xref: /dflybsd-src/sys/dev/drm/i915/intel_ringbuffer.c (revision ad9efc7b235ec25d20a098e85139e14458b6b2a3)
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  * $FreeBSD: head/sys/dev/drm2/i915/intel_ringbuffer.c 253709 2013-07-27 16:42:29Z kib $
29  */
30 
31 #include <drm/drmP.h>
32 #include <drm/i915_drm.h>
33 #include "i915_drv.h"
34 #include "intel_drv.h"
35 #include "intel_ringbuffer.h"
36 #include <sys/sched.h>
37 
38 /*
39  * 965+ support PIPE_CONTROL commands, which provide finer grained control
40  * over cache flushing.
41  */
42 struct pipe_control {
43 	struct drm_i915_gem_object *obj;
44 	volatile u32 *cpu_page;
45 	u32 gtt_offset;
46 };
47 
48 static inline int ring_space(struct intel_ring_buffer *ring)
49 {
50 	int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE);
51 	if (space < 0)
52 		space += ring->size;
53 	return space;
54 }
55 
56 static int
57 render_ring_flush(struct intel_ring_buffer *ring,
58 		  uint32_t	invalidate_domains,
59 		  uint32_t	flush_domains)
60 {
61 	struct drm_device *dev = ring->dev;
62 	uint32_t cmd;
63 	int ret;
64 
65 	/*
66 	 * read/write caches:
67 	 *
68 	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
69 	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
70 	 * also flushed at 2d versus 3d pipeline switches.
71 	 *
72 	 * read-only caches:
73 	 *
74 	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
75 	 * MI_READ_FLUSH is set, and is always flushed on 965.
76 	 *
77 	 * I915_GEM_DOMAIN_COMMAND may not exist?
78 	 *
79 	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
80 	 * invalidated when MI_EXE_FLUSH is set.
81 	 *
82 	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
83 	 * invalidated with every MI_FLUSH.
84 	 *
85 	 * TLBs:
86 	 *
87 	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
88 	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
89 	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
90 	 * are flushed at any MI_FLUSH.
91 	 */
92 
93 	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
94 	if ((invalidate_domains|flush_domains) &
95 	    I915_GEM_DOMAIN_RENDER)
96 		cmd &= ~MI_NO_WRITE_FLUSH;
97 	if (INTEL_INFO(dev)->gen < 4) {
98 		/*
99 		 * On the 965, the sampler cache always gets flushed
100 		 * and this bit is reserved.
101 		 */
102 		if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
103 			cmd |= MI_READ_FLUSH;
104 	}
105 	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
106 		cmd |= MI_EXE_FLUSH;
107 
108 	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
109 	    (IS_G4X(dev) || IS_GEN5(dev)))
110 		cmd |= MI_INVALIDATE_ISP;
111 
112 	ret = intel_ring_begin(ring, 2);
113 	if (ret)
114 		return ret;
115 
116 	intel_ring_emit(ring, cmd);
117 	intel_ring_emit(ring, MI_NOOP);
118 	intel_ring_advance(ring);
119 
120 	return 0;
121 }
122 
123 /**
124  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
125  * implementing two workarounds on gen6.  From section 1.4.7.1
126  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
127  *
128  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
129  * produced by non-pipelined state commands), software needs to first
130  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
131  * 0.
132  *
133  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
134  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
135  *
136  * And the workaround for these two requires this workaround first:
137  *
138  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
139  * BEFORE the pipe-control with a post-sync op and no write-cache
140  * flushes.
141  *
142  * And this last workaround is tricky because of the requirements on
143  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
144  * volume 2 part 1:
145  *
146  *     "1 of the following must also be set:
147  *      - Render Target Cache Flush Enable ([12] of DW1)
148  *      - Depth Cache Flush Enable ([0] of DW1)
149  *      - Stall at Pixel Scoreboard ([1] of DW1)
150  *      - Depth Stall ([13] of DW1)
151  *      - Post-Sync Operation ([13] of DW1)
152  *      - Notify Enable ([8] of DW1)"
153  *
154  * The cache flushes require the workaround flush that triggered this
155  * one, so we can't use it.  Depth stall would trigger the same.
156  * Post-sync nonzero is what triggered this second workaround, so we
157  * can't use that one either.  Notify enable is IRQs, which aren't
158  * really our business.  That leaves only stall at scoreboard.
159  */
160 static int
161 intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
162 {
163 	struct pipe_control *pc = ring->private;
164 	u32 scratch_addr = pc->gtt_offset + 128;
165 	int ret;
166 
167 
168 	ret = intel_ring_begin(ring, 6);
169 	if (ret)
170 		return ret;
171 
172 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
173 	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
174 			PIPE_CONTROL_STALL_AT_SCOREBOARD);
175 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
176 	intel_ring_emit(ring, 0); /* low dword */
177 	intel_ring_emit(ring, 0); /* high dword */
178 	intel_ring_emit(ring, MI_NOOP);
179 	intel_ring_advance(ring);
180 
181 	ret = intel_ring_begin(ring, 6);
182 	if (ret)
183 		return ret;
184 
185 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
186 	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
187 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
188 	intel_ring_emit(ring, 0);
189 	intel_ring_emit(ring, 0);
190 	intel_ring_emit(ring, MI_NOOP);
191 	intel_ring_advance(ring);
192 
193 	return 0;
194 }
195 
196 static int
197 gen6_render_ring_flush(struct intel_ring_buffer *ring,
198                          u32 invalidate_domains, u32 flush_domains)
199 {
200 	u32 flags = 0;
201 	struct pipe_control *pc = ring->private;
202 	u32 scratch_addr = pc->gtt_offset + 128;
203 	int ret;
204 
205 	/* Force SNB workarounds for PIPE_CONTROL flushes */
206 	intel_emit_post_sync_nonzero_flush(ring);
207 
208 	/* Just flush everything.  Experiments have shown that reducing the
209 	 * number of bits based on the write domains has little performance
210 	 * impact.
211 	 */
212 	flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
213 	flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
214 	flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
215 	flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
216 	flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
217 	flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
218 	flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
219 
220 	ret = intel_ring_begin(ring, 6);
221 	if (ret)
222 		return ret;
223 
224 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
225 	intel_ring_emit(ring, flags);
226 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
227 	intel_ring_emit(ring, 0); /* lower dword */
228 	intel_ring_emit(ring, 0); /* uppwer dword */
229 	intel_ring_emit(ring, MI_NOOP);
230 	intel_ring_advance(ring);
231 
232 	return 0;
233 }
234 
235 static void ring_write_tail(struct intel_ring_buffer *ring,
236 			    uint32_t value)
237 {
238 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
239 	I915_WRITE_TAIL(ring, value);
240 }
241 
242 u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
243 {
244 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
245 	uint32_t acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
246 			RING_ACTHD(ring->mmio_base) : ACTHD;
247 
248 	return I915_READ(acthd_reg);
249 }
250 
251 static int init_ring_common(struct intel_ring_buffer *ring)
252 {
253 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
254 	struct drm_i915_gem_object *obj = ring->obj;
255 	uint32_t head;
256 
257 	/* Stop the ring if it's running. */
258 	I915_WRITE_CTL(ring, 0);
259 	I915_WRITE_HEAD(ring, 0);
260 	ring->write_tail(ring, 0);
261 
262 	/* Initialize the ring. */
263 	I915_WRITE_START(ring, obj->gtt_offset);
264 	head = I915_READ_HEAD(ring) & HEAD_ADDR;
265 
266 	/* G45 ring initialization fails to reset head to zero */
267 	if (head != 0) {
268 		DRM_DEBUG("%s head not reset to zero "
269 			      "ctl %08x head %08x tail %08x start %08x\n",
270 			      ring->name,
271 			      I915_READ_CTL(ring),
272 			      I915_READ_HEAD(ring),
273 			      I915_READ_TAIL(ring),
274 			      I915_READ_START(ring));
275 
276 		I915_WRITE_HEAD(ring, 0);
277 
278 		if (I915_READ_HEAD(ring) & HEAD_ADDR) {
279 			DRM_ERROR("failed to set %s head to zero "
280 				  "ctl %08x head %08x tail %08x start %08x\n",
281 				  ring->name,
282 				  I915_READ_CTL(ring),
283 				  I915_READ_HEAD(ring),
284 				  I915_READ_TAIL(ring),
285 				  I915_READ_START(ring));
286 		}
287 	}
288 
289 	I915_WRITE_CTL(ring,
290 			((ring->size - PAGE_SIZE) & RING_NR_PAGES)
291 			| RING_VALID);
292 
293 	/* If the head is still not zero, the ring is dead */
294 	if (_intel_wait_for(ring->dev,
295 	    (I915_READ_CTL(ring) & RING_VALID) != 0 &&
296 	     I915_READ_START(ring) == obj->gtt_offset &&
297 	     (I915_READ_HEAD(ring) & HEAD_ADDR) == 0,
298 	    50, 1, "915rii")) {
299 		DRM_ERROR("%s initialization failed "
300 				"ctl %08x head %08x tail %08x start %08x\n",
301 				ring->name,
302 				I915_READ_CTL(ring),
303 				I915_READ_HEAD(ring),
304 				I915_READ_TAIL(ring),
305 				I915_READ_START(ring));
306 		return -EIO;
307 	}
308 
309 	if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
310 		i915_kernel_lost_context(ring->dev);
311 	else {
312 		ring->head = I915_READ_HEAD(ring);
313 		ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
314 		ring->space = ring_space(ring);
315 	}
316 
317 	return 0;
318 }
319 
320 static int
321 init_pipe_control(struct intel_ring_buffer *ring)
322 {
323 	struct pipe_control *pc;
324 	struct drm_i915_gem_object *obj;
325 	int ret;
326 
327 	if (ring->private)
328 		return 0;
329 
330 	pc = kmalloc(sizeof(*pc), DRM_I915_GEM, M_WAITOK);
331 	if (!pc)
332 		return -ENOMEM;
333 
334 	obj = i915_gem_alloc_object(ring->dev, 4096);
335 	if (obj == NULL) {
336 		DRM_ERROR("Failed to allocate seqno page\n");
337 		ret = -ENOMEM;
338 		goto err;
339 	}
340 
341 	i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
342 
343 	ret = i915_gem_object_pin(obj, 4096, true);
344 	if (ret)
345 		goto err_unref;
346 
347 	pc->gtt_offset = obj->gtt_offset;
348 	pc->cpu_page = (uint32_t *)kmem_alloc_nofault(&kernel_map, PAGE_SIZE, PAGE_SIZE);
349 	if (pc->cpu_page == NULL)
350 		goto err_unpin;
351 	pmap_qenter((uintptr_t)pc->cpu_page, &obj->pages[0], 1);
352 	pmap_invalidate_cache_range((vm_offset_t)pc->cpu_page,
353 	    (vm_offset_t)pc->cpu_page + PAGE_SIZE);
354 
355 	pc->obj = obj;
356 	ring->private = pc;
357 	return 0;
358 
359 err_unpin:
360 	i915_gem_object_unpin(obj);
361 err_unref:
362 	drm_gem_object_unreference(&obj->base);
363 err:
364 	drm_free(pc, DRM_I915_GEM);
365 	return ret;
366 }
367 
368 static void
369 cleanup_pipe_control(struct intel_ring_buffer *ring)
370 {
371 	struct pipe_control *pc = ring->private;
372 	struct drm_i915_gem_object *obj;
373 
374 	if (!ring->private)
375 		return;
376 
377 	obj = pc->obj;
378 	pmap_qremove((vm_offset_t)pc->cpu_page, 1);
379 	kmem_free(&kernel_map, (uintptr_t)pc->cpu_page, PAGE_SIZE);
380 	i915_gem_object_unpin(obj);
381 	drm_gem_object_unreference(&obj->base);
382 
383 	drm_free(pc, DRM_I915_GEM);
384 	ring->private = NULL;
385 }
386 
387 static int init_render_ring(struct intel_ring_buffer *ring)
388 {
389 	struct drm_device *dev = ring->dev;
390 	struct drm_i915_private *dev_priv = dev->dev_private;
391 	int ret = init_ring_common(ring);
392 
393 	if (INTEL_INFO(dev)->gen > 3)
394 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
395 
396 	/* We need to disable the AsyncFlip performance optimisations in order
397 	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
398 	 * programmed to '1' on all products.
399 	 */
400 	if (INTEL_INFO(dev)->gen >= 6)
401 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
402 
403 	/* Required for the hardware to program scanline values for waiting */
404 	if (INTEL_INFO(dev)->gen == 6)
405 		I915_WRITE(GFX_MODE,
406 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_ALWAYS));
407 
408 	if (IS_GEN7(dev))
409 		I915_WRITE(GFX_MODE_GEN7,
410 			   _MASKED_BIT_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
411 			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
412 
413 	if (INTEL_INFO(dev)->gen >= 5) {
414 		ret = init_pipe_control(ring);
415 		if (ret)
416 			return ret;
417 	}
418 
419 	if (IS_GEN6(dev)) {
420 		/* From the Sandybridge PRM, volume 1 part 3, page 24:
421 		 * "If this bit is set, STCunit will have LRA as replacement
422 		 *  policy. [...] This bit must be reset.  LRA replacement
423 		 *  policy is not supported."
424 		 */
425 		I915_WRITE(CACHE_MODE_0,
426 			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
427 	}
428 
429 	if (INTEL_INFO(dev)->gen >= 6)
430 		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
431 
432 	if (HAS_L3_GPU_CACHE(dev))
433 		I915_WRITE_IMR(ring, ~GEN6_RENDER_L3_PARITY_ERROR);
434 
435 	return ret;
436 }
437 
438 static void render_ring_cleanup(struct intel_ring_buffer *ring)
439 {
440 	if (!ring->private)
441 		return;
442 
443 	cleanup_pipe_control(ring);
444 }
445 
446 static void
447 update_mboxes(struct intel_ring_buffer *ring,
448 	    u32 seqno,
449 	    u32 mmio_offset)
450 {
451 	intel_ring_emit(ring, MI_SEMAPHORE_MBOX |
452 			      MI_SEMAPHORE_GLOBAL_GTT |
453 			      MI_SEMAPHORE_REGISTER |
454 			      MI_SEMAPHORE_UPDATE);
455 	intel_ring_emit(ring, seqno);
456 	intel_ring_emit(ring, mmio_offset);
457 }
458 
459 /**
460  * gen6_add_request - Update the semaphore mailbox registers
461  *
462  * @ring - ring that is adding a request
463  * @seqno - return seqno stuck into the ring
464  *
465  * Update the mailbox registers in the *other* rings with the current seqno.
466  * This acts like a signal in the canonical semaphore.
467  */
468 static int
469 gen6_add_request(struct intel_ring_buffer *ring,
470 		 u32 *seqno)
471 {
472 	u32 mbox1_reg;
473 	u32 mbox2_reg;
474 	int ret;
475 
476 	ret = intel_ring_begin(ring, 10);
477 	if (ret)
478 		return ret;
479 
480 	mbox1_reg = ring->signal_mbox[0];
481 	mbox2_reg = ring->signal_mbox[1];
482 
483 	*seqno = i915_gem_next_request_seqno(ring);
484 
485 	update_mboxes(ring, *seqno, mbox1_reg);
486 	update_mboxes(ring, *seqno, mbox2_reg);
487 	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
488 	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
489 	intel_ring_emit(ring, *seqno);
490 	intel_ring_emit(ring, MI_USER_INTERRUPT);
491 	intel_ring_advance(ring);
492 
493 	return 0;
494 }
495 
496 /**
497  * intel_ring_sync - sync the waiter to the signaller on seqno
498  *
499  * @waiter - ring that is waiting
500  * @signaller - ring which has, or will signal
501  * @seqno - seqno which the waiter will block on
502  */
503 static int
504 intel_ring_sync(struct intel_ring_buffer *waiter,
505 		struct intel_ring_buffer *signaller,
506 		int ring,
507 		u32 seqno)
508 {
509 	int ret;
510 	u32 dw1 = MI_SEMAPHORE_MBOX |
511 		  MI_SEMAPHORE_COMPARE |
512 		  MI_SEMAPHORE_REGISTER;
513 
514 	ret = intel_ring_begin(waiter, 4);
515 	if (ret)
516 		return ret;
517 
518 	intel_ring_emit(waiter, dw1 | signaller->semaphore_register[ring]);
519 	intel_ring_emit(waiter, seqno);
520 	intel_ring_emit(waiter, 0);
521 	intel_ring_emit(waiter, MI_NOOP);
522 	intel_ring_advance(waiter);
523 
524 	return 0;
525 }
526 
527 int render_ring_sync_to(struct intel_ring_buffer *waiter,
528     struct intel_ring_buffer *signaller, u32 seqno);
529 int gen6_bsd_ring_sync_to(struct intel_ring_buffer *waiter,
530     struct intel_ring_buffer *signaller, u32 seqno);
531 int gen6_blt_ring_sync_to(struct intel_ring_buffer *waiter,
532     struct intel_ring_buffer *signaller, u32 seqno);
533 
534 /* VCS->RCS (RVSYNC) or BCS->RCS (RBSYNC) */
535 int
536 render_ring_sync_to(struct intel_ring_buffer *waiter,
537 		    struct intel_ring_buffer *signaller,
538 		    u32 seqno)
539 {
540 	KASSERT(signaller->semaphore_register[RCS] != MI_SEMAPHORE_SYNC_INVALID,
541 	    ("valid RCS semaphore"));
542 	return intel_ring_sync(waiter,
543 			       signaller,
544 			       RCS,
545 			       seqno);
546 }
547 
548 /* RCS->VCS (VRSYNC) or BCS->VCS (VBSYNC) */
549 int
550 gen6_bsd_ring_sync_to(struct intel_ring_buffer *waiter,
551 		      struct intel_ring_buffer *signaller,
552 		      u32 seqno)
553 {
554 	KASSERT(signaller->semaphore_register[VCS] != MI_SEMAPHORE_SYNC_INVALID,
555 	    ("Valid VCS semaphore"));
556 	return intel_ring_sync(waiter,
557 			       signaller,
558 			       VCS,
559 			       seqno);
560 }
561 
562 /* RCS->BCS (BRSYNC) or VCS->BCS (BVSYNC) */
563 int
564 gen6_blt_ring_sync_to(struct intel_ring_buffer *waiter,
565 		      struct intel_ring_buffer *signaller,
566 		      u32 seqno)
567 {
568 	KASSERT(signaller->semaphore_register[BCS] != MI_SEMAPHORE_SYNC_INVALID,
569 	    ("Valid BCS semaphore"));
570 	return intel_ring_sync(waiter,
571 			       signaller,
572 			       BCS,
573 			       seqno);
574 }
575 
576 #define PIPE_CONTROL_FLUSH(ring__, addr__)					\
577 do {									\
578 	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
579 		 PIPE_CONTROL_DEPTH_STALL);				\
580 	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
581 	intel_ring_emit(ring__, 0);							\
582 	intel_ring_emit(ring__, 0);							\
583 } while (0)
584 
585 static int
586 pc_render_add_request(struct intel_ring_buffer *ring,
587 		      uint32_t *result)
588 {
589 	u32 seqno = i915_gem_next_request_seqno(ring);
590 	struct pipe_control *pc = ring->private;
591 	u32 scratch_addr = pc->gtt_offset + 128;
592 	int ret;
593 
594 	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
595 	 * incoherent with writes to memory, i.e. completely fubar,
596 	 * so we need to use PIPE_NOTIFY instead.
597 	 *
598 	 * However, we also need to workaround the qword write
599 	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
600 	 * memory before requesting an interrupt.
601 	 */
602 	ret = intel_ring_begin(ring, 32);
603 	if (ret)
604 		return ret;
605 
606 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
607 			PIPE_CONTROL_WRITE_FLUSH |
608 			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
609 	intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
610 	intel_ring_emit(ring, seqno);
611 	intel_ring_emit(ring, 0);
612 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
613 	scratch_addr += 128; /* write to separate cachelines */
614 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
615 	scratch_addr += 128;
616 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
617 	scratch_addr += 128;
618 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
619 	scratch_addr += 128;
620 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
621 	scratch_addr += 128;
622 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
623 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
624 			PIPE_CONTROL_WRITE_FLUSH |
625 			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
626 			PIPE_CONTROL_NOTIFY);
627 	intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
628 	intel_ring_emit(ring, seqno);
629 	intel_ring_emit(ring, 0);
630 	intel_ring_advance(ring);
631 
632 	*result = seqno;
633 	return 0;
634 }
635 
636 static int
637 render_ring_add_request(struct intel_ring_buffer *ring,
638 			uint32_t *result)
639 {
640 	u32 seqno = i915_gem_next_request_seqno(ring);
641 	int ret;
642 
643 	ret = intel_ring_begin(ring, 4);
644 	if (ret)
645 		return ret;
646 
647 	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
648 	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
649 	intel_ring_emit(ring, seqno);
650 	intel_ring_emit(ring, MI_USER_INTERRUPT);
651 	intel_ring_advance(ring);
652 
653 	*result = seqno;
654 	return 0;
655 }
656 
657 static u32
658 gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
659 {
660 	/* Workaround to force correct ordering between irq and seqno writes on
661 	 * ivb (and maybe also on snb) by reading from a CS register (like
662 	 * ACTHD) before reading the status page. */
663 	if (!lazy_coherency)
664 		intel_ring_get_active_head(ring);
665 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
666 }
667 
668 static u32
669 ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
670 {
671 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
672 }
673 
674 static u32
675 pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
676 {
677 	struct pipe_control *pc = ring->private;
678 	return pc->cpu_page[0];
679 }
680 
681 static void
682 ironlake_enable_irq(drm_i915_private_t *dev_priv, uint32_t mask)
683 {
684 	dev_priv->gt_irq_mask &= ~mask;
685 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
686 	POSTING_READ(GTIMR);
687 }
688 
689 static void
690 ironlake_disable_irq(drm_i915_private_t *dev_priv, uint32_t mask)
691 {
692 	dev_priv->gt_irq_mask |= mask;
693 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
694 	POSTING_READ(GTIMR);
695 }
696 
697 static void
698 i915_enable_irq(drm_i915_private_t *dev_priv, uint32_t mask)
699 {
700 	dev_priv->irq_mask &= ~mask;
701 	I915_WRITE(IMR, dev_priv->irq_mask);
702 	POSTING_READ(IMR);
703 }
704 
705 static void
706 i915_disable_irq(drm_i915_private_t *dev_priv, uint32_t mask)
707 {
708 	dev_priv->irq_mask |= mask;
709 	I915_WRITE(IMR, dev_priv->irq_mask);
710 	POSTING_READ(IMR);
711 }
712 
713 static bool
714 render_ring_get_irq(struct intel_ring_buffer *ring)
715 {
716 	struct drm_device *dev = ring->dev;
717 	drm_i915_private_t *dev_priv = dev->dev_private;
718 
719 	if (!dev->irq_enabled)
720 		return false;
721 
722 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
723 	if (ring->irq_refcount++ == 0) {
724 		if (HAS_PCH_SPLIT(dev))
725 			ironlake_enable_irq(dev_priv,
726 					    GT_PIPE_NOTIFY | GT_USER_INTERRUPT);
727 		else
728 			i915_enable_irq(dev_priv, I915_USER_INTERRUPT);
729 	}
730 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
731 
732 	return true;
733 }
734 
735 static void
736 render_ring_put_irq(struct intel_ring_buffer *ring)
737 {
738 	struct drm_device *dev = ring->dev;
739 	drm_i915_private_t *dev_priv = dev->dev_private;
740 
741 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
742 	if (--ring->irq_refcount == 0) {
743 		if (HAS_PCH_SPLIT(dev))
744 			ironlake_disable_irq(dev_priv,
745 					     GT_USER_INTERRUPT |
746 					     GT_PIPE_NOTIFY);
747 		else
748 			i915_disable_irq(dev_priv, I915_USER_INTERRUPT);
749 	}
750 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
751 }
752 
753 void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
754 {
755 	struct drm_device *dev = ring->dev;
756 	drm_i915_private_t *dev_priv = dev->dev_private;
757 	uint32_t mmio = 0;
758 
759 	/* The ring status page addresses are no longer next to the rest of
760 	 * the ring registers as of gen7.
761 	 */
762 	if (IS_GEN7(dev)) {
763 		switch (ring->id) {
764 		case RCS:
765 			mmio = RENDER_HWS_PGA_GEN7;
766 			break;
767 		case BCS:
768 			mmio = BLT_HWS_PGA_GEN7;
769 			break;
770 		case VCS:
771 			mmio = BSD_HWS_PGA_GEN7;
772 			break;
773 		}
774 	} else if (IS_GEN6(dev)) {
775 		mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
776 	} else {
777 		mmio = RING_HWS_PGA(ring->mmio_base);
778 	}
779 
780 	I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
781 	POSTING_READ(mmio);
782 }
783 
784 static int
785 bsd_ring_flush(struct intel_ring_buffer *ring,
786 	       uint32_t     invalidate_domains,
787 	       uint32_t     flush_domains)
788 {
789 	int ret;
790 
791 	ret = intel_ring_begin(ring, 2);
792 	if (ret)
793 		return ret;
794 
795 	intel_ring_emit(ring, MI_FLUSH);
796 	intel_ring_emit(ring, MI_NOOP);
797 	intel_ring_advance(ring);
798 	return 0;
799 }
800 
801 static int
802 ring_add_request(struct intel_ring_buffer *ring,
803 		 uint32_t *result)
804 {
805 	uint32_t seqno;
806 	int ret;
807 
808 	ret = intel_ring_begin(ring, 4);
809 	if (ret)
810 		return ret;
811 
812 	seqno = i915_gem_next_request_seqno(ring);
813 
814 	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
815 	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
816 	intel_ring_emit(ring, seqno);
817 	intel_ring_emit(ring, MI_USER_INTERRUPT);
818 	intel_ring_advance(ring);
819 
820 	*result = seqno;
821 	return 0;
822 }
823 
824 static bool
825 gen6_ring_get_irq(struct intel_ring_buffer *ring, uint32_t gflag, uint32_t rflag)
826 {
827 	struct drm_device *dev = ring->dev;
828 	drm_i915_private_t *dev_priv = dev->dev_private;
829 
830 	if (!dev->irq_enabled)
831 	       return false;
832 
833 	gen6_gt_force_wake_get(dev_priv);
834 
835 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
836 	if (ring->irq_refcount++ == 0) {
837 		ring->irq_mask &= ~rflag;
838 		I915_WRITE_IMR(ring, ring->irq_mask);
839 		ironlake_enable_irq(dev_priv, gflag);
840 	}
841 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
842 
843 	return true;
844 }
845 
846 static void
847 gen6_ring_put_irq(struct intel_ring_buffer *ring, uint32_t gflag, uint32_t rflag)
848 {
849 	struct drm_device *dev = ring->dev;
850 	drm_i915_private_t *dev_priv = dev->dev_private;
851 
852 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
853 	if (--ring->irq_refcount == 0) {
854 		ring->irq_mask |= rflag;
855 		I915_WRITE_IMR(ring, ring->irq_mask);
856 		ironlake_disable_irq(dev_priv, gflag);
857 	}
858 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
859 
860 	gen6_gt_force_wake_put(dev_priv);
861 }
862 
863 static bool
864 bsd_ring_get_irq(struct intel_ring_buffer *ring)
865 {
866 	struct drm_device *dev = ring->dev;
867 	drm_i915_private_t *dev_priv = dev->dev_private;
868 
869 	if (!dev->irq_enabled)
870 		return false;
871 
872 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
873 	if (ring->irq_refcount++ == 0) {
874 		if (IS_G4X(dev))
875 			i915_enable_irq(dev_priv, I915_BSD_USER_INTERRUPT);
876 		else
877 			ironlake_enable_irq(dev_priv, GT_BSD_USER_INTERRUPT);
878 	}
879 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
880 
881 	return true;
882 }
883 static void
884 bsd_ring_put_irq(struct intel_ring_buffer *ring)
885 {
886 	struct drm_device *dev = ring->dev;
887 	drm_i915_private_t *dev_priv = dev->dev_private;
888 
889 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
890 	if (--ring->irq_refcount == 0) {
891 		if (IS_G4X(dev))
892 			i915_disable_irq(dev_priv, I915_BSD_USER_INTERRUPT);
893 		else
894 			ironlake_disable_irq(dev_priv, GT_BSD_USER_INTERRUPT);
895 	}
896 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
897 }
898 
899 static int
900 ring_dispatch_execbuffer(struct intel_ring_buffer *ring, uint32_t offset,
901     uint32_t length)
902 {
903 	int ret;
904 
905 	ret = intel_ring_begin(ring, 2);
906 	if (ret)
907 		return ret;
908 
909 	intel_ring_emit(ring,
910 			MI_BATCH_BUFFER_START | (2 << 6) |
911 			MI_BATCH_NON_SECURE_I965);
912 	intel_ring_emit(ring, offset);
913 	intel_ring_advance(ring);
914 
915 	return 0;
916 }
917 
918 static int
919 render_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
920 				uint32_t offset, uint32_t len)
921 {
922 	struct drm_device *dev = ring->dev;
923 	int ret;
924 
925 	if (IS_I830(dev) || IS_845G(dev)) {
926 		ret = intel_ring_begin(ring, 4);
927 		if (ret)
928 			return ret;
929 
930 		intel_ring_emit(ring, MI_BATCH_BUFFER);
931 		intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
932 		intel_ring_emit(ring, offset + len - 8);
933 		intel_ring_emit(ring, 0);
934 	} else {
935 		ret = intel_ring_begin(ring, 2);
936 		if (ret)
937 			return ret;
938 
939 		if (INTEL_INFO(dev)->gen >= 4) {
940 			intel_ring_emit(ring,
941 					MI_BATCH_BUFFER_START | (2 << 6) |
942 					MI_BATCH_NON_SECURE_I965);
943 			intel_ring_emit(ring, offset);
944 		} else {
945 			intel_ring_emit(ring,
946 					MI_BATCH_BUFFER_START | (2 << 6));
947 			intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
948 		}
949 	}
950 	intel_ring_advance(ring);
951 
952 	return 0;
953 }
954 
955 static void cleanup_status_page(struct intel_ring_buffer *ring)
956 {
957 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
958 	struct drm_i915_gem_object *obj;
959 
960 	obj = ring->status_page.obj;
961 	if (obj == NULL)
962 		return;
963 
964 	pmap_qremove((vm_offset_t)ring->status_page.page_addr, 1);
965 	kmem_free(&kernel_map, (vm_offset_t)ring->status_page.page_addr,
966 	    PAGE_SIZE);
967 	i915_gem_object_unpin(obj);
968 	drm_gem_object_unreference(&obj->base);
969 	ring->status_page.obj = NULL;
970 
971 	memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
972 }
973 
974 static int init_status_page(struct intel_ring_buffer *ring)
975 {
976 	struct drm_device *dev = ring->dev;
977 	drm_i915_private_t *dev_priv = dev->dev_private;
978 	struct drm_i915_gem_object *obj;
979 	int ret;
980 
981 	obj = i915_gem_alloc_object(dev, 4096);
982 	if (obj == NULL) {
983 		DRM_ERROR("Failed to allocate status page\n");
984 		ret = -ENOMEM;
985 		goto err;
986 	}
987 
988 	i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
989 
990 	ret = i915_gem_object_pin(obj, 4096, true);
991 	if (ret != 0) {
992 		goto err_unref;
993 	}
994 
995 	ring->status_page.gfx_addr = obj->gtt_offset;
996 	ring->status_page.page_addr = (void *)kmem_alloc_nofault(&kernel_map,
997 	    PAGE_SIZE, PAGE_SIZE);
998 	if (ring->status_page.page_addr == NULL) {
999 		memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
1000 		goto err_unpin;
1001 	}
1002 	pmap_qenter((vm_offset_t)ring->status_page.page_addr, &obj->pages[0],
1003 	    1);
1004 	pmap_invalidate_cache_range((vm_offset_t)ring->status_page.page_addr,
1005 	    (vm_offset_t)ring->status_page.page_addr + PAGE_SIZE);
1006 	ring->status_page.obj = obj;
1007 	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1008 
1009 	intel_ring_setup_status_page(ring);
1010 	DRM_DEBUG("i915: init_status_page %s hws offset: 0x%08x\n",
1011 			ring->name, ring->status_page.gfx_addr);
1012 
1013 	return 0;
1014 
1015 err_unpin:
1016 	i915_gem_object_unpin(obj);
1017 err_unref:
1018 	drm_gem_object_unreference(&obj->base);
1019 err:
1020 	return ret;
1021 }
1022 
1023 static int intel_init_ring_buffer(struct drm_device *dev,
1024 				  struct intel_ring_buffer *ring)
1025 {
1026 	struct drm_i915_gem_object *obj;
1027 	int ret;
1028 
1029 	ring->dev = dev;
1030 	INIT_LIST_HEAD(&ring->active_list);
1031 	INIT_LIST_HEAD(&ring->request_list);
1032 	INIT_LIST_HEAD(&ring->gpu_write_list);
1033 
1034 	ring->irq_mask = ~0;
1035 
1036 	init_waitqueue_head(&ring->irq_queue);
1037 
1038 	if (I915_NEED_GFX_HWS(dev)) {
1039 		ret = init_status_page(ring);
1040 		if (ret)
1041 			return ret;
1042 	}
1043 
1044 	obj = i915_gem_alloc_object(dev, ring->size);
1045 	if (obj == NULL) {
1046 		DRM_ERROR("Failed to allocate ringbuffer\n");
1047 		ret = -ENOMEM;
1048 		goto err_hws;
1049 	}
1050 
1051 	ring->obj = obj;
1052 
1053 	ret = i915_gem_object_pin(obj, PAGE_SIZE, true);
1054 	if (ret)
1055 		goto err_unref;
1056 
1057 	ring->map.size = ring->size;
1058 	ring->map.offset = dev->agp->base + obj->gtt_offset;
1059 	ring->map.type = 0;
1060 	ring->map.flags = 0;
1061 	ring->map.mtrr = 0;
1062 
1063 	drm_core_ioremap_wc(&ring->map, dev);
1064 	if (ring->map.virtual == NULL) {
1065 		DRM_ERROR("Failed to map ringbuffer.\n");
1066 		ret = -EINVAL;
1067 		goto err_unpin;
1068 	}
1069 
1070 	ring->virtual_start = ring->map.virtual;
1071 	ret = ring->init(ring);
1072 	if (ret)
1073 		goto err_unmap;
1074 
1075 	/* Workaround an erratum on the i830 which causes a hang if
1076 	 * the TAIL pointer points to within the last 2 cachelines
1077 	 * of the buffer.
1078 	 */
1079 	ring->effective_size = ring->size;
1080 	if (IS_I830(ring->dev) || IS_845G(ring->dev))
1081 		ring->effective_size -= 128;
1082 
1083 	return 0;
1084 
1085 err_unmap:
1086 	drm_core_ioremapfree(&ring->map, dev);
1087 err_unpin:
1088 	i915_gem_object_unpin(obj);
1089 err_unref:
1090 	drm_gem_object_unreference(&obj->base);
1091 	ring->obj = NULL;
1092 err_hws:
1093 	cleanup_status_page(ring);
1094 	return ret;
1095 }
1096 
1097 void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1098 {
1099 	struct drm_i915_private *dev_priv;
1100 	int ret;
1101 
1102 	if (ring->obj == NULL)
1103 		return;
1104 
1105 	/* Disable the ring buffer. The ring must be idle at this point */
1106 	dev_priv = ring->dev->dev_private;
1107 	ret = intel_ring_idle(ring);
1108 	if (ret)
1109 		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1110 			  ring->name, ret);
1111 
1112 	I915_WRITE_CTL(ring, 0);
1113 
1114 	drm_core_ioremapfree(&ring->map, ring->dev);
1115 
1116 	i915_gem_object_unpin(ring->obj);
1117 	drm_gem_object_unreference(&ring->obj->base);
1118 	ring->obj = NULL;
1119 
1120 	if (ring->cleanup)
1121 		ring->cleanup(ring);
1122 
1123 	cleanup_status_page(ring);
1124 }
1125 
1126 static int intel_ring_wait_seqno(struct intel_ring_buffer *ring, u32 seqno)
1127 {
1128 	int ret;
1129 
1130 	ret = i915_wait_seqno(ring, seqno);
1131 	if (!ret)
1132 		i915_gem_retire_requests_ring(ring);
1133 
1134 	return ret;
1135 }
1136 
1137 static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1138 {
1139 	struct drm_i915_gem_request *request;
1140 	u32 seqno = 0;
1141 	int ret;
1142 
1143 	i915_gem_retire_requests_ring(ring);
1144 
1145 	if (ring->last_retired_head != -1) {
1146 		ring->head = ring->last_retired_head;
1147 		ring->last_retired_head = -1;
1148 		ring->space = ring_space(ring);
1149 		if (ring->space >= n)
1150 			return 0;
1151 	}
1152 
1153 	list_for_each_entry(request, &ring->request_list, list) {
1154 		int space;
1155 
1156 		if (request->tail == -1)
1157 			continue;
1158 
1159 		space = request->tail - (ring->tail + 8);
1160 		if (space < 0)
1161 			space += ring->size;
1162 		if (space >= n) {
1163 			seqno = request->seqno;
1164 			break;
1165 		}
1166 
1167 		/* Consume this request in case we need more space than
1168 		 * is available and so need to prevent a race between
1169 		 * updating last_retired_head and direct reads of
1170 		 * I915_RING_HEAD. It also provides a nice sanity check.
1171 		 */
1172 		request->tail = -1;
1173 	}
1174 
1175 	if (seqno == 0)
1176 		return -ENOSPC;
1177 
1178 	ret = intel_ring_wait_seqno(ring, seqno);
1179 	if (ret)
1180 		return ret;
1181 
1182 	if (ring->last_retired_head == -1)
1183 		return -ENOSPC;
1184 
1185 	ring->head = ring->last_retired_head;
1186 	ring->last_retired_head = -1;
1187 	ring->space = ring_space(ring);
1188 	if (ring->space < n)
1189 		return -ENOSPC;
1190 
1191 	return 0;
1192 }
1193 
1194 static int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
1195 {
1196 	struct drm_device *dev = ring->dev;
1197 	struct drm_i915_private *dev_priv = dev->dev_private;
1198 	unsigned long end;
1199 	int ret;
1200 
1201 	ret = intel_ring_wait_request(ring, n);
1202 	if (ret != -ENOSPC)
1203 		return ret;
1204 
1205 	/* With GEM the hangcheck timer should kick us out of the loop,
1206 	 * leaving it early runs the risk of corrupting GEM state (due
1207 	 * to running on almost untested codepaths). But on resume
1208 	 * timers don't work yet, so prevent a complete hang in that
1209 	 * case by choosing an insanely large timeout. */
1210 	end = ticks + 60 * hz;
1211 
1212 	do {
1213 		ring->head = I915_READ_HEAD(ring);
1214 		ring->space = ring_space(ring);
1215 		if (ring->space >= n) {
1216 			return 0;
1217 		}
1218 
1219 #if 0
1220 		if (dev->primary->master) {
1221 			struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1222 			if (master_priv->sarea_priv)
1223 				master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1224 		}
1225 #else
1226 		if (dev_priv->sarea_priv)
1227 			dev_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1228 #endif
1229 
1230 		DELAY(1000);
1231 
1232 		ret = i915_gem_check_wedge(dev_priv, dev_priv->mm.interruptible);
1233 		if (ret)
1234 			return ret;
1235 	} while (!time_after(ticks, end));
1236 	return -EBUSY;
1237 }
1238 
1239 static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1240 {
1241 	uint32_t __iomem *virt;
1242 	int rem = ring->size - ring->tail;
1243 
1244 	if (ring->space < rem) {
1245 		int ret = ring_wait_for_space(ring, rem);
1246 		if (ret)
1247 			return ret;
1248 	}
1249 
1250 	virt = (unsigned int *)((char *)ring->virtual_start + ring->tail);
1251 	rem /= 4;
1252 	while (rem--)
1253 		*virt++ = MI_NOOP;
1254 
1255 	ring->tail = 0;
1256 	ring->space = ring_space(ring);
1257 
1258 	return 0;
1259 }
1260 
1261 int intel_ring_idle(struct intel_ring_buffer *ring)
1262 {
1263 	return ring_wait_for_space(ring, ring->size - 8);
1264 }
1265 
1266 int intel_ring_begin(struct intel_ring_buffer *ring,
1267 		     int num_dwords)
1268 {
1269 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1270 	int n = 4*num_dwords;
1271 	int ret;
1272 
1273 	ret = i915_gem_check_wedge(dev_priv, dev_priv->mm.interruptible);
1274 	if (ret)
1275 		return ret;
1276 
1277 	if (unlikely(ring->tail + n > ring->effective_size)) {
1278 		ret = intel_wrap_ring_buffer(ring);
1279 		if (unlikely(ret))
1280 			return ret;
1281 	}
1282 
1283 	if (unlikely(ring->space < n)) {
1284 		ret = ring_wait_for_space(ring, n);
1285 		if (unlikely(ret))
1286 			return ret;
1287 	}
1288 
1289 	ring->space -= n;
1290 	return 0;
1291 }
1292 
1293 void intel_ring_advance(struct intel_ring_buffer *ring)
1294 {
1295 	ring->tail &= ring->size - 1;
1296 	ring->write_tail(ring, ring->tail);
1297 }
1298 
1299 static const struct intel_ring_buffer render_ring = {
1300 	.name			= "render ring",
1301 	.id			= RCS,
1302 	.mmio_base		= RENDER_RING_BASE,
1303 	.size			= 32 * PAGE_SIZE,
1304 	.init			= init_render_ring,
1305 	.write_tail		= ring_write_tail,
1306 	.flush			= render_ring_flush,
1307 	.add_request		= render_ring_add_request,
1308 	.get_seqno		= ring_get_seqno,
1309 	.irq_get		= render_ring_get_irq,
1310 	.irq_put		= render_ring_put_irq,
1311 	.dispatch_execbuffer	= render_ring_dispatch_execbuffer,
1312 	.cleanup		= render_ring_cleanup,
1313 	.sync_to		= render_ring_sync_to,
1314 	.semaphore_register	= {MI_SEMAPHORE_SYNC_INVALID,
1315 				   MI_SEMAPHORE_SYNC_RV,
1316 				   MI_SEMAPHORE_SYNC_RB},
1317 	.signal_mbox		= {GEN6_VRSYNC, GEN6_BRSYNC},
1318 };
1319 
1320 /* ring buffer for bit-stream decoder */
1321 
1322 static const struct intel_ring_buffer bsd_ring = {
1323 	.name                   = "bsd ring",
1324 	.id			= VCS,
1325 	.mmio_base		= BSD_RING_BASE,
1326 	.size			= 32 * PAGE_SIZE,
1327 	.init			= init_ring_common,
1328 	.write_tail		= ring_write_tail,
1329 	.flush			= bsd_ring_flush,
1330 	.add_request		= ring_add_request,
1331 	.get_seqno		= ring_get_seqno,
1332 	.irq_get		= bsd_ring_get_irq,
1333 	.irq_put		= bsd_ring_put_irq,
1334 	.dispatch_execbuffer	= ring_dispatch_execbuffer,
1335 };
1336 
1337 
1338 static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1339 				     u32 value)
1340 {
1341 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1342 
1343        /* Every tail move must follow the sequence below */
1344 
1345 	/* Disable notification that the ring is IDLE. The GT
1346 	 * will then assume that it is busy and bring it out of rc6.
1347 	 */
1348 	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1349 		   _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1350 
1351 	/* Clear the context id. Here be magic! */
1352 	I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1353 
1354 	/* Wait for the ring not to be idle, i.e. for it to wake up. */
1355 	if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1356 		      GEN6_BSD_SLEEP_INDICATOR) == 0,
1357 		     50))
1358 		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1359 
1360 	/* Now that the ring is fully powered up, update the tail */
1361 	I915_WRITE_TAIL(ring, value);
1362 	POSTING_READ(RING_TAIL(ring->mmio_base));
1363 
1364 	/* Let the ring send IDLE messages to the GT again,
1365 	 * and so let it sleep to conserve power when idle.
1366 	 */
1367 	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1368 		   _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1369 }
1370 
1371 static int gen6_ring_flush(struct intel_ring_buffer *ring,
1372 			   uint32_t invalidate, uint32_t flush)
1373 {
1374 	uint32_t cmd;
1375 	int ret;
1376 
1377 	ret = intel_ring_begin(ring, 4);
1378 	if (ret)
1379 		return ret;
1380 
1381 	cmd = MI_FLUSH_DW;
1382 	if (invalidate & I915_GEM_GPU_DOMAINS)
1383 		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
1384 	intel_ring_emit(ring, cmd);
1385 	intel_ring_emit(ring, 0);
1386 	intel_ring_emit(ring, 0);
1387 	intel_ring_emit(ring, MI_NOOP);
1388 	intel_ring_advance(ring);
1389 	return 0;
1390 }
1391 
1392 static int
1393 gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1394 			      uint32_t offset, uint32_t len)
1395 {
1396 	int ret;
1397 
1398 	ret = intel_ring_begin(ring, 2);
1399 	if (ret)
1400 		return ret;
1401 
1402 	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_NON_SECURE_I965);
1403 	/* bit0-7 is the length on GEN6+ */
1404 	intel_ring_emit(ring, offset);
1405 	intel_ring_advance(ring);
1406 
1407 	return 0;
1408 }
1409 
1410 static bool
1411 gen6_render_ring_get_irq(struct intel_ring_buffer *ring)
1412 {
1413 	return gen6_ring_get_irq(ring,
1414 				 GT_USER_INTERRUPT,
1415 				 GEN6_RENDER_USER_INTERRUPT);
1416 }
1417 
1418 static void
1419 gen6_render_ring_put_irq(struct intel_ring_buffer *ring)
1420 {
1421 	return gen6_ring_put_irq(ring,
1422 				 GT_USER_INTERRUPT,
1423 				 GEN6_RENDER_USER_INTERRUPT);
1424 }
1425 
1426 static bool
1427 gen6_bsd_ring_get_irq(struct intel_ring_buffer *ring)
1428 {
1429 	return gen6_ring_get_irq(ring,
1430 				 GT_GEN6_BSD_USER_INTERRUPT,
1431 				 GEN6_BSD_USER_INTERRUPT);
1432 }
1433 
1434 static void
1435 gen6_bsd_ring_put_irq(struct intel_ring_buffer *ring)
1436 {
1437 	return gen6_ring_put_irq(ring,
1438 				 GT_GEN6_BSD_USER_INTERRUPT,
1439 				 GEN6_BSD_USER_INTERRUPT);
1440 }
1441 
1442 /* ring buffer for Video Codec for Gen6+ */
1443 static const struct intel_ring_buffer gen6_bsd_ring = {
1444 	.name			= "gen6 bsd ring",
1445 	.id			= VCS,
1446 	.mmio_base		= GEN6_BSD_RING_BASE,
1447 	.size			= 32 * PAGE_SIZE,
1448 	.init			= init_ring_common,
1449 	.write_tail		= gen6_bsd_ring_write_tail,
1450 	.flush			= gen6_ring_flush,
1451 	.add_request		= gen6_add_request,
1452 	.get_seqno		= gen6_ring_get_seqno,
1453 	.irq_get		= gen6_bsd_ring_get_irq,
1454 	.irq_put		= gen6_bsd_ring_put_irq,
1455 	.dispatch_execbuffer	= gen6_ring_dispatch_execbuffer,
1456 	.sync_to		= gen6_bsd_ring_sync_to,
1457 	.semaphore_register	= {MI_SEMAPHORE_SYNC_VR,
1458 				   MI_SEMAPHORE_SYNC_INVALID,
1459 				   MI_SEMAPHORE_SYNC_VB},
1460 	.signal_mbox		= {GEN6_RVSYNC, GEN6_BVSYNC},
1461 };
1462 
1463 /* Blitter support (SandyBridge+) */
1464 
1465 static bool
1466 blt_ring_get_irq(struct intel_ring_buffer *ring)
1467 {
1468 	return gen6_ring_get_irq(ring,
1469 				 GT_GEN6_BLT_USER_INTERRUPT,
1470 				 GEN6_BLITTER_USER_INTERRUPT);
1471 }
1472 
1473 static void
1474 blt_ring_put_irq(struct intel_ring_buffer *ring)
1475 {
1476 	gen6_ring_put_irq(ring,
1477 			  GT_GEN6_BLT_USER_INTERRUPT,
1478 			  GEN6_BLITTER_USER_INTERRUPT);
1479 }
1480 
1481 static int blt_ring_flush(struct intel_ring_buffer *ring,
1482 			  uint32_t invalidate, uint32_t flush)
1483 {
1484 	uint32_t cmd;
1485 	int ret;
1486 
1487 	ret = intel_ring_begin(ring, 4);
1488 	if (ret)
1489 		return ret;
1490 
1491 	cmd = MI_FLUSH_DW;
1492 	if (invalidate & I915_GEM_DOMAIN_RENDER)
1493 		cmd |= MI_INVALIDATE_TLB;
1494 	intel_ring_emit(ring, cmd);
1495 	intel_ring_emit(ring, 0);
1496 	intel_ring_emit(ring, 0);
1497 	intel_ring_emit(ring, MI_NOOP);
1498 	intel_ring_advance(ring);
1499 	return 0;
1500 }
1501 
1502 static const struct intel_ring_buffer gen6_blt_ring = {
1503 	.name			= "blt ring",
1504 	.id			= BCS,
1505 	.mmio_base		= BLT_RING_BASE,
1506 	.size			= 32 * PAGE_SIZE,
1507 	.init			= init_ring_common,
1508 	.write_tail		= ring_write_tail,
1509 	.flush			= blt_ring_flush,
1510 	.add_request		= gen6_add_request,
1511 	.get_seqno		= gen6_ring_get_seqno,
1512 	.irq_get		= blt_ring_get_irq,
1513 	.irq_put		= blt_ring_put_irq,
1514 	.dispatch_execbuffer	= gen6_ring_dispatch_execbuffer,
1515 	.sync_to		= gen6_blt_ring_sync_to,
1516 	.semaphore_register	= {MI_SEMAPHORE_SYNC_BR,
1517 				   MI_SEMAPHORE_SYNC_BV,
1518 				   MI_SEMAPHORE_SYNC_INVALID},
1519 	.signal_mbox		= {GEN6_RBSYNC, GEN6_VBSYNC},
1520 };
1521 
1522 int intel_init_render_ring_buffer(struct drm_device *dev)
1523 {
1524 	drm_i915_private_t *dev_priv = dev->dev_private;
1525 	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1526 
1527 	*ring = render_ring;
1528 	if (INTEL_INFO(dev)->gen >= 6) {
1529 		ring->add_request = gen6_add_request;
1530 		ring->flush = gen6_render_ring_flush;
1531 		ring->irq_get = gen6_render_ring_get_irq;
1532 		ring->irq_put = gen6_render_ring_put_irq;
1533 		ring->get_seqno = gen6_ring_get_seqno;
1534 	} else if (IS_GEN5(dev)) {
1535 		ring->add_request = pc_render_add_request;
1536 		ring->get_seqno = pc_render_get_seqno;
1537 	}
1538 
1539 	if (!I915_NEED_GFX_HWS(dev)) {
1540 		ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1541 		memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1542 	}
1543 
1544 	return intel_init_ring_buffer(dev, ring);
1545 }
1546 
1547 int intel_render_ring_init_dri(struct drm_device *dev, uint64_t start,
1548     uint32_t size)
1549 {
1550 	drm_i915_private_t *dev_priv = dev->dev_private;
1551 	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1552 
1553 	*ring = render_ring;
1554 	if (INTEL_INFO(dev)->gen >= 6) {
1555 		ring->add_request = gen6_add_request;
1556 		ring->irq_get = gen6_render_ring_get_irq;
1557 		ring->irq_put = gen6_render_ring_put_irq;
1558 	} else if (IS_GEN5(dev)) {
1559 		ring->add_request = pc_render_add_request;
1560 		ring->get_seqno = pc_render_get_seqno;
1561 	}
1562 
1563 	ring->dev = dev;
1564 	INIT_LIST_HEAD(&ring->active_list);
1565 	INIT_LIST_HEAD(&ring->request_list);
1566 	INIT_LIST_HEAD(&ring->gpu_write_list);
1567 
1568 	ring->size = size;
1569 	ring->effective_size = ring->size;
1570 	if (IS_I830(ring->dev))
1571 		ring->effective_size -= 128;
1572 
1573 	ring->map.offset = start;
1574 	ring->map.size = size;
1575 	ring->map.type = 0;
1576 	ring->map.flags = 0;
1577 	ring->map.mtrr = 0;
1578 
1579 	drm_core_ioremap_wc(&ring->map, dev);
1580 	if (ring->map.virtual == NULL) {
1581 		DRM_ERROR("can not ioremap virtual address for"
1582 			  " ring buffer\n");
1583 		return -ENOMEM;
1584 	}
1585 
1586 	ring->virtual_start = (void *)ring->map.virtual;
1587 	return 0;
1588 }
1589 
1590 int intel_init_bsd_ring_buffer(struct drm_device *dev)
1591 {
1592 	drm_i915_private_t *dev_priv = dev->dev_private;
1593 	struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
1594 
1595 	if (IS_GEN6(dev) || IS_GEN7(dev))
1596 		*ring = gen6_bsd_ring;
1597 	else
1598 		*ring = bsd_ring;
1599 
1600 	return intel_init_ring_buffer(dev, ring);
1601 }
1602 
1603 int intel_init_blt_ring_buffer(struct drm_device *dev)
1604 {
1605 	drm_i915_private_t *dev_priv = dev->dev_private;
1606 	struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
1607 
1608 	*ring = gen6_blt_ring;
1609 
1610 	return intel_init_ring_buffer(dev, ring);
1611 }
1612 
1613 int
1614 intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
1615 {
1616 	int ret;
1617 
1618 	if (!ring->gpu_caches_dirty)
1619 		return 0;
1620 
1621 	ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
1622 	if (ret)
1623 		return ret;
1624 
1625 	ring->gpu_caches_dirty = false;
1626 	return 0;
1627 }
1628 
1629 int
1630 intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
1631 {
1632 	uint32_t flush_domains;
1633 	int ret;
1634 
1635 	flush_domains = 0;
1636 	if (ring->gpu_caches_dirty)
1637 		flush_domains = I915_GEM_GPU_DOMAINS;
1638 
1639 	ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
1640 	if (ret)
1641 		return ret;
1642 
1643 	ring->gpu_caches_dirty = false;
1644 	return 0;
1645 }
1646