xref: /dflybsd-src/sys/dev/netif/age/if_age.c (revision 636eca08bbf84bbb648c68d757be5ec1a2b86a72)
1 /*-
2  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  * $FreeBSD: src/sys/dev/age/if_age.c,v 1.6 2008/11/07 07:02:28 yongari Exp $
28  */
29 
30 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
31 
32 #include <sys/param.h>
33 #include <sys/endian.h>
34 #include <sys/kernel.h>
35 #include <sys/bus.h>
36 #include <sys/interrupt.h>
37 #include <sys/malloc.h>
38 #include <sys/proc.h>
39 #include <sys/rman.h>
40 #include <sys/serialize.h>
41 #include <sys/socket.h>
42 #include <sys/sockio.h>
43 #include <sys/sysctl.h>
44 
45 #include <net/ethernet.h>
46 #include <net/if.h>
47 #include <net/bpf.h>
48 #include <net/if_arp.h>
49 #include <net/if_dl.h>
50 #include <net/if_media.h>
51 #include <net/ifq_var.h>
52 #include <net/vlan/if_vlan_var.h>
53 #include <net/vlan/if_vlan_ether.h>
54 
55 #include <dev/netif/mii_layer/miivar.h>
56 #include <dev/netif/mii_layer/jmphyreg.h>
57 
58 #include <bus/pci/pcireg.h>
59 #include <bus/pci/pcivar.h>
60 #include <bus/pci/pcidevs.h>
61 
62 #include <dev/netif/age/if_agereg.h>
63 #include <dev/netif/age/if_agevar.h>
64 
65 /* "device miibus" required.  See GENERIC if you get errors here. */
66 #include "miibus_if.h"
67 
68 #define	AGE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
69 
70 struct age_dmamap_ctx {
71 	int			nsegs;
72 	bus_dma_segment_t	*segs;
73 };
74 
75 static int	age_probe(device_t);
76 static int	age_attach(device_t);
77 static int	age_detach(device_t);
78 static int	age_shutdown(device_t);
79 static int	age_suspend(device_t);
80 static int	age_resume(device_t);
81 
82 static int	age_miibus_readreg(device_t, int, int);
83 static int	age_miibus_writereg(device_t, int, int, int);
84 static void	age_miibus_statchg(device_t);
85 
86 static void	age_init(void *);
87 static int	age_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
88 static void	age_start(struct ifnet *, struct ifaltq_subque *);
89 static void	age_watchdog(struct ifnet *);
90 static void	age_mediastatus(struct ifnet *, struct ifmediareq *);
91 static int	age_mediachange(struct ifnet *);
92 
93 static void	age_intr(void *);
94 static void	age_txintr(struct age_softc *, int);
95 static void	age_rxintr(struct age_softc *, int);
96 static void	age_rxeof(struct age_softc *sc, struct rx_rdesc *);
97 
98 static int	age_dma_alloc(struct age_softc *);
99 static void	age_dma_free(struct age_softc *);
100 static void	age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
101 static void	age_dmamap_buf_cb(void *, bus_dma_segment_t *, int,
102 		    bus_size_t, int);
103 static int	age_check_boundary(struct age_softc *);
104 static int	age_newbuf(struct age_softc *, struct age_rxdesc *, int);
105 static int	age_encap(struct age_softc *, struct mbuf **);
106 static void	age_init_tx_ring(struct age_softc *);
107 static int	age_init_rx_ring(struct age_softc *);
108 static void	age_init_rr_ring(struct age_softc *);
109 static void	age_init_cmb_block(struct age_softc *);
110 static void	age_init_smb_block(struct age_softc *);
111 
112 static void	age_tick(void *);
113 static void	age_stop(struct age_softc *);
114 static void	age_reset(struct age_softc *);
115 static int	age_read_vpd_word(struct age_softc *, uint32_t, uint32_t,
116 		    uint32_t *);
117 static void	age_get_macaddr(struct age_softc *);
118 static void	age_phy_reset(struct age_softc *);
119 static void	age_mac_config(struct age_softc *);
120 static void	age_stats_update(struct age_softc *);
121 static void	age_stop_txmac(struct age_softc *);
122 static void	age_stop_rxmac(struct age_softc *);
123 static void	age_rxvlan(struct age_softc *);
124 static void	age_rxfilter(struct age_softc *);
125 #ifdef wol_notyet
126 static void age_setwol(struct age_softc *);
127 #endif
128 
129 static void	age_sysctl_node(struct age_softc *);
130 static int	sysctl_age_stats(SYSCTL_HANDLER_ARGS);
131 static int	sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
132 
133 /*
134  * Devices supported by this driver.
135  */
136 static struct age_dev {
137 	uint16_t	age_vendorid;
138 	uint16_t	age_deviceid;
139 	const char	*age_name;
140 } age_devs[] = {
141 	{ VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
142 	    "Attansic Technology Corp, L1 Gigabit Ethernet" },
143 };
144 
145 static device_method_t age_methods[] = {
146 	/* Device interface. */
147 	DEVMETHOD(device_probe,		age_probe),
148 	DEVMETHOD(device_attach,	age_attach),
149 	DEVMETHOD(device_detach,	age_detach),
150 	DEVMETHOD(device_shutdown,	age_shutdown),
151 	DEVMETHOD(device_suspend,	age_suspend),
152 	DEVMETHOD(device_resume,	age_resume),
153 
154 	/* Bus interface. */
155 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
156 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
157 
158 	/* MII interface. */
159 	DEVMETHOD(miibus_readreg,	age_miibus_readreg),
160 	DEVMETHOD(miibus_writereg,	age_miibus_writereg),
161 	DEVMETHOD(miibus_statchg,	age_miibus_statchg),
162 
163 	{ NULL, NULL }
164 };
165 
166 static driver_t age_driver = {
167 	"age",
168 	age_methods,
169 	sizeof(struct age_softc)
170 };
171 
172 static devclass_t age_devclass;
173 
174 DECLARE_DUMMY_MODULE(if_age);
175 MODULE_DEPEND(if_age, miibus, 1, 1, 1);
176 DRIVER_MODULE(if_age, pci, age_driver, age_devclass, NULL, NULL);
177 DRIVER_MODULE(miibus, age, miibus_driver, miibus_devclass, NULL, NULL);
178 
179 /*
180  *	Read a PHY register on the MII of the L1.
181  */
182 static int
183 age_miibus_readreg(device_t dev, int phy, int reg)
184 {
185 	struct age_softc *sc;
186 	uint32_t v;
187 	int i;
188 
189 	sc = device_get_softc(dev);
190 	if (phy != sc->age_phyaddr)
191 		return (0);
192 
193 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
194 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
195 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
196 		DELAY(1);
197 		v = CSR_READ_4(sc, AGE_MDIO);
198 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
199 			break;
200 	}
201 
202 	if (i == 0) {
203 		device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
204 		return (0);
205 	}
206 
207 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
208 }
209 
210 /*
211  *	Write a PHY register on the MII of the L1.
212  */
213 static int
214 age_miibus_writereg(device_t dev, int phy, int reg, int val)
215 {
216 	struct age_softc *sc;
217 	uint32_t v;
218 	int i;
219 
220 	sc = device_get_softc(dev);
221 	if (phy != sc->age_phyaddr)
222 		return (0);
223 
224 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
225 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
226 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
227 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
228 		DELAY(1);
229 		v = CSR_READ_4(sc, AGE_MDIO);
230 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
231 			break;
232 	}
233 
234 	if (i == 0)
235 		device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
236 
237 	return (0);
238 }
239 
240 /*
241  *	Callback from MII layer when media changes.
242  */
243 static void
244 age_miibus_statchg(device_t dev)
245 {
246 	struct age_softc *sc = device_get_softc(dev);
247 	struct ifnet *ifp = &sc->arpcom.ac_if;
248 	struct mii_data *mii;
249 
250 	ASSERT_SERIALIZED(ifp->if_serializer);
251 
252 	if ((ifp->if_flags & IFF_RUNNING) == 0)
253 		return;
254 
255 	mii = device_get_softc(sc->age_miibus);
256 
257 	sc->age_flags &= ~AGE_FLAG_LINK;
258 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
259 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
260 		case IFM_10_T:
261 		case IFM_100_TX:
262 		case IFM_1000_T:
263 			sc->age_flags |= AGE_FLAG_LINK;
264 			break;
265 		default:
266 			break;
267 		}
268 	}
269 
270 	/* Stop Rx/Tx MACs. */
271 	age_stop_rxmac(sc);
272 	age_stop_txmac(sc);
273 
274 	/* Program MACs with resolved speed/duplex/flow-control. */
275 	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
276 		uint32_t reg;
277 
278 		age_mac_config(sc);
279 
280 		reg = CSR_READ_4(sc, AGE_MAC_CFG);
281 		/* Restart DMA engine and Tx/Rx MAC. */
282 		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
283 		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
284 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
285 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
286 	}
287 }
288 
289 /*
290  *	Get the current interface media status.
291  */
292 static void
293 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
294 {
295 	struct age_softc *sc = ifp->if_softc;
296 	struct mii_data *mii = device_get_softc(sc->age_miibus);
297 
298 	ASSERT_SERIALIZED(ifp->if_serializer);
299 
300 	mii_pollstat(mii);
301 	ifmr->ifm_status = mii->mii_media_status;
302 	ifmr->ifm_active = mii->mii_media_active;
303 }
304 
305 /*
306  *	Set hardware to newly-selected media.
307  */
308 static int
309 age_mediachange(struct ifnet *ifp)
310 {
311 	struct age_softc *sc = ifp->if_softc;
312 	struct mii_data *mii = device_get_softc(sc->age_miibus);
313 	int error;
314 
315 	ASSERT_SERIALIZED(ifp->if_serializer);
316 
317 	if (mii->mii_instance != 0) {
318 		struct mii_softc *miisc;
319 
320 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
321 			mii_phy_reset(miisc);
322 	}
323 	error = mii_mediachg(mii);
324 
325 	return (error);
326 }
327 
328 static int
329 age_read_vpd_word(struct age_softc *sc, uint32_t vpdc, uint32_t offset,
330     uint32_t *word)
331 {
332 	int i;
333 
334 	pci_write_config(sc->age_dev, vpdc + PCIR_VPD_ADDR, offset, 2);
335 	for (i = AGE_TIMEOUT; i > 0; i--) {
336 		DELAY(10);
337 		if ((pci_read_config(sc->age_dev, vpdc + PCIR_VPD_ADDR, 2) &
338 		    0x8000) == 0x8000)
339 			break;
340 	}
341 	if (i == 0) {
342 		device_printf(sc->age_dev, "VPD read timeout!\n");
343 		*word = 0;
344 		return (ETIMEDOUT);
345 	}
346 
347 	*word = pci_read_config(sc->age_dev, vpdc + PCIR_VPD_DATA, 4);
348 	return (0);
349 }
350 
351 static int
352 age_probe(device_t dev)
353 {
354 	struct age_dev *sp;
355 	int i;
356 	uint16_t vendor, devid;
357 
358 	vendor = pci_get_vendor(dev);
359 	devid = pci_get_device(dev);
360 	sp = age_devs;
361 	for (i = 0; i < NELEM(age_devs); i++, sp++) {
362 		if (vendor == sp->age_vendorid &&
363 		    devid == sp->age_deviceid) {
364 			device_set_desc(dev, sp->age_name);
365 			return (0);
366 		}
367 	}
368 	return (ENXIO);
369 }
370 
371 static void
372 age_get_macaddr(struct age_softc *sc)
373 {
374 	uint32_t ea[2], off, reg, word;
375 	int vpd_error, match, vpdc;
376 
377 	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
378 	if ((reg & SPI_VPD_ENB) != 0) {
379 		/* Get VPD stored in TWSI EEPROM. */
380 		reg &= ~SPI_VPD_ENB;
381 		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
382 	}
383 
384 	ea[0] = ea[1] = 0;
385 	vpdc = pci_get_vpdcap_ptr(sc->age_dev);
386 	if (vpdc) {
387 		vpd_error = 0;
388 
389 		/*
390 		 * PCI VPD capability exists, but it seems that it's
391 		 * not in the standard form as stated in PCI VPD
392 		 * specification such that driver could not use
393 		 * pci_get_vpd_readonly(9) with keyword 'NA'.
394 		 * Search VPD data starting at address 0x0100. The data
395 		 * should be used as initializers to set AGE_PAR0,
396 		 * AGE_PAR1 register including other PCI configuration
397 		 * registers.
398 		 */
399 		word = 0;
400 		match = 0;
401 		reg = 0;
402 		for (off = AGE_VPD_REG_CONF_START; off < AGE_VPD_REG_CONF_END;
403 		    off += sizeof(uint32_t)) {
404 			vpd_error = age_read_vpd_word(sc, vpdc, off, &word);
405 			if (vpd_error != 0)
406 				break;
407 			if (match != 0) {
408 				switch (reg) {
409 				case AGE_PAR0:
410 					ea[0] = word;
411 					break;
412 				case AGE_PAR1:
413 					ea[1] = word;
414 					break;
415 				default:
416 					break;
417 				}
418 				match = 0;
419 			} else if ((word & 0xFF) == AGE_VPD_REG_CONF_SIG) {
420 				match = 1;
421 				reg = word >> 16;
422 			} else
423 				break;
424 		}
425 		if (off >= AGE_VPD_REG_CONF_END)
426 			vpd_error = ENOENT;
427 		if (vpd_error == 0) {
428 			/*
429 			 * Don't blindly trust ethernet address obtained
430 			 * from VPD. Check whether ethernet address is
431 			 * valid one. Otherwise fall-back to reading
432 			 * PAR register.
433 			 */
434 			ea[1] &= 0xFFFF;
435 			if ((ea[0] == 0 && ea[1] == 0) ||
436 			    (ea[0] == 0xFFFFFFFF && ea[1] == 0xFFFF)) {
437 				if (bootverbose)
438 					device_printf(sc->age_dev,
439 					    "invalid ethernet address "
440 					    "returned from VPD.\n");
441 				vpd_error = EINVAL;
442 			}
443 		}
444 		if (vpd_error != 0 && (bootverbose))
445 			device_printf(sc->age_dev, "VPD access failure!\n");
446 	} else {
447 		vpd_error = ENOENT;
448 		if (bootverbose)
449 			device_printf(sc->age_dev,
450 			    "PCI VPD capability not found!\n");
451 	}
452 
453 	/*
454 	 * It seems that L1 also provides a way to extract ethernet
455 	 * address via SPI flash interface. Because SPI flash memory
456 	 * device of different vendors vary in their instruction
457 	 * codes for read ID instruction, it's very hard to get
458 	 * instructions codes without detailed information for the
459 	 * flash memory device used on ethernet controller. To simplify
460 	 * code, just read AGE_PAR0/AGE_PAR1 register to get ethernet
461 	 * address which is supposed to be set by hardware during
462 	 * power on reset.
463 	 */
464 	if (vpd_error != 0) {
465 		/*
466 		 * VPD is mapped to SPI flash memory or BIOS set it.
467 		 */
468 		ea[0] = CSR_READ_4(sc, AGE_PAR0);
469 		ea[1] = CSR_READ_4(sc, AGE_PAR1);
470 	}
471 
472 	ea[1] &= 0xFFFF;
473 	if ((ea[0] == 0 && ea[1]  == 0) ||
474 	    (ea[0] == 0xFFFFFFFF && ea[1] == 0xFFFF)) {
475 		device_printf(sc->age_dev,
476 		    "generating fake ethernet address.\n");
477 		ea[0] = karc4random();
478 		/* Set OUI to ASUSTek COMPUTER INC. */
479 		sc->age_eaddr[0] = 0x00;
480 		sc->age_eaddr[1] = 0x1B;
481 		sc->age_eaddr[2] = 0xFC;
482 		sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
483 		sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
484 		sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
485 	} else {
486 		sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
487 		sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
488 		sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
489 		sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
490 		sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
491 		sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
492 	}
493 }
494 
495 static void
496 age_phy_reset(struct age_softc *sc)
497 {
498 	/* Reset PHY. */
499 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
500 	DELAY(1000);
501 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
502 	DELAY(1000);
503 }
504 
505 static int
506 age_attach(device_t dev)
507 {
508 	struct age_softc *sc = device_get_softc(dev);
509 	struct ifnet *ifp = &sc->arpcom.ac_if;
510 	uint8_t pcie_ptr;
511 	int error;
512 
513 	error = 0;
514 	sc->age_dev = dev;
515 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
516 
517 	callout_init(&sc->age_tick_ch);
518 
519 #ifndef BURN_BRIDGES
520 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
521 		uint32_t irq, mem;
522 
523 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
524 		mem = pci_read_config(dev, AGE_PCIR_BAR, 4);
525 
526 		device_printf(dev, "chip is in D%d power mode "
527 		    "-- setting to D0\n", pci_get_powerstate(dev));
528 
529 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
530 
531 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
532 		pci_write_config(dev, AGE_PCIR_BAR, mem, 4);
533 	}
534 #endif	/* !BURN_BRIDGE */
535 
536 	/* Enable bus mastering */
537 	pci_enable_busmaster(dev);
538 
539 	/*
540 	 * Allocate memory mapped IO
541 	 */
542 	sc->age_mem_rid = AGE_PCIR_BAR;
543 	sc->age_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
544 						 &sc->age_mem_rid, RF_ACTIVE);
545 	if (sc->age_mem_res == NULL) {
546 		device_printf(dev, "can't allocate IO memory\n");
547 		return ENXIO;
548 	}
549 	sc->age_mem_bt = rman_get_bustag(sc->age_mem_res);
550 	sc->age_mem_bh = rman_get_bushandle(sc->age_mem_res);
551 
552 	/*
553 	 * Allocate IRQ
554 	 */
555 	sc->age_irq_rid = 0;
556 	sc->age_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
557 						 &sc->age_irq_rid,
558 						 RF_SHAREABLE | RF_ACTIVE);
559 	if (sc->age_irq_res == NULL) {
560 		device_printf(dev, "can't allocate irq\n");
561 		error = ENXIO;
562 		goto fail;
563 	}
564 
565 	/* Set PHY address. */
566 	sc->age_phyaddr = AGE_PHY_ADDR;
567 
568 	/* Reset PHY. */
569 	age_phy_reset(sc);
570 
571 	/* Reset the ethernet controller. */
572 	age_reset(sc);
573 
574 	/* Get PCI and chip id/revision. */
575 	sc->age_rev = pci_get_revid(dev);
576 	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
577 	    MASTER_CHIP_REV_SHIFT;
578 	if (bootverbose) {
579 		device_printf(dev, "PCI device revision : 0x%04x\n", sc->age_rev);
580 		device_printf(dev, "Chip id/revision : 0x%04x\n",
581 		    sc->age_chip_rev);
582 	}
583 
584 	/*
585 	 * XXX
586 	 * Unintialized hardware returns an invalid chip id/revision
587 	 * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
588 	 * unplugged cable results in putting hardware into automatic
589 	 * power down mode which in turn returns invalld chip revision.
590 	 */
591 	if (sc->age_chip_rev == 0xFFFF) {
592 		device_printf(dev,"invalid chip revision : 0x%04x -- "
593 		    "not initialized?\n", sc->age_chip_rev);
594 		error = ENXIO;
595 		goto fail;
596 	}
597 	device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
598 	    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
599 	    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
600 
601 	/* Get DMA parameters from PCIe device control register. */
602 	pcie_ptr = pci_get_pciecap_ptr(dev);
603 	if (pcie_ptr) {
604 		uint16_t devctl;
605 
606 		sc->age_flags |= AGE_FLAG_PCIE;
607 		devctl = pci_read_config(dev, pcie_ptr + PCIER_DEVCTRL, 2);
608 		/* Max read request size. */
609 		sc->age_dma_rd_burst = ((devctl >> 12) & 0x07) <<
610 		    DMA_CFG_RD_BURST_SHIFT;
611 		/* Max payload size. */
612 		sc->age_dma_wr_burst = ((devctl >> 5) & 0x07) <<
613 		    DMA_CFG_WR_BURST_SHIFT;
614 		if (bootverbose) {
615 			device_printf(dev, "Read request size : %d bytes.\n",
616 			    128 << ((devctl >> 12) & 0x07));
617 			device_printf(dev, "TLP payload size : %d bytes.\n",
618 			    128 << ((devctl >> 5) & 0x07));
619 		}
620 	} else {
621 		sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
622 		sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
623 	}
624 
625 	/* Create device sysctl node. */
626 	age_sysctl_node(sc);
627 
628 	if ((error = age_dma_alloc(sc) != 0))
629 		goto fail;
630 
631 	/* Load station address. */
632 	age_get_macaddr(sc);
633 
634 	ifp->if_softc = sc;
635 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
636 	ifp->if_ioctl = age_ioctl;
637 	ifp->if_start = age_start;
638 	ifp->if_init = age_init;
639 	ifp->if_watchdog = age_watchdog;
640 	ifq_set_maxlen(&ifp->if_snd, AGE_TX_RING_CNT - 1);
641 	ifq_set_ready(&ifp->if_snd);
642 
643 	ifp->if_capabilities = IFCAP_HWCSUM |
644 			       IFCAP_VLAN_MTU |
645 			       IFCAP_VLAN_HWTAGGING;
646 	ifp->if_hwassist = AGE_CSUM_FEATURES;
647 	ifp->if_capenable = ifp->if_capabilities;
648 
649 	/* Set up MII bus. */
650 	if ((error = mii_phy_probe(dev, &sc->age_miibus, age_mediachange,
651 	    age_mediastatus)) != 0) {
652 		device_printf(dev, "no PHY found!\n");
653 		goto fail;
654 	}
655 
656 	ether_ifattach(ifp, sc->age_eaddr, NULL);
657 
658 	/* Tell the upper layer(s) we support long frames. */
659 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
660 
661 	error = bus_setup_intr(dev, sc->age_irq_res, INTR_MPSAFE, age_intr, sc,
662 			       &sc->age_irq_handle, ifp->if_serializer);
663 	if (error) {
664 		device_printf(dev, "could not set up interrupt handler.\n");
665 		ether_ifdetach(ifp);
666 		goto fail;
667 	}
668 
669 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->age_irq_res));
670 	return 0;
671 fail:
672 	age_detach(dev);
673 	return (error);
674 }
675 
676 static int
677 age_detach(device_t dev)
678 {
679 	struct age_softc *sc = device_get_softc(dev);
680 
681 	if (device_is_attached(dev)) {
682 		struct ifnet *ifp = &sc->arpcom.ac_if;
683 
684 		lwkt_serialize_enter(ifp->if_serializer);
685 		sc->age_flags |= AGE_FLAG_DETACH;
686 		age_stop(sc);
687 		bus_teardown_intr(dev, sc->age_irq_res, sc->age_irq_handle);
688 		lwkt_serialize_exit(ifp->if_serializer);
689 
690 		ether_ifdetach(ifp);
691 	}
692 
693 	if (sc->age_sysctl_tree != NULL)
694 		sysctl_ctx_free(&sc->age_sysctl_ctx);
695 
696 	if (sc->age_miibus != NULL)
697 		device_delete_child(dev, sc->age_miibus);
698 	bus_generic_detach(dev);
699 
700 	if (sc->age_irq_res != NULL) {
701 		bus_release_resource(dev, SYS_RES_IRQ, sc->age_irq_rid,
702 				     sc->age_irq_res);
703 	}
704 	if (sc->age_mem_res != NULL) {
705 		bus_release_resource(dev, SYS_RES_MEMORY, sc->age_mem_rid,
706 				     sc->age_mem_res);
707 	}
708 
709 	age_dma_free(sc);
710 
711 	return (0);
712 }
713 
714 static void
715 age_sysctl_node(struct age_softc *sc)
716 {
717 	int error;
718 
719 	sysctl_ctx_init(&sc->age_sysctl_ctx);
720 	sc->age_sysctl_tree = SYSCTL_ADD_NODE(&sc->age_sysctl_ctx,
721 				SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
722 				device_get_nameunit(sc->age_dev),
723 				CTLFLAG_RD, 0, "");
724 	if (sc->age_sysctl_tree == NULL) {
725 		device_printf(sc->age_dev, "can't add sysctl node\n");
726 		return;
727 	}
728 
729 	SYSCTL_ADD_PROC(&sc->age_sysctl_ctx,
730 	    SYSCTL_CHILDREN(sc->age_sysctl_tree), OID_AUTO,
731 	    "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_age_stats,
732 	    "I", "Statistics");
733 
734 	SYSCTL_ADD_PROC(&sc->age_sysctl_ctx,
735 	    SYSCTL_CHILDREN(sc->age_sysctl_tree), OID_AUTO,
736 	    "int_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->age_int_mod, 0,
737 	    sysctl_hw_age_int_mod, "I", "age interrupt moderation");
738 
739 	/* Pull in device tunables. */
740 	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
741 	error = resource_int_value(device_get_name(sc->age_dev),
742 	    device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
743 	if (error == 0) {
744 		if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
745 		    sc->age_int_mod > AGE_IM_TIMER_MAX) {
746 			device_printf(sc->age_dev,
747 			    "int_mod value out of range; using default: %d\n",
748 			    AGE_IM_TIMER_DEFAULT);
749 			sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
750 		}
751 	}
752 }
753 
754 struct age_dmamap_arg {
755 	bus_addr_t	age_busaddr;
756 };
757 
758 static void
759 age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
760 {
761 	struct age_dmamap_arg *ctx;
762 
763 	if (error != 0)
764 		return;
765 
766 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
767 
768 	ctx = (struct age_dmamap_arg *)arg;
769 	ctx->age_busaddr = segs[0].ds_addr;
770 }
771 
772 /*
773  * Attansic L1 controller have single register to specify high
774  * address part of DMA blocks. So all descriptor structures and
775  * DMA memory blocks should have the same high address of given
776  * 4GB address space(i.e. crossing 4GB boundary is not allowed).
777  */
778 static int
779 age_check_boundary(struct age_softc *sc)
780 {
781 	bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
782 	bus_addr_t cmb_block_end, smb_block_end;
783 
784 	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
785 	tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
786 	rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
787 	rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
788 	cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
789 	smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
790 
791 	if ((AGE_ADDR_HI(tx_ring_end) !=
792 	    AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
793 	    (AGE_ADDR_HI(rx_ring_end) !=
794 	    AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
795 	    (AGE_ADDR_HI(rr_ring_end) !=
796 	    AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
797 	    (AGE_ADDR_HI(cmb_block_end) !=
798 	    AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
799 	    (AGE_ADDR_HI(smb_block_end) !=
800 	    AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
801 		return (EFBIG);
802 
803 	if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
804 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
805 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
806 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
807 		return (EFBIG);
808 
809 	return (0);
810 }
811 
812 static int
813 age_dma_alloc(struct age_softc *sc)
814 {
815 	struct age_txdesc *txd;
816 	struct age_rxdesc *rxd;
817 	bus_addr_t lowaddr;
818 	struct age_dmamap_arg ctx;
819 	int error, i;
820 
821 	lowaddr = BUS_SPACE_MAXADDR;
822 again:
823 	/* Create parent ring/DMA block tag. */
824 	error = bus_dma_tag_create(
825 	    NULL,			/* parent */
826 	    1, 0,			/* alignment, boundary */
827 	    lowaddr,			/* lowaddr */
828 	    BUS_SPACE_MAXADDR,		/* highaddr */
829 	    NULL, NULL,			/* filter, filterarg */
830 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
831 	    0,				/* nsegments */
832 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
833 	    0,				/* flags */
834 	    &sc->age_cdata.age_parent_tag);
835 	if (error != 0) {
836 		device_printf(sc->age_dev,
837 		    "could not create parent DMA tag.\n");
838 		goto fail;
839 	}
840 
841 	/* Create tag for Tx ring. */
842 	error = bus_dma_tag_create(
843 	    sc->age_cdata.age_parent_tag, /* parent */
844 	    AGE_TX_RING_ALIGN, 0,	/* alignment, boundary */
845 	    BUS_SPACE_MAXADDR,		/* lowaddr */
846 	    BUS_SPACE_MAXADDR,		/* highaddr */
847 	    NULL, NULL,			/* filter, filterarg */
848 	    AGE_TX_RING_SZ,		/* maxsize */
849 	    1,				/* nsegments */
850 	    AGE_TX_RING_SZ,		/* maxsegsize */
851 	    0,				/* flags */
852 	    &sc->age_cdata.age_tx_ring_tag);
853 	if (error != 0) {
854 		device_printf(sc->age_dev,
855 		    "could not create Tx ring DMA tag.\n");
856 		goto fail;
857 	}
858 
859 	/* Create tag for Rx ring. */
860 	error = bus_dma_tag_create(
861 	    sc->age_cdata.age_parent_tag, /* parent */
862 	    AGE_RX_RING_ALIGN, 0,	/* alignment, boundary */
863 	    BUS_SPACE_MAXADDR,		/* lowaddr */
864 	    BUS_SPACE_MAXADDR,		/* highaddr */
865 	    NULL, NULL,			/* filter, filterarg */
866 	    AGE_RX_RING_SZ,		/* maxsize */
867 	    1,				/* nsegments */
868 	    AGE_RX_RING_SZ,		/* maxsegsize */
869 	    0,				/* flags */
870 	    &sc->age_cdata.age_rx_ring_tag);
871 	if (error != 0) {
872 		device_printf(sc->age_dev,
873 		    "could not create Rx ring DMA tag.\n");
874 		goto fail;
875 	}
876 
877 	/* Create tag for Rx return ring. */
878 	error = bus_dma_tag_create(
879 	    sc->age_cdata.age_parent_tag, /* parent */
880 	    AGE_RR_RING_ALIGN, 0,	/* alignment, boundary */
881 	    BUS_SPACE_MAXADDR,		/* lowaddr */
882 	    BUS_SPACE_MAXADDR,		/* highaddr */
883 	    NULL, NULL,			/* filter, filterarg */
884 	    AGE_RR_RING_SZ,		/* maxsize */
885 	    1,				/* nsegments */
886 	    AGE_RR_RING_SZ,		/* maxsegsize */
887 	    0,				/* flags */
888 	    &sc->age_cdata.age_rr_ring_tag);
889 	if (error != 0) {
890 		device_printf(sc->age_dev,
891 		    "could not create Rx return ring DMA tag.\n");
892 		goto fail;
893 	}
894 
895 	/* Create tag for coalesing message block. */
896 	error = bus_dma_tag_create(
897 	    sc->age_cdata.age_parent_tag, /* parent */
898 	    AGE_CMB_ALIGN, 0,		/* alignment, boundary */
899 	    BUS_SPACE_MAXADDR,		/* lowaddr */
900 	    BUS_SPACE_MAXADDR,		/* highaddr */
901 	    NULL, NULL,			/* filter, filterarg */
902 	    AGE_CMB_BLOCK_SZ,		/* maxsize */
903 	    1,				/* nsegments */
904 	    AGE_CMB_BLOCK_SZ,		/* maxsegsize */
905 	    0,				/* flags */
906 	    &sc->age_cdata.age_cmb_block_tag);
907 	if (error != 0) {
908 		device_printf(sc->age_dev,
909 		    "could not create CMB DMA tag.\n");
910 		goto fail;
911 	}
912 
913 	/* Create tag for statistics message block. */
914 	error = bus_dma_tag_create(
915 	    sc->age_cdata.age_parent_tag, /* parent */
916 	    AGE_SMB_ALIGN, 0,		/* alignment, boundary */
917 	    BUS_SPACE_MAXADDR,		/* lowaddr */
918 	    BUS_SPACE_MAXADDR,		/* highaddr */
919 	    NULL, NULL,			/* filter, filterarg */
920 	    AGE_SMB_BLOCK_SZ,		/* maxsize */
921 	    1,				/* nsegments */
922 	    AGE_SMB_BLOCK_SZ,		/* maxsegsize */
923 	    0,				/* flags */
924 	    &sc->age_cdata.age_smb_block_tag);
925 	if (error != 0) {
926 		device_printf(sc->age_dev,
927 		    "could not create SMB DMA tag.\n");
928 		goto fail;
929 	}
930 
931 	/* Allocate DMA'able memory and load the DMA map. */
932 	error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
933 	    (void **)&sc->age_rdata.age_tx_ring,
934 	    BUS_DMA_WAITOK | BUS_DMA_ZERO,
935 	    &sc->age_cdata.age_tx_ring_map);
936 	if (error != 0) {
937 		device_printf(sc->age_dev,
938 		    "could not allocate DMA'able memory for Tx ring.\n");
939 		goto fail;
940 	}
941 	ctx.age_busaddr = 0;
942 	error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
943 	    sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
944 	    AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
945 	if (error != 0 || ctx.age_busaddr == 0) {
946 		device_printf(sc->age_dev,
947 		    "could not load DMA'able memory for Tx ring.\n");
948 		goto fail;
949 	}
950 	sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
951 	/* Rx ring */
952 	error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
953 	    (void **)&sc->age_rdata.age_rx_ring,
954 	    BUS_DMA_WAITOK | BUS_DMA_ZERO,
955 	    &sc->age_cdata.age_rx_ring_map);
956 	if (error != 0) {
957 		device_printf(sc->age_dev,
958 		    "could not allocate DMA'able memory for Rx ring.\n");
959 		goto fail;
960 	}
961 	ctx.age_busaddr = 0;
962 	error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
963 	    sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
964 	    AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
965 	if (error != 0 || ctx.age_busaddr == 0) {
966 		device_printf(sc->age_dev,
967 		    "could not load DMA'able memory for Rx ring.\n");
968 		goto fail;
969 	}
970 	sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
971 	/* Rx return ring */
972 	error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
973 	    (void **)&sc->age_rdata.age_rr_ring,
974 	    BUS_DMA_WAITOK | BUS_DMA_ZERO,
975 	    &sc->age_cdata.age_rr_ring_map);
976 	if (error != 0) {
977 		device_printf(sc->age_dev,
978 		    "could not allocate DMA'able memory for Rx return ring.\n");
979 		goto fail;
980 	}
981 	ctx.age_busaddr = 0;
982 	error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
983 	    sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
984 	    AGE_RR_RING_SZ, age_dmamap_cb, &ctx, 0);
985 	if (error != 0 || ctx.age_busaddr == 0) {
986 		device_printf(sc->age_dev,
987 		    "could not load DMA'able memory for Rx return ring.\n");
988 		goto fail;
989 	}
990 	sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
991 	/* CMB block */
992 	error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
993 	    (void **)&sc->age_rdata.age_cmb_block,
994 	    BUS_DMA_WAITOK | BUS_DMA_ZERO,
995 	    &sc->age_cdata.age_cmb_block_map);
996 	if (error != 0) {
997 		device_printf(sc->age_dev,
998 		    "could not allocate DMA'able memory for CMB block.\n");
999 		goto fail;
1000 	}
1001 	ctx.age_busaddr = 0;
1002 	error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
1003 	    sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
1004 	    AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1005 	if (error != 0 || ctx.age_busaddr == 0) {
1006 		device_printf(sc->age_dev,
1007 		    "could not load DMA'able memory for CMB block.\n");
1008 		goto fail;
1009 	}
1010 	sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
1011 	/* SMB block */
1012 	error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
1013 	    (void **)&sc->age_rdata.age_smb_block,
1014 	    BUS_DMA_WAITOK | BUS_DMA_ZERO,
1015 	    &sc->age_cdata.age_smb_block_map);
1016 	if (error != 0) {
1017 		device_printf(sc->age_dev,
1018 		    "could not allocate DMA'able memory for SMB block.\n");
1019 		goto fail;
1020 	}
1021 	ctx.age_busaddr = 0;
1022 	error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
1023 	    sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
1024 	    AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1025 	if (error != 0 || ctx.age_busaddr == 0) {
1026 		device_printf(sc->age_dev,
1027 		    "could not load DMA'able memory for SMB block.\n");
1028 		goto fail;
1029 	}
1030 	sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
1031 
1032 	/*
1033 	 * All ring buffer and DMA blocks should have the same
1034 	 * high address part of 64bit DMA address space.
1035 	 */
1036 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1037 	    (error = age_check_boundary(sc)) != 0) {
1038 		device_printf(sc->age_dev, "4GB boundary crossed, "
1039 		    "switching to 32bit DMA addressing mode.\n");
1040 		age_dma_free(sc);
1041 		/* Limit DMA address space to 32bit and try again. */
1042 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1043 		goto again;
1044 	}
1045 
1046 	/*
1047 	 * Create Tx/Rx buffer parent tag.
1048 	 * L1 supports full 64bit DMA addressing in Tx/Rx buffers
1049 	 * so it needs separate parent DMA tag.
1050 	 */
1051 	error = bus_dma_tag_create(
1052 	    NULL,			/* parent */
1053 	    1, 0,			/* alignment, boundary */
1054 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1055 	    BUS_SPACE_MAXADDR,		/* highaddr */
1056 	    NULL, NULL,			/* filter, filterarg */
1057 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1058 	    0,				/* nsegments */
1059 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1060 	    0,				/* flags */
1061 	    &sc->age_cdata.age_buffer_tag);
1062 	if (error != 0) {
1063 		device_printf(sc->age_dev,
1064 		    "could not create parent buffer DMA tag.\n");
1065 		goto fail;
1066 	}
1067 
1068 	/* Create tag for Tx buffers. */
1069 	error = bus_dma_tag_create(
1070 	    sc->age_cdata.age_buffer_tag, /* parent */
1071 	    1, 0,			/* alignment, boundary */
1072 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1073 	    BUS_SPACE_MAXADDR,		/* highaddr */
1074 	    NULL, NULL,			/* filter, filterarg */
1075 	    AGE_TSO_MAXSIZE,		/* maxsize */
1076 	    AGE_MAXTXSEGS,		/* nsegments */
1077 	    AGE_TSO_MAXSEGSIZE,		/* maxsegsize */
1078 	    0,				/* flags */
1079 	    &sc->age_cdata.age_tx_tag);
1080 	if (error != 0) {
1081 		device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
1082 		goto fail;
1083 	}
1084 
1085 	/* Create tag for Rx buffers. */
1086 	error = bus_dma_tag_create(
1087 	    sc->age_cdata.age_buffer_tag, /* parent */
1088 	    1, 0,			/* alignment, boundary */
1089 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1090 	    BUS_SPACE_MAXADDR,		/* highaddr */
1091 	    NULL, NULL,			/* filter, filterarg */
1092 	    MCLBYTES,			/* maxsize */
1093 	    1,				/* nsegments */
1094 	    MCLBYTES,			/* maxsegsize */
1095 	    0,				/* flags */
1096 	    &sc->age_cdata.age_rx_tag);
1097 	if (error != 0) {
1098 		device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
1099 		goto fail;
1100 	}
1101 
1102 	/* Create DMA maps for Tx buffers. */
1103 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
1104 		txd = &sc->age_cdata.age_txdesc[i];
1105 		txd->tx_m = NULL;
1106 		txd->tx_dmamap = NULL;
1107 		error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
1108 		    &txd->tx_dmamap);
1109 		if (error != 0) {
1110 			device_printf(sc->age_dev,
1111 			    "could not create Tx dmamap.\n");
1112 			goto fail;
1113 		}
1114 	}
1115 	/* Create DMA maps for Rx buffers. */
1116 	if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1117 	    &sc->age_cdata.age_rx_sparemap)) != 0) {
1118 		device_printf(sc->age_dev,
1119 		    "could not create spare Rx dmamap.\n");
1120 		goto fail;
1121 	}
1122 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
1123 		rxd = &sc->age_cdata.age_rxdesc[i];
1124 		rxd->rx_m = NULL;
1125 		rxd->rx_dmamap = NULL;
1126 		error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1127 		    &rxd->rx_dmamap);
1128 		if (error != 0) {
1129 			device_printf(sc->age_dev,
1130 			    "could not create Rx dmamap.\n");
1131 			goto fail;
1132 		}
1133 	}
1134 fail:
1135 	return (error);
1136 }
1137 
1138 static void
1139 age_dma_free(struct age_softc *sc)
1140 {
1141 	struct age_txdesc *txd;
1142 	struct age_rxdesc *rxd;
1143 	int i;
1144 
1145 	/* Tx buffers */
1146 	if (sc->age_cdata.age_tx_tag != NULL) {
1147 		for (i = 0; i < AGE_TX_RING_CNT; i++) {
1148 			txd = &sc->age_cdata.age_txdesc[i];
1149 			if (txd->tx_dmamap != NULL) {
1150 				bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
1151 				    txd->tx_dmamap);
1152 				txd->tx_dmamap = NULL;
1153 			}
1154 		}
1155 		bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
1156 		sc->age_cdata.age_tx_tag = NULL;
1157 	}
1158 	/* Rx buffers */
1159 	if (sc->age_cdata.age_rx_tag != NULL) {
1160 		for (i = 0; i < AGE_RX_RING_CNT; i++) {
1161 			rxd = &sc->age_cdata.age_rxdesc[i];
1162 			if (rxd->rx_dmamap != NULL) {
1163 				bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1164 				    rxd->rx_dmamap);
1165 				rxd->rx_dmamap = NULL;
1166 			}
1167 		}
1168 		if (sc->age_cdata.age_rx_sparemap != NULL) {
1169 			bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1170 			    sc->age_cdata.age_rx_sparemap);
1171 			sc->age_cdata.age_rx_sparemap = NULL;
1172 		}
1173 		bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
1174 		sc->age_cdata.age_rx_tag = NULL;
1175 	}
1176 	/* Tx ring. */
1177 	if (sc->age_cdata.age_tx_ring_tag != NULL) {
1178 		if (sc->age_cdata.age_tx_ring_map != NULL)
1179 			bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
1180 			    sc->age_cdata.age_tx_ring_map);
1181 		if (sc->age_cdata.age_tx_ring_map != NULL &&
1182 		    sc->age_rdata.age_tx_ring != NULL)
1183 			bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
1184 			    sc->age_rdata.age_tx_ring,
1185 			    sc->age_cdata.age_tx_ring_map);
1186 		sc->age_rdata.age_tx_ring = NULL;
1187 		sc->age_cdata.age_tx_ring_map = NULL;
1188 		bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
1189 		sc->age_cdata.age_tx_ring_tag = NULL;
1190 	}
1191 	/* Rx ring. */
1192 	if (sc->age_cdata.age_rx_ring_tag != NULL) {
1193 		if (sc->age_cdata.age_rx_ring_map != NULL)
1194 			bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
1195 			    sc->age_cdata.age_rx_ring_map);
1196 		if (sc->age_cdata.age_rx_ring_map != NULL &&
1197 		    sc->age_rdata.age_rx_ring != NULL)
1198 			bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
1199 			    sc->age_rdata.age_rx_ring,
1200 			    sc->age_cdata.age_rx_ring_map);
1201 		sc->age_rdata.age_rx_ring = NULL;
1202 		sc->age_cdata.age_rx_ring_map = NULL;
1203 		bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
1204 		sc->age_cdata.age_rx_ring_tag = NULL;
1205 	}
1206 	/* Rx return ring. */
1207 	if (sc->age_cdata.age_rr_ring_tag != NULL) {
1208 		if (sc->age_cdata.age_rr_ring_map != NULL)
1209 			bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
1210 			    sc->age_cdata.age_rr_ring_map);
1211 		if (sc->age_cdata.age_rr_ring_map != NULL &&
1212 		    sc->age_rdata.age_rr_ring != NULL)
1213 			bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
1214 			    sc->age_rdata.age_rr_ring,
1215 			    sc->age_cdata.age_rr_ring_map);
1216 		sc->age_rdata.age_rr_ring = NULL;
1217 		sc->age_cdata.age_rr_ring_map = NULL;
1218 		bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
1219 		sc->age_cdata.age_rr_ring_tag = NULL;
1220 	}
1221 	/* CMB block */
1222 	if (sc->age_cdata.age_cmb_block_tag != NULL) {
1223 		if (sc->age_cdata.age_cmb_block_map != NULL)
1224 			bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
1225 			    sc->age_cdata.age_cmb_block_map);
1226 		if (sc->age_cdata.age_cmb_block_map != NULL &&
1227 		    sc->age_rdata.age_cmb_block != NULL)
1228 			bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
1229 			    sc->age_rdata.age_cmb_block,
1230 			    sc->age_cdata.age_cmb_block_map);
1231 		sc->age_rdata.age_cmb_block = NULL;
1232 		sc->age_cdata.age_cmb_block_map = NULL;
1233 		bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
1234 		sc->age_cdata.age_cmb_block_tag = NULL;
1235 	}
1236 	/* SMB block */
1237 	if (sc->age_cdata.age_smb_block_tag != NULL) {
1238 		if (sc->age_cdata.age_smb_block_map != NULL)
1239 			bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
1240 			    sc->age_cdata.age_smb_block_map);
1241 		if (sc->age_cdata.age_smb_block_map != NULL &&
1242 		    sc->age_rdata.age_smb_block != NULL)
1243 			bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
1244 			    sc->age_rdata.age_smb_block,
1245 			    sc->age_cdata.age_smb_block_map);
1246 		sc->age_rdata.age_smb_block = NULL;
1247 		sc->age_cdata.age_smb_block_map = NULL;
1248 		bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
1249 		sc->age_cdata.age_smb_block_tag = NULL;
1250 	}
1251 
1252 	if (sc->age_cdata.age_buffer_tag != NULL) {
1253 		bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
1254 		sc->age_cdata.age_buffer_tag = NULL;
1255 	}
1256 	if (sc->age_cdata.age_parent_tag != NULL) {
1257 		bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
1258 		sc->age_cdata.age_parent_tag = NULL;
1259 	}
1260 }
1261 
1262 /*
1263  *	Make sure the interface is stopped at reboot time.
1264  */
1265 static int
1266 age_shutdown(device_t dev)
1267 {
1268 	return age_suspend(dev);
1269 }
1270 
1271 #ifdef wol_notyet
1272 
1273 static void
1274 age_setwol(struct age_softc *sc)
1275 {
1276 	struct ifnet *ifp;
1277 	struct mii_data *mii;
1278 	uint32_t reg, pmcs;
1279 	uint16_t pmstat;
1280 	int aneg, i, pmc;
1281 
1282 	AGE_LOCK_ASSERT(sc);
1283 
1284 	if (pci_find_extcap(sc->age_dev, PCIY_PMG, &pmc) == 0) {
1285 		CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1286 		/*
1287 		 * No PME capability, PHY power down.
1288 		 * XXX
1289 		 * Due to an unknown reason powering down PHY resulted
1290 		 * in unexpected results such as inaccessbility of
1291 		 * hardware of freshly rebooted system. Disable
1292 		 * powering down PHY until I got more information for
1293 		 * Attansic/Atheros PHY hardwares.
1294 		 */
1295 #ifdef notyet
1296 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1297 		    MII_BMCR, BMCR_PDOWN);
1298 #endif
1299 		return;
1300 	}
1301 
1302 	ifp = sc->age_ifp;
1303 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1304 		/*
1305 		 * Note, this driver resets the link speed to 10/100Mbps with
1306 		 * auto-negotiation but we don't know whether that operation
1307 		 * would succeed or not as it have no control after powering
1308 		 * off. If the renegotiation fail WOL may not work. Running
1309 		 * at 1Gbps will draw more power than 375mA at 3.3V which is
1310 		 * specified in PCI specification and that would result in
1311 		 * complete shutdowning power to ethernet controller.
1312 		 *
1313 		 * TODO
1314 		 *  Save current negotiated media speed/duplex/flow-control
1315 		 *  to softc and restore the same link again after resuming.
1316 		 *  PHY handling such as power down/resetting to 100Mbps
1317 		 *  may be better handled in suspend method in phy driver.
1318 		 */
1319 		mii = device_get_softc(sc->age_miibus);
1320 		mii_pollstat(mii);
1321 		aneg = 0;
1322 		if ((mii->mii_media_status & IFM_AVALID) != 0) {
1323 			switch IFM_SUBTYPE(mii->mii_media_active) {
1324 			case IFM_10_T:
1325 			case IFM_100_TX:
1326 				goto got_link;
1327 			case IFM_1000_T:
1328 				aneg++;
1329 			default:
1330 				break;
1331 			}
1332 		}
1333 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1334 		    MII_100T2CR, 0);
1335 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1336 		    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
1337 		    ANAR_10 | ANAR_CSMA);
1338 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1339 		    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1340 		DELAY(1000);
1341 		if (aneg != 0) {
1342 			/* Poll link state until age(4) get a 10/100 link. */
1343 			for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1344 				mii_pollstat(mii);
1345 				if ((mii->mii_media_status & IFM_AVALID) != 0) {
1346 					switch (IFM_SUBTYPE(
1347 					    mii->mii_media_active)) {
1348 					case IFM_10_T:
1349 					case IFM_100_TX:
1350 						age_mac_config(sc);
1351 						goto got_link;
1352 					default:
1353 						break;
1354 					}
1355 				}
1356 				AGE_UNLOCK(sc);
1357 				pause("agelnk", hz);
1358 				AGE_LOCK(sc);
1359 			}
1360 			if (i == MII_ANEGTICKS_GIGE)
1361 				device_printf(sc->age_dev,
1362 				    "establishing link failed, "
1363 				    "WOL may not work!");
1364 		}
1365 		/*
1366 		 * No link, force MAC to have 100Mbps, full-duplex link.
1367 		 * This is the last resort and may/may not work.
1368 		 */
1369 		mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1370 		mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1371 		age_mac_config(sc);
1372 	}
1373 
1374 got_link:
1375 	pmcs = 0;
1376 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1377 		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1378 	CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
1379 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1380 	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
1381 	reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
1382 	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1383 		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1384 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1385 		reg |= MAC_CFG_RX_ENB;
1386 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1387 	}
1388 
1389 	/* Request PME. */
1390 	pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2);
1391 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1392 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1393 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1394 	pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1395 #ifdef notyet
1396 	/* See above for powering down PHY issues. */
1397 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1398 		/* No WOL, PHY power down. */
1399 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1400 		    MII_BMCR, BMCR_PDOWN);
1401 	}
1402 #endif
1403 }
1404 
1405 #endif	/* wol_notyet */
1406 
1407 static int
1408 age_suspend(device_t dev)
1409 {
1410 	struct age_softc *sc = device_get_softc(dev);
1411 	struct ifnet *ifp = &sc->arpcom.ac_if;
1412 
1413 	lwkt_serialize_enter(ifp->if_serializer);
1414 	age_stop(sc);
1415 #ifdef wol_notyet
1416 	age_setwol(sc);
1417 #endif
1418 	lwkt_serialize_exit(ifp->if_serializer);
1419 
1420 	return (0);
1421 }
1422 
1423 static int
1424 age_resume(device_t dev)
1425 {
1426 	struct age_softc *sc = device_get_softc(dev);
1427 	struct ifnet *ifp = &sc->arpcom.ac_if;
1428 	uint16_t cmd;
1429 
1430 	lwkt_serialize_enter(ifp->if_serializer);
1431 
1432 	/*
1433 	 * Clear INTx emulation disable for hardwares that
1434 	 * is set in resume event. From Linux.
1435 	 */
1436 	cmd = pci_read_config(sc->age_dev, PCIR_COMMAND, 2);
1437 	if ((cmd & 0x0400) != 0) {
1438 		cmd &= ~0x0400;
1439 		pci_write_config(sc->age_dev, PCIR_COMMAND, cmd, 2);
1440 	}
1441 	if ((ifp->if_flags & IFF_UP) != 0)
1442 		age_init(sc);
1443 
1444 	lwkt_serialize_exit(ifp->if_serializer);
1445 
1446 	return (0);
1447 }
1448 
1449 static int
1450 age_encap(struct age_softc *sc, struct mbuf **m_head)
1451 {
1452 	struct age_txdesc *txd, *txd_last;
1453 	struct tx_desc *desc;
1454 	struct mbuf *m;
1455 	struct age_dmamap_ctx ctx;
1456 	bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
1457 	bus_dmamap_t map;
1458 	uint32_t cflags, poff, vtag;
1459 	int error, i, nsegs, prod;
1460 
1461 	M_ASSERTPKTHDR((*m_head));
1462 
1463 	m = *m_head;
1464 	cflags = vtag = 0;
1465 	poff = 0;
1466 
1467 	prod = sc->age_cdata.age_tx_prod;
1468 	txd = &sc->age_cdata.age_txdesc[prod];
1469 	txd_last = txd;
1470 	map = txd->tx_dmamap;
1471 
1472 	ctx.nsegs = AGE_MAXTXSEGS;
1473 	ctx.segs = txsegs;
1474 	error = bus_dmamap_load_mbuf(sc->age_cdata.age_tx_tag, map,
1475 				     *m_head, age_dmamap_buf_cb, &ctx,
1476 				     BUS_DMA_NOWAIT);
1477 	if (!error && ctx.nsegs == 0) {
1478 		bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1479 		error = EFBIG;
1480 	}
1481 	if (error == EFBIG) {
1482 		m = m_defrag(*m_head, MB_DONTWAIT);
1483 		if (m == NULL) {
1484 			m_freem(*m_head);
1485 			*m_head = NULL;
1486 			return (ENOBUFS);
1487 		}
1488 		*m_head = m;
1489 
1490 		ctx.nsegs = AGE_MAXTXSEGS;
1491 		ctx.segs = txsegs;
1492 		error = bus_dmamap_load_mbuf(sc->age_cdata.age_tx_tag, map,
1493 					     *m_head, age_dmamap_buf_cb, &ctx,
1494 					     BUS_DMA_NOWAIT);
1495 		if (error || ctx.nsegs == 0) {
1496 			if (!error) {
1497 				bus_dmamap_unload(sc->age_cdata.age_tx_tag,
1498 						  map);
1499 				error = EFBIG;
1500 			}
1501 			m_freem(*m_head);
1502 			*m_head = NULL;
1503 			return (error);
1504 		}
1505 	} else if (error != 0) {
1506 		return (error);
1507 	}
1508 	nsegs = ctx.nsegs;
1509 
1510 	if (nsegs == 0) {
1511 		m_freem(*m_head);
1512 		*m_head = NULL;
1513 		return (EIO);
1514 	}
1515 
1516 	/* Check descriptor overrun. */
1517 	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1518 		bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1519 		return (ENOBUFS);
1520 	}
1521 
1522 	m = *m_head;
1523 	/* Configure Tx IP/TCP/UDP checksum offload. */
1524 	if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1525 		cflags |= AGE_TD_CSUM;
1526 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1527 			cflags |= AGE_TD_TCPCSUM;
1528 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1529 			cflags |= AGE_TD_UDPCSUM;
1530 		/* Set checksum start offset. */
1531 		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1532 		/* Set checksum insertion position of TCP/UDP. */
1533 		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1534 		    AGE_TD_CSUM_XSUMOFFSET_SHIFT);
1535 	}
1536 
1537 	/* Configure VLAN hardware tag insertion. */
1538 	if ((m->m_flags & M_VLANTAG) != 0) {
1539 		vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vlantag);
1540 		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1541 		cflags |= AGE_TD_INSERT_VLAN_TAG;
1542 	}
1543 
1544 	desc = NULL;
1545 	for (i = 0; i < nsegs; i++) {
1546 		desc = &sc->age_rdata.age_tx_ring[prod];
1547 		desc->addr = htole64(txsegs[i].ds_addr);
1548 		desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
1549 		desc->flags = htole32(cflags);
1550 		sc->age_cdata.age_tx_cnt++;
1551 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1552 	}
1553 	/* Update producer index. */
1554 	sc->age_cdata.age_tx_prod = prod;
1555 
1556 	/* Set EOP on the last descriptor. */
1557 	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1558 	desc = &sc->age_rdata.age_tx_ring[prod];
1559 	desc->flags |= htole32(AGE_TD_EOP);
1560 
1561 	/* Swap dmamap of the first and the last. */
1562 	txd = &sc->age_cdata.age_txdesc[prod];
1563 	map = txd_last->tx_dmamap;
1564 	txd_last->tx_dmamap = txd->tx_dmamap;
1565 	txd->tx_dmamap = map;
1566 	txd->tx_m = m;
1567 
1568 	/* Sync descriptors. */
1569 	bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
1570 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1571 	    sc->age_cdata.age_tx_ring_map, BUS_DMASYNC_PREWRITE);
1572 
1573 	return (0);
1574 }
1575 
1576 static void
1577 age_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1578 {
1579 	struct age_softc *sc = ifp->if_softc;
1580 	struct mbuf *m_head;
1581 	int enq;
1582 
1583 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1584 	ASSERT_SERIALIZED(ifp->if_serializer);
1585 
1586 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1587 		ifq_purge(&ifp->if_snd);
1588 		return;
1589 	}
1590 
1591 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1592 		return;
1593 
1594 	enq = 0;
1595 	while (!ifq_is_empty(&ifp->if_snd)) {
1596 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
1597 		if (m_head == NULL)
1598 			break;
1599 
1600 		/*
1601 		 * Pack the data into the transmit ring. If we
1602 		 * don't have room, set the OACTIVE flag and wait
1603 		 * for the NIC to drain the ring.
1604 		 */
1605 		if (age_encap(sc, &m_head)) {
1606 			if (m_head == NULL)
1607 				break;
1608 			ifq_prepend(&ifp->if_snd, m_head);
1609 			ifq_set_oactive(&ifp->if_snd);
1610 			break;
1611 		}
1612 		enq = 1;
1613 
1614 		/*
1615 		 * If there's a BPF listener, bounce a copy of this frame
1616 		 * to him.
1617 		 */
1618 		ETHER_BPF_MTAP(ifp, m_head);
1619 	}
1620 
1621 	if (enq) {
1622 		/* Update mbox. */
1623 		AGE_COMMIT_MBOX(sc);
1624 		/* Set a timeout in case the chip goes out to lunch. */
1625 		ifp->if_timer = AGE_TX_TIMEOUT;
1626 	}
1627 }
1628 
1629 static void
1630 age_watchdog(struct ifnet *ifp)
1631 {
1632 	struct age_softc *sc = ifp->if_softc;
1633 
1634 	ASSERT_SERIALIZED(ifp->if_serializer);
1635 
1636 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1637 		if_printf(ifp, "watchdog timeout (missed link)\n");
1638 		ifp->if_oerrors++;
1639 		age_init(sc);
1640 		return;
1641 	}
1642 
1643 	if (sc->age_cdata.age_tx_cnt == 0) {
1644 		if_printf(ifp,
1645 		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1646 		if (!ifq_is_empty(&ifp->if_snd))
1647 			if_devstart(ifp);
1648 		return;
1649 	}
1650 
1651 	if_printf(ifp, "watchdog timeout\n");
1652 	ifp->if_oerrors++;
1653 	age_init(sc);
1654 	if (!ifq_is_empty(&ifp->if_snd))
1655 		if_devstart(ifp);
1656 }
1657 
1658 static int
1659 age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
1660 {
1661 	struct age_softc *sc = ifp->if_softc;
1662 	struct ifreq *ifr;
1663 	struct mii_data *mii;
1664 	uint32_t reg;
1665 	int error, mask;
1666 
1667 	ASSERT_SERIALIZED(ifp->if_serializer);
1668 
1669 	ifr = (struct ifreq *)data;
1670 	error = 0;
1671 	switch (cmd) {
1672 	case SIOCSIFMTU:
1673 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU) {
1674 			error = EINVAL;
1675 		} else if (ifp->if_mtu != ifr->ifr_mtu) {
1676 			ifp->if_mtu = ifr->ifr_mtu;
1677 			if ((ifp->if_flags & IFF_RUNNING) != 0)
1678 				age_init(sc);
1679 		}
1680 		break;
1681 
1682 	case SIOCSIFFLAGS:
1683 		if ((ifp->if_flags & IFF_UP) != 0) {
1684 			if ((ifp->if_flags & IFF_RUNNING) != 0) {
1685 				if (((ifp->if_flags ^ sc->age_if_flags)
1686 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1687 					age_rxfilter(sc);
1688 			} else {
1689 				if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
1690 					age_init(sc);
1691 			}
1692 		} else {
1693 			if ((ifp->if_flags & IFF_RUNNING) != 0)
1694 				age_stop(sc);
1695 		}
1696 		sc->age_if_flags = ifp->if_flags;
1697 		break;
1698 
1699 	case SIOCADDMULTI:
1700 	case SIOCDELMULTI:
1701 		if ((ifp->if_flags & IFF_RUNNING) != 0)
1702 			age_rxfilter(sc);
1703 		break;
1704 
1705 	case SIOCSIFMEDIA:
1706 	case SIOCGIFMEDIA:
1707 		mii = device_get_softc(sc->age_miibus);
1708 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1709 		break;
1710 
1711 	case SIOCSIFCAP:
1712 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1713 
1714 		if ((mask & IFCAP_TXCSUM) != 0 &&
1715 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1716 			ifp->if_capenable ^= IFCAP_TXCSUM;
1717 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1718 				ifp->if_hwassist |= AGE_CSUM_FEATURES;
1719 			else
1720 				ifp->if_hwassist &= ~AGE_CSUM_FEATURES;
1721 		}
1722 
1723 		if ((mask & IFCAP_RXCSUM) != 0 &&
1724 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
1725 			ifp->if_capenable ^= IFCAP_RXCSUM;
1726 			reg = CSR_READ_4(sc, AGE_MAC_CFG);
1727 			reg &= ~MAC_CFG_RXCSUM_ENB;
1728 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1729 				reg |= MAC_CFG_RXCSUM_ENB;
1730 			CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1731 		}
1732 
1733 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1734 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1735 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1736 			age_rxvlan(sc);
1737 		}
1738 		break;
1739 
1740 	default:
1741 		error = ether_ioctl(ifp, cmd, data);
1742 		break;
1743 	}
1744 	return (error);
1745 }
1746 
1747 static void
1748 age_mac_config(struct age_softc *sc)
1749 {
1750 	struct mii_data *mii = device_get_softc(sc->age_miibus);
1751 	uint32_t reg;
1752 
1753 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1754 	reg &= ~MAC_CFG_FULL_DUPLEX;
1755 	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1756 	reg &= ~MAC_CFG_SPEED_MASK;
1757 
1758 	/* Reprogram MAC with resolved speed/duplex. */
1759 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1760 	case IFM_10_T:
1761 	case IFM_100_TX:
1762 		reg |= MAC_CFG_SPEED_10_100;
1763 		break;
1764 	case IFM_1000_T:
1765 		reg |= MAC_CFG_SPEED_1000;
1766 		break;
1767 	}
1768 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1769 		reg |= MAC_CFG_FULL_DUPLEX;
1770 #ifdef notyet
1771 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1772 			reg |= MAC_CFG_TX_FC;
1773 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1774 			reg |= MAC_CFG_RX_FC;
1775 #endif
1776 	}
1777 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1778 }
1779 
1780 static void
1781 age_stats_update(struct age_softc *sc)
1782 {
1783 	struct ifnet *ifp = &sc->arpcom.ac_if;
1784 	struct age_stats *stat;
1785 	struct smb *smb;
1786 
1787 	stat = &sc->age_stat;
1788 
1789 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
1790 	    sc->age_cdata.age_smb_block_map, BUS_DMASYNC_POSTREAD);
1791 
1792 	smb = sc->age_rdata.age_smb_block;
1793 	if (smb->updated == 0)
1794 		return;
1795 
1796 	/* Rx stats. */
1797 	stat->rx_frames += smb->rx_frames;
1798 	stat->rx_bcast_frames += smb->rx_bcast_frames;
1799 	stat->rx_mcast_frames += smb->rx_mcast_frames;
1800 	stat->rx_pause_frames += smb->rx_pause_frames;
1801 	stat->rx_control_frames += smb->rx_control_frames;
1802 	stat->rx_crcerrs += smb->rx_crcerrs;
1803 	stat->rx_lenerrs += smb->rx_lenerrs;
1804 	stat->rx_bytes += smb->rx_bytes;
1805 	stat->rx_runts += smb->rx_runts;
1806 	stat->rx_fragments += smb->rx_fragments;
1807 	stat->rx_pkts_64 += smb->rx_pkts_64;
1808 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1809 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1810 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1811 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1812 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1813 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1814 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1815 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1816 	stat->rx_desc_oflows += smb->rx_desc_oflows;
1817 	stat->rx_alignerrs += smb->rx_alignerrs;
1818 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1819 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1820 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1821 
1822 	/* Tx stats. */
1823 	stat->tx_frames += smb->tx_frames;
1824 	stat->tx_bcast_frames += smb->tx_bcast_frames;
1825 	stat->tx_mcast_frames += smb->tx_mcast_frames;
1826 	stat->tx_pause_frames += smb->tx_pause_frames;
1827 	stat->tx_excess_defer += smb->tx_excess_defer;
1828 	stat->tx_control_frames += smb->tx_control_frames;
1829 	stat->tx_deferred += smb->tx_deferred;
1830 	stat->tx_bytes += smb->tx_bytes;
1831 	stat->tx_pkts_64 += smb->tx_pkts_64;
1832 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
1833 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
1834 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
1835 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
1836 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
1837 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
1838 	stat->tx_single_colls += smb->tx_single_colls;
1839 	stat->tx_multi_colls += smb->tx_multi_colls;
1840 	stat->tx_late_colls += smb->tx_late_colls;
1841 	stat->tx_excess_colls += smb->tx_excess_colls;
1842 	stat->tx_underrun += smb->tx_underrun;
1843 	stat->tx_desc_underrun += smb->tx_desc_underrun;
1844 	stat->tx_lenerrs += smb->tx_lenerrs;
1845 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
1846 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
1847 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
1848 
1849 	/* Update counters in ifnet. */
1850 	ifp->if_opackets += smb->tx_frames;
1851 
1852 	ifp->if_collisions += smb->tx_single_colls +
1853 	    smb->tx_multi_colls + smb->tx_late_colls +
1854 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
1855 
1856 	ifp->if_oerrors += smb->tx_excess_colls +
1857 	    smb->tx_late_colls + smb->tx_underrun +
1858 	    smb->tx_pkts_truncated;
1859 
1860 	ifp->if_ipackets += smb->rx_frames;
1861 
1862 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
1863 	    smb->rx_runts + smb->rx_pkts_truncated +
1864 	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
1865 	    smb->rx_alignerrs;
1866 
1867 	/* Update done, clear. */
1868 	smb->updated = 0;
1869 
1870 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
1871 	    sc->age_cdata.age_smb_block_map, BUS_DMASYNC_PREWRITE);
1872 }
1873 
1874 static void
1875 age_intr(void *xsc)
1876 {
1877 	struct age_softc *sc = xsc;
1878 	struct ifnet *ifp = &sc->arpcom.ac_if;
1879 	struct cmb *cmb;
1880 	uint32_t status;
1881 
1882 	ASSERT_SERIALIZED(ifp->if_serializer);
1883 
1884 	status = CSR_READ_4(sc, AGE_INTR_STATUS);
1885 	if (status == 0 || (status & AGE_INTRS) == 0)
1886 		return;
1887 
1888 	/* Disable and acknowledge interrupts. */
1889 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
1890 
1891 	cmb = sc->age_rdata.age_cmb_block;
1892 
1893 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
1894 	    sc->age_cdata.age_cmb_block_map, BUS_DMASYNC_POSTREAD);
1895 	status = le32toh(cmb->intr_status);
1896 	if ((status & AGE_INTRS) == 0)
1897 		goto done;
1898 again:
1899 	sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
1900 	    TPD_CONS_SHIFT;
1901 	sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
1902 	    RRD_PROD_SHIFT;
1903 
1904 	/* Let hardware know CMB was served. */
1905 	cmb->intr_status = 0;
1906 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
1907 	    sc->age_cdata.age_cmb_block_map, BUS_DMASYNC_PREWRITE);
1908 
1909 #if 0
1910 	kprintf("INTR: 0x%08x\n", status);
1911 	status &= ~INTR_DIS_DMA;
1912 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
1913 #endif
1914 
1915 	if ((ifp->if_flags & IFF_RUNNING) != 0) {
1916 		if ((status & INTR_CMB_RX) != 0)
1917 			age_rxintr(sc, sc->age_rr_prod);
1918 
1919 		if ((status & INTR_CMB_TX) != 0)
1920 			age_txintr(sc, sc->age_tpd_cons);
1921 
1922 		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
1923 			if ((status & INTR_DMA_RD_TO_RST) != 0)
1924 				device_printf(sc->age_dev,
1925 				    "DMA read error! -- resetting\n");
1926 			if ((status & INTR_DMA_WR_TO_RST) != 0)
1927 				device_printf(sc->age_dev,
1928 				    "DMA write error! -- resetting\n");
1929 			age_init(sc);
1930 			/* XXX return? */
1931 		}
1932 
1933 		if (!ifq_is_empty(&ifp->if_snd))
1934 			if_devstart(ifp);
1935 
1936 		if ((status & INTR_SMB) != 0)
1937 			age_stats_update(sc);
1938 	}
1939 
1940 	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
1941 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
1942 	    sc->age_cdata.age_cmb_block_map, BUS_DMASYNC_POSTREAD);
1943 	status = le32toh(cmb->intr_status);
1944 	if ((status & AGE_INTRS) != 0)
1945 		goto again;
1946 done:
1947 	/* Re-enable interrupts. */
1948 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
1949 }
1950 
1951 static void
1952 age_txintr(struct age_softc *sc, int tpd_cons)
1953 {
1954 	struct ifnet *ifp = &sc->arpcom.ac_if;
1955 	struct age_txdesc *txd;
1956 	int cons, prog;
1957 
1958 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1959 	    sc->age_cdata.age_tx_ring_map, BUS_DMASYNC_POSTREAD);
1960 
1961 	/*
1962 	 * Go through our Tx list and free mbufs for those
1963 	 * frames which have been transmitted.
1964 	 */
1965 	cons = sc->age_cdata.age_tx_cons;
1966 	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
1967 		if (sc->age_cdata.age_tx_cnt <= 0)
1968 			break;
1969 		prog++;
1970 		ifq_clr_oactive(&ifp->if_snd);
1971 		sc->age_cdata.age_tx_cnt--;
1972 		txd = &sc->age_cdata.age_txdesc[cons];
1973 		/*
1974 		 * Clear Tx descriptors, it's not required but would
1975 		 * help debugging in case of Tx issues.
1976 		 */
1977 		txd->tx_desc->addr = 0;
1978 		txd->tx_desc->len = 0;
1979 		txd->tx_desc->flags = 0;
1980 
1981 		if (txd->tx_m == NULL)
1982 			continue;
1983 		/* Reclaim transmitted mbufs. */
1984 		bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
1985 		m_freem(txd->tx_m);
1986 		txd->tx_m = NULL;
1987 	}
1988 
1989 	if (prog > 0) {
1990 		sc->age_cdata.age_tx_cons = cons;
1991 
1992 		/*
1993 		 * Unarm watchdog timer only when there are no pending
1994 		 * Tx descriptors in queue.
1995 		 */
1996 		if (sc->age_cdata.age_tx_cnt == 0)
1997 			ifp->if_timer = 0;
1998 		bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1999 		    sc->age_cdata.age_tx_ring_map, BUS_DMASYNC_PREWRITE);
2000 	}
2001 }
2002 
2003 /* Receive a frame. */
2004 static void
2005 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
2006 {
2007 	struct ifnet *ifp = &sc->arpcom.ac_if;
2008 	struct age_rxdesc *rxd;
2009 	struct rx_desc *desc;
2010 	struct mbuf *mp, *m;
2011 	uint32_t status, index, vtag;
2012 	int count, nsegs, pktlen;
2013 	int rx_cons;
2014 
2015 	status = le32toh(rxrd->flags);
2016 	index = le32toh(rxrd->index);
2017 	rx_cons = AGE_RX_CONS(index);
2018 	nsegs = AGE_RX_NSEGS(index);
2019 
2020 	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
2021 	if ((status & AGE_RRD_ERROR) != 0 &&
2022 	    (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
2023 	    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
2024 		/*
2025 		 * We want to pass the following frames to upper
2026 		 * layer regardless of error status of Rx return
2027 		 * ring.
2028 		 *
2029 		 *  o IP/TCP/UDP checksum is bad.
2030 		 *  o frame length and protocol specific length
2031 		 *     does not match.
2032 		 */
2033 		sc->age_cdata.age_rx_cons += nsegs;
2034 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2035 		return;
2036 	}
2037 
2038 	pktlen = 0;
2039 	for (count = 0; count < nsegs; count++,
2040 	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
2041 		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
2042 		mp = rxd->rx_m;
2043 		desc = rxd->rx_desc;
2044 		/* Add a new receive buffer to the ring. */
2045 		if (age_newbuf(sc, rxd, 0) != 0) {
2046 			ifp->if_iqdrops++;
2047 			/* Reuse Rx buffers. */
2048 			if (sc->age_cdata.age_rxhead != NULL) {
2049 				m_freem(sc->age_cdata.age_rxhead);
2050 				AGE_RXCHAIN_RESET(sc);
2051 			}
2052 			break;
2053 		}
2054 
2055 		/* The length of the first mbuf is computed last. */
2056 		if (count != 0) {
2057 			mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
2058 			pktlen += mp->m_len;
2059 		}
2060 
2061 		/* Chain received mbufs. */
2062 		if (sc->age_cdata.age_rxhead == NULL) {
2063 			sc->age_cdata.age_rxhead = mp;
2064 			sc->age_cdata.age_rxtail = mp;
2065 		} else {
2066 			mp->m_flags &= ~M_PKTHDR;
2067 			sc->age_cdata.age_rxprev_tail =
2068 			    sc->age_cdata.age_rxtail;
2069 			sc->age_cdata.age_rxtail->m_next = mp;
2070 			sc->age_cdata.age_rxtail = mp;
2071 		}
2072 
2073 		if (count == nsegs - 1) {
2074 			/*
2075 			 * It seems that L1 controller has no way
2076 			 * to tell hardware to strip CRC bytes.
2077 			 */
2078 			sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
2079 			if (nsegs > 1) {
2080 				/* Remove the CRC bytes in chained mbufs. */
2081 				pktlen -= ETHER_CRC_LEN;
2082 				if (mp->m_len <= ETHER_CRC_LEN) {
2083 					sc->age_cdata.age_rxtail =
2084 					    sc->age_cdata.age_rxprev_tail;
2085 					sc->age_cdata.age_rxtail->m_len -=
2086 					    (ETHER_CRC_LEN - mp->m_len);
2087 					sc->age_cdata.age_rxtail->m_next = NULL;
2088 					m_freem(mp);
2089 				} else {
2090 					mp->m_len -= ETHER_CRC_LEN;
2091 				}
2092 			}
2093 
2094 			m = sc->age_cdata.age_rxhead;
2095 			m->m_flags |= M_PKTHDR;
2096 			m->m_pkthdr.rcvif = ifp;
2097 			m->m_pkthdr.len = sc->age_cdata.age_rxlen;
2098 			/* Set the first mbuf length. */
2099 			m->m_len = sc->age_cdata.age_rxlen - pktlen;
2100 
2101 			/*
2102 			 * Set checksum information.
2103 			 * It seems that L1 controller can compute partial
2104 			 * checksum. The partial checksum value can be used
2105 			 * to accelerate checksum computation for fragmented
2106 			 * TCP/UDP packets. Upper network stack already
2107 			 * takes advantage of the partial checksum value in
2108 			 * IP reassembly stage. But I'm not sure the
2109 			 * correctness of the partial hardware checksum
2110 			 * assistance due to lack of data sheet. If it is
2111 			 * proven to work on L1 I'll enable it.
2112 			 */
2113 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2114 			    (status & AGE_RRD_IPV4) != 0) {
2115 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2116 				if ((status & AGE_RRD_IPCSUM_NOK) == 0)
2117 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2118 				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
2119 				    (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
2120 					m->m_pkthdr.csum_flags |=
2121 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2122 					m->m_pkthdr.csum_data = 0xffff;
2123 				}
2124 				/*
2125 				 * Don't mark bad checksum for TCP/UDP frames
2126 				 * as fragmented frames may always have set
2127 				 * bad checksummed bit of descriptor status.
2128 				 */
2129 			}
2130 
2131 			/* Check for VLAN tagged frames. */
2132 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2133 			    (status & AGE_RRD_VLAN) != 0) {
2134 				vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
2135 				m->m_pkthdr.ether_vlantag =
2136 				    AGE_RX_VLAN_TAG(vtag);
2137 				m->m_flags |= M_VLANTAG;
2138 			}
2139 
2140 			/* Pass it on. */
2141 			ifp->if_input(ifp, m);
2142 
2143 			/* Reset mbuf chains. */
2144 			AGE_RXCHAIN_RESET(sc);
2145 		}
2146 	}
2147 
2148 	if (count != nsegs) {
2149 		sc->age_cdata.age_rx_cons += nsegs;
2150 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2151 	} else {
2152 		sc->age_cdata.age_rx_cons = rx_cons;
2153 	}
2154 }
2155 
2156 static void
2157 age_rxintr(struct age_softc *sc, int rr_prod)
2158 {
2159 	struct rx_rdesc *rxrd;
2160 	int rr_cons, nsegs, pktlen, prog;
2161 
2162 	rr_cons = sc->age_cdata.age_rr_cons;
2163 	if (rr_cons == rr_prod)
2164 		return;
2165 
2166 	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2167 	    sc->age_cdata.age_rr_ring_map, BUS_DMASYNC_POSTREAD);
2168 
2169 	for (prog = 0; rr_cons != rr_prod; prog++) {
2170 		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
2171 		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
2172 		if (nsegs == 0)
2173 			break;
2174 
2175 		/*
2176 		 * Check number of segments against received bytes.
2177 		 * Non-matching value would indicate that hardware
2178 		 * is still trying to update Rx return descriptors.
2179 		 * I'm not sure whether this check is really needed.
2180 		 */
2181 		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
2182 		if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
2183 		    (MCLBYTES - ETHER_ALIGN)))
2184 			break;
2185 
2186 		/* Received a frame. */
2187 		age_rxeof(sc, rxrd);
2188 
2189 		/* Clear return ring. */
2190 		rxrd->index = 0;
2191 		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
2192 	}
2193 
2194 	if (prog > 0) {
2195 		/* Update the consumer index. */
2196 		sc->age_cdata.age_rr_cons = rr_cons;
2197 
2198 		/* Sync descriptors. */
2199 		bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2200 		    sc->age_cdata.age_rr_ring_map, BUS_DMASYNC_PREWRITE);
2201 
2202 		/* Notify hardware availability of new Rx buffers. */
2203 		AGE_COMMIT_MBOX(sc);
2204 	}
2205 }
2206 
2207 static void
2208 age_tick(void *xsc)
2209 {
2210 	struct age_softc *sc = xsc;
2211 	struct ifnet *ifp = &sc->arpcom.ac_if;
2212 	struct mii_data *mii = device_get_softc(sc->age_miibus);
2213 
2214 	lwkt_serialize_enter(ifp->if_serializer);
2215 
2216 	mii_tick(mii);
2217 	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2218 
2219 	lwkt_serialize_exit(ifp->if_serializer);
2220 }
2221 
2222 static void
2223 age_reset(struct age_softc *sc)
2224 {
2225 	uint32_t reg;
2226 	int i;
2227 
2228 	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
2229 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2230 		DELAY(1);
2231 		if ((CSR_READ_4(sc, AGE_MASTER_CFG) & MASTER_RESET) == 0)
2232 			break;
2233 	}
2234 	if (i == 0)
2235 		device_printf(sc->age_dev, "master reset timeout!\n");
2236 
2237 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2238 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2239 			break;
2240 		DELAY(10);
2241 	}
2242 	if (i == 0)
2243 		device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
2244 
2245 	/* Initialize PCIe module. From Linux. */
2246 	CSR_WRITE_4(sc, 0x12FC, 0x6500);
2247 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2248 }
2249 
2250 static void
2251 age_init(void *xsc)
2252 {
2253 	struct age_softc *sc = xsc;
2254 	struct ifnet *ifp = &sc->arpcom.ac_if;
2255 	struct mii_data *mii;
2256 	uint8_t eaddr[ETHER_ADDR_LEN];
2257 	bus_addr_t paddr;
2258 	uint32_t reg, fsize;
2259 	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
2260 	int error;
2261 
2262 	ASSERT_SERIALIZED(ifp->if_serializer);
2263 
2264 	mii = device_get_softc(sc->age_miibus);
2265 
2266 	/*
2267 	 * Cancel any pending I/O.
2268 	 */
2269 	age_stop(sc);
2270 
2271 	/*
2272 	 * Reset the chip to a known state.
2273 	 */
2274 	age_reset(sc);
2275 
2276 	/* Initialize descriptors. */
2277 	error = age_init_rx_ring(sc);
2278         if (error != 0) {
2279                 device_printf(sc->age_dev, "no memory for Rx buffers.\n");
2280                 age_stop(sc);
2281 		return;
2282         }
2283 	age_init_rr_ring(sc);
2284 	age_init_tx_ring(sc);
2285 	age_init_cmb_block(sc);
2286 	age_init_smb_block(sc);
2287 
2288 	/* Reprogram the station address. */
2289 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2290 	CSR_WRITE_4(sc, AGE_PAR0,
2291 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2292 	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
2293 
2294 	/* Set descriptor base addresses. */
2295 	paddr = sc->age_rdata.age_tx_ring_paddr;
2296 	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
2297 	paddr = sc->age_rdata.age_rx_ring_paddr;
2298 	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
2299 	paddr = sc->age_rdata.age_rr_ring_paddr;
2300 	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
2301 	paddr = sc->age_rdata.age_tx_ring_paddr;
2302 	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
2303 	paddr = sc->age_rdata.age_cmb_block_paddr;
2304 	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
2305 	paddr = sc->age_rdata.age_smb_block_paddr;
2306 	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
2307 
2308 	/* Set Rx/Rx return descriptor counter. */
2309 	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
2310 	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
2311 	    DESC_RRD_CNT_MASK) |
2312 	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
2313 
2314 	/* Set Tx descriptor counter. */
2315 	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
2316 	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
2317 
2318 	/* Tell hardware that we're ready to load descriptors. */
2319 	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
2320 
2321 	/*
2322 	 * Initialize mailbox register.
2323 	 * Updated producer/consumer index information is exchanged
2324 	 * through this mailbox register. However Tx producer and
2325 	 * Rx return consumer/Rx producer are all shared such that
2326 	 * it's hard to separate code path between Tx and Rx without
2327 	 * locking. If L1 hardware have a separate mail box register
2328 	 * for Tx and Rx consumer/producer management we could have
2329 	 * indepent Tx/Rx handler which in turn Rx handler could have
2330 	 * been run without any locking.
2331 	 */
2332 	AGE_COMMIT_MBOX(sc);
2333 
2334 	/* Configure IPG/IFG parameters. */
2335 	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
2336 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
2337 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2338 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2339 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
2340 
2341 	/* Set parameters for half-duplex media. */
2342 	CSR_WRITE_4(sc, AGE_HDPX_CFG,
2343 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2344 	    HDPX_CFG_LCOL_MASK) |
2345 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2346 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2347 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2348 	    HDPX_CFG_ABEBT_MASK) |
2349 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2350 	    HDPX_CFG_JAMIPG_MASK));
2351 
2352 	/* Configure interrupt moderation timer. */
2353 	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
2354 	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
2355 	reg &= ~MASTER_MTIMER_ENB;
2356 	if (AGE_USECS(sc->age_int_mod) == 0)
2357 		reg &= ~MASTER_ITIMER_ENB;
2358 	else
2359 		reg |= MASTER_ITIMER_ENB;
2360 	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
2361 	if (bootverbose)
2362 		device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
2363 		    sc->age_int_mod);
2364 	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
2365 
2366 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
2367 	if (ifp->if_mtu < ETHERMTU)
2368 		sc->age_max_frame_size = ETHERMTU;
2369 	else
2370 		sc->age_max_frame_size = ifp->if_mtu;
2371 	sc->age_max_frame_size += ETHER_HDR_LEN +
2372 	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
2373 	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
2374 
2375 	/* Configure jumbo frame. */
2376 	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
2377 	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
2378 	    (((fsize / sizeof(uint64_t)) <<
2379 	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
2380 	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
2381 	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
2382 	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
2383 	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
2384 
2385 	/* Configure flow-control parameters. From Linux. */
2386 	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
2387 		/*
2388 		 * Magic workaround for old-L1.
2389 		 * Don't know which hw revision requires this magic.
2390 		 */
2391 		CSR_WRITE_4(sc, 0x12FC, 0x6500);
2392 		/*
2393 		 * Another magic workaround for flow-control mode
2394 		 * change. From Linux.
2395 		 */
2396 		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2397 	}
2398 	/*
2399 	 * TODO
2400 	 *  Should understand pause parameter relationships between FIFO
2401 	 *  size and number of Rx descriptors and Rx return descriptors.
2402 	 *
2403 	 *  Magic parameters came from Linux.
2404 	 */
2405 	switch (sc->age_chip_rev) {
2406 	case 0x8001:
2407 	case 0x9001:
2408 	case 0x9002:
2409 	case 0x9003:
2410 		rxf_hi = AGE_RX_RING_CNT / 16;
2411 		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
2412 		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
2413 		rrd_lo = AGE_RR_RING_CNT / 16;
2414 		break;
2415 	default:
2416 		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
2417 		rxf_lo = reg / 16;
2418 		if (rxf_lo < 192)
2419 			rxf_lo = 192;
2420 		rxf_hi = (reg * 7) / 8;
2421 		if (rxf_hi < rxf_lo)
2422 			rxf_hi = rxf_lo + 16;
2423 		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
2424 		rrd_lo = reg / 8;
2425 		rrd_hi = (reg * 7) / 8;
2426 		if (rrd_lo < 2)
2427 			rrd_lo = 2;
2428 		if (rrd_hi < rrd_lo)
2429 			rrd_hi = rrd_lo + 3;
2430 		break;
2431 	}
2432 	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
2433 	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
2434 	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
2435 	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
2436 	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
2437 	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
2438 	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
2439 	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
2440 	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
2441 	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
2442 
2443 	/* Configure RxQ. */
2444 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2445 	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2446 	    RXQ_CFG_RD_BURST_MASK) |
2447 	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
2448 	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
2449 	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
2450 	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
2451 	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2452 
2453 	/* Configure TxQ. */
2454 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2455 	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2456 	    TXQ_CFG_TPD_BURST_MASK) |
2457 	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
2458 	    TXQ_CFG_TX_FIFO_BURST_MASK) |
2459 	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
2460 	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
2461 	    TXQ_CFG_ENB);
2462 
2463 	CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
2464 	    (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
2465 	    TX_JUMBO_TPD_TH_MASK) |
2466 	    ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
2467 	    TX_JUMBO_TPD_IPG_MASK));
2468 
2469 	/* Configure DMA parameters. */
2470 	CSR_WRITE_4(sc, AGE_DMA_CFG,
2471 	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
2472 	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
2473 	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
2474 
2475 	/* Configure CMB DMA write threshold. */
2476 	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
2477 	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
2478 	    CMB_WR_THRESH_RRD_MASK) |
2479 	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
2480 	    CMB_WR_THRESH_TPD_MASK));
2481 
2482 	/* Set CMB/SMB timer and enable them. */
2483 	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
2484 	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
2485 	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
2486 
2487 	/* Request SMB updates for every seconds. */
2488 	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
2489 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
2490 
2491 	/*
2492 	 * Disable all WOL bits as WOL can interfere normal Rx
2493 	 * operation.
2494 	 */
2495 	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
2496 
2497 	/*
2498 	 * Configure Tx/Rx MACs.
2499 	 *  - Auto-padding for short frames.
2500 	 *  - Enable CRC generation.
2501 	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
2502 	 *  of MAC is followed after link establishment.
2503 	 */
2504 	CSR_WRITE_4(sc, AGE_MAC_CFG,
2505 	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
2506 	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
2507 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2508 	    MAC_CFG_PREAMBLE_MASK));
2509 
2510 	/* Set up the receive filter. */
2511 	age_rxfilter(sc);
2512 	age_rxvlan(sc);
2513 
2514 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2515 	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2516 		reg |= MAC_CFG_RXCSUM_ENB;
2517 
2518 	/* Ack all pending interrupts and clear it. */
2519 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2520 	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
2521 
2522 	/* Finally enable Tx/Rx MAC. */
2523 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2524 
2525 	sc->age_flags &= ~AGE_FLAG_LINK;
2526 	/* Switch to the current media. */
2527 	mii_mediachg(mii);
2528 
2529 	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2530 
2531 	ifp->if_flags |= IFF_RUNNING;
2532 	ifq_clr_oactive(&ifp->if_snd);
2533 }
2534 
2535 static void
2536 age_stop(struct age_softc *sc)
2537 {
2538 	struct ifnet *ifp = &sc->arpcom.ac_if;
2539 	struct age_txdesc *txd;
2540 	struct age_rxdesc *rxd;
2541 	uint32_t reg;
2542 	int i;
2543 
2544 	ASSERT_SERIALIZED(ifp->if_serializer);
2545 
2546 	/*
2547 	 * Mark the interface down and cancel the watchdog timer.
2548 	 */
2549 	ifp->if_flags &= ~IFF_RUNNING;
2550 	ifq_clr_oactive(&ifp->if_snd);
2551 	ifp->if_timer = 0;
2552 
2553 	sc->age_flags &= ~AGE_FLAG_LINK;
2554 	callout_stop(&sc->age_tick_ch);
2555 
2556 	/*
2557 	 * Disable interrupts.
2558 	 */
2559 	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
2560 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
2561 
2562 	/* Stop CMB/SMB updates. */
2563 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
2564 
2565 	/* Stop Rx/Tx MAC. */
2566 	age_stop_rxmac(sc);
2567 	age_stop_txmac(sc);
2568 
2569 	/* Stop DMA. */
2570 	CSR_WRITE_4(sc, AGE_DMA_CFG,
2571 	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
2572 
2573 	/* Stop TxQ/RxQ. */
2574 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2575 	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
2576 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2577 	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
2578 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2579 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2580 			break;
2581 		DELAY(10);
2582 	}
2583 	if (i == 0)
2584 		device_printf(sc->age_dev,
2585 		    "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
2586 
2587 	/* Reclaim Rx buffers that have been processed. */
2588 	if (sc->age_cdata.age_rxhead != NULL)
2589 		m_freem(sc->age_cdata.age_rxhead);
2590 	AGE_RXCHAIN_RESET(sc);
2591 
2592 	/*
2593 	 * Free RX and TX mbufs still in the queues.
2594 	 */
2595 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2596 		rxd = &sc->age_cdata.age_rxdesc[i];
2597 		if (rxd->rx_m != NULL) {
2598 			bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2599 			    rxd->rx_dmamap);
2600 			m_freem(rxd->rx_m);
2601 			rxd->rx_m = NULL;
2602 		}
2603         }
2604 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2605 		txd = &sc->age_cdata.age_txdesc[i];
2606 		if (txd->tx_m != NULL) {
2607 			bus_dmamap_unload(sc->age_cdata.age_tx_tag,
2608 			    txd->tx_dmamap);
2609 			m_freem(txd->tx_m);
2610 			txd->tx_m = NULL;
2611 		}
2612         }
2613 }
2614 
2615 static void
2616 age_stop_txmac(struct age_softc *sc)
2617 {
2618 	uint32_t reg;
2619 	int i;
2620 
2621 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2622 	if ((reg & MAC_CFG_TX_ENB) != 0) {
2623 		reg &= ~MAC_CFG_TX_ENB;
2624 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2625 	}
2626 	/* Stop Tx DMA engine. */
2627 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2628 	if ((reg & DMA_CFG_RD_ENB) != 0) {
2629 		reg &= ~DMA_CFG_RD_ENB;
2630 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2631 	}
2632 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2633 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2634 		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2635 			break;
2636 		DELAY(10);
2637 	}
2638 	if (i == 0)
2639 		device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
2640 }
2641 
2642 static void
2643 age_stop_rxmac(struct age_softc *sc)
2644 {
2645 	uint32_t reg;
2646 	int i;
2647 
2648 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2649 	if ((reg & MAC_CFG_RX_ENB) != 0) {
2650 		reg &= ~MAC_CFG_RX_ENB;
2651 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2652 	}
2653 	/* Stop Rx DMA engine. */
2654 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2655 	if ((reg & DMA_CFG_WR_ENB) != 0) {
2656 		reg &= ~DMA_CFG_WR_ENB;
2657 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2658 	}
2659 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2660 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2661 		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2662 			break;
2663 		DELAY(10);
2664 	}
2665 	if (i == 0)
2666 		device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
2667 }
2668 
2669 static void
2670 age_init_tx_ring(struct age_softc *sc)
2671 {
2672 	struct age_ring_data *rd;
2673 	struct age_txdesc *txd;
2674 	int i;
2675 
2676 	sc->age_cdata.age_tx_prod = 0;
2677 	sc->age_cdata.age_tx_cons = 0;
2678 	sc->age_cdata.age_tx_cnt = 0;
2679 
2680 	rd = &sc->age_rdata;
2681 	bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
2682 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2683 		txd = &sc->age_cdata.age_txdesc[i];
2684 		txd->tx_desc = &rd->age_tx_ring[i];
2685 		txd->tx_m = NULL;
2686 	}
2687 
2688 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2689 	    sc->age_cdata.age_tx_ring_map, BUS_DMASYNC_PREWRITE);
2690 }
2691 
2692 static int
2693 age_init_rx_ring(struct age_softc *sc)
2694 {
2695 	struct age_ring_data *rd;
2696 	struct age_rxdesc *rxd;
2697 	int i;
2698 
2699 	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2700 	rd = &sc->age_rdata;
2701 	bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
2702 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2703 		rxd = &sc->age_cdata.age_rxdesc[i];
2704 		rxd->rx_m = NULL;
2705 		rxd->rx_desc = &rd->age_rx_ring[i];
2706 		if (age_newbuf(sc, rxd, 1) != 0)
2707 			return (ENOBUFS);
2708 	}
2709 
2710 	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2711 	    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
2712 
2713 	return (0);
2714 }
2715 
2716 static void
2717 age_init_rr_ring(struct age_softc *sc)
2718 {
2719 	struct age_ring_data *rd;
2720 
2721 	sc->age_cdata.age_rr_cons = 0;
2722 	AGE_RXCHAIN_RESET(sc);
2723 
2724 	rd = &sc->age_rdata;
2725 	bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
2726 	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2727 	    sc->age_cdata.age_rr_ring_map, BUS_DMASYNC_PREWRITE);
2728 }
2729 
2730 static void
2731 age_init_cmb_block(struct age_softc *sc)
2732 {
2733 	struct age_ring_data *rd;
2734 
2735 	rd = &sc->age_rdata;
2736 	bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
2737 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2738 	    sc->age_cdata.age_cmb_block_map, BUS_DMASYNC_PREWRITE);
2739 }
2740 
2741 static void
2742 age_init_smb_block(struct age_softc *sc)
2743 {
2744 	struct age_ring_data *rd;
2745 
2746 	rd = &sc->age_rdata;
2747 	bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
2748 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2749 	    sc->age_cdata.age_smb_block_map, BUS_DMASYNC_PREWRITE);
2750 }
2751 
2752 static int
2753 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
2754 {
2755 	struct rx_desc *desc;
2756 	struct mbuf *m;
2757 	struct age_dmamap_ctx ctx;
2758 	bus_dma_segment_t segs[1];
2759 	bus_dmamap_t map;
2760 	int error;
2761 
2762 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2763 	if (m == NULL)
2764 		return (ENOBUFS);
2765 
2766 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2767 	m_adj(m, ETHER_ALIGN);
2768 
2769 	ctx.nsegs = 1;
2770 	ctx.segs = segs;
2771 	error = bus_dmamap_load_mbuf(sc->age_cdata.age_rx_tag,
2772 				     sc->age_cdata.age_rx_sparemap,
2773 				     m, age_dmamap_buf_cb, &ctx,
2774 				     BUS_DMA_NOWAIT);
2775 	if (error || ctx.nsegs == 0) {
2776 		if (!error) {
2777 			bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2778 					  sc->age_cdata.age_rx_sparemap);
2779 			error = EFBIG;
2780 			if_printf(&sc->arpcom.ac_if, "too many segments?!\n");
2781 		}
2782 		m_freem(m);
2783 
2784 		if (init)
2785 			if_printf(&sc->arpcom.ac_if, "can't load RX mbuf\n");
2786 		return (error);
2787 	}
2788 	KASSERT(ctx.nsegs == 1,
2789 		("%s: %d segments returned!", __func__, ctx.nsegs));
2790 
2791 	if (rxd->rx_m != NULL) {
2792 		bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
2793 		    BUS_DMASYNC_POSTREAD);
2794 		bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
2795 	}
2796 	map = rxd->rx_dmamap;
2797 	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
2798 	sc->age_cdata.age_rx_sparemap = map;
2799 	rxd->rx_m = m;
2800 
2801 	desc = rxd->rx_desc;
2802 	desc->addr = htole64(segs[0].ds_addr);
2803 	desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
2804 	    AGE_RD_LEN_SHIFT);
2805 	return (0);
2806 }
2807 
2808 static void
2809 age_rxvlan(struct age_softc *sc)
2810 {
2811 	struct ifnet *ifp = &sc->arpcom.ac_if;
2812 	uint32_t reg;
2813 
2814 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2815 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2816 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2817 		reg |= MAC_CFG_VLAN_TAG_STRIP;
2818 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2819 }
2820 
2821 static void
2822 age_rxfilter(struct age_softc *sc)
2823 {
2824 	struct ifnet *ifp = &sc->arpcom.ac_if;
2825 	struct ifmultiaddr *ifma;
2826 	uint32_t crc;
2827 	uint32_t mchash[2];
2828 	uint32_t rxcfg;
2829 
2830 	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
2831 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2832 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
2833 		rxcfg |= MAC_CFG_BCAST;
2834 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2835 		if ((ifp->if_flags & IFF_PROMISC) != 0)
2836 			rxcfg |= MAC_CFG_PROMISC;
2837 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
2838 			rxcfg |= MAC_CFG_ALLMULTI;
2839 		CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
2840 		CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
2841 		CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2842 		return;
2843 	}
2844 
2845 	/* Program new filter. */
2846 	bzero(mchash, sizeof(mchash));
2847 
2848 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2849 		if (ifma->ifma_addr->sa_family != AF_LINK)
2850 			continue;
2851 		crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
2852 		    ifma->ifma_addr), ETHER_ADDR_LEN);
2853 		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2854 	}
2855 
2856 	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
2857 	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
2858 	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2859 }
2860 
2861 static int
2862 sysctl_age_stats(SYSCTL_HANDLER_ARGS)
2863 {
2864 	struct age_softc *sc;
2865 	struct age_stats *stats;
2866 	int error, result;
2867 
2868 	result = -1;
2869 	error = sysctl_handle_int(oidp, &result, 0, req);
2870 
2871 	if (error != 0 || req->newptr == NULL)
2872 		return (error);
2873 
2874 	if (result != 1)
2875 		return (error);
2876 
2877 	sc = (struct age_softc *)arg1;
2878 	stats = &sc->age_stat;
2879 	kprintf("%s statistics:\n", device_get_nameunit(sc->age_dev));
2880 	kprintf("Transmit good frames : %ju\n",
2881 	    (uintmax_t)stats->tx_frames);
2882 	kprintf("Transmit good broadcast frames : %ju\n",
2883 	    (uintmax_t)stats->tx_bcast_frames);
2884 	kprintf("Transmit good multicast frames : %ju\n",
2885 	    (uintmax_t)stats->tx_mcast_frames);
2886 	kprintf("Transmit pause control frames : %u\n",
2887 	    stats->tx_pause_frames);
2888 	kprintf("Transmit control frames : %u\n",
2889 	    stats->tx_control_frames);
2890 	kprintf("Transmit frames with excessive deferrals : %u\n",
2891 	    stats->tx_excess_defer);
2892 	kprintf("Transmit deferrals : %u\n",
2893 	    stats->tx_deferred);
2894 	kprintf("Transmit good octets : %ju\n",
2895 	    (uintmax_t)stats->tx_bytes);
2896 	kprintf("Transmit good broadcast octets : %ju\n",
2897 	    (uintmax_t)stats->tx_bcast_bytes);
2898 	kprintf("Transmit good multicast octets : %ju\n",
2899 	    (uintmax_t)stats->tx_mcast_bytes);
2900 	kprintf("Transmit frames 64 bytes : %ju\n",
2901 	    (uintmax_t)stats->tx_pkts_64);
2902 	kprintf("Transmit frames 65 to 127 bytes : %ju\n",
2903 	    (uintmax_t)stats->tx_pkts_65_127);
2904 	kprintf("Transmit frames 128 to 255 bytes : %ju\n",
2905 	    (uintmax_t)stats->tx_pkts_128_255);
2906 	kprintf("Transmit frames 256 to 511 bytes : %ju\n",
2907 	    (uintmax_t)stats->tx_pkts_256_511);
2908 	kprintf("Transmit frames 512 to 1024 bytes : %ju\n",
2909 	    (uintmax_t)stats->tx_pkts_512_1023);
2910 	kprintf("Transmit frames 1024 to 1518 bytes : %ju\n",
2911 	    (uintmax_t)stats->tx_pkts_1024_1518);
2912 	kprintf("Transmit frames 1519 to MTU bytes : %ju\n",
2913 	    (uintmax_t)stats->tx_pkts_1519_max);
2914 	kprintf("Transmit single collisions : %u\n",
2915 	    stats->tx_single_colls);
2916 	kprintf("Transmit multiple collisions : %u\n",
2917 	    stats->tx_multi_colls);
2918 	kprintf("Transmit late collisions : %u\n",
2919 	    stats->tx_late_colls);
2920 	kprintf("Transmit abort due to excessive collisions : %u\n",
2921 	    stats->tx_excess_colls);
2922 	kprintf("Transmit underruns due to FIFO underruns : %u\n",
2923 	    stats->tx_underrun);
2924 	kprintf("Transmit descriptor write-back errors : %u\n",
2925 	    stats->tx_desc_underrun);
2926 	kprintf("Transmit frames with length mismatched frame size : %u\n",
2927 	    stats->tx_lenerrs);
2928 	kprintf("Transmit frames with truncated due to MTU size : %u\n",
2929 	    stats->tx_lenerrs);
2930 
2931 	kprintf("Receive good frames : %ju\n",
2932 	    (uintmax_t)stats->rx_frames);
2933 	kprintf("Receive good broadcast frames : %ju\n",
2934 	    (uintmax_t)stats->rx_bcast_frames);
2935 	kprintf("Receive good multicast frames : %ju\n",
2936 	    (uintmax_t)stats->rx_mcast_frames);
2937 	kprintf("Receive pause control frames : %u\n",
2938 	    stats->rx_pause_frames);
2939 	kprintf("Receive control frames : %u\n",
2940 	    stats->rx_control_frames);
2941 	kprintf("Receive CRC errors : %u\n",
2942 	    stats->rx_crcerrs);
2943 	kprintf("Receive frames with length errors : %u\n",
2944 	    stats->rx_lenerrs);
2945 	kprintf("Receive good octets : %ju\n",
2946 	    (uintmax_t)stats->rx_bytes);
2947 	kprintf("Receive good broadcast octets : %ju\n",
2948 	    (uintmax_t)stats->rx_bcast_bytes);
2949 	kprintf("Receive good multicast octets : %ju\n",
2950 	    (uintmax_t)stats->rx_mcast_bytes);
2951 	kprintf("Receive frames too short : %u\n",
2952 	    stats->rx_runts);
2953 	kprintf("Receive fragmented frames : %ju\n",
2954 	    (uintmax_t)stats->rx_fragments);
2955 	kprintf("Receive frames 64 bytes : %ju\n",
2956 	    (uintmax_t)stats->rx_pkts_64);
2957 	kprintf("Receive frames 65 to 127 bytes : %ju\n",
2958 	    (uintmax_t)stats->rx_pkts_65_127);
2959 	kprintf("Receive frames 128 to 255 bytes : %ju\n",
2960 	    (uintmax_t)stats->rx_pkts_128_255);
2961 	kprintf("Receive frames 256 to 511 bytes : %ju\n",
2962 	    (uintmax_t)stats->rx_pkts_256_511);
2963 	kprintf("Receive frames 512 to 1024 bytes : %ju\n",
2964 	    (uintmax_t)stats->rx_pkts_512_1023);
2965 	kprintf("Receive frames 1024 to 1518 bytes : %ju\n",
2966 	    (uintmax_t)stats->rx_pkts_1024_1518);
2967 	kprintf("Receive frames 1519 to MTU bytes : %ju\n",
2968 	    (uintmax_t)stats->rx_pkts_1519_max);
2969 	kprintf("Receive frames too long : %ju\n",
2970 	    (uint64_t)stats->rx_pkts_truncated);
2971 	kprintf("Receive frames with FIFO overflow : %u\n",
2972 	    stats->rx_fifo_oflows);
2973 	kprintf("Receive frames with return descriptor overflow : %u\n",
2974 	    stats->rx_desc_oflows);
2975 	kprintf("Receive frames with alignment errors : %u\n",
2976 	    stats->rx_alignerrs);
2977 	kprintf("Receive frames dropped due to address filtering : %ju\n",
2978 	    (uint64_t)stats->rx_pkts_filtered);
2979 
2980 	return (error);
2981 }
2982 
2983 static int
2984 sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
2985 {
2986 
2987 	return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
2988 	    AGE_IM_TIMER_MAX));
2989 }
2990 
2991 static void
2992 age_dmamap_buf_cb(void *xctx, bus_dma_segment_t *segs, int nsegs,
2993 		  bus_size_t mapsz __unused, int error)
2994 {
2995 	struct age_dmamap_ctx *ctx = xctx;
2996 	int i;
2997 
2998 	if (error)
2999 		return;
3000 
3001 	if (nsegs > ctx->nsegs) {
3002 		ctx->nsegs = 0;
3003 		return;
3004 	}
3005 
3006 	ctx->nsegs = nsegs;
3007 	for (i = 0; i < nsegs; ++i)
3008 		ctx->segs[i] = segs[i];
3009 }
3010