xref: /dflybsd-src/sys/dev/drm/i915/intel_ringbuffer.h (revision 872a09d51adf63b4bdae6adb1d96a53f76e161e2)
1 #ifndef _INTEL_RINGBUFFER_H_
2 #define _INTEL_RINGBUFFER_H_
3 
4 #include <linux/hashtable.h>
5 #include "i915_gem_batch_pool.h"
6 #include "i915_gem_request.h"
7 
8 #define I915_CMD_HASH_ORDER 9
9 
10 /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
11  * but keeps the logic simple. Indeed, the whole purpose of this macro is just
12  * to give some inclination as to some of the magic values used in the various
13  * workarounds!
14  */
15 #define CACHELINE_BYTES 64
16 #define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
17 
18 /*
19  * Gen2 BSpec "1. Programming Environment" / 1.4.4.6 "Ring Buffer Use"
20  * Gen3 BSpec "vol1c Memory Interface Functions" / 2.3.4.5 "Ring Buffer Use"
21  * Gen4+ BSpec "vol1c Memory Interface and Command Stream" / 5.3.4.5 "Ring Buffer Use"
22  *
23  * "If the Ring Buffer Head Pointer and the Tail Pointer are on the same
24  * cacheline, the Head Pointer must not be greater than the Tail
25  * Pointer."
26  */
27 #define I915_RING_FREE_SPACE 64
28 
29 struct  intel_hw_status_page {
30 	u32		*page_addr;
31 	unsigned int	gfx_addr;
32 	struct		drm_i915_gem_object *obj;
33 };
34 
35 #define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
36 #define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
37 
38 #define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
39 #define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
40 
41 #define I915_READ_HEAD(engine)  I915_READ(RING_HEAD((engine)->mmio_base))
42 #define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
43 
44 #define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
45 #define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
46 
47 #define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
48 #define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
49 
50 #define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
51 #define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
52 
53 /* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
54  * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
55  */
56 #define gen8_semaphore_seqno_size sizeof(uint64_t)
57 #define GEN8_SEMAPHORE_OFFSET(__from, __to)			     \
58 	(((__from) * I915_NUM_ENGINES  + (__to)) * gen8_semaphore_seqno_size)
59 #define GEN8_SIGNAL_OFFSET(__ring, to)			     \
60 	(i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj) + \
61 	 GEN8_SEMAPHORE_OFFSET((__ring)->id, (to)))
62 #define GEN8_WAIT_OFFSET(__ring, from)			     \
63 	(i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj) + \
64 	 GEN8_SEMAPHORE_OFFSET(from, (__ring)->id))
65 
66 enum intel_engine_hangcheck_action {
67 	HANGCHECK_IDLE = 0,
68 	HANGCHECK_WAIT,
69 	HANGCHECK_ACTIVE,
70 	HANGCHECK_KICK,
71 	HANGCHECK_HUNG,
72 };
73 
74 #define HANGCHECK_SCORE_RING_HUNG 31
75 
76 struct intel_engine_hangcheck {
77 	u64 acthd;
78 	unsigned long user_interrupts;
79 	u32 seqno;
80 	int score;
81 	enum intel_engine_hangcheck_action action;
82 	int deadlock;
83 	u32 instdone[I915_NUM_INSTDONE_REG];
84 };
85 
86 struct intel_ring {
87 	struct drm_i915_gem_object *obj;
88 	void *vaddr;
89 	struct i915_vma *vma;
90 
91 	struct intel_engine_cs *engine;
92 	struct list_head link;
93 
94 	struct list_head request_list;
95 
96 	u32 head;
97 	u32 tail;
98 	int space;
99 	int size;
100 	int effective_size;
101 
102 	/** We track the position of the requests in the ring buffer, and
103 	 * when each is retired we increment last_retired_head as the GPU
104 	 * must have finished processing the request and so we know we
105 	 * can advance the ringbuffer up to that position.
106 	 *
107 	 * last_retired_head is set to -1 after the value is consumed so
108 	 * we can detect new retirements.
109 	 */
110 	u32 last_retired_head;
111 };
112 
113 struct i915_gem_context;
114 struct drm_i915_reg_table;
115 
116 /*
117  * we use a single page to load ctx workarounds so all of these
118  * values are referred in terms of dwords
119  *
120  * struct i915_wa_ctx_bb:
121  *  offset: specifies batch starting position, also helpful in case
122  *    if we want to have multiple batches at different offsets based on
123  *    some criteria. It is not a requirement at the moment but provides
124  *    an option for future use.
125  *  size: size of the batch in DWORDS
126  */
127 struct  i915_ctx_workarounds {
128 	struct i915_wa_ctx_bb {
129 		u32 offset;
130 		u32 size;
131 	} indirect_ctx, per_ctx;
132 	struct drm_i915_gem_object *obj;
133 };
134 
135 struct drm_i915_gem_request;
136 
137 struct intel_engine_cs {
138 	struct drm_i915_private *i915;
139 	const char	*name;
140 	enum intel_engine_id {
141 		RCS = 0,
142 		BCS,
143 		VCS,
144 		VCS2,	/* Keep instances of the same type engine together. */
145 		VECS
146 	} id;
147 #define I915_NUM_ENGINES 5
148 #define _VCS(n) (VCS + (n))
149 	unsigned int exec_id;
150 	unsigned int hw_id;
151 	unsigned int guc_id; /* XXX same as hw_id? */
152 	u64 fence_context;
153 	u32		mmio_base;
154 	unsigned int irq_shift;
155 	struct intel_ring *buffer;
156 	struct list_head buffers;
157 
158 	/* Rather than have every client wait upon all user interrupts,
159 	 * with the herd waking after every interrupt and each doing the
160 	 * heavyweight seqno dance, we delegate the task (of being the
161 	 * bottom-half of the user interrupt) to the first client. After
162 	 * every interrupt, we wake up one client, who does the heavyweight
163 	 * coherent seqno read and either goes back to sleep (if incomplete),
164 	 * or wakes up all the completed clients in parallel, before then
165 	 * transferring the bottom-half status to the next client in the queue.
166 	 *
167 	 * Compared to walking the entire list of waiters in a single dedicated
168 	 * bottom-half, we reduce the latency of the first waiter by avoiding
169 	 * a context switch, but incur additional coherent seqno reads when
170 	 * following the chain of request breadcrumbs. Since it is most likely
171 	 * that we have a single client waiting on each seqno, then reducing
172 	 * the overhead of waking that client is much preferred.
173 	 */
174 	struct intel_breadcrumbs {
175 		struct task_struct *irq_seqno_bh; /* bh for user interrupts */
176 		unsigned long irq_wakeups;
177 		bool irq_posted;
178 
179 		spinlock_t lock; /* protects the lists of requests */
180 		struct rb_root waiters; /* sorted by retirement, priority */
181 		struct rb_root signals; /* sorted by retirement */
182 		struct intel_wait *first_wait; /* oldest waiter by retirement */
183 		struct task_struct *signaler; /* used for fence signalling */
184 		struct drm_i915_gem_request *first_signal;
185 		struct timer_list fake_irq; /* used after a missed interrupt */
186 
187 		bool irq_enabled : 1;
188 		bool rpm_wakelock : 1;
189 	} breadcrumbs;
190 
191 	/*
192 	 * A pool of objects to use as shadow copies of client batch buffers
193 	 * when the command parser is enabled. Prevents the client from
194 	 * modifying the batch contents after software parsing.
195 	 */
196 	struct i915_gem_batch_pool batch_pool;
197 
198 	struct intel_hw_status_page status_page;
199 	struct i915_ctx_workarounds wa_ctx;
200 
201 	u32             irq_keep_mask; /* always keep these interrupts */
202 	u32		irq_enable_mask; /* bitmask to enable ring interrupt */
203 	void		(*irq_enable)(struct intel_engine_cs *engine);
204 	void		(*irq_disable)(struct intel_engine_cs *engine);
205 
206 	int		(*init_hw)(struct intel_engine_cs *engine);
207 
208 	int		(*init_context)(struct drm_i915_gem_request *req);
209 
210 	int		(*emit_flush)(struct drm_i915_gem_request *request,
211 				      u32 mode);
212 #define EMIT_INVALIDATE	BIT(0)
213 #define EMIT_FLUSH	BIT(1)
214 #define EMIT_BARRIER	(EMIT_INVALIDATE | EMIT_FLUSH)
215 	int		(*emit_bb_start)(struct drm_i915_gem_request *req,
216 					 u64 offset, u32 length,
217 					 unsigned int dispatch_flags);
218 #define I915_DISPATCH_SECURE BIT(0)
219 #define I915_DISPATCH_PINNED BIT(1)
220 #define I915_DISPATCH_RS     BIT(2)
221 	int		(*emit_request)(struct drm_i915_gem_request *req);
222 	void		(*submit_request)(struct drm_i915_gem_request *req);
223 	/* Some chipsets are not quite as coherent as advertised and need
224 	 * an expensive kick to force a true read of the up-to-date seqno.
225 	 * However, the up-to-date seqno is not always required and the last
226 	 * seen value is good enough. Note that the seqno will always be
227 	 * monotonic, even if not coherent.
228 	 */
229 	void		(*irq_seqno_barrier)(struct intel_engine_cs *engine);
230 	void		(*cleanup)(struct intel_engine_cs *engine);
231 
232 	/* GEN8 signal/wait table - never trust comments!
233 	 *	  signal to	signal to    signal to   signal to      signal to
234 	 *	    RCS		   VCS          BCS        VECS		 VCS2
235 	 *      --------------------------------------------------------------------
236 	 *  RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
237 	 *	|-------------------------------------------------------------------
238 	 *  VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
239 	 *	|-------------------------------------------------------------------
240 	 *  BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
241 	 *	|-------------------------------------------------------------------
242 	 * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) |  NOP (0x90) | VCS2 (0x98) |
243 	 *	|-------------------------------------------------------------------
244 	 * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP  (0xc0) |
245 	 *	|-------------------------------------------------------------------
246 	 *
247 	 * Generalization:
248 	 *  f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
249 	 *  ie. transpose of g(x, y)
250 	 *
251 	 *	 sync from	sync from    sync from    sync from	sync from
252 	 *	    RCS		   VCS          BCS        VECS		 VCS2
253 	 *      --------------------------------------------------------------------
254 	 *  RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
255 	 *	|-------------------------------------------------------------------
256 	 *  VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
257 	 *	|-------------------------------------------------------------------
258 	 *  BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
259 	 *	|-------------------------------------------------------------------
260 	 * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) |  NOP (0x90) | VCS2 (0xb8) |
261 	 *	|-------------------------------------------------------------------
262 	 * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) |  NOP (0xc0) |
263 	 *	|-------------------------------------------------------------------
264 	 *
265 	 * Generalization:
266 	 *  g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
267 	 *  ie. transpose of f(x, y)
268 	 */
269 	struct {
270 		u32	sync_seqno[I915_NUM_ENGINES-1];
271 
272 		union {
273 			struct {
274 				/* our mbox written by others */
275 				u32		wait[I915_NUM_ENGINES];
276 				/* mboxes this ring signals to */
277 				i915_reg_t	signal[I915_NUM_ENGINES];
278 			} mbox;
279 			u64		signal_ggtt[I915_NUM_ENGINES];
280 		};
281 
282 		/* AKA wait() */
283 		int	(*sync_to)(struct drm_i915_gem_request *req,
284 				   struct drm_i915_gem_request *signal);
285 		int	(*signal)(struct drm_i915_gem_request *req);
286 	} semaphore;
287 
288 	/* Execlists */
289 	struct tasklet_struct irq_tasklet;
290 	spinlock_t execlist_lock; /* used inside tasklet, use spin_lock_bh */
291 	struct list_head execlist_queue;
292 	unsigned int fw_domains;
293 	unsigned int next_context_status_buffer;
294 	unsigned int idle_lite_restore_wa;
295 	bool disable_lite_restore_wa;
296 	u32 ctx_desc_template;
297 
298 	/**
299 	 * List of breadcrumbs associated with GPU requests currently
300 	 * outstanding.
301 	 */
302 	struct list_head request_list;
303 
304 	/**
305 	 * Seqno of request most recently submitted to request_list.
306 	 * Used exclusively by hang checker to avoid grabbing lock while
307 	 * inspecting request list.
308 	 */
309 	u32 last_submitted_seqno;
310 
311 	/* An RCU guarded pointer to the last request. No reference is
312 	 * held to the request, users must carefully acquire a reference to
313 	 * the request using i915_gem_active_get_request_rcu(), or hold the
314 	 * struct_mutex.
315 	 */
316 	struct i915_gem_active last_request;
317 
318 	struct i915_gem_context *last_context;
319 
320 	struct intel_engine_hangcheck hangcheck;
321 
322 	struct {
323 		struct drm_i915_gem_object *obj;
324 		u32 gtt_offset;
325 	} scratch;
326 
327 	bool needs_cmd_parser;
328 
329 	/*
330 	 * Table of commands the command parser needs to know about
331 	 * for this engine.
332 	 */
333 	DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
334 
335 	/*
336 	 * Table of registers allowed in commands that read/write registers.
337 	 */
338 	const struct drm_i915_reg_table *reg_tables;
339 	int reg_table_count;
340 
341 	/*
342 	 * Returns the bitmask for the length field of the specified command.
343 	 * Return 0 for an unrecognized/invalid command.
344 	 *
345 	 * If the command parser finds an entry for a command in the engine's
346 	 * cmd_tables, it gets the command's length based on the table entry.
347 	 * If not, it calls this function to determine the per-engine length
348 	 * field encoding for the command (i.e. different opcode ranges use
349 	 * certain bits to encode the command length in the header).
350 	 */
351 	u32 (*get_cmd_length_mask)(u32 cmd_header);
352 };
353 
354 static inline bool
355 intel_engine_initialized(const struct intel_engine_cs *engine)
356 {
357 	return engine->i915 != NULL;
358 }
359 
360 static inline unsigned
361 intel_engine_flag(const struct intel_engine_cs *engine)
362 {
363 	return 1 << engine->id;
364 }
365 
366 static inline u32
367 intel_engine_sync_index(struct intel_engine_cs *engine,
368 			struct intel_engine_cs *other)
369 {
370 	int idx;
371 
372 	/*
373 	 * rcs -> 0 = vcs, 1 = bcs, 2 = vecs, 3 = vcs2;
374 	 * vcs -> 0 = bcs, 1 = vecs, 2 = vcs2, 3 = rcs;
375 	 * bcs -> 0 = vecs, 1 = vcs2. 2 = rcs, 3 = vcs;
376 	 * vecs -> 0 = vcs2, 1 = rcs, 2 = vcs, 3 = bcs;
377 	 * vcs2 -> 0 = rcs, 1 = vcs, 2 = bcs, 3 = vecs;
378 	 */
379 
380 	idx = (other - engine) - 1;
381 	if (idx < 0)
382 		idx += I915_NUM_ENGINES;
383 
384 	return idx;
385 }
386 
387 static inline void
388 intel_flush_status_page(struct intel_engine_cs *engine, int reg)
389 {
390 	mb();
391 	linux_clflush(&engine->status_page.page_addr[reg]);
392 	mb();
393 }
394 
395 static inline u32
396 intel_read_status_page(struct intel_engine_cs *engine, int reg)
397 {
398 	/* Ensure that the compiler doesn't optimize away the load. */
399 	return READ_ONCE(engine->status_page.page_addr[reg]);
400 }
401 
402 static inline void
403 intel_write_status_page(struct intel_engine_cs *engine,
404 			int reg, u32 value)
405 {
406 	engine->status_page.page_addr[reg] = value;
407 }
408 
409 /*
410  * Reads a dword out of the status page, which is written to from the command
411  * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
412  * MI_STORE_DATA_IMM.
413  *
414  * The following dwords have a reserved meaning:
415  * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
416  * 0x04: ring 0 head pointer
417  * 0x05: ring 1 head pointer (915-class)
418  * 0x06: ring 2 head pointer (915-class)
419  * 0x10-0x1b: Context status DWords (GM45)
420  * 0x1f: Last written status offset. (GM45)
421  * 0x20-0x2f: Reserved (Gen6+)
422  *
423  * The area from dword 0x30 to 0x3ff is available for driver usage.
424  */
425 #define I915_GEM_HWS_INDEX		0x30
426 #define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
427 #define I915_GEM_HWS_SCRATCH_INDEX	0x40
428 #define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
429 
430 struct intel_ring *
431 intel_engine_create_ring(struct intel_engine_cs *engine, int size);
432 int intel_ring_pin(struct intel_ring *ring);
433 void intel_ring_unpin(struct intel_ring *ring);
434 void intel_ring_free(struct intel_ring *ring);
435 
436 void intel_engine_stop(struct intel_engine_cs *engine);
437 void intel_engine_cleanup(struct intel_engine_cs *engine);
438 
439 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request);
440 
441 int __must_check intel_ring_begin(struct drm_i915_gem_request *req, int n);
442 int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);
443 
444 static inline void intel_ring_emit(struct intel_ring *ring, u32 data)
445 {
446 	*(uint32_t *)(ring->vaddr + ring->tail) = data;
447 	ring->tail += 4;
448 }
449 
450 static inline void intel_ring_emit_reg(struct intel_ring *ring, i915_reg_t reg)
451 {
452 	intel_ring_emit(ring, i915_mmio_reg_offset(reg));
453 }
454 
455 static inline void intel_ring_advance(struct intel_ring *ring)
456 {
457 	/* Dummy function.
458 	 *
459 	 * This serves as a placeholder in the code so that the reader
460 	 * can compare against the preceding intel_ring_begin() and
461 	 * check that the number of dwords emitted matches the space
462 	 * reserved for the command packet (i.e. the value passed to
463 	 * intel_ring_begin()).
464 	 */
465 }
466 
467 static inline u32 intel_ring_offset(struct intel_ring *ring, u32 value)
468 {
469 	/* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
470 	return value & (ring->size - 1);
471 }
472 
473 int __intel_ring_space(int head, int tail, int size);
474 void intel_ring_update_space(struct intel_ring *ring);
475 
476 void intel_engine_init_seqno(struct intel_engine_cs *engine, u32 seqno);
477 
478 int intel_init_pipe_control(struct intel_engine_cs *engine, int size);
479 void intel_fini_pipe_control(struct intel_engine_cs *engine);
480 
481 void intel_engine_setup_common(struct intel_engine_cs *engine);
482 int intel_engine_init_common(struct intel_engine_cs *engine);
483 void intel_engine_cleanup_common(struct intel_engine_cs *engine);
484 
485 static inline int intel_engine_idle(struct intel_engine_cs *engine,
486 				    bool interruptible)
487 {
488 	/* Wait upon the last request to be completed */
489 	return i915_gem_active_wait_unlocked(&engine->last_request,
490 					     interruptible, NULL, NULL);
491 }
492 
493 int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
494 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
495 int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine);
496 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
497 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
498 
499 u64 intel_engine_get_active_head(struct intel_engine_cs *engine);
500 static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
501 {
502 	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
503 }
504 
505 int init_workarounds_ring(struct intel_engine_cs *engine);
506 
507 /*
508  * Arbitrary size for largest possible 'add request' sequence. The code paths
509  * are complex and variable. Empirical measurement shows that the worst case
510  * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
511  * we need to allocate double the largest single packet within that emission
512  * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
513  */
514 #define MIN_SPACE_FOR_ADD_REQUEST 336
515 
516 static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
517 {
518 	return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
519 }
520 
521 /* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
522 int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);
523 
524 static inline void intel_wait_init(struct intel_wait *wait, u32 seqno)
525 {
526 	wait->tsk = current;
527 	wait->seqno = seqno;
528 }
529 
530 static inline bool intel_wait_complete(const struct intel_wait *wait)
531 {
532 	return RB_EMPTY_NODE(&wait->node);
533 }
534 
535 bool intel_engine_add_wait(struct intel_engine_cs *engine,
536 			   struct intel_wait *wait);
537 void intel_engine_remove_wait(struct intel_engine_cs *engine,
538 			      struct intel_wait *wait);
539 void intel_engine_enable_signaling(struct drm_i915_gem_request *request);
540 
541 static inline bool intel_engine_has_waiter(struct intel_engine_cs *engine)
542 {
543 	return READ_ONCE(engine->breadcrumbs.irq_seqno_bh);
544 }
545 
546 static inline bool intel_engine_wakeup(struct intel_engine_cs *engine)
547 {
548 	bool wakeup = false;
549 	struct task_struct *tsk = READ_ONCE(engine->breadcrumbs.irq_seqno_bh);
550 	/* Note that for this not to dangerously chase a dangling pointer,
551 	 * the caller is responsible for ensure that the task remain valid for
552 	 * wake_up_process() i.e. that the RCU grace period cannot expire.
553 	 *
554 	 * Also note that tsk is likely to be in !TASK_RUNNING state so an
555 	 * early test for tsk->state != TASK_RUNNING before wake_up_process()
556 	 * is unlikely to be beneficial.
557 	 */
558 	if (tsk)
559 		wakeup = wake_up_process(tsk);
560 	return wakeup;
561 }
562 
563 void intel_engine_enable_fake_irq(struct intel_engine_cs *engine);
564 void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
565 unsigned int intel_kick_waiters(struct drm_i915_private *i915);
566 unsigned int intel_kick_signalers(struct drm_i915_private *i915);
567 
568 static inline bool intel_engine_is_active(struct intel_engine_cs *engine)
569 {
570 	return i915_gem_active_isset(&engine->last_request);
571 }
572 
573 #endif /* _INTEL_RINGBUFFER_H_ */
574