xref: /dflybsd-src/sys/dev/drm/ttm/ttm_bo.c (revision 68e609aa42b5c8082ca864b600d1683c6a82dc68)
1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  *
30  * $FreeBSD: head/sys/dev/drm2/ttm/ttm_bo.c 248060 2013-03-08 18:11:02Z dumbbell $
31  */
32 
33 #include <drm/drmP.h>
34 #include <dev/drm/ttm/ttm_module.h>
35 #include <dev/drm/ttm/ttm_bo_driver.h>
36 #include <dev/drm/ttm/ttm_placement.h>
37 
38 #define TTM_ASSERT_LOCKED(param)
39 #define TTM_DEBUG(fmt, arg...)
40 #define TTM_BO_HASH_ORDER 13
41 
42 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
43 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
44 static void ttm_bo_global_kobj_release(struct ttm_bo_global *glob);
45 
46 MALLOC_DEFINE(M_TTM_BO, "ttm_bo", "TTM Buffer Objects");
47 
48 static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
49 {
50 	int i;
51 
52 	for (i = 0; i <= TTM_PL_PRIV5; i++)
53 		if (flags & (1 << i)) {
54 			*mem_type = i;
55 			return 0;
56 		}
57 	return -EINVAL;
58 }
59 
60 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
61 {
62 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
63 
64 	kprintf("    has_type: %d\n", man->has_type);
65 	kprintf("    use_type: %d\n", man->use_type);
66 	kprintf("    flags: 0x%08X\n", man->flags);
67 	kprintf("    gpu_offset: 0x%08lX\n", man->gpu_offset);
68 	kprintf("    size: %ju\n", (uintmax_t)man->size);
69 	kprintf("    available_caching: 0x%08X\n", man->available_caching);
70 	kprintf("    default_caching: 0x%08X\n", man->default_caching);
71 	if (mem_type != TTM_PL_SYSTEM)
72 		(*man->func->debug)(man, TTM_PFX);
73 }
74 
75 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
76 					struct ttm_placement *placement)
77 {
78 	int i, ret, mem_type;
79 
80 	kprintf("No space for %p (%lu pages, %luK, %luM)\n",
81 	       bo, bo->mem.num_pages, bo->mem.size >> 10,
82 	       bo->mem.size >> 20);
83 	for (i = 0; i < placement->num_placement; i++) {
84 		ret = ttm_mem_type_from_flags(placement->placement[i],
85 						&mem_type);
86 		if (ret)
87 			return;
88 		kprintf("  placement[%d]=0x%08X (%d)\n",
89 		       i, placement->placement[i], mem_type);
90 		ttm_mem_type_debug(bo->bdev, mem_type);
91 	}
92 }
93 
94 #if 0
95 static ssize_t ttm_bo_global_show(struct ttm_bo_global *glob,
96     char *buffer)
97 {
98 
99 	return snprintf(buffer, PAGE_SIZE, "%lu\n",
100 			(unsigned long) atomic_read(&glob->bo_count));
101 }
102 #endif
103 
104 static inline uint32_t ttm_bo_type_flags(unsigned type)
105 {
106 	return 1 << (type);
107 }
108 
109 static void ttm_bo_release_list(struct ttm_buffer_object *bo)
110 {
111 	struct ttm_bo_device *bdev = bo->bdev;
112 	size_t acc_size = bo->acc_size;
113 
114 	KKASSERT(atomic_read(&bo->list_kref) == 0);
115 	KKASSERT(atomic_read(&bo->kref) == 0);
116 	KKASSERT(atomic_read(&bo->cpu_writers) == 0);
117 	KKASSERT(bo->sync_obj == NULL);
118 	KKASSERT(bo->mem.mm_node == NULL);
119 	KKASSERT(list_empty(&bo->lru));
120 	KKASSERT(list_empty(&bo->ddestroy));
121 
122 	if (bo->ttm)
123 		ttm_tt_destroy(bo->ttm);
124 	atomic_dec(&bo->glob->bo_count);
125 	if (bo->destroy)
126 		bo->destroy(bo);
127 	else {
128 		drm_free(bo, M_TTM_BO);
129 	}
130 	ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
131 }
132 
133 static int
134 ttm_bo_wait_unreserved_locked(struct ttm_buffer_object *bo, bool interruptible)
135 {
136 	const char *wmsg;
137 	int flags, ret;
138 
139 	ret = 0;
140 	if (interruptible) {
141 		flags = PCATCH;
142 		wmsg = "ttbowi";
143 	} else {
144 		flags = 0;
145 		wmsg = "ttbowu";
146 	}
147 	while (ttm_bo_is_reserved(bo)) {
148 		ret = -lksleep(bo, &bo->glob->lru_lock, 0, wmsg, 0);
149 		if (ret != 0)
150 			break;
151 	}
152 	return (ret);
153 }
154 
155 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
156 {
157 	struct ttm_bo_device *bdev = bo->bdev;
158 	struct ttm_mem_type_manager *man;
159 
160 	KKASSERT(ttm_bo_is_reserved(bo));
161 
162 	if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
163 
164 		KKASSERT(list_empty(&bo->lru));
165 
166 		man = &bdev->man[bo->mem.mem_type];
167 		list_add_tail(&bo->lru, &man->lru);
168 		refcount_acquire(&bo->list_kref);
169 
170 		if (bo->ttm != NULL) {
171 			list_add_tail(&bo->swap, &bo->glob->swap_lru);
172 			refcount_acquire(&bo->list_kref);
173 		}
174 	}
175 }
176 
177 int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
178 {
179 	int put_count = 0;
180 
181 	if (!list_empty(&bo->swap)) {
182 		list_del_init(&bo->swap);
183 		++put_count;
184 	}
185 	if (!list_empty(&bo->lru)) {
186 		list_del_init(&bo->lru);
187 		++put_count;
188 	}
189 
190 	/*
191 	 * TODO: Add a driver hook to delete from
192 	 * driver-specific LRU's here.
193 	 */
194 
195 	return put_count;
196 }
197 
198 int ttm_bo_reserve_nolru(struct ttm_buffer_object *bo,
199 			  bool interruptible,
200 			  bool no_wait, bool use_sequence, uint32_t sequence)
201 {
202 	int ret;
203 
204 	while (unlikely(atomic_xchg(&bo->reserved, 1) != 0)) {
205 		/**
206 		 * Deadlock avoidance for multi-bo reserving.
207 		 */
208 		if (use_sequence && bo->seq_valid) {
209 			/**
210 			 * We've already reserved this one.
211 			 */
212 			if (unlikely(sequence == bo->val_seq))
213 				return -EDEADLK;
214 			/**
215 			 * Already reserved by a thread that will not back
216 			 * off for us. We need to back off.
217 			 */
218 			if (unlikely(sequence - bo->val_seq < (1 << 31)))
219 				return -EAGAIN;
220 		}
221 
222 		if (no_wait)
223 			return -EBUSY;
224 
225 		ret = ttm_bo_wait_unreserved_locked(bo, interruptible);
226 
227 		if (unlikely(ret))
228 			return ret;
229 	}
230 
231 	if (use_sequence) {
232 		bool wake_up = false;
233 		/**
234 		 * Wake up waiters that may need to recheck for deadlock,
235 		 * if we decreased the sequence number.
236 		 */
237 		if (unlikely((bo->val_seq - sequence < (1 << 31))
238 			     || !bo->seq_valid))
239 			wake_up = true;
240 
241 		/*
242 		 * In the worst case with memory ordering these values can be
243 		 * seen in the wrong order. However since we call wake_up_all
244 		 * in that case, this will hopefully not pose a problem,
245 		 * and the worst case would only cause someone to accidentally
246 		 * hit -EAGAIN in ttm_bo_reserve when they see old value of
247 		 * val_seq. However this would only happen if seq_valid was
248 		 * written before val_seq was, and just means some slightly
249 		 * increased cpu usage
250 		 */
251 		bo->val_seq = sequence;
252 		bo->seq_valid = true;
253 		if (wake_up)
254 			wakeup(bo);
255 	} else {
256 		bo->seq_valid = false;
257 	}
258 
259 	return 0;
260 }
261 
262 void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
263 			 bool never_free)
264 {
265 	u_int old;
266 
267 	old = atomic_fetchadd_int(&bo->list_kref, -count);
268 	if (old <= count) {
269 		if (never_free)
270 			panic("ttm_bo_ref_buf");
271 		ttm_bo_release_list(bo);
272 	}
273 }
274 
275 int ttm_bo_reserve(struct ttm_buffer_object *bo,
276 		   bool interruptible,
277 		   bool no_wait, bool use_sequence, uint32_t sequence)
278 {
279 	struct ttm_bo_global *glob = bo->glob;
280 	int put_count = 0;
281 	int ret;
282 
283 	lockmgr(&bo->glob->lru_lock, LK_EXCLUSIVE);
284 	ret = ttm_bo_reserve_nolru(bo, interruptible, no_wait, use_sequence,
285 				   sequence);
286 	if (likely(ret == 0)) {
287 		put_count = ttm_bo_del_from_lru(bo);
288 		lockmgr(&glob->lru_lock, LK_RELEASE);
289 		ttm_bo_list_ref_sub(bo, put_count, true);
290 	} else
291 		lockmgr(&bo->glob->lru_lock, LK_RELEASE);
292 
293 	return ret;
294 }
295 
296 int ttm_bo_reserve_slowpath_nolru(struct ttm_buffer_object *bo,
297 				  bool interruptible, uint32_t sequence)
298 {
299 	bool wake_up = false;
300 	int ret;
301 
302 	while (unlikely(atomic_xchg(&bo->reserved, 1) != 0)) {
303 		if (bo->seq_valid && sequence == bo->val_seq) {
304 			DRM_ERROR(
305 			    "%s: bo->seq_valid && sequence == bo->val_seq",
306 			    __func__);
307 		}
308 
309 		ret = ttm_bo_wait_unreserved_locked(bo, interruptible);
310 
311 		if (unlikely(ret))
312 			return ret;
313 	}
314 
315 	if ((bo->val_seq - sequence < (1 << 31)) || !bo->seq_valid)
316 		wake_up = true;
317 
318 	/**
319 	 * Wake up waiters that may need to recheck for deadlock,
320 	 * if we decreased the sequence number.
321 	 */
322 	bo->val_seq = sequence;
323 	bo->seq_valid = true;
324 	if (wake_up)
325 		wakeup(bo);
326 
327 	return 0;
328 }
329 
330 int ttm_bo_reserve_slowpath(struct ttm_buffer_object *bo,
331 			    bool interruptible, uint32_t sequence)
332 {
333 	struct ttm_bo_global *glob = bo->glob;
334 	int put_count, ret;
335 
336 	lockmgr(&glob->lru_lock, LK_EXCLUSIVE);
337 	ret = ttm_bo_reserve_slowpath_nolru(bo, interruptible, sequence);
338 	if (likely(!ret)) {
339 		put_count = ttm_bo_del_from_lru(bo);
340 		lockmgr(&glob->lru_lock, LK_RELEASE);
341 		ttm_bo_list_ref_sub(bo, put_count, true);
342 	} else
343 		lockmgr(&glob->lru_lock, LK_RELEASE);
344 	return ret;
345 }
346 
347 void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo)
348 {
349 	ttm_bo_add_to_lru(bo);
350 	atomic_set(&bo->reserved, 0);
351 	wakeup(bo);
352 }
353 
354 void ttm_bo_unreserve(struct ttm_buffer_object *bo)
355 {
356 	struct ttm_bo_global *glob = bo->glob;
357 
358 	lockmgr(&glob->lru_lock, LK_EXCLUSIVE);
359 	ttm_bo_unreserve_locked(bo);
360 	lockmgr(&glob->lru_lock, LK_RELEASE);
361 }
362 
363 /*
364  * Call bo->mutex locked.
365  */
366 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
367 {
368 	struct ttm_bo_device *bdev = bo->bdev;
369 	struct ttm_bo_global *glob = bo->glob;
370 	int ret = 0;
371 	uint32_t page_flags = 0;
372 
373 	TTM_ASSERT_LOCKED(&bo->mutex);
374 	bo->ttm = NULL;
375 
376 	if (bdev->need_dma32)
377 		page_flags |= TTM_PAGE_FLAG_DMA32;
378 
379 	switch (bo->type) {
380 	case ttm_bo_type_device:
381 		if (zero_alloc)
382 			page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
383 	case ttm_bo_type_kernel:
384 		bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
385 						      page_flags, glob->dummy_read_page);
386 		if (unlikely(bo->ttm == NULL))
387 			ret = -ENOMEM;
388 		break;
389 	case ttm_bo_type_sg:
390 		bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
391 						      page_flags | TTM_PAGE_FLAG_SG,
392 						      glob->dummy_read_page);
393 		if (unlikely(bo->ttm == NULL)) {
394 			ret = -ENOMEM;
395 			break;
396 		}
397 		bo->ttm->sg = bo->sg;
398 		break;
399 	default:
400 		kprintf("[TTM] Illegal buffer object type\n");
401 		ret = -EINVAL;
402 		break;
403 	}
404 
405 	return ret;
406 }
407 
408 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
409 				  struct ttm_mem_reg *mem,
410 				  bool evict, bool interruptible,
411 				  bool no_wait_gpu)
412 {
413 	struct ttm_bo_device *bdev = bo->bdev;
414 	bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
415 	bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
416 	struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
417 	struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
418 	int ret = 0;
419 
420 	if (old_is_pci || new_is_pci ||
421 	    ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
422 		ret = ttm_mem_io_lock(old_man, true);
423 		if (unlikely(ret != 0))
424 			goto out_err;
425 		ttm_bo_unmap_virtual_locked(bo);
426 		ttm_mem_io_unlock(old_man);
427 	}
428 
429 	/*
430 	 * Create and bind a ttm if required.
431 	 */
432 
433 	if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
434 		if (bo->ttm == NULL) {
435 			bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
436 			ret = ttm_bo_add_ttm(bo, zero);
437 			if (ret)
438 				goto out_err;
439 		}
440 
441 		ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
442 		if (ret)
443 			goto out_err;
444 
445 		if (mem->mem_type != TTM_PL_SYSTEM) {
446 			ret = ttm_tt_bind(bo->ttm, mem);
447 			if (ret)
448 				goto out_err;
449 		}
450 
451 		if (bo->mem.mem_type == TTM_PL_SYSTEM) {
452 			if (bdev->driver->move_notify)
453 				bdev->driver->move_notify(bo, mem);
454 			bo->mem = *mem;
455 			mem->mm_node = NULL;
456 			goto moved;
457 		}
458 	}
459 
460 	if (bdev->driver->move_notify)
461 		bdev->driver->move_notify(bo, mem);
462 
463 	if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
464 	    !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
465 		ret = ttm_bo_move_ttm(bo, evict, no_wait_gpu, mem);
466 	else if (bdev->driver->move)
467 		ret = bdev->driver->move(bo, evict, interruptible,
468 					 no_wait_gpu, mem);
469 	else
470 		ret = ttm_bo_move_memcpy(bo, evict, no_wait_gpu, mem);
471 
472 	if (ret) {
473 		if (bdev->driver->move_notify) {
474 			struct ttm_mem_reg tmp_mem = *mem;
475 			*mem = bo->mem;
476 			bo->mem = tmp_mem;
477 			bdev->driver->move_notify(bo, mem);
478 			bo->mem = *mem;
479 			*mem = tmp_mem;
480 		}
481 
482 		goto out_err;
483 	}
484 
485 moved:
486 	if (bo->evicted) {
487 		ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
488 		if (ret)
489 			kprintf("[TTM] Can not flush read caches\n");
490 		bo->evicted = false;
491 	}
492 
493 	if (bo->mem.mm_node) {
494 		bo->offset = (bo->mem.start << PAGE_SHIFT) +
495 		    bdev->man[bo->mem.mem_type].gpu_offset;
496 		bo->cur_placement = bo->mem.placement;
497 	} else
498 		bo->offset = 0;
499 
500 	return 0;
501 
502 out_err:
503 	new_man = &bdev->man[bo->mem.mem_type];
504 	if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
505 		ttm_tt_unbind(bo->ttm);
506 		ttm_tt_destroy(bo->ttm);
507 		bo->ttm = NULL;
508 	}
509 
510 	return ret;
511 }
512 
513 /**
514  * Call bo::reserved.
515  * Will release GPU memory type usage on destruction.
516  * This is the place to put in driver specific hooks to release
517  * driver private resources.
518  * Will release the bo::reserved lock.
519  */
520 
521 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
522 {
523 	if (bo->bdev->driver->move_notify)
524 		bo->bdev->driver->move_notify(bo, NULL);
525 
526 	if (bo->ttm) {
527 		ttm_tt_unbind(bo->ttm);
528 		ttm_tt_destroy(bo->ttm);
529 		bo->ttm = NULL;
530 	}
531 	ttm_bo_mem_put(bo, &bo->mem);
532 
533 	atomic_set(&bo->reserved, 0);
534 	wakeup(&bo);
535 
536 	/*
537 	 * Since the final reference to this bo may not be dropped by
538 	 * the current task we have to put a memory barrier here to make
539 	 * sure the changes done in this function are always visible.
540 	 *
541 	 * This function only needs protection against the final kref_put.
542 	 */
543 	cpu_mfence();
544 }
545 
546 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
547 {
548 	struct ttm_bo_device *bdev = bo->bdev;
549 	struct ttm_bo_global *glob = bo->glob;
550 	struct ttm_bo_driver *driver = bdev->driver;
551 	void *sync_obj = NULL;
552 	int put_count;
553 	int ret;
554 
555 	lockmgr(&glob->lru_lock, LK_EXCLUSIVE);
556 	ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
557 
558 	lockmgr(&bdev->fence_lock, LK_EXCLUSIVE);
559 	(void) ttm_bo_wait(bo, false, false, true);
560 	if (!ret && !bo->sync_obj) {
561 		lockmgr(&bdev->fence_lock, LK_RELEASE);
562 		put_count = ttm_bo_del_from_lru(bo);
563 
564 		lockmgr(&glob->lru_lock, LK_RELEASE);
565 		ttm_bo_cleanup_memtype_use(bo);
566 
567 		ttm_bo_list_ref_sub(bo, put_count, true);
568 
569 		return;
570 	}
571 	if (bo->sync_obj)
572 		sync_obj = driver->sync_obj_ref(bo->sync_obj);
573 	lockmgr(&bdev->fence_lock, LK_RELEASE);
574 
575 	if (!ret) {
576 		atomic_set(&bo->reserved, 0);
577 		wakeup(bo);
578 	}
579 
580 	refcount_acquire(&bo->list_kref);
581 	list_add_tail(&bo->ddestroy, &bdev->ddestroy);
582 	lockmgr(&glob->lru_lock, LK_RELEASE);
583 
584 	if (sync_obj) {
585 		driver->sync_obj_flush(sync_obj);
586 		driver->sync_obj_unref(&sync_obj);
587 	}
588 	taskqueue_enqueue_timeout(taskqueue_thread[mycpuid], &bdev->wq,
589 	    ((hz / 100) < 1) ? 1 : hz / 100);
590 }
591 
592 /**
593  * function ttm_bo_cleanup_refs_and_unlock
594  * If bo idle, remove from delayed- and lru lists, and unref.
595  * If not idle, do nothing.
596  *
597  * Must be called with lru_lock and reservation held, this function
598  * will drop both before returning.
599  *
600  * @interruptible         Any sleeps should occur interruptibly.
601  * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
602  */
603 
604 static int ttm_bo_cleanup_refs_and_unlock(struct ttm_buffer_object *bo,
605 					  bool interruptible,
606 					  bool no_wait_gpu)
607 {
608 	struct ttm_bo_device *bdev = bo->bdev;
609 	struct ttm_bo_driver *driver = bdev->driver;
610 	struct ttm_bo_global *glob = bo->glob;
611 	int put_count;
612 	int ret;
613 
614 	lockmgr(&bdev->fence_lock, LK_EXCLUSIVE);
615 	ret = ttm_bo_wait(bo, false, false, true);
616 
617 	if (ret && !no_wait_gpu) {
618 		void *sync_obj;
619 
620 		/*
621 		 * Take a reference to the fence and unreserve,
622 		 * at this point the buffer should be dead, so
623 		 * no new sync objects can be attached.
624 		 */
625 		sync_obj = driver->sync_obj_ref(bo->sync_obj);
626 		lockmgr(&bdev->fence_lock, LK_RELEASE);
627 
628 		atomic_set(&bo->reserved, 0);
629 		wakeup(bo);
630 		lockmgr(&glob->lru_lock, LK_RELEASE);
631 
632 		ret = driver->sync_obj_wait(sync_obj, false, interruptible);
633 		driver->sync_obj_unref(&sync_obj);
634 		if (ret)
635 			return ret;
636 
637 		/*
638 		 * remove sync_obj with ttm_bo_wait, the wait should be
639 		 * finished, and no new wait object should have been added.
640 		 */
641 		lockmgr(&bdev->fence_lock, LK_EXCLUSIVE);
642 		ret = ttm_bo_wait(bo, false, false, true);
643 		lockmgr(&bdev->fence_lock, LK_RELEASE);
644 		if (ret)
645 			return ret;
646 
647 		lockmgr(&glob->lru_lock, LK_EXCLUSIVE);
648 		ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
649 
650 		/*
651 		 * We raced, and lost, someone else holds the reservation now,
652 		 * and is probably busy in ttm_bo_cleanup_memtype_use.
653 		 *
654 		 * Even if it's not the case, because we finished waiting any
655 		 * delayed destruction would succeed, so just return success
656 		 * here.
657 		 */
658 		if (ret) {
659 			lockmgr(&glob->lru_lock, LK_RELEASE);
660 			return 0;
661 		}
662 	} else
663 		lockmgr(&bdev->fence_lock, LK_RELEASE);
664 
665 	if (ret || unlikely(list_empty(&bo->ddestroy))) {
666 		atomic_set(&bo->reserved, 0);
667 		wakeup(bo);
668 		lockmgr(&glob->lru_lock, LK_RELEASE);
669 		return ret;
670 	}
671 
672 	put_count = ttm_bo_del_from_lru(bo);
673 	list_del_init(&bo->ddestroy);
674 	++put_count;
675 
676 	lockmgr(&glob->lru_lock, LK_RELEASE);
677 	ttm_bo_cleanup_memtype_use(bo);
678 
679 	ttm_bo_list_ref_sub(bo, put_count, true);
680 
681 	return 0;
682 }
683 
684 /**
685  * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
686  * encountered buffers.
687  */
688 
689 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
690 {
691 	struct ttm_bo_global *glob = bdev->glob;
692 	struct ttm_buffer_object *entry = NULL;
693 	int ret = 0;
694 
695 	lockmgr(&glob->lru_lock, LK_EXCLUSIVE);
696 	if (list_empty(&bdev->ddestroy))
697 		goto out_unlock;
698 
699 	entry = list_first_entry(&bdev->ddestroy,
700 		struct ttm_buffer_object, ddestroy);
701 	refcount_acquire(&entry->list_kref);
702 
703 	for (;;) {
704 		struct ttm_buffer_object *nentry = NULL;
705 
706 		if (entry->ddestroy.next != &bdev->ddestroy) {
707 			nentry = list_first_entry(&entry->ddestroy,
708 				struct ttm_buffer_object, ddestroy);
709 			refcount_acquire(&nentry->list_kref);
710 		}
711 
712 		ret = ttm_bo_reserve_nolru(entry, false, true, false, 0);
713 		if (remove_all && ret) {
714 			ret = ttm_bo_reserve_nolru(entry, false, false,
715 						   false, 0);
716 		}
717 
718 		if (!ret)
719 			ret = ttm_bo_cleanup_refs_and_unlock(entry, false,
720 							     !remove_all);
721 		else
722 			lockmgr(&glob->lru_lock, LK_RELEASE);
723 
724 		if (refcount_release(&entry->list_kref))
725 			ttm_bo_release_list(entry);
726 		entry = nentry;
727 
728 		if (ret || !entry)
729 			goto out;
730 
731 		lockmgr(&glob->lru_lock, LK_EXCLUSIVE);
732 		if (list_empty(&entry->ddestroy))
733 			break;
734 	}
735 
736 out_unlock:
737 	lockmgr(&glob->lru_lock, LK_RELEASE);
738 out:
739 	if (entry && refcount_release(&entry->list_kref))
740 		ttm_bo_release_list(entry);
741 	return ret;
742 }
743 
744 static void ttm_bo_delayed_workqueue(void *arg, int pending __unused)
745 {
746 	struct ttm_bo_device *bdev = arg;
747 
748 	if (ttm_bo_delayed_delete(bdev, false)) {
749 		taskqueue_enqueue_timeout(taskqueue_thread[mycpuid], &bdev->wq,
750 		    ((hz / 100) < 1) ? 1 : hz / 100);
751 	}
752 }
753 
754 static void ttm_bo_release(struct ttm_buffer_object *bo)
755 {
756 	struct ttm_bo_device *bdev = bo->bdev;
757 	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
758 
759 	lockmgr(&bdev->vm_lock, LK_EXCLUSIVE);
760 	if (likely(bo->vm_node != NULL)) {
761 		RB_REMOVE(ttm_bo_device_buffer_objects,
762 		    &bdev->addr_space_rb, bo);
763 		drm_mm_put_block(bo->vm_node);
764 		bo->vm_node = NULL;
765 	}
766 	lockmgr(&bdev->vm_lock, LK_RELEASE);
767 	ttm_mem_io_lock(man, false);
768 	ttm_mem_io_free_vm(bo);
769 	ttm_mem_io_unlock(man);
770 	ttm_bo_cleanup_refs_or_queue(bo);
771 	if (refcount_release(&bo->list_kref))
772 		ttm_bo_release_list(bo);
773 }
774 
775 void ttm_bo_unref(struct ttm_buffer_object **p_bo)
776 {
777 	struct ttm_buffer_object *bo = *p_bo;
778 
779 	*p_bo = NULL;
780 	if (refcount_release(&bo->kref))
781 		ttm_bo_release(bo);
782 }
783 
784 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
785 {
786 	int pending;
787 
788 	taskqueue_cancel_timeout(taskqueue_thread[mycpuid], &bdev->wq, &pending);
789 	if (pending)
790 		taskqueue_drain_timeout(taskqueue_thread[mycpuid], &bdev->wq);
791 	return (pending);
792 }
793 
794 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
795 {
796 	if (resched) {
797 		taskqueue_enqueue_timeout(taskqueue_thread[mycpuid], &bdev->wq,
798 		    ((hz / 100) < 1) ? 1 : hz / 100);
799 	}
800 }
801 
802 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
803 			bool no_wait_gpu)
804 {
805 	struct ttm_bo_device *bdev = bo->bdev;
806 	struct ttm_mem_reg evict_mem;
807 	struct ttm_placement placement;
808 	int ret = 0;
809 
810 	lockmgr(&bdev->fence_lock, LK_EXCLUSIVE);
811 	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
812 	lockmgr(&bdev->fence_lock, LK_RELEASE);
813 
814 	if (unlikely(ret != 0)) {
815 		if (ret != -ERESTART) {
816 			kprintf("[TTM] Failed to expire sync object before buffer eviction\n");
817 		}
818 		goto out;
819 	}
820 
821 	KKASSERT(ttm_bo_is_reserved(bo));
822 
823 	evict_mem = bo->mem;
824 	evict_mem.mm_node = NULL;
825 	evict_mem.bus.io_reserved_vm = false;
826 	evict_mem.bus.io_reserved_count = 0;
827 
828 	placement.fpfn = 0;
829 	placement.lpfn = 0;
830 	placement.num_placement = 0;
831 	placement.num_busy_placement = 0;
832 	bdev->driver->evict_flags(bo, &placement);
833 	ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
834 				no_wait_gpu);
835 	if (ret) {
836 		if (ret != -ERESTART) {
837 			kprintf("[TTM] Failed to find memory space for buffer 0x%p eviction\n",
838 			       bo);
839 			ttm_bo_mem_space_debug(bo, &placement);
840 		}
841 		goto out;
842 	}
843 
844 	ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
845 				     no_wait_gpu);
846 	if (ret) {
847 		if (ret != -ERESTART)
848 			kprintf("[TTM] Buffer eviction failed\n");
849 		ttm_bo_mem_put(bo, &evict_mem);
850 		goto out;
851 	}
852 	bo->evicted = true;
853 out:
854 	return ret;
855 }
856 
857 static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
858 				uint32_t mem_type,
859 				bool interruptible,
860 				bool no_wait_gpu)
861 {
862 	struct ttm_bo_global *glob = bdev->glob;
863 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
864 	struct ttm_buffer_object *bo;
865 	int ret = -EBUSY, put_count;
866 
867 	lockmgr(&glob->lru_lock, LK_EXCLUSIVE);
868 	list_for_each_entry(bo, &man->lru, lru) {
869 		ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
870 		if (!ret)
871 			break;
872 	}
873 
874 	if (ret) {
875 		lockmgr(&glob->lru_lock, LK_RELEASE);
876 		return ret;
877 	}
878 
879 	refcount_acquire(&bo->list_kref);
880 
881 	if (!list_empty(&bo->ddestroy)) {
882 		ret = ttm_bo_cleanup_refs_and_unlock(bo, interruptible,
883 						     no_wait_gpu);
884 		if (refcount_release(&bo->list_kref))
885 			ttm_bo_release_list(bo);
886 		return ret;
887 	}
888 
889 	put_count = ttm_bo_del_from_lru(bo);
890 	lockmgr(&glob->lru_lock, LK_RELEASE);
891 
892 	KKASSERT(ret == 0);
893 
894 	ttm_bo_list_ref_sub(bo, put_count, true);
895 
896 	ret = ttm_bo_evict(bo, interruptible, no_wait_gpu);
897 	ttm_bo_unreserve(bo);
898 
899 	if (refcount_release(&bo->list_kref))
900 		ttm_bo_release_list(bo);
901 	return ret;
902 }
903 
904 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
905 {
906 	struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
907 
908 	if (mem->mm_node)
909 		(*man->func->put_node)(man, mem);
910 }
911 
912 /**
913  * Repeatedly evict memory from the LRU for @mem_type until we create enough
914  * space, or we've evicted everything and there isn't enough space.
915  */
916 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
917 					uint32_t mem_type,
918 					struct ttm_placement *placement,
919 					struct ttm_mem_reg *mem,
920 					bool interruptible,
921 					bool no_wait_gpu)
922 {
923 	struct ttm_bo_device *bdev = bo->bdev;
924 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
925 	int ret;
926 
927 	do {
928 		ret = (*man->func->get_node)(man, bo, placement, mem);
929 		if (unlikely(ret != 0))
930 			return ret;
931 		if (mem->mm_node)
932 			break;
933 		ret = ttm_mem_evict_first(bdev, mem_type,
934 					  interruptible, no_wait_gpu);
935 		if (unlikely(ret != 0))
936 			return ret;
937 	} while (1);
938 	if (mem->mm_node == NULL)
939 		return -ENOMEM;
940 	mem->mem_type = mem_type;
941 	return 0;
942 }
943 
944 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
945 				      uint32_t cur_placement,
946 				      uint32_t proposed_placement)
947 {
948 	uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
949 	uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
950 
951 	/**
952 	 * Keep current caching if possible.
953 	 */
954 
955 	if ((cur_placement & caching) != 0)
956 		result |= (cur_placement & caching);
957 	else if ((man->default_caching & caching) != 0)
958 		result |= man->default_caching;
959 	else if ((TTM_PL_FLAG_CACHED & caching) != 0)
960 		result |= TTM_PL_FLAG_CACHED;
961 	else if ((TTM_PL_FLAG_WC & caching) != 0)
962 		result |= TTM_PL_FLAG_WC;
963 	else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
964 		result |= TTM_PL_FLAG_UNCACHED;
965 
966 	return result;
967 }
968 
969 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
970 				 uint32_t mem_type,
971 				 uint32_t proposed_placement,
972 				 uint32_t *masked_placement)
973 {
974 	uint32_t cur_flags = ttm_bo_type_flags(mem_type);
975 
976 	if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
977 		return false;
978 
979 	if ((proposed_placement & man->available_caching) == 0)
980 		return false;
981 
982 	cur_flags |= (proposed_placement & man->available_caching);
983 
984 	*masked_placement = cur_flags;
985 	return true;
986 }
987 
988 /**
989  * Creates space for memory region @mem according to its type.
990  *
991  * This function first searches for free space in compatible memory types in
992  * the priority order defined by the driver.  If free space isn't found, then
993  * ttm_bo_mem_force_space is attempted in priority order to evict and find
994  * space.
995  */
996 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
997 			struct ttm_placement *placement,
998 			struct ttm_mem_reg *mem,
999 			bool interruptible,
1000 			bool no_wait_gpu)
1001 {
1002 	struct ttm_bo_device *bdev = bo->bdev;
1003 	struct ttm_mem_type_manager *man;
1004 	uint32_t mem_type = TTM_PL_SYSTEM;
1005 	uint32_t cur_flags = 0;
1006 	bool type_found = false;
1007 	bool type_ok = false;
1008 	bool has_erestartsys = false;
1009 	int i, ret;
1010 
1011 	mem->mm_node = NULL;
1012 	for (i = 0; i < placement->num_placement; ++i) {
1013 		ret = ttm_mem_type_from_flags(placement->placement[i],
1014 						&mem_type);
1015 		if (ret)
1016 			return ret;
1017 		man = &bdev->man[mem_type];
1018 
1019 		type_ok = ttm_bo_mt_compatible(man,
1020 						mem_type,
1021 						placement->placement[i],
1022 						&cur_flags);
1023 
1024 		if (!type_ok)
1025 			continue;
1026 
1027 		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1028 						  cur_flags);
1029 		/*
1030 		 * Use the access and other non-mapping-related flag bits from
1031 		 * the memory placement flags to the current flags
1032 		 */
1033 		ttm_flag_masked(&cur_flags, placement->placement[i],
1034 				~TTM_PL_MASK_MEMTYPE);
1035 
1036 		if (mem_type == TTM_PL_SYSTEM)
1037 			break;
1038 
1039 		if (man->has_type && man->use_type) {
1040 			type_found = true;
1041 			ret = (*man->func->get_node)(man, bo, placement, mem);
1042 			if (unlikely(ret))
1043 				return ret;
1044 		}
1045 		if (mem->mm_node)
1046 			break;
1047 	}
1048 
1049 	if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
1050 		mem->mem_type = mem_type;
1051 		mem->placement = cur_flags;
1052 		return 0;
1053 	}
1054 
1055 	if (!type_found)
1056 		return -EINVAL;
1057 
1058 	for (i = 0; i < placement->num_busy_placement; ++i) {
1059 		ret = ttm_mem_type_from_flags(placement->busy_placement[i],
1060 						&mem_type);
1061 		if (ret)
1062 			return ret;
1063 		man = &bdev->man[mem_type];
1064 		if (!man->has_type)
1065 			continue;
1066 		if (!ttm_bo_mt_compatible(man,
1067 						mem_type,
1068 						placement->busy_placement[i],
1069 						&cur_flags))
1070 			continue;
1071 
1072 		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1073 						  cur_flags);
1074 		/*
1075 		 * Use the access and other non-mapping-related flag bits from
1076 		 * the memory placement flags to the current flags
1077 		 */
1078 		ttm_flag_masked(&cur_flags, placement->busy_placement[i],
1079 				~TTM_PL_MASK_MEMTYPE);
1080 
1081 
1082 		if (mem_type == TTM_PL_SYSTEM) {
1083 			mem->mem_type = mem_type;
1084 			mem->placement = cur_flags;
1085 			mem->mm_node = NULL;
1086 			return 0;
1087 		}
1088 
1089 		ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
1090 						interruptible, no_wait_gpu);
1091 		if (ret == 0 && mem->mm_node) {
1092 			mem->placement = cur_flags;
1093 			return 0;
1094 		}
1095 		if (ret == -ERESTART)
1096 			has_erestartsys = true;
1097 	}
1098 	ret = (has_erestartsys) ? -ERESTART : -ENOMEM;
1099 	return ret;
1100 }
1101 
1102 static
1103 int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1104 			struct ttm_placement *placement,
1105 			bool interruptible,
1106 			bool no_wait_gpu)
1107 {
1108 	int ret = 0;
1109 	struct ttm_mem_reg mem;
1110 	struct ttm_bo_device *bdev = bo->bdev;
1111 
1112 	KKASSERT(ttm_bo_is_reserved(bo));
1113 
1114 	/*
1115 	 * FIXME: It's possible to pipeline buffer moves.
1116 	 * Have the driver move function wait for idle when necessary,
1117 	 * instead of doing it here.
1118 	 */
1119 	lockmgr(&bdev->fence_lock, LK_EXCLUSIVE);
1120 	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
1121 	lockmgr(&bdev->fence_lock, LK_RELEASE);
1122 	if (ret)
1123 		return ret;
1124 	mem.num_pages = bo->num_pages;
1125 	mem.size = mem.num_pages << PAGE_SHIFT;
1126 	mem.page_alignment = bo->mem.page_alignment;
1127 	mem.bus.io_reserved_vm = false;
1128 	mem.bus.io_reserved_count = 0;
1129 	/*
1130 	 * Determine where to move the buffer.
1131 	 */
1132 	ret = ttm_bo_mem_space(bo, placement, &mem,
1133 			       interruptible, no_wait_gpu);
1134 	if (ret)
1135 		goto out_unlock;
1136 	ret = ttm_bo_handle_move_mem(bo, &mem, false,
1137 				     interruptible, no_wait_gpu);
1138 out_unlock:
1139 	if (ret && mem.mm_node)
1140 		ttm_bo_mem_put(bo, &mem);
1141 	return ret;
1142 }
1143 
1144 static int ttm_bo_mem_compat(struct ttm_placement *placement,
1145 			     struct ttm_mem_reg *mem)
1146 {
1147 	int i;
1148 
1149 	if (mem->mm_node && placement->lpfn != 0 &&
1150 	    (mem->start < placement->fpfn ||
1151 	     mem->start + mem->num_pages > placement->lpfn))
1152 		return -1;
1153 
1154 	for (i = 0; i < placement->num_placement; i++) {
1155 		if ((placement->placement[i] & mem->placement &
1156 			TTM_PL_MASK_CACHING) &&
1157 			(placement->placement[i] & mem->placement &
1158 			TTM_PL_MASK_MEM))
1159 			return i;
1160 	}
1161 	return -1;
1162 }
1163 
1164 int ttm_bo_validate(struct ttm_buffer_object *bo,
1165 			struct ttm_placement *placement,
1166 			bool interruptible,
1167 			bool no_wait_gpu)
1168 {
1169 	int ret;
1170 
1171 	KKASSERT(ttm_bo_is_reserved(bo));
1172 	/* Check that range is valid */
1173 	if (placement->lpfn || placement->fpfn)
1174 		if (placement->fpfn > placement->lpfn ||
1175 			(placement->lpfn - placement->fpfn) < bo->num_pages)
1176 			return -EINVAL;
1177 	/*
1178 	 * Check whether we need to move buffer.
1179 	 */
1180 	ret = ttm_bo_mem_compat(placement, &bo->mem);
1181 	if (ret < 0) {
1182 		ret = ttm_bo_move_buffer(bo, placement, interruptible,
1183 					 no_wait_gpu);
1184 		if (ret)
1185 			return ret;
1186 	} else {
1187 		/*
1188 		 * Use the access and other non-mapping-related flag bits from
1189 		 * the compatible memory placement flags to the active flags
1190 		 */
1191 		ttm_flag_masked(&bo->mem.placement, placement->placement[ret],
1192 				~TTM_PL_MASK_MEMTYPE);
1193 	}
1194 	/*
1195 	 * We might need to add a TTM.
1196 	 */
1197 	if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1198 		ret = ttm_bo_add_ttm(bo, true);
1199 		if (ret)
1200 			return ret;
1201 	}
1202 	return 0;
1203 }
1204 
1205 int ttm_bo_check_placement(struct ttm_buffer_object *bo,
1206 				struct ttm_placement *placement)
1207 {
1208 	KKASSERT(!((placement->fpfn || placement->lpfn) &&
1209 	    (bo->mem.num_pages > (placement->lpfn - placement->fpfn))));
1210 
1211 	return 0;
1212 }
1213 
1214 int ttm_bo_init(struct ttm_bo_device *bdev,
1215 		struct ttm_buffer_object *bo,
1216 		unsigned long size,
1217 		enum ttm_bo_type type,
1218 		struct ttm_placement *placement,
1219 		uint32_t page_alignment,
1220 		bool interruptible,
1221 		struct vm_object *persistent_swap_storage,
1222 		size_t acc_size,
1223 		struct sg_table *sg,
1224 		void (*destroy) (struct ttm_buffer_object *))
1225 {
1226 	int ret = 0;
1227 	unsigned long num_pages;
1228 	struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1229 
1230 	ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1231 	if (ret) {
1232 		kprintf("[TTM] Out of kernel memory\n");
1233 		if (destroy)
1234 			(*destroy)(bo);
1235 		else
1236 			drm_free(bo, M_TTM_BO);
1237 		return -ENOMEM;
1238 	}
1239 
1240 	num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1241 	if (num_pages == 0) {
1242 		kprintf("[TTM] Illegal buffer object size\n");
1243 		if (destroy)
1244 			(*destroy)(bo);
1245 		else
1246 			drm_free(bo, M_TTM_BO);
1247 		ttm_mem_global_free(mem_glob, acc_size);
1248 		return -EINVAL;
1249 	}
1250 	bo->destroy = destroy;
1251 
1252 	refcount_init(&bo->kref, 1);
1253 	refcount_init(&bo->list_kref, 1);
1254 	atomic_set(&bo->cpu_writers, 0);
1255 	atomic_set(&bo->reserved, 1);
1256 	INIT_LIST_HEAD(&bo->lru);
1257 	INIT_LIST_HEAD(&bo->ddestroy);
1258 	INIT_LIST_HEAD(&bo->swap);
1259 	INIT_LIST_HEAD(&bo->io_reserve_lru);
1260 	bo->bdev = bdev;
1261 	bo->glob = bdev->glob;
1262 	bo->type = type;
1263 	bo->num_pages = num_pages;
1264 	bo->mem.size = num_pages << PAGE_SHIFT;
1265 	bo->mem.mem_type = TTM_PL_SYSTEM;
1266 	bo->mem.num_pages = bo->num_pages;
1267 	bo->mem.mm_node = NULL;
1268 	bo->mem.page_alignment = page_alignment;
1269 	bo->mem.bus.io_reserved_vm = false;
1270 	bo->mem.bus.io_reserved_count = 0;
1271 	bo->priv_flags = 0;
1272 	bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1273 	bo->seq_valid = false;
1274 	bo->persistent_swap_storage = persistent_swap_storage;
1275 	bo->acc_size = acc_size;
1276 	bo->sg = sg;
1277 	atomic_inc(&bo->glob->bo_count);
1278 
1279 	ret = ttm_bo_check_placement(bo, placement);
1280 	if (unlikely(ret != 0))
1281 		goto out_err;
1282 
1283 	/*
1284 	 * For ttm_bo_type_device buffers, allocate
1285 	 * address space from the device.
1286 	 */
1287 	if (bo->type == ttm_bo_type_device ||
1288 	    bo->type == ttm_bo_type_sg) {
1289 		ret = ttm_bo_setup_vm(bo);
1290 		if (ret)
1291 			goto out_err;
1292 	}
1293 
1294 	ret = ttm_bo_validate(bo, placement, interruptible, false);
1295 	if (ret)
1296 		goto out_err;
1297 
1298 	ttm_bo_unreserve(bo);
1299 	return 0;
1300 
1301 out_err:
1302 	ttm_bo_unreserve(bo);
1303 	ttm_bo_unref(&bo);
1304 
1305 	return ret;
1306 }
1307 
1308 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1309 		       unsigned long bo_size,
1310 		       unsigned struct_size)
1311 {
1312 	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1313 	size_t size = 0;
1314 
1315 	size += ttm_round_pot(struct_size);
1316 	size += PAGE_ALIGN(npages * sizeof(void *));
1317 	size += ttm_round_pot(sizeof(struct ttm_tt));
1318 	return size;
1319 }
1320 
1321 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1322 			   unsigned long bo_size,
1323 			   unsigned struct_size)
1324 {
1325 	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1326 	size_t size = 0;
1327 
1328 	size += ttm_round_pot(struct_size);
1329 	size += PAGE_ALIGN(npages * sizeof(void *));
1330 	size += PAGE_ALIGN(npages * sizeof(dma_addr_t));
1331 	size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1332 	return size;
1333 }
1334 
1335 int ttm_bo_create(struct ttm_bo_device *bdev,
1336 			unsigned long size,
1337 			enum ttm_bo_type type,
1338 			struct ttm_placement *placement,
1339 			uint32_t page_alignment,
1340 			bool interruptible,
1341 			struct vm_object *persistent_swap_storage,
1342 			struct ttm_buffer_object **p_bo)
1343 {
1344 	struct ttm_buffer_object *bo;
1345 	size_t acc_size;
1346 	int ret;
1347 
1348 	bo = kmalloc(sizeof(*bo), M_TTM_BO, M_WAITOK | M_ZERO);
1349 	acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1350 	ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1351 			  interruptible, persistent_swap_storage, acc_size,
1352 			  NULL, NULL);
1353 	if (likely(ret == 0))
1354 		*p_bo = bo;
1355 
1356 	return ret;
1357 }
1358 
1359 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1360 					unsigned mem_type, bool allow_errors)
1361 {
1362 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1363 	struct ttm_bo_global *glob = bdev->glob;
1364 	int ret;
1365 
1366 	/*
1367 	 * Can't use standard list traversal since we're unlocking.
1368 	 */
1369 
1370 	lockmgr(&glob->lru_lock, LK_EXCLUSIVE);
1371 	while (!list_empty(&man->lru)) {
1372 		lockmgr(&glob->lru_lock, LK_RELEASE);
1373 		ret = ttm_mem_evict_first(bdev, mem_type, false, false);
1374 		if (ret) {
1375 			if (allow_errors) {
1376 				return ret;
1377 			} else {
1378 				kprintf("[TTM] Cleanup eviction failed\n");
1379 			}
1380 		}
1381 		lockmgr(&glob->lru_lock, LK_EXCLUSIVE);
1382 	}
1383 	lockmgr(&glob->lru_lock, LK_RELEASE);
1384 	return 0;
1385 }
1386 
1387 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1388 {
1389 	struct ttm_mem_type_manager *man;
1390 	int ret = -EINVAL;
1391 
1392 	if (mem_type >= TTM_NUM_MEM_TYPES) {
1393 		kprintf("[TTM] Illegal memory type %d\n", mem_type);
1394 		return ret;
1395 	}
1396 	man = &bdev->man[mem_type];
1397 
1398 	if (!man->has_type) {
1399 		kprintf("[TTM] Trying to take down uninitialized memory manager type %u\n",
1400 		       mem_type);
1401 		return ret;
1402 	}
1403 
1404 	man->use_type = false;
1405 	man->has_type = false;
1406 
1407 	ret = 0;
1408 	if (mem_type > 0) {
1409 		ttm_bo_force_list_clean(bdev, mem_type, false);
1410 
1411 		ret = (*man->func->takedown)(man);
1412 	}
1413 
1414 	return ret;
1415 }
1416 
1417 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1418 {
1419 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1420 
1421 	if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1422 		kprintf("[TTM] Illegal memory manager memory type %u\n", mem_type);
1423 		return -EINVAL;
1424 	}
1425 
1426 	if (!man->has_type) {
1427 		kprintf("[TTM] Memory type %u has not been initialized\n", mem_type);
1428 		return 0;
1429 	}
1430 
1431 	return ttm_bo_force_list_clean(bdev, mem_type, true);
1432 }
1433 
1434 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1435 			unsigned long p_size)
1436 {
1437 	int ret = -EINVAL;
1438 	struct ttm_mem_type_manager *man;
1439 
1440 	KKASSERT(type < TTM_NUM_MEM_TYPES);
1441 	man = &bdev->man[type];
1442 	KKASSERT(!man->has_type);
1443 	man->io_reserve_fastpath = true;
1444 	man->use_io_reserve_lru = false;
1445 	lockinit(&man->io_reserve_mutex, "ttmman", 0, LK_CANRECURSE);
1446 	INIT_LIST_HEAD(&man->io_reserve_lru);
1447 
1448 	ret = bdev->driver->init_mem_type(bdev, type, man);
1449 	if (ret)
1450 		return ret;
1451 	man->bdev = bdev;
1452 
1453 	ret = 0;
1454 	if (type != TTM_PL_SYSTEM) {
1455 		ret = (*man->func->init)(man, p_size);
1456 		if (ret)
1457 			return ret;
1458 	}
1459 	man->has_type = true;
1460 	man->use_type = true;
1461 	man->size = p_size;
1462 
1463 	INIT_LIST_HEAD(&man->lru);
1464 
1465 	return 0;
1466 }
1467 
1468 static void ttm_bo_global_kobj_release(struct ttm_bo_global *glob)
1469 {
1470 
1471 	ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1472 	vm_page_free(glob->dummy_read_page);
1473 }
1474 
1475 void ttm_bo_global_release(struct drm_global_reference *ref)
1476 {
1477 	struct ttm_bo_global *glob = ref->object;
1478 
1479 	if (refcount_release(&glob->kobj_ref))
1480 		ttm_bo_global_kobj_release(glob);
1481 }
1482 
1483 int ttm_bo_global_init(struct drm_global_reference *ref)
1484 {
1485 	struct ttm_bo_global_ref *bo_ref =
1486 		container_of(ref, struct ttm_bo_global_ref, ref);
1487 	struct ttm_bo_global *glob = ref->object;
1488 	int ret;
1489 
1490 	lockinit(&glob->device_list_mutex, "ttmdlm", 0, LK_CANRECURSE);
1491 	lockinit(&glob->lru_lock, "ttmlru", 0, LK_CANRECURSE);
1492 	glob->mem_glob = bo_ref->mem_glob;
1493 	glob->dummy_read_page = vm_page_alloc_contig(
1494 	    0, VM_MAX_ADDRESS, PAGE_SIZE, 0, 1*PAGE_SIZE, VM_MEMATTR_UNCACHEABLE);
1495 
1496 	if (unlikely(glob->dummy_read_page == NULL)) {
1497 		ret = -ENOMEM;
1498 		goto out_no_drp;
1499 	}
1500 
1501 	INIT_LIST_HEAD(&glob->swap_lru);
1502 	INIT_LIST_HEAD(&glob->device_list);
1503 
1504 	ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1505 	ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1506 	if (unlikely(ret != 0)) {
1507 		kprintf("[TTM] Could not register buffer object swapout\n");
1508 		goto out_no_shrink;
1509 	}
1510 
1511 	atomic_set(&glob->bo_count, 0);
1512 
1513 	refcount_init(&glob->kobj_ref, 1);
1514 	return (0);
1515 
1516 out_no_shrink:
1517 	vm_page_free(glob->dummy_read_page);
1518 out_no_drp:
1519 	drm_free(glob, M_DRM_GLOBAL);
1520 	return ret;
1521 }
1522 
1523 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1524 {
1525 	int ret = 0;
1526 	unsigned i = TTM_NUM_MEM_TYPES;
1527 	struct ttm_mem_type_manager *man;
1528 	struct ttm_bo_global *glob = bdev->glob;
1529 
1530 	while (i--) {
1531 		man = &bdev->man[i];
1532 		if (man->has_type) {
1533 			man->use_type = false;
1534 			if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1535 				ret = -EBUSY;
1536 				kprintf("[TTM] DRM memory manager type %d is not clean\n",
1537 				       i);
1538 			}
1539 			man->has_type = false;
1540 		}
1541 	}
1542 
1543 	lockmgr(&glob->device_list_mutex, LK_EXCLUSIVE);
1544 	list_del(&bdev->device_list);
1545 	lockmgr(&glob->device_list_mutex, LK_RELEASE);
1546 
1547 	if (taskqueue_cancel_timeout(taskqueue_thread[mycpuid], &bdev->wq, NULL))
1548 		taskqueue_drain_timeout(taskqueue_thread[mycpuid], &bdev->wq);
1549 
1550 	while (ttm_bo_delayed_delete(bdev, true))
1551 		;
1552 
1553 	lockmgr(&glob->lru_lock, LK_EXCLUSIVE);
1554 	if (list_empty(&bdev->ddestroy))
1555 		TTM_DEBUG("Delayed destroy list was clean\n");
1556 
1557 	if (list_empty(&bdev->man[0].lru))
1558 		TTM_DEBUG("Swap list was clean\n");
1559 	lockmgr(&glob->lru_lock, LK_RELEASE);
1560 
1561 	KKASSERT(drm_mm_clean(&bdev->addr_space_mm));
1562 	lockmgr(&bdev->vm_lock, LK_EXCLUSIVE);
1563 	drm_mm_takedown(&bdev->addr_space_mm);
1564 	lockmgr(&bdev->vm_lock, LK_RELEASE);
1565 
1566 	return ret;
1567 }
1568 
1569 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1570 		       struct ttm_bo_global *glob,
1571 		       struct ttm_bo_driver *driver,
1572 		       uint64_t file_page_offset,
1573 		       bool need_dma32)
1574 {
1575 	int ret = -EINVAL;
1576 
1577 	lockinit(&bdev->vm_lock, "ttmvml", 0, LK_CANRECURSE);
1578 	bdev->driver = driver;
1579 
1580 	memset(bdev->man, 0, sizeof(bdev->man));
1581 
1582 	/*
1583 	 * Initialize the system memory buffer type.
1584 	 * Other types need to be driver / IOCTL initialized.
1585 	 */
1586 	ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1587 	if (unlikely(ret != 0))
1588 		goto out_no_sys;
1589 
1590 	RB_INIT(&bdev->addr_space_rb);
1591 	ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
1592 	if (unlikely(ret != 0))
1593 		goto out_no_addr_mm;
1594 
1595 	TIMEOUT_TASK_INIT(taskqueue_thread[mycpuid], &bdev->wq, 0,
1596 	    ttm_bo_delayed_workqueue, bdev);
1597 	INIT_LIST_HEAD(&bdev->ddestroy);
1598 	bdev->dev_mapping = NULL;
1599 	bdev->glob = glob;
1600 	bdev->need_dma32 = need_dma32;
1601 	bdev->val_seq = 0;
1602 	lockinit(&bdev->fence_lock, "ttmfence", 0, LK_CANRECURSE);
1603 	lockmgr(&glob->device_list_mutex, LK_EXCLUSIVE);
1604 	list_add_tail(&bdev->device_list, &glob->device_list);
1605 	lockmgr(&glob->device_list_mutex, LK_RELEASE);
1606 
1607 	return 0;
1608 out_no_addr_mm:
1609 	ttm_bo_clean_mm(bdev, 0);
1610 out_no_sys:
1611 	return ret;
1612 }
1613 
1614 /*
1615  * buffer object vm functions.
1616  */
1617 
1618 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1619 {
1620 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1621 
1622 	if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1623 		if (mem->mem_type == TTM_PL_SYSTEM)
1624 			return false;
1625 
1626 		if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1627 			return false;
1628 
1629 		if (mem->placement & TTM_PL_FLAG_CACHED)
1630 			return false;
1631 	}
1632 	return true;
1633 }
1634 
1635 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1636 {
1637 
1638 	ttm_bo_release_mmap(bo);
1639 	ttm_mem_io_free_vm(bo);
1640 }
1641 
1642 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1643 {
1644 	struct ttm_bo_device *bdev = bo->bdev;
1645 	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1646 
1647 	ttm_mem_io_lock(man, false);
1648 	ttm_bo_unmap_virtual_locked(bo);
1649 	ttm_mem_io_unlock(man);
1650 }
1651 
1652 static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
1653 {
1654 	struct ttm_bo_device *bdev = bo->bdev;
1655 
1656 	/* The caller acquired bdev->vm_lock. */
1657 	RB_INSERT(ttm_bo_device_buffer_objects, &bdev->addr_space_rb, bo);
1658 }
1659 
1660 /**
1661  * ttm_bo_setup_vm:
1662  *
1663  * @bo: the buffer to allocate address space for
1664  *
1665  * Allocate address space in the drm device so that applications
1666  * can mmap the buffer and access the contents. This only
1667  * applies to ttm_bo_type_device objects as others are not
1668  * placed in the drm device address space.
1669  */
1670 
1671 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
1672 {
1673 	struct ttm_bo_device *bdev = bo->bdev;
1674 	int ret;
1675 
1676 retry_pre_get:
1677 	ret = drm_mm_pre_get(&bdev->addr_space_mm);
1678 	if (unlikely(ret != 0))
1679 		return ret;
1680 
1681 	lockmgr(&bdev->vm_lock, LK_EXCLUSIVE);
1682 	bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
1683 					 bo->mem.num_pages, 0, 0);
1684 
1685 	if (unlikely(bo->vm_node == NULL)) {
1686 		ret = -ENOMEM;
1687 		goto out_unlock;
1688 	}
1689 
1690 	bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
1691 					      bo->mem.num_pages, 0);
1692 
1693 	if (unlikely(bo->vm_node == NULL)) {
1694 		lockmgr(&bdev->vm_lock, LK_RELEASE);
1695 		goto retry_pre_get;
1696 	}
1697 
1698 	ttm_bo_vm_insert_rb(bo);
1699 	lockmgr(&bdev->vm_lock, LK_RELEASE);
1700 	bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;
1701 
1702 	return 0;
1703 out_unlock:
1704 	lockmgr(&bdev->vm_lock, LK_RELEASE);
1705 	return ret;
1706 }
1707 
1708 int ttm_bo_wait(struct ttm_buffer_object *bo,
1709 		bool lazy, bool interruptible, bool no_wait)
1710 {
1711 	struct ttm_bo_driver *driver = bo->bdev->driver;
1712 	struct ttm_bo_device *bdev = bo->bdev;
1713 	void *sync_obj;
1714 	int ret = 0;
1715 
1716 	if (likely(bo->sync_obj == NULL))
1717 		return 0;
1718 
1719 	while (bo->sync_obj) {
1720 
1721 		if (driver->sync_obj_signaled(bo->sync_obj)) {
1722 			void *tmp_obj = bo->sync_obj;
1723 			bo->sync_obj = NULL;
1724 			clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1725 			lockmgr(&bdev->fence_lock, LK_RELEASE);
1726 			driver->sync_obj_unref(&tmp_obj);
1727 			lockmgr(&bdev->fence_lock, LK_EXCLUSIVE);
1728 			continue;
1729 		}
1730 
1731 		if (no_wait)
1732 			return -EBUSY;
1733 
1734 		sync_obj = driver->sync_obj_ref(bo->sync_obj);
1735 		lockmgr(&bdev->fence_lock, LK_RELEASE);
1736 		ret = driver->sync_obj_wait(sync_obj,
1737 					    lazy, interruptible);
1738 		if (unlikely(ret != 0)) {
1739 			driver->sync_obj_unref(&sync_obj);
1740 			lockmgr(&bdev->fence_lock, LK_EXCLUSIVE);
1741 			return ret;
1742 		}
1743 		lockmgr(&bdev->fence_lock, LK_EXCLUSIVE);
1744 		if (likely(bo->sync_obj == sync_obj)) {
1745 			void *tmp_obj = bo->sync_obj;
1746 			bo->sync_obj = NULL;
1747 			clear_bit(TTM_BO_PRIV_FLAG_MOVING,
1748 				  &bo->priv_flags);
1749 			lockmgr(&bdev->fence_lock, LK_RELEASE);
1750 			driver->sync_obj_unref(&sync_obj);
1751 			driver->sync_obj_unref(&tmp_obj);
1752 			lockmgr(&bdev->fence_lock, LK_EXCLUSIVE);
1753 		} else {
1754 			lockmgr(&bdev->fence_lock, LK_RELEASE);
1755 			driver->sync_obj_unref(&sync_obj);
1756 			lockmgr(&bdev->fence_lock, LK_EXCLUSIVE);
1757 		}
1758 	}
1759 	return 0;
1760 }
1761 
1762 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1763 {
1764 	struct ttm_bo_device *bdev = bo->bdev;
1765 	int ret = 0;
1766 
1767 	/*
1768 	 * Using ttm_bo_reserve makes sure the lru lists are updated.
1769 	 */
1770 
1771 	ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1772 	if (unlikely(ret != 0))
1773 		return ret;
1774 	lockmgr(&bdev->fence_lock, LK_EXCLUSIVE);
1775 	ret = ttm_bo_wait(bo, false, true, no_wait);
1776 	lockmgr(&bdev->fence_lock, LK_RELEASE);
1777 	if (likely(ret == 0))
1778 		atomic_inc(&bo->cpu_writers);
1779 	ttm_bo_unreserve(bo);
1780 	return ret;
1781 }
1782 
1783 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1784 {
1785 	atomic_dec(&bo->cpu_writers);
1786 }
1787 
1788 /**
1789  * A buffer object shrink method that tries to swap out the first
1790  * buffer object on the bo_global::swap_lru list.
1791  */
1792 
1793 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1794 {
1795 	struct ttm_bo_global *glob =
1796 	    container_of(shrink, struct ttm_bo_global, shrink);
1797 	struct ttm_buffer_object *bo;
1798 	int ret = -EBUSY;
1799 	int put_count;
1800 	uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1801 
1802 	lockmgr(&glob->lru_lock, LK_EXCLUSIVE);
1803 	list_for_each_entry(bo, &glob->swap_lru, swap) {
1804 		ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
1805 		if (!ret)
1806 			break;
1807 	}
1808 
1809 	if (ret) {
1810 		lockmgr(&glob->lru_lock, LK_RELEASE);
1811 		return ret;
1812 	}
1813 
1814 	refcount_acquire(&bo->list_kref);
1815 
1816 	if (!list_empty(&bo->ddestroy)) {
1817 		ret = ttm_bo_cleanup_refs_and_unlock(bo, false, false);
1818 		if (refcount_release(&bo->list_kref))
1819 			ttm_bo_release_list(bo);
1820 		return ret;
1821 	}
1822 
1823 	put_count = ttm_bo_del_from_lru(bo);
1824 	lockmgr(&glob->lru_lock, LK_RELEASE);
1825 
1826 	ttm_bo_list_ref_sub(bo, put_count, true);
1827 
1828 	/**
1829 	 * Wait for GPU, then move to system cached.
1830 	 */
1831 
1832 	lockmgr(&bo->bdev->fence_lock, LK_EXCLUSIVE);
1833 	ret = ttm_bo_wait(bo, false, false, false);
1834 	lockmgr(&bo->bdev->fence_lock, LK_RELEASE);
1835 
1836 	if (unlikely(ret != 0))
1837 		goto out;
1838 
1839 	if ((bo->mem.placement & swap_placement) != swap_placement) {
1840 		struct ttm_mem_reg evict_mem;
1841 
1842 		evict_mem = bo->mem;
1843 		evict_mem.mm_node = NULL;
1844 		evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1845 		evict_mem.mem_type = TTM_PL_SYSTEM;
1846 
1847 		ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1848 					     false, false);
1849 		if (unlikely(ret != 0))
1850 			goto out;
1851 	}
1852 
1853 	ttm_bo_unmap_virtual(bo);
1854 
1855 	/**
1856 	 * Swap out. Buffer will be swapped in again as soon as
1857 	 * anyone tries to access a ttm page.
1858 	 */
1859 
1860 	if (bo->bdev->driver->swap_notify)
1861 		bo->bdev->driver->swap_notify(bo);
1862 
1863 	ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1864 out:
1865 
1866 	/**
1867 	 *
1868 	 * Unreserve without putting on LRU to avoid swapping out an
1869 	 * already swapped buffer.
1870 	 */
1871 
1872 	atomic_set(&bo->reserved, 0);
1873 	wakeup(bo);
1874 	if (refcount_release(&bo->list_kref))
1875 		ttm_bo_release_list(bo);
1876 	return ret;
1877 }
1878 
1879 void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1880 {
1881 	while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1882 		;
1883 }
1884