1 /************************************************************************** 2 * 3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA 4 * All Rights Reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 24 * USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 /* 28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> 29 */ 30 31 #define pr_fmt(fmt) "[TTM] " fmt 32 33 #include <drm/ttm/ttm_module.h> 34 #include <drm/ttm/ttm_bo_driver.h> 35 #include <drm/ttm/ttm_placement.h> 36 #include <linux/jiffies.h> 37 #include <linux/slab.h> 38 #include <linux/sched.h> 39 #include <linux/mm.h> 40 #include <linux/file.h> 41 #include <linux/module.h> 42 #include <linux/atomic.h> 43 44 #define TTM_ASSERT_LOCKED(param) do { } while (0) 45 #define TTM_DEBUG(fmt, arg...) do { } while (0) 46 #define TTM_BO_HASH_ORDER 13 47 48 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo); 49 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink); 50 static void ttm_bo_global_kobj_release(struct kobject *kobj); 51 52 static struct attribute ttm_bo_count = { 53 .name = "bo_count", 54 .mode = S_IRUGO 55 }; 56 57 static inline int ttm_mem_type_from_place(const struct ttm_place *place, 58 uint32_t *mem_type) 59 { 60 int i; 61 62 for (i = 0; i <= TTM_PL_PRIV5; i++) 63 if (place->flags & (1 << i)) { 64 *mem_type = i; 65 return 0; 66 } 67 return -EINVAL; 68 } 69 70 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type) 71 { 72 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 73 74 pr_err(" has_type: %d\n", man->has_type); 75 pr_err(" use_type: %d\n", man->use_type); 76 pr_err(" flags: 0x%08X\n", man->flags); 77 pr_err(" gpu_offset: 0x%08lX\n", man->gpu_offset); 78 pr_err(" size: %ju\n", (uintmax_t)man->size); 79 pr_err(" available_caching: 0x%08X\n", man->available_caching); 80 pr_err(" default_caching: 0x%08X\n", man->default_caching); 81 if (mem_type != TTM_PL_SYSTEM) 82 (*man->func->debug)(man, TTM_PFX); 83 } 84 85 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo, 86 struct ttm_placement *placement) 87 { 88 int i, ret, mem_type; 89 90 pr_err("No space for %p (%lu pages, %luK, %luM)\n", 91 bo, bo->mem.num_pages, bo->mem.size >> 10, 92 bo->mem.size >> 20); 93 for (i = 0; i < placement->num_placement; i++) { 94 ret = ttm_mem_type_from_place(&placement->placement[i], 95 &mem_type); 96 if (ret) 97 return; 98 pr_err(" placement[%d]=0x%08X (%d)\n", 99 i, placement->placement[i].flags, mem_type); 100 ttm_mem_type_debug(bo->bdev, mem_type); 101 } 102 } 103 104 static ssize_t ttm_bo_global_show(struct kobject *kobj, 105 struct attribute *attr, 106 char *buffer) 107 { 108 struct ttm_bo_global *glob = 109 container_of(kobj, struct ttm_bo_global, kobj); 110 111 return ksnprintf(buffer, PAGE_SIZE, "%lu\n", 112 (unsigned long) atomic_read(&glob->bo_count)); 113 } 114 115 static struct attribute *ttm_bo_global_attrs[] = { 116 &ttm_bo_count, 117 NULL 118 }; 119 120 static const struct sysfs_ops ttm_bo_global_ops = { 121 .show = &ttm_bo_global_show 122 }; 123 124 static struct kobj_type ttm_bo_glob_kobj_type = { 125 .release = &ttm_bo_global_kobj_release, 126 .sysfs_ops = &ttm_bo_global_ops, 127 .default_attrs = ttm_bo_global_attrs 128 }; 129 130 static inline uint32_t ttm_bo_type_flags(unsigned type) 131 { 132 return 1 << (type); 133 } 134 135 static void ttm_bo_release_list(struct kref *list_kref) 136 { 137 struct ttm_buffer_object *bo = 138 container_of(list_kref, struct ttm_buffer_object, list_kref); 139 struct ttm_bo_device *bdev = bo->bdev; 140 size_t acc_size = bo->acc_size; 141 142 BUG_ON(atomic_read(&bo->list_kref.refcount)); 143 BUG_ON(atomic_read(&bo->kref.refcount)); 144 BUG_ON(atomic_read(&bo->cpu_writers)); 145 BUG_ON(bo->sync_obj != NULL); 146 BUG_ON(bo->mem.mm_node != NULL); 147 BUG_ON(!list_empty(&bo->lru)); 148 BUG_ON(!list_empty(&bo->ddestroy)); 149 150 if (bo->ttm) 151 ttm_tt_destroy(bo->ttm); 152 atomic_dec(&bo->glob->bo_count); 153 if (bo->destroy) 154 bo->destroy(bo); 155 else { 156 kfree(bo); 157 } 158 ttm_mem_global_free(bdev->glob->mem_glob, acc_size); 159 } 160 161 static int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo, 162 bool interruptible) 163 { 164 if (interruptible) { 165 return wait_event_interruptible(bo->event_queue, 166 !ttm_bo_is_reserved(bo)); 167 } else { 168 wait_event(bo->event_queue, !ttm_bo_is_reserved(bo)); 169 return 0; 170 } 171 } 172 173 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo) 174 { 175 struct ttm_bo_device *bdev = bo->bdev; 176 struct ttm_mem_type_manager *man; 177 178 BUG_ON(!ttm_bo_is_reserved(bo)); 179 180 if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) { 181 182 BUG_ON(!list_empty(&bo->lru)); 183 184 man = &bdev->man[bo->mem.mem_type]; 185 list_add_tail(&bo->lru, &man->lru); 186 kref_get(&bo->list_kref); 187 188 if (bo->ttm != NULL) { 189 list_add_tail(&bo->swap, &bo->glob->swap_lru); 190 kref_get(&bo->list_kref); 191 } 192 } 193 } 194 195 int ttm_bo_del_from_lru(struct ttm_buffer_object *bo) 196 { 197 int put_count = 0; 198 199 if (!list_empty(&bo->swap)) { 200 list_del_init(&bo->swap); 201 ++put_count; 202 } 203 if (!list_empty(&bo->lru)) { 204 list_del_init(&bo->lru); 205 ++put_count; 206 } 207 208 /* 209 * TODO: Add a driver hook to delete from 210 * driver-specific LRU's here. 211 */ 212 213 return put_count; 214 } 215 216 int ttm_bo_reserve_nolru(struct ttm_buffer_object *bo, 217 bool interruptible, 218 bool no_wait, bool use_ticket, 219 struct ww_acquire_ctx *ticket) 220 { 221 int ret; 222 223 while (unlikely(atomic_xchg(&bo->reserved, 1) != 0)) { 224 /** 225 * Deadlock avoidance for multi-bo reserving. 226 */ 227 if (use_ticket && bo->seq_valid) { 228 /** 229 * We've already reserved this one. 230 */ 231 if (unlikely(ticket->stamp == bo->val_seq)) 232 return -EDEADLK; 233 /** 234 * Already reserved by a thread that will not back 235 * off for us. We need to back off. 236 */ 237 if (unlikely(ticket->stamp - bo->val_seq <= LONG_MAX)) 238 return -EAGAIN; 239 } 240 241 if (no_wait) 242 return -EBUSY; 243 244 ret = ttm_bo_wait_unreserved(bo, interruptible); 245 246 if (unlikely(ret)) 247 return ret; 248 } 249 250 if (use_ticket) { 251 bool wake_up = false; 252 253 /** 254 * Wake up waiters that may need to recheck for deadlock, 255 * if we decreased the sequence number. 256 */ 257 if (unlikely((bo->val_seq - ticket->stamp <= LONG_MAX) 258 || !bo->seq_valid)) 259 wake_up = true; 260 261 /* 262 * In the worst case with memory ordering these values can be 263 * seen in the wrong order. However since we call wake_up_all 264 * in that case, this will hopefully not pose a problem, 265 * and the worst case would only cause someone to accidentally 266 * hit -EAGAIN in ttm_bo_reserve when they see old value of 267 * val_seq. However this would only happen if seq_valid was 268 * written before val_seq was, and just means some slightly 269 * increased cpu usage 270 */ 271 bo->val_seq = ticket->stamp; 272 bo->seq_valid = true; 273 if (wake_up) 274 wake_up_all(&bo->event_queue); 275 } else { 276 bo->seq_valid = false; 277 } 278 279 return 0; 280 } 281 EXPORT_SYMBOL(ttm_bo_reserve); 282 283 static void ttm_bo_ref_bug(struct kref *list_kref) 284 { 285 BUG(); 286 } 287 288 void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count, 289 bool never_free) 290 { 291 kref_sub(&bo->list_kref, count, 292 (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list); 293 } 294 295 int ttm_bo_reserve(struct ttm_buffer_object *bo, 296 bool interruptible, 297 bool no_wait, bool use_ticket, 298 struct ww_acquire_ctx *ticket) 299 { 300 struct ttm_bo_global *glob = bo->glob; 301 int put_count = 0; 302 int ret; 303 304 ret = ttm_bo_reserve_nolru(bo, interruptible, no_wait, use_ticket, 305 ticket); 306 if (likely(ret == 0)) { 307 lockmgr(&glob->lru_lock, LK_EXCLUSIVE); 308 put_count = ttm_bo_del_from_lru(bo); 309 lockmgr(&glob->lru_lock, LK_RELEASE); 310 ttm_bo_list_ref_sub(bo, put_count, true); 311 } 312 313 return ret; 314 } 315 316 int ttm_bo_reserve_slowpath_nolru(struct ttm_buffer_object *bo, 317 bool interruptible, 318 struct ww_acquire_ctx *ticket) 319 { 320 bool wake_up = false; 321 int ret; 322 323 while (unlikely(atomic_xchg(&bo->reserved, 1) != 0)) { 324 WARN_ON(bo->seq_valid && ticket->stamp == bo->val_seq); 325 326 ret = ttm_bo_wait_unreserved(bo, interruptible); 327 328 if (unlikely(ret)) 329 return ret; 330 } 331 332 if (bo->val_seq - ticket->stamp < LONG_MAX || !bo->seq_valid) 333 wake_up = true; 334 335 /** 336 * Wake up waiters that may need to recheck for deadlock, 337 * if we decreased the sequence number. 338 */ 339 bo->val_seq = ticket->stamp; 340 bo->seq_valid = true; 341 if (wake_up) 342 wake_up_all(&bo->event_queue); 343 344 return 0; 345 } 346 347 int ttm_bo_reserve_slowpath(struct ttm_buffer_object *bo, 348 bool interruptible, struct ww_acquire_ctx *ticket) 349 { 350 struct ttm_bo_global *glob = bo->glob; 351 int put_count, ret; 352 353 ret = ttm_bo_reserve_slowpath_nolru(bo, interruptible, ticket); 354 if (likely(!ret)) { 355 lockmgr(&glob->lru_lock, LK_EXCLUSIVE); 356 put_count = ttm_bo_del_from_lru(bo); 357 lockmgr(&glob->lru_lock, LK_RELEASE); 358 ttm_bo_list_ref_sub(bo, put_count, true); 359 } 360 return ret; 361 } 362 EXPORT_SYMBOL(ttm_bo_reserve_slowpath); 363 364 void ttm_bo_unreserve_ticket_locked(struct ttm_buffer_object *bo, struct ww_acquire_ctx *ticket) 365 { 366 ttm_bo_add_to_lru(bo); 367 atomic_set(&bo->reserved, 0); 368 wake_up_all(&bo->event_queue); 369 } 370 371 void ttm_bo_unreserve(struct ttm_buffer_object *bo) 372 { 373 struct ttm_bo_global *glob = bo->glob; 374 375 lockmgr(&glob->lru_lock, LK_EXCLUSIVE); 376 ttm_bo_unreserve_ticket_locked(bo, NULL); 377 lockmgr(&glob->lru_lock, LK_RELEASE); 378 } 379 EXPORT_SYMBOL(ttm_bo_unreserve); 380 381 void ttm_bo_unreserve_ticket(struct ttm_buffer_object *bo, struct ww_acquire_ctx *ticket) 382 { 383 struct ttm_bo_global *glob = bo->glob; 384 385 lockmgr(&glob->lru_lock, LK_EXCLUSIVE); 386 ttm_bo_unreserve_ticket_locked(bo, ticket); 387 lockmgr(&glob->lru_lock, LK_RELEASE); 388 } 389 EXPORT_SYMBOL(ttm_bo_unreserve_ticket); 390 391 /* 392 * Call bo->mutex locked. 393 */ 394 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc) 395 { 396 struct ttm_bo_device *bdev = bo->bdev; 397 struct ttm_bo_global *glob = bo->glob; 398 int ret = 0; 399 uint32_t page_flags = 0; 400 401 TTM_ASSERT_LOCKED(&bo->mutex); 402 bo->ttm = NULL; 403 404 if (bdev->need_dma32) 405 page_flags |= TTM_PAGE_FLAG_DMA32; 406 407 switch (bo->type) { 408 case ttm_bo_type_device: 409 if (zero_alloc) 410 page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC; 411 case ttm_bo_type_kernel: 412 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT, 413 page_flags, glob->dummy_read_page); 414 if (unlikely(bo->ttm == NULL)) 415 ret = -ENOMEM; 416 break; 417 case ttm_bo_type_sg: 418 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT, 419 page_flags | TTM_PAGE_FLAG_SG, 420 glob->dummy_read_page); 421 if (unlikely(bo->ttm == NULL)) { 422 ret = -ENOMEM; 423 break; 424 } 425 bo->ttm->sg = bo->sg; 426 break; 427 default: 428 pr_err("Illegal buffer object type\n"); 429 ret = -EINVAL; 430 break; 431 } 432 433 return ret; 434 } 435 436 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo, 437 struct ttm_mem_reg *mem, 438 bool evict, bool interruptible, 439 bool no_wait_gpu) 440 { 441 struct ttm_bo_device *bdev = bo->bdev; 442 bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem); 443 bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem); 444 struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type]; 445 struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type]; 446 int ret = 0; 447 448 if (old_is_pci || new_is_pci || 449 ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) { 450 ret = ttm_mem_io_lock(old_man, true); 451 if (unlikely(ret != 0)) 452 goto out_err; 453 ttm_bo_unmap_virtual_locked(bo); 454 ttm_mem_io_unlock(old_man); 455 } 456 457 /* 458 * Create and bind a ttm if required. 459 */ 460 461 if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) { 462 if (bo->ttm == NULL) { 463 bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED); 464 ret = ttm_bo_add_ttm(bo, zero); 465 if (ret) 466 goto out_err; 467 } 468 469 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement); 470 if (ret) 471 goto out_err; 472 473 if (mem->mem_type != TTM_PL_SYSTEM) { 474 ret = ttm_tt_bind(bo->ttm, mem); 475 if (ret) 476 goto out_err; 477 } 478 479 if (bo->mem.mem_type == TTM_PL_SYSTEM) { 480 if (bdev->driver->move_notify) 481 bdev->driver->move_notify(bo, mem); 482 bo->mem = *mem; 483 mem->mm_node = NULL; 484 goto moved; 485 } 486 } 487 488 if (bdev->driver->move_notify) 489 bdev->driver->move_notify(bo, mem); 490 491 if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) && 492 !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) 493 ret = ttm_bo_move_ttm(bo, evict, no_wait_gpu, mem); 494 else if (bdev->driver->move) 495 ret = bdev->driver->move(bo, evict, interruptible, 496 no_wait_gpu, mem); 497 else 498 ret = ttm_bo_move_memcpy(bo, evict, no_wait_gpu, mem); 499 500 if (ret) { 501 if (bdev->driver->move_notify) { 502 struct ttm_mem_reg tmp_mem = *mem; 503 *mem = bo->mem; 504 bo->mem = tmp_mem; 505 bdev->driver->move_notify(bo, mem); 506 bo->mem = *mem; 507 *mem = tmp_mem; 508 } 509 510 goto out_err; 511 } 512 513 moved: 514 if (bo->evicted) { 515 ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement); 516 if (ret) 517 pr_err("Can not flush read caches\n"); 518 bo->evicted = false; 519 } 520 521 if (bo->mem.mm_node) { 522 bo->offset = (bo->mem.start << PAGE_SHIFT) + 523 bdev->man[bo->mem.mem_type].gpu_offset; 524 bo->cur_placement = bo->mem.placement; 525 } else 526 bo->offset = 0; 527 528 return 0; 529 530 out_err: 531 new_man = &bdev->man[bo->mem.mem_type]; 532 if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) { 533 ttm_tt_unbind(bo->ttm); 534 ttm_tt_destroy(bo->ttm); 535 bo->ttm = NULL; 536 } 537 538 return ret; 539 } 540 541 /** 542 * Call bo::reserved. 543 * Will release GPU memory type usage on destruction. 544 * This is the place to put in driver specific hooks to release 545 * driver private resources. 546 * Will release the bo::reserved lock. 547 */ 548 549 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo) 550 { 551 if (bo->bdev->driver->move_notify) 552 bo->bdev->driver->move_notify(bo, NULL); 553 554 if (bo->ttm) { 555 ttm_tt_unbind(bo->ttm); 556 ttm_tt_destroy(bo->ttm); 557 bo->ttm = NULL; 558 } 559 ttm_bo_mem_put(bo, &bo->mem); 560 561 atomic_set(&bo->reserved, 0); 562 wake_up_all(&bo->event_queue); 563 564 /* 565 * Since the final reference to this bo may not be dropped by 566 * the current task we have to put a memory barrier here to make 567 * sure the changes done in this function are always visible. 568 * 569 * This function only needs protection against the final kref_put. 570 */ 571 cpu_mfence(); 572 } 573 574 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo) 575 { 576 struct ttm_bo_device *bdev = bo->bdev; 577 struct ttm_bo_global *glob = bo->glob; 578 struct ttm_bo_driver *driver = bdev->driver; 579 void *sync_obj = NULL; 580 int put_count; 581 int ret; 582 583 lockmgr(&glob->lru_lock, LK_EXCLUSIVE); 584 ret = ttm_bo_reserve_nolru(bo, false, true, false, 0); 585 586 lockmgr(&bdev->fence_lock, LK_EXCLUSIVE); 587 (void) ttm_bo_wait(bo, false, false, true); 588 if (!ret && !bo->sync_obj) { 589 lockmgr(&bdev->fence_lock, LK_RELEASE); 590 put_count = ttm_bo_del_from_lru(bo); 591 592 lockmgr(&glob->lru_lock, LK_RELEASE); 593 ttm_bo_cleanup_memtype_use(bo); 594 595 ttm_bo_list_ref_sub(bo, put_count, true); 596 597 return; 598 } 599 if (bo->sync_obj) 600 sync_obj = driver->sync_obj_ref(bo->sync_obj); 601 lockmgr(&bdev->fence_lock, LK_RELEASE); 602 603 if (!ret) { 604 atomic_set(&bo->reserved, 0); 605 wake_up_all(&bo->event_queue); 606 } 607 608 kref_get(&bo->list_kref); 609 list_add_tail(&bo->ddestroy, &bdev->ddestroy); 610 lockmgr(&glob->lru_lock, LK_RELEASE); 611 612 if (sync_obj) { 613 driver->sync_obj_flush(sync_obj); 614 driver->sync_obj_unref(&sync_obj); 615 } 616 schedule_delayed_work(&bdev->wq, 617 ((hz / 100) < 1) ? 1 : hz / 100); 618 } 619 620 /** 621 * function ttm_bo_cleanup_refs_and_unlock 622 * If bo idle, remove from delayed- and lru lists, and unref. 623 * If not idle, do nothing. 624 * 625 * Must be called with lru_lock and reservation held, this function 626 * will drop both before returning. 627 * 628 * @interruptible Any sleeps should occur interruptibly. 629 * @no_wait_gpu Never wait for gpu. Return -EBUSY instead. 630 */ 631 632 static int ttm_bo_cleanup_refs_and_unlock(struct ttm_buffer_object *bo, 633 bool interruptible, 634 bool no_wait_gpu) 635 { 636 struct ttm_bo_device *bdev = bo->bdev; 637 struct ttm_bo_driver *driver = bdev->driver; 638 struct ttm_bo_global *glob = bo->glob; 639 int put_count; 640 int ret; 641 642 lockmgr(&bdev->fence_lock, LK_EXCLUSIVE); 643 ret = ttm_bo_wait(bo, false, false, true); 644 645 if (ret && !no_wait_gpu) { 646 void *sync_obj; 647 648 /* 649 * Take a reference to the fence and unreserve, 650 * at this point the buffer should be dead, so 651 * no new sync objects can be attached. 652 */ 653 sync_obj = driver->sync_obj_ref(bo->sync_obj); 654 lockmgr(&bdev->fence_lock, LK_RELEASE); 655 656 atomic_set(&bo->reserved, 0); 657 wake_up_all(&bo->event_queue); 658 lockmgr(&glob->lru_lock, LK_RELEASE); 659 660 ret = driver->sync_obj_wait(sync_obj, false, interruptible); 661 driver->sync_obj_unref(&sync_obj); 662 if (ret) 663 return ret; 664 665 /* 666 * remove sync_obj with ttm_bo_wait, the wait should be 667 * finished, and no new wait object should have been added. 668 */ 669 lockmgr(&bdev->fence_lock, LK_EXCLUSIVE); 670 ret = ttm_bo_wait(bo, false, false, true); 671 WARN_ON(ret); 672 lockmgr(&bdev->fence_lock, LK_RELEASE); 673 if (ret) 674 return ret; 675 676 lockmgr(&glob->lru_lock, LK_EXCLUSIVE); 677 ret = ttm_bo_reserve_nolru(bo, false, true, false, 0); 678 679 /* 680 * We raced, and lost, someone else holds the reservation now, 681 * and is probably busy in ttm_bo_cleanup_memtype_use. 682 * 683 * Even if it's not the case, because we finished waiting any 684 * delayed destruction would succeed, so just return success 685 * here. 686 */ 687 if (ret) { 688 lockmgr(&glob->lru_lock, LK_RELEASE); 689 return 0; 690 } 691 } else 692 lockmgr(&bdev->fence_lock, LK_RELEASE); 693 694 if (ret || unlikely(list_empty(&bo->ddestroy))) { 695 atomic_set(&bo->reserved, 0); 696 wake_up_all(&bo->event_queue); 697 lockmgr(&glob->lru_lock, LK_RELEASE); 698 return ret; 699 } 700 701 put_count = ttm_bo_del_from_lru(bo); 702 list_del_init(&bo->ddestroy); 703 ++put_count; 704 705 lockmgr(&glob->lru_lock, LK_RELEASE); 706 ttm_bo_cleanup_memtype_use(bo); 707 708 ttm_bo_list_ref_sub(bo, put_count, true); 709 710 return 0; 711 } 712 713 /** 714 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all 715 * encountered buffers. 716 */ 717 718 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all) 719 { 720 struct ttm_bo_global *glob = bdev->glob; 721 struct ttm_buffer_object *entry = NULL; 722 int ret = 0; 723 724 lockmgr(&glob->lru_lock, LK_EXCLUSIVE); 725 if (list_empty(&bdev->ddestroy)) 726 goto out_unlock; 727 728 entry = list_first_entry(&bdev->ddestroy, 729 struct ttm_buffer_object, ddestroy); 730 kref_get(&entry->list_kref); 731 732 for (;;) { 733 struct ttm_buffer_object *nentry = NULL; 734 735 if (entry->ddestroy.next != &bdev->ddestroy) { 736 nentry = list_first_entry(&entry->ddestroy, 737 struct ttm_buffer_object, ddestroy); 738 kref_get(&nentry->list_kref); 739 } 740 741 ret = ttm_bo_reserve_nolru(entry, false, true, false, 0); 742 if (remove_all && ret) { 743 lockmgr(&glob->lru_lock, LK_RELEASE); 744 ret = ttm_bo_reserve_nolru(entry, false, false, 745 false, 0); 746 lockmgr(&glob->lru_lock, LK_EXCLUSIVE); 747 } 748 749 if (!ret) 750 ret = ttm_bo_cleanup_refs_and_unlock(entry, false, 751 !remove_all); 752 else 753 lockmgr(&glob->lru_lock, LK_RELEASE); 754 755 kref_put(&entry->list_kref, ttm_bo_release_list); 756 entry = nentry; 757 758 if (ret || !entry) 759 goto out; 760 761 lockmgr(&glob->lru_lock, LK_EXCLUSIVE); 762 if (list_empty(&entry->ddestroy)) 763 break; 764 } 765 766 out_unlock: 767 lockmgr(&glob->lru_lock, LK_RELEASE); 768 out: 769 if (entry) 770 kref_put(&entry->list_kref, ttm_bo_release_list); 771 return ret; 772 } 773 774 static void ttm_bo_delayed_workqueue(struct work_struct *work) 775 { 776 struct ttm_bo_device *bdev = 777 container_of(work, struct ttm_bo_device, wq.work); 778 779 if (ttm_bo_delayed_delete(bdev, false)) { 780 schedule_delayed_work(&bdev->wq, 781 ((hz / 100) < 1) ? 1 : hz / 100); 782 } 783 } 784 785 /* 786 * NOTE: bdev->vm_lock already held on call, this function release it. 787 */ 788 static void ttm_bo_release(struct kref *kref) 789 { 790 struct ttm_buffer_object *bo = 791 container_of(kref, struct ttm_buffer_object, kref); 792 struct ttm_bo_device *bdev = bo->bdev; 793 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type]; 794 int release_active; 795 796 if (atomic_read(&bo->kref.refcount) > 0) { 797 lockmgr(&bdev->vm_lock, LK_RELEASE); 798 return; 799 } 800 if (likely(bo->vm_node != NULL)) { 801 RB_REMOVE(ttm_bo_device_buffer_objects, 802 &bdev->addr_space_rb, bo); 803 drm_mm_put_block(bo->vm_node); 804 bo->vm_node = NULL; 805 } 806 807 /* 808 * Should we clean up our implied list_kref? Because ttm_bo_release() 809 * can be called reentrantly due to races (this may not be true any 810 * more with the lock management changes in the deref), it is possible 811 * to get here twice, but there's only one list_kref ref to drop and 812 * in the other path 'bo' can be kfree()d by another thread the 813 * instant we release our lock. 814 */ 815 release_active = test_bit(TTM_BO_PRIV_FLAG_ACTIVE, &bo->priv_flags); 816 if (release_active) { 817 clear_bit(TTM_BO_PRIV_FLAG_ACTIVE, &bo->priv_flags); 818 lockmgr(&bdev->vm_lock, LK_RELEASE); 819 ttm_mem_io_lock(man, false); 820 ttm_mem_io_free_vm(bo); 821 ttm_mem_io_unlock(man); 822 ttm_bo_cleanup_refs_or_queue(bo); 823 kref_put(&bo->list_kref, ttm_bo_release_list); 824 } else { 825 lockmgr(&bdev->vm_lock, LK_RELEASE); 826 } 827 } 828 829 void ttm_bo_unref(struct ttm_buffer_object **p_bo) 830 { 831 struct ttm_buffer_object *bo = *p_bo; 832 struct ttm_bo_device *bdev = bo->bdev; 833 834 *p_bo = NULL; 835 lockmgr(&bdev->vm_lock, LK_EXCLUSIVE); 836 if (kref_put(&bo->kref, ttm_bo_release) == 0) 837 lockmgr(&bdev->vm_lock, LK_RELEASE); 838 } 839 EXPORT_SYMBOL(ttm_bo_unref); 840 841 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev) 842 { 843 return cancel_delayed_work_sync(&bdev->wq); 844 } 845 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue); 846 847 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched) 848 { 849 if (resched) 850 schedule_delayed_work(&bdev->wq, 851 ((hz / 100) < 1) ? 1 : hz / 100); 852 } 853 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue); 854 855 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible, 856 bool no_wait_gpu) 857 { 858 struct ttm_bo_device *bdev = bo->bdev; 859 struct ttm_mem_reg evict_mem; 860 struct ttm_placement placement; 861 int ret = 0; 862 863 lockmgr(&bdev->fence_lock, LK_EXCLUSIVE); 864 ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu); 865 lockmgr(&bdev->fence_lock, LK_RELEASE); 866 867 if (unlikely(ret != 0)) { 868 if (ret != -ERESTARTSYS) { 869 pr_err("Failed to expire sync object before buffer eviction\n"); 870 } 871 goto out; 872 } 873 874 BUG_ON(!ttm_bo_is_reserved(bo)); 875 876 evict_mem = bo->mem; 877 evict_mem.mm_node = NULL; 878 evict_mem.bus.io_reserved_vm = false; 879 evict_mem.bus.io_reserved_count = 0; 880 881 placement.num_placement = 0; 882 placement.num_busy_placement = 0; 883 bdev->driver->evict_flags(bo, &placement); 884 ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible, 885 no_wait_gpu); 886 if (ret) { 887 if (ret != -ERESTARTSYS) { 888 pr_err("Failed to find memory space for buffer 0x%p eviction\n", 889 bo); 890 ttm_bo_mem_space_debug(bo, &placement); 891 } 892 goto out; 893 } 894 895 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible, 896 no_wait_gpu); 897 if (ret) { 898 if (ret != -ERESTARTSYS) 899 pr_err("Buffer eviction failed\n"); 900 ttm_bo_mem_put(bo, &evict_mem); 901 goto out; 902 } 903 bo->evicted = true; 904 out: 905 return ret; 906 } 907 908 static int ttm_mem_evict_first(struct ttm_bo_device *bdev, 909 uint32_t mem_type, 910 bool interruptible, 911 bool no_wait_gpu) 912 { 913 struct ttm_bo_global *glob = bdev->glob; 914 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 915 struct ttm_buffer_object *bo; 916 int ret = -EBUSY, put_count; 917 918 lockmgr(&glob->lru_lock, LK_EXCLUSIVE); 919 list_for_each_entry(bo, &man->lru, lru) { 920 ret = ttm_bo_reserve_nolru(bo, false, true, false, 0); 921 if (!ret) 922 break; 923 } 924 925 if (ret) { 926 lockmgr(&glob->lru_lock, LK_RELEASE); 927 return ret; 928 } 929 930 kref_get(&bo->list_kref); 931 932 if (!list_empty(&bo->ddestroy)) { 933 ret = ttm_bo_cleanup_refs_and_unlock(bo, interruptible, 934 no_wait_gpu); 935 kref_put(&bo->list_kref, ttm_bo_release_list); 936 return ret; 937 } 938 939 put_count = ttm_bo_del_from_lru(bo); 940 lockmgr(&glob->lru_lock, LK_RELEASE); 941 942 BUG_ON(ret != 0); 943 944 ttm_bo_list_ref_sub(bo, put_count, true); 945 946 ret = ttm_bo_evict(bo, interruptible, no_wait_gpu); 947 ttm_bo_unreserve(bo); 948 949 kref_put(&bo->list_kref, ttm_bo_release_list); 950 return ret; 951 } 952 953 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem) 954 { 955 struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type]; 956 957 if (mem->mm_node) 958 (*man->func->put_node)(man, mem); 959 } 960 EXPORT_SYMBOL(ttm_bo_mem_put); 961 962 /** 963 * Repeatedly evict memory from the LRU for @mem_type until we create enough 964 * space, or we've evicted everything and there isn't enough space. 965 */ 966 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo, 967 uint32_t mem_type, 968 const struct ttm_place *place, 969 struct ttm_mem_reg *mem, 970 bool interruptible, 971 bool no_wait_gpu) 972 { 973 struct ttm_bo_device *bdev = bo->bdev; 974 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 975 int ret; 976 977 do { 978 ret = (*man->func->get_node)(man, bo, place, mem); 979 if (unlikely(ret != 0)) 980 return ret; 981 if (mem->mm_node) 982 break; 983 ret = ttm_mem_evict_first(bdev, mem_type, 984 interruptible, no_wait_gpu); 985 if (unlikely(ret != 0)) 986 return ret; 987 } while (1); 988 if (mem->mm_node == NULL) 989 return -ENOMEM; 990 mem->mem_type = mem_type; 991 return 0; 992 } 993 994 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man, 995 uint32_t cur_placement, 996 uint32_t proposed_placement) 997 { 998 uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING; 999 uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING; 1000 1001 /** 1002 * Keep current caching if possible. 1003 */ 1004 1005 if ((cur_placement & caching) != 0) 1006 result |= (cur_placement & caching); 1007 else if ((man->default_caching & caching) != 0) 1008 result |= man->default_caching; 1009 else if ((TTM_PL_FLAG_CACHED & caching) != 0) 1010 result |= TTM_PL_FLAG_CACHED; 1011 else if ((TTM_PL_FLAG_WC & caching) != 0) 1012 result |= TTM_PL_FLAG_WC; 1013 else if ((TTM_PL_FLAG_UNCACHED & caching) != 0) 1014 result |= TTM_PL_FLAG_UNCACHED; 1015 1016 return result; 1017 } 1018 1019 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man, 1020 uint32_t mem_type, 1021 const struct ttm_place *place, 1022 uint32_t *masked_placement) 1023 { 1024 uint32_t cur_flags = ttm_bo_type_flags(mem_type); 1025 1026 if ((cur_flags & place->flags & TTM_PL_MASK_MEM) == 0) 1027 return false; 1028 1029 if ((place->flags & man->available_caching) == 0) 1030 return false; 1031 1032 cur_flags |= (place->flags & man->available_caching); 1033 1034 *masked_placement = cur_flags; 1035 return true; 1036 } 1037 1038 /** 1039 * Creates space for memory region @mem according to its type. 1040 * 1041 * This function first searches for free space in compatible memory types in 1042 * the priority order defined by the driver. If free space isn't found, then 1043 * ttm_bo_mem_force_space is attempted in priority order to evict and find 1044 * space. 1045 */ 1046 int ttm_bo_mem_space(struct ttm_buffer_object *bo, 1047 struct ttm_placement *placement, 1048 struct ttm_mem_reg *mem, 1049 bool interruptible, 1050 bool no_wait_gpu) 1051 { 1052 struct ttm_bo_device *bdev = bo->bdev; 1053 struct ttm_mem_type_manager *man; 1054 uint32_t mem_type = TTM_PL_SYSTEM; 1055 uint32_t cur_flags = 0; 1056 bool type_found = false; 1057 bool type_ok = false; 1058 bool has_erestartsys = false; 1059 int i, ret; 1060 1061 mem->mm_node = NULL; 1062 for (i = 0; i < placement->num_placement; ++i) { 1063 const struct ttm_place *place = &placement->placement[i]; 1064 1065 ret = ttm_mem_type_from_place(place, &mem_type); 1066 if (ret) 1067 return ret; 1068 man = &bdev->man[mem_type]; 1069 1070 type_ok = ttm_bo_mt_compatible(man, mem_type, place, 1071 &cur_flags); 1072 1073 if (!type_ok) 1074 continue; 1075 1076 cur_flags = ttm_bo_select_caching(man, bo->mem.placement, 1077 cur_flags); 1078 /* 1079 * Use the access and other non-mapping-related flag bits from 1080 * the memory placement flags to the current flags 1081 */ 1082 ttm_flag_masked(&cur_flags, place->flags, 1083 ~TTM_PL_MASK_MEMTYPE); 1084 1085 if (mem_type == TTM_PL_SYSTEM) 1086 break; 1087 1088 if (man->has_type && man->use_type) { 1089 type_found = true; 1090 ret = (*man->func->get_node)(man, bo, place, mem); 1091 if (unlikely(ret)) 1092 return ret; 1093 } 1094 if (mem->mm_node) 1095 break; 1096 } 1097 1098 if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) { 1099 mem->mem_type = mem_type; 1100 mem->placement = cur_flags; 1101 return 0; 1102 } 1103 1104 if (!type_found) 1105 return -EINVAL; 1106 1107 for (i = 0; i < placement->num_busy_placement; ++i) { 1108 const struct ttm_place *place = &placement->busy_placement[i]; 1109 1110 ret = ttm_mem_type_from_place(place, &mem_type); 1111 if (ret) 1112 return ret; 1113 man = &bdev->man[mem_type]; 1114 if (!man->has_type) 1115 continue; 1116 if (!ttm_bo_mt_compatible(man, mem_type, place, &cur_flags)) 1117 continue; 1118 1119 cur_flags = ttm_bo_select_caching(man, bo->mem.placement, 1120 cur_flags); 1121 /* 1122 * Use the access and other non-mapping-related flag bits from 1123 * the memory placement flags to the current flags 1124 */ 1125 ttm_flag_masked(&cur_flags, place->flags, 1126 ~TTM_PL_MASK_MEMTYPE); 1127 1128 if (mem_type == TTM_PL_SYSTEM) { 1129 mem->mem_type = mem_type; 1130 mem->placement = cur_flags; 1131 mem->mm_node = NULL; 1132 return 0; 1133 } 1134 1135 ret = ttm_bo_mem_force_space(bo, mem_type, place, mem, 1136 interruptible, no_wait_gpu); 1137 if (ret == 0 && mem->mm_node) { 1138 mem->placement = cur_flags; 1139 return 0; 1140 } 1141 if (ret == -ERESTARTSYS) 1142 has_erestartsys = true; 1143 } 1144 ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM; 1145 return ret; 1146 } 1147 EXPORT_SYMBOL(ttm_bo_mem_space); 1148 1149 static int ttm_bo_move_buffer(struct ttm_buffer_object *bo, 1150 struct ttm_placement *placement, 1151 bool interruptible, 1152 bool no_wait_gpu) 1153 { 1154 int ret = 0; 1155 struct ttm_mem_reg mem; 1156 struct ttm_bo_device *bdev = bo->bdev; 1157 1158 BUG_ON(!ttm_bo_is_reserved(bo)); 1159 1160 /* 1161 * FIXME: It's possible to pipeline buffer moves. 1162 * Have the driver move function wait for idle when necessary, 1163 * instead of doing it here. 1164 */ 1165 lockmgr(&bdev->fence_lock, LK_EXCLUSIVE); 1166 ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu); 1167 lockmgr(&bdev->fence_lock, LK_RELEASE); 1168 if (ret) 1169 return ret; 1170 mem.num_pages = bo->num_pages; 1171 mem.size = mem.num_pages << PAGE_SHIFT; 1172 mem.page_alignment = bo->mem.page_alignment; 1173 mem.bus.io_reserved_vm = false; 1174 mem.bus.io_reserved_count = 0; 1175 /* 1176 * Determine where to move the buffer. 1177 */ 1178 ret = ttm_bo_mem_space(bo, placement, &mem, 1179 interruptible, no_wait_gpu); 1180 if (ret) 1181 goto out_unlock; 1182 ret = ttm_bo_handle_move_mem(bo, &mem, false, 1183 interruptible, no_wait_gpu); 1184 out_unlock: 1185 if (ret && mem.mm_node) 1186 ttm_bo_mem_put(bo, &mem); 1187 return ret; 1188 } 1189 1190 static bool ttm_bo_mem_compat(struct ttm_placement *placement, 1191 struct ttm_mem_reg *mem, 1192 uint32_t *new_flags) 1193 { 1194 int i; 1195 1196 for (i = 0; i < placement->num_placement; i++) { 1197 const struct ttm_place *heap = &placement->placement[i]; 1198 if (mem->mm_node && 1199 (mem->start < heap->fpfn || 1200 (heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn))) 1201 continue; 1202 1203 *new_flags = heap->flags; 1204 if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) && 1205 (*new_flags & mem->placement & TTM_PL_MASK_MEM)) 1206 return true; 1207 } 1208 1209 for (i = 0; i < placement->num_busy_placement; i++) { 1210 const struct ttm_place *heap = &placement->busy_placement[i]; 1211 if (mem->mm_node && 1212 (mem->start < heap->fpfn || 1213 (heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn))) 1214 continue; 1215 1216 *new_flags = heap->flags; 1217 if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) && 1218 (*new_flags & mem->placement & TTM_PL_MASK_MEM)) 1219 return true; 1220 } 1221 1222 return false; 1223 } 1224 1225 int ttm_bo_validate(struct ttm_buffer_object *bo, 1226 struct ttm_placement *placement, 1227 bool interruptible, 1228 bool no_wait_gpu) 1229 { 1230 int ret; 1231 uint32_t new_flags; 1232 1233 BUG_ON(!ttm_bo_is_reserved(bo)); 1234 /* 1235 * Check whether we need to move buffer. 1236 */ 1237 if (!ttm_bo_mem_compat(placement, &bo->mem, &new_flags)) { 1238 ret = ttm_bo_move_buffer(bo, placement, interruptible, 1239 no_wait_gpu); 1240 if (ret) 1241 return ret; 1242 } else { 1243 /* 1244 * Use the access and other non-mapping-related flag bits from 1245 * the compatible memory placement flags to the active flags 1246 */ 1247 ttm_flag_masked(&bo->mem.placement, new_flags, 1248 ~TTM_PL_MASK_MEMTYPE); 1249 } 1250 /* 1251 * We might need to add a TTM. 1252 */ 1253 if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { 1254 ret = ttm_bo_add_ttm(bo, true); 1255 if (ret) 1256 return ret; 1257 } 1258 return 0; 1259 } 1260 EXPORT_SYMBOL(ttm_bo_validate); 1261 1262 int ttm_bo_init(struct ttm_bo_device *bdev, 1263 struct ttm_buffer_object *bo, 1264 unsigned long size, 1265 enum ttm_bo_type type, 1266 struct ttm_placement *placement, 1267 uint32_t page_alignment, 1268 bool interruptible, 1269 struct vm_object *persistent_swap_storage, 1270 size_t acc_size, 1271 struct sg_table *sg, 1272 void (*destroy) (struct ttm_buffer_object *)) 1273 { 1274 int ret = 0; 1275 unsigned long num_pages; 1276 struct ttm_mem_global *mem_glob = bdev->glob->mem_glob; 1277 1278 ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false); 1279 if (ret) { 1280 pr_err("Out of kernel memory\n"); 1281 if (destroy) 1282 (*destroy)(bo); 1283 else 1284 kfree(bo); 1285 return -ENOMEM; 1286 } 1287 1288 num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1289 if (num_pages == 0) { 1290 pr_err("Illegal buffer object size\n"); 1291 if (destroy) 1292 (*destroy)(bo); 1293 else 1294 kfree(bo); 1295 ttm_mem_global_free(mem_glob, acc_size); 1296 return -EINVAL; 1297 } 1298 bo->destroy = destroy; 1299 1300 kref_init(&bo->kref); 1301 kref_init(&bo->list_kref); 1302 atomic_set(&bo->cpu_writers, 0); 1303 atomic_set(&bo->reserved, 1); 1304 init_waitqueue_head(&bo->event_queue); 1305 INIT_LIST_HEAD(&bo->lru); 1306 INIT_LIST_HEAD(&bo->ddestroy); 1307 INIT_LIST_HEAD(&bo->swap); 1308 INIT_LIST_HEAD(&bo->io_reserve_lru); 1309 bo->bdev = bdev; 1310 bo->glob = bdev->glob; 1311 bo->type = type; 1312 bo->num_pages = num_pages; 1313 bo->mem.size = num_pages << PAGE_SHIFT; 1314 bo->mem.mem_type = TTM_PL_SYSTEM; 1315 bo->mem.num_pages = bo->num_pages; 1316 bo->mem.mm_node = NULL; 1317 bo->mem.page_alignment = page_alignment; 1318 bo->mem.bus.io_reserved_vm = false; 1319 bo->mem.bus.io_reserved_count = 0; 1320 bo->priv_flags = 0; 1321 bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED); 1322 bo->seq_valid = false; 1323 bo->persistent_swap_storage = persistent_swap_storage; 1324 bo->acc_size = acc_size; 1325 bo->sg = sg; 1326 atomic_inc(&bo->glob->bo_count); 1327 1328 /* 1329 * Mirror ref from kref_init() for list_kref. 1330 */ 1331 set_bit(TTM_BO_PRIV_FLAG_ACTIVE, &bo->priv_flags); 1332 1333 /* 1334 * For ttm_bo_type_device buffers, allocate 1335 * address space from the device. 1336 */ 1337 if (bo->type == ttm_bo_type_device || 1338 bo->type == ttm_bo_type_sg) { 1339 ret = ttm_bo_setup_vm(bo); 1340 if (ret) 1341 goto out_err; 1342 } 1343 1344 ret = ttm_bo_validate(bo, placement, interruptible, false); 1345 if (ret) 1346 goto out_err; 1347 1348 ttm_bo_unreserve(bo); 1349 return 0; 1350 1351 out_err: 1352 ttm_bo_unreserve(bo); 1353 ttm_bo_unref(&bo); 1354 1355 return ret; 1356 } 1357 EXPORT_SYMBOL(ttm_bo_init); 1358 1359 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev, 1360 unsigned long bo_size, 1361 unsigned struct_size) 1362 { 1363 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT; 1364 size_t size = 0; 1365 1366 size += ttm_round_pot(struct_size); 1367 size += PAGE_ALIGN(npages * sizeof(void *)); 1368 size += ttm_round_pot(sizeof(struct ttm_tt)); 1369 return size; 1370 } 1371 EXPORT_SYMBOL(ttm_bo_acc_size); 1372 1373 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev, 1374 unsigned long bo_size, 1375 unsigned struct_size) 1376 { 1377 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT; 1378 size_t size = 0; 1379 1380 size += ttm_round_pot(struct_size); 1381 size += PAGE_ALIGN(npages * sizeof(void *)); 1382 size += PAGE_ALIGN(npages * sizeof(dma_addr_t)); 1383 size += ttm_round_pot(sizeof(struct ttm_dma_tt)); 1384 return size; 1385 } 1386 EXPORT_SYMBOL(ttm_bo_dma_acc_size); 1387 1388 int ttm_bo_create(struct ttm_bo_device *bdev, 1389 unsigned long size, 1390 enum ttm_bo_type type, 1391 struct ttm_placement *placement, 1392 uint32_t page_alignment, 1393 bool interruptible, 1394 struct vm_object *persistent_swap_storage, 1395 struct ttm_buffer_object **p_bo) 1396 { 1397 struct ttm_buffer_object *bo; 1398 size_t acc_size; 1399 int ret; 1400 1401 *p_bo = NULL; 1402 bo = kzalloc(sizeof(*bo), GFP_KERNEL); 1403 if (unlikely(bo == NULL)) 1404 return -ENOMEM; 1405 1406 acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object)); 1407 ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment, 1408 interruptible, persistent_swap_storage, acc_size, 1409 NULL, NULL); 1410 if (likely(ret == 0)) 1411 *p_bo = bo; 1412 1413 return ret; 1414 } 1415 EXPORT_SYMBOL(ttm_bo_create); 1416 1417 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev, 1418 unsigned mem_type, bool allow_errors) 1419 { 1420 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 1421 struct ttm_bo_global *glob = bdev->glob; 1422 int ret; 1423 1424 /* 1425 * Can't use standard list traversal since we're unlocking. 1426 */ 1427 1428 lockmgr(&glob->lru_lock, LK_EXCLUSIVE); 1429 while (!list_empty(&man->lru)) { 1430 lockmgr(&glob->lru_lock, LK_RELEASE); 1431 ret = ttm_mem_evict_first(bdev, mem_type, false, false); 1432 if (ret) { 1433 if (allow_errors) { 1434 return ret; 1435 } else { 1436 pr_err("Cleanup eviction failed\n"); 1437 } 1438 } 1439 lockmgr(&glob->lru_lock, LK_EXCLUSIVE); 1440 } 1441 lockmgr(&glob->lru_lock, LK_RELEASE); 1442 return 0; 1443 } 1444 1445 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type) 1446 { 1447 struct ttm_mem_type_manager *man; 1448 int ret = -EINVAL; 1449 1450 if (mem_type >= TTM_NUM_MEM_TYPES) { 1451 pr_err("Illegal memory type %d\n", mem_type); 1452 return ret; 1453 } 1454 man = &bdev->man[mem_type]; 1455 1456 if (!man->has_type) { 1457 pr_err("Trying to take down uninitialized memory manager type %u\n", 1458 mem_type); 1459 return ret; 1460 } 1461 1462 man->use_type = false; 1463 man->has_type = false; 1464 1465 ret = 0; 1466 if (mem_type > 0) { 1467 ttm_bo_force_list_clean(bdev, mem_type, false); 1468 1469 ret = (*man->func->takedown)(man); 1470 } 1471 1472 return ret; 1473 } 1474 EXPORT_SYMBOL(ttm_bo_clean_mm); 1475 1476 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type) 1477 { 1478 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 1479 1480 if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) { 1481 pr_err("Illegal memory manager memory type %u\n", mem_type); 1482 return -EINVAL; 1483 } 1484 1485 if (!man->has_type) { 1486 pr_err("Memory type %u has not been initialized\n", mem_type); 1487 return 0; 1488 } 1489 1490 return ttm_bo_force_list_clean(bdev, mem_type, true); 1491 } 1492 EXPORT_SYMBOL(ttm_bo_evict_mm); 1493 1494 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type, 1495 unsigned long p_size) 1496 { 1497 int ret = -EINVAL; 1498 struct ttm_mem_type_manager *man; 1499 1500 BUG_ON(type >= TTM_NUM_MEM_TYPES); 1501 man = &bdev->man[type]; 1502 BUG_ON(man->has_type); 1503 man->io_reserve_fastpath = true; 1504 man->use_io_reserve_lru = false; 1505 lockinit(&man->io_reserve_mutex, "ttmman", 0, LK_CANRECURSE); 1506 INIT_LIST_HEAD(&man->io_reserve_lru); 1507 1508 ret = bdev->driver->init_mem_type(bdev, type, man); 1509 if (ret) 1510 return ret; 1511 man->bdev = bdev; 1512 1513 ret = 0; 1514 if (type != TTM_PL_SYSTEM) { 1515 ret = (*man->func->init)(man, p_size); 1516 if (ret) 1517 return ret; 1518 } 1519 man->has_type = true; 1520 man->use_type = true; 1521 man->size = p_size; 1522 1523 INIT_LIST_HEAD(&man->lru); 1524 1525 return 0; 1526 } 1527 EXPORT_SYMBOL(ttm_bo_init_mm); 1528 1529 static void ttm_bo_global_kobj_release(struct kobject *kobj) 1530 { 1531 struct ttm_bo_global *glob = 1532 container_of(kobj, struct ttm_bo_global, kobj); 1533 1534 ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink); 1535 __free_page(glob->dummy_read_page); 1536 kfree(glob); 1537 } 1538 1539 void ttm_bo_global_release(struct drm_global_reference *ref) 1540 { 1541 struct ttm_bo_global *glob = ref->object; 1542 1543 kobject_del(&glob->kobj); 1544 kobject_put(&glob->kobj); 1545 } 1546 EXPORT_SYMBOL(ttm_bo_global_release); 1547 1548 int ttm_bo_global_init(struct drm_global_reference *ref) 1549 { 1550 struct ttm_bo_global_ref *bo_ref = 1551 container_of(ref, struct ttm_bo_global_ref, ref); 1552 struct ttm_bo_global *glob = ref->object; 1553 int ret; 1554 1555 lockinit(&glob->device_list_mutex, "ttmdlm", 0, LK_CANRECURSE); 1556 lockinit(&glob->lru_lock, "ttmlru", 0, LK_CANRECURSE); 1557 glob->mem_glob = bo_ref->mem_glob; 1558 glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32); 1559 1560 if (unlikely(glob->dummy_read_page == NULL)) { 1561 ret = -ENOMEM; 1562 goto out_no_drp; 1563 } 1564 1565 INIT_LIST_HEAD(&glob->swap_lru); 1566 INIT_LIST_HEAD(&glob->device_list); 1567 1568 ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout); 1569 ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink); 1570 if (unlikely(ret != 0)) { 1571 pr_err("Could not register buffer object swapout\n"); 1572 goto out_no_shrink; 1573 } 1574 1575 atomic_set(&glob->bo_count, 0); 1576 1577 ret = kobject_init_and_add( 1578 &glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects"); 1579 if (unlikely(ret != 0)) 1580 kobject_put(&glob->kobj); 1581 return ret; 1582 out_no_shrink: 1583 __free_page(glob->dummy_read_page); 1584 out_no_drp: 1585 kfree(glob); 1586 return ret; 1587 } 1588 EXPORT_SYMBOL(ttm_bo_global_init); 1589 1590 1591 int ttm_bo_device_release(struct ttm_bo_device *bdev) 1592 { 1593 int ret = 0; 1594 unsigned i = TTM_NUM_MEM_TYPES; 1595 struct ttm_mem_type_manager *man; 1596 struct ttm_bo_global *glob = bdev->glob; 1597 1598 while (i--) { 1599 man = &bdev->man[i]; 1600 if (man->has_type) { 1601 man->use_type = false; 1602 if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) { 1603 ret = -EBUSY; 1604 pr_err("DRM memory manager type %d is not clean\n", 1605 i); 1606 } 1607 man->has_type = false; 1608 } 1609 } 1610 1611 mutex_lock(&glob->device_list_mutex); 1612 list_del(&bdev->device_list); 1613 mutex_unlock(&glob->device_list_mutex); 1614 1615 cancel_delayed_work_sync(&bdev->wq); 1616 1617 while (ttm_bo_delayed_delete(bdev, true)) 1618 ; 1619 1620 lockmgr(&glob->lru_lock, LK_EXCLUSIVE); 1621 if (list_empty(&bdev->ddestroy)) 1622 TTM_DEBUG("Delayed destroy list was clean\n"); 1623 1624 if (list_empty(&bdev->man[0].lru)) 1625 TTM_DEBUG("Swap list was clean\n"); 1626 lockmgr(&glob->lru_lock, LK_RELEASE); 1627 1628 BUG_ON(!drm_mm_clean(&bdev->addr_space_mm)); 1629 lockmgr(&bdev->vm_lock, LK_EXCLUSIVE); 1630 drm_mm_takedown(&bdev->addr_space_mm); 1631 lockmgr(&bdev->vm_lock, LK_RELEASE); 1632 1633 return ret; 1634 } 1635 EXPORT_SYMBOL(ttm_bo_device_release); 1636 1637 int ttm_bo_device_init(struct ttm_bo_device *bdev, 1638 struct ttm_bo_global *glob, 1639 struct ttm_bo_driver *driver, 1640 uint64_t file_page_offset, 1641 bool need_dma32) 1642 { 1643 int ret = -EINVAL; 1644 1645 lockinit(&bdev->vm_lock, "ttmvml", 0, LK_CANRECURSE); 1646 bdev->driver = driver; 1647 1648 memset(bdev->man, 0, sizeof(bdev->man)); 1649 1650 /* 1651 * Initialize the system memory buffer type. 1652 * Other types need to be driver / IOCTL initialized. 1653 */ 1654 ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0); 1655 if (unlikely(ret != 0)) 1656 goto out_no_sys; 1657 1658 RB_INIT(&bdev->addr_space_rb); 1659 drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000); 1660 1661 INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue); 1662 INIT_LIST_HEAD(&bdev->ddestroy); 1663 bdev->dev_mapping = NULL; 1664 bdev->glob = glob; 1665 bdev->need_dma32 = need_dma32; 1666 bdev->val_seq = 0; 1667 lockinit(&bdev->fence_lock, "ttmfence", 0, LK_CANRECURSE); 1668 mutex_lock(&glob->device_list_mutex); 1669 list_add_tail(&bdev->device_list, &glob->device_list); 1670 mutex_unlock(&glob->device_list_mutex); 1671 1672 return 0; 1673 out_no_sys: 1674 return ret; 1675 } 1676 EXPORT_SYMBOL(ttm_bo_device_init); 1677 1678 /* 1679 * buffer object vm functions. 1680 */ 1681 1682 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 1683 { 1684 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; 1685 1686 if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) { 1687 if (mem->mem_type == TTM_PL_SYSTEM) 1688 return false; 1689 1690 if (man->flags & TTM_MEMTYPE_FLAG_CMA) 1691 return false; 1692 1693 if (mem->placement & TTM_PL_FLAG_CACHED) 1694 return false; 1695 } 1696 return true; 1697 } 1698 1699 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo) 1700 { 1701 1702 ttm_bo_release_mmap(bo); 1703 ttm_mem_io_free_vm(bo); 1704 } 1705 1706 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo) 1707 { 1708 struct ttm_bo_device *bdev = bo->bdev; 1709 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type]; 1710 1711 ttm_mem_io_lock(man, false); 1712 ttm_bo_unmap_virtual_locked(bo); 1713 ttm_mem_io_unlock(man); 1714 } 1715 1716 1717 EXPORT_SYMBOL(ttm_bo_unmap_virtual); 1718 1719 static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo) 1720 { 1721 struct ttm_bo_device *bdev = bo->bdev; 1722 1723 /* The caller acquired bdev->vm_lock. */ 1724 RB_INSERT(ttm_bo_device_buffer_objects, &bdev->addr_space_rb, bo); 1725 } 1726 1727 /** 1728 * ttm_bo_setup_vm: 1729 * 1730 * @bo: the buffer to allocate address space for 1731 * 1732 * Allocate address space in the drm device so that applications 1733 * can mmap the buffer and access the contents. This only 1734 * applies to ttm_bo_type_device objects as others are not 1735 * placed in the drm device address space. 1736 */ 1737 1738 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo) 1739 { 1740 struct ttm_bo_device *bdev = bo->bdev; 1741 int ret; 1742 1743 retry_pre_get: 1744 ret = drm_mm_pre_get(&bdev->addr_space_mm); 1745 if (unlikely(ret != 0)) 1746 return ret; 1747 1748 lockmgr(&bdev->vm_lock, LK_EXCLUSIVE); 1749 bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm, 1750 bo->mem.num_pages, 0, 0); 1751 1752 if (unlikely(bo->vm_node == NULL)) { 1753 ret = -ENOMEM; 1754 goto out_unlock; 1755 } 1756 1757 bo->vm_node = drm_mm_get_block_atomic(bo->vm_node, 1758 bo->mem.num_pages, 0); 1759 1760 if (unlikely(bo->vm_node == NULL)) { 1761 lockmgr(&bdev->vm_lock, LK_RELEASE); 1762 goto retry_pre_get; 1763 } 1764 1765 ttm_bo_vm_insert_rb(bo); 1766 lockmgr(&bdev->vm_lock, LK_RELEASE); 1767 bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT; 1768 1769 return 0; 1770 out_unlock: 1771 lockmgr(&bdev->vm_lock, LK_RELEASE); 1772 return ret; 1773 } 1774 1775 int ttm_bo_wait(struct ttm_buffer_object *bo, 1776 bool lazy, bool interruptible, bool no_wait) 1777 { 1778 struct ttm_bo_driver *driver = bo->bdev->driver; 1779 struct ttm_bo_device *bdev = bo->bdev; 1780 void *sync_obj; 1781 int ret = 0; 1782 1783 if (likely(bo->sync_obj == NULL)) 1784 return 0; 1785 1786 while (bo->sync_obj) { 1787 1788 if (driver->sync_obj_signaled(bo->sync_obj)) { 1789 void *tmp_obj = bo->sync_obj; 1790 bo->sync_obj = NULL; 1791 clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags); 1792 lockmgr(&bdev->fence_lock, LK_RELEASE); 1793 driver->sync_obj_unref(&tmp_obj); 1794 lockmgr(&bdev->fence_lock, LK_EXCLUSIVE); 1795 continue; 1796 } 1797 1798 if (no_wait) 1799 return -EBUSY; 1800 1801 sync_obj = driver->sync_obj_ref(bo->sync_obj); 1802 lockmgr(&bdev->fence_lock, LK_RELEASE); 1803 ret = driver->sync_obj_wait(sync_obj, 1804 lazy, interruptible); 1805 if (unlikely(ret != 0)) { 1806 driver->sync_obj_unref(&sync_obj); 1807 lockmgr(&bdev->fence_lock, LK_EXCLUSIVE); 1808 return ret; 1809 } 1810 lockmgr(&bdev->fence_lock, LK_EXCLUSIVE); 1811 if (likely(bo->sync_obj == sync_obj)) { 1812 void *tmp_obj = bo->sync_obj; 1813 bo->sync_obj = NULL; 1814 clear_bit(TTM_BO_PRIV_FLAG_MOVING, 1815 &bo->priv_flags); 1816 lockmgr(&bdev->fence_lock, LK_RELEASE); 1817 driver->sync_obj_unref(&sync_obj); 1818 driver->sync_obj_unref(&tmp_obj); 1819 lockmgr(&bdev->fence_lock, LK_EXCLUSIVE); 1820 } else { 1821 lockmgr(&bdev->fence_lock, LK_RELEASE); 1822 driver->sync_obj_unref(&sync_obj); 1823 lockmgr(&bdev->fence_lock, LK_EXCLUSIVE); 1824 } 1825 } 1826 return 0; 1827 } 1828 EXPORT_SYMBOL(ttm_bo_wait); 1829 1830 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait) 1831 { 1832 struct ttm_bo_device *bdev = bo->bdev; 1833 int ret = 0; 1834 1835 /* 1836 * Using ttm_bo_reserve makes sure the lru lists are updated. 1837 */ 1838 1839 ret = ttm_bo_reserve(bo, true, no_wait, false, 0); 1840 if (unlikely(ret != 0)) 1841 return ret; 1842 lockmgr(&bdev->fence_lock, LK_EXCLUSIVE); 1843 ret = ttm_bo_wait(bo, false, true, no_wait); 1844 lockmgr(&bdev->fence_lock, LK_RELEASE); 1845 if (likely(ret == 0)) 1846 atomic_inc(&bo->cpu_writers); 1847 ttm_bo_unreserve(bo); 1848 return ret; 1849 } 1850 EXPORT_SYMBOL(ttm_bo_synccpu_write_grab); 1851 1852 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo) 1853 { 1854 atomic_dec(&bo->cpu_writers); 1855 } 1856 EXPORT_SYMBOL(ttm_bo_synccpu_write_release); 1857 1858 /** 1859 * A buffer object shrink method that tries to swap out the first 1860 * buffer object on the bo_global::swap_lru list. 1861 */ 1862 1863 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink) 1864 { 1865 struct ttm_bo_global *glob = 1866 container_of(shrink, struct ttm_bo_global, shrink); 1867 struct ttm_buffer_object *bo; 1868 int ret = -EBUSY; 1869 int put_count; 1870 uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM); 1871 1872 lockmgr(&glob->lru_lock, LK_EXCLUSIVE); 1873 list_for_each_entry(bo, &glob->swap_lru, swap) { 1874 ret = ttm_bo_reserve_nolru(bo, false, true, false, 0); 1875 if (!ret) 1876 break; 1877 } 1878 1879 if (ret) { 1880 lockmgr(&glob->lru_lock, LK_RELEASE); 1881 return ret; 1882 } 1883 1884 kref_get(&bo->list_kref); 1885 1886 if (!list_empty(&bo->ddestroy)) { 1887 ret = ttm_bo_cleanup_refs_and_unlock(bo, false, false); 1888 kref_put(&bo->list_kref, ttm_bo_release_list); 1889 return ret; 1890 } 1891 1892 put_count = ttm_bo_del_from_lru(bo); 1893 lockmgr(&glob->lru_lock, LK_RELEASE); 1894 1895 ttm_bo_list_ref_sub(bo, put_count, true); 1896 1897 /** 1898 * Wait for GPU, then move to system cached. 1899 */ 1900 1901 lockmgr(&bo->bdev->fence_lock, LK_EXCLUSIVE); 1902 ret = ttm_bo_wait(bo, false, false, false); 1903 lockmgr(&bo->bdev->fence_lock, LK_RELEASE); 1904 1905 if (unlikely(ret != 0)) 1906 goto out; 1907 1908 if ((bo->mem.placement & swap_placement) != swap_placement) { 1909 struct ttm_mem_reg evict_mem; 1910 1911 evict_mem = bo->mem; 1912 evict_mem.mm_node = NULL; 1913 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED; 1914 evict_mem.mem_type = TTM_PL_SYSTEM; 1915 1916 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, 1917 false, false); 1918 if (unlikely(ret != 0)) 1919 goto out; 1920 } 1921 1922 ttm_bo_unmap_virtual(bo); 1923 1924 /** 1925 * Swap out. Buffer will be swapped in again as soon as 1926 * anyone tries to access a ttm page. 1927 */ 1928 1929 if (bo->bdev->driver->swap_notify) 1930 bo->bdev->driver->swap_notify(bo); 1931 1932 ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage); 1933 out: 1934 1935 /** 1936 * 1937 * Unreserve without putting on LRU to avoid swapping out an 1938 * already swapped buffer. 1939 */ 1940 1941 atomic_set(&bo->reserved, 0); 1942 wake_up_all(&bo->event_queue); 1943 kref_put(&bo->list_kref, ttm_bo_release_list); 1944 return ret; 1945 } 1946 1947 void ttm_bo_swapout_all(struct ttm_bo_device *bdev) 1948 { 1949 while (ttm_bo_swapout(&bdev->glob->shrink) == 0) 1950 ; 1951 } 1952 EXPORT_SYMBOL(ttm_bo_swapout_all); 1953