1 /************************************************************************** 2 * 3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA 4 * All Rights Reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 24 * USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 /* 28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> 29 */ 30 31 #define pr_fmt(fmt) "[TTM] " fmt 32 33 #include <drm/ttm/ttm_module.h> 34 #include <drm/ttm/ttm_bo_driver.h> 35 #include <drm/ttm/ttm_placement.h> 36 #include <linux/atomic.h> 37 #include <linux/errno.h> 38 #include <linux/export.h> 39 #include <linux/wait.h> 40 41 #define TTM_ASSERT_LOCKED(param) 42 #define TTM_DEBUG(fmt, arg...) 43 #define TTM_BO_HASH_ORDER 13 44 45 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo); 46 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink); 47 static void ttm_bo_global_kobj_release(struct ttm_bo_global *glob); 48 49 static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type) 50 { 51 int i; 52 53 for (i = 0; i <= TTM_PL_PRIV5; i++) 54 if (flags & (1 << i)) { 55 *mem_type = i; 56 return 0; 57 } 58 return -EINVAL; 59 } 60 61 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type) 62 { 63 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 64 65 kprintf(" has_type: %d\n", man->has_type); 66 kprintf(" use_type: %d\n", man->use_type); 67 kprintf(" flags: 0x%08X\n", man->flags); 68 kprintf(" gpu_offset: 0x%08lX\n", man->gpu_offset); 69 kprintf(" size: %ju\n", (uintmax_t)man->size); 70 kprintf(" available_caching: 0x%08X\n", man->available_caching); 71 kprintf(" default_caching: 0x%08X\n", man->default_caching); 72 if (mem_type != TTM_PL_SYSTEM) 73 (*man->func->debug)(man, TTM_PFX); 74 } 75 76 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo, 77 struct ttm_placement *placement) 78 { 79 int i, ret, mem_type; 80 81 kprintf("No space for %p (%lu pages, %luK, %luM)\n", 82 bo, bo->mem.num_pages, bo->mem.size >> 10, 83 bo->mem.size >> 20); 84 for (i = 0; i < placement->num_placement; i++) { 85 ret = ttm_mem_type_from_flags(placement->placement[i], 86 &mem_type); 87 if (ret) 88 return; 89 kprintf(" placement[%d]=0x%08X (%d)\n", 90 i, placement->placement[i], mem_type); 91 ttm_mem_type_debug(bo->bdev, mem_type); 92 } 93 } 94 95 #if 0 96 static ssize_t ttm_bo_global_show(struct ttm_bo_global *glob, 97 char *buffer) 98 { 99 100 return snprintf(buffer, PAGE_SIZE, "%lu\n", 101 (unsigned long) atomic_read(&glob->bo_count)); 102 } 103 #endif 104 105 static inline uint32_t ttm_bo_type_flags(unsigned type) 106 { 107 return 1 << (type); 108 } 109 110 static void ttm_bo_release_list(struct kref *list_kref) 111 { 112 struct ttm_buffer_object *bo = 113 container_of(list_kref, struct ttm_buffer_object, list_kref); 114 struct ttm_bo_device *bdev = bo->bdev; 115 size_t acc_size = bo->acc_size; 116 117 BUG_ON(atomic_read(&bo->list_kref.refcount)); 118 BUG_ON(atomic_read(&bo->kref.refcount)); 119 BUG_ON(atomic_read(&bo->cpu_writers)); 120 BUG_ON(bo->sync_obj != NULL); 121 BUG_ON(bo->mem.mm_node != NULL); 122 BUG_ON(!list_empty(&bo->lru)); 123 BUG_ON(!list_empty(&bo->ddestroy)); 124 125 if (bo->ttm) 126 ttm_tt_destroy(bo->ttm); 127 atomic_dec(&bo->glob->bo_count); 128 if (bo->destroy) 129 bo->destroy(bo); 130 else { 131 kfree(bo, M_DRM); 132 } 133 ttm_mem_global_free(bdev->glob->mem_glob, acc_size); 134 } 135 136 static int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo, 137 bool interruptible) 138 { 139 if (interruptible) { 140 return wait_event_interruptible(bo->event_queue, 141 !ttm_bo_is_reserved(bo)); 142 } else { 143 wait_event(bo->event_queue, !ttm_bo_is_reserved(bo)); 144 return 0; 145 } 146 } 147 148 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo) 149 { 150 struct ttm_bo_device *bdev = bo->bdev; 151 struct ttm_mem_type_manager *man; 152 153 BUG_ON(!ttm_bo_is_reserved(bo)); 154 155 if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) { 156 157 BUG_ON(!list_empty(&bo->lru)); 158 159 man = &bdev->man[bo->mem.mem_type]; 160 list_add_tail(&bo->lru, &man->lru); 161 kref_get(&bo->list_kref); 162 163 if (bo->ttm != NULL) { 164 list_add_tail(&bo->swap, &bo->glob->swap_lru); 165 kref_get(&bo->list_kref); 166 } 167 } 168 } 169 170 int ttm_bo_del_from_lru(struct ttm_buffer_object *bo) 171 { 172 int put_count = 0; 173 174 if (!list_empty(&bo->swap)) { 175 list_del_init(&bo->swap); 176 ++put_count; 177 } 178 if (!list_empty(&bo->lru)) { 179 list_del_init(&bo->lru); 180 ++put_count; 181 } 182 183 /* 184 * TODO: Add a driver hook to delete from 185 * driver-specific LRU's here. 186 */ 187 188 return put_count; 189 } 190 191 int ttm_bo_reserve_nolru(struct ttm_buffer_object *bo, 192 bool interruptible, 193 bool no_wait, bool use_sequence, uint32_t sequence) 194 { 195 int ret; 196 197 while (unlikely(atomic_xchg(&bo->reserved, 1) != 0)) { 198 /** 199 * Deadlock avoidance for multi-bo reserving. 200 */ 201 if (use_sequence && bo->seq_valid) { 202 /** 203 * We've already reserved this one. 204 */ 205 if (unlikely(sequence == bo->val_seq)) 206 return -EDEADLK; 207 /** 208 * Already reserved by a thread that will not back 209 * off for us. We need to back off. 210 */ 211 if (unlikely(sequence - bo->val_seq < (1U << 31))) 212 return -EAGAIN; 213 } 214 215 if (no_wait) 216 return -EBUSY; 217 218 ret = ttm_bo_wait_unreserved(bo, interruptible); 219 220 if (unlikely(ret)) 221 return ret; 222 } 223 224 if (use_sequence) { 225 bool wake_up = false; 226 /** 227 * Wake up waiters that may need to recheck for deadlock, 228 * if we decreased the sequence number. 229 */ 230 if (unlikely((bo->val_seq - sequence < (1U << 31)) 231 || !bo->seq_valid)) 232 wake_up = true; 233 234 /* 235 * In the worst case with memory ordering these values can be 236 * seen in the wrong order. However since we call wake_up_all 237 * in that case, this will hopefully not pose a problem, 238 * and the worst case would only cause someone to accidentally 239 * hit -EAGAIN in ttm_bo_reserve when they see old value of 240 * val_seq. However this would only happen if seq_valid was 241 * written before val_seq was, and just means some slightly 242 * increased cpu usage 243 */ 244 bo->val_seq = sequence; 245 bo->seq_valid = true; 246 if (wake_up) 247 wake_up_all(&bo->event_queue); 248 } else { 249 bo->seq_valid = false; 250 } 251 252 return 0; 253 } 254 EXPORT_SYMBOL(ttm_bo_reserve); 255 256 static void ttm_bo_ref_bug(struct kref *list_kref) 257 { 258 BUG(); 259 } 260 261 void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count, 262 bool never_free) 263 { 264 kref_sub(&bo->list_kref, count, 265 (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list); 266 } 267 268 int ttm_bo_reserve(struct ttm_buffer_object *bo, 269 bool interruptible, 270 bool no_wait, bool use_sequence, uint32_t sequence) 271 { 272 struct ttm_bo_global *glob = bo->glob; 273 int put_count = 0; 274 int ret; 275 276 ret = ttm_bo_reserve_nolru(bo, interruptible, no_wait, use_sequence, 277 sequence); 278 if (likely(ret == 0)) { 279 lockmgr(&glob->lru_lock, LK_EXCLUSIVE); 280 put_count = ttm_bo_del_from_lru(bo); 281 lockmgr(&glob->lru_lock, LK_RELEASE); 282 ttm_bo_list_ref_sub(bo, put_count, true); 283 } 284 285 return ret; 286 } 287 288 int ttm_bo_reserve_slowpath_nolru(struct ttm_buffer_object *bo, 289 bool interruptible, uint32_t sequence) 290 { 291 bool wake_up = false; 292 int ret; 293 294 while (unlikely(atomic_xchg(&bo->reserved, 1) != 0)) { 295 WARN_ON(bo->seq_valid && sequence == bo->val_seq); 296 297 ret = ttm_bo_wait_unreserved(bo, interruptible); 298 299 if (unlikely(ret)) 300 return ret; 301 } 302 303 if ((bo->val_seq - sequence < (1U << 31)) || !bo->seq_valid) 304 wake_up = true; 305 306 /** 307 * Wake up waiters that may need to recheck for deadlock, 308 * if we decreased the sequence number. 309 */ 310 bo->val_seq = sequence; 311 bo->seq_valid = true; 312 if (wake_up) 313 wake_up_all(&bo->event_queue); 314 315 return 0; 316 } 317 318 int ttm_bo_reserve_slowpath(struct ttm_buffer_object *bo, 319 bool interruptible, uint32_t sequence) 320 { 321 struct ttm_bo_global *glob = bo->glob; 322 int put_count, ret; 323 324 ret = ttm_bo_reserve_slowpath_nolru(bo, interruptible, sequence); 325 if (likely(!ret)) { 326 lockmgr(&glob->lru_lock, LK_EXCLUSIVE); 327 put_count = ttm_bo_del_from_lru(bo); 328 lockmgr(&glob->lru_lock, LK_RELEASE); 329 ttm_bo_list_ref_sub(bo, put_count, true); 330 } 331 return ret; 332 } 333 EXPORT_SYMBOL(ttm_bo_reserve_slowpath); 334 335 void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo) 336 { 337 ttm_bo_add_to_lru(bo); 338 atomic_set(&bo->reserved, 0); 339 wake_up_all(&bo->event_queue); 340 } 341 342 void ttm_bo_unreserve(struct ttm_buffer_object *bo) 343 { 344 struct ttm_bo_global *glob = bo->glob; 345 346 lockmgr(&glob->lru_lock, LK_EXCLUSIVE); 347 ttm_bo_unreserve_locked(bo); 348 lockmgr(&glob->lru_lock, LK_RELEASE); 349 } 350 EXPORT_SYMBOL(ttm_bo_unreserve); 351 352 /* 353 * Call bo->mutex locked. 354 */ 355 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc) 356 { 357 struct ttm_bo_device *bdev = bo->bdev; 358 struct ttm_bo_global *glob = bo->glob; 359 int ret = 0; 360 uint32_t page_flags = 0; 361 362 TTM_ASSERT_LOCKED(&bo->mutex); 363 bo->ttm = NULL; 364 365 if (bdev->need_dma32) 366 page_flags |= TTM_PAGE_FLAG_DMA32; 367 368 switch (bo->type) { 369 case ttm_bo_type_device: 370 if (zero_alloc) 371 page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC; 372 case ttm_bo_type_kernel: 373 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT, 374 page_flags, glob->dummy_read_page); 375 if (unlikely(bo->ttm == NULL)) 376 ret = -ENOMEM; 377 break; 378 case ttm_bo_type_sg: 379 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT, 380 page_flags | TTM_PAGE_FLAG_SG, 381 glob->dummy_read_page); 382 if (unlikely(bo->ttm == NULL)) { 383 ret = -ENOMEM; 384 break; 385 } 386 bo->ttm->sg = bo->sg; 387 break; 388 default: 389 kprintf("[TTM] Illegal buffer object type\n"); 390 ret = -EINVAL; 391 break; 392 } 393 394 return ret; 395 } 396 397 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo, 398 struct ttm_mem_reg *mem, 399 bool evict, bool interruptible, 400 bool no_wait_gpu) 401 { 402 struct ttm_bo_device *bdev = bo->bdev; 403 bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem); 404 bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem); 405 struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type]; 406 struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type]; 407 int ret = 0; 408 409 if (old_is_pci || new_is_pci || 410 ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) { 411 ret = ttm_mem_io_lock(old_man, true); 412 if (unlikely(ret != 0)) 413 goto out_err; 414 ttm_bo_unmap_virtual_locked(bo); 415 ttm_mem_io_unlock(old_man); 416 } 417 418 /* 419 * Create and bind a ttm if required. 420 */ 421 422 if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) { 423 if (bo->ttm == NULL) { 424 bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED); 425 ret = ttm_bo_add_ttm(bo, zero); 426 if (ret) 427 goto out_err; 428 } 429 430 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement); 431 if (ret) 432 goto out_err; 433 434 if (mem->mem_type != TTM_PL_SYSTEM) { 435 ret = ttm_tt_bind(bo->ttm, mem); 436 if (ret) 437 goto out_err; 438 } 439 440 if (bo->mem.mem_type == TTM_PL_SYSTEM) { 441 if (bdev->driver->move_notify) 442 bdev->driver->move_notify(bo, mem); 443 bo->mem = *mem; 444 mem->mm_node = NULL; 445 goto moved; 446 } 447 } 448 449 if (bdev->driver->move_notify) 450 bdev->driver->move_notify(bo, mem); 451 452 if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) && 453 !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) 454 ret = ttm_bo_move_ttm(bo, evict, no_wait_gpu, mem); 455 else if (bdev->driver->move) 456 ret = bdev->driver->move(bo, evict, interruptible, 457 no_wait_gpu, mem); 458 else 459 ret = ttm_bo_move_memcpy(bo, evict, no_wait_gpu, mem); 460 461 if (ret) { 462 if (bdev->driver->move_notify) { 463 struct ttm_mem_reg tmp_mem = *mem; 464 *mem = bo->mem; 465 bo->mem = tmp_mem; 466 bdev->driver->move_notify(bo, mem); 467 bo->mem = *mem; 468 *mem = tmp_mem; 469 } 470 471 goto out_err; 472 } 473 474 moved: 475 if (bo->evicted) { 476 ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement); 477 if (ret) 478 kprintf("[TTM] Can not flush read caches\n"); 479 bo->evicted = false; 480 } 481 482 if (bo->mem.mm_node) { 483 bo->offset = (bo->mem.start << PAGE_SHIFT) + 484 bdev->man[bo->mem.mem_type].gpu_offset; 485 bo->cur_placement = bo->mem.placement; 486 } else 487 bo->offset = 0; 488 489 return 0; 490 491 out_err: 492 new_man = &bdev->man[bo->mem.mem_type]; 493 if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) { 494 ttm_tt_unbind(bo->ttm); 495 ttm_tt_destroy(bo->ttm); 496 bo->ttm = NULL; 497 } 498 499 return ret; 500 } 501 502 /** 503 * Call bo::reserved. 504 * Will release GPU memory type usage on destruction. 505 * This is the place to put in driver specific hooks to release 506 * driver private resources. 507 * Will release the bo::reserved lock. 508 */ 509 510 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo) 511 { 512 if (bo->bdev->driver->move_notify) 513 bo->bdev->driver->move_notify(bo, NULL); 514 515 if (bo->ttm) { 516 ttm_tt_unbind(bo->ttm); 517 ttm_tt_destroy(bo->ttm); 518 bo->ttm = NULL; 519 } 520 ttm_bo_mem_put(bo, &bo->mem); 521 522 atomic_set(&bo->reserved, 0); 523 wake_up_all(&bo->event_queue); 524 525 /* 526 * Since the final reference to this bo may not be dropped by 527 * the current task we have to put a memory barrier here to make 528 * sure the changes done in this function are always visible. 529 * 530 * This function only needs protection against the final kref_put. 531 */ 532 cpu_mfence(); 533 } 534 535 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo) 536 { 537 struct ttm_bo_device *bdev = bo->bdev; 538 struct ttm_bo_global *glob = bo->glob; 539 struct ttm_bo_driver *driver = bdev->driver; 540 void *sync_obj = NULL; 541 int put_count; 542 int ret; 543 544 lockmgr(&glob->lru_lock, LK_EXCLUSIVE); 545 ret = ttm_bo_reserve_nolru(bo, false, true, false, 0); 546 547 lockmgr(&bdev->fence_lock, LK_EXCLUSIVE); 548 (void) ttm_bo_wait(bo, false, false, true); 549 if (!ret && !bo->sync_obj) { 550 lockmgr(&bdev->fence_lock, LK_RELEASE); 551 put_count = ttm_bo_del_from_lru(bo); 552 553 lockmgr(&glob->lru_lock, LK_RELEASE); 554 ttm_bo_cleanup_memtype_use(bo); 555 556 ttm_bo_list_ref_sub(bo, put_count, true); 557 558 return; 559 } 560 if (bo->sync_obj) 561 sync_obj = driver->sync_obj_ref(bo->sync_obj); 562 lockmgr(&bdev->fence_lock, LK_RELEASE); 563 564 if (!ret) { 565 atomic_set(&bo->reserved, 0); 566 wake_up_all(&bo->event_queue); 567 } 568 569 kref_get(&bo->list_kref); 570 list_add_tail(&bo->ddestroy, &bdev->ddestroy); 571 lockmgr(&glob->lru_lock, LK_RELEASE); 572 573 if (sync_obj) { 574 driver->sync_obj_flush(sync_obj); 575 driver->sync_obj_unref(&sync_obj); 576 } 577 schedule_delayed_work(&bdev->wq, 578 ((hz / 100) < 1) ? 1 : hz / 100); 579 } 580 581 /** 582 * function ttm_bo_cleanup_refs_and_unlock 583 * If bo idle, remove from delayed- and lru lists, and unref. 584 * If not idle, do nothing. 585 * 586 * Must be called with lru_lock and reservation held, this function 587 * will drop both before returning. 588 * 589 * @interruptible Any sleeps should occur interruptibly. 590 * @no_wait_gpu Never wait for gpu. Return -EBUSY instead. 591 */ 592 593 static int ttm_bo_cleanup_refs_and_unlock(struct ttm_buffer_object *bo, 594 bool interruptible, 595 bool no_wait_gpu) 596 { 597 struct ttm_bo_device *bdev = bo->bdev; 598 struct ttm_bo_driver *driver = bdev->driver; 599 struct ttm_bo_global *glob = bo->glob; 600 int put_count; 601 int ret; 602 603 lockmgr(&bdev->fence_lock, LK_EXCLUSIVE); 604 ret = ttm_bo_wait(bo, false, false, true); 605 606 if (ret && !no_wait_gpu) { 607 void *sync_obj; 608 609 /* 610 * Take a reference to the fence and unreserve, 611 * at this point the buffer should be dead, so 612 * no new sync objects can be attached. 613 */ 614 sync_obj = driver->sync_obj_ref(bo->sync_obj); 615 lockmgr(&bdev->fence_lock, LK_RELEASE); 616 617 atomic_set(&bo->reserved, 0); 618 wake_up_all(&bo->event_queue); 619 lockmgr(&glob->lru_lock, LK_RELEASE); 620 621 ret = driver->sync_obj_wait(sync_obj, false, interruptible); 622 driver->sync_obj_unref(&sync_obj); 623 if (ret) 624 return ret; 625 626 /* 627 * remove sync_obj with ttm_bo_wait, the wait should be 628 * finished, and no new wait object should have been added. 629 */ 630 lockmgr(&bdev->fence_lock, LK_EXCLUSIVE); 631 ret = ttm_bo_wait(bo, false, false, true); 632 WARN_ON(ret); 633 lockmgr(&bdev->fence_lock, LK_RELEASE); 634 if (ret) 635 return ret; 636 637 lockmgr(&glob->lru_lock, LK_EXCLUSIVE); 638 ret = ttm_bo_reserve_nolru(bo, false, true, false, 0); 639 640 /* 641 * We raced, and lost, someone else holds the reservation now, 642 * and is probably busy in ttm_bo_cleanup_memtype_use. 643 * 644 * Even if it's not the case, because we finished waiting any 645 * delayed destruction would succeed, so just return success 646 * here. 647 */ 648 if (ret) { 649 lockmgr(&glob->lru_lock, LK_RELEASE); 650 return 0; 651 } 652 } else 653 lockmgr(&bdev->fence_lock, LK_RELEASE); 654 655 if (ret || unlikely(list_empty(&bo->ddestroy))) { 656 atomic_set(&bo->reserved, 0); 657 wake_up_all(&bo->event_queue); 658 lockmgr(&glob->lru_lock, LK_RELEASE); 659 return ret; 660 } 661 662 put_count = ttm_bo_del_from_lru(bo); 663 list_del_init(&bo->ddestroy); 664 ++put_count; 665 666 lockmgr(&glob->lru_lock, LK_RELEASE); 667 ttm_bo_cleanup_memtype_use(bo); 668 669 ttm_bo_list_ref_sub(bo, put_count, true); 670 671 return 0; 672 } 673 674 /** 675 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all 676 * encountered buffers. 677 */ 678 679 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all) 680 { 681 struct ttm_bo_global *glob = bdev->glob; 682 struct ttm_buffer_object *entry = NULL; 683 int ret = 0; 684 685 lockmgr(&glob->lru_lock, LK_EXCLUSIVE); 686 if (list_empty(&bdev->ddestroy)) 687 goto out_unlock; 688 689 entry = list_first_entry(&bdev->ddestroy, 690 struct ttm_buffer_object, ddestroy); 691 kref_get(&entry->list_kref); 692 693 for (;;) { 694 struct ttm_buffer_object *nentry = NULL; 695 696 if (entry->ddestroy.next != &bdev->ddestroy) { 697 nentry = list_first_entry(&entry->ddestroy, 698 struct ttm_buffer_object, ddestroy); 699 kref_get(&nentry->list_kref); 700 } 701 702 ret = ttm_bo_reserve_nolru(entry, false, true, false, 0); 703 if (remove_all && ret) { 704 lockmgr(&glob->lru_lock, LK_RELEASE); 705 ret = ttm_bo_reserve_nolru(entry, false, false, 706 false, 0); 707 lockmgr(&glob->lru_lock, LK_EXCLUSIVE); 708 } 709 710 if (!ret) 711 ret = ttm_bo_cleanup_refs_and_unlock(entry, false, 712 !remove_all); 713 else 714 lockmgr(&glob->lru_lock, LK_RELEASE); 715 716 kref_put(&entry->list_kref, ttm_bo_release_list); 717 entry = nentry; 718 719 if (ret || !entry) 720 goto out; 721 722 lockmgr(&glob->lru_lock, LK_EXCLUSIVE); 723 if (list_empty(&entry->ddestroy)) 724 break; 725 } 726 727 out_unlock: 728 lockmgr(&glob->lru_lock, LK_RELEASE); 729 out: 730 if (entry) 731 kref_put(&entry->list_kref, ttm_bo_release_list); 732 return ret; 733 } 734 735 static void ttm_bo_delayed_workqueue(struct work_struct *work) 736 { 737 struct ttm_bo_device *bdev = 738 container_of(work, struct ttm_bo_device, wq.work); 739 740 if (ttm_bo_delayed_delete(bdev, false)) { 741 schedule_delayed_work(&bdev->wq, 742 ((hz / 100) < 1) ? 1 : hz / 100); 743 } 744 } 745 746 /* 747 * NOTE: bdev->vm_lock already held on call, this function release it. 748 */ 749 static void ttm_bo_release(struct kref *kref) 750 { 751 struct ttm_buffer_object *bo = 752 container_of(kref, struct ttm_buffer_object, kref); 753 struct ttm_bo_device *bdev = bo->bdev; 754 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type]; 755 int release_active; 756 757 if (atomic_read(&bo->kref.refcount) > 0) { 758 lockmgr(&bdev->vm_lock, LK_RELEASE); 759 return; 760 } 761 if (likely(bo->vm_node != NULL)) { 762 RB_REMOVE(ttm_bo_device_buffer_objects, 763 &bdev->addr_space_rb, bo); 764 drm_mm_put_block(bo->vm_node); 765 bo->vm_node = NULL; 766 } 767 768 /* 769 * Should we clean up our implied list_kref? Because ttm_bo_release() 770 * can be called reentrantly due to races (this may not be true any 771 * more with the lock management changes in the deref), it is possible 772 * to get here twice, but there's only one list_kref ref to drop and 773 * in the other path 'bo' can be kfree()d by another thread the 774 * instant we release our lock. 775 */ 776 release_active = test_bit(TTM_BO_PRIV_FLAG_ACTIVE, &bo->priv_flags); 777 if (release_active) { 778 clear_bit(TTM_BO_PRIV_FLAG_ACTIVE, &bo->priv_flags); 779 lockmgr(&bdev->vm_lock, LK_RELEASE); 780 ttm_mem_io_lock(man, false); 781 ttm_mem_io_free_vm(bo); 782 ttm_mem_io_unlock(man); 783 ttm_bo_cleanup_refs_or_queue(bo); 784 kref_put(&bo->list_kref, ttm_bo_release_list); 785 } else { 786 lockmgr(&bdev->vm_lock, LK_RELEASE); 787 } 788 } 789 790 void ttm_bo_unref(struct ttm_buffer_object **p_bo) 791 { 792 struct ttm_buffer_object *bo = *p_bo; 793 struct ttm_bo_device *bdev = bo->bdev; 794 795 *p_bo = NULL; 796 lockmgr(&bdev->vm_lock, LK_EXCLUSIVE); 797 if (kref_put(&bo->kref, ttm_bo_release) == 0) 798 lockmgr(&bdev->vm_lock, LK_RELEASE); 799 } 800 EXPORT_SYMBOL(ttm_bo_unref); 801 802 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev) 803 { 804 return cancel_delayed_work_sync(&bdev->wq); 805 } 806 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue); 807 808 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched) 809 { 810 if (resched) 811 schedule_delayed_work(&bdev->wq, 812 ((hz / 100) < 1) ? 1 : hz / 100); 813 } 814 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue); 815 816 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible, 817 bool no_wait_gpu) 818 { 819 struct ttm_bo_device *bdev = bo->bdev; 820 struct ttm_mem_reg evict_mem; 821 struct ttm_placement placement; 822 int ret = 0; 823 824 lockmgr(&bdev->fence_lock, LK_EXCLUSIVE); 825 ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu); 826 lockmgr(&bdev->fence_lock, LK_RELEASE); 827 828 if (unlikely(ret != 0)) { 829 if (ret != -ERESTARTSYS) { 830 pr_err("Failed to expire sync object before buffer eviction\n"); 831 } 832 goto out; 833 } 834 835 BUG_ON(!ttm_bo_is_reserved(bo)); 836 837 evict_mem = bo->mem; 838 evict_mem.mm_node = NULL; 839 evict_mem.bus.io_reserved_vm = false; 840 evict_mem.bus.io_reserved_count = 0; 841 842 placement.fpfn = 0; 843 placement.lpfn = 0; 844 placement.num_placement = 0; 845 placement.num_busy_placement = 0; 846 bdev->driver->evict_flags(bo, &placement); 847 ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible, 848 no_wait_gpu); 849 if (ret) { 850 if (ret != -ERESTARTSYS) { 851 pr_err("Failed to find memory space for buffer 0x%p eviction\n", 852 bo); 853 ttm_bo_mem_space_debug(bo, &placement); 854 } 855 goto out; 856 } 857 858 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible, 859 no_wait_gpu); 860 if (ret) { 861 if (ret != -ERESTARTSYS) 862 pr_err("Buffer eviction failed\n"); 863 ttm_bo_mem_put(bo, &evict_mem); 864 goto out; 865 } 866 bo->evicted = true; 867 out: 868 return ret; 869 } 870 871 static int ttm_mem_evict_first(struct ttm_bo_device *bdev, 872 uint32_t mem_type, 873 bool interruptible, 874 bool no_wait_gpu) 875 { 876 struct ttm_bo_global *glob = bdev->glob; 877 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 878 struct ttm_buffer_object *bo; 879 int ret = -EBUSY, put_count; 880 881 lockmgr(&glob->lru_lock, LK_EXCLUSIVE); 882 list_for_each_entry(bo, &man->lru, lru) { 883 ret = ttm_bo_reserve_nolru(bo, false, true, false, 0); 884 if (!ret) 885 break; 886 } 887 888 if (ret) { 889 lockmgr(&glob->lru_lock, LK_RELEASE); 890 return ret; 891 } 892 893 kref_get(&bo->list_kref); 894 895 if (!list_empty(&bo->ddestroy)) { 896 ret = ttm_bo_cleanup_refs_and_unlock(bo, interruptible, 897 no_wait_gpu); 898 kref_put(&bo->list_kref, ttm_bo_release_list); 899 return ret; 900 } 901 902 put_count = ttm_bo_del_from_lru(bo); 903 lockmgr(&glob->lru_lock, LK_RELEASE); 904 905 BUG_ON(ret != 0); 906 907 ttm_bo_list_ref_sub(bo, put_count, true); 908 909 ret = ttm_bo_evict(bo, interruptible, no_wait_gpu); 910 ttm_bo_unreserve(bo); 911 912 kref_put(&bo->list_kref, ttm_bo_release_list); 913 return ret; 914 } 915 916 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem) 917 { 918 struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type]; 919 920 if (mem->mm_node) 921 (*man->func->put_node)(man, mem); 922 } 923 EXPORT_SYMBOL(ttm_bo_mem_put); 924 925 /** 926 * Repeatedly evict memory from the LRU for @mem_type until we create enough 927 * space, or we've evicted everything and there isn't enough space. 928 */ 929 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo, 930 uint32_t mem_type, 931 struct ttm_placement *placement, 932 struct ttm_mem_reg *mem, 933 bool interruptible, 934 bool no_wait_gpu) 935 { 936 struct ttm_bo_device *bdev = bo->bdev; 937 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 938 int ret; 939 940 do { 941 ret = (*man->func->get_node)(man, bo, placement, mem); 942 if (unlikely(ret != 0)) 943 return ret; 944 if (mem->mm_node) 945 break; 946 ret = ttm_mem_evict_first(bdev, mem_type, 947 interruptible, no_wait_gpu); 948 if (unlikely(ret != 0)) 949 return ret; 950 } while (1); 951 if (mem->mm_node == NULL) 952 return -ENOMEM; 953 mem->mem_type = mem_type; 954 return 0; 955 } 956 957 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man, 958 uint32_t cur_placement, 959 uint32_t proposed_placement) 960 { 961 uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING; 962 uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING; 963 964 /** 965 * Keep current caching if possible. 966 */ 967 968 if ((cur_placement & caching) != 0) 969 result |= (cur_placement & caching); 970 else if ((man->default_caching & caching) != 0) 971 result |= man->default_caching; 972 else if ((TTM_PL_FLAG_CACHED & caching) != 0) 973 result |= TTM_PL_FLAG_CACHED; 974 else if ((TTM_PL_FLAG_WC & caching) != 0) 975 result |= TTM_PL_FLAG_WC; 976 else if ((TTM_PL_FLAG_UNCACHED & caching) != 0) 977 result |= TTM_PL_FLAG_UNCACHED; 978 979 return result; 980 } 981 982 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man, 983 uint32_t mem_type, 984 uint32_t proposed_placement, 985 uint32_t *masked_placement) 986 { 987 uint32_t cur_flags = ttm_bo_type_flags(mem_type); 988 989 if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0) 990 return false; 991 992 if ((proposed_placement & man->available_caching) == 0) 993 return false; 994 995 cur_flags |= (proposed_placement & man->available_caching); 996 997 *masked_placement = cur_flags; 998 return true; 999 } 1000 1001 /** 1002 * Creates space for memory region @mem according to its type. 1003 * 1004 * This function first searches for free space in compatible memory types in 1005 * the priority order defined by the driver. If free space isn't found, then 1006 * ttm_bo_mem_force_space is attempted in priority order to evict and find 1007 * space. 1008 */ 1009 int ttm_bo_mem_space(struct ttm_buffer_object *bo, 1010 struct ttm_placement *placement, 1011 struct ttm_mem_reg *mem, 1012 bool interruptible, 1013 bool no_wait_gpu) 1014 { 1015 struct ttm_bo_device *bdev = bo->bdev; 1016 struct ttm_mem_type_manager *man; 1017 uint32_t mem_type = TTM_PL_SYSTEM; 1018 uint32_t cur_flags = 0; 1019 bool type_found = false; 1020 bool type_ok = false; 1021 bool has_erestartsys = false; 1022 int i, ret; 1023 1024 mem->mm_node = NULL; 1025 for (i = 0; i < placement->num_placement; ++i) { 1026 ret = ttm_mem_type_from_flags(placement->placement[i], 1027 &mem_type); 1028 if (ret) 1029 return ret; 1030 man = &bdev->man[mem_type]; 1031 1032 type_ok = ttm_bo_mt_compatible(man, 1033 mem_type, 1034 placement->placement[i], 1035 &cur_flags); 1036 1037 if (!type_ok) 1038 continue; 1039 1040 cur_flags = ttm_bo_select_caching(man, bo->mem.placement, 1041 cur_flags); 1042 /* 1043 * Use the access and other non-mapping-related flag bits from 1044 * the memory placement flags to the current flags 1045 */ 1046 ttm_flag_masked(&cur_flags, placement->placement[i], 1047 ~TTM_PL_MASK_MEMTYPE); 1048 1049 if (mem_type == TTM_PL_SYSTEM) 1050 break; 1051 1052 if (man->has_type && man->use_type) { 1053 type_found = true; 1054 ret = (*man->func->get_node)(man, bo, placement, mem); 1055 if (unlikely(ret)) 1056 return ret; 1057 } 1058 if (mem->mm_node) 1059 break; 1060 } 1061 1062 if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) { 1063 mem->mem_type = mem_type; 1064 mem->placement = cur_flags; 1065 return 0; 1066 } 1067 1068 if (!type_found) 1069 return -EINVAL; 1070 1071 for (i = 0; i < placement->num_busy_placement; ++i) { 1072 ret = ttm_mem_type_from_flags(placement->busy_placement[i], 1073 &mem_type); 1074 if (ret) 1075 return ret; 1076 man = &bdev->man[mem_type]; 1077 if (!man->has_type) 1078 continue; 1079 if (!ttm_bo_mt_compatible(man, 1080 mem_type, 1081 placement->busy_placement[i], 1082 &cur_flags)) 1083 continue; 1084 1085 cur_flags = ttm_bo_select_caching(man, bo->mem.placement, 1086 cur_flags); 1087 /* 1088 * Use the access and other non-mapping-related flag bits from 1089 * the memory placement flags to the current flags 1090 */ 1091 ttm_flag_masked(&cur_flags, placement->busy_placement[i], 1092 ~TTM_PL_MASK_MEMTYPE); 1093 1094 1095 if (mem_type == TTM_PL_SYSTEM) { 1096 mem->mem_type = mem_type; 1097 mem->placement = cur_flags; 1098 mem->mm_node = NULL; 1099 return 0; 1100 } 1101 1102 ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem, 1103 interruptible, no_wait_gpu); 1104 if (ret == 0 && mem->mm_node) { 1105 mem->placement = cur_flags; 1106 return 0; 1107 } 1108 if (ret == -ERESTARTSYS) 1109 has_erestartsys = true; 1110 } 1111 ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM; 1112 return ret; 1113 } 1114 EXPORT_SYMBOL(ttm_bo_mem_space); 1115 1116 static 1117 int ttm_bo_move_buffer(struct ttm_buffer_object *bo, 1118 struct ttm_placement *placement, 1119 bool interruptible, 1120 bool no_wait_gpu) 1121 { 1122 int ret = 0; 1123 struct ttm_mem_reg mem; 1124 struct ttm_bo_device *bdev = bo->bdev; 1125 1126 BUG_ON(!ttm_bo_is_reserved(bo)); 1127 1128 /* 1129 * FIXME: It's possible to pipeline buffer moves. 1130 * Have the driver move function wait for idle when necessary, 1131 * instead of doing it here. 1132 */ 1133 lockmgr(&bdev->fence_lock, LK_EXCLUSIVE); 1134 ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu); 1135 lockmgr(&bdev->fence_lock, LK_RELEASE); 1136 if (ret) 1137 return ret; 1138 mem.num_pages = bo->num_pages; 1139 mem.size = mem.num_pages << PAGE_SHIFT; 1140 mem.page_alignment = bo->mem.page_alignment; 1141 mem.bus.io_reserved_vm = false; 1142 mem.bus.io_reserved_count = 0; 1143 /* 1144 * Determine where to move the buffer. 1145 */ 1146 ret = ttm_bo_mem_space(bo, placement, &mem, 1147 interruptible, no_wait_gpu); 1148 if (ret) 1149 goto out_unlock; 1150 ret = ttm_bo_handle_move_mem(bo, &mem, false, 1151 interruptible, no_wait_gpu); 1152 out_unlock: 1153 if (ret && mem.mm_node) 1154 ttm_bo_mem_put(bo, &mem); 1155 return ret; 1156 } 1157 1158 static int ttm_bo_mem_compat(struct ttm_placement *placement, 1159 struct ttm_mem_reg *mem) 1160 { 1161 int i; 1162 1163 if (mem->mm_node && placement->lpfn != 0 && 1164 (mem->start < placement->fpfn || 1165 mem->start + mem->num_pages > placement->lpfn)) 1166 return -1; 1167 1168 for (i = 0; i < placement->num_placement; i++) { 1169 if ((placement->placement[i] & mem->placement & 1170 TTM_PL_MASK_CACHING) && 1171 (placement->placement[i] & mem->placement & 1172 TTM_PL_MASK_MEM)) 1173 return i; 1174 } 1175 return -1; 1176 } 1177 1178 int ttm_bo_validate(struct ttm_buffer_object *bo, 1179 struct ttm_placement *placement, 1180 bool interruptible, 1181 bool no_wait_gpu) 1182 { 1183 int ret; 1184 1185 BUG_ON(!ttm_bo_is_reserved(bo)); 1186 /* Check that range is valid */ 1187 if (placement->lpfn || placement->fpfn) 1188 if (placement->fpfn > placement->lpfn || 1189 (placement->lpfn - placement->fpfn) < bo->num_pages) 1190 return -EINVAL; 1191 /* 1192 * Check whether we need to move buffer. 1193 */ 1194 ret = ttm_bo_mem_compat(placement, &bo->mem); 1195 if (ret < 0) { 1196 ret = ttm_bo_move_buffer(bo, placement, interruptible, 1197 no_wait_gpu); 1198 if (ret) 1199 return ret; 1200 } else { 1201 /* 1202 * Use the access and other non-mapping-related flag bits from 1203 * the compatible memory placement flags to the active flags 1204 */ 1205 ttm_flag_masked(&bo->mem.placement, placement->placement[ret], 1206 ~TTM_PL_MASK_MEMTYPE); 1207 } 1208 /* 1209 * We might need to add a TTM. 1210 */ 1211 if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { 1212 ret = ttm_bo_add_ttm(bo, true); 1213 if (ret) 1214 return ret; 1215 } 1216 return 0; 1217 } 1218 EXPORT_SYMBOL(ttm_bo_validate); 1219 1220 int ttm_bo_check_placement(struct ttm_buffer_object *bo, 1221 struct ttm_placement *placement) 1222 { 1223 BUG_ON((placement->fpfn || placement->lpfn) && 1224 (bo->mem.num_pages > (placement->lpfn - placement->fpfn))); 1225 1226 return 0; 1227 } 1228 1229 int ttm_bo_init(struct ttm_bo_device *bdev, 1230 struct ttm_buffer_object *bo, 1231 unsigned long size, 1232 enum ttm_bo_type type, 1233 struct ttm_placement *placement, 1234 uint32_t page_alignment, 1235 bool interruptible, 1236 struct vm_object *persistent_swap_storage, 1237 size_t acc_size, 1238 struct sg_table *sg, 1239 void (*destroy) (struct ttm_buffer_object *)) 1240 { 1241 int ret = 0; 1242 unsigned long num_pages; 1243 struct ttm_mem_global *mem_glob = bdev->glob->mem_glob; 1244 1245 ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false); 1246 if (ret) { 1247 kprintf("[TTM] Out of kernel memory\n"); 1248 if (destroy) 1249 (*destroy)(bo); 1250 else 1251 kfree(bo, M_DRM); 1252 return -ENOMEM; 1253 } 1254 1255 num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1256 if (num_pages == 0) { 1257 kprintf("[TTM] Illegal buffer object size\n"); 1258 if (destroy) 1259 (*destroy)(bo); 1260 else 1261 kfree(bo, M_DRM); 1262 ttm_mem_global_free(mem_glob, acc_size); 1263 return -EINVAL; 1264 } 1265 bo->destroy = destroy; 1266 1267 kref_init(&bo->kref); 1268 kref_init(&bo->list_kref); 1269 atomic_set(&bo->cpu_writers, 0); 1270 atomic_set(&bo->reserved, 1); 1271 init_waitqueue_head(&bo->event_queue); 1272 INIT_LIST_HEAD(&bo->lru); 1273 INIT_LIST_HEAD(&bo->ddestroy); 1274 INIT_LIST_HEAD(&bo->swap); 1275 INIT_LIST_HEAD(&bo->io_reserve_lru); 1276 /*bzero(&bo->vm_rb, sizeof(bo->vm_rb));*/ 1277 bo->bdev = bdev; 1278 bo->glob = bdev->glob; 1279 bo->type = type; 1280 bo->num_pages = num_pages; 1281 bo->mem.size = num_pages << PAGE_SHIFT; 1282 bo->mem.mem_type = TTM_PL_SYSTEM; 1283 bo->mem.num_pages = bo->num_pages; 1284 bo->mem.mm_node = NULL; 1285 bo->mem.page_alignment = page_alignment; 1286 bo->mem.bus.io_reserved_vm = false; 1287 bo->mem.bus.io_reserved_count = 0; 1288 bo->priv_flags = 0; 1289 bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED); 1290 bo->seq_valid = false; 1291 bo->persistent_swap_storage = persistent_swap_storage; 1292 bo->acc_size = acc_size; 1293 bo->sg = sg; 1294 atomic_inc(&bo->glob->bo_count); 1295 1296 /* 1297 * Mirror ref from kref_init() for list_kref. 1298 */ 1299 set_bit(TTM_BO_PRIV_FLAG_ACTIVE, &bo->priv_flags); 1300 1301 ret = ttm_bo_check_placement(bo, placement); 1302 if (unlikely(ret != 0)) 1303 goto out_err; 1304 1305 /* 1306 * For ttm_bo_type_device buffers, allocate 1307 * address space from the device. 1308 */ 1309 if (bo->type == ttm_bo_type_device || 1310 bo->type == ttm_bo_type_sg) { 1311 ret = ttm_bo_setup_vm(bo); 1312 if (ret) 1313 goto out_err; 1314 } 1315 1316 ret = ttm_bo_validate(bo, placement, interruptible, false); 1317 if (ret) 1318 goto out_err; 1319 1320 ttm_bo_unreserve(bo); 1321 return 0; 1322 1323 out_err: 1324 ttm_bo_unreserve(bo); 1325 ttm_bo_unref(&bo); 1326 1327 return ret; 1328 } 1329 EXPORT_SYMBOL(ttm_bo_init); 1330 1331 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev, 1332 unsigned long bo_size, 1333 unsigned struct_size) 1334 { 1335 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT; 1336 size_t size = 0; 1337 1338 size += ttm_round_pot(struct_size); 1339 size += PAGE_ALIGN(npages * sizeof(void *)); 1340 size += ttm_round_pot(sizeof(struct ttm_tt)); 1341 return size; 1342 } 1343 EXPORT_SYMBOL(ttm_bo_acc_size); 1344 1345 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev, 1346 unsigned long bo_size, 1347 unsigned struct_size) 1348 { 1349 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT; 1350 size_t size = 0; 1351 1352 size += ttm_round_pot(struct_size); 1353 size += PAGE_ALIGN(npages * sizeof(void *)); 1354 size += PAGE_ALIGN(npages * sizeof(dma_addr_t)); 1355 size += ttm_round_pot(sizeof(struct ttm_dma_tt)); 1356 return size; 1357 } 1358 EXPORT_SYMBOL(ttm_bo_dma_acc_size); 1359 1360 int ttm_bo_create(struct ttm_bo_device *bdev, 1361 unsigned long size, 1362 enum ttm_bo_type type, 1363 struct ttm_placement *placement, 1364 uint32_t page_alignment, 1365 bool interruptible, 1366 struct vm_object *persistent_swap_storage, 1367 struct ttm_buffer_object **p_bo) 1368 { 1369 struct ttm_buffer_object *bo; 1370 size_t acc_size; 1371 int ret; 1372 1373 *p_bo = NULL; 1374 bo = kmalloc(sizeof(*bo), M_DRM, M_WAITOK | M_ZERO); 1375 if (unlikely(bo == NULL)) 1376 return -ENOMEM; 1377 1378 acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object)); 1379 ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment, 1380 interruptible, persistent_swap_storage, acc_size, 1381 NULL, NULL); 1382 if (likely(ret == 0)) 1383 *p_bo = bo; 1384 1385 return ret; 1386 } 1387 EXPORT_SYMBOL(ttm_bo_create); 1388 1389 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev, 1390 unsigned mem_type, bool allow_errors) 1391 { 1392 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 1393 struct ttm_bo_global *glob = bdev->glob; 1394 int ret; 1395 1396 /* 1397 * Can't use standard list traversal since we're unlocking. 1398 */ 1399 1400 lockmgr(&glob->lru_lock, LK_EXCLUSIVE); 1401 while (!list_empty(&man->lru)) { 1402 lockmgr(&glob->lru_lock, LK_RELEASE); 1403 ret = ttm_mem_evict_first(bdev, mem_type, false, false); 1404 if (ret) { 1405 if (allow_errors) { 1406 return ret; 1407 } else { 1408 kprintf("[TTM] Cleanup eviction failed\n"); 1409 } 1410 } 1411 lockmgr(&glob->lru_lock, LK_EXCLUSIVE); 1412 } 1413 lockmgr(&glob->lru_lock, LK_RELEASE); 1414 return 0; 1415 } 1416 1417 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type) 1418 { 1419 struct ttm_mem_type_manager *man; 1420 int ret = -EINVAL; 1421 1422 if (mem_type >= TTM_NUM_MEM_TYPES) { 1423 kprintf("[TTM] Illegal memory type %d\n", mem_type); 1424 return ret; 1425 } 1426 man = &bdev->man[mem_type]; 1427 1428 if (!man->has_type) { 1429 kprintf("[TTM] Trying to take down uninitialized memory manager type %u\n", 1430 mem_type); 1431 return ret; 1432 } 1433 1434 man->use_type = false; 1435 man->has_type = false; 1436 1437 ret = 0; 1438 if (mem_type > 0) { 1439 ttm_bo_force_list_clean(bdev, mem_type, false); 1440 1441 ret = (*man->func->takedown)(man); 1442 } 1443 1444 return ret; 1445 } 1446 EXPORT_SYMBOL(ttm_bo_clean_mm); 1447 1448 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type) 1449 { 1450 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 1451 1452 if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) { 1453 kprintf("[TTM] Illegal memory manager memory type %u\n", mem_type); 1454 return -EINVAL; 1455 } 1456 1457 if (!man->has_type) { 1458 kprintf("[TTM] Memory type %u has not been initialized\n", mem_type); 1459 return 0; 1460 } 1461 1462 return ttm_bo_force_list_clean(bdev, mem_type, true); 1463 } 1464 EXPORT_SYMBOL(ttm_bo_evict_mm); 1465 1466 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type, 1467 unsigned long p_size) 1468 { 1469 int ret = -EINVAL; 1470 struct ttm_mem_type_manager *man; 1471 1472 BUG_ON(type >= TTM_NUM_MEM_TYPES); 1473 man = &bdev->man[type]; 1474 BUG_ON(man->has_type); 1475 man->io_reserve_fastpath = true; 1476 man->use_io_reserve_lru = false; 1477 lockinit(&man->io_reserve_mutex, "ttmman", 0, LK_CANRECURSE); 1478 INIT_LIST_HEAD(&man->io_reserve_lru); 1479 1480 ret = bdev->driver->init_mem_type(bdev, type, man); 1481 if (ret) 1482 return ret; 1483 man->bdev = bdev; 1484 1485 ret = 0; 1486 if (type != TTM_PL_SYSTEM) { 1487 ret = (*man->func->init)(man, p_size); 1488 if (ret) 1489 return ret; 1490 } 1491 man->has_type = true; 1492 man->use_type = true; 1493 man->size = p_size; 1494 1495 INIT_LIST_HEAD(&man->lru); 1496 1497 return 0; 1498 } 1499 EXPORT_SYMBOL(ttm_bo_init_mm); 1500 1501 static void ttm_bo_global_kobj_release(struct ttm_bo_global *glob) 1502 { 1503 ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink); 1504 vm_page_free_contig(glob->dummy_read_page, PAGE_SIZE); 1505 glob->dummy_read_page = NULL; 1506 /* 1507 vm_page_free(glob->dummy_read_page); 1508 */ 1509 } 1510 1511 void ttm_bo_global_release(struct drm_global_reference *ref) 1512 { 1513 struct ttm_bo_global *glob = ref->object; 1514 1515 if (refcount_release(&glob->kobj_ref)) 1516 ttm_bo_global_kobj_release(glob); 1517 } 1518 EXPORT_SYMBOL(ttm_bo_global_release); 1519 1520 int ttm_bo_global_init(struct drm_global_reference *ref) 1521 { 1522 struct ttm_bo_global_ref *bo_ref = 1523 container_of(ref, struct ttm_bo_global_ref, ref); 1524 struct ttm_bo_global *glob = ref->object; 1525 int ret; 1526 1527 lockinit(&glob->device_list_mutex, "ttmdlm", 0, LK_CANRECURSE); 1528 lockinit(&glob->lru_lock, "ttmlru", 0, LK_CANRECURSE); 1529 glob->mem_glob = bo_ref->mem_glob; 1530 glob->dummy_read_page = vm_page_alloc_contig( 1531 0, VM_MAX_ADDRESS, PAGE_SIZE, 0, 1*PAGE_SIZE, VM_MEMATTR_UNCACHEABLE); 1532 1533 if (unlikely(glob->dummy_read_page == NULL)) { 1534 ret = -ENOMEM; 1535 goto out_no_drp; 1536 } 1537 1538 INIT_LIST_HEAD(&glob->swap_lru); 1539 INIT_LIST_HEAD(&glob->device_list); 1540 1541 ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout); 1542 ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink); 1543 if (unlikely(ret != 0)) { 1544 kprintf("[TTM] Could not register buffer object swapout\n"); 1545 goto out_no_shrink; 1546 } 1547 1548 atomic_set(&glob->bo_count, 0); 1549 1550 refcount_init(&glob->kobj_ref, 1); 1551 return (0); 1552 1553 out_no_shrink: 1554 vm_page_free_contig(glob->dummy_read_page, PAGE_SIZE); 1555 glob->dummy_read_page = NULL; 1556 /* 1557 vm_page_free(glob->dummy_read_page); 1558 */ 1559 out_no_drp: 1560 kfree(glob, M_DRM); 1561 return ret; 1562 } 1563 EXPORT_SYMBOL(ttm_bo_global_init); 1564 1565 1566 int ttm_bo_device_release(struct ttm_bo_device *bdev) 1567 { 1568 int ret = 0; 1569 unsigned i = TTM_NUM_MEM_TYPES; 1570 struct ttm_mem_type_manager *man; 1571 struct ttm_bo_global *glob = bdev->glob; 1572 1573 while (i--) { 1574 man = &bdev->man[i]; 1575 if (man->has_type) { 1576 man->use_type = false; 1577 if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) { 1578 ret = -EBUSY; 1579 kprintf("[TTM] DRM memory manager type %d is not clean\n", 1580 i); 1581 } 1582 man->has_type = false; 1583 } 1584 } 1585 1586 lockmgr(&glob->device_list_mutex, LK_EXCLUSIVE); 1587 list_del(&bdev->device_list); 1588 lockmgr(&glob->device_list_mutex, LK_RELEASE); 1589 1590 cancel_delayed_work_sync(&bdev->wq); 1591 1592 while (ttm_bo_delayed_delete(bdev, true)) 1593 ; 1594 1595 lockmgr(&glob->lru_lock, LK_EXCLUSIVE); 1596 if (list_empty(&bdev->ddestroy)) 1597 TTM_DEBUG("Delayed destroy list was clean\n"); 1598 1599 if (list_empty(&bdev->man[0].lru)) 1600 TTM_DEBUG("Swap list was clean\n"); 1601 lockmgr(&glob->lru_lock, LK_RELEASE); 1602 1603 BUG_ON(!drm_mm_clean(&bdev->addr_space_mm)); 1604 lockmgr(&bdev->vm_lock, LK_EXCLUSIVE); 1605 drm_mm_takedown(&bdev->addr_space_mm); 1606 lockmgr(&bdev->vm_lock, LK_RELEASE); 1607 1608 return ret; 1609 } 1610 EXPORT_SYMBOL(ttm_bo_device_release); 1611 1612 int ttm_bo_device_init(struct ttm_bo_device *bdev, 1613 struct ttm_bo_global *glob, 1614 struct ttm_bo_driver *driver, 1615 uint64_t file_page_offset, 1616 bool need_dma32) 1617 { 1618 int ret = -EINVAL; 1619 1620 lockinit(&bdev->vm_lock, "ttmvml", 0, LK_CANRECURSE); 1621 bdev->driver = driver; 1622 1623 memset(bdev->man, 0, sizeof(bdev->man)); 1624 1625 /* 1626 * Initialize the system memory buffer type. 1627 * Other types need to be driver / IOCTL initialized. 1628 */ 1629 ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0); 1630 if (unlikely(ret != 0)) 1631 goto out_no_sys; 1632 1633 RB_INIT(&bdev->addr_space_rb); 1634 ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000); 1635 if (unlikely(ret != 0)) 1636 goto out_no_addr_mm; 1637 1638 INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue); 1639 INIT_LIST_HEAD(&bdev->ddestroy); 1640 bdev->dev_mapping = NULL; 1641 bdev->glob = glob; 1642 bdev->need_dma32 = need_dma32; 1643 bdev->val_seq = 0; 1644 lockinit(&bdev->fence_lock, "ttmfence", 0, LK_CANRECURSE); 1645 lockmgr(&glob->device_list_mutex, LK_EXCLUSIVE); 1646 list_add_tail(&bdev->device_list, &glob->device_list); 1647 lockmgr(&glob->device_list_mutex, LK_RELEASE); 1648 1649 return 0; 1650 out_no_addr_mm: 1651 ttm_bo_clean_mm(bdev, 0); 1652 out_no_sys: 1653 return ret; 1654 } 1655 EXPORT_SYMBOL(ttm_bo_device_init); 1656 1657 /* 1658 * buffer object vm functions. 1659 */ 1660 1661 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 1662 { 1663 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; 1664 1665 if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) { 1666 if (mem->mem_type == TTM_PL_SYSTEM) 1667 return false; 1668 1669 if (man->flags & TTM_MEMTYPE_FLAG_CMA) 1670 return false; 1671 1672 if (mem->placement & TTM_PL_FLAG_CACHED) 1673 return false; 1674 } 1675 return true; 1676 } 1677 1678 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo) 1679 { 1680 1681 ttm_bo_release_mmap(bo); 1682 ttm_mem_io_free_vm(bo); 1683 } 1684 1685 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo) 1686 { 1687 struct ttm_bo_device *bdev = bo->bdev; 1688 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type]; 1689 1690 ttm_mem_io_lock(man, false); 1691 ttm_bo_unmap_virtual_locked(bo); 1692 ttm_mem_io_unlock(man); 1693 } 1694 1695 1696 EXPORT_SYMBOL(ttm_bo_unmap_virtual); 1697 1698 static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo) 1699 { 1700 struct ttm_bo_device *bdev = bo->bdev; 1701 1702 /* The caller acquired bdev->vm_lock. */ 1703 RB_INSERT(ttm_bo_device_buffer_objects, &bdev->addr_space_rb, bo); 1704 } 1705 1706 /** 1707 * ttm_bo_setup_vm: 1708 * 1709 * @bo: the buffer to allocate address space for 1710 * 1711 * Allocate address space in the drm device so that applications 1712 * can mmap the buffer and access the contents. This only 1713 * applies to ttm_bo_type_device objects as others are not 1714 * placed in the drm device address space. 1715 */ 1716 1717 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo) 1718 { 1719 struct ttm_bo_device *bdev = bo->bdev; 1720 int ret; 1721 1722 retry_pre_get: 1723 ret = drm_mm_pre_get(&bdev->addr_space_mm); 1724 if (unlikely(ret != 0)) 1725 return ret; 1726 1727 lockmgr(&bdev->vm_lock, LK_EXCLUSIVE); 1728 bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm, 1729 bo->mem.num_pages, 0, 0); 1730 1731 if (unlikely(bo->vm_node == NULL)) { 1732 ret = -ENOMEM; 1733 goto out_unlock; 1734 } 1735 1736 bo->vm_node = drm_mm_get_block_atomic(bo->vm_node, 1737 bo->mem.num_pages, 0); 1738 1739 if (unlikely(bo->vm_node == NULL)) { 1740 lockmgr(&bdev->vm_lock, LK_RELEASE); 1741 goto retry_pre_get; 1742 } 1743 1744 ttm_bo_vm_insert_rb(bo); 1745 lockmgr(&bdev->vm_lock, LK_RELEASE); 1746 bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT; 1747 1748 return 0; 1749 out_unlock: 1750 lockmgr(&bdev->vm_lock, LK_RELEASE); 1751 return ret; 1752 } 1753 1754 int ttm_bo_wait(struct ttm_buffer_object *bo, 1755 bool lazy, bool interruptible, bool no_wait) 1756 { 1757 struct ttm_bo_driver *driver = bo->bdev->driver; 1758 struct ttm_bo_device *bdev = bo->bdev; 1759 void *sync_obj; 1760 int ret = 0; 1761 1762 if (likely(bo->sync_obj == NULL)) 1763 return 0; 1764 1765 while (bo->sync_obj) { 1766 1767 if (driver->sync_obj_signaled(bo->sync_obj)) { 1768 void *tmp_obj = bo->sync_obj; 1769 bo->sync_obj = NULL; 1770 clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags); 1771 lockmgr(&bdev->fence_lock, LK_RELEASE); 1772 driver->sync_obj_unref(&tmp_obj); 1773 lockmgr(&bdev->fence_lock, LK_EXCLUSIVE); 1774 continue; 1775 } 1776 1777 if (no_wait) 1778 return -EBUSY; 1779 1780 sync_obj = driver->sync_obj_ref(bo->sync_obj); 1781 lockmgr(&bdev->fence_lock, LK_RELEASE); 1782 ret = driver->sync_obj_wait(sync_obj, 1783 lazy, interruptible); 1784 if (unlikely(ret != 0)) { 1785 driver->sync_obj_unref(&sync_obj); 1786 lockmgr(&bdev->fence_lock, LK_EXCLUSIVE); 1787 return ret; 1788 } 1789 lockmgr(&bdev->fence_lock, LK_EXCLUSIVE); 1790 if (likely(bo->sync_obj == sync_obj)) { 1791 void *tmp_obj = bo->sync_obj; 1792 bo->sync_obj = NULL; 1793 clear_bit(TTM_BO_PRIV_FLAG_MOVING, 1794 &bo->priv_flags); 1795 lockmgr(&bdev->fence_lock, LK_RELEASE); 1796 driver->sync_obj_unref(&sync_obj); 1797 driver->sync_obj_unref(&tmp_obj); 1798 lockmgr(&bdev->fence_lock, LK_EXCLUSIVE); 1799 } else { 1800 lockmgr(&bdev->fence_lock, LK_RELEASE); 1801 driver->sync_obj_unref(&sync_obj); 1802 lockmgr(&bdev->fence_lock, LK_EXCLUSIVE); 1803 } 1804 } 1805 return 0; 1806 } 1807 EXPORT_SYMBOL(ttm_bo_wait); 1808 1809 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait) 1810 { 1811 struct ttm_bo_device *bdev = bo->bdev; 1812 int ret = 0; 1813 1814 /* 1815 * Using ttm_bo_reserve makes sure the lru lists are updated. 1816 */ 1817 1818 ret = ttm_bo_reserve(bo, true, no_wait, false, 0); 1819 if (unlikely(ret != 0)) 1820 return ret; 1821 lockmgr(&bdev->fence_lock, LK_EXCLUSIVE); 1822 ret = ttm_bo_wait(bo, false, true, no_wait); 1823 lockmgr(&bdev->fence_lock, LK_RELEASE); 1824 if (likely(ret == 0)) 1825 atomic_inc(&bo->cpu_writers); 1826 ttm_bo_unreserve(bo); 1827 return ret; 1828 } 1829 EXPORT_SYMBOL(ttm_bo_synccpu_write_grab); 1830 1831 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo) 1832 { 1833 atomic_dec(&bo->cpu_writers); 1834 } 1835 EXPORT_SYMBOL(ttm_bo_synccpu_write_release); 1836 1837 /** 1838 * A buffer object shrink method that tries to swap out the first 1839 * buffer object on the bo_global::swap_lru list. 1840 */ 1841 1842 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink) 1843 { 1844 struct ttm_bo_global *glob = 1845 container_of(shrink, struct ttm_bo_global, shrink); 1846 struct ttm_buffer_object *bo; 1847 int ret = -EBUSY; 1848 int put_count; 1849 uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM); 1850 1851 lockmgr(&glob->lru_lock, LK_EXCLUSIVE); 1852 list_for_each_entry(bo, &glob->swap_lru, swap) { 1853 ret = ttm_bo_reserve_nolru(bo, false, true, false, 0); 1854 if (!ret) 1855 break; 1856 } 1857 1858 if (ret) { 1859 lockmgr(&glob->lru_lock, LK_RELEASE); 1860 return ret; 1861 } 1862 1863 kref_get(&bo->list_kref); 1864 1865 if (!list_empty(&bo->ddestroy)) { 1866 ret = ttm_bo_cleanup_refs_and_unlock(bo, false, false); 1867 kref_put(&bo->list_kref, ttm_bo_release_list); 1868 return ret; 1869 } 1870 1871 put_count = ttm_bo_del_from_lru(bo); 1872 lockmgr(&glob->lru_lock, LK_RELEASE); 1873 1874 ttm_bo_list_ref_sub(bo, put_count, true); 1875 1876 /** 1877 * Wait for GPU, then move to system cached. 1878 */ 1879 1880 lockmgr(&bo->bdev->fence_lock, LK_EXCLUSIVE); 1881 ret = ttm_bo_wait(bo, false, false, false); 1882 lockmgr(&bo->bdev->fence_lock, LK_RELEASE); 1883 1884 if (unlikely(ret != 0)) 1885 goto out; 1886 1887 if ((bo->mem.placement & swap_placement) != swap_placement) { 1888 struct ttm_mem_reg evict_mem; 1889 1890 evict_mem = bo->mem; 1891 evict_mem.mm_node = NULL; 1892 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED; 1893 evict_mem.mem_type = TTM_PL_SYSTEM; 1894 1895 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, 1896 false, false); 1897 if (unlikely(ret != 0)) 1898 goto out; 1899 } 1900 1901 ttm_bo_unmap_virtual(bo); 1902 1903 /** 1904 * Swap out. Buffer will be swapped in again as soon as 1905 * anyone tries to access a ttm page. 1906 */ 1907 1908 if (bo->bdev->driver->swap_notify) 1909 bo->bdev->driver->swap_notify(bo); 1910 1911 ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage); 1912 out: 1913 1914 /** 1915 * 1916 * Unreserve without putting on LRU to avoid swapping out an 1917 * already swapped buffer. 1918 */ 1919 1920 atomic_set(&bo->reserved, 0); 1921 wake_up_all(&bo->event_queue); 1922 kref_put(&bo->list_kref, ttm_bo_release_list); 1923 return ret; 1924 } 1925 1926 void ttm_bo_swapout_all(struct ttm_bo_device *bdev) 1927 { 1928 while (ttm_bo_swapout(&bdev->glob->shrink) == 0) 1929 ; 1930 } 1931 EXPORT_SYMBOL(ttm_bo_swapout_all); 1932