_flags & CSUM_TCP)
6632 				kprintf("CSUM_TCP ");
6633 			if (mp->m_pkthdr.csum_flags & CSUM_UDP)
6634 				kprintf("CSUM_UDP ");
6635 			if (mp->m_pkthdr.csum_flags & CSUM_IP_FRAGS)
6636 				kprintf("CSUM_IP_FRAGS ");
6637 			if (mp->m_pkthdr.csum_flags & CSUM_FRAGMENT)
6638 				kprintf("CSUM_FRAGMENT ");
6639 #ifdef CSUM_TSO
6640 			if (mp->m_pkthdr.csum_flags & CSUM_TSO)
6641 				kprintf("CSUM_TSO ");
6642 #endif
6643 			if (mp->m_pkthdr.csum_flags & CSUM_IP_CHECKED)
6644 				kprintf("CSUM_IP_CHECKED ");
6645 			if (mp->m_pkthdr.csum_flags & CSUM_IP_VALID)
6646 				kprintf("CSUM_IP_VALID ");
6647 			if (mp->m_pkthdr.csum_flags & CSUM_DATA_VALID)
6648 				kprintf("CSUM_DATA_VALID ");
6649 			kprintf(")\n");
6650 		}
6651 
6652 		if (mp->m_flags & M_EXT) {
6653 			val_hi = BCE_ADDR_HI(mp->m_ext.ext_buf);
6654 			val_lo = BCE_ADDR_LO(mp->m_ext.ext_buf);
6655 			if_printf(ifp, "- m_ext: vaddr = 0x%08X:%08X, "
6656 				  "ext_size = %d\n",
6657 				  val_hi, val_lo, mp->m_ext.ext_size);
6658 		}
6659 		mp = mp->m_next;
6660 	}
6661 }
6662 
6663 
6664 /****************************************************************************/
6665 /* Prints out the mbufs in the TX mbuf chain.                               */
6666 /*                                                                          */
6667 /* Returns:                                                                 */
6668 /*   Nothing.                                                               */
6669 /****************************************************************************/
6670 static void
6671 bce_dump_tx_mbuf_chain(struct bce_softc *sc, int chain_prod, int count)
6672 {
6673 	struct ifnet *ifp = &sc->arpcom.ac_if;
6674 	int i;
6675 
6676 	if_printf(ifp,
6677 	"----------------------------"
6678 	"  tx mbuf data  "
6679 	"----------------------------\n");
6680 
6681 	for (i = 0; i < count; i++) {
6682 		if_printf(ifp, "txmbuf[%d]\n", chain_prod);
6683 		bce_dump_mbuf(sc, sc->tx_mbuf_ptr[chain_prod]);
6684 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
6685 	}
6686 
6687 	if_printf(ifp,
6688 	"----------------------------"
6689 	"----------------"
6690 	"----------------------------\n");
6691 }
6692 
6693 
6694 /****************************************************************************/
6695 /* Prints out the mbufs in the RX mbuf chain.                               */
6696 /*                                                                          */
6697 /* Returns:                                                                 */
6698 /*   Nothing.                                                               */
6699 /****************************************************************************/
6700 static void
6701 bce_dump_rx_mbuf_chain(struct bce_softc *sc, int chain_prod, int count)
6702 {
6703 	struct ifnet *ifp = &sc->arpcom.ac_if;
6704 	int i;
6705 
6706 	if_printf(ifp,
6707 	"----------------------------"
6708 	"  rx mbuf data  "
6709 	"----------------------------\n");
6710 
6711 	for (i = 0; i < count; i++) {
6712 		if_printf(ifp, "rxmbuf[0x%04X]\n", chain_prod);
6713 		bce_dump_mbuf(sc, sc->rx_mbuf_ptr[chain_prod]);
6714 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
6715 	}
6716 
6717 	if_printf(ifp,
6718 	"----------------------------"
6719 	"----------------"
6720 	"----------------------------\n");
6721 }
6722 
6723 
6724 /****************************************************************************/
6725 /* Prints out a tx_bd structure.                                            */
6726 /*                                                                          */
6727 /* Returns:                                                                 */
6728 /*   Nothing.                                                               */
6729 /****************************************************************************/
6730 static void
6731 bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd)
6732 {
6733 	struct ifnet *ifp = &sc->arpcom.ac_if;
6734 
6735 	if (idx > MAX_TX_BD) {
6736 		/* Index out of range. */
6737 		if_printf(ifp, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
6738 	} else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE) {
6739 		/* TX Chain page pointer. */
6740 		if_printf(ifp, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, "
6741 			  "chain page pointer\n",
6742 			  idx, txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo);
6743 	} else {
6744 		/* Normal tx_bd entry. */
6745 		if_printf(ifp, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, "
6746 			  "nbytes = 0x%08X, "
6747 			  "vlan tag= 0x%04X, flags = 0x%04X (",
6748 			  idx, txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
6749 			  txbd->tx_bd_mss_nbytes,
6750 			  txbd->tx_bd_vlan_tag, txbd->tx_bd_flags);
6751 
6752 		if (txbd->tx_bd_flags & TX_BD_FLAGS_CONN_FAULT)
6753 			kprintf(" CONN_FAULT");
6754 
6755 		if (txbd->tx_bd_flags & TX_BD_FLAGS_TCP_UDP_CKSUM)
6756 			kprintf(" TCP_UDP_CKSUM");
6757 
6758 		if (txbd->tx_bd_flags & TX_BD_FLAGS_IP_CKSUM)
6759 			kprintf(" IP_CKSUM");
6760 
6761 		if (txbd->tx_bd_flags & TX_BD_FLAGS_VLAN_TAG)
6762 			kprintf("  VLAN");
6763 
6764 		if (txbd->tx_bd_flags & TX_BD_FLAGS_COAL_NOW)
6765 			kprintf(" COAL_NOW");
6766 
6767 		if (txbd->tx_bd_flags & TX_BD_FLAGS_DONT_GEN_CRC)
6768 			kprintf(" DONT_GEN_CRC");
6769 
6770 		if (txbd->tx_bd_flags & TX_BD_FLAGS_START)
6771 			kprintf(" START");
6772 
6773 		if (txbd->tx_bd_flags & TX_BD_FLAGS_END)
6774 			kprintf(" END");
6775 
6776 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_LSO)
6777 			kprintf(" LSO");
6778 
6779 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_OPTION_WORD)
6780 			kprintf(" OPTION_WORD");
6781 
6782 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_FLAGS)
6783 			kprintf(" FLAGS");
6784 
6785 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_SNAP)
6786 			kprintf(" SNAP");
6787 
6788 		kprintf(" )\n");
6789 	}
6790 }
6791 
6792 
6793 /****************************************************************************/
6794 /* Prints out a rx_bd structure.                                            */
6795 /*                                                                          */
6796 /* Returns:                                                                 */
6797 /*   Nothing.                                                               */
6798 /****************************************************************************/
6799 static void
6800 bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd)
6801 {
6802 	struct ifnet *ifp = &sc->arpcom.ac_if;
6803 
6804 	if (idx > MAX_RX_BD) {
6805 		/* Index out of range. */
6806 		if_printf(ifp, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
6807 	} else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE) {
6808 		/* TX Chain page pointer. */
6809 		if_printf(ifp, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, "
6810 			  "chain page pointer\n",
6811 			  idx, rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo);
6812 	} else {
6813 		/* Normal tx_bd entry. */
6814 		if_printf(ifp, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, "
6815 			  "nbytes = 0x%08X, flags = 0x%08X\n",
6816 			  idx, rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
6817 			  rxbd->rx_bd_len, rxbd->rx_bd_flags);
6818 	}
6819 }
6820 
6821 
6822 /****************************************************************************/
6823 /* Prints out a l2_fhdr structure.                                          */
6824 /*                                                                          */
6825 /* Returns:                                                                 */
6826 /*   Nothing.                                                               */
6827 /****************************************************************************/
6828 static void
6829 bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr)
6830 {
6831 	if_printf(&sc->arpcom.ac_if, "l2_fhdr[0x%04X]: status = 0x%08X, "
6832 		  "pkt_len = 0x%04X, vlan = 0x%04x, "
6833 		  "ip_xsum = 0x%04X, tcp_udp_xsum = 0x%04X\n",
6834 		  idx, l2fhdr->l2_fhdr_status,
6835 		  l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag,
6836 		  l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum);
6837 }
6838 
6839 
6840 /****************************************************************************/
6841 /* Prints out the tx chain.                                                 */
6842 /*                                                                          */
6843 /* Returns:                                                                 */
6844 /*   Nothing.                                                               */
6845 /****************************************************************************/
6846 static void
6847 bce_dump_tx_chain(struct bce_softc *sc, int tx_prod, int count)
6848 {
6849 	struct ifnet *ifp = &sc->arpcom.ac_if;
6850 	int i;
6851 
6852 	/* First some info about the tx_bd chain structure. */
6853 	if_printf(ifp,
6854 	"----------------------------"
6855 	"  tx_bd  chain  "
6856 	"----------------------------\n");
6857 
6858 	if_printf(ifp, "page size      = 0x%08X, "
6859 		  "tx chain pages        = 0x%08X\n",
6860 		  (uint32_t)BCM_PAGE_SIZE, (uint32_t)TX_PAGES);
6861 
6862 	if_printf(ifp, "tx_bd per page = 0x%08X, "
6863 		  "usable tx_bd per page = 0x%08X\n",
6864 		  (uint32_t)TOTAL_TX_BD_PER_PAGE,
6865 		  (uint32_t)USABLE_TX_BD_PER_PAGE);
6866 
6867 	if_printf(ifp, "total tx_bd    = 0x%08X\n", (uint32_t)TOTAL_TX_BD);
6868 
6869 	if_printf(ifp,
6870 	"----------------------------"
6871 	"  tx_bd data    "
6872 	"----------------------------\n");
6873 
6874 	/* Now print out the tx_bd's themselves. */
6875 	for (i = 0; i < count; i++) {
6876 		struct tx_bd *txbd;
6877 
6878 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
6879 		bce_dump_txbd(sc, tx_prod, txbd);
6880 		tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
6881 	}
6882 
6883 	if_printf(ifp,
6884 	"----------------------------"
6885 	"----------------"
6886 	"----------------------------\n");
6887 }
6888 
6889 
6890 /****************************************************************************/
6891 /* Prints out the rx chain.                                                 */
6892 /*                                                                          */
6893 /* Returns:                                                                 */
6894 /*   Nothing.                                                               */
6895 /****************************************************************************/
6896 static void
6897 bce_dump_rx_chain(struct bce_softc *sc, int rx_prod, int count)
6898 {
6899 	struct ifnet *ifp = &sc->arpcom.ac_if;
6900 	int i;
6901 
6902 	/* First some info about the tx_bd chain structure. */
6903 	if_printf(ifp,
6904 	"----------------------------"
6905 	"  rx_bd  chain  "
6906 	"----------------------------\n");
6907 
6908 	if_printf(ifp, "page size      = 0x%08X, "
6909 		  "rx chain pages        = 0x%08X\n",
6910 		  (uint32_t)BCM_PAGE_SIZE, (uint32_t)RX_PAGES);
6911 
6912 	if_printf(ifp, "rx_bd per page = 0x%08X, "
6913 		  "usable rx_bd per page = 0x%08X\n",
6914 		  (uint32_t)TOTAL_RX_BD_PER_PAGE,
6915 		  (uint32_t)USABLE_RX_BD_PER_PAGE);
6916 
6917 	if_printf(ifp, "total rx_bd    = 0x%08X\n", (uint32_t)TOTAL_RX_BD);
6918 
6919 	if_printf(ifp,
6920 	"----------------------------"
6921 	"   rx_bd data   "
6922 	"----------------------------\n");
6923 
6924 	/* Now print out the rx_bd's themselves. */
6925 	for (i = 0; i < count; i++) {
6926 		struct rx_bd *rxbd;
6927 
6928 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
6929 		bce_dump_rxbd(sc, rx_prod, rxbd);
6930 		rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
6931 	}
6932 
6933 	if_printf(ifp,
6934 	"----------------------------"
6935 	"----------------"
6936 	"----------------------------\n");
6937 }
6938 
6939 
6940 /****************************************************************************/
6941 /* Prints out the status block from host memory.                            */
6942 /*                                                                          */
6943 /* Returns:                                                                 */
6944 /*   Nothing.                                                               */
6945 /****************************************************************************/
6946 static void
6947 bce_dump_status_block(struct bce_softc *sc)
6948 {
6949 	struct status_block *sblk = sc->status_block;
6950 	struct ifnet *ifp = &sc->arpcom.ac_if;
6951 
6952 	if_printf(ifp,
6953 	"----------------------------"
6954 	"  Status Block  "
6955 	"----------------------------\n");
6956 
6957 	if_printf(ifp, "    0x%08X - attn_bits\n", sblk->status_attn_bits);
6958 
6959 	if_printf(ifp, "    0x%08X - attn_bits_ack\n",
6960 		  sblk->status_attn_bits_ack);
6961 
6962 	if_printf(ifp, "0x%04X(0x%04X) - rx_cons0\n",
6963 	    sblk->status_rx_quick_consumer_index0,
6964 	    (uint16_t)RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index0));
6965 
6966 	if_printf(ifp, "0x%04X(0x%04X) - tx_cons0\n",
6967 	    sblk->status_tx_quick_consumer_index0,
6968 	    (uint16_t)TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index0));
6969 
6970 	if_printf(ifp, "        0x%04X - status_idx\n", sblk->status_idx);
6971 
6972 	/* Theses indices are not used for normal L2 drivers. */
6973 	if (sblk->status_rx_quick_consumer_index1) {
6974 		if_printf(ifp, "0x%04X(0x%04X) - rx_cons1\n",
6975 		sblk->status_rx_quick_consumer_index1,
6976 		(uint16_t)RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index1));
6977 	}
6978 
6979 	if (sblk->status_tx_quick_consumer_index1) {
6980 		if_printf(ifp, "0x%04X(0x%04X) - tx_cons1\n",
6981 		sblk->status_tx_quick_consumer_index1,
6982 		(uint16_t)TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index1));
6983 	}
6984 
6985 	if (sblk->status_rx_quick_consumer_index2) {
6986 		if_printf(ifp, "0x%04X(0x%04X)- rx_cons2\n",
6987 		sblk->status_rx_quick_consumer_index2,
6988 		(uint16_t)RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index2));
6989 	}
6990 
6991 	if (sblk->status_tx_quick_consumer_index2) {
6992 		if_printf(ifp, "0x%04X(0x%04X) - tx_cons2\n",
6993 		sblk->status_tx_quick_consumer_index2,
6994 		(uint16_t)TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index2));
6995 	}
6996 
6997 	if (sblk->status_rx_quick_consumer_index3) {
6998 		if_printf(ifp, "0x%04X(0x%04X) - rx_cons3\n",
6999 		sblk->status_rx_quick_consumer_index3,
7000 		(uint16_t)RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index3));
7001 	}
7002 
7003 	if (sblk->status_tx_quick_consumer_index3) {
7004 		if_printf(ifp, "0x%04X(0x%04X) - tx_cons3\n",
7005 		sblk->status_tx_quick_consumer_index3,
7006 		(uint16_t)TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index3));
7007 	}
7008 
7009 	if (sblk->status_rx_quick_consumer_index4 ||
7010 	    sblk->status_rx_quick_consumer_index5) {
7011 		if_printf(ifp, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
7012 			  sblk->status_rx_quick_consumer_index4,
7013 			  sblk->status_rx_quick_consumer_index5);
7014 	}
7015 
7016 	if (sblk->status_rx_quick_consumer_index6 ||
7017 	    sblk->status_rx_quick_consumer_index7) {
7018 		if_printf(ifp, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
7019 			  sblk->status_rx_quick_consumer_index6,
7020 			  sblk->status_rx_quick_consumer_index7);
7021 	}
7022 
7023 	if (sblk->status_rx_quick_consumer_index8 ||
7024 	    sblk->status_rx_quick_consumer_index9) {
7025 		if_printf(ifp, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
7026 			  sblk->status_rx_quick_consumer_index8,
7027 			  sblk->status_rx_quick_consumer_index9);
7028 	}
7029 
7030 	if (sblk->status_rx_quick_consumer_index10 ||
7031 	    sblk->status_rx_quick_consumer_index11) {
7032 		if_printf(ifp, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
7033 			  sblk->status_rx_quick_consumer_index10,
7034 			  sblk->status_rx_quick_consumer_index11);
7035 	}
7036 
7037 	if (sblk->status_rx_quick_consumer_index12 ||
7038 	    sblk->status_rx_quick_consumer_index13) {
7039 		if_printf(ifp, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
7040 			  sblk->status_rx_quick_consumer_index12,
7041 			  sblk->status_rx_quick_consumer_index13);
7042 	}
7043 
7044 	if (sblk->status_rx_quick_consumer_index14 ||
7045 	    sblk->status_rx_quick_consumer_index15) {
7046 		if_printf(ifp, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
7047 			  sblk->status_rx_quick_consumer_index14,
7048 			  sblk->status_rx_quick_consumer_index15);
7049 	}
7050 
7051 	if (sblk->status_completion_producer_index ||
7052 	    sblk->status_cmd_consumer_index) {
7053 		if_printf(ifp, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
7054 			  sblk->status_completion_producer_index,
7055 			  sblk->status_cmd_consumer_index);
7056 	}
7057 
7058 	if_printf(ifp,
7059 	"----------------------------"
7060 	"----------------"
7061 	"----------------------------\n");
7062 }
7063 
7064 
7065 /****************************************************************************/
7066 /* Prints out the statistics block.                                         */
7067 /*                                                                          */
7068 /* Returns:                                                                 */
7069 /*   Nothing.                                                               */
7070 /****************************************************************************/
7071 static void
7072 bce_dump_stats_block(struct bce_softc *sc)
7073 {
7074 	struct statistics_block *sblk = sc->stats_block;
7075 	struct ifnet *ifp = &sc->arpcom.ac_if;
7076 
7077 	if_printf(ifp,
7078 	"---------------"
7079 	" Stats Block  (All Stats Not Shown Are 0) "
7080 	"---------------\n");
7081 
7082 	if (sblk->stat_IfHCInOctets_hi || sblk->stat_IfHCInOctets_lo) {
7083 		if_printf(ifp, "0x%08X:%08X : IfHcInOctets\n",
7084 			  sblk->stat_IfHCInOctets_hi,
7085 			  sblk->stat_IfHCInOctets_lo);
7086 	}
7087 
7088 	if (sblk->stat_IfHCInBadOctets_hi || sblk->stat_IfHCInBadOctets_lo) {
7089 		if_printf(ifp, "0x%08X:%08X : IfHcInBadOctets\n",
7090 			  sblk->stat_IfHCInBadOctets_hi,
7091 			  sblk->stat_IfHCInBadOctets_lo);
7092 	}
7093 
7094 	if (sblk->stat_IfHCOutOctets_hi || sblk->stat_IfHCOutOctets_lo) {
7095 		if_printf(ifp, "0x%08X:%08X : IfHcOutOctets\n",
7096 			  sblk->stat_IfHCOutOctets_hi,
7097 			  sblk->stat_IfHCOutOctets_lo);
7098 	}
7099 
7100 	if (sblk->stat_IfHCOutBadOctets_hi || sblk->stat_IfHCOutBadOctets_lo) {
7101 		if_printf(ifp, "0x%08X:%08X : IfHcOutBadOctets\n",
7102 			  sblk->stat_IfHCOutBadOctets_hi,
7103 			  sblk->stat_IfHCOutBadOctets_lo);
7104 	}
7105 
7106 	if (sblk->stat_IfHCInUcastPkts_hi || sblk->stat_IfHCInUcastPkts_lo) {
7107 		if_printf(ifp, "0x%08X:%08X : IfHcInUcastPkts\n",
7108 			  sblk->stat_IfHCInUcastPkts_hi,
7109 			  sblk->stat_IfHCInUcastPkts_lo);
7110 	}
7111 
7112 	if (sblk->stat_IfHCInBroadcastPkts_hi ||
7113 	    sblk->stat_IfHCInBroadcastPkts_lo) {
7114 		if_printf(ifp, "0x%08X:%08X : IfHcInBroadcastPkts\n",
7115 			  sblk->stat_IfHCInBroadcastPkts_hi,
7116 			  sblk->stat_IfHCInBroadcastPkts_lo);
7117 	}
7118 
7119 	if (sblk->stat_IfHCInMulticastPkts_hi ||
7120 	    sblk->stat_IfHCInMulticastPkts_lo) {
7121 		if_printf(ifp, "0x%08X:%08X : IfHcInMulticastPkts\n",
7122 			  sblk->stat_IfHCInMulticastPkts_hi,
7123 			  sblk->stat_IfHCInMulticastPkts_lo);
7124 	}
7125 
7126 	if (sblk->stat_IfHCOutUcastPkts_hi || sblk->stat_IfHCOutUcastPkts_lo) {
7127 		if_printf(ifp, "0x%08X:%08X : IfHcOutUcastPkts\n",
7128 			  sblk->stat_IfHCOutUcastPkts_hi,
7129 			  sblk->stat_IfHCOutUcastPkts_lo);
7130 	}
7131 
7132 	if (sblk->stat_IfHCOutBroadcastPkts_hi ||
7133 	    sblk->stat_IfHCOutBroadcastPkts_lo) {
7134 		if_printf(ifp, "0x%08X:%08X : IfHcOutBroadcastPkts\n",
7135 			  sblk->stat_IfHCOutBroadcastPkts_hi,
7136 			  sblk->stat_IfHCOutBroadcastPkts_lo);
7137 	}
7138 
7139 	if (sblk->stat_IfHCOutMulticastPkts_hi ||
7140 	    sblk->stat_IfHCOutMulticastPkts_lo) {
7141 		if_printf(ifp, "0x%08X:%08X : IfHcOutMulticastPkts\n",
7142 			  sblk->stat_IfHCOutMulticastPkts_hi,
7143 			  sblk->stat_IfHCOutMulticastPkts_lo);
7144 	}
7145 
7146 	if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors) {
7147 		if_printf(ifp, "         0x%08X : "
7148 		"emac_tx_stat_dot3statsinternalmactransmiterrors\n",
7149 		sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
7150 	}
7151 
7152 	if (sblk->stat_Dot3StatsCarrierSenseErrors) {
7153 		if_printf(ifp, "         0x%08X : "
7154 			  "Dot3StatsCarrierSenseErrors\n",
7155 			  sblk->stat_Dot3StatsCarrierSenseErrors);
7156 	}
7157 
7158 	if (sblk->stat_Dot3StatsFCSErrors) {
7159 		if_printf(ifp, "         0x%08X : Dot3StatsFCSErrors\n",
7160 			  sblk->stat_Dot3StatsFCSErrors);
7161 	}
7162 
7163 	if (sblk->stat_Dot3StatsAlignmentErrors) {
7164 		if_printf(ifp, "         0x%08X : Dot3StatsAlignmentErrors\n",
7165 			  sblk->stat_Dot3StatsAlignmentErrors);
7166 	}
7167 
7168 	if (sblk->stat_Dot3StatsSingleCollisionFrames) {
7169 		if_printf(ifp, "         0x%08X : "
7170 			  "Dot3StatsSingleCollisionFrames\n",
7171 			  sblk->stat_Dot3StatsSingleCollisionFrames);
7172 	}
7173 
7174 	if (sblk->stat_Dot3StatsMultipleCollisionFrames) {
7175 		if_printf(ifp, "         0x%08X : "
7176 			  "Dot3StatsMultipleCollisionFrames\n",
7177 			  sblk->stat_Dot3StatsMultipleCollisionFrames);
7178 	}
7179 
7180 	if (sblk->stat_Dot3StatsDeferredTransmissions) {
7181 		if_printf(ifp, "         0x%08X : "
7182 			  "Dot3StatsDeferredTransmissions\n",
7183 			  sblk->stat_Dot3StatsDeferredTransmissions);
7184 	}
7185 
7186 	if (sblk->stat_Dot3StatsExcessiveCollisions) {
7187 		if_printf(ifp, "         0x%08X : "
7188 			  "Dot3StatsExcessiveCollisions\n",
7189 			  sblk->stat_Dot3StatsExcessiveCollisions);
7190 	}
7191 
7192 	if (sblk->stat_Dot3StatsLateCollisions) {
7193 		if_printf(ifp, "         0x%08X : Dot3StatsLateCollisions\n",
7194 			  sblk->stat_Dot3StatsLateCollisions);
7195 	}
7196 
7197 	if (sblk->stat_EtherStatsCollisions) {
7198 		if_printf(ifp, "         0x%08X : EtherStatsCollisions\n",
7199 			  sblk->stat_EtherStatsCollisions);
7200 	}
7201 
7202 	if (sblk->stat_EtherStatsFragments)  {
7203 		if_printf(ifp, "         0x%08X : EtherStatsFragments\n",
7204 			  sblk->stat_EtherStatsFragments);
7205 	}
7206 
7207 	if (sblk->stat_EtherStatsJabbers) {
7208 		if_printf(ifp, "         0x%08X : EtherStatsJabbers\n",
7209 			  sblk->stat_EtherStatsJabbers);
7210 	}
7211 
7212 	if (sblk->stat_EtherStatsUndersizePkts) {
7213 		if_printf(ifp, "         0x%08X : EtherStatsUndersizePkts\n",
7214 			  sblk->stat_EtherStatsUndersizePkts);
7215 	}
7216 
7217 	if (sblk->stat_EtherStatsOverrsizePkts) {
7218 		if_printf(ifp, "         0x%08X : EtherStatsOverrsizePkts\n",
7219 			  sblk->stat_EtherStatsOverrsizePkts);
7220 	}
7221 
7222 	if (sblk->stat_EtherStatsPktsRx64Octets) {
7223 		if_printf(ifp, "         0x%08X : EtherStatsPktsRx64Octets\n",
7224 			  sblk->stat_EtherStatsPktsRx64Octets);
7225 	}
7226 
7227 	if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets) {
7228 		if_printf(ifp, "         0x%08X : "
7229 			  "EtherStatsPktsRx65Octetsto127Octets\n",
7230 			  sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
7231 	}
7232 
7233 	if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets) {
7234 		if_printf(ifp, "         0x%08X : "
7235 			  "EtherStatsPktsRx128Octetsto255Octets\n",
7236 			  sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
7237 	}
7238 
7239 	if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets) {
7240 		if_printf(ifp, "         0x%08X : "
7241 			  "EtherStatsPktsRx256Octetsto511Octets\n",
7242 			  sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
7243 	}
7244 
7245 	if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets) {
7246 		if_printf(ifp, "         0x%08X : "
7247 			  "EtherStatsPktsRx512Octetsto1023Octets\n",
7248 			  sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
7249 	}
7250 
7251 	if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets) {
7252 		if_printf(ifp, "         0x%08X : "
7253 			  "EtherStatsPktsRx1024Octetsto1522Octets\n",
7254 			  sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
7255 	}
7256 
7257 	if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets) {
7258 		if_printf(ifp, "         0x%08X : "
7259 			  "EtherStatsPktsRx1523Octetsto9022Octets\n",
7260 			  sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
7261 	}
7262 
7263 	if (sblk->stat_EtherStatsPktsTx64Octets) {
7264 		if_printf(ifp, "         0x%08X : EtherStatsPktsTx64Octets\n",
7265 			  sblk->stat_EtherStatsPktsTx64Octets);
7266 	}
7267 
7268 	if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets) {
7269 		if_printf(ifp, "         0x%08X : "
7270 			  "EtherStatsPktsTx65Octetsto127Octets\n",
7271 			  sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
7272 	}
7273 
7274 	if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets) {
7275 		if_printf(ifp, "         0x%08X : "
7276 			  "EtherStatsPktsTx128Octetsto255Octets\n",
7277 			  sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
7278 	}
7279 
7280 	if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets) {
7281 		if_printf(ifp, "         0x%08X : "
7282 			  "EtherStatsPktsTx256Octetsto511Octets\n",
7283 			  sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
7284 	}
7285 
7286 	if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets) {
7287 		if_printf(ifp, "         0x%08X : "
7288 			  "EtherStatsPktsTx512Octetsto1023Octets\n",
7289 			  sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
7290 	}
7291 
7292 	if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets) {
7293 		if_printf(ifp, "         0x%08X : "
7294 			  "EtherStatsPktsTx1024Octetsto1522Octets\n",
7295 			  sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
7296 	}
7297 
7298 	if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets) {
7299 		if_printf(ifp, "         0x%08X : "
7300 			  "EtherStatsPktsTx1523Octetsto9022Octets\n",
7301 			  sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
7302 	}
7303 
7304 	if (sblk->stat_XonPauseFramesReceived) {
7305 		if_printf(ifp, "         0x%08X : XonPauseFramesReceived\n",
7306 			  sblk->stat_XonPauseFramesReceived);
7307 	}
7308 
7309 	if (sblk->stat_XoffPauseFramesReceived) {
7310 		if_printf(ifp, "          0x%08X : XoffPauseFramesReceived\n",
7311 			  sblk->stat_XoffPauseFramesReceived);
7312 	}
7313 
7314 	if (sblk->stat_OutXonSent) {
7315 		if_printf(ifp, "         0x%08X : OutXoffSent\n",
7316 			  sblk->stat_OutXonSent);
7317 	}
7318 
7319 	if (sblk->stat_OutXoffSent) {
7320 		if_printf(ifp, "         0x%08X : OutXoffSent\n",
7321 			  sblk->stat_OutXoffSent);
7322 	}
7323 
7324 	if (sblk->stat_FlowControlDone) {
7325 		if_printf(ifp, "         0x%08X : FlowControlDone\n",
7326 			  sblk->stat_FlowControlDone);
7327 	}
7328 
7329 	if (sblk->stat_MacControlFramesReceived) {
7330 		if_printf(ifp, "         0x%08X : MacControlFramesReceived\n",
7331 			  sblk->stat_MacControlFramesReceived);
7332 	}
7333 
7334 	if (sblk->stat_XoffStateEntered) {
7335 		if_printf(ifp, "         0x%08X : XoffStateEntered\n",
7336 			  sblk->stat_XoffStateEntered);
7337 	}
7338 
7339 	if (sblk->stat_IfInFramesL2FilterDiscards) {
7340 		if_printf(ifp, "         0x%08X : IfInFramesL2FilterDiscards\n",			  sblk->stat_IfInFramesL2FilterDiscards);
7341 	}
7342 
7343 	if (sblk->stat_IfInRuleCheckerDiscards) {
7344 		if_printf(ifp, "         0x%08X : IfInRuleCheckerDiscards\n",
7345 			  sblk->stat_IfInRuleCheckerDiscards);
7346 	}
7347 
7348 	if (sblk->stat_IfInFTQDiscards) {
7349 		if_printf(ifp, "         0x%08X : IfInFTQDiscards\n",
7350 			  sblk->stat_IfInFTQDiscards);
7351 	}
7352 
7353 	if (sblk->stat_IfInMBUFDiscards) {
7354 		if_printf(ifp, "         0x%08X : IfInMBUFDiscards\n",
7355 			  sblk->stat_IfInMBUFDiscards);
7356 	}
7357 
7358 	if (sblk->stat_IfInRuleCheckerP4Hit) {
7359 		if_printf(ifp, "         0x%08X : IfInRuleCheckerP4Hit\n",
7360 			  sblk->stat_IfInRuleCheckerP4Hit);
7361 	}
7362 
7363 	if (sblk->stat_CatchupInRuleCheckerDiscards) {
7364 		if_printf(ifp, "         0x%08X : "
7365 			  "CatchupInRuleCheckerDiscards\n",
7366 			  sblk->stat_CatchupInRuleCheckerDiscards);
7367 	}
7368 
7369 	if (sblk->stat_CatchupInFTQDiscards) {
7370 		if_printf(ifp, "         0x%08X : CatchupInFTQDiscards\n",
7371 			  sblk->stat_CatchupInFTQDiscards);
7372 	}
7373 
7374 	if (sblk->stat_CatchupInMBUFDiscards) {
7375 		if_printf(ifp, "         0x%08X : CatchupInMBUFDiscards\n",
7376 			  sblk->stat_CatchupInMBUFDiscards);
7377 	}
7378 
7379 	if (sblk->stat_CatchupInRuleCheckerP4Hit) {
7380 		if_printf(ifp, "         0x%08X : CatchupInRuleCheckerP4Hit\n",
7381 			  sblk->stat_CatchupInRuleCheckerP4Hit);
7382 	}
7383 
7384 	if_printf(ifp,
7385 	"----------------------------"
7386 	"----------------"
7387 	"----------------------------\n");
7388 }
7389 
7390 
7391 /****************************************************************************/
7392 /* Prints out a summary of the driver state.                                */
7393 /*                                                                          */
7394 /* Returns:                                                                 */
7395 /*   Nothing.                                                               */
7396 /****************************************************************************/
7397 static void
7398 bce_dump_driver_state(struct bce_softc *sc)
7399 {
7400 	struct ifnet *ifp = &sc->arpcom.ac_if;
7401 	uint32_t val_hi, val_lo;
7402 
7403 	if_printf(ifp,
7404 	"-----------------------------"
7405 	" Driver State "
7406 	"-----------------------------\n");
7407 
7408 	val_hi = BCE_ADDR_HI(sc);
7409 	val_lo = BCE_ADDR_LO(sc);
7410 	if_printf(ifp, "0x%08X:%08X - (sc) driver softc structure "
7411 		  "virtual address\n", val_hi, val_lo);
7412 
7413 	val_hi = BCE_ADDR_HI(sc->status_block);
7414 	val_lo = BCE_ADDR_LO(sc->status_block);
7415 	if_printf(ifp, "0x%08X:%08X - (sc->status_block) status block "
7416 		  "virtual address\n", val_hi, val_lo);
7417 
7418 	val_hi = BCE_ADDR_HI(sc->stats_block);
7419 	val_lo = BCE_ADDR_LO(sc->stats_block);
7420 	if_printf(ifp, "0x%08X:%08X - (sc->stats_block) statistics block "
7421 		  "virtual address\n", val_hi, val_lo);
7422 
7423 	val_hi = BCE_ADDR_HI(sc->tx_bd_chain);
7424 	val_lo = BCE_ADDR_LO(sc->tx_bd_chain);
7425 	if_printf(ifp, "0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain "
7426 		  "virtual adddress\n", val_hi, val_lo);
7427 
7428 	val_hi = BCE_ADDR_HI(sc->rx_bd_chain);
7429 	val_lo = BCE_ADDR_LO(sc->rx_bd_chain);
7430 	if_printf(ifp, "0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain "
7431 		  "virtual address\n", val_hi, val_lo);
7432 
7433 	val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr);
7434 	val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr);
7435 	if_printf(ifp, "0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain "
7436 		  "virtual address\n", val_hi, val_lo);
7437 
7438 	val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr);
7439 	val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr);
7440 	if_printf(ifp, "0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain "
7441 		  "virtual address\n", val_hi, val_lo);
7442 
7443 	if_printf(ifp, "         0x%08X - (sc->interrupts_generated) "
7444 		  "h/w intrs\n", sc->interrupts_generated);
7445 
7446 	if_printf(ifp, "         0x%08X - (sc->rx_interrupts) "
7447 		  "rx interrupts handled\n", sc->rx_interrupts);
7448 
7449 	if_printf(ifp, "         0x%08X - (sc->tx_interrupts) "
7450 		  "tx interrupts handled\n", sc->tx_interrupts);
7451 
7452 	if_printf(ifp, "         0x%08X - (sc->last_status_idx) "
7453 		  "status block index\n", sc->last_status_idx);
7454 
7455 	if_printf(ifp, "     0x%04X(0x%04X) - (sc->tx_prod) "
7456 		  "tx producer index\n",
7457 		  sc->tx_prod, (uint16_t)TX_CHAIN_IDX(sc->tx_prod));
7458 
7459 	if_printf(ifp, "     0x%04X(0x%04X) - (sc->tx_cons) "
7460 		  "tx consumer index\n",
7461 		  sc->tx_cons, (uint16_t)TX_CHAIN_IDX(sc->tx_cons));
7462 
7463 	if_printf(ifp, "         0x%08X - (sc->tx_prod_bseq) "
7464 		  "tx producer bseq index\n", sc->tx_prod_bseq);
7465 
7466 	if_printf(ifp, "     0x%04X(0x%04X) - (sc->rx_prod) "
7467 		  "rx producer index\n",
7468 		  sc->rx_prod, (uint16_t)RX_CHAIN_IDX(sc->rx_prod));
7469 
7470 	if_printf(ifp, "     0x%04X(0x%04X) - (sc->rx_cons) "
7471 		  "rx consumer index\n",
7472 		  sc->rx_cons, (uint16_t)RX_CHAIN_IDX(sc->rx_cons));
7473 
7474 	if_printf(ifp, "         0x%08X - (sc->rx_prod_bseq) "
7475 		  "rx producer bseq index\n", sc->rx_prod_bseq);
7476 
7477 	if_printf(ifp, "         0x%08X - (sc->rx_mbuf_alloc) "
7478 		  "rx mbufs allocated\n", sc->rx_mbuf_alloc);
7479 
7480 	if_printf(ifp, "         0x%08X - (sc->free_rx_bd) "
7481 		  "free rx_bd's\n", sc->free_rx_bd);
7482 
7483 	if_printf(ifp, "0x%08X/%08X - (sc->rx_low_watermark) rx "
7484 		  "low watermark\n", sc->rx_low_watermark, sc->max_rx_bd);
7485 
7486 	if_printf(ifp, "         0x%08X - (sc->txmbuf_alloc) "
7487 		  "tx mbufs allocated\n", sc->tx_mbuf_alloc);
7488 
7489 	if_printf(ifp, "         0x%08X - (sc->rx_mbuf_alloc) "
7490 		  "rx mbufs allocated\n", sc->rx_mbuf_alloc);
7491 
7492 	if_printf(ifp, "         0x%08X - (sc->used_tx_bd) used tx_bd's\n",
7493 		  sc->used_tx_bd);
7494 
7495 	if_printf(ifp, "0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
7496 		  sc->tx_hi_watermark, sc->max_tx_bd);
7497 
7498 	if_printf(ifp, "         0x%08X - (sc->mbuf_alloc_failed) "
7499 		  "failed mbuf alloc\n", sc->mbuf_alloc_failed);
7500 
7501 	if_printf(ifp,
7502 	"----------------------------"
7503 	"----------------"
7504 	"----------------------------\n");
7505 }
7506 
7507 
7508 /****************************************************************************/
7509 /* Prints out the hardware state through a summary of important registers,  */
7510 /* followed by a complete register dump.                                    */
7511 /*                                                                          */
7512 /* Returns:                                                                 */
7513 /*   Nothing.                                                               */
7514 /****************************************************************************/
7515 static void
7516 bce_dump_hw_state(struct bce_softc *sc)
7517 {
7518 	struct ifnet *ifp = &sc->arpcom.ac_if;
7519 	uint32_t val1;
7520 	int i;
7521 
7522 	if_printf(ifp,
7523 	"----------------------------"
7524 	" Hardware State "
7525 	"----------------------------\n");
7526 
7527 	if_printf(ifp, "%s - bootcode version\n", sc->bce_bc_ver);
7528 
7529 	val1 = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS);
7530 	if_printf(ifp, "0x%08X - (0x%06X) misc_enable_status_bits\n",
7531 		  val1, BCE_MISC_ENABLE_STATUS_BITS);
7532 
7533 	val1 = REG_RD(sc, BCE_DMA_STATUS);
7534 	if_printf(ifp, "0x%08X - (0x%04X) dma_status\n", val1, BCE_DMA_STATUS);
7535 
7536 	val1 = REG_RD(sc, BCE_CTX_STATUS);
7537 	if_printf(ifp, "0x%08X - (0x%04X) ctx_status\n", val1, BCE_CTX_STATUS);
7538 
7539 	val1 = REG_RD(sc, BCE_EMAC_STATUS);
7540 	if_printf(ifp, "0x%08X - (0x%04X) emac_status\n",
7541 		  val1, BCE_EMAC_STATUS);
7542 
7543 	val1 = REG_RD(sc, BCE_RPM_STATUS);
7544 	if_printf(ifp, "0x%08X - (0x%04X) rpm_status\n", val1, BCE_RPM_STATUS);
7545 
7546 	val1 = REG_RD(sc, BCE_TBDR_STATUS);
7547 	if_printf(ifp, "0x%08X - (0x%04X) tbdr_status\n",
7548 		  val1, BCE_TBDR_STATUS);
7549 
7550 	val1 = REG_RD(sc, BCE_TDMA_STATUS);
7551 	if_printf(ifp, "0x%08X - (0x%04X) tdma_status\n",
7552 		  val1, BCE_TDMA_STATUS);
7553 
7554 	val1 = REG_RD(sc, BCE_HC_STATUS);
7555 	if_printf(ifp, "0x%08X - (0x%06X) hc_status\n", val1, BCE_HC_STATUS);
7556 
7557 	val1 = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
7558 	if_printf(ifp, "0x%08X - (0x%06X) txp_cpu_state\n",
7559 		  val1, BCE_TXP_CPU_STATE);
7560 
7561 	val1 = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
7562 	if_printf(ifp, "0x%08X - (0x%06X) tpat_cpu_state\n",
7563 		  val1, BCE_TPAT_CPU_STATE);
7564 
7565 	val1 = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
7566 	if_printf(ifp, "0x%08X - (0x%06X) rxp_cpu_state\n",
7567 		  val1, BCE_RXP_CPU_STATE);
7568 
7569 	val1 = REG_RD_IND(sc, BCE_COM_CPU_STATE);
7570 	if_printf(ifp, "0x%08X - (0x%06X) com_cpu_state\n",
7571 		  val1, BCE_COM_CPU_STATE);
7572 
7573 	val1 = REG_RD_IND(sc, BCE_MCP_CPU_STATE);
7574 	if_printf(ifp, "0x%08X - (0x%06X) mcp_cpu_state\n",
7575 		  val1, BCE_MCP_CPU_STATE);
7576 
7577 	val1 = REG_RD_IND(sc, BCE_CP_CPU_STATE);
7578 	if_printf(ifp, "0x%08X - (0x%06X) cp_cpu_state\n",
7579 		  val1, BCE_CP_CPU_STATE);
7580 
7581 	if_printf(ifp,
7582 	"----------------------------"
7583 	"----------------"
7584 	"----------------------------\n");
7585 
7586 	if_printf(ifp,
7587 	"----------------------------"
7588 	" Register  Dump "
7589 	"----------------------------\n");
7590 
7591 	for (i = 0x400; i < 0x8000; i += 0x10) {
7592 		if_printf(ifp, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i,
7593 			  REG_RD(sc, i),
7594 			  REG_RD(sc, i + 0x4),
7595 			  REG_RD(sc, i + 0x8),
7596 			  REG_RD(sc, i + 0xc));
7597 	}
7598 
7599 	if_printf(ifp,
7600 	"----------------------------"
7601 	"----------------"
7602 	"----------------------------\n");
7603 }
7604 
7605 
7606 /****************************************************************************/
7607 /* Prints out the TXP state.                                                */
7608 /*                                                                          */
7609 /* Returns:                                                                 */
7610 /*   Nothing.                                                               */
7611 /****************************************************************************/
7612 static void
7613 bce_dump_txp_state(struct bce_softc *sc)
7614 {
7615 	struct ifnet *ifp = &sc->arpcom.ac_if;
7616 	uint32_t val1;
7617 	int i;
7618 
7619 	if_printf(ifp,
7620 	"----------------------------"
7621 	"   TXP  State   "
7622 	"----------------------------\n");
7623 
7624 	val1 = REG_RD_IND(sc, BCE_TXP_CPU_MODE);
7625 	if_printf(ifp, "0x%08X - (0x%06X) txp_cpu_mode\n",
7626 		  val1, BCE_TXP_CPU_MODE);
7627 
7628 	val1 = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
7629 	if_printf(ifp, "0x%08X - (0x%06X) txp_cpu_state\n",
7630 		  val1, BCE_TXP_CPU_STATE);
7631 
7632 	val1 = REG_RD_IND(sc, BCE_TXP_CPU_EVENT_MASK);
7633 	if_printf(ifp, "0x%08X - (0x%06X) txp_cpu_event_mask\n",
7634 		  val1, BCE_TXP_CPU_EVENT_MASK);
7635 
7636 	if_printf(ifp,
7637 	"----------------------------"
7638 	" Register  Dump "
7639 	"----------------------------\n");
7640 
7641 	for (i = BCE_TXP_CPU_MODE; i < 0x68000; i += 0x10) {
7642 		/* Skip the big blank spaces */
7643 		if (i < 0x454000 && i > 0x5ffff) {
7644 			if_printf(ifp, "0x%04X: "
7645 				  "0x%08X 0x%08X 0x%08X 0x%08X\n", i,
7646 				  REG_RD_IND(sc, i),
7647 				  REG_RD_IND(sc, i + 0x4),
7648 				  REG_RD_IND(sc, i + 0x8),
7649 				  REG_RD_IND(sc, i + 0xc));
7650 		}
7651 	}
7652 
7653 	if_printf(ifp,
7654 	"----------------------------"
7655 	"----------------"
7656 	"----------------------------\n");
7657 }
7658 
7659 
7660 /****************************************************************************/
7661 /* Prints out the RXP state.                                                */
7662 /*                                                                          */
7663 /* Returns:                                                                 */
7664 /*   Nothing.                                                               */
7665 /****************************************************************************/
7666 static void
7667 bce_dump_rxp_state(struct bce_softc *sc)
7668 {
7669 	struct ifnet *ifp = &sc->arpcom.ac_if;
7670 	uint32_t val1;
7671 	int i;
7672 
7673 	if_printf(ifp,
7674 	"----------------------------"
7675 	"   RXP  State   "
7676 	"----------------------------\n");
7677 
7678 	val1 = REG_RD_IND(sc, BCE_RXP_CPU_MODE);
7679 	if_printf(ifp, "0x%08X - (0x%06X) rxp_cpu_mode\n",
7680 		  val1, BCE_RXP_CPU_MODE);
7681 
7682 	val1 = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
7683 	if_printf(ifp, "0x%08X - (0x%06X) rxp_cpu_state\n",
7684 		  val1, BCE_RXP_CPU_STATE);
7685 
7686 	val1 = REG_RD_IND(sc, BCE_RXP_CPU_EVENT_MASK);
7687 	if_printf(ifp, "0x%08X - (0x%06X) rxp_cpu_event_mask\n",
7688 		  val1, BCE_RXP_CPU_EVENT_MASK);
7689 
7690 	if_printf(ifp,
7691 	"----------------------------"
7692 	" Register  Dump "
7693 	"----------------------------\n");
7694 
7695 	for (i = BCE_RXP_CPU_MODE; i < 0xe8fff; i += 0x10) {
7696 		/* Skip the big blank sapces */
7697 		if (i < 0xc5400 && i > 0xdffff) {
7698 			if_printf(ifp, "0x%04X: "
7699 				  "0x%08X 0x%08X 0x%08X 0x%08X\n", i,
7700 				  REG_RD_IND(sc, i),
7701 				  REG_RD_IND(sc, i + 0x4),
7702 				  REG_RD_IND(sc, i + 0x8),
7703 				  REG_RD_IND(sc, i + 0xc));
7704 		}
7705 	}
7706 
7707 	if_printf(ifp,
7708 	"----------------------------"
7709 	"----------------"
7710 	"----------------------------\n");
7711 }
7712 
7713 
7714 /****************************************************************************/
7715 /* Prints out the TPAT state.                                               */
7716 /*                                                                          */
7717 /* Returns:                                                                 */
7718 /*   Nothing.                                                               */
7719 /****************************************************************************/
7720 static void
7721 bce_dump_tpat_state(struct bce_softc *sc)
7722 {
7723 	struct ifnet *ifp = &sc->arpcom.ac_if;
7724 	uint32_t val1;
7725 	int i;
7726 
7727 	if_printf(ifp,
7728 	"----------------------------"
7729 	"   TPAT State   "
7730 	"----------------------------\n");
7731 
7732 	val1 = REG_RD_IND(sc, BCE_TPAT_CPU_MODE);
7733 	if_printf(ifp, "0x%08X - (0x%06X) tpat_cpu_mode\n",
7734 		  val1, BCE_TPAT_CPU_MODE);
7735 
7736 	val1 = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
7737 	if_printf(ifp, "0x%08X - (0x%06X) tpat_cpu_state\n",
7738 		  val1, BCE_TPAT_CPU_STATE);
7739 
7740 	val1 = REG_RD_IND(sc, BCE_TPAT_CPU_EVENT_MASK);
7741 	if_printf(ifp, "0x%08X - (0x%06X) tpat_cpu_event_mask\n",
7742 		  val1, BCE_TPAT_CPU_EVENT_MASK);
7743 
7744 	if_printf(ifp,
7745 	"----------------------------"
7746 	" Register  Dump "
7747 	"----------------------------\n");
7748 
7749 	for (i = BCE_TPAT_CPU_MODE; i < 0xa3fff; i += 0x10) {
7750 		/* Skip the big blank spaces */
7751 		if (i < 0x854000 && i > 0x9ffff) {
7752 			if_printf(ifp, "0x%04X: "
7753 				  "0x%08X 0x%08X 0x%08X 0x%08X\n", i,
7754 				  REG_RD_IND(sc, i),
7755 				  REG_RD_IND(sc, i + 0x4),
7756 				  REG_RD_IND(sc, i + 0x8),
7757 				  REG_RD_IND(sc, i + 0xc));
7758 		}
7759 	}
7760 
7761 	if_printf(ifp,
7762 	"----------------------------"
7763 	"----------------"
7764 	"----------------------------\n");
7765 }
7766 
7767 
7768 /****************************************************************************/
7769 /* Prints out the driver state and then enters the debugger.                */
7770 /*                                                                          */
7771 /* Returns:                                                                 */
7772 /*   Nothing.                                                               */
7773 /****************************************************************************/
7774 static void
7775 bce_breakpoint(struct bce_softc *sc)
7776 {
7777 #if 0
7778 	bce_freeze_controller(sc);
7779 #endif
7780 
7781 	bce_dump_driver_state(sc);
7782 	bce_dump_status_block(sc);
7783 	bce_dump_tx_chain(sc, 0, TOTAL_TX_BD);
7784 	bce_dump_hw_state(sc);
7785 	bce_dump_txp_state(sc);
7786 
7787 #if 0
7788 	bce_unfreeze_controller(sc);
7789 #endif
7790 
7791 	/* Call the debugger. */
7792 	breakpoint();
7793 }
7794 
7795 #endif	/* BCE_DEBUG */
7796 
7797 static int
7798 bce_sysctl_tx_bds_int(SYSCTL_HANDLER_ARGS)
7799 {
7800 	struct bce_softc *sc = arg1;
7801 
7802 	return bce_sysctl_coal_change(oidp, arg1, arg2, req,
7803 			&sc->bce_tx_quick_cons_trip_int,
7804 			BCE_COALMASK_TX_BDS_INT);
7805 }
7806 
7807 static int
7808 bce_sysctl_tx_bds(SYSCTL_HANDLER_ARGS)
7809 {
7810 	struct bce_softc *sc = arg1;
7811 
7812 	return bce_sysctl_coal_change(oidp, arg1, arg2, req,
7813 			&sc->bce_tx_quick_cons_trip,
7814 			BCE_COALMASK_TX_BDS);
7815 }
7816 
7817 static int
7818 bce_sysctl_tx_ticks_int(SYSCTL_HANDLER_ARGS)
7819 {
7820 	struct bce_softc *sc = arg1;
7821 
7822 	return bce_sysctl_coal_change(oidp, arg1, arg2, req,
7823 			&sc->bce_tx_ticks_int,
7824 			BCE_COALMASK_TX_TICKS_INT);
7825 }
7826 
7827 static int
7828 bce_sysctl_tx_ticks(SYSCTL_HANDLER_ARGS)
7829 {
7830 	struct bce_softc *sc = arg1;
7831 
7832 	return bce_sysctl_coal_change(oidp, arg1, arg2, req,
7833 			&sc->bce_tx_ticks,
7834 			BCE_COALMASK_TX_TICKS);
7835 }
7836 
7837 static int
7838 bce_sysctl_rx_bds_int(SYSCTL_HANDLER_ARGS)
7839 {
7840 	struct bce_softc *sc = arg1;
7841 
7842 	return bce_sysctl_coal_change(oidp, arg1, arg2, req,
7843 			&sc->bce_rx_quick_cons_trip_int,
7844 			BCE_COALMASK_RX_BDS_INT);
7845 }
7846 
7847 static int
7848 bce_sysctl_rx_bds(SYSCTL_HANDLER_ARGS)
7849 {
7850 	struct bce_softc *sc = arg1;
7851 
7852 	return bce_sysctl_coal_change(oidp, arg1, arg2, req,
7853 			&sc->bce_rx_quick_cons_trip,
7854 			BCE_COALMASK_RX_BDS);
7855 }
7856 
7857 static int
7858 bce_sysctl_rx_ticks_int(SYSCTL_HANDLER_ARGS)
7859 {
7860 	struct bce_softc *sc = arg1;
7861 
7862 	return bce_sysctl_coal_change(oidp, arg1, arg2, req,
7863 			&sc->bce_rx_ticks_int,
7864 			BCE_COALMASK_RX_TICKS_INT);
7865 }
7866 
7867 static int
7868 bce_sysctl_rx_ticks(SYSCTL_HANDLER_ARGS)
7869 {
7870 	struct bce_softc *sc = arg1;
7871 
7872 	return bce_sysctl_coal_change(oidp, arg1, arg2, req,
7873 			&sc->bce_rx_ticks,
7874 			BCE_COALMASK_RX_TICKS);
7875 }
7876 
7877 static int
7878 bce_sysctl_coal_change(SYSCTL_HANDLER_ARGS, uint32_t *coal,
7879 		       uint32_t coalchg_mask)
7880 {
7881 	struct bce_softc *sc = arg1;
7882 	struct ifnet *ifp = &sc->arpcom.ac_if;
7883 	int error = 0, v;
7884 
7885 	lwkt_serialize_enter(ifp->if_serializer);
7886 
7887 	v = *coal;
7888 	error = sysctl_handle_int(oidp, &v, 0, req);
7889 	if (!error && req->newptr != NULL) {
7890 		if (v < 0) {
7891 			error = EINVAL;
7892 		} else {
7893 			*coal = v;
7894 			sc->bce_coalchg_mask |= coalchg_mask;
7895 		}
7896 	}
7897 
7898 	lwkt_serialize_exit(ifp->if_serializer);
7899 	return error;
7900 }
7901 
7902 static void
7903 bce_coal_change(struct bce_softc *sc)
7904 {
7905 	struct ifnet *ifp = &sc->arpcom.ac_if;
7906 
7907 	ASSERT_SERIALIZED(ifp->if_serializer);
7908 
7909 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
7910 		sc->bce_coalchg_mask = 0;
7911 		return;
7912 	}
7913 
7914 	if (sc->bce_coalchg_mask &
7915 	    (BCE_COALMASK_TX_BDS | BCE_COALMASK_TX_BDS_INT)) {
7916 		REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
7917 		       (sc->bce_tx_quick_cons_trip_int << 16) |
7918 		       sc->bce_tx_quick_cons_trip);
7919 		if (bootverbose) {
7920 			if_printf(ifp, "tx_bds %u, tx_bds_int %u\n",
7921 				  sc->bce_tx_quick_cons_trip,
7922 				  sc->bce_tx_quick_cons_trip_int);
7923 		}
7924 	}
7925 
7926 	if (sc->bce_coalchg_mask &
7927 	    (BCE_COALMASK_TX_TICKS | BCE_COALMASK_TX_TICKS_INT)) {
7928 		REG_WR(sc, BCE_HC_TX_TICKS,
7929 		       (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
7930 		if (bootverbose) {
7931 			if_printf(ifp, "tx_ticks %u, tx_ticks_int %u\n",
7932 				  sc->bce_tx_ticks, sc->bce_tx_ticks_int);
7933 		}
7934 	}
7935 
7936 	if (sc->bce_coalchg_mask &
7937 	    (BCE_COALMASK_RX_BDS | BCE_COALMASK_RX_BDS_INT)) {
7938 		REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
7939 		       (sc->bce_rx_quick_cons_trip_int << 16) |
7940 		       sc->bce_rx_quick_cons_trip);
7941 		if (bootverbose) {
7942 			if_printf(ifp, "rx_bds %u, rx_bds_int %u\n",
7943 				  sc->bce_rx_quick_cons_trip,
7944 				  sc->bce_rx_quick_cons_trip_int);
7945 		}
7946 	}
7947 
7948 	if (sc->bce_coalchg_mask &
7949 	    (BCE_COALMASK_RX_TICKS | BCE_COALMASK_RX_TICKS_INT)) {
7950 		REG_WR(sc, BCE_HC_RX_TICKS,
7951 		       (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
7952 		if (bootverbose) {
7953 			if_printf(ifp, "rx_ticks %u, rx_ticks_int %u\n",
7954 				  sc->bce_rx_ticks, sc->bce_rx_ticks_int);
7955 		}
7956 	}
7957 
7958 	sc->bce_coalchg_mask = 0;
7959 }
7960