1 /* 2 * Copyright © 2012-2014 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eugeni Dodonov <eugeni.dodonov@intel.com> 25 * Daniel Vetter <daniel.vetter@ffwll.ch> 26 * 27 */ 28 29 #include "i915_drv.h" 30 #include "intel_drv.h" 31 32 /** 33 * DOC: runtime pm 34 * 35 * The i915 driver supports dynamic enabling and disabling of entire hardware 36 * blocks at runtime. This is especially important on the display side where 37 * software is supposed to control many power gates manually on recent hardware, 38 * since on the GT side a lot of the power management is done by the hardware. 39 * But even there some manual control at the device level is required. 40 * 41 * Since i915 supports a diverse set of platforms with a unified codebase and 42 * hardware engineers just love to shuffle functionality around between power 43 * domains there's a sizeable amount of indirection required. This file provides 44 * generic functions to the driver for grabbing and releasing references for 45 * abstract power domains. It then maps those to the actual power wells 46 * present for a given platform. 47 */ 48 49 #define GEN9_ENABLE_DC5(dev) 0 50 #define SKL_ENABLE_DC6(dev) IS_SKYLAKE(dev) 51 52 #define for_each_power_well(i, power_well, domain_mask, power_domains) \ 53 for (i = 0; \ 54 i < (power_domains)->power_well_count && \ 55 ((power_well) = &(power_domains)->power_wells[i]); \ 56 i++) \ 57 if ((power_well)->domains & (domain_mask)) 58 59 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \ 60 for (i = (power_domains)->power_well_count - 1; \ 61 i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\ 62 i--) \ 63 if ((power_well)->domains & (domain_mask)) 64 65 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv, 66 int power_well_id); 67 68 static void intel_power_well_enable(struct drm_i915_private *dev_priv, 69 struct i915_power_well *power_well) 70 { 71 DRM_DEBUG_KMS("enabling %s\n", power_well->name); 72 power_well->ops->enable(dev_priv, power_well); 73 power_well->hw_enabled = true; 74 } 75 76 static void intel_power_well_disable(struct drm_i915_private *dev_priv, 77 struct i915_power_well *power_well) 78 { 79 DRM_DEBUG_KMS("disabling %s\n", power_well->name); 80 power_well->hw_enabled = false; 81 power_well->ops->disable(dev_priv, power_well); 82 } 83 84 /* 85 * We should only use the power well if we explicitly asked the hardware to 86 * enable it, so check if it's enabled and also check if we've requested it to 87 * be enabled. 88 */ 89 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv, 90 struct i915_power_well *power_well) 91 { 92 return I915_READ(HSW_PWR_WELL_DRIVER) == 93 (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED); 94 } 95 96 /** 97 * __intel_display_power_is_enabled - unlocked check for a power domain 98 * @dev_priv: i915 device instance 99 * @domain: power domain to check 100 * 101 * This is the unlocked version of intel_display_power_is_enabled() and should 102 * only be used from error capture and recovery code where deadlocks are 103 * possible. 104 * 105 * Returns: 106 * True when the power domain is enabled, false otherwise. 107 */ 108 bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv, 109 enum intel_display_power_domain domain) 110 { 111 struct i915_power_domains *power_domains; 112 struct i915_power_well *power_well; 113 bool is_enabled; 114 int i; 115 116 if (dev_priv->pm.suspended) 117 return false; 118 119 power_domains = &dev_priv->power_domains; 120 121 is_enabled = true; 122 123 for_each_power_well_rev(i, power_well, BIT(domain), power_domains) { 124 if (power_well->always_on) 125 continue; 126 127 if (!power_well->hw_enabled) { 128 is_enabled = false; 129 break; 130 } 131 } 132 133 return is_enabled; 134 } 135 136 /** 137 * intel_display_power_is_enabled - check for a power domain 138 * @dev_priv: i915 device instance 139 * @domain: power domain to check 140 * 141 * This function can be used to check the hw power domain state. It is mostly 142 * used in hardware state readout functions. Everywhere else code should rely 143 * upon explicit power domain reference counting to ensure that the hardware 144 * block is powered up before accessing it. 145 * 146 * Callers must hold the relevant modesetting locks to ensure that concurrent 147 * threads can't disable the power well while the caller tries to read a few 148 * registers. 149 * 150 * Returns: 151 * True when the power domain is enabled, false otherwise. 152 */ 153 bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv, 154 enum intel_display_power_domain domain) 155 { 156 struct i915_power_domains *power_domains; 157 bool ret; 158 159 power_domains = &dev_priv->power_domains; 160 161 mutex_lock(&power_domains->lock); 162 ret = __intel_display_power_is_enabled(dev_priv, domain); 163 mutex_unlock(&power_domains->lock); 164 165 return ret; 166 } 167 168 /** 169 * intel_display_set_init_power - set the initial power domain state 170 * @dev_priv: i915 device instance 171 * @enable: whether to enable or disable the initial power domain state 172 * 173 * For simplicity our driver load/unload and system suspend/resume code assumes 174 * that all power domains are always enabled. This functions controls the state 175 * of this little hack. While the initial power domain state is enabled runtime 176 * pm is effectively disabled. 177 */ 178 void intel_display_set_init_power(struct drm_i915_private *dev_priv, 179 bool enable) 180 { 181 if (dev_priv->power_domains.init_power_on == enable) 182 return; 183 184 if (enable) 185 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT); 186 else 187 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT); 188 189 dev_priv->power_domains.init_power_on = enable; 190 } 191 192 /* 193 * Starting with Haswell, we have a "Power Down Well" that can be turned off 194 * when not needed anymore. We have 4 registers that can request the power well 195 * to be enabled, and it will only be disabled if none of the registers is 196 * requesting it to be enabled. 197 */ 198 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv) 199 { 200 struct drm_device *dev = dev_priv->dev; 201 202 /* 203 * After we re-enable the power well, if we touch VGA register 0x3d5 204 * we'll get unclaimed register interrupts. This stops after we write 205 * anything to the VGA MSR register. The vgacon module uses this 206 * register all the time, so if we unbind our driver and, as a 207 * consequence, bind vgacon, we'll get stuck in an infinite loop at 208 * console_unlock(). So make here we touch the VGA MSR register, making 209 * sure vgacon can keep working normally without triggering interrupts 210 * and error messages. 211 */ 212 #if 0 213 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO); 214 outb(inb(VGA_MSR_READ), VGA_MSR_WRITE); 215 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO); 216 #endif 217 218 if (IS_BROADWELL(dev)) 219 gen8_irq_power_well_post_enable(dev_priv, 220 1 << PIPE_C | 1 << PIPE_B); 221 } 222 223 static void skl_power_well_post_enable(struct drm_i915_private *dev_priv, 224 struct i915_power_well *power_well) 225 { 226 struct drm_device *dev = dev_priv->dev; 227 228 /* 229 * After we re-enable the power well, if we touch VGA register 0x3d5 230 * we'll get unclaimed register interrupts. This stops after we write 231 * anything to the VGA MSR register. The vgacon module uses this 232 * register all the time, so if we unbind our driver and, as a 233 * consequence, bind vgacon, we'll get stuck in an infinite loop at 234 * console_unlock(). So make here we touch the VGA MSR register, making 235 * sure vgacon can keep working normally without triggering interrupts 236 * and error messages. 237 */ 238 if (power_well->data == SKL_DISP_PW_2) { 239 #if 0 240 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO); 241 outb(inb(VGA_MSR_READ), VGA_MSR_WRITE); 242 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO); 243 #endif 244 245 gen8_irq_power_well_post_enable(dev_priv, 246 1 << PIPE_C | 1 << PIPE_B); 247 } 248 249 if (power_well->data == SKL_DISP_PW_1) { 250 if (!dev_priv->power_domains.initializing) 251 intel_prepare_ddi(dev); 252 gen8_irq_power_well_post_enable(dev_priv, 1 << PIPE_A); 253 } 254 } 255 256 static void hsw_set_power_well(struct drm_i915_private *dev_priv, 257 struct i915_power_well *power_well, bool enable) 258 { 259 bool is_enabled, enable_requested; 260 uint32_t tmp; 261 262 tmp = I915_READ(HSW_PWR_WELL_DRIVER); 263 is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED; 264 enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST; 265 266 if (enable) { 267 if (!enable_requested) 268 I915_WRITE(HSW_PWR_WELL_DRIVER, 269 HSW_PWR_WELL_ENABLE_REQUEST); 270 271 if (!is_enabled) { 272 DRM_DEBUG_KMS("Enabling power well\n"); 273 if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) & 274 HSW_PWR_WELL_STATE_ENABLED), 20)) 275 DRM_ERROR("Timeout enabling power well\n"); 276 hsw_power_well_post_enable(dev_priv); 277 } 278 279 } else { 280 if (enable_requested) { 281 I915_WRITE(HSW_PWR_WELL_DRIVER, 0); 282 POSTING_READ(HSW_PWR_WELL_DRIVER); 283 DRM_DEBUG_KMS("Requesting to disable the power well\n"); 284 } 285 } 286 } 287 288 #define SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \ 289 BIT(POWER_DOMAIN_TRANSCODER_A) | \ 290 BIT(POWER_DOMAIN_PIPE_B) | \ 291 BIT(POWER_DOMAIN_TRANSCODER_B) | \ 292 BIT(POWER_DOMAIN_PIPE_C) | \ 293 BIT(POWER_DOMAIN_TRANSCODER_C) | \ 294 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \ 295 BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \ 296 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \ 297 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \ 298 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \ 299 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \ 300 BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \ 301 BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \ 302 BIT(POWER_DOMAIN_PORT_DDI_E_2_LANES) | \ 303 BIT(POWER_DOMAIN_AUX_B) | \ 304 BIT(POWER_DOMAIN_AUX_C) | \ 305 BIT(POWER_DOMAIN_AUX_D) | \ 306 BIT(POWER_DOMAIN_AUDIO) | \ 307 BIT(POWER_DOMAIN_VGA) | \ 308 BIT(POWER_DOMAIN_INIT)) 309 #define SKL_DISPLAY_POWERWELL_1_POWER_DOMAINS ( \ 310 SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS | \ 311 BIT(POWER_DOMAIN_PLLS) | \ 312 BIT(POWER_DOMAIN_PIPE_A) | \ 313 BIT(POWER_DOMAIN_TRANSCODER_EDP) | \ 314 BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \ 315 BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) | \ 316 BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) | \ 317 BIT(POWER_DOMAIN_AUX_A) | \ 318 BIT(POWER_DOMAIN_INIT)) 319 #define SKL_DISPLAY_DDI_A_E_POWER_DOMAINS ( \ 320 BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) | \ 321 BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) | \ 322 BIT(POWER_DOMAIN_PORT_DDI_E_2_LANES) | \ 323 BIT(POWER_DOMAIN_INIT)) 324 #define SKL_DISPLAY_DDI_B_POWER_DOMAINS ( \ 325 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \ 326 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \ 327 BIT(POWER_DOMAIN_INIT)) 328 #define SKL_DISPLAY_DDI_C_POWER_DOMAINS ( \ 329 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \ 330 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \ 331 BIT(POWER_DOMAIN_INIT)) 332 #define SKL_DISPLAY_DDI_D_POWER_DOMAINS ( \ 333 BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \ 334 BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \ 335 BIT(POWER_DOMAIN_INIT)) 336 #define SKL_DISPLAY_MISC_IO_POWER_DOMAINS ( \ 337 SKL_DISPLAY_POWERWELL_1_POWER_DOMAINS | \ 338 BIT(POWER_DOMAIN_PLLS) | \ 339 BIT(POWER_DOMAIN_INIT)) 340 #define SKL_DISPLAY_ALWAYS_ON_POWER_DOMAINS ( \ 341 (POWER_DOMAIN_MASK & ~(SKL_DISPLAY_POWERWELL_1_POWER_DOMAINS | \ 342 SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS | \ 343 SKL_DISPLAY_DDI_A_E_POWER_DOMAINS | \ 344 SKL_DISPLAY_DDI_B_POWER_DOMAINS | \ 345 SKL_DISPLAY_DDI_C_POWER_DOMAINS | \ 346 SKL_DISPLAY_DDI_D_POWER_DOMAINS | \ 347 SKL_DISPLAY_MISC_IO_POWER_DOMAINS)) | \ 348 BIT(POWER_DOMAIN_INIT)) 349 350 #define BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \ 351 BIT(POWER_DOMAIN_TRANSCODER_A) | \ 352 BIT(POWER_DOMAIN_PIPE_B) | \ 353 BIT(POWER_DOMAIN_TRANSCODER_B) | \ 354 BIT(POWER_DOMAIN_PIPE_C) | \ 355 BIT(POWER_DOMAIN_TRANSCODER_C) | \ 356 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \ 357 BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \ 358 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \ 359 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \ 360 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \ 361 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \ 362 BIT(POWER_DOMAIN_AUX_B) | \ 363 BIT(POWER_DOMAIN_AUX_C) | \ 364 BIT(POWER_DOMAIN_AUDIO) | \ 365 BIT(POWER_DOMAIN_VGA) | \ 366 BIT(POWER_DOMAIN_INIT)) 367 #define BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS ( \ 368 BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS | \ 369 BIT(POWER_DOMAIN_PIPE_A) | \ 370 BIT(POWER_DOMAIN_TRANSCODER_EDP) | \ 371 BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \ 372 BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) | \ 373 BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) | \ 374 BIT(POWER_DOMAIN_AUX_A) | \ 375 BIT(POWER_DOMAIN_PLLS) | \ 376 BIT(POWER_DOMAIN_INIT)) 377 #define BXT_DISPLAY_ALWAYS_ON_POWER_DOMAINS ( \ 378 (POWER_DOMAIN_MASK & ~(BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS | \ 379 BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS)) | \ 380 BIT(POWER_DOMAIN_INIT)) 381 382 static void assert_can_enable_dc9(struct drm_i915_private *dev_priv) 383 { 384 struct drm_device *dev = dev_priv->dev; 385 386 WARN(!IS_BROXTON(dev), "Platform doesn't support DC9.\n"); 387 WARN((I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9), 388 "DC9 already programmed to be enabled.\n"); 389 WARN(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5, 390 "DC5 still not disabled to enable DC9.\n"); 391 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on.\n"); 392 WARN(intel_irqs_enabled(dev_priv), "Interrupts not disabled yet.\n"); 393 394 /* 395 * TODO: check for the following to verify the conditions to enter DC9 396 * state are satisfied: 397 * 1] Check relevant display engine registers to verify if mode set 398 * disable sequence was followed. 399 * 2] Check if display uninitialize sequence is initialized. 400 */ 401 } 402 403 static void assert_can_disable_dc9(struct drm_i915_private *dev_priv) 404 { 405 WARN(intel_irqs_enabled(dev_priv), "Interrupts not disabled yet.\n"); 406 WARN(!(I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9), 407 "DC9 already programmed to be disabled.\n"); 408 WARN(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5, 409 "DC5 still not disabled.\n"); 410 411 /* 412 * TODO: check for the following to verify DC9 state was indeed 413 * entered before programming to disable it: 414 * 1] Check relevant display engine registers to verify if mode 415 * set disable sequence was followed. 416 * 2] Check if display uninitialize sequence is initialized. 417 */ 418 } 419 420 void bxt_enable_dc9(struct drm_i915_private *dev_priv) 421 { 422 uint32_t val; 423 424 assert_can_enable_dc9(dev_priv); 425 426 DRM_DEBUG_KMS("Enabling DC9\n"); 427 428 val = I915_READ(DC_STATE_EN); 429 val |= DC_STATE_EN_DC9; 430 I915_WRITE(DC_STATE_EN, val); 431 POSTING_READ(DC_STATE_EN); 432 } 433 434 void bxt_disable_dc9(struct drm_i915_private *dev_priv) 435 { 436 uint32_t val; 437 438 assert_can_disable_dc9(dev_priv); 439 440 DRM_DEBUG_KMS("Disabling DC9\n"); 441 442 val = I915_READ(DC_STATE_EN); 443 val &= ~DC_STATE_EN_DC9; 444 I915_WRITE(DC_STATE_EN, val); 445 POSTING_READ(DC_STATE_EN); 446 } 447 448 static void gen9_set_dc_state_debugmask_memory_up( 449 struct drm_i915_private *dev_priv) 450 { 451 uint32_t val; 452 453 /* The below bit doesn't need to be cleared ever afterwards */ 454 val = I915_READ(DC_STATE_DEBUG); 455 if (!(val & DC_STATE_DEBUG_MASK_MEMORY_UP)) { 456 val |= DC_STATE_DEBUG_MASK_MEMORY_UP; 457 I915_WRITE(DC_STATE_DEBUG, val); 458 POSTING_READ(DC_STATE_DEBUG); 459 } 460 } 461 462 static void assert_can_enable_dc5(struct drm_i915_private *dev_priv) 463 { 464 struct drm_device *dev = dev_priv->dev; 465 bool pg2_enabled = intel_display_power_well_is_enabled(dev_priv, 466 SKL_DISP_PW_2); 467 468 WARN(!IS_SKYLAKE(dev), "Platform doesn't support DC5.\n"); 469 WARN(!HAS_RUNTIME_PM(dev), "Runtime PM not enabled.\n"); 470 WARN(pg2_enabled, "PG2 not disabled to enable DC5.\n"); 471 472 WARN((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5), 473 "DC5 already programmed to be enabled.\n"); 474 WARN(dev_priv->pm.suspended, 475 "DC5 cannot be enabled, if platform is runtime-suspended.\n"); 476 477 assert_csr_loaded(dev_priv); 478 } 479 480 static void assert_can_disable_dc5(struct drm_i915_private *dev_priv) 481 { 482 bool pg2_enabled = intel_display_power_well_is_enabled(dev_priv, 483 SKL_DISP_PW_2); 484 /* 485 * During initialization, the firmware may not be loaded yet. 486 * We still want to make sure that the DC enabling flag is cleared. 487 */ 488 if (dev_priv->power_domains.initializing) 489 return; 490 491 WARN(!pg2_enabled, "PG2 not enabled to disable DC5.\n"); 492 WARN(dev_priv->pm.suspended, 493 "Disabling of DC5 while platform is runtime-suspended should never happen.\n"); 494 } 495 496 static void gen9_enable_dc5(struct drm_i915_private *dev_priv) 497 { 498 uint32_t val; 499 500 assert_can_enable_dc5(dev_priv); 501 502 DRM_DEBUG_KMS("Enabling DC5\n"); 503 504 gen9_set_dc_state_debugmask_memory_up(dev_priv); 505 506 val = I915_READ(DC_STATE_EN); 507 val &= ~DC_STATE_EN_UPTO_DC5_DC6_MASK; 508 val |= DC_STATE_EN_UPTO_DC5; 509 I915_WRITE(DC_STATE_EN, val); 510 POSTING_READ(DC_STATE_EN); 511 } 512 513 static void gen9_disable_dc5(struct drm_i915_private *dev_priv) 514 { 515 uint32_t val; 516 517 assert_can_disable_dc5(dev_priv); 518 519 DRM_DEBUG_KMS("Disabling DC5\n"); 520 521 val = I915_READ(DC_STATE_EN); 522 val &= ~DC_STATE_EN_UPTO_DC5; 523 I915_WRITE(DC_STATE_EN, val); 524 POSTING_READ(DC_STATE_EN); 525 } 526 527 static void assert_can_enable_dc6(struct drm_i915_private *dev_priv) 528 { 529 struct drm_device *dev = dev_priv->dev; 530 531 WARN(!IS_SKYLAKE(dev), "Platform doesn't support DC6.\n"); 532 WARN(!HAS_RUNTIME_PM(dev), "Runtime PM not enabled.\n"); 533 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE, 534 "Backlight is not disabled.\n"); 535 WARN((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6), 536 "DC6 already programmed to be enabled.\n"); 537 538 assert_csr_loaded(dev_priv); 539 } 540 541 static void assert_can_disable_dc6(struct drm_i915_private *dev_priv) 542 { 543 /* 544 * During initialization, the firmware may not be loaded yet. 545 * We still want to make sure that the DC enabling flag is cleared. 546 */ 547 if (dev_priv->power_domains.initializing) 548 return; 549 550 assert_csr_loaded(dev_priv); 551 WARN(!(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6), 552 "DC6 already programmed to be disabled.\n"); 553 } 554 555 static void skl_enable_dc6(struct drm_i915_private *dev_priv) 556 { 557 uint32_t val; 558 559 assert_can_enable_dc6(dev_priv); 560 561 DRM_DEBUG_KMS("Enabling DC6\n"); 562 563 gen9_set_dc_state_debugmask_memory_up(dev_priv); 564 565 val = I915_READ(DC_STATE_EN); 566 val &= ~DC_STATE_EN_UPTO_DC5_DC6_MASK; 567 val |= DC_STATE_EN_UPTO_DC6; 568 I915_WRITE(DC_STATE_EN, val); 569 POSTING_READ(DC_STATE_EN); 570 } 571 572 static void skl_disable_dc6(struct drm_i915_private *dev_priv) 573 { 574 uint32_t val; 575 576 assert_can_disable_dc6(dev_priv); 577 578 DRM_DEBUG_KMS("Disabling DC6\n"); 579 580 val = I915_READ(DC_STATE_EN); 581 val &= ~DC_STATE_EN_UPTO_DC6; 582 I915_WRITE(DC_STATE_EN, val); 583 POSTING_READ(DC_STATE_EN); 584 } 585 586 static void skl_set_power_well(struct drm_i915_private *dev_priv, 587 struct i915_power_well *power_well, bool enable) 588 { 589 struct drm_device *dev = dev_priv->dev; 590 uint32_t tmp, fuse_status; 591 uint32_t req_mask, state_mask; 592 bool is_enabled, enable_requested, check_fuse_status = false; 593 594 tmp = I915_READ(HSW_PWR_WELL_DRIVER); 595 fuse_status = I915_READ(SKL_FUSE_STATUS); 596 597 switch (power_well->data) { 598 case SKL_DISP_PW_1: 599 if (wait_for((I915_READ(SKL_FUSE_STATUS) & 600 SKL_FUSE_PG0_DIST_STATUS), 1)) { 601 DRM_ERROR("PG0 not enabled\n"); 602 return; 603 } 604 break; 605 case SKL_DISP_PW_2: 606 if (!(fuse_status & SKL_FUSE_PG1_DIST_STATUS)) { 607 DRM_ERROR("PG1 in disabled state\n"); 608 return; 609 } 610 break; 611 case SKL_DISP_PW_DDI_A_E: 612 case SKL_DISP_PW_DDI_B: 613 case SKL_DISP_PW_DDI_C: 614 case SKL_DISP_PW_DDI_D: 615 case SKL_DISP_PW_MISC_IO: 616 break; 617 default: 618 WARN(1, "Unknown power well %lu\n", power_well->data); 619 return; 620 } 621 622 req_mask = SKL_POWER_WELL_REQ(power_well->data); 623 enable_requested = tmp & req_mask; 624 state_mask = SKL_POWER_WELL_STATE(power_well->data); 625 is_enabled = tmp & state_mask; 626 627 if (enable) { 628 if (!enable_requested) { 629 WARN((tmp & state_mask) && 630 !I915_READ(HSW_PWR_WELL_BIOS), 631 "Invalid for power well status to be enabled, unless done by the BIOS, \ 632 when request is to disable!\n"); 633 if ((GEN9_ENABLE_DC5(dev) || SKL_ENABLE_DC6(dev)) && 634 power_well->data == SKL_DISP_PW_2) { 635 if (SKL_ENABLE_DC6(dev)) { 636 skl_disable_dc6(dev_priv); 637 /* 638 * DDI buffer programming unnecessary during driver-load/resume 639 * as it's already done during modeset initialization then. 640 * It's also invalid here as encoder list is still uninitialized. 641 */ 642 if (!dev_priv->power_domains.initializing) 643 intel_prepare_ddi(dev); 644 } else { 645 gen9_disable_dc5(dev_priv); 646 } 647 } 648 I915_WRITE(HSW_PWR_WELL_DRIVER, tmp | req_mask); 649 } 650 651 if (!is_enabled) { 652 DRM_DEBUG_KMS("Enabling %s\n", power_well->name); 653 if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) & 654 state_mask), 1)) 655 DRM_ERROR("%s enable timeout\n", 656 power_well->name); 657 check_fuse_status = true; 658 } 659 } else { 660 if (enable_requested) { 661 I915_WRITE(HSW_PWR_WELL_DRIVER, tmp & ~req_mask); 662 POSTING_READ(HSW_PWR_WELL_DRIVER); 663 DRM_DEBUG_KMS("Disabling %s\n", power_well->name); 664 665 if ((GEN9_ENABLE_DC5(dev) || SKL_ENABLE_DC6(dev)) && 666 power_well->data == SKL_DISP_PW_2) { 667 enum csr_state state; 668 /* TODO: wait for a completion event or 669 * similar here instead of busy 670 * waiting using wait_for function. 671 */ 672 wait_for((state = intel_csr_load_status_get(dev_priv)) != 673 FW_UNINITIALIZED, 1000); 674 if (state != FW_LOADED) 675 DRM_ERROR("CSR firmware not ready (%d)\n", 676 state); 677 else 678 if (SKL_ENABLE_DC6(dev)) 679 skl_enable_dc6(dev_priv); 680 else 681 gen9_enable_dc5(dev_priv); 682 } 683 } 684 } 685 686 if (check_fuse_status) { 687 if (power_well->data == SKL_DISP_PW_1) { 688 if (wait_for((I915_READ(SKL_FUSE_STATUS) & 689 SKL_FUSE_PG1_DIST_STATUS), 1)) 690 DRM_ERROR("PG1 distributing status timeout\n"); 691 } else if (power_well->data == SKL_DISP_PW_2) { 692 if (wait_for((I915_READ(SKL_FUSE_STATUS) & 693 SKL_FUSE_PG2_DIST_STATUS), 1)) 694 DRM_ERROR("PG2 distributing status timeout\n"); 695 } 696 } 697 698 if (enable && !is_enabled) 699 skl_power_well_post_enable(dev_priv, power_well); 700 } 701 702 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv, 703 struct i915_power_well *power_well) 704 { 705 hsw_set_power_well(dev_priv, power_well, power_well->count > 0); 706 707 /* 708 * We're taking over the BIOS, so clear any requests made by it since 709 * the driver is in charge now. 710 */ 711 if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST) 712 I915_WRITE(HSW_PWR_WELL_BIOS, 0); 713 } 714 715 static void hsw_power_well_enable(struct drm_i915_private *dev_priv, 716 struct i915_power_well *power_well) 717 { 718 hsw_set_power_well(dev_priv, power_well, true); 719 } 720 721 static void hsw_power_well_disable(struct drm_i915_private *dev_priv, 722 struct i915_power_well *power_well) 723 { 724 hsw_set_power_well(dev_priv, power_well, false); 725 } 726 727 static bool skl_power_well_enabled(struct drm_i915_private *dev_priv, 728 struct i915_power_well *power_well) 729 { 730 uint32_t mask = SKL_POWER_WELL_REQ(power_well->data) | 731 SKL_POWER_WELL_STATE(power_well->data); 732 733 return (I915_READ(HSW_PWR_WELL_DRIVER) & mask) == mask; 734 } 735 736 static void skl_power_well_sync_hw(struct drm_i915_private *dev_priv, 737 struct i915_power_well *power_well) 738 { 739 skl_set_power_well(dev_priv, power_well, power_well->count > 0); 740 741 /* Clear any request made by BIOS as driver is taking over */ 742 I915_WRITE(HSW_PWR_WELL_BIOS, 0); 743 } 744 745 static void skl_power_well_enable(struct drm_i915_private *dev_priv, 746 struct i915_power_well *power_well) 747 { 748 skl_set_power_well(dev_priv, power_well, true); 749 } 750 751 static void skl_power_well_disable(struct drm_i915_private *dev_priv, 752 struct i915_power_well *power_well) 753 { 754 skl_set_power_well(dev_priv, power_well, false); 755 } 756 757 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv, 758 struct i915_power_well *power_well) 759 { 760 } 761 762 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv, 763 struct i915_power_well *power_well) 764 { 765 return true; 766 } 767 768 static void vlv_set_power_well(struct drm_i915_private *dev_priv, 769 struct i915_power_well *power_well, bool enable) 770 { 771 enum punit_power_well power_well_id = power_well->data; 772 u32 mask; 773 u32 state; 774 u32 ctrl; 775 776 mask = PUNIT_PWRGT_MASK(power_well_id); 777 state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) : 778 PUNIT_PWRGT_PWR_GATE(power_well_id); 779 780 mutex_lock(&dev_priv->rps.hw_lock); 781 782 #define COND \ 783 ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state) 784 785 if (COND) 786 goto out; 787 788 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL); 789 ctrl &= ~mask; 790 ctrl |= state; 791 vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl); 792 793 if (wait_for(COND, 100)) 794 DRM_ERROR("timeout setting power well state %08x (%08x)\n", 795 state, 796 vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL)); 797 798 #undef COND 799 800 out: 801 mutex_unlock(&dev_priv->rps.hw_lock); 802 } 803 804 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv, 805 struct i915_power_well *power_well) 806 { 807 vlv_set_power_well(dev_priv, power_well, power_well->count > 0); 808 } 809 810 static void vlv_power_well_enable(struct drm_i915_private *dev_priv, 811 struct i915_power_well *power_well) 812 { 813 vlv_set_power_well(dev_priv, power_well, true); 814 } 815 816 static void vlv_power_well_disable(struct drm_i915_private *dev_priv, 817 struct i915_power_well *power_well) 818 { 819 vlv_set_power_well(dev_priv, power_well, false); 820 } 821 822 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv, 823 struct i915_power_well *power_well) 824 { 825 int power_well_id = power_well->data; 826 bool enabled = false; 827 u32 mask; 828 u32 state; 829 u32 ctrl; 830 831 mask = PUNIT_PWRGT_MASK(power_well_id); 832 ctrl = PUNIT_PWRGT_PWR_ON(power_well_id); 833 834 mutex_lock(&dev_priv->rps.hw_lock); 835 836 state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask; 837 /* 838 * We only ever set the power-on and power-gate states, anything 839 * else is unexpected. 840 */ 841 WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) && 842 state != PUNIT_PWRGT_PWR_GATE(power_well_id)); 843 if (state == ctrl) 844 enabled = true; 845 846 /* 847 * A transient state at this point would mean some unexpected party 848 * is poking at the power controls too. 849 */ 850 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask; 851 WARN_ON(ctrl != state); 852 853 mutex_unlock(&dev_priv->rps.hw_lock); 854 855 return enabled; 856 } 857 858 static void vlv_display_power_well_init(struct drm_i915_private *dev_priv) 859 { 860 861 spin_lock_irq(&dev_priv->irq_lock); 862 valleyview_enable_display_irqs(dev_priv); 863 spin_unlock_irq(&dev_priv->irq_lock); 864 865 /* 866 * During driver initialization/resume we can avoid restoring the 867 * part of the HW/SW state that will be inited anyway explicitly. 868 */ 869 if (dev_priv->power_domains.initializing) 870 return; 871 872 intel_hpd_init(dev_priv); 873 874 i915_redisable_vga_power_on(dev_priv->dev); 875 } 876 877 static void vlv_display_power_well_deinit(struct drm_i915_private *dev_priv) 878 { 879 spin_lock_irq(&dev_priv->irq_lock); 880 valleyview_disable_display_irqs(dev_priv); 881 spin_unlock_irq(&dev_priv->irq_lock); 882 883 vlv_power_sequencer_reset(dev_priv); 884 } 885 886 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv, 887 struct i915_power_well *power_well) 888 { 889 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D); 890 891 vlv_set_power_well(dev_priv, power_well, true); 892 893 vlv_display_power_well_init(dev_priv); 894 } 895 896 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv, 897 struct i915_power_well *power_well) 898 { 899 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D); 900 901 vlv_display_power_well_deinit(dev_priv); 902 903 vlv_set_power_well(dev_priv, power_well, false); 904 } 905 906 static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv, 907 struct i915_power_well *power_well) 908 { 909 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC); 910 911 /* 912 * Enable the CRI clock source so we can get at the 913 * display and the reference clock for VGA 914 * hotplug / manual detection. 915 */ 916 I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) | DPLL_VGA_MODE_DIS | 917 DPLL_REF_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV); 918 udelay(1); /* >10ns for cmnreset, >0ns for sidereset */ 919 920 vlv_set_power_well(dev_priv, power_well, true); 921 922 /* 923 * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx - 924 * 6. De-assert cmn_reset/side_reset. Same as VLV X0. 925 * a. GUnit 0x2110 bit[0] set to 1 (def 0) 926 * b. The other bits such as sfr settings / modesel may all 927 * be set to 0. 928 * 929 * This should only be done on init and resume from S3 with 930 * both PLLs disabled, or we risk losing DPIO and PLL 931 * synchronization. 932 */ 933 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST); 934 } 935 936 static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv, 937 struct i915_power_well *power_well) 938 { 939 enum i915_pipe pipe; 940 941 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC); 942 943 for_each_pipe(dev_priv, pipe) 944 assert_pll_disabled(dev_priv, pipe); 945 946 /* Assert common reset */ 947 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST); 948 949 vlv_set_power_well(dev_priv, power_well, false); 950 } 951 952 static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv, 953 struct i915_power_well *power_well) 954 { 955 enum dpio_phy phy; 956 957 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC && 958 power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D); 959 960 /* 961 * Enable the CRI clock source so we can get at the 962 * display and the reference clock for VGA 963 * hotplug / manual detection. 964 */ 965 if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) { 966 phy = DPIO_PHY0; 967 I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) | DPLL_VGA_MODE_DIS | 968 DPLL_REF_CLK_ENABLE_VLV); 969 I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) | DPLL_VGA_MODE_DIS | 970 DPLL_REF_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV); 971 } else { 972 phy = DPIO_PHY1; 973 I915_WRITE(DPLL(PIPE_C), I915_READ(DPLL(PIPE_C)) | DPLL_VGA_MODE_DIS | 974 DPLL_REF_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV); 975 } 976 udelay(1); /* >10ns for cmnreset, >0ns for sidereset */ 977 vlv_set_power_well(dev_priv, power_well, true); 978 979 /* Poll for phypwrgood signal */ 980 if (wait_for(I915_READ(DISPLAY_PHY_STATUS) & PHY_POWERGOOD(phy), 1)) 981 DRM_ERROR("Display PHY %d is not power up\n", phy); 982 983 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(phy); 984 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control); 985 } 986 987 static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv, 988 struct i915_power_well *power_well) 989 { 990 enum dpio_phy phy; 991 992 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC && 993 power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D); 994 995 if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) { 996 phy = DPIO_PHY0; 997 assert_pll_disabled(dev_priv, PIPE_A); 998 assert_pll_disabled(dev_priv, PIPE_B); 999 } else { 1000 phy = DPIO_PHY1; 1001 assert_pll_disabled(dev_priv, PIPE_C); 1002 } 1003 1004 dev_priv->chv_phy_control &= ~PHY_COM_LANE_RESET_DEASSERT(phy); 1005 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control); 1006 1007 vlv_set_power_well(dev_priv, power_well, false); 1008 } 1009 1010 static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv, 1011 struct i915_power_well *power_well) 1012 { 1013 enum i915_pipe pipe = power_well->data; 1014 bool enabled; 1015 u32 state, ctrl; 1016 1017 mutex_lock(&dev_priv->rps.hw_lock); 1018 1019 state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe); 1020 /* 1021 * We only ever set the power-on and power-gate states, anything 1022 * else is unexpected. 1023 */ 1024 WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe)); 1025 enabled = state == DP_SSS_PWR_ON(pipe); 1026 1027 /* 1028 * A transient state at this point would mean some unexpected party 1029 * is poking at the power controls too. 1030 */ 1031 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe); 1032 WARN_ON(ctrl << 16 != state); 1033 1034 mutex_unlock(&dev_priv->rps.hw_lock); 1035 1036 return enabled; 1037 } 1038 1039 static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv, 1040 struct i915_power_well *power_well, 1041 bool enable) 1042 { 1043 enum i915_pipe pipe = power_well->data; 1044 u32 state; 1045 u32 ctrl; 1046 1047 state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe); 1048 1049 mutex_lock(&dev_priv->rps.hw_lock); 1050 1051 #define COND \ 1052 ((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state) 1053 1054 if (COND) 1055 goto out; 1056 1057 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ); 1058 ctrl &= ~DP_SSC_MASK(pipe); 1059 ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe); 1060 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl); 1061 1062 if (wait_for(COND, 100)) 1063 DRM_ERROR("timeout setting power well state %08x (%08x)\n", 1064 state, 1065 vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ)); 1066 1067 #undef COND 1068 1069 out: 1070 mutex_unlock(&dev_priv->rps.hw_lock); 1071 } 1072 1073 static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv, 1074 struct i915_power_well *power_well) 1075 { 1076 WARN_ON_ONCE(power_well->data != PIPE_A); 1077 1078 chv_set_pipe_power_well(dev_priv, power_well, power_well->count > 0); 1079 } 1080 1081 static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv, 1082 struct i915_power_well *power_well) 1083 { 1084 WARN_ON_ONCE(power_well->data != PIPE_A); 1085 1086 chv_set_pipe_power_well(dev_priv, power_well, true); 1087 1088 vlv_display_power_well_init(dev_priv); 1089 } 1090 1091 static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv, 1092 struct i915_power_well *power_well) 1093 { 1094 WARN_ON_ONCE(power_well->data != PIPE_A); 1095 1096 vlv_display_power_well_deinit(dev_priv); 1097 1098 chv_set_pipe_power_well(dev_priv, power_well, false); 1099 } 1100 1101 /** 1102 * intel_display_power_get - grab a power domain reference 1103 * @dev_priv: i915 device instance 1104 * @domain: power domain to reference 1105 * 1106 * This function grabs a power domain reference for @domain and ensures that the 1107 * power domain and all its parents are powered up. Therefore users should only 1108 * grab a reference to the innermost power domain they need. 1109 * 1110 * Any power domain reference obtained by this function must have a symmetric 1111 * call to intel_display_power_put() to release the reference again. 1112 */ 1113 void intel_display_power_get(struct drm_i915_private *dev_priv, 1114 enum intel_display_power_domain domain) 1115 { 1116 struct i915_power_domains *power_domains; 1117 struct i915_power_well *power_well; 1118 int i; 1119 1120 intel_runtime_pm_get(dev_priv); 1121 1122 power_domains = &dev_priv->power_domains; 1123 1124 mutex_lock(&power_domains->lock); 1125 1126 for_each_power_well(i, power_well, BIT(domain), power_domains) { 1127 if (!power_well->count++) 1128 intel_power_well_enable(dev_priv, power_well); 1129 } 1130 1131 power_domains->domain_use_count[domain]++; 1132 1133 mutex_unlock(&power_domains->lock); 1134 } 1135 1136 /** 1137 * intel_display_power_put - release a power domain reference 1138 * @dev_priv: i915 device instance 1139 * @domain: power domain to reference 1140 * 1141 * This function drops the power domain reference obtained by 1142 * intel_display_power_get() and might power down the corresponding hardware 1143 * block right away if this is the last reference. 1144 */ 1145 void intel_display_power_put(struct drm_i915_private *dev_priv, 1146 enum intel_display_power_domain domain) 1147 { 1148 struct i915_power_domains *power_domains; 1149 struct i915_power_well *power_well; 1150 int i; 1151 1152 power_domains = &dev_priv->power_domains; 1153 1154 mutex_lock(&power_domains->lock); 1155 1156 WARN_ON(!power_domains->domain_use_count[domain]); 1157 power_domains->domain_use_count[domain]--; 1158 1159 for_each_power_well_rev(i, power_well, BIT(domain), power_domains) { 1160 WARN_ON(!power_well->count); 1161 1162 if (!--power_well->count && i915.disable_power_well) 1163 intel_power_well_disable(dev_priv, power_well); 1164 } 1165 1166 mutex_unlock(&power_domains->lock); 1167 1168 intel_runtime_pm_put(dev_priv); 1169 } 1170 1171 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1) 1172 1173 #define HSW_ALWAYS_ON_POWER_DOMAINS ( \ 1174 BIT(POWER_DOMAIN_PIPE_A) | \ 1175 BIT(POWER_DOMAIN_TRANSCODER_EDP) | \ 1176 BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) | \ 1177 BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) | \ 1178 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \ 1179 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \ 1180 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \ 1181 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \ 1182 BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \ 1183 BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \ 1184 BIT(POWER_DOMAIN_PORT_CRT) | \ 1185 BIT(POWER_DOMAIN_PLLS) | \ 1186 BIT(POWER_DOMAIN_AUX_A) | \ 1187 BIT(POWER_DOMAIN_AUX_B) | \ 1188 BIT(POWER_DOMAIN_AUX_C) | \ 1189 BIT(POWER_DOMAIN_AUX_D) | \ 1190 BIT(POWER_DOMAIN_INIT)) 1191 #define HSW_DISPLAY_POWER_DOMAINS ( \ 1192 (POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) | \ 1193 BIT(POWER_DOMAIN_INIT)) 1194 1195 #define BDW_ALWAYS_ON_POWER_DOMAINS ( \ 1196 HSW_ALWAYS_ON_POWER_DOMAINS | \ 1197 BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER)) 1198 #define BDW_DISPLAY_POWER_DOMAINS ( \ 1199 (POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) | \ 1200 BIT(POWER_DOMAIN_INIT)) 1201 1202 #define VLV_ALWAYS_ON_POWER_DOMAINS BIT(POWER_DOMAIN_INIT) 1203 #define VLV_DISPLAY_POWER_DOMAINS POWER_DOMAIN_MASK 1204 1205 #define VLV_DPIO_CMN_BC_POWER_DOMAINS ( \ 1206 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \ 1207 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \ 1208 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \ 1209 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \ 1210 BIT(POWER_DOMAIN_PORT_CRT) | \ 1211 BIT(POWER_DOMAIN_AUX_B) | \ 1212 BIT(POWER_DOMAIN_AUX_C) | \ 1213 BIT(POWER_DOMAIN_INIT)) 1214 1215 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS ( \ 1216 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \ 1217 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \ 1218 BIT(POWER_DOMAIN_AUX_B) | \ 1219 BIT(POWER_DOMAIN_INIT)) 1220 1221 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS ( \ 1222 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \ 1223 BIT(POWER_DOMAIN_AUX_B) | \ 1224 BIT(POWER_DOMAIN_INIT)) 1225 1226 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS ( \ 1227 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \ 1228 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \ 1229 BIT(POWER_DOMAIN_AUX_C) | \ 1230 BIT(POWER_DOMAIN_INIT)) 1231 1232 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS ( \ 1233 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \ 1234 BIT(POWER_DOMAIN_AUX_C) | \ 1235 BIT(POWER_DOMAIN_INIT)) 1236 1237 #define CHV_DPIO_CMN_BC_POWER_DOMAINS ( \ 1238 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \ 1239 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \ 1240 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \ 1241 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \ 1242 BIT(POWER_DOMAIN_AUX_B) | \ 1243 BIT(POWER_DOMAIN_AUX_C) | \ 1244 BIT(POWER_DOMAIN_INIT)) 1245 1246 #define CHV_DPIO_CMN_D_POWER_DOMAINS ( \ 1247 BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \ 1248 BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \ 1249 BIT(POWER_DOMAIN_AUX_D) | \ 1250 BIT(POWER_DOMAIN_INIT)) 1251 1252 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = { 1253 .sync_hw = i9xx_always_on_power_well_noop, 1254 .enable = i9xx_always_on_power_well_noop, 1255 .disable = i9xx_always_on_power_well_noop, 1256 .is_enabled = i9xx_always_on_power_well_enabled, 1257 }; 1258 1259 static const struct i915_power_well_ops chv_pipe_power_well_ops = { 1260 .sync_hw = chv_pipe_power_well_sync_hw, 1261 .enable = chv_pipe_power_well_enable, 1262 .disable = chv_pipe_power_well_disable, 1263 .is_enabled = chv_pipe_power_well_enabled, 1264 }; 1265 1266 static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = { 1267 .sync_hw = vlv_power_well_sync_hw, 1268 .enable = chv_dpio_cmn_power_well_enable, 1269 .disable = chv_dpio_cmn_power_well_disable, 1270 .is_enabled = vlv_power_well_enabled, 1271 }; 1272 1273 static struct i915_power_well i9xx_always_on_power_well[] = { 1274 { 1275 .name = "always-on", 1276 .always_on = 1, 1277 .domains = POWER_DOMAIN_MASK, 1278 .ops = &i9xx_always_on_power_well_ops, 1279 }, 1280 }; 1281 1282 static const struct i915_power_well_ops hsw_power_well_ops = { 1283 .sync_hw = hsw_power_well_sync_hw, 1284 .enable = hsw_power_well_enable, 1285 .disable = hsw_power_well_disable, 1286 .is_enabled = hsw_power_well_enabled, 1287 }; 1288 1289 static const struct i915_power_well_ops skl_power_well_ops = { 1290 .sync_hw = skl_power_well_sync_hw, 1291 .enable = skl_power_well_enable, 1292 .disable = skl_power_well_disable, 1293 .is_enabled = skl_power_well_enabled, 1294 }; 1295 1296 static struct i915_power_well hsw_power_wells[] = { 1297 { 1298 .name = "always-on", 1299 .always_on = 1, 1300 .domains = HSW_ALWAYS_ON_POWER_DOMAINS, 1301 .ops = &i9xx_always_on_power_well_ops, 1302 }, 1303 { 1304 .name = "display", 1305 .domains = HSW_DISPLAY_POWER_DOMAINS, 1306 .ops = &hsw_power_well_ops, 1307 }, 1308 }; 1309 1310 static struct i915_power_well bdw_power_wells[] = { 1311 { 1312 .name = "always-on", 1313 .always_on = 1, 1314 .domains = BDW_ALWAYS_ON_POWER_DOMAINS, 1315 .ops = &i9xx_always_on_power_well_ops, 1316 }, 1317 { 1318 .name = "display", 1319 .domains = BDW_DISPLAY_POWER_DOMAINS, 1320 .ops = &hsw_power_well_ops, 1321 }, 1322 }; 1323 1324 static const struct i915_power_well_ops vlv_display_power_well_ops = { 1325 .sync_hw = vlv_power_well_sync_hw, 1326 .enable = vlv_display_power_well_enable, 1327 .disable = vlv_display_power_well_disable, 1328 .is_enabled = vlv_power_well_enabled, 1329 }; 1330 1331 static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = { 1332 .sync_hw = vlv_power_well_sync_hw, 1333 .enable = vlv_dpio_cmn_power_well_enable, 1334 .disable = vlv_dpio_cmn_power_well_disable, 1335 .is_enabled = vlv_power_well_enabled, 1336 }; 1337 1338 static const struct i915_power_well_ops vlv_dpio_power_well_ops = { 1339 .sync_hw = vlv_power_well_sync_hw, 1340 .enable = vlv_power_well_enable, 1341 .disable = vlv_power_well_disable, 1342 .is_enabled = vlv_power_well_enabled, 1343 }; 1344 1345 static struct i915_power_well vlv_power_wells[] = { 1346 { 1347 .name = "always-on", 1348 .always_on = 1, 1349 .domains = VLV_ALWAYS_ON_POWER_DOMAINS, 1350 .ops = &i9xx_always_on_power_well_ops, 1351 }, 1352 { 1353 .name = "display", 1354 .domains = VLV_DISPLAY_POWER_DOMAINS, 1355 .data = PUNIT_POWER_WELL_DISP2D, 1356 .ops = &vlv_display_power_well_ops, 1357 }, 1358 { 1359 .name = "dpio-tx-b-01", 1360 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS | 1361 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS | 1362 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS | 1363 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS, 1364 .ops = &vlv_dpio_power_well_ops, 1365 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01, 1366 }, 1367 { 1368 .name = "dpio-tx-b-23", 1369 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS | 1370 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS | 1371 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS | 1372 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS, 1373 .ops = &vlv_dpio_power_well_ops, 1374 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23, 1375 }, 1376 { 1377 .name = "dpio-tx-c-01", 1378 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS | 1379 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS | 1380 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS | 1381 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS, 1382 .ops = &vlv_dpio_power_well_ops, 1383 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01, 1384 }, 1385 { 1386 .name = "dpio-tx-c-23", 1387 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS | 1388 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS | 1389 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS | 1390 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS, 1391 .ops = &vlv_dpio_power_well_ops, 1392 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23, 1393 }, 1394 { 1395 .name = "dpio-common", 1396 .domains = VLV_DPIO_CMN_BC_POWER_DOMAINS, 1397 .data = PUNIT_POWER_WELL_DPIO_CMN_BC, 1398 .ops = &vlv_dpio_cmn_power_well_ops, 1399 }, 1400 }; 1401 1402 static struct i915_power_well chv_power_wells[] = { 1403 { 1404 .name = "always-on", 1405 .always_on = 1, 1406 .domains = VLV_ALWAYS_ON_POWER_DOMAINS, 1407 .ops = &i9xx_always_on_power_well_ops, 1408 }, 1409 { 1410 .name = "display", 1411 /* 1412 * Pipe A power well is the new disp2d well. Pipe B and C 1413 * power wells don't actually exist. Pipe A power well is 1414 * required for any pipe to work. 1415 */ 1416 .domains = VLV_DISPLAY_POWER_DOMAINS, 1417 .data = PIPE_A, 1418 .ops = &chv_pipe_power_well_ops, 1419 }, 1420 { 1421 .name = "dpio-common-bc", 1422 .domains = CHV_DPIO_CMN_BC_POWER_DOMAINS, 1423 .data = PUNIT_POWER_WELL_DPIO_CMN_BC, 1424 .ops = &chv_dpio_cmn_power_well_ops, 1425 }, 1426 { 1427 .name = "dpio-common-d", 1428 .domains = CHV_DPIO_CMN_D_POWER_DOMAINS, 1429 .data = PUNIT_POWER_WELL_DPIO_CMN_D, 1430 .ops = &chv_dpio_cmn_power_well_ops, 1431 }, 1432 }; 1433 1434 static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv, 1435 int power_well_id) 1436 { 1437 struct i915_power_domains *power_domains = &dev_priv->power_domains; 1438 struct i915_power_well *power_well; 1439 int i; 1440 1441 for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) { 1442 if (power_well->data == power_well_id) 1443 return power_well; 1444 } 1445 1446 return NULL; 1447 } 1448 1449 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv, 1450 int power_well_id) 1451 { 1452 struct i915_power_well *power_well; 1453 bool ret; 1454 1455 power_well = lookup_power_well(dev_priv, power_well_id); 1456 ret = power_well->ops->is_enabled(dev_priv, power_well); 1457 1458 return ret; 1459 } 1460 1461 static struct i915_power_well skl_power_wells[] = { 1462 { 1463 .name = "always-on", 1464 .always_on = 1, 1465 .domains = SKL_DISPLAY_ALWAYS_ON_POWER_DOMAINS, 1466 .ops = &i9xx_always_on_power_well_ops, 1467 }, 1468 { 1469 .name = "power well 1", 1470 .domains = SKL_DISPLAY_POWERWELL_1_POWER_DOMAINS, 1471 .ops = &skl_power_well_ops, 1472 .data = SKL_DISP_PW_1, 1473 }, 1474 { 1475 .name = "MISC IO power well", 1476 .domains = SKL_DISPLAY_MISC_IO_POWER_DOMAINS, 1477 .ops = &skl_power_well_ops, 1478 .data = SKL_DISP_PW_MISC_IO, 1479 }, 1480 { 1481 .name = "power well 2", 1482 .domains = SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS, 1483 .ops = &skl_power_well_ops, 1484 .data = SKL_DISP_PW_2, 1485 }, 1486 { 1487 .name = "DDI A/E power well", 1488 .domains = SKL_DISPLAY_DDI_A_E_POWER_DOMAINS, 1489 .ops = &skl_power_well_ops, 1490 .data = SKL_DISP_PW_DDI_A_E, 1491 }, 1492 { 1493 .name = "DDI B power well", 1494 .domains = SKL_DISPLAY_DDI_B_POWER_DOMAINS, 1495 .ops = &skl_power_well_ops, 1496 .data = SKL_DISP_PW_DDI_B, 1497 }, 1498 { 1499 .name = "DDI C power well", 1500 .domains = SKL_DISPLAY_DDI_C_POWER_DOMAINS, 1501 .ops = &skl_power_well_ops, 1502 .data = SKL_DISP_PW_DDI_C, 1503 }, 1504 { 1505 .name = "DDI D power well", 1506 .domains = SKL_DISPLAY_DDI_D_POWER_DOMAINS, 1507 .ops = &skl_power_well_ops, 1508 .data = SKL_DISP_PW_DDI_D, 1509 }, 1510 }; 1511 1512 static struct i915_power_well bxt_power_wells[] = { 1513 { 1514 .name = "always-on", 1515 .always_on = 1, 1516 .domains = BXT_DISPLAY_ALWAYS_ON_POWER_DOMAINS, 1517 .ops = &i9xx_always_on_power_well_ops, 1518 }, 1519 { 1520 .name = "power well 1", 1521 .domains = BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS, 1522 .ops = &skl_power_well_ops, 1523 .data = SKL_DISP_PW_1, 1524 }, 1525 { 1526 .name = "power well 2", 1527 .domains = BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS, 1528 .ops = &skl_power_well_ops, 1529 .data = SKL_DISP_PW_2, 1530 } 1531 }; 1532 1533 #define set_power_wells(power_domains, __power_wells) ({ \ 1534 (power_domains)->power_wells = (__power_wells); \ 1535 (power_domains)->power_well_count = ARRAY_SIZE(__power_wells); \ 1536 }) 1537 1538 /** 1539 * intel_power_domains_init - initializes the power domain structures 1540 * @dev_priv: i915 device instance 1541 * 1542 * Initializes the power domain structures for @dev_priv depending upon the 1543 * supported platform. 1544 */ 1545 int intel_power_domains_init(struct drm_i915_private *dev_priv) 1546 { 1547 struct i915_power_domains *power_domains = &dev_priv->power_domains; 1548 1549 lockinit(&power_domains->lock, "i915pl", 0, LK_CANRECURSE); 1550 1551 /* 1552 * The enabling order will be from lower to higher indexed wells, 1553 * the disabling order is reversed. 1554 */ 1555 if (IS_HASWELL(dev_priv->dev)) { 1556 set_power_wells(power_domains, hsw_power_wells); 1557 } else if (IS_BROADWELL(dev_priv->dev)) { 1558 set_power_wells(power_domains, bdw_power_wells); 1559 } else if (IS_SKYLAKE(dev_priv->dev)) { 1560 set_power_wells(power_domains, skl_power_wells); 1561 } else if (IS_BROXTON(dev_priv->dev)) { 1562 set_power_wells(power_domains, bxt_power_wells); 1563 } else if (IS_CHERRYVIEW(dev_priv->dev)) { 1564 set_power_wells(power_domains, chv_power_wells); 1565 } else if (IS_VALLEYVIEW(dev_priv->dev)) { 1566 set_power_wells(power_domains, vlv_power_wells); 1567 } else { 1568 set_power_wells(power_domains, i9xx_always_on_power_well); 1569 } 1570 1571 return 0; 1572 } 1573 1574 static void intel_runtime_pm_disable(struct drm_i915_private *dev_priv) 1575 { 1576 #if 0 1577 struct drm_device *dev = dev_priv->dev; 1578 struct device *device = &dev->pdev->dev; 1579 1580 if (!HAS_RUNTIME_PM(dev)) 1581 return; 1582 1583 if (!intel_enable_rc6(dev)) 1584 return; 1585 1586 /* Make sure we're not suspended first. */ 1587 pm_runtime_get_sync(device); 1588 pm_runtime_disable(device); 1589 #endif 1590 } 1591 1592 /** 1593 * intel_power_domains_fini - finalizes the power domain structures 1594 * @dev_priv: i915 device instance 1595 * 1596 * Finalizes the power domain structures for @dev_priv depending upon the 1597 * supported platform. This function also disables runtime pm and ensures that 1598 * the device stays powered up so that the driver can be reloaded. 1599 */ 1600 void intel_power_domains_fini(struct drm_i915_private *dev_priv) 1601 { 1602 intel_runtime_pm_disable(dev_priv); 1603 1604 /* The i915.ko module is still not prepared to be loaded when 1605 * the power well is not enabled, so just enable it in case 1606 * we're going to unload/reload. */ 1607 intel_display_set_init_power(dev_priv, true); 1608 } 1609 1610 static void intel_power_domains_resume(struct drm_i915_private *dev_priv) 1611 { 1612 struct i915_power_domains *power_domains = &dev_priv->power_domains; 1613 struct i915_power_well *power_well; 1614 int i; 1615 1616 mutex_lock(&power_domains->lock); 1617 for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) { 1618 power_well->ops->sync_hw(dev_priv, power_well); 1619 power_well->hw_enabled = power_well->ops->is_enabled(dev_priv, 1620 power_well); 1621 } 1622 mutex_unlock(&power_domains->lock); 1623 } 1624 1625 static void chv_phy_control_init(struct drm_i915_private *dev_priv) 1626 { 1627 struct i915_power_well *cmn_bc = 1628 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC); 1629 struct i915_power_well *cmn_d = 1630 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D); 1631 1632 /* 1633 * DISPLAY_PHY_CONTROL can get corrupted if read. As a 1634 * workaround never ever read DISPLAY_PHY_CONTROL, and 1635 * instead maintain a shadow copy ourselves. Use the actual 1636 * power well state to reconstruct the expected initial 1637 * value. 1638 */ 1639 dev_priv->chv_phy_control = 1640 PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) | 1641 PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) | 1642 PHY_CH_POWER_MODE(PHY_CH_SU_PSR, DPIO_PHY0, DPIO_CH0) | 1643 PHY_CH_POWER_MODE(PHY_CH_SU_PSR, DPIO_PHY0, DPIO_CH1) | 1644 PHY_CH_POWER_MODE(PHY_CH_SU_PSR, DPIO_PHY1, DPIO_CH0); 1645 if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) 1646 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0); 1647 if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) 1648 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1); 1649 } 1650 1651 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv) 1652 { 1653 struct i915_power_well *cmn = 1654 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC); 1655 struct i915_power_well *disp2d = 1656 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D); 1657 1658 /* If the display might be already active skip this */ 1659 if (cmn->ops->is_enabled(dev_priv, cmn) && 1660 disp2d->ops->is_enabled(dev_priv, disp2d) && 1661 I915_READ(DPIO_CTL) & DPIO_CMNRST) 1662 return; 1663 1664 DRM_DEBUG_KMS("toggling display PHY side reset\n"); 1665 1666 /* cmnlane needs DPLL registers */ 1667 disp2d->ops->enable(dev_priv, disp2d); 1668 1669 /* 1670 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx: 1671 * Need to assert and de-assert PHY SB reset by gating the 1672 * common lane power, then un-gating it. 1673 * Simply ungating isn't enough to reset the PHY enough to get 1674 * ports and lanes running. 1675 */ 1676 cmn->ops->disable(dev_priv, cmn); 1677 } 1678 1679 /** 1680 * intel_power_domains_init_hw - initialize hardware power domain state 1681 * @dev_priv: i915 device instance 1682 * 1683 * This function initializes the hardware power domain state and enables all 1684 * power domains using intel_display_set_init_power(). 1685 */ 1686 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv) 1687 { 1688 struct drm_device *dev = dev_priv->dev; 1689 struct i915_power_domains *power_domains = &dev_priv->power_domains; 1690 1691 power_domains->initializing = true; 1692 1693 if (IS_CHERRYVIEW(dev)) { 1694 chv_phy_control_init(dev_priv); 1695 } else if (IS_VALLEYVIEW(dev)) { 1696 mutex_lock(&power_domains->lock); 1697 vlv_cmnlane_wa(dev_priv); 1698 mutex_unlock(&power_domains->lock); 1699 } 1700 1701 /* For now, we need the power well to be always enabled. */ 1702 intel_display_set_init_power(dev_priv, true); 1703 intel_power_domains_resume(dev_priv); 1704 power_domains->initializing = false; 1705 } 1706 1707 /** 1708 * intel_aux_display_runtime_get - grab an auxiliary power domain reference 1709 * @dev_priv: i915 device instance 1710 * 1711 * This function grabs a power domain reference for the auxiliary power domain 1712 * (for access to the GMBUS and DP AUX blocks) and ensures that it and all its 1713 * parents are powered up. Therefore users should only grab a reference to the 1714 * innermost power domain they need. 1715 * 1716 * Any power domain reference obtained by this function must have a symmetric 1717 * call to intel_aux_display_runtime_put() to release the reference again. 1718 */ 1719 void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv) 1720 { 1721 intel_runtime_pm_get(dev_priv); 1722 } 1723 1724 /** 1725 * intel_aux_display_runtime_put - release an auxiliary power domain reference 1726 * @dev_priv: i915 device instance 1727 * 1728 * This function drops the auxiliary power domain reference obtained by 1729 * intel_aux_display_runtime_get() and might power down the corresponding 1730 * hardware block right away if this is the last reference. 1731 */ 1732 void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv) 1733 { 1734 intel_runtime_pm_put(dev_priv); 1735 } 1736 1737 /** 1738 * intel_runtime_pm_get - grab a runtime pm reference 1739 * @dev_priv: i915 device instance 1740 * 1741 * This function grabs a device-level runtime pm reference (mostly used for GEM 1742 * code to ensure the GTT or GT is on) and ensures that it is powered up. 1743 * 1744 * Any runtime pm reference obtained by this function must have a symmetric 1745 * call to intel_runtime_pm_put() to release the reference again. 1746 */ 1747 void intel_runtime_pm_get(struct drm_i915_private *dev_priv) 1748 { 1749 struct drm_device *dev = dev_priv->dev; 1750 #if 0 1751 struct device *device = &dev->pdev->dev; 1752 #endif 1753 1754 if (!HAS_RUNTIME_PM(dev)) 1755 return; 1756 1757 #if 0 1758 pm_runtime_get_sync(device); 1759 #endif 1760 WARN(dev_priv->pm.suspended, "Device still suspended.\n"); 1761 } 1762 1763 /** 1764 * intel_runtime_pm_get_noresume - grab a runtime pm reference 1765 * @dev_priv: i915 device instance 1766 * 1767 * This function grabs a device-level runtime pm reference (mostly used for GEM 1768 * code to ensure the GTT or GT is on). 1769 * 1770 * It will _not_ power up the device but instead only check that it's powered 1771 * on. Therefore it is only valid to call this functions from contexts where 1772 * the device is known to be powered up and where trying to power it up would 1773 * result in hilarity and deadlocks. That pretty much means only the system 1774 * suspend/resume code where this is used to grab runtime pm references for 1775 * delayed setup down in work items. 1776 * 1777 * Any runtime pm reference obtained by this function must have a symmetric 1778 * call to intel_runtime_pm_put() to release the reference again. 1779 */ 1780 void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv) 1781 { 1782 struct drm_device *dev = dev_priv->dev; 1783 #if 0 1784 struct device *device = &dev->pdev->dev; 1785 #endif 1786 1787 if (!HAS_RUNTIME_PM(dev)) 1788 return; 1789 1790 WARN(dev_priv->pm.suspended, "Getting nosync-ref while suspended.\n"); 1791 #if 0 1792 pm_runtime_get_noresume(device); 1793 #endif 1794 } 1795 1796 /** 1797 * intel_runtime_pm_put - release a runtime pm reference 1798 * @dev_priv: i915 device instance 1799 * 1800 * This function drops the device-level runtime pm reference obtained by 1801 * intel_runtime_pm_get() and might power down the corresponding 1802 * hardware block right away if this is the last reference. 1803 */ 1804 void intel_runtime_pm_put(struct drm_i915_private *dev_priv) 1805 { 1806 #if 0 1807 struct drm_device *dev = dev_priv->dev; 1808 struct device *device = &dev->pdev->dev; 1809 1810 if (!HAS_RUNTIME_PM(dev)) 1811 return; 1812 1813 pm_runtime_mark_last_busy(device); 1814 pm_runtime_put_autosuspend(device); 1815 #endif 1816 } 1817 1818 /** 1819 * intel_runtime_pm_enable - enable runtime pm 1820 * @dev_priv: i915 device instance 1821 * 1822 * This function enables runtime pm at the end of the driver load sequence. 1823 * 1824 * Note that this function does currently not enable runtime pm for the 1825 * subordinate display power domains. That is only done on the first modeset 1826 * using intel_display_set_init_power(). 1827 */ 1828 void intel_runtime_pm_enable(struct drm_i915_private *dev_priv) 1829 { 1830 struct drm_device *dev = dev_priv->dev; 1831 #if 0 1832 struct device *device = &dev->pdev->dev; 1833 #endif 1834 1835 if (!HAS_RUNTIME_PM(dev)) 1836 return; 1837 1838 #if 0 1839 pm_runtime_set_active(device); 1840 #endif 1841 1842 /* 1843 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a 1844 * requirement. 1845 */ 1846 if (!intel_enable_rc6(dev)) { 1847 DRM_INFO("RC6 disabled, disabling runtime PM support\n"); 1848 return; 1849 } 1850 1851 #if 0 1852 pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */ 1853 pm_runtime_mark_last_busy(device); 1854 pm_runtime_use_autosuspend(device); 1855 1856 pm_runtime_put_autosuspend(device); 1857 #endif 1858 } 1859 1860