1 /* 2 * Copyright (c) Red Hat Inc. 3 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sub license, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the 12 * next paragraph) shall be included in all copies or substantial portions 13 * of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 * 23 * Authors: Dave Airlie <airlied@redhat.com> 24 * Jerome Glisse <jglisse@redhat.com> 25 * Pauli Nieminen <suokkos@gmail.com> 26 */ 27 /* 28 * Copyright (c) 2013 The FreeBSD Foundation 29 * All rights reserved. 30 * 31 * Portions of this software were developed by Konstantin Belousov 32 * <kib@FreeBSD.org> under sponsorship from the FreeBSD Foundation. 33 * 34 * $FreeBSD: head/sys/dev/drm2/ttm/ttm_page_alloc.c 247849 2013-03-05 16:15:34Z kib $ 35 */ 36 37 /* simple list based uncached page pool 38 * - Pool collects resently freed pages for reuse 39 * - Use page->lru to keep a free list 40 * - doesn't track currently in use pages 41 */ 42 43 #include <sys/eventhandler.h> 44 45 #include <dev/drm/drmP.h> 46 #include <dev/drm/ttm/ttm_bo_driver.h> 47 #include <dev/drm/ttm/ttm_page_alloc.h> 48 49 #ifdef TTM_HAS_AGP 50 #include <asm/agp.h> 51 #endif 52 53 #define VM_ALLOC_DMA32 VM_ALLOC_RESERVED1 54 55 #define NUM_PAGES_TO_ALLOC (PAGE_SIZE/sizeof(vm_page_t)) 56 #define SMALL_ALLOCATION 16 57 #define FREE_ALL_PAGES (~0U) 58 /* times are in msecs */ 59 #define PAGE_FREE_INTERVAL 1000 60 61 /** 62 * struct ttm_page_pool - Pool to reuse recently allocated uc/wc pages. 63 * 64 * @lock: Protects the shared pool from concurrnet access. Must be used with 65 * irqsave/irqrestore variants because pool allocator maybe called from 66 * delayed work. 67 * @fill_lock: Prevent concurrent calls to fill. 68 * @list: Pool of free uc/wc pages for fast reuse. 69 * @gfp_flags: Flags to pass for alloc_page. 70 * @npages: Number of pages in pool. 71 */ 72 struct ttm_page_pool { 73 struct lock lock; 74 bool fill_lock; 75 bool dma32; 76 struct pglist list; 77 int ttm_page_alloc_flags; 78 unsigned npages; 79 char *name; 80 unsigned long nfrees; 81 unsigned long nrefills; 82 }; 83 84 /** 85 * Limits for the pool. They are handled without locks because only place where 86 * they may change is in sysfs store. They won't have immediate effect anyway 87 * so forcing serialization to access them is pointless. 88 */ 89 90 struct ttm_pool_opts { 91 unsigned alloc_size; 92 unsigned max_size; 93 unsigned small; 94 }; 95 96 #define NUM_POOLS 4 97 98 /** 99 * struct ttm_pool_manager - Holds memory pools for fst allocation 100 * 101 * Manager is read only object for pool code so it doesn't need locking. 102 * 103 * @free_interval: minimum number of jiffies between freeing pages from pool. 104 * @page_alloc_inited: reference counting for pool allocation. 105 * @work: Work that is used to shrink the pool. Work is only run when there is 106 * some pages to free. 107 * @small_allocation: Limit in number of pages what is small allocation. 108 * 109 * @pools: All pool objects in use. 110 **/ 111 struct ttm_pool_manager { 112 unsigned int kobj_ref; 113 eventhandler_tag lowmem_handler; 114 struct ttm_pool_opts options; 115 116 union { 117 struct ttm_page_pool u_pools[NUM_POOLS]; 118 struct _utag { 119 struct ttm_page_pool u_wc_pool; 120 struct ttm_page_pool u_uc_pool; 121 struct ttm_page_pool u_wc_pool_dma32; 122 struct ttm_page_pool u_uc_pool_dma32; 123 } _ut; 124 } _u; 125 }; 126 127 #define pools _u.u_pools 128 #define wc_pool _u._ut.u_wc_pool 129 #define uc_pool _u._ut.u_uc_pool 130 #define wc_pool_dma32 _u._ut.u_wc_pool_dma32 131 #define uc_pool_dma32 _u._ut.u_uc_pool_dma32 132 133 MALLOC_DEFINE(M_TTM_POOLMGR, "ttm_poolmgr", "TTM Pool Manager"); 134 135 static void 136 ttm_vm_page_free(vm_page_t m) 137 { 138 139 KASSERT(m->object == NULL, ("ttm page %p is owned", m)); 140 KASSERT(m->wire_count == 1, ("ttm lost wire %p", m)); 141 KASSERT((m->flags & PG_FICTITIOUS) != 0, ("ttm lost fictitious %p", m)); 142 #if 0 143 KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("ttm got unmanaged %p", m)); 144 m->oflags |= VPO_UNMANAGED; 145 #endif 146 m->flags &= ~PG_FICTITIOUS; 147 vm_page_unwire(m, 0); 148 vm_page_free(m); 149 } 150 151 static vm_memattr_t 152 ttm_caching_state_to_vm(enum ttm_caching_state cstate) 153 { 154 155 switch (cstate) { 156 case tt_uncached: 157 return (VM_MEMATTR_UNCACHEABLE); 158 case tt_wc: 159 return (VM_MEMATTR_WRITE_COMBINING); 160 case tt_cached: 161 return (VM_MEMATTR_WRITE_BACK); 162 } 163 panic("caching state %d\n", cstate); 164 } 165 166 static void ttm_pool_kobj_release(struct ttm_pool_manager *m) 167 { 168 169 drm_free(m, M_TTM_POOLMGR); 170 } 171 172 #if 0 173 /* XXXKIB sysctl */ 174 static ssize_t ttm_pool_store(struct ttm_pool_manager *m, 175 struct attribute *attr, const char *buffer, size_t size) 176 { 177 int chars; 178 unsigned val; 179 chars = sscanf(buffer, "%u", &val); 180 if (chars == 0) 181 return size; 182 183 /* Convert kb to number of pages */ 184 val = val / (PAGE_SIZE >> 10); 185 186 if (attr == &ttm_page_pool_max) 187 m->options.max_size = val; 188 else if (attr == &ttm_page_pool_small) 189 m->options.small = val; 190 else if (attr == &ttm_page_pool_alloc_size) { 191 if (val > NUM_PAGES_TO_ALLOC*8) { 192 pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n", 193 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7), 194 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10)); 195 return size; 196 } else if (val > NUM_PAGES_TO_ALLOC) { 197 pr_warn("Setting allocation size to larger than %lu is not recommended\n", 198 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10)); 199 } 200 m->options.alloc_size = val; 201 } 202 203 return size; 204 } 205 206 static ssize_t ttm_pool_show(struct ttm_pool_manager *m, 207 struct attribute *attr, char *buffer) 208 { 209 unsigned val = 0; 210 211 if (attr == &ttm_page_pool_max) 212 val = m->options.max_size; 213 else if (attr == &ttm_page_pool_small) 214 val = m->options.small; 215 else if (attr == &ttm_page_pool_alloc_size) 216 val = m->options.alloc_size; 217 218 val = val * (PAGE_SIZE >> 10); 219 220 return snprintf(buffer, PAGE_SIZE, "%u\n", val); 221 } 222 #endif 223 224 static struct ttm_pool_manager *_manager; 225 226 static int set_pages_array_wb(vm_page_t *pages, int addrinarray) 227 { 228 vm_page_t m; 229 int i; 230 231 for (i = 0; i < addrinarray; i++) { 232 m = pages[i]; 233 #ifdef TTM_HAS_AGP 234 unmap_page_from_agp(m); 235 #endif 236 pmap_page_set_memattr(m, VM_MEMATTR_WRITE_BACK); 237 } 238 return 0; 239 } 240 241 static int set_pages_array_wc(vm_page_t *pages, int addrinarray) 242 { 243 vm_page_t m; 244 int i; 245 246 for (i = 0; i < addrinarray; i++) { 247 m = pages[i]; 248 #ifdef TTM_HAS_AGP 249 map_page_into_agp(pages[i]); 250 #endif 251 pmap_page_set_memattr(m, VM_MEMATTR_WRITE_COMBINING); 252 } 253 return 0; 254 } 255 256 static int set_pages_array_uc(vm_page_t *pages, int addrinarray) 257 { 258 vm_page_t m; 259 int i; 260 261 for (i = 0; i < addrinarray; i++) { 262 m = pages[i]; 263 #ifdef TTM_HAS_AGP 264 map_page_into_agp(pages[i]); 265 #endif 266 pmap_page_set_memattr(m, VM_MEMATTR_UNCACHEABLE); 267 } 268 return 0; 269 } 270 271 /** 272 * Select the right pool or requested caching state and ttm flags. */ 273 static struct ttm_page_pool *ttm_get_pool(int flags, 274 enum ttm_caching_state cstate) 275 { 276 int pool_index; 277 278 if (cstate == tt_cached) 279 return NULL; 280 281 if (cstate == tt_wc) 282 pool_index = 0x0; 283 else 284 pool_index = 0x1; 285 286 if (flags & TTM_PAGE_FLAG_DMA32) 287 pool_index |= 0x2; 288 289 return &_manager->pools[pool_index]; 290 } 291 292 /* set memory back to wb and free the pages. */ 293 static void ttm_pages_put(vm_page_t *pages, unsigned npages) 294 { 295 unsigned i; 296 297 /* Our VM handles vm memattr automatically on the page free. */ 298 if (set_pages_array_wb(pages, npages)) 299 kprintf("[TTM] Failed to set %d pages to wb!\n", npages); 300 for (i = 0; i < npages; ++i) 301 ttm_vm_page_free(pages[i]); 302 } 303 304 static void ttm_pool_update_free_locked(struct ttm_page_pool *pool, 305 unsigned freed_pages) 306 { 307 pool->npages -= freed_pages; 308 pool->nfrees += freed_pages; 309 } 310 311 /** 312 * Free pages from pool. 313 * 314 * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC 315 * number of pages in one go. 316 * 317 * @pool: to free the pages from 318 * @free_all: If set to true will free all pages in pool 319 **/ 320 static int ttm_page_pool_free(struct ttm_page_pool *pool, unsigned nr_free) 321 { 322 vm_page_t p, p1; 323 vm_page_t *pages_to_free; 324 unsigned freed_pages = 0, 325 npages_to_free = nr_free; 326 327 if (NUM_PAGES_TO_ALLOC < nr_free) 328 npages_to_free = NUM_PAGES_TO_ALLOC; 329 330 pages_to_free = kmalloc(npages_to_free * sizeof(vm_page_t), 331 M_TEMP, M_WAITOK | M_ZERO); 332 333 restart: 334 lockmgr(&pool->lock, LK_EXCLUSIVE); 335 336 TAILQ_FOREACH_REVERSE_MUTABLE(p, &pool->list, pglist, pageq, p1) { 337 if (freed_pages >= npages_to_free) 338 break; 339 340 pages_to_free[freed_pages++] = p; 341 /* We can only remove NUM_PAGES_TO_ALLOC at a time. */ 342 if (freed_pages >= NUM_PAGES_TO_ALLOC) { 343 /* remove range of pages from the pool */ 344 TAILQ_REMOVE(&pool->list, p, pageq); 345 346 ttm_pool_update_free_locked(pool, freed_pages); 347 /** 348 * Because changing page caching is costly 349 * we unlock the pool to prevent stalling. 350 */ 351 lockmgr(&pool->lock, LK_RELEASE); 352 353 ttm_pages_put(pages_to_free, freed_pages); 354 if (likely(nr_free != FREE_ALL_PAGES)) 355 nr_free -= freed_pages; 356 357 if (NUM_PAGES_TO_ALLOC >= nr_free) 358 npages_to_free = nr_free; 359 else 360 npages_to_free = NUM_PAGES_TO_ALLOC; 361 362 freed_pages = 0; 363 364 /* free all so restart the processing */ 365 if (nr_free) 366 goto restart; 367 368 /* Not allowed to fall through or break because 369 * following context is inside spinlock while we are 370 * outside here. 371 */ 372 goto out; 373 374 } 375 } 376 377 /* remove range of pages from the pool */ 378 if (freed_pages) { 379 TAILQ_REMOVE(&pool->list, p, pageq); 380 381 ttm_pool_update_free_locked(pool, freed_pages); 382 nr_free -= freed_pages; 383 } 384 385 lockmgr(&pool->lock, LK_RELEASE); 386 387 if (freed_pages) 388 ttm_pages_put(pages_to_free, freed_pages); 389 out: 390 drm_free(pages_to_free, M_TEMP); 391 return nr_free; 392 } 393 394 /* Get good estimation how many pages are free in pools */ 395 static int ttm_pool_get_num_unused_pages(void) 396 { 397 unsigned i; 398 int total = 0; 399 for (i = 0; i < NUM_POOLS; ++i) 400 total += _manager->pools[i].npages; 401 402 return total; 403 } 404 405 /** 406 * Callback for mm to request pool to reduce number of page held. 407 */ 408 static int ttm_pool_mm_shrink(void *arg) 409 { 410 static unsigned int start_pool = 0; 411 unsigned i; 412 unsigned pool_offset = atomic_fetchadd_int(&start_pool, 1); 413 struct ttm_page_pool *pool; 414 int shrink_pages = 100; /* XXXKIB */ 415 416 pool_offset = pool_offset % NUM_POOLS; 417 /* select start pool in round robin fashion */ 418 for (i = 0; i < NUM_POOLS; ++i) { 419 unsigned nr_free = shrink_pages; 420 if (shrink_pages == 0) 421 break; 422 pool = &_manager->pools[(i + pool_offset)%NUM_POOLS]; 423 shrink_pages = ttm_page_pool_free(pool, nr_free); 424 } 425 /* return estimated number of unused pages in pool */ 426 return ttm_pool_get_num_unused_pages(); 427 } 428 429 static void ttm_pool_mm_shrink_init(struct ttm_pool_manager *manager) 430 { 431 432 manager->lowmem_handler = EVENTHANDLER_REGISTER(vm_lowmem, 433 ttm_pool_mm_shrink, manager, EVENTHANDLER_PRI_ANY); 434 } 435 436 static void ttm_pool_mm_shrink_fini(struct ttm_pool_manager *manager) 437 { 438 439 EVENTHANDLER_DEREGISTER(vm_lowmem, manager->lowmem_handler); 440 } 441 442 static int ttm_set_pages_caching(vm_page_t *pages, 443 enum ttm_caching_state cstate, unsigned cpages) 444 { 445 int r = 0; 446 /* Set page caching */ 447 switch (cstate) { 448 case tt_uncached: 449 r = set_pages_array_uc(pages, cpages); 450 if (r) 451 kprintf("[TTM] Failed to set %d pages to uc!\n", cpages); 452 break; 453 case tt_wc: 454 r = set_pages_array_wc(pages, cpages); 455 if (r) 456 kprintf("[TTM] Failed to set %d pages to wc!\n", cpages); 457 break; 458 default: 459 break; 460 } 461 return r; 462 } 463 464 /** 465 * Free pages the pages that failed to change the caching state. If there is 466 * any pages that have changed their caching state already put them to the 467 * pool. 468 */ 469 static void ttm_handle_caching_state_failure(struct pglist *pages, 470 int ttm_flags, enum ttm_caching_state cstate, 471 vm_page_t *failed_pages, unsigned cpages) 472 { 473 unsigned i; 474 /* Failed pages have to be freed */ 475 for (i = 0; i < cpages; ++i) { 476 TAILQ_REMOVE(pages, failed_pages[i], pageq); 477 ttm_vm_page_free(failed_pages[i]); 478 } 479 } 480 481 /** 482 * Allocate new pages with correct caching. 483 * 484 * This function is reentrant if caller updates count depending on number of 485 * pages returned in pages array. 486 */ 487 static int ttm_alloc_new_pages(struct pglist *pages, int ttm_alloc_flags, 488 int ttm_flags, enum ttm_caching_state cstate, unsigned count) 489 { 490 vm_page_t *caching_array; 491 vm_page_t p; 492 int r = 0; 493 unsigned i, cpages, aflags; 494 unsigned max_cpages = min(count, 495 (unsigned)(PAGE_SIZE/sizeof(vm_page_t))); 496 497 aflags = VM_ALLOC_NORMAL | 498 ((ttm_alloc_flags & TTM_PAGE_FLAG_ZERO_ALLOC) != 0 ? 499 VM_ALLOC_ZERO : 0); 500 501 /* allocate array for page caching change */ 502 caching_array = kmalloc(max_cpages * sizeof(vm_page_t), M_TEMP, 503 M_WAITOK | M_ZERO); 504 505 for (i = 0, cpages = 0; i < count; ++i) { 506 p = vm_page_alloc_contig(0, 507 (ttm_alloc_flags & TTM_PAGE_FLAG_DMA32) ? 0xffffffff : 508 VM_MAX_ADDRESS, PAGE_SIZE, 0, 509 1*PAGE_SIZE, ttm_caching_state_to_vm(cstate)); 510 if (!p) { 511 kprintf("[TTM] Unable to get page %u\n", i); 512 513 /* store already allocated pages in the pool after 514 * setting the caching state */ 515 if (cpages) { 516 r = ttm_set_pages_caching(caching_array, 517 cstate, cpages); 518 if (r) 519 ttm_handle_caching_state_failure(pages, 520 ttm_flags, cstate, 521 caching_array, cpages); 522 } 523 r = -ENOMEM; 524 goto out; 525 } 526 #if 0 527 p->oflags &= ~VPO_UNMANAGED; 528 #endif 529 p->flags |= PG_FICTITIOUS; 530 531 #ifdef CONFIG_HIGHMEM /* KIB: nop */ 532 /* gfp flags of highmem page should never be dma32 so we 533 * we should be fine in such case 534 */ 535 if (!PageHighMem(p)) 536 #endif 537 { 538 caching_array[cpages++] = p; 539 if (cpages == max_cpages) { 540 541 r = ttm_set_pages_caching(caching_array, 542 cstate, cpages); 543 if (r) { 544 ttm_handle_caching_state_failure(pages, 545 ttm_flags, cstate, 546 caching_array, cpages); 547 goto out; 548 } 549 cpages = 0; 550 } 551 } 552 553 TAILQ_INSERT_HEAD(pages, p, pageq); 554 } 555 556 if (cpages) { 557 r = ttm_set_pages_caching(caching_array, cstate, cpages); 558 if (r) 559 ttm_handle_caching_state_failure(pages, 560 ttm_flags, cstate, 561 caching_array, cpages); 562 } 563 out: 564 drm_free(caching_array, M_TEMP); 565 566 return r; 567 } 568 569 /** 570 * Fill the given pool if there aren't enough pages and the requested number of 571 * pages is small. 572 */ 573 static void ttm_page_pool_fill_locked(struct ttm_page_pool *pool, 574 int ttm_flags, enum ttm_caching_state cstate, unsigned count) 575 { 576 vm_page_t p; 577 int r; 578 unsigned cpages = 0; 579 /** 580 * Only allow one pool fill operation at a time. 581 * If pool doesn't have enough pages for the allocation new pages are 582 * allocated from outside of pool. 583 */ 584 if (pool->fill_lock) 585 return; 586 587 pool->fill_lock = true; 588 589 /* If allocation request is small and there are not enough 590 * pages in a pool we fill the pool up first. */ 591 if (count < _manager->options.small 592 && count > pool->npages) { 593 struct pglist new_pages; 594 unsigned alloc_size = _manager->options.alloc_size; 595 596 /** 597 * Can't change page caching if in irqsave context. We have to 598 * drop the pool->lock. 599 */ 600 lockmgr(&pool->lock, LK_RELEASE); 601 602 TAILQ_INIT(&new_pages); 603 r = ttm_alloc_new_pages(&new_pages, pool->ttm_page_alloc_flags, 604 ttm_flags, cstate, alloc_size); 605 lockmgr(&pool->lock, LK_EXCLUSIVE); 606 607 if (!r) { 608 TAILQ_CONCAT(&pool->list, &new_pages, pageq); 609 ++pool->nrefills; 610 pool->npages += alloc_size; 611 } else { 612 kprintf("[TTM] Failed to fill pool (%p)\n", pool); 613 /* If we have any pages left put them to the pool. */ 614 TAILQ_FOREACH(p, &pool->list, pageq) { 615 ++cpages; 616 } 617 TAILQ_CONCAT(&pool->list, &new_pages, pageq); 618 pool->npages += cpages; 619 } 620 621 } 622 pool->fill_lock = false; 623 } 624 625 /** 626 * Cut 'count' number of pages from the pool and put them on the return list. 627 * 628 * @return count of pages still required to fulfill the request. 629 */ 630 static unsigned ttm_page_pool_get_pages(struct ttm_page_pool *pool, 631 struct pglist *pages, 632 int ttm_flags, 633 enum ttm_caching_state cstate, 634 unsigned count) 635 { 636 vm_page_t p; 637 unsigned i; 638 639 lockmgr(&pool->lock, LK_EXCLUSIVE); 640 ttm_page_pool_fill_locked(pool, ttm_flags, cstate, count); 641 642 if (count >= pool->npages) { 643 /* take all pages from the pool */ 644 TAILQ_CONCAT(pages, &pool->list, pageq); 645 count -= pool->npages; 646 pool->npages = 0; 647 goto out; 648 } 649 for (i = 0; i < count; i++) { 650 p = TAILQ_FIRST(&pool->list); 651 TAILQ_REMOVE(&pool->list, p, pageq); 652 TAILQ_INSERT_TAIL(pages, p, pageq); 653 } 654 pool->npages -= count; 655 count = 0; 656 out: 657 lockmgr(&pool->lock, LK_RELEASE); 658 return count; 659 } 660 661 /* Put all pages in pages list to correct pool to wait for reuse */ 662 static void ttm_put_pages(vm_page_t *pages, unsigned npages, int flags, 663 enum ttm_caching_state cstate) 664 { 665 struct ttm_page_pool *pool = ttm_get_pool(flags, cstate); 666 unsigned i; 667 668 if (pool == NULL) { 669 /* No pool for this memory type so free the pages */ 670 for (i = 0; i < npages; i++) { 671 if (pages[i]) { 672 ttm_vm_page_free(pages[i]); 673 pages[i] = NULL; 674 } 675 } 676 return; 677 } 678 679 lockmgr(&pool->lock, LK_EXCLUSIVE); 680 for (i = 0; i < npages; i++) { 681 if (pages[i]) { 682 TAILQ_INSERT_TAIL(&pool->list, pages[i], pageq); 683 pages[i] = NULL; 684 pool->npages++; 685 } 686 } 687 /* Check that we don't go over the pool limit */ 688 npages = 0; 689 if (pool->npages > _manager->options.max_size) { 690 npages = pool->npages - _manager->options.max_size; 691 /* free at least NUM_PAGES_TO_ALLOC number of pages 692 * to reduce calls to set_memory_wb */ 693 if (npages < NUM_PAGES_TO_ALLOC) 694 npages = NUM_PAGES_TO_ALLOC; 695 } 696 lockmgr(&pool->lock, LK_RELEASE); 697 if (npages) 698 ttm_page_pool_free(pool, npages); 699 } 700 701 /* 702 * On success pages list will hold count number of correctly 703 * cached pages. 704 */ 705 static int ttm_get_pages(vm_page_t *pages, unsigned npages, int flags, 706 enum ttm_caching_state cstate) 707 { 708 struct ttm_page_pool *pool = ttm_get_pool(flags, cstate); 709 struct pglist plist; 710 vm_page_t p = NULL; 711 int gfp_flags, aflags; 712 unsigned count; 713 int r; 714 715 aflags = VM_ALLOC_NORMAL | 716 ((flags & TTM_PAGE_FLAG_ZERO_ALLOC) != 0 ? VM_ALLOC_ZERO : 0); 717 718 /* No pool for cached pages */ 719 if (pool == NULL) { 720 for (r = 0; r < npages; ++r) { 721 p = vm_page_alloc_contig(0, 722 (flags & TTM_PAGE_FLAG_DMA32) ? 0xffffffff : 723 VM_MAX_ADDRESS, PAGE_SIZE, 724 0, 1*PAGE_SIZE, ttm_caching_state_to_vm(cstate)); 725 if (!p) { 726 kprintf("[TTM] Unable to allocate page\n"); 727 return -ENOMEM; 728 } 729 #if 0 730 p->oflags &= ~VPO_UNMANAGED; 731 #endif 732 p->flags |= PG_FICTITIOUS; 733 pages[r] = p; 734 } 735 return 0; 736 } 737 738 /* combine zero flag to pool flags */ 739 gfp_flags = flags | pool->ttm_page_alloc_flags; 740 741 /* First we take pages from the pool */ 742 TAILQ_INIT(&plist); 743 npages = ttm_page_pool_get_pages(pool, &plist, flags, cstate, npages); 744 count = 0; 745 TAILQ_FOREACH(p, &plist, pageq) { 746 pages[count++] = p; 747 } 748 749 /* clear the pages coming from the pool if requested */ 750 if (flags & TTM_PAGE_FLAG_ZERO_ALLOC) { 751 TAILQ_FOREACH(p, &plist, pageq) { 752 pmap_zero_page(VM_PAGE_TO_PHYS(p)); 753 } 754 } 755 756 /* If pool didn't have enough pages allocate new one. */ 757 if (npages > 0) { 758 /* ttm_alloc_new_pages doesn't reference pool so we can run 759 * multiple requests in parallel. 760 **/ 761 TAILQ_INIT(&plist); 762 r = ttm_alloc_new_pages(&plist, gfp_flags, flags, cstate, 763 npages); 764 TAILQ_FOREACH(p, &plist, pageq) { 765 pages[count++] = p; 766 } 767 if (r) { 768 /* If there is any pages in the list put them back to 769 * the pool. */ 770 kprintf("[TTM] Failed to allocate extra pages for large request\n"); 771 ttm_put_pages(pages, count, flags, cstate); 772 return r; 773 } 774 } 775 776 return 0; 777 } 778 779 static void ttm_page_pool_init_locked(struct ttm_page_pool *pool, int flags, 780 char *name) 781 { 782 lockinit(&pool->lock, "ttmpool", 0, LK_CANRECURSE); 783 pool->fill_lock = false; 784 TAILQ_INIT(&pool->list); 785 pool->npages = pool->nfrees = 0; 786 pool->ttm_page_alloc_flags = flags; 787 pool->name = name; 788 } 789 790 int ttm_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages) 791 { 792 793 if (_manager != NULL) 794 kprintf("[TTM] manager != NULL\n"); 795 kprintf("[TTM] Initializing pool allocator\n"); 796 797 _manager = kmalloc(sizeof(*_manager), M_TTM_POOLMGR, M_WAITOK | M_ZERO); 798 799 ttm_page_pool_init_locked(&_manager->wc_pool, 0, "wc"); 800 ttm_page_pool_init_locked(&_manager->uc_pool, 0, "uc"); 801 ttm_page_pool_init_locked(&_manager->wc_pool_dma32, 802 TTM_PAGE_FLAG_DMA32, "wc dma"); 803 ttm_page_pool_init_locked(&_manager->uc_pool_dma32, 804 TTM_PAGE_FLAG_DMA32, "uc dma"); 805 806 _manager->options.max_size = max_pages; 807 _manager->options.small = SMALL_ALLOCATION; 808 _manager->options.alloc_size = NUM_PAGES_TO_ALLOC; 809 810 refcount_init(&_manager->kobj_ref, 1); 811 ttm_pool_mm_shrink_init(_manager); 812 813 return 0; 814 } 815 816 void ttm_page_alloc_fini(void) 817 { 818 int i; 819 820 kprintf("[TTM] Finalizing pool allocator\n"); 821 ttm_pool_mm_shrink_fini(_manager); 822 823 for (i = 0; i < NUM_POOLS; ++i) 824 ttm_page_pool_free(&_manager->pools[i], FREE_ALL_PAGES); 825 826 if (refcount_release(&_manager->kobj_ref)) 827 ttm_pool_kobj_release(_manager); 828 _manager = NULL; 829 } 830 831 int ttm_pool_populate(struct ttm_tt *ttm) 832 { 833 struct ttm_mem_global *mem_glob = ttm->glob->mem_glob; 834 unsigned i; 835 int ret; 836 837 if (ttm->state != tt_unpopulated) 838 return 0; 839 840 for (i = 0; i < ttm->num_pages; ++i) { 841 ret = ttm_get_pages(&ttm->pages[i], 1, 842 ttm->page_flags, 843 ttm->caching_state); 844 if (ret != 0) { 845 ttm_pool_unpopulate(ttm); 846 return -ENOMEM; 847 } 848 849 ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i], 850 false, false); 851 if (unlikely(ret != 0)) { 852 ttm_pool_unpopulate(ttm); 853 return -ENOMEM; 854 } 855 } 856 857 if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) { 858 ret = ttm_tt_swapin(ttm); 859 if (unlikely(ret != 0)) { 860 ttm_pool_unpopulate(ttm); 861 return ret; 862 } 863 } 864 865 ttm->state = tt_unbound; 866 return 0; 867 } 868 869 void ttm_pool_unpopulate(struct ttm_tt *ttm) 870 { 871 unsigned i; 872 873 for (i = 0; i < ttm->num_pages; ++i) { 874 if (ttm->pages[i]) { 875 ttm_mem_global_free_page(ttm->glob->mem_glob, 876 ttm->pages[i]); 877 ttm_put_pages(&ttm->pages[i], 1, 878 ttm->page_flags, 879 ttm->caching_state); 880 } 881 } 882 ttm->state = tt_unpopulated; 883 } 884 885 #if 0 886 /* XXXKIB sysctl */ 887 int ttm_page_alloc_debugfs(struct seq_file *m, void *data) 888 { 889 struct ttm_page_pool *p; 890 unsigned i; 891 char *h[] = {"pool", "refills", "pages freed", "size"}; 892 if (!_manager) { 893 seq_printf(m, "No pool allocator running.\n"); 894 return 0; 895 } 896 seq_printf(m, "%6s %12s %13s %8s\n", 897 h[0], h[1], h[2], h[3]); 898 for (i = 0; i < NUM_POOLS; ++i) { 899 p = &_manager->pools[i]; 900 901 seq_printf(m, "%6s %12ld %13ld %8d\n", 902 p->name, p->nrefills, 903 p->nfrees, p->npages); 904 } 905 return 0; 906 } 907 #endif 908