xref: /dflybsd-src/sys/dev/drm/ttm/ttm_bo.c (revision 2a1ad637466621af45d5a17185b33f3dcaaa1b1c)
1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  */
30 
31 #define pr_fmt(fmt) "[TTM] " fmt
32 
33 #include <drm/ttm/ttm_module.h>
34 #include <drm/ttm/ttm_bo_driver.h>
35 #include <drm/ttm/ttm_placement.h>
36 #include <linux/atomic.h>
37 #include <linux/errno.h>
38 #include <linux/export.h>
39 #include <linux/wait.h>
40 
41 #define TTM_ASSERT_LOCKED(param)
42 #define TTM_DEBUG(fmt, arg...)
43 #define TTM_BO_HASH_ORDER 13
44 
45 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
46 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
47 static void ttm_bo_global_kobj_release(struct ttm_bo_global *glob);
48 
49 static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
50 {
51 	int i;
52 
53 	for (i = 0; i <= TTM_PL_PRIV5; i++)
54 		if (flags & (1 << i)) {
55 			*mem_type = i;
56 			return 0;
57 		}
58 	return -EINVAL;
59 }
60 
61 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
62 {
63 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
64 
65 	kprintf("    has_type: %d\n", man->has_type);
66 	kprintf("    use_type: %d\n", man->use_type);
67 	kprintf("    flags: 0x%08X\n", man->flags);
68 	kprintf("    gpu_offset: 0x%08lX\n", man->gpu_offset);
69 	kprintf("    size: %ju\n", (uintmax_t)man->size);
70 	kprintf("    available_caching: 0x%08X\n", man->available_caching);
71 	kprintf("    default_caching: 0x%08X\n", man->default_caching);
72 	if (mem_type != TTM_PL_SYSTEM)
73 		(*man->func->debug)(man, TTM_PFX);
74 }
75 
76 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
77 					struct ttm_placement *placement)
78 {
79 	int i, ret, mem_type;
80 
81 	kprintf("No space for %p (%lu pages, %luK, %luM)\n",
82 	       bo, bo->mem.num_pages, bo->mem.size >> 10,
83 	       bo->mem.size >> 20);
84 	for (i = 0; i < placement->num_placement; i++) {
85 		ret = ttm_mem_type_from_flags(placement->placement[i],
86 						&mem_type);
87 		if (ret)
88 			return;
89 		kprintf("  placement[%d]=0x%08X (%d)\n",
90 		       i, placement->placement[i], mem_type);
91 		ttm_mem_type_debug(bo->bdev, mem_type);
92 	}
93 }
94 
95 #if 0
96 static ssize_t ttm_bo_global_show(struct ttm_bo_global *glob,
97     char *buffer)
98 {
99 
100 	return snprintf(buffer, PAGE_SIZE, "%lu\n",
101 			(unsigned long) atomic_read(&glob->bo_count));
102 }
103 #endif
104 
105 static inline uint32_t ttm_bo_type_flags(unsigned type)
106 {
107 	return 1 << (type);
108 }
109 
110 static void ttm_bo_release_list(struct kref *list_kref)
111 {
112 	struct ttm_buffer_object *bo =
113 	    container_of(list_kref, struct ttm_buffer_object, list_kref);
114 	struct ttm_bo_device *bdev = bo->bdev;
115 	size_t acc_size = bo->acc_size;
116 
117 	BUG_ON(atomic_read(&bo->list_kref.refcount));
118 	BUG_ON(atomic_read(&bo->kref.refcount));
119 	BUG_ON(atomic_read(&bo->cpu_writers));
120 	BUG_ON(bo->sync_obj != NULL);
121 	BUG_ON(bo->mem.mm_node != NULL);
122 	BUG_ON(!list_empty(&bo->lru));
123 	BUG_ON(!list_empty(&bo->ddestroy));
124 
125 	if (bo->ttm)
126 		ttm_tt_destroy(bo->ttm);
127 	atomic_dec(&bo->glob->bo_count);
128 	if (bo->destroy)
129 		bo->destroy(bo);
130 	else {
131 		kfree(bo, M_DRM);
132 	}
133 	ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
134 }
135 
136 static int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo,
137 				  bool interruptible)
138 {
139 	if (interruptible) {
140 		return wait_event_interruptible(bo->event_queue,
141 					       !ttm_bo_is_reserved(bo));
142 	} else {
143 		wait_event(bo->event_queue, !ttm_bo_is_reserved(bo));
144 		return 0;
145 	}
146 }
147 
148 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
149 {
150 	struct ttm_bo_device *bdev = bo->bdev;
151 	struct ttm_mem_type_manager *man;
152 
153 	BUG_ON(!ttm_bo_is_reserved(bo));
154 
155 	if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
156 
157 		BUG_ON(!list_empty(&bo->lru));
158 
159 		man = &bdev->man[bo->mem.mem_type];
160 		list_add_tail(&bo->lru, &man->lru);
161 		kref_get(&bo->list_kref);
162 
163 		if (bo->ttm != NULL) {
164 			list_add_tail(&bo->swap, &bo->glob->swap_lru);
165 			kref_get(&bo->list_kref);
166 		}
167 	}
168 }
169 
170 int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
171 {
172 	int put_count = 0;
173 
174 	if (!list_empty(&bo->swap)) {
175 		list_del_init(&bo->swap);
176 		++put_count;
177 	}
178 	if (!list_empty(&bo->lru)) {
179 		list_del_init(&bo->lru);
180 		++put_count;
181 	}
182 
183 	/*
184 	 * TODO: Add a driver hook to delete from
185 	 * driver-specific LRU's here.
186 	 */
187 
188 	return put_count;
189 }
190 
191 int ttm_bo_reserve_nolru(struct ttm_buffer_object *bo,
192 			  bool interruptible,
193 			  bool no_wait, bool use_sequence, uint32_t sequence)
194 {
195 	int ret;
196 
197 	while (unlikely(atomic_xchg(&bo->reserved, 1) != 0)) {
198 		/**
199 		 * Deadlock avoidance for multi-bo reserving.
200 		 */
201 		if (use_sequence && bo->seq_valid) {
202 			/**
203 			 * We've already reserved this one.
204 			 */
205 			if (unlikely(sequence == bo->val_seq))
206 				return -EDEADLK;
207 			/**
208 			 * Already reserved by a thread that will not back
209 			 * off for us. We need to back off.
210 			 */
211 			if (unlikely(sequence - bo->val_seq < (1U << 31)))
212 				return -EAGAIN;
213 		}
214 
215 		if (no_wait)
216 			return -EBUSY;
217 
218 		ret = ttm_bo_wait_unreserved(bo, interruptible);
219 
220 		if (unlikely(ret))
221 			return ret;
222 	}
223 
224 	if (use_sequence) {
225 		bool wake_up = false;
226 		/**
227 		 * Wake up waiters that may need to recheck for deadlock,
228 		 * if we decreased the sequence number.
229 		 */
230 		if (unlikely((bo->val_seq - sequence < (1U << 31))
231 			     || !bo->seq_valid))
232 			wake_up = true;
233 
234 		/*
235 		 * In the worst case with memory ordering these values can be
236 		 * seen in the wrong order. However since we call wake_up_all
237 		 * in that case, this will hopefully not pose a problem,
238 		 * and the worst case would only cause someone to accidentally
239 		 * hit -EAGAIN in ttm_bo_reserve when they see old value of
240 		 * val_seq. However this would only happen if seq_valid was
241 		 * written before val_seq was, and just means some slightly
242 		 * increased cpu usage
243 		 */
244 		bo->val_seq = sequence;
245 		bo->seq_valid = true;
246 		if (wake_up)
247 			wake_up_all(&bo->event_queue);
248 	} else {
249 		bo->seq_valid = false;
250 	}
251 
252 	return 0;
253 }
254 EXPORT_SYMBOL(ttm_bo_reserve);
255 
256 static void ttm_bo_ref_bug(struct kref *list_kref)
257 {
258 	BUG();
259 }
260 
261 void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
262 			 bool never_free)
263 {
264 	kref_sub(&bo->list_kref, count,
265 		 (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
266 }
267 
268 int ttm_bo_reserve(struct ttm_buffer_object *bo,
269 		   bool interruptible,
270 		   bool no_wait, bool use_sequence, uint32_t sequence)
271 {
272 	struct ttm_bo_global *glob = bo->glob;
273 	int put_count = 0;
274 	int ret;
275 
276 	ret = ttm_bo_reserve_nolru(bo, interruptible, no_wait, use_sequence,
277 				   sequence);
278 	if (likely(ret == 0)) {
279 		lockmgr(&glob->lru_lock, LK_EXCLUSIVE);
280 		put_count = ttm_bo_del_from_lru(bo);
281 		lockmgr(&glob->lru_lock, LK_RELEASE);
282 		ttm_bo_list_ref_sub(bo, put_count, true);
283 	}
284 
285 	return ret;
286 }
287 
288 int ttm_bo_reserve_slowpath_nolru(struct ttm_buffer_object *bo,
289 				  bool interruptible, uint32_t sequence)
290 {
291 	bool wake_up = false;
292 	int ret;
293 
294 	while (unlikely(atomic_xchg(&bo->reserved, 1) != 0)) {
295 		WARN_ON(bo->seq_valid && sequence == bo->val_seq);
296 
297 		ret = ttm_bo_wait_unreserved(bo, interruptible);
298 
299 		if (unlikely(ret))
300 			return ret;
301 	}
302 
303 	if ((bo->val_seq - sequence < (1U << 31)) || !bo->seq_valid)
304 		wake_up = true;
305 
306 	/**
307 	 * Wake up waiters that may need to recheck for deadlock,
308 	 * if we decreased the sequence number.
309 	 */
310 	bo->val_seq = sequence;
311 	bo->seq_valid = true;
312 	if (wake_up)
313 		wake_up_all(&bo->event_queue);
314 
315 	return 0;
316 }
317 
318 int ttm_bo_reserve_slowpath(struct ttm_buffer_object *bo,
319 			    bool interruptible, uint32_t sequence)
320 {
321 	struct ttm_bo_global *glob = bo->glob;
322 	int put_count, ret;
323 
324 	ret = ttm_bo_reserve_slowpath_nolru(bo, interruptible, sequence);
325 	if (likely(!ret)) {
326 		lockmgr(&glob->lru_lock, LK_EXCLUSIVE);
327 		put_count = ttm_bo_del_from_lru(bo);
328 		lockmgr(&glob->lru_lock, LK_RELEASE);
329 		ttm_bo_list_ref_sub(bo, put_count, true);
330 	}
331 	return ret;
332 }
333 EXPORT_SYMBOL(ttm_bo_reserve_slowpath);
334 
335 void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo)
336 {
337 	ttm_bo_add_to_lru(bo);
338 	atomic_set(&bo->reserved, 0);
339 	wake_up_all(&bo->event_queue);
340 }
341 
342 void ttm_bo_unreserve(struct ttm_buffer_object *bo)
343 {
344 	struct ttm_bo_global *glob = bo->glob;
345 
346 	lockmgr(&glob->lru_lock, LK_EXCLUSIVE);
347 	ttm_bo_unreserve_locked(bo);
348 	lockmgr(&glob->lru_lock, LK_RELEASE);
349 }
350 EXPORT_SYMBOL(ttm_bo_unreserve);
351 
352 /*
353  * Call bo->mutex locked.
354  */
355 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
356 {
357 	struct ttm_bo_device *bdev = bo->bdev;
358 	struct ttm_bo_global *glob = bo->glob;
359 	int ret = 0;
360 	uint32_t page_flags = 0;
361 
362 	TTM_ASSERT_LOCKED(&bo->mutex);
363 	bo->ttm = NULL;
364 
365 	if (bdev->need_dma32)
366 		page_flags |= TTM_PAGE_FLAG_DMA32;
367 
368 	switch (bo->type) {
369 	case ttm_bo_type_device:
370 		if (zero_alloc)
371 			page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
372 	case ttm_bo_type_kernel:
373 		bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
374 						      page_flags, glob->dummy_read_page);
375 		if (unlikely(bo->ttm == NULL))
376 			ret = -ENOMEM;
377 		break;
378 	case ttm_bo_type_sg:
379 		bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
380 						      page_flags | TTM_PAGE_FLAG_SG,
381 						      glob->dummy_read_page);
382 		if (unlikely(bo->ttm == NULL)) {
383 			ret = -ENOMEM;
384 			break;
385 		}
386 		bo->ttm->sg = bo->sg;
387 		break;
388 	default:
389 		kprintf("[TTM] Illegal buffer object type\n");
390 		ret = -EINVAL;
391 		break;
392 	}
393 
394 	return ret;
395 }
396 
397 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
398 				  struct ttm_mem_reg *mem,
399 				  bool evict, bool interruptible,
400 				  bool no_wait_gpu)
401 {
402 	struct ttm_bo_device *bdev = bo->bdev;
403 	bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
404 	bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
405 	struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
406 	struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
407 	int ret = 0;
408 
409 	if (old_is_pci || new_is_pci ||
410 	    ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
411 		ret = ttm_mem_io_lock(old_man, true);
412 		if (unlikely(ret != 0))
413 			goto out_err;
414 		ttm_bo_unmap_virtual_locked(bo);
415 		ttm_mem_io_unlock(old_man);
416 	}
417 
418 	/*
419 	 * Create and bind a ttm if required.
420 	 */
421 
422 	if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
423 		if (bo->ttm == NULL) {
424 			bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
425 			ret = ttm_bo_add_ttm(bo, zero);
426 			if (ret)
427 				goto out_err;
428 		}
429 
430 		ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
431 		if (ret)
432 			goto out_err;
433 
434 		if (mem->mem_type != TTM_PL_SYSTEM) {
435 			ret = ttm_tt_bind(bo->ttm, mem);
436 			if (ret)
437 				goto out_err;
438 		}
439 
440 		if (bo->mem.mem_type == TTM_PL_SYSTEM) {
441 			if (bdev->driver->move_notify)
442 				bdev->driver->move_notify(bo, mem);
443 			bo->mem = *mem;
444 			mem->mm_node = NULL;
445 			goto moved;
446 		}
447 	}
448 
449 	if (bdev->driver->move_notify)
450 		bdev->driver->move_notify(bo, mem);
451 
452 	if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
453 	    !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
454 		ret = ttm_bo_move_ttm(bo, evict, no_wait_gpu, mem);
455 	else if (bdev->driver->move)
456 		ret = bdev->driver->move(bo, evict, interruptible,
457 					 no_wait_gpu, mem);
458 	else
459 		ret = ttm_bo_move_memcpy(bo, evict, no_wait_gpu, mem);
460 
461 	if (ret) {
462 		if (bdev->driver->move_notify) {
463 			struct ttm_mem_reg tmp_mem = *mem;
464 			*mem = bo->mem;
465 			bo->mem = tmp_mem;
466 			bdev->driver->move_notify(bo, mem);
467 			bo->mem = *mem;
468 			*mem = tmp_mem;
469 		}
470 
471 		goto out_err;
472 	}
473 
474 moved:
475 	if (bo->evicted) {
476 		ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
477 		if (ret)
478 			kprintf("[TTM] Can not flush read caches\n");
479 		bo->evicted = false;
480 	}
481 
482 	if (bo->mem.mm_node) {
483 		bo->offset = (bo->mem.start << PAGE_SHIFT) +
484 		    bdev->man[bo->mem.mem_type].gpu_offset;
485 		bo->cur_placement = bo->mem.placement;
486 	} else
487 		bo->offset = 0;
488 
489 	return 0;
490 
491 out_err:
492 	new_man = &bdev->man[bo->mem.mem_type];
493 	if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
494 		ttm_tt_unbind(bo->ttm);
495 		ttm_tt_destroy(bo->ttm);
496 		bo->ttm = NULL;
497 	}
498 
499 	return ret;
500 }
501 
502 /**
503  * Call bo::reserved.
504  * Will release GPU memory type usage on destruction.
505  * This is the place to put in driver specific hooks to release
506  * driver private resources.
507  * Will release the bo::reserved lock.
508  */
509 
510 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
511 {
512 	if (bo->bdev->driver->move_notify)
513 		bo->bdev->driver->move_notify(bo, NULL);
514 
515 	if (bo->ttm) {
516 		ttm_tt_unbind(bo->ttm);
517 		ttm_tt_destroy(bo->ttm);
518 		bo->ttm = NULL;
519 	}
520 	ttm_bo_mem_put(bo, &bo->mem);
521 
522 	atomic_set(&bo->reserved, 0);
523 	wake_up_all(&bo->event_queue);
524 
525 	/*
526 	 * Since the final reference to this bo may not be dropped by
527 	 * the current task we have to put a memory barrier here to make
528 	 * sure the changes done in this function are always visible.
529 	 *
530 	 * This function only needs protection against the final kref_put.
531 	 */
532 	cpu_mfence();
533 }
534 
535 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
536 {
537 	struct ttm_bo_device *bdev = bo->bdev;
538 	struct ttm_bo_global *glob = bo->glob;
539 	struct ttm_bo_driver *driver = bdev->driver;
540 	void *sync_obj = NULL;
541 	int put_count;
542 	int ret;
543 
544 	lockmgr(&glob->lru_lock, LK_EXCLUSIVE);
545 	ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
546 
547 	lockmgr(&bdev->fence_lock, LK_EXCLUSIVE);
548 	(void) ttm_bo_wait(bo, false, false, true);
549 	if (!ret && !bo->sync_obj) {
550 		lockmgr(&bdev->fence_lock, LK_RELEASE);
551 		put_count = ttm_bo_del_from_lru(bo);
552 
553 		lockmgr(&glob->lru_lock, LK_RELEASE);
554 		ttm_bo_cleanup_memtype_use(bo);
555 
556 		ttm_bo_list_ref_sub(bo, put_count, true);
557 
558 		return;
559 	}
560 	if (bo->sync_obj)
561 		sync_obj = driver->sync_obj_ref(bo->sync_obj);
562 	lockmgr(&bdev->fence_lock, LK_RELEASE);
563 
564 	if (!ret) {
565 		atomic_set(&bo->reserved, 0);
566 		wake_up_all(&bo->event_queue);
567 	}
568 
569 	kref_get(&bo->list_kref);
570 	list_add_tail(&bo->ddestroy, &bdev->ddestroy);
571 	lockmgr(&glob->lru_lock, LK_RELEASE);
572 
573 	if (sync_obj) {
574 		driver->sync_obj_flush(sync_obj);
575 		driver->sync_obj_unref(&sync_obj);
576 	}
577 	schedule_delayed_work(&bdev->wq,
578 			      ((hz / 100) < 1) ? 1 : hz / 100);
579 }
580 
581 /**
582  * function ttm_bo_cleanup_refs_and_unlock
583  * If bo idle, remove from delayed- and lru lists, and unref.
584  * If not idle, do nothing.
585  *
586  * Must be called with lru_lock and reservation held, this function
587  * will drop both before returning.
588  *
589  * @interruptible         Any sleeps should occur interruptibly.
590  * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
591  */
592 
593 static int ttm_bo_cleanup_refs_and_unlock(struct ttm_buffer_object *bo,
594 					  bool interruptible,
595 					  bool no_wait_gpu)
596 {
597 	struct ttm_bo_device *bdev = bo->bdev;
598 	struct ttm_bo_driver *driver = bdev->driver;
599 	struct ttm_bo_global *glob = bo->glob;
600 	int put_count;
601 	int ret;
602 
603 	lockmgr(&bdev->fence_lock, LK_EXCLUSIVE);
604 	ret = ttm_bo_wait(bo, false, false, true);
605 
606 	if (ret && !no_wait_gpu) {
607 		void *sync_obj;
608 
609 		/*
610 		 * Take a reference to the fence and unreserve,
611 		 * at this point the buffer should be dead, so
612 		 * no new sync objects can be attached.
613 		 */
614 		sync_obj = driver->sync_obj_ref(bo->sync_obj);
615 		lockmgr(&bdev->fence_lock, LK_RELEASE);
616 
617 		atomic_set(&bo->reserved, 0);
618 		wake_up_all(&bo->event_queue);
619 		lockmgr(&glob->lru_lock, LK_RELEASE);
620 
621 		ret = driver->sync_obj_wait(sync_obj, false, interruptible);
622 		driver->sync_obj_unref(&sync_obj);
623 		if (ret)
624 			return ret;
625 
626 		/*
627 		 * remove sync_obj with ttm_bo_wait, the wait should be
628 		 * finished, and no new wait object should have been added.
629 		 */
630 		lockmgr(&bdev->fence_lock, LK_EXCLUSIVE);
631 		ret = ttm_bo_wait(bo, false, false, true);
632 		WARN_ON(ret);
633 		lockmgr(&bdev->fence_lock, LK_RELEASE);
634 		if (ret)
635 			return ret;
636 
637 		lockmgr(&glob->lru_lock, LK_EXCLUSIVE);
638 		ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
639 
640 		/*
641 		 * We raced, and lost, someone else holds the reservation now,
642 		 * and is probably busy in ttm_bo_cleanup_memtype_use.
643 		 *
644 		 * Even if it's not the case, because we finished waiting any
645 		 * delayed destruction would succeed, so just return success
646 		 * here.
647 		 */
648 		if (ret) {
649 			lockmgr(&glob->lru_lock, LK_RELEASE);
650 			return 0;
651 		}
652 	} else
653 		lockmgr(&bdev->fence_lock, LK_RELEASE);
654 
655 	if (ret || unlikely(list_empty(&bo->ddestroy))) {
656 		atomic_set(&bo->reserved, 0);
657 		wake_up_all(&bo->event_queue);
658 		lockmgr(&glob->lru_lock, LK_RELEASE);
659 		return ret;
660 	}
661 
662 	put_count = ttm_bo_del_from_lru(bo);
663 	list_del_init(&bo->ddestroy);
664 	++put_count;
665 
666 	lockmgr(&glob->lru_lock, LK_RELEASE);
667 	ttm_bo_cleanup_memtype_use(bo);
668 
669 	ttm_bo_list_ref_sub(bo, put_count, true);
670 
671 	return 0;
672 }
673 
674 /**
675  * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
676  * encountered buffers.
677  */
678 
679 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
680 {
681 	struct ttm_bo_global *glob = bdev->glob;
682 	struct ttm_buffer_object *entry = NULL;
683 	int ret = 0;
684 
685 	lockmgr(&glob->lru_lock, LK_EXCLUSIVE);
686 	if (list_empty(&bdev->ddestroy))
687 		goto out_unlock;
688 
689 	entry = list_first_entry(&bdev->ddestroy,
690 		struct ttm_buffer_object, ddestroy);
691 	kref_get(&entry->list_kref);
692 
693 	for (;;) {
694 		struct ttm_buffer_object *nentry = NULL;
695 
696 		if (entry->ddestroy.next != &bdev->ddestroy) {
697 			nentry = list_first_entry(&entry->ddestroy,
698 				struct ttm_buffer_object, ddestroy);
699 			kref_get(&nentry->list_kref);
700 		}
701 
702 		ret = ttm_bo_reserve_nolru(entry, false, true, false, 0);
703 		if (remove_all && ret) {
704 			lockmgr(&glob->lru_lock, LK_RELEASE);
705 			ret = ttm_bo_reserve_nolru(entry, false, false,
706 						   false, 0);
707 			lockmgr(&glob->lru_lock, LK_EXCLUSIVE);
708 		}
709 
710 		if (!ret)
711 			ret = ttm_bo_cleanup_refs_and_unlock(entry, false,
712 							     !remove_all);
713 		else
714 			lockmgr(&glob->lru_lock, LK_RELEASE);
715 
716 		kref_put(&entry->list_kref, ttm_bo_release_list);
717 		entry = nentry;
718 
719 		if (ret || !entry)
720 			goto out;
721 
722 		lockmgr(&glob->lru_lock, LK_EXCLUSIVE);
723 		if (list_empty(&entry->ddestroy))
724 			break;
725 	}
726 
727 out_unlock:
728 	lockmgr(&glob->lru_lock, LK_RELEASE);
729 out:
730 	if (entry)
731 		kref_put(&entry->list_kref, ttm_bo_release_list);
732 	return ret;
733 }
734 
735 static void ttm_bo_delayed_workqueue(struct work_struct *work)
736 {
737 	struct ttm_bo_device *bdev =
738 	    container_of(work, struct ttm_bo_device, wq.work);
739 
740 	if (ttm_bo_delayed_delete(bdev, false)) {
741 		schedule_delayed_work(&bdev->wq,
742 				      ((hz / 100) < 1) ? 1 : hz / 100);
743 	}
744 }
745 
746 /*
747  * NOTE: bdev->vm_lock already held on call, this function release it.
748  */
749 static void ttm_bo_release(struct kref *kref)
750 {
751 	struct ttm_buffer_object *bo =
752 	    container_of(kref, struct ttm_buffer_object, kref);
753 	struct ttm_bo_device *bdev = bo->bdev;
754 	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
755 	int release_active;
756 
757 	if (atomic_read(&bo->kref.refcount) > 0) {
758 		lockmgr(&bdev->vm_lock, LK_RELEASE);
759 		return;
760 	}
761 	if (likely(bo->vm_node != NULL)) {
762 		RB_REMOVE(ttm_bo_device_buffer_objects,
763 				&bdev->addr_space_rb, bo);
764 		drm_mm_put_block(bo->vm_node);
765 		bo->vm_node = NULL;
766 	}
767 
768 	/*
769 	 * Should we clean up our implied list_kref?  Because ttm_bo_release()
770 	 * can be called reentrantly due to races (this may not be true any
771 	 * more with the lock management changes in the deref), it is possible
772 	 * to get here twice, but there's only one list_kref ref to drop and
773 	 * in the other path 'bo' can be kfree()d by another thread the
774 	 * instant we release our lock.
775 	 */
776 	release_active = test_bit(TTM_BO_PRIV_FLAG_ACTIVE, &bo->priv_flags);
777 	if (release_active) {
778 		clear_bit(TTM_BO_PRIV_FLAG_ACTIVE, &bo->priv_flags);
779 		lockmgr(&bdev->vm_lock, LK_RELEASE);
780 		ttm_mem_io_lock(man, false);
781 		ttm_mem_io_free_vm(bo);
782 		ttm_mem_io_unlock(man);
783 		ttm_bo_cleanup_refs_or_queue(bo);
784 		kref_put(&bo->list_kref, ttm_bo_release_list);
785 	} else {
786 		lockmgr(&bdev->vm_lock, LK_RELEASE);
787 	}
788 }
789 
790 void ttm_bo_unref(struct ttm_buffer_object **p_bo)
791 {
792 	struct ttm_buffer_object *bo = *p_bo;
793 	struct ttm_bo_device *bdev = bo->bdev;
794 
795 	*p_bo = NULL;
796 	lockmgr(&bdev->vm_lock, LK_EXCLUSIVE);
797 	if (kref_put(&bo->kref, ttm_bo_release) == 0)
798 		lockmgr(&bdev->vm_lock, LK_RELEASE);
799 }
800 EXPORT_SYMBOL(ttm_bo_unref);
801 
802 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
803 {
804 	return cancel_delayed_work_sync(&bdev->wq);
805 }
806 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
807 
808 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
809 {
810 	if (resched)
811 		schedule_delayed_work(&bdev->wq,
812 				      ((hz / 100) < 1) ? 1 : hz / 100);
813 }
814 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
815 
816 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
817 			bool no_wait_gpu)
818 {
819 	struct ttm_bo_device *bdev = bo->bdev;
820 	struct ttm_mem_reg evict_mem;
821 	struct ttm_placement placement;
822 	int ret = 0;
823 
824 	lockmgr(&bdev->fence_lock, LK_EXCLUSIVE);
825 	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
826 	lockmgr(&bdev->fence_lock, LK_RELEASE);
827 
828 	if (unlikely(ret != 0)) {
829 		if (ret != -ERESTARTSYS) {
830 			pr_err("Failed to expire sync object before buffer eviction\n");
831 		}
832 		goto out;
833 	}
834 
835 	BUG_ON(!ttm_bo_is_reserved(bo));
836 
837 	evict_mem = bo->mem;
838 	evict_mem.mm_node = NULL;
839 	evict_mem.bus.io_reserved_vm = false;
840 	evict_mem.bus.io_reserved_count = 0;
841 
842 	placement.fpfn = 0;
843 	placement.lpfn = 0;
844 	placement.num_placement = 0;
845 	placement.num_busy_placement = 0;
846 	bdev->driver->evict_flags(bo, &placement);
847 	ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
848 				no_wait_gpu);
849 	if (ret) {
850 		if (ret != -ERESTARTSYS) {
851 			pr_err("Failed to find memory space for buffer 0x%p eviction\n",
852 			       bo);
853 			ttm_bo_mem_space_debug(bo, &placement);
854 		}
855 		goto out;
856 	}
857 
858 	ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
859 				     no_wait_gpu);
860 	if (ret) {
861 		if (ret != -ERESTARTSYS)
862 			pr_err("Buffer eviction failed\n");
863 		ttm_bo_mem_put(bo, &evict_mem);
864 		goto out;
865 	}
866 	bo->evicted = true;
867 out:
868 	return ret;
869 }
870 
871 static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
872 				uint32_t mem_type,
873 				bool interruptible,
874 				bool no_wait_gpu)
875 {
876 	struct ttm_bo_global *glob = bdev->glob;
877 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
878 	struct ttm_buffer_object *bo;
879 	int ret = -EBUSY, put_count;
880 
881 	lockmgr(&glob->lru_lock, LK_EXCLUSIVE);
882 	list_for_each_entry(bo, &man->lru, lru) {
883 		ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
884 		if (!ret)
885 			break;
886 	}
887 
888 	if (ret) {
889 		lockmgr(&glob->lru_lock, LK_RELEASE);
890 		return ret;
891 	}
892 
893 	kref_get(&bo->list_kref);
894 
895 	if (!list_empty(&bo->ddestroy)) {
896 		ret = ttm_bo_cleanup_refs_and_unlock(bo, interruptible,
897 						     no_wait_gpu);
898 		kref_put(&bo->list_kref, ttm_bo_release_list);
899 		return ret;
900 	}
901 
902 	put_count = ttm_bo_del_from_lru(bo);
903 	lockmgr(&glob->lru_lock, LK_RELEASE);
904 
905 	BUG_ON(ret != 0);
906 
907 	ttm_bo_list_ref_sub(bo, put_count, true);
908 
909 	ret = ttm_bo_evict(bo, interruptible, no_wait_gpu);
910 	ttm_bo_unreserve(bo);
911 
912 	kref_put(&bo->list_kref, ttm_bo_release_list);
913 	return ret;
914 }
915 
916 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
917 {
918 	struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
919 
920 	if (mem->mm_node)
921 		(*man->func->put_node)(man, mem);
922 }
923 EXPORT_SYMBOL(ttm_bo_mem_put);
924 
925 /**
926  * Repeatedly evict memory from the LRU for @mem_type until we create enough
927  * space, or we've evicted everything and there isn't enough space.
928  */
929 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
930 					uint32_t mem_type,
931 					struct ttm_placement *placement,
932 					struct ttm_mem_reg *mem,
933 					bool interruptible,
934 					bool no_wait_gpu)
935 {
936 	struct ttm_bo_device *bdev = bo->bdev;
937 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
938 	int ret;
939 
940 	do {
941 		ret = (*man->func->get_node)(man, bo, placement, mem);
942 		if (unlikely(ret != 0))
943 			return ret;
944 		if (mem->mm_node)
945 			break;
946 		ret = ttm_mem_evict_first(bdev, mem_type,
947 					  interruptible, no_wait_gpu);
948 		if (unlikely(ret != 0))
949 			return ret;
950 	} while (1);
951 	if (mem->mm_node == NULL)
952 		return -ENOMEM;
953 	mem->mem_type = mem_type;
954 	return 0;
955 }
956 
957 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
958 				      uint32_t cur_placement,
959 				      uint32_t proposed_placement)
960 {
961 	uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
962 	uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
963 
964 	/**
965 	 * Keep current caching if possible.
966 	 */
967 
968 	if ((cur_placement & caching) != 0)
969 		result |= (cur_placement & caching);
970 	else if ((man->default_caching & caching) != 0)
971 		result |= man->default_caching;
972 	else if ((TTM_PL_FLAG_CACHED & caching) != 0)
973 		result |= TTM_PL_FLAG_CACHED;
974 	else if ((TTM_PL_FLAG_WC & caching) != 0)
975 		result |= TTM_PL_FLAG_WC;
976 	else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
977 		result |= TTM_PL_FLAG_UNCACHED;
978 
979 	return result;
980 }
981 
982 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
983 				 uint32_t mem_type,
984 				 uint32_t proposed_placement,
985 				 uint32_t *masked_placement)
986 {
987 	uint32_t cur_flags = ttm_bo_type_flags(mem_type);
988 
989 	if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
990 		return false;
991 
992 	if ((proposed_placement & man->available_caching) == 0)
993 		return false;
994 
995 	cur_flags |= (proposed_placement & man->available_caching);
996 
997 	*masked_placement = cur_flags;
998 	return true;
999 }
1000 
1001 /**
1002  * Creates space for memory region @mem according to its type.
1003  *
1004  * This function first searches for free space in compatible memory types in
1005  * the priority order defined by the driver.  If free space isn't found, then
1006  * ttm_bo_mem_force_space is attempted in priority order to evict and find
1007  * space.
1008  */
1009 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
1010 			struct ttm_placement *placement,
1011 			struct ttm_mem_reg *mem,
1012 			bool interruptible,
1013 			bool no_wait_gpu)
1014 {
1015 	struct ttm_bo_device *bdev = bo->bdev;
1016 	struct ttm_mem_type_manager *man;
1017 	uint32_t mem_type = TTM_PL_SYSTEM;
1018 	uint32_t cur_flags = 0;
1019 	bool type_found = false;
1020 	bool type_ok = false;
1021 	bool has_erestartsys = false;
1022 	int i, ret;
1023 
1024 	mem->mm_node = NULL;
1025 	for (i = 0; i < placement->num_placement; ++i) {
1026 		ret = ttm_mem_type_from_flags(placement->placement[i],
1027 						&mem_type);
1028 		if (ret)
1029 			return ret;
1030 		man = &bdev->man[mem_type];
1031 
1032 		type_ok = ttm_bo_mt_compatible(man,
1033 						mem_type,
1034 						placement->placement[i],
1035 						&cur_flags);
1036 
1037 		if (!type_ok)
1038 			continue;
1039 
1040 		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1041 						  cur_flags);
1042 		/*
1043 		 * Use the access and other non-mapping-related flag bits from
1044 		 * the memory placement flags to the current flags
1045 		 */
1046 		ttm_flag_masked(&cur_flags, placement->placement[i],
1047 				~TTM_PL_MASK_MEMTYPE);
1048 
1049 		if (mem_type == TTM_PL_SYSTEM)
1050 			break;
1051 
1052 		if (man->has_type && man->use_type) {
1053 			type_found = true;
1054 			ret = (*man->func->get_node)(man, bo, placement, mem);
1055 			if (unlikely(ret))
1056 				return ret;
1057 		}
1058 		if (mem->mm_node)
1059 			break;
1060 	}
1061 
1062 	if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
1063 		mem->mem_type = mem_type;
1064 		mem->placement = cur_flags;
1065 		return 0;
1066 	}
1067 
1068 	if (!type_found)
1069 		return -EINVAL;
1070 
1071 	for (i = 0; i < placement->num_busy_placement; ++i) {
1072 		ret = ttm_mem_type_from_flags(placement->busy_placement[i],
1073 						&mem_type);
1074 		if (ret)
1075 			return ret;
1076 		man = &bdev->man[mem_type];
1077 		if (!man->has_type)
1078 			continue;
1079 		if (!ttm_bo_mt_compatible(man,
1080 						mem_type,
1081 						placement->busy_placement[i],
1082 						&cur_flags))
1083 			continue;
1084 
1085 		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1086 						  cur_flags);
1087 		/*
1088 		 * Use the access and other non-mapping-related flag bits from
1089 		 * the memory placement flags to the current flags
1090 		 */
1091 		ttm_flag_masked(&cur_flags, placement->busy_placement[i],
1092 				~TTM_PL_MASK_MEMTYPE);
1093 
1094 
1095 		if (mem_type == TTM_PL_SYSTEM) {
1096 			mem->mem_type = mem_type;
1097 			mem->placement = cur_flags;
1098 			mem->mm_node = NULL;
1099 			return 0;
1100 		}
1101 
1102 		ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
1103 						interruptible, no_wait_gpu);
1104 		if (ret == 0 && mem->mm_node) {
1105 			mem->placement = cur_flags;
1106 			return 0;
1107 		}
1108 		if (ret == -ERESTARTSYS)
1109 			has_erestartsys = true;
1110 	}
1111 	ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
1112 	return ret;
1113 }
1114 EXPORT_SYMBOL(ttm_bo_mem_space);
1115 
1116 static
1117 int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1118 			struct ttm_placement *placement,
1119 			bool interruptible,
1120 			bool no_wait_gpu)
1121 {
1122 	int ret = 0;
1123 	struct ttm_mem_reg mem;
1124 	struct ttm_bo_device *bdev = bo->bdev;
1125 
1126 	BUG_ON(!ttm_bo_is_reserved(bo));
1127 
1128 	/*
1129 	 * FIXME: It's possible to pipeline buffer moves.
1130 	 * Have the driver move function wait for idle when necessary,
1131 	 * instead of doing it here.
1132 	 */
1133 	lockmgr(&bdev->fence_lock, LK_EXCLUSIVE);
1134 	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
1135 	lockmgr(&bdev->fence_lock, LK_RELEASE);
1136 	if (ret)
1137 		return ret;
1138 	mem.num_pages = bo->num_pages;
1139 	mem.size = mem.num_pages << PAGE_SHIFT;
1140 	mem.page_alignment = bo->mem.page_alignment;
1141 	mem.bus.io_reserved_vm = false;
1142 	mem.bus.io_reserved_count = 0;
1143 	/*
1144 	 * Determine where to move the buffer.
1145 	 */
1146 	ret = ttm_bo_mem_space(bo, placement, &mem,
1147 			       interruptible, no_wait_gpu);
1148 	if (ret)
1149 		goto out_unlock;
1150 	ret = ttm_bo_handle_move_mem(bo, &mem, false,
1151 				     interruptible, no_wait_gpu);
1152 out_unlock:
1153 	if (ret && mem.mm_node)
1154 		ttm_bo_mem_put(bo, &mem);
1155 	return ret;
1156 }
1157 
1158 static int ttm_bo_mem_compat(struct ttm_placement *placement,
1159 			     struct ttm_mem_reg *mem)
1160 {
1161 	int i;
1162 
1163 	if (mem->mm_node && placement->lpfn != 0 &&
1164 	    (mem->start < placement->fpfn ||
1165 	     mem->start + mem->num_pages > placement->lpfn))
1166 		return -1;
1167 
1168 	for (i = 0; i < placement->num_placement; i++) {
1169 		if ((placement->placement[i] & mem->placement &
1170 			TTM_PL_MASK_CACHING) &&
1171 			(placement->placement[i] & mem->placement &
1172 			TTM_PL_MASK_MEM))
1173 			return i;
1174 	}
1175 	return -1;
1176 }
1177 
1178 int ttm_bo_validate(struct ttm_buffer_object *bo,
1179 			struct ttm_placement *placement,
1180 			bool interruptible,
1181 			bool no_wait_gpu)
1182 {
1183 	int ret;
1184 
1185 	BUG_ON(!ttm_bo_is_reserved(bo));
1186 	/* Check that range is valid */
1187 	if (placement->lpfn || placement->fpfn)
1188 		if (placement->fpfn > placement->lpfn ||
1189 			(placement->lpfn - placement->fpfn) < bo->num_pages)
1190 			return -EINVAL;
1191 	/*
1192 	 * Check whether we need to move buffer.
1193 	 */
1194 	ret = ttm_bo_mem_compat(placement, &bo->mem);
1195 	if (ret < 0) {
1196 		ret = ttm_bo_move_buffer(bo, placement, interruptible,
1197 					 no_wait_gpu);
1198 		if (ret)
1199 			return ret;
1200 	} else {
1201 		/*
1202 		 * Use the access and other non-mapping-related flag bits from
1203 		 * the compatible memory placement flags to the active flags
1204 		 */
1205 		ttm_flag_masked(&bo->mem.placement, placement->placement[ret],
1206 				~TTM_PL_MASK_MEMTYPE);
1207 	}
1208 	/*
1209 	 * We might need to add a TTM.
1210 	 */
1211 	if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1212 		ret = ttm_bo_add_ttm(bo, true);
1213 		if (ret)
1214 			return ret;
1215 	}
1216 	return 0;
1217 }
1218 EXPORT_SYMBOL(ttm_bo_validate);
1219 
1220 int ttm_bo_check_placement(struct ttm_buffer_object *bo,
1221 				struct ttm_placement *placement)
1222 {
1223 	BUG_ON((placement->fpfn || placement->lpfn) &&
1224 	       (bo->mem.num_pages > (placement->lpfn - placement->fpfn)));
1225 
1226 	return 0;
1227 }
1228 
1229 int ttm_bo_init(struct ttm_bo_device *bdev,
1230 		struct ttm_buffer_object *bo,
1231 		unsigned long size,
1232 		enum ttm_bo_type type,
1233 		struct ttm_placement *placement,
1234 		uint32_t page_alignment,
1235 		bool interruptible,
1236 		struct vm_object *persistent_swap_storage,
1237 		size_t acc_size,
1238 		struct sg_table *sg,
1239 		void (*destroy) (struct ttm_buffer_object *))
1240 {
1241 	int ret = 0;
1242 	unsigned long num_pages;
1243 	struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1244 
1245 	ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1246 	if (ret) {
1247 		kprintf("[TTM] Out of kernel memory\n");
1248 		if (destroy)
1249 			(*destroy)(bo);
1250 		else
1251 			kfree(bo, M_DRM);
1252 		return -ENOMEM;
1253 	}
1254 
1255 	num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1256 	if (num_pages == 0) {
1257 		kprintf("[TTM] Illegal buffer object size\n");
1258 		if (destroy)
1259 			(*destroy)(bo);
1260 		else
1261 			kfree(bo, M_DRM);
1262 		ttm_mem_global_free(mem_glob, acc_size);
1263 		return -EINVAL;
1264 	}
1265 	bo->destroy = destroy;
1266 
1267 	kref_init(&bo->kref);
1268 	kref_init(&bo->list_kref);
1269 	atomic_set(&bo->cpu_writers, 0);
1270 	atomic_set(&bo->reserved, 1);
1271 	init_waitqueue_head(&bo->event_queue);
1272 	INIT_LIST_HEAD(&bo->lru);
1273 	INIT_LIST_HEAD(&bo->ddestroy);
1274 	INIT_LIST_HEAD(&bo->swap);
1275 	INIT_LIST_HEAD(&bo->io_reserve_lru);
1276 	/*bzero(&bo->vm_rb, sizeof(bo->vm_rb));*/
1277 	bo->bdev = bdev;
1278 	bo->glob = bdev->glob;
1279 	bo->type = type;
1280 	bo->num_pages = num_pages;
1281 	bo->mem.size = num_pages << PAGE_SHIFT;
1282 	bo->mem.mem_type = TTM_PL_SYSTEM;
1283 	bo->mem.num_pages = bo->num_pages;
1284 	bo->mem.mm_node = NULL;
1285 	bo->mem.page_alignment = page_alignment;
1286 	bo->mem.bus.io_reserved_vm = false;
1287 	bo->mem.bus.io_reserved_count = 0;
1288 	bo->priv_flags = 0;
1289 	bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1290 	bo->seq_valid = false;
1291 	bo->persistent_swap_storage = persistent_swap_storage;
1292 	bo->acc_size = acc_size;
1293 	bo->sg = sg;
1294 	atomic_inc(&bo->glob->bo_count);
1295 
1296 	/*
1297 	 * Mirror ref from kref_init() for list_kref.
1298 	 */
1299 	set_bit(TTM_BO_PRIV_FLAG_ACTIVE, &bo->priv_flags);
1300 
1301 	ret = ttm_bo_check_placement(bo, placement);
1302 	if (unlikely(ret != 0))
1303 		goto out_err;
1304 
1305 	/*
1306 	 * For ttm_bo_type_device buffers, allocate
1307 	 * address space from the device.
1308 	 */
1309 	if (bo->type == ttm_bo_type_device ||
1310 	    bo->type == ttm_bo_type_sg) {
1311 		ret = ttm_bo_setup_vm(bo);
1312 		if (ret)
1313 			goto out_err;
1314 	}
1315 
1316 	ret = ttm_bo_validate(bo, placement, interruptible, false);
1317 	if (ret)
1318 		goto out_err;
1319 
1320 	ttm_bo_unreserve(bo);
1321 	return 0;
1322 
1323 out_err:
1324 	ttm_bo_unreserve(bo);
1325 	ttm_bo_unref(&bo);
1326 
1327 	return ret;
1328 }
1329 EXPORT_SYMBOL(ttm_bo_init);
1330 
1331 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1332 		       unsigned long bo_size,
1333 		       unsigned struct_size)
1334 {
1335 	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1336 	size_t size = 0;
1337 
1338 	size += ttm_round_pot(struct_size);
1339 	size += PAGE_ALIGN(npages * sizeof(void *));
1340 	size += ttm_round_pot(sizeof(struct ttm_tt));
1341 	return size;
1342 }
1343 EXPORT_SYMBOL(ttm_bo_acc_size);
1344 
1345 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1346 			   unsigned long bo_size,
1347 			   unsigned struct_size)
1348 {
1349 	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1350 	size_t size = 0;
1351 
1352 	size += ttm_round_pot(struct_size);
1353 	size += PAGE_ALIGN(npages * sizeof(void *));
1354 	size += PAGE_ALIGN(npages * sizeof(dma_addr_t));
1355 	size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1356 	return size;
1357 }
1358 EXPORT_SYMBOL(ttm_bo_dma_acc_size);
1359 
1360 int ttm_bo_create(struct ttm_bo_device *bdev,
1361 			unsigned long size,
1362 			enum ttm_bo_type type,
1363 			struct ttm_placement *placement,
1364 			uint32_t page_alignment,
1365 			bool interruptible,
1366 			struct vm_object *persistent_swap_storage,
1367 			struct ttm_buffer_object **p_bo)
1368 {
1369 	struct ttm_buffer_object *bo;
1370 	size_t acc_size;
1371 	int ret;
1372 
1373 	*p_bo = NULL;
1374 	bo = kmalloc(sizeof(*bo), M_DRM, M_WAITOK | M_ZERO);
1375 	if (unlikely(bo == NULL))
1376 		return -ENOMEM;
1377 
1378 	acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1379 	ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1380 			  interruptible, persistent_swap_storage, acc_size,
1381 			  NULL, NULL);
1382 	if (likely(ret == 0))
1383 		*p_bo = bo;
1384 
1385 	return ret;
1386 }
1387 EXPORT_SYMBOL(ttm_bo_create);
1388 
1389 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1390 					unsigned mem_type, bool allow_errors)
1391 {
1392 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1393 	struct ttm_bo_global *glob = bdev->glob;
1394 	int ret;
1395 
1396 	/*
1397 	 * Can't use standard list traversal since we're unlocking.
1398 	 */
1399 
1400 	lockmgr(&glob->lru_lock, LK_EXCLUSIVE);
1401 	while (!list_empty(&man->lru)) {
1402 		lockmgr(&glob->lru_lock, LK_RELEASE);
1403 		ret = ttm_mem_evict_first(bdev, mem_type, false, false);
1404 		if (ret) {
1405 			if (allow_errors) {
1406 				return ret;
1407 			} else {
1408 				kprintf("[TTM] Cleanup eviction failed\n");
1409 			}
1410 		}
1411 		lockmgr(&glob->lru_lock, LK_EXCLUSIVE);
1412 	}
1413 	lockmgr(&glob->lru_lock, LK_RELEASE);
1414 	return 0;
1415 }
1416 
1417 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1418 {
1419 	struct ttm_mem_type_manager *man;
1420 	int ret = -EINVAL;
1421 
1422 	if (mem_type >= TTM_NUM_MEM_TYPES) {
1423 		kprintf("[TTM] Illegal memory type %d\n", mem_type);
1424 		return ret;
1425 	}
1426 	man = &bdev->man[mem_type];
1427 
1428 	if (!man->has_type) {
1429 		kprintf("[TTM] Trying to take down uninitialized memory manager type %u\n",
1430 		       mem_type);
1431 		return ret;
1432 	}
1433 
1434 	man->use_type = false;
1435 	man->has_type = false;
1436 
1437 	ret = 0;
1438 	if (mem_type > 0) {
1439 		ttm_bo_force_list_clean(bdev, mem_type, false);
1440 
1441 		ret = (*man->func->takedown)(man);
1442 	}
1443 
1444 	return ret;
1445 }
1446 EXPORT_SYMBOL(ttm_bo_clean_mm);
1447 
1448 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1449 {
1450 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1451 
1452 	if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1453 		kprintf("[TTM] Illegal memory manager memory type %u\n", mem_type);
1454 		return -EINVAL;
1455 	}
1456 
1457 	if (!man->has_type) {
1458 		kprintf("[TTM] Memory type %u has not been initialized\n", mem_type);
1459 		return 0;
1460 	}
1461 
1462 	return ttm_bo_force_list_clean(bdev, mem_type, true);
1463 }
1464 EXPORT_SYMBOL(ttm_bo_evict_mm);
1465 
1466 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1467 			unsigned long p_size)
1468 {
1469 	int ret = -EINVAL;
1470 	struct ttm_mem_type_manager *man;
1471 
1472 	BUG_ON(type >= TTM_NUM_MEM_TYPES);
1473 	man = &bdev->man[type];
1474 	BUG_ON(man->has_type);
1475 	man->io_reserve_fastpath = true;
1476 	man->use_io_reserve_lru = false;
1477 	lockinit(&man->io_reserve_mutex, "ttmman", 0, LK_CANRECURSE);
1478 	INIT_LIST_HEAD(&man->io_reserve_lru);
1479 
1480 	ret = bdev->driver->init_mem_type(bdev, type, man);
1481 	if (ret)
1482 		return ret;
1483 	man->bdev = bdev;
1484 
1485 	ret = 0;
1486 	if (type != TTM_PL_SYSTEM) {
1487 		ret = (*man->func->init)(man, p_size);
1488 		if (ret)
1489 			return ret;
1490 	}
1491 	man->has_type = true;
1492 	man->use_type = true;
1493 	man->size = p_size;
1494 
1495 	INIT_LIST_HEAD(&man->lru);
1496 
1497 	return 0;
1498 }
1499 EXPORT_SYMBOL(ttm_bo_init_mm);
1500 
1501 static void ttm_bo_global_kobj_release(struct ttm_bo_global *glob)
1502 {
1503 	ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1504 	vm_page_free_contig(glob->dummy_read_page, PAGE_SIZE);
1505 	glob->dummy_read_page = NULL;
1506 	/*
1507 	vm_page_free(glob->dummy_read_page);
1508 	*/
1509 }
1510 
1511 void ttm_bo_global_release(struct drm_global_reference *ref)
1512 {
1513 	struct ttm_bo_global *glob = ref->object;
1514 
1515 	if (refcount_release(&glob->kobj_ref))
1516 		ttm_bo_global_kobj_release(glob);
1517 }
1518 EXPORT_SYMBOL(ttm_bo_global_release);
1519 
1520 int ttm_bo_global_init(struct drm_global_reference *ref)
1521 {
1522 	struct ttm_bo_global_ref *bo_ref =
1523 		container_of(ref, struct ttm_bo_global_ref, ref);
1524 	struct ttm_bo_global *glob = ref->object;
1525 	int ret;
1526 
1527 	lockinit(&glob->device_list_mutex, "ttmdlm", 0, LK_CANRECURSE);
1528 	lockinit(&glob->lru_lock, "ttmlru", 0, LK_CANRECURSE);
1529 	glob->mem_glob = bo_ref->mem_glob;
1530 	glob->dummy_read_page = vm_page_alloc_contig(
1531 	    0, VM_MAX_ADDRESS, PAGE_SIZE, 0, 1*PAGE_SIZE, VM_MEMATTR_UNCACHEABLE);
1532 
1533 	if (unlikely(glob->dummy_read_page == NULL)) {
1534 		ret = -ENOMEM;
1535 		goto out_no_drp;
1536 	}
1537 
1538 	INIT_LIST_HEAD(&glob->swap_lru);
1539 	INIT_LIST_HEAD(&glob->device_list);
1540 
1541 	ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1542 	ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1543 	if (unlikely(ret != 0)) {
1544 		kprintf("[TTM] Could not register buffer object swapout\n");
1545 		goto out_no_shrink;
1546 	}
1547 
1548 	atomic_set(&glob->bo_count, 0);
1549 
1550 	refcount_init(&glob->kobj_ref, 1);
1551 	return (0);
1552 
1553 out_no_shrink:
1554 	vm_page_free_contig(glob->dummy_read_page, PAGE_SIZE);
1555 	glob->dummy_read_page = NULL;
1556 	/*
1557 	vm_page_free(glob->dummy_read_page);
1558 	*/
1559 out_no_drp:
1560 	kfree(glob, M_DRM);
1561 	return ret;
1562 }
1563 EXPORT_SYMBOL(ttm_bo_global_init);
1564 
1565 
1566 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1567 {
1568 	int ret = 0;
1569 	unsigned i = TTM_NUM_MEM_TYPES;
1570 	struct ttm_mem_type_manager *man;
1571 	struct ttm_bo_global *glob = bdev->glob;
1572 
1573 	while (i--) {
1574 		man = &bdev->man[i];
1575 		if (man->has_type) {
1576 			man->use_type = false;
1577 			if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1578 				ret = -EBUSY;
1579 				kprintf("[TTM] DRM memory manager type %d is not clean\n",
1580 				       i);
1581 			}
1582 			man->has_type = false;
1583 		}
1584 	}
1585 
1586 	lockmgr(&glob->device_list_mutex, LK_EXCLUSIVE);
1587 	list_del(&bdev->device_list);
1588 	lockmgr(&glob->device_list_mutex, LK_RELEASE);
1589 
1590 	cancel_delayed_work_sync(&bdev->wq);
1591 
1592 	while (ttm_bo_delayed_delete(bdev, true))
1593 		;
1594 
1595 	lockmgr(&glob->lru_lock, LK_EXCLUSIVE);
1596 	if (list_empty(&bdev->ddestroy))
1597 		TTM_DEBUG("Delayed destroy list was clean\n");
1598 
1599 	if (list_empty(&bdev->man[0].lru))
1600 		TTM_DEBUG("Swap list was clean\n");
1601 	lockmgr(&glob->lru_lock, LK_RELEASE);
1602 
1603 	BUG_ON(!drm_mm_clean(&bdev->addr_space_mm));
1604 	lockmgr(&bdev->vm_lock, LK_EXCLUSIVE);
1605 	drm_mm_takedown(&bdev->addr_space_mm);
1606 	lockmgr(&bdev->vm_lock, LK_RELEASE);
1607 
1608 	return ret;
1609 }
1610 EXPORT_SYMBOL(ttm_bo_device_release);
1611 
1612 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1613 		       struct ttm_bo_global *glob,
1614 		       struct ttm_bo_driver *driver,
1615 		       uint64_t file_page_offset,
1616 		       bool need_dma32)
1617 {
1618 	int ret = -EINVAL;
1619 
1620 	lockinit(&bdev->vm_lock, "ttmvml", 0, LK_CANRECURSE);
1621 	bdev->driver = driver;
1622 
1623 	memset(bdev->man, 0, sizeof(bdev->man));
1624 
1625 	/*
1626 	 * Initialize the system memory buffer type.
1627 	 * Other types need to be driver / IOCTL initialized.
1628 	 */
1629 	ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1630 	if (unlikely(ret != 0))
1631 		goto out_no_sys;
1632 
1633 	RB_INIT(&bdev->addr_space_rb);
1634 	ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
1635 	if (unlikely(ret != 0))
1636 		goto out_no_addr_mm;
1637 
1638 	INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1639 	INIT_LIST_HEAD(&bdev->ddestroy);
1640 	bdev->dev_mapping = NULL;
1641 	bdev->glob = glob;
1642 	bdev->need_dma32 = need_dma32;
1643 	bdev->val_seq = 0;
1644 	lockinit(&bdev->fence_lock, "ttmfence", 0, LK_CANRECURSE);
1645 	lockmgr(&glob->device_list_mutex, LK_EXCLUSIVE);
1646 	list_add_tail(&bdev->device_list, &glob->device_list);
1647 	lockmgr(&glob->device_list_mutex, LK_RELEASE);
1648 
1649 	return 0;
1650 out_no_addr_mm:
1651 	ttm_bo_clean_mm(bdev, 0);
1652 out_no_sys:
1653 	return ret;
1654 }
1655 EXPORT_SYMBOL(ttm_bo_device_init);
1656 
1657 /*
1658  * buffer object vm functions.
1659  */
1660 
1661 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1662 {
1663 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1664 
1665 	if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1666 		if (mem->mem_type == TTM_PL_SYSTEM)
1667 			return false;
1668 
1669 		if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1670 			return false;
1671 
1672 		if (mem->placement & TTM_PL_FLAG_CACHED)
1673 			return false;
1674 	}
1675 	return true;
1676 }
1677 
1678 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1679 {
1680 
1681 	ttm_bo_release_mmap(bo);
1682 	ttm_mem_io_free_vm(bo);
1683 }
1684 
1685 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1686 {
1687 	struct ttm_bo_device *bdev = bo->bdev;
1688 	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1689 
1690 	ttm_mem_io_lock(man, false);
1691 	ttm_bo_unmap_virtual_locked(bo);
1692 	ttm_mem_io_unlock(man);
1693 }
1694 
1695 
1696 EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1697 
1698 static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
1699 {
1700 	struct ttm_bo_device *bdev = bo->bdev;
1701 
1702 	/* The caller acquired bdev->vm_lock. */
1703 	RB_INSERT(ttm_bo_device_buffer_objects, &bdev->addr_space_rb, bo);
1704 }
1705 
1706 /**
1707  * ttm_bo_setup_vm:
1708  *
1709  * @bo: the buffer to allocate address space for
1710  *
1711  * Allocate address space in the drm device so that applications
1712  * can mmap the buffer and access the contents. This only
1713  * applies to ttm_bo_type_device objects as others are not
1714  * placed in the drm device address space.
1715  */
1716 
1717 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
1718 {
1719 	struct ttm_bo_device *bdev = bo->bdev;
1720 	int ret;
1721 
1722 retry_pre_get:
1723 	ret = drm_mm_pre_get(&bdev->addr_space_mm);
1724 	if (unlikely(ret != 0))
1725 		return ret;
1726 
1727 	lockmgr(&bdev->vm_lock, LK_EXCLUSIVE);
1728 	bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
1729 					 bo->mem.num_pages, 0, 0);
1730 
1731 	if (unlikely(bo->vm_node == NULL)) {
1732 		ret = -ENOMEM;
1733 		goto out_unlock;
1734 	}
1735 
1736 	bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
1737 					      bo->mem.num_pages, 0);
1738 
1739 	if (unlikely(bo->vm_node == NULL)) {
1740 		lockmgr(&bdev->vm_lock, LK_RELEASE);
1741 		goto retry_pre_get;
1742 	}
1743 
1744 	ttm_bo_vm_insert_rb(bo);
1745 	lockmgr(&bdev->vm_lock, LK_RELEASE);
1746 	bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;
1747 
1748 	return 0;
1749 out_unlock:
1750 	lockmgr(&bdev->vm_lock, LK_RELEASE);
1751 	return ret;
1752 }
1753 
1754 int ttm_bo_wait(struct ttm_buffer_object *bo,
1755 		bool lazy, bool interruptible, bool no_wait)
1756 {
1757 	struct ttm_bo_driver *driver = bo->bdev->driver;
1758 	struct ttm_bo_device *bdev = bo->bdev;
1759 	void *sync_obj;
1760 	int ret = 0;
1761 
1762 	if (likely(bo->sync_obj == NULL))
1763 		return 0;
1764 
1765 	while (bo->sync_obj) {
1766 
1767 		if (driver->sync_obj_signaled(bo->sync_obj)) {
1768 			void *tmp_obj = bo->sync_obj;
1769 			bo->sync_obj = NULL;
1770 			clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1771 			lockmgr(&bdev->fence_lock, LK_RELEASE);
1772 			driver->sync_obj_unref(&tmp_obj);
1773 			lockmgr(&bdev->fence_lock, LK_EXCLUSIVE);
1774 			continue;
1775 		}
1776 
1777 		if (no_wait)
1778 			return -EBUSY;
1779 
1780 		sync_obj = driver->sync_obj_ref(bo->sync_obj);
1781 		lockmgr(&bdev->fence_lock, LK_RELEASE);
1782 		ret = driver->sync_obj_wait(sync_obj,
1783 					    lazy, interruptible);
1784 		if (unlikely(ret != 0)) {
1785 			driver->sync_obj_unref(&sync_obj);
1786 			lockmgr(&bdev->fence_lock, LK_EXCLUSIVE);
1787 			return ret;
1788 		}
1789 		lockmgr(&bdev->fence_lock, LK_EXCLUSIVE);
1790 		if (likely(bo->sync_obj == sync_obj)) {
1791 			void *tmp_obj = bo->sync_obj;
1792 			bo->sync_obj = NULL;
1793 			clear_bit(TTM_BO_PRIV_FLAG_MOVING,
1794 				  &bo->priv_flags);
1795 			lockmgr(&bdev->fence_lock, LK_RELEASE);
1796 			driver->sync_obj_unref(&sync_obj);
1797 			driver->sync_obj_unref(&tmp_obj);
1798 			lockmgr(&bdev->fence_lock, LK_EXCLUSIVE);
1799 		} else {
1800 			lockmgr(&bdev->fence_lock, LK_RELEASE);
1801 			driver->sync_obj_unref(&sync_obj);
1802 			lockmgr(&bdev->fence_lock, LK_EXCLUSIVE);
1803 		}
1804 	}
1805 	return 0;
1806 }
1807 EXPORT_SYMBOL(ttm_bo_wait);
1808 
1809 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1810 {
1811 	struct ttm_bo_device *bdev = bo->bdev;
1812 	int ret = 0;
1813 
1814 	/*
1815 	 * Using ttm_bo_reserve makes sure the lru lists are updated.
1816 	 */
1817 
1818 	ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1819 	if (unlikely(ret != 0))
1820 		return ret;
1821 	lockmgr(&bdev->fence_lock, LK_EXCLUSIVE);
1822 	ret = ttm_bo_wait(bo, false, true, no_wait);
1823 	lockmgr(&bdev->fence_lock, LK_RELEASE);
1824 	if (likely(ret == 0))
1825 		atomic_inc(&bo->cpu_writers);
1826 	ttm_bo_unreserve(bo);
1827 	return ret;
1828 }
1829 EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1830 
1831 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1832 {
1833 	atomic_dec(&bo->cpu_writers);
1834 }
1835 EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1836 
1837 /**
1838  * A buffer object shrink method that tries to swap out the first
1839  * buffer object on the bo_global::swap_lru list.
1840  */
1841 
1842 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1843 {
1844 	struct ttm_bo_global *glob =
1845 	    container_of(shrink, struct ttm_bo_global, shrink);
1846 	struct ttm_buffer_object *bo;
1847 	int ret = -EBUSY;
1848 	int put_count;
1849 	uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1850 
1851 	lockmgr(&glob->lru_lock, LK_EXCLUSIVE);
1852 	list_for_each_entry(bo, &glob->swap_lru, swap) {
1853 		ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
1854 		if (!ret)
1855 			break;
1856 	}
1857 
1858 	if (ret) {
1859 		lockmgr(&glob->lru_lock, LK_RELEASE);
1860 		return ret;
1861 	}
1862 
1863 	kref_get(&bo->list_kref);
1864 
1865 	if (!list_empty(&bo->ddestroy)) {
1866 		ret = ttm_bo_cleanup_refs_and_unlock(bo, false, false);
1867 		kref_put(&bo->list_kref, ttm_bo_release_list);
1868 		return ret;
1869 	}
1870 
1871 	put_count = ttm_bo_del_from_lru(bo);
1872 	lockmgr(&glob->lru_lock, LK_RELEASE);
1873 
1874 	ttm_bo_list_ref_sub(bo, put_count, true);
1875 
1876 	/**
1877 	 * Wait for GPU, then move to system cached.
1878 	 */
1879 
1880 	lockmgr(&bo->bdev->fence_lock, LK_EXCLUSIVE);
1881 	ret = ttm_bo_wait(bo, false, false, false);
1882 	lockmgr(&bo->bdev->fence_lock, LK_RELEASE);
1883 
1884 	if (unlikely(ret != 0))
1885 		goto out;
1886 
1887 	if ((bo->mem.placement & swap_placement) != swap_placement) {
1888 		struct ttm_mem_reg evict_mem;
1889 
1890 		evict_mem = bo->mem;
1891 		evict_mem.mm_node = NULL;
1892 		evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1893 		evict_mem.mem_type = TTM_PL_SYSTEM;
1894 
1895 		ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1896 					     false, false);
1897 		if (unlikely(ret != 0))
1898 			goto out;
1899 	}
1900 
1901 	ttm_bo_unmap_virtual(bo);
1902 
1903 	/**
1904 	 * Swap out. Buffer will be swapped in again as soon as
1905 	 * anyone tries to access a ttm page.
1906 	 */
1907 
1908 	if (bo->bdev->driver->swap_notify)
1909 		bo->bdev->driver->swap_notify(bo);
1910 
1911 	ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1912 out:
1913 
1914 	/**
1915 	 *
1916 	 * Unreserve without putting on LRU to avoid swapping out an
1917 	 * already swapped buffer.
1918 	 */
1919 
1920 	atomic_set(&bo->reserved, 0);
1921 	wake_up_all(&bo->event_queue);
1922 	kref_put(&bo->list_kref, ttm_bo_release_list);
1923 	return ret;
1924 }
1925 
1926 void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1927 {
1928 	while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1929 		;
1930 }
1931 EXPORT_SYMBOL(ttm_bo_swapout_all);
1932