xref: /dflybsd-src/sys/dev/drm/i915/intel_ringbuffer.c (revision abce74f49c2c19b069958a0b48de0a9987d14e35)
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29 
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 
36 /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
37  * but keeps the logic simple. Indeed, the whole purpose of this macro is just
38  * to give some inclination as to some of the magic values used in the various
39  * workarounds!
40  */
41 #define CACHELINE_BYTES 64
42 
43 static inline int __ring_space(int head, int tail, int size)
44 {
45 	int space = head - (tail + I915_RING_FREE_SPACE);
46 	if (space < 0)
47 		space += size;
48 	return space;
49 }
50 
51 static inline int ring_space(struct intel_engine_cs *ring)
52 {
53 	struct intel_ringbuffer *ringbuf = ring->buffer;
54 	return __ring_space(ringbuf->head & HEAD_ADDR, ringbuf->tail, ringbuf->size);
55 }
56 
57 static bool intel_ring_stopped(struct intel_engine_cs *ring)
58 {
59 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
60 	return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
61 }
62 
63 void __intel_ring_advance(struct intel_engine_cs *ring)
64 {
65 	struct intel_ringbuffer *ringbuf = ring->buffer;
66 	ringbuf->tail &= ringbuf->size - 1;
67 	if (intel_ring_stopped(ring))
68 		return;
69 	ring->write_tail(ring, ringbuf->tail);
70 }
71 
72 static int
73 gen2_render_ring_flush(struct intel_engine_cs *ring,
74 		       u32	invalidate_domains,
75 		       u32	flush_domains)
76 {
77 	u32 cmd;
78 	int ret;
79 
80 	cmd = MI_FLUSH;
81 	if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
82 		cmd |= MI_NO_WRITE_FLUSH;
83 
84 	if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
85 		cmd |= MI_READ_FLUSH;
86 
87 	ret = intel_ring_begin(ring, 2);
88 	if (ret)
89 		return ret;
90 
91 	intel_ring_emit(ring, cmd);
92 	intel_ring_emit(ring, MI_NOOP);
93 	intel_ring_advance(ring);
94 
95 	return 0;
96 }
97 
98 static int
99 gen4_render_ring_flush(struct intel_engine_cs *ring,
100 		       u32	invalidate_domains,
101 		       u32	flush_domains)
102 {
103 	struct drm_device *dev = ring->dev;
104 	u32 cmd;
105 	int ret;
106 
107 	/*
108 	 * read/write caches:
109 	 *
110 	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
111 	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
112 	 * also flushed at 2d versus 3d pipeline switches.
113 	 *
114 	 * read-only caches:
115 	 *
116 	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
117 	 * MI_READ_FLUSH is set, and is always flushed on 965.
118 	 *
119 	 * I915_GEM_DOMAIN_COMMAND may not exist?
120 	 *
121 	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
122 	 * invalidated when MI_EXE_FLUSH is set.
123 	 *
124 	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
125 	 * invalidated with every MI_FLUSH.
126 	 *
127 	 * TLBs:
128 	 *
129 	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
130 	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
131 	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
132 	 * are flushed at any MI_FLUSH.
133 	 */
134 
135 	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
136 	if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
137 		cmd &= ~MI_NO_WRITE_FLUSH;
138 	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
139 		cmd |= MI_EXE_FLUSH;
140 
141 	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
142 	    (IS_G4X(dev) || IS_GEN5(dev)))
143 		cmd |= MI_INVALIDATE_ISP;
144 
145 	ret = intel_ring_begin(ring, 2);
146 	if (ret)
147 		return ret;
148 
149 	intel_ring_emit(ring, cmd);
150 	intel_ring_emit(ring, MI_NOOP);
151 	intel_ring_advance(ring);
152 
153 	return 0;
154 }
155 
156 /**
157  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
158  * implementing two workarounds on gen6.  From section 1.4.7.1
159  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
160  *
161  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
162  * produced by non-pipelined state commands), software needs to first
163  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
164  * 0.
165  *
166  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
167  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
168  *
169  * And the workaround for these two requires this workaround first:
170  *
171  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
172  * BEFORE the pipe-control with a post-sync op and no write-cache
173  * flushes.
174  *
175  * And this last workaround is tricky because of the requirements on
176  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
177  * volume 2 part 1:
178  *
179  *     "1 of the following must also be set:
180  *      - Render Target Cache Flush Enable ([12] of DW1)
181  *      - Depth Cache Flush Enable ([0] of DW1)
182  *      - Stall at Pixel Scoreboard ([1] of DW1)
183  *      - Depth Stall ([13] of DW1)
184  *      - Post-Sync Operation ([13] of DW1)
185  *      - Notify Enable ([8] of DW1)"
186  *
187  * The cache flushes require the workaround flush that triggered this
188  * one, so we can't use it.  Depth stall would trigger the same.
189  * Post-sync nonzero is what triggered this second workaround, so we
190  * can't use that one either.  Notify enable is IRQs, which aren't
191  * really our business.  That leaves only stall at scoreboard.
192  */
193 static int
194 intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
195 {
196 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
197 	int ret;
198 
199 
200 	ret = intel_ring_begin(ring, 6);
201 	if (ret)
202 		return ret;
203 
204 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
205 	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
206 			PIPE_CONTROL_STALL_AT_SCOREBOARD);
207 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
208 	intel_ring_emit(ring, 0); /* low dword */
209 	intel_ring_emit(ring, 0); /* high dword */
210 	intel_ring_emit(ring, MI_NOOP);
211 	intel_ring_advance(ring);
212 
213 	ret = intel_ring_begin(ring, 6);
214 	if (ret)
215 		return ret;
216 
217 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
218 	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
219 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
220 	intel_ring_emit(ring, 0);
221 	intel_ring_emit(ring, 0);
222 	intel_ring_emit(ring, MI_NOOP);
223 	intel_ring_advance(ring);
224 
225 	return 0;
226 }
227 
228 static int
229 gen6_render_ring_flush(struct intel_engine_cs *ring,
230                          u32 invalidate_domains, u32 flush_domains)
231 {
232 	u32 flags = 0;
233 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
234 	int ret;
235 
236 	/* Force SNB workarounds for PIPE_CONTROL flushes */
237 	ret = intel_emit_post_sync_nonzero_flush(ring);
238 	if (ret)
239 		return ret;
240 
241 	/* Just flush everything.  Experiments have shown that reducing the
242 	 * number of bits based on the write domains has little performance
243 	 * impact.
244 	 */
245 	if (flush_domains) {
246 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
247 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
248 		/*
249 		 * Ensure that any following seqno writes only happen
250 		 * when the render cache is indeed flushed.
251 		 */
252 		flags |= PIPE_CONTROL_CS_STALL;
253 	}
254 	if (invalidate_domains) {
255 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
256 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
257 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
258 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
259 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
260 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
261 		/*
262 		 * TLB invalidate requires a post-sync write.
263 		 */
264 		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
265 	}
266 
267 	ret = intel_ring_begin(ring, 4);
268 	if (ret)
269 		return ret;
270 
271 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
272 	intel_ring_emit(ring, flags);
273 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
274 	intel_ring_emit(ring, 0);
275 	intel_ring_advance(ring);
276 
277 	return 0;
278 }
279 
280 static int
281 gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
282 {
283 	int ret;
284 
285 	ret = intel_ring_begin(ring, 4);
286 	if (ret)
287 		return ret;
288 
289 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
290 	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
291 			      PIPE_CONTROL_STALL_AT_SCOREBOARD);
292 	intel_ring_emit(ring, 0);
293 	intel_ring_emit(ring, 0);
294 	intel_ring_advance(ring);
295 
296 	return 0;
297 }
298 
299 static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
300 {
301 	int ret;
302 
303 	if (!ring->fbc_dirty)
304 		return 0;
305 
306 	ret = intel_ring_begin(ring, 6);
307 	if (ret)
308 		return ret;
309 	/* WaFbcNukeOn3DBlt:ivb/hsw */
310 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
311 	intel_ring_emit(ring, MSG_FBC_REND_STATE);
312 	intel_ring_emit(ring, value);
313 	intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
314 	intel_ring_emit(ring, MSG_FBC_REND_STATE);
315 	intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
316 	intel_ring_advance(ring);
317 
318 	ring->fbc_dirty = false;
319 	return 0;
320 }
321 
322 static int
323 gen7_render_ring_flush(struct intel_engine_cs *ring,
324 		       u32 invalidate_domains, u32 flush_domains)
325 {
326 	u32 flags = 0;
327 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
328 	int ret;
329 
330 	/*
331 	 * Ensure that any following seqno writes only happen when the render
332 	 * cache is indeed flushed.
333 	 *
334 	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
335 	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
336 	 * don't try to be clever and just set it unconditionally.
337 	 */
338 	flags |= PIPE_CONTROL_CS_STALL;
339 
340 	/* Just flush everything.  Experiments have shown that reducing the
341 	 * number of bits based on the write domains has little performance
342 	 * impact.
343 	 */
344 	if (flush_domains) {
345 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
346 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
347 	}
348 	if (invalidate_domains) {
349 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
350 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
351 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
352 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
353 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
354 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
355 		/*
356 		 * TLB invalidate requires a post-sync write.
357 		 */
358 		flags |= PIPE_CONTROL_QW_WRITE;
359 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
360 
361 		/* Workaround: we must issue a pipe_control with CS-stall bit
362 		 * set before a pipe_control command that has the state cache
363 		 * invalidate bit set. */
364 		gen7_render_ring_cs_stall_wa(ring);
365 	}
366 
367 	ret = intel_ring_begin(ring, 4);
368 	if (ret)
369 		return ret;
370 
371 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
372 	intel_ring_emit(ring, flags);
373 	intel_ring_emit(ring, scratch_addr);
374 	intel_ring_emit(ring, 0);
375 	intel_ring_advance(ring);
376 
377 	if (!invalidate_domains && flush_domains)
378 		return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
379 
380 	return 0;
381 }
382 
383 static int
384 gen8_render_ring_flush(struct intel_engine_cs *ring,
385 		       u32 invalidate_domains, u32 flush_domains)
386 {
387 	u32 flags = 0;
388 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
389 	int ret;
390 
391 	flags |= PIPE_CONTROL_CS_STALL;
392 
393 	if (flush_domains) {
394 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
395 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
396 	}
397 	if (invalidate_domains) {
398 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
399 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
400 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
401 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
402 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
403 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
404 		flags |= PIPE_CONTROL_QW_WRITE;
405 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
406 	}
407 
408 	ret = intel_ring_begin(ring, 6);
409 	if (ret)
410 		return ret;
411 
412 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
413 	intel_ring_emit(ring, flags);
414 	intel_ring_emit(ring, scratch_addr);
415 	intel_ring_emit(ring, 0);
416 	intel_ring_emit(ring, 0);
417 	intel_ring_emit(ring, 0);
418 	intel_ring_advance(ring);
419 
420 	return 0;
421 
422 }
423 
424 static void ring_write_tail(struct intel_engine_cs *ring,
425 			    u32 value)
426 {
427 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
428 	I915_WRITE_TAIL(ring, value);
429 }
430 
431 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
432 {
433 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
434 	u64 acthd;
435 
436 	if (INTEL_INFO(ring->dev)->gen >= 8)
437 		acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
438 					 RING_ACTHD_UDW(ring->mmio_base));
439 	else if (INTEL_INFO(ring->dev)->gen >= 4)
440 		acthd = I915_READ(RING_ACTHD(ring->mmio_base));
441 	else
442 		acthd = I915_READ(ACTHD);
443 
444 	return acthd;
445 }
446 
447 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
448 {
449 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
450 	u32 addr;
451 
452 	addr = dev_priv->status_page_dmah->busaddr;
453 	if (INTEL_INFO(ring->dev)->gen >= 4)
454 		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
455 	I915_WRITE(HWS_PGA, addr);
456 }
457 
458 static bool stop_ring(struct intel_engine_cs *ring)
459 {
460 	struct drm_i915_private *dev_priv = to_i915(ring->dev);
461 
462 	if (!IS_GEN2(ring->dev)) {
463 		I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
464 		if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
465 			DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
466 			return false;
467 		}
468 	}
469 
470 	I915_WRITE_CTL(ring, 0);
471 	I915_WRITE_HEAD(ring, 0);
472 	ring->write_tail(ring, 0);
473 
474 	if (!IS_GEN2(ring->dev)) {
475 		(void)I915_READ_CTL(ring);
476 		I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
477 	}
478 
479 	return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
480 }
481 
482 static int init_ring_common(struct intel_engine_cs *ring)
483 {
484 	struct drm_device *dev = ring->dev;
485 	struct drm_i915_private *dev_priv = dev->dev_private;
486 	struct intel_ringbuffer *ringbuf = ring->buffer;
487 	struct drm_i915_gem_object *obj = ringbuf->obj;
488 	int ret = 0;
489 
490 	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
491 
492 	if (!stop_ring(ring)) {
493 		/* G45 ring initialization often fails to reset head to zero */
494 		DRM_DEBUG_KMS("%s head not reset to zero "
495 			      "ctl %08x head %08x tail %08x start %08x\n",
496 			      ring->name,
497 			      I915_READ_CTL(ring),
498 			      I915_READ_HEAD(ring),
499 			      I915_READ_TAIL(ring),
500 			      I915_READ_START(ring));
501 
502 		if (!stop_ring(ring)) {
503 			DRM_ERROR("failed to set %s head to zero "
504 				  "ctl %08x head %08x tail %08x start %08x\n",
505 				  ring->name,
506 				  I915_READ_CTL(ring),
507 				  I915_READ_HEAD(ring),
508 				  I915_READ_TAIL(ring),
509 				  I915_READ_START(ring));
510 			ret = -EIO;
511 			goto out;
512 		}
513 	}
514 
515 	if (I915_NEED_GFX_HWS(dev))
516 		intel_ring_setup_status_page(ring);
517 	else
518 		ring_setup_phys_status_page(ring);
519 
520 	/* Enforce ordering by reading HEAD register back */
521 	I915_READ_HEAD(ring);
522 
523 	/* Initialize the ring. This must happen _after_ we've cleared the ring
524 	 * registers with the above sequence (the readback of the HEAD registers
525 	 * also enforces ordering), otherwise the hw might lose the new ring
526 	 * register values. */
527 	I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
528 	I915_WRITE_CTL(ring,
529 			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
530 			| RING_VALID);
531 
532 	/* If the head is still not zero, the ring is dead */
533 	if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
534 		     I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
535 		     (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
536 		DRM_ERROR("%s initialization failed "
537 			  "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
538 			  ring->name,
539 			  I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
540 			  I915_READ_HEAD(ring), I915_READ_TAIL(ring),
541 			  I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
542 		ret = -EIO;
543 		goto out;
544 	}
545 
546 	if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
547 		i915_kernel_lost_context(ring->dev);
548 	else {
549 		ringbuf->head = I915_READ_HEAD(ring);
550 		ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
551 		ringbuf->space = ring_space(ring);
552 		ringbuf->last_retired_head = -1;
553 	}
554 
555 	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
556 
557 out:
558 	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
559 
560 	return ret;
561 }
562 
563 static int
564 init_pipe_control(struct intel_engine_cs *ring)
565 {
566 	int ret;
567 
568 	if (ring->scratch.obj)
569 		return 0;
570 
571 	ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
572 	if (ring->scratch.obj == NULL) {
573 		DRM_ERROR("Failed to allocate seqno page\n");
574 		ret = -ENOMEM;
575 		goto err;
576 	}
577 
578 	ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
579 	if (ret)
580 		goto err_unref;
581 
582 	ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
583 	if (ret)
584 		goto err_unref;
585 
586 	ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
587 	ring->scratch.cpu_page = kmap(ring->scratch.obj->pages[0]);
588 	if (ring->scratch.cpu_page == NULL) {
589 		ret = -ENOMEM;
590 		goto err_unpin;
591 	}
592 
593 	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
594 			 ring->name, ring->scratch.gtt_offset);
595 	return 0;
596 
597 err_unpin:
598 	i915_gem_object_ggtt_unpin(ring->scratch.obj);
599 err_unref:
600 	drm_gem_object_unreference(&ring->scratch.obj->base);
601 err:
602 	return ret;
603 }
604 
605 static int init_render_ring(struct intel_engine_cs *ring)
606 {
607 	struct drm_device *dev = ring->dev;
608 	struct drm_i915_private *dev_priv = dev->dev_private;
609 	int ret = init_ring_common(ring);
610 
611 	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
612 	if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
613 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
614 
615 	/* We need to disable the AsyncFlip performance optimisations in order
616 	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
617 	 * programmed to '1' on all products.
618 	 *
619 	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
620 	 */
621 	if (INTEL_INFO(dev)->gen >= 6)
622 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
623 
624 	/* Required for the hardware to program scanline values for waiting */
625 	/* WaEnableFlushTlbInvalidationMode:snb */
626 	if (INTEL_INFO(dev)->gen == 6)
627 		I915_WRITE(GFX_MODE,
628 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
629 
630 	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
631 	if (IS_GEN7(dev))
632 		I915_WRITE(GFX_MODE_GEN7,
633 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
634 			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
635 
636 	if (INTEL_INFO(dev)->gen >= 5) {
637 		ret = init_pipe_control(ring);
638 		if (ret)
639 			return ret;
640 	}
641 
642 	if (IS_GEN6(dev)) {
643 		/* From the Sandybridge PRM, volume 1 part 3, page 24:
644 		 * "If this bit is set, STCunit will have LRA as replacement
645 		 *  policy. [...] This bit must be reset.  LRA replacement
646 		 *  policy is not supported."
647 		 */
648 		I915_WRITE(CACHE_MODE_0,
649 			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
650 	}
651 
652 	if (INTEL_INFO(dev)->gen >= 6)
653 		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
654 
655 	if (HAS_L3_DPF(dev))
656 		I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
657 
658 	return ret;
659 }
660 
661 static void render_ring_cleanup(struct intel_engine_cs *ring)
662 {
663 	struct drm_device *dev = ring->dev;
664 
665 	if (ring->scratch.obj == NULL)
666 		return;
667 
668 	if (INTEL_INFO(dev)->gen >= 5) {
669 		kunmap(ring->scratch.obj->pages[0]);
670 		i915_gem_object_ggtt_unpin(ring->scratch.obj);
671 	}
672 
673 	drm_gem_object_unreference(&ring->scratch.obj->base);
674 	ring->scratch.obj = NULL;
675 }
676 
677 static int gen6_signal(struct intel_engine_cs *signaller,
678 		       unsigned int num_dwords)
679 {
680 	struct drm_device *dev = signaller->dev;
681 	struct drm_i915_private *dev_priv = dev->dev_private;
682 	struct intel_engine_cs *useless;
683 	int i, ret;
684 
685 	/* NB: In order to be able to do semaphore MBOX updates for varying
686 	 * number of rings, it's easiest if we round up each individual update
687 	 * to a multiple of 2 (since ring updates must always be a multiple of
688 	 * 2) even though the actual update only requires 3 dwords.
689 	 */
690 #define MBOX_UPDATE_DWORDS 4
691 	if (i915_semaphore_is_enabled(dev))
692 		num_dwords += ((I915_NUM_RINGS-1) * MBOX_UPDATE_DWORDS);
693 	else
694 		return intel_ring_begin(signaller, num_dwords);
695 
696 	ret = intel_ring_begin(signaller, num_dwords);
697 	if (ret)
698 		return ret;
699 #undef MBOX_UPDATE_DWORDS
700 
701 	for_each_ring(useless, dev_priv, i) {
702 		u32 mbox_reg = signaller->semaphore.mbox.signal[i];
703 		if (mbox_reg != GEN6_NOSYNC) {
704 			intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
705 			intel_ring_emit(signaller, mbox_reg);
706 			intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
707 			intel_ring_emit(signaller, MI_NOOP);
708 		} else {
709 			intel_ring_emit(signaller, MI_NOOP);
710 			intel_ring_emit(signaller, MI_NOOP);
711 			intel_ring_emit(signaller, MI_NOOP);
712 			intel_ring_emit(signaller, MI_NOOP);
713 		}
714 	}
715 
716 	return 0;
717 }
718 
719 /**
720  * gen6_add_request - Update the semaphore mailbox registers
721  *
722  * @ring - ring that is adding a request
723  * @seqno - return seqno stuck into the ring
724  *
725  * Update the mailbox registers in the *other* rings with the current seqno.
726  * This acts like a signal in the canonical semaphore.
727  */
728 static int
729 gen6_add_request(struct intel_engine_cs *ring)
730 {
731 	int ret;
732 
733 	ret = ring->semaphore.signal(ring, 4);
734 	if (ret)
735 		return ret;
736 
737 	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
738 	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
739 	intel_ring_emit(ring, ring->outstanding_lazy_seqno);
740 	intel_ring_emit(ring, MI_USER_INTERRUPT);
741 	__intel_ring_advance(ring);
742 
743 	return 0;
744 }
745 
746 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
747 					      u32 seqno)
748 {
749 	struct drm_i915_private *dev_priv = dev->dev_private;
750 	return dev_priv->last_seqno < seqno;
751 }
752 
753 /**
754  * intel_ring_sync - sync the waiter to the signaller on seqno
755  *
756  * @waiter - ring that is waiting
757  * @signaller - ring which has, or will signal
758  * @seqno - seqno which the waiter will block on
759  */
760 static int
761 gen6_ring_sync(struct intel_engine_cs *waiter,
762 	       struct intel_engine_cs *signaller,
763 	       u32 seqno)
764 {
765 	u32 dw1 = MI_SEMAPHORE_MBOX |
766 		  MI_SEMAPHORE_COMPARE |
767 		  MI_SEMAPHORE_REGISTER;
768 	u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
769 	int ret;
770 
771 	/* Throughout all of the GEM code, seqno passed implies our current
772 	 * seqno is >= the last seqno executed. However for hardware the
773 	 * comparison is strictly greater than.
774 	 */
775 	seqno -= 1;
776 
777 	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
778 
779 	ret = intel_ring_begin(waiter, 4);
780 	if (ret)
781 		return ret;
782 
783 	/* If seqno wrap happened, omit the wait with no-ops */
784 	if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
785 		intel_ring_emit(waiter, dw1 | wait_mbox);
786 		intel_ring_emit(waiter, seqno);
787 		intel_ring_emit(waiter, 0);
788 		intel_ring_emit(waiter, MI_NOOP);
789 	} else {
790 		intel_ring_emit(waiter, MI_NOOP);
791 		intel_ring_emit(waiter, MI_NOOP);
792 		intel_ring_emit(waiter, MI_NOOP);
793 		intel_ring_emit(waiter, MI_NOOP);
794 	}
795 	intel_ring_advance(waiter);
796 
797 	return 0;
798 }
799 
800 #define PIPE_CONTROL_FLUSH(ring__, addr__)					\
801 do {									\
802 	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
803 		 PIPE_CONTROL_DEPTH_STALL);				\
804 	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
805 	intel_ring_emit(ring__, 0);							\
806 	intel_ring_emit(ring__, 0);							\
807 } while (0)
808 
809 static int
810 pc_render_add_request(struct intel_engine_cs *ring)
811 {
812 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
813 	int ret;
814 
815 	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
816 	 * incoherent with writes to memory, i.e. completely fubar,
817 	 * so we need to use PIPE_NOTIFY instead.
818 	 *
819 	 * However, we also need to workaround the qword write
820 	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
821 	 * memory before requesting an interrupt.
822 	 */
823 	ret = intel_ring_begin(ring, 32);
824 	if (ret)
825 		return ret;
826 
827 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
828 			PIPE_CONTROL_WRITE_FLUSH |
829 			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
830 	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
831 	intel_ring_emit(ring, ring->outstanding_lazy_seqno);
832 	intel_ring_emit(ring, 0);
833 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
834 	scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
835 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
836 	scratch_addr += 2 * CACHELINE_BYTES;
837 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
838 	scratch_addr += 2 * CACHELINE_BYTES;
839 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
840 	scratch_addr += 2 * CACHELINE_BYTES;
841 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
842 	scratch_addr += 2 * CACHELINE_BYTES;
843 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
844 
845 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
846 			PIPE_CONTROL_WRITE_FLUSH |
847 			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
848 			PIPE_CONTROL_NOTIFY);
849 	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
850 	intel_ring_emit(ring, ring->outstanding_lazy_seqno);
851 	intel_ring_emit(ring, 0);
852 	__intel_ring_advance(ring);
853 
854 	return 0;
855 }
856 
857 static u32
858 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
859 {
860 	/* Workaround to force correct ordering between irq and seqno writes on
861 	 * ivb (and maybe also on snb) by reading from a CS register (like
862 	 * ACTHD) before reading the status page. */
863 	if (!lazy_coherency) {
864 		struct drm_i915_private *dev_priv = ring->dev->dev_private;
865 		POSTING_READ(RING_ACTHD(ring->mmio_base));
866 	}
867 
868 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
869 }
870 
871 static u32
872 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
873 {
874 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
875 }
876 
877 static void
878 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
879 {
880 	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
881 }
882 
883 static u32
884 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
885 {
886 	return ring->scratch.cpu_page[0];
887 }
888 
889 static void
890 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
891 {
892 	ring->scratch.cpu_page[0] = seqno;
893 }
894 
895 static bool
896 gen5_ring_get_irq(struct intel_engine_cs *ring)
897 {
898 	struct drm_device *dev = ring->dev;
899 	struct drm_i915_private *dev_priv = dev->dev_private;
900 
901 	if (!dev->irq_enabled)
902 		return false;
903 
904 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
905 	if (ring->irq_refcount++ == 0)
906 		ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
907 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
908 
909 	return true;
910 }
911 
912 static void
913 gen5_ring_put_irq(struct intel_engine_cs *ring)
914 {
915 	struct drm_device *dev = ring->dev;
916 	struct drm_i915_private *dev_priv = dev->dev_private;
917 
918 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
919 	if (--ring->irq_refcount == 0)
920 		ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
921 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
922 }
923 
924 static bool
925 i9xx_ring_get_irq(struct intel_engine_cs *ring)
926 {
927 	struct drm_device *dev = ring->dev;
928 	struct drm_i915_private *dev_priv = dev->dev_private;
929 
930 	if (!dev->irq_enabled)
931 		return false;
932 
933 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
934 	if (ring->irq_refcount++ == 0) {
935 		dev_priv->irq_mask &= ~ring->irq_enable_mask;
936 		I915_WRITE(IMR, dev_priv->irq_mask);
937 		POSTING_READ(IMR);
938 	}
939 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
940 
941 	return true;
942 }
943 
944 static void
945 i9xx_ring_put_irq(struct intel_engine_cs *ring)
946 {
947 	struct drm_device *dev = ring->dev;
948 	struct drm_i915_private *dev_priv = dev->dev_private;
949 
950 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
951 	if (--ring->irq_refcount == 0) {
952 		dev_priv->irq_mask |= ring->irq_enable_mask;
953 		I915_WRITE(IMR, dev_priv->irq_mask);
954 		POSTING_READ(IMR);
955 	}
956 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
957 }
958 
959 static bool
960 i8xx_ring_get_irq(struct intel_engine_cs *ring)
961 {
962 	struct drm_device *dev = ring->dev;
963 	struct drm_i915_private *dev_priv = dev->dev_private;
964 
965 	if (!dev->irq_enabled)
966 		return false;
967 
968 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
969 	if (ring->irq_refcount++ == 0) {
970 		dev_priv->irq_mask &= ~ring->irq_enable_mask;
971 		I915_WRITE16(IMR, dev_priv->irq_mask);
972 		POSTING_READ16(IMR);
973 	}
974 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
975 
976 	return true;
977 }
978 
979 static void
980 i8xx_ring_put_irq(struct intel_engine_cs *ring)
981 {
982 	struct drm_device *dev = ring->dev;
983 	struct drm_i915_private *dev_priv = dev->dev_private;
984 
985 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
986 	if (--ring->irq_refcount == 0) {
987 		dev_priv->irq_mask |= ring->irq_enable_mask;
988 		I915_WRITE16(IMR, dev_priv->irq_mask);
989 		POSTING_READ16(IMR);
990 	}
991 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
992 }
993 
994 void intel_ring_setup_status_page(struct intel_engine_cs *ring)
995 {
996 	struct drm_device *dev = ring->dev;
997 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
998 	u32 mmio = 0;
999 
1000 	/* The ring status page addresses are no longer next to the rest of
1001 	 * the ring registers as of gen7.
1002 	 */
1003 	if (IS_GEN7(dev)) {
1004 		switch (ring->id) {
1005 		case RCS:
1006 			mmio = RENDER_HWS_PGA_GEN7;
1007 			break;
1008 		case BCS:
1009 			mmio = BLT_HWS_PGA_GEN7;
1010 			break;
1011 		/*
1012 		 * VCS2 actually doesn't exist on Gen7. Only shut up
1013 		 * gcc switch check warning
1014 		 */
1015 		case VCS2:
1016 		case VCS:
1017 			mmio = BSD_HWS_PGA_GEN7;
1018 			break;
1019 		case VECS:
1020 			mmio = VEBOX_HWS_PGA_GEN7;
1021 			break;
1022 		}
1023 	} else if (IS_GEN6(ring->dev)) {
1024 		mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
1025 	} else {
1026 		/* XXX: gen8 returns to sanity */
1027 		mmio = RING_HWS_PGA(ring->mmio_base);
1028 	}
1029 
1030 	I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
1031 	POSTING_READ(mmio);
1032 
1033 	/*
1034 	 * Flush the TLB for this page
1035 	 *
1036 	 * FIXME: These two bits have disappeared on gen8, so a question
1037 	 * arises: do we still need this and if so how should we go about
1038 	 * invalidating the TLB?
1039 	 */
1040 	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
1041 		u32 reg = RING_INSTPM(ring->mmio_base);
1042 
1043 		/* ring should be idle before issuing a sync flush*/
1044 		WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1045 
1046 		I915_WRITE(reg,
1047 			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1048 					      INSTPM_SYNC_FLUSH));
1049 		if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1050 			     1000))
1051 			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1052 				  ring->name);
1053 	}
1054 }
1055 
1056 static int
1057 bsd_ring_flush(struct intel_engine_cs *ring,
1058 	       u32     invalidate_domains,
1059 	       u32     flush_domains)
1060 {
1061 	int ret;
1062 
1063 	ret = intel_ring_begin(ring, 2);
1064 	if (ret)
1065 		return ret;
1066 
1067 	intel_ring_emit(ring, MI_FLUSH);
1068 	intel_ring_emit(ring, MI_NOOP);
1069 	intel_ring_advance(ring);
1070 	return 0;
1071 }
1072 
1073 static int
1074 i9xx_add_request(struct intel_engine_cs *ring)
1075 {
1076 	int ret;
1077 
1078 	ret = intel_ring_begin(ring, 4);
1079 	if (ret)
1080 		return ret;
1081 
1082 	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1083 	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1084 	intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1085 	intel_ring_emit(ring, MI_USER_INTERRUPT);
1086 	__intel_ring_advance(ring);
1087 
1088 	return 0;
1089 }
1090 
1091 static bool
1092 gen6_ring_get_irq(struct intel_engine_cs *ring)
1093 {
1094 	struct drm_device *dev = ring->dev;
1095 	struct drm_i915_private *dev_priv = dev->dev_private;
1096 
1097 	if (!dev->irq_enabled)
1098 	       return false;
1099 
1100 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1101 	if (ring->irq_refcount++ == 0) {
1102 		if (HAS_L3_DPF(dev) && ring->id == RCS)
1103 			I915_WRITE_IMR(ring,
1104 				       ~(ring->irq_enable_mask |
1105 					 GT_PARITY_ERROR(dev)));
1106 		else
1107 			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1108 		ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1109 	}
1110 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1111 
1112 	return true;
1113 }
1114 
1115 static void
1116 gen6_ring_put_irq(struct intel_engine_cs *ring)
1117 {
1118 	struct drm_device *dev = ring->dev;
1119 	struct drm_i915_private *dev_priv = dev->dev_private;
1120 
1121 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1122 	if (--ring->irq_refcount == 0) {
1123 		if (HAS_L3_DPF(dev) && ring->id == RCS)
1124 			I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1125 		else
1126 			I915_WRITE_IMR(ring, ~0);
1127 		ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1128 	}
1129 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1130 }
1131 
1132 static bool
1133 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1134 {
1135 	struct drm_device *dev = ring->dev;
1136 	struct drm_i915_private *dev_priv = dev->dev_private;
1137 
1138 	if (!dev->irq_enabled)
1139 		return false;
1140 
1141 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1142 	if (ring->irq_refcount++ == 0) {
1143 		I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1144 		snb_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1145 	}
1146 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1147 
1148 	return true;
1149 }
1150 
1151 static void
1152 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1153 {
1154 	struct drm_device *dev = ring->dev;
1155 	struct drm_i915_private *dev_priv = dev->dev_private;
1156 
1157 	if (!dev->irq_enabled)
1158 		return;
1159 
1160 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1161 	if (--ring->irq_refcount == 0) {
1162 		I915_WRITE_IMR(ring, ~0);
1163 		snb_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1164 	}
1165 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1166 }
1167 
1168 static bool
1169 gen8_ring_get_irq(struct intel_engine_cs *ring)
1170 {
1171 	struct drm_device *dev = ring->dev;
1172 	struct drm_i915_private *dev_priv = dev->dev_private;
1173 
1174 	if (!dev->irq_enabled)
1175 		return false;
1176 
1177 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1178 	if (ring->irq_refcount++ == 0) {
1179 		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1180 			I915_WRITE_IMR(ring,
1181 				       ~(ring->irq_enable_mask |
1182 					 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1183 		} else {
1184 			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1185 		}
1186 		POSTING_READ(RING_IMR(ring->mmio_base));
1187 	}
1188 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1189 
1190 	return true;
1191 }
1192 
1193 static void
1194 gen8_ring_put_irq(struct intel_engine_cs *ring)
1195 {
1196 	struct drm_device *dev = ring->dev;
1197 	struct drm_i915_private *dev_priv = dev->dev_private;
1198 
1199 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1200 	if (--ring->irq_refcount == 0) {
1201 		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1202 			I915_WRITE_IMR(ring,
1203 				       ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1204 		} else {
1205 			I915_WRITE_IMR(ring, ~0);
1206 		}
1207 		POSTING_READ(RING_IMR(ring->mmio_base));
1208 	}
1209 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1210 }
1211 
1212 static int
1213 i965_dispatch_execbuffer(struct intel_engine_cs *ring,
1214 			 u64 offset, u32 length,
1215 			 unsigned flags)
1216 {
1217 	int ret;
1218 
1219 	ret = intel_ring_begin(ring, 2);
1220 	if (ret)
1221 		return ret;
1222 
1223 	intel_ring_emit(ring,
1224 			MI_BATCH_BUFFER_START |
1225 			MI_BATCH_GTT |
1226 			(flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1227 	intel_ring_emit(ring, offset);
1228 	intel_ring_advance(ring);
1229 
1230 	return 0;
1231 }
1232 
1233 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1234 #define I830_BATCH_LIMIT (256*1024)
1235 static int
1236 i830_dispatch_execbuffer(struct intel_engine_cs *ring,
1237 				u64 offset, u32 len,
1238 				unsigned flags)
1239 {
1240 	int ret;
1241 
1242 	if (flags & I915_DISPATCH_PINNED) {
1243 		ret = intel_ring_begin(ring, 4);
1244 		if (ret)
1245 			return ret;
1246 
1247 		intel_ring_emit(ring, MI_BATCH_BUFFER);
1248 		intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1249 		intel_ring_emit(ring, offset + len - 8);
1250 		intel_ring_emit(ring, MI_NOOP);
1251 		intel_ring_advance(ring);
1252 	} else {
1253 		u32 cs_offset = ring->scratch.gtt_offset;
1254 
1255 		if (len > I830_BATCH_LIMIT)
1256 			return -ENOSPC;
1257 
1258 		ret = intel_ring_begin(ring, 9+3);
1259 		if (ret)
1260 			return ret;
1261 		/* Blit the batch (which has now all relocs applied) to the stable batch
1262 		 * scratch bo area (so that the CS never stumbles over its tlb
1263 		 * invalidation bug) ... */
1264 		intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1265 				XY_SRC_COPY_BLT_WRITE_ALPHA |
1266 				XY_SRC_COPY_BLT_WRITE_RGB);
1267 		intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1268 		intel_ring_emit(ring, 0);
1269 		intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1270 		intel_ring_emit(ring, cs_offset);
1271 		intel_ring_emit(ring, 0);
1272 		intel_ring_emit(ring, 4096);
1273 		intel_ring_emit(ring, offset);
1274 		intel_ring_emit(ring, MI_FLUSH);
1275 
1276 		/* ... and execute it. */
1277 		intel_ring_emit(ring, MI_BATCH_BUFFER);
1278 		intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1279 		intel_ring_emit(ring, cs_offset + len - 8);
1280 		intel_ring_advance(ring);
1281 	}
1282 
1283 	return 0;
1284 }
1285 
1286 static int
1287 i915_dispatch_execbuffer(struct intel_engine_cs *ring,
1288 			 u64 offset, u32 len,
1289 			 unsigned flags)
1290 {
1291 	int ret;
1292 
1293 	ret = intel_ring_begin(ring, 2);
1294 	if (ret)
1295 		return ret;
1296 
1297 	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1298 	intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1299 	intel_ring_advance(ring);
1300 
1301 	return 0;
1302 }
1303 
1304 static void cleanup_status_page(struct intel_engine_cs *ring)
1305 {
1306 	struct drm_i915_gem_object *obj;
1307 
1308 	obj = ring->status_page.obj;
1309 	if (obj == NULL)
1310 		return;
1311 
1312 	kunmap(obj->pages[0]);
1313 	i915_gem_object_ggtt_unpin(obj);
1314 	drm_gem_object_unreference(&obj->base);
1315 	ring->status_page.obj = NULL;
1316 }
1317 
1318 static int init_status_page(struct intel_engine_cs *ring)
1319 {
1320 	struct drm_i915_gem_object *obj;
1321 
1322 	if ((obj = ring->status_page.obj) == NULL) {
1323 		int ret;
1324 
1325 		obj = i915_gem_alloc_object(ring->dev, 4096);
1326 		if (obj == NULL) {
1327 			DRM_ERROR("Failed to allocate status page\n");
1328 			return -ENOMEM;
1329 		}
1330 
1331 		ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1332 		if (ret)
1333 			goto err_unref;
1334 
1335 		ret = i915_gem_obj_ggtt_pin(obj, 4096, 0);
1336 		if (ret) {
1337 err_unref:
1338 			drm_gem_object_unreference(&obj->base);
1339 			return ret;
1340 		}
1341 
1342 		ring->status_page.obj = obj;
1343 	}
1344 
1345 	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1346 	ring->status_page.page_addr = kmap(obj->pages[0]);
1347 	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1348 
1349 	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1350 			ring->name, ring->status_page.gfx_addr);
1351 
1352 	return 0;
1353 }
1354 
1355 static int init_phys_status_page(struct intel_engine_cs *ring)
1356 {
1357 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1358 
1359 	if (!dev_priv->status_page_dmah) {
1360 		dev_priv->status_page_dmah =
1361 			drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1362 		if (!dev_priv->status_page_dmah)
1363 			return -ENOMEM;
1364 	}
1365 
1366 	ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1367 	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1368 
1369 	return 0;
1370 }
1371 
1372 static int allocate_ring_buffer(struct intel_engine_cs *ring)
1373 {
1374 	struct drm_device *dev = ring->dev;
1375 	struct intel_ringbuffer *ringbuf = ring->buffer;
1376 	struct drm_i915_gem_object *obj;
1377 	int ret;
1378 
1379 	if (intel_ring_initialized(ring))
1380 		return 0;
1381 
1382 	obj = NULL;
1383 	if (!HAS_LLC(dev))
1384 		obj = i915_gem_object_create_stolen(dev, ringbuf->size);
1385 	if (obj == NULL)
1386 		obj = i915_gem_alloc_object(dev, ringbuf->size);
1387 	if (obj == NULL)
1388 		return -ENOMEM;
1389 
1390 	ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1391 	if (ret)
1392 		goto err_unref;
1393 
1394 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1395 	if (ret)
1396 		goto err_unpin;
1397 
1398 	ringbuf->virtual_start =
1399 		ioremap_wc(dev->agp->base + i915_gem_obj_ggtt_offset(obj),
1400 				ringbuf->size);
1401 	if (ringbuf->virtual_start == NULL) {
1402 		ret = -EINVAL;
1403 		goto err_unpin;
1404 	}
1405 
1406 	ringbuf->obj = obj;
1407 	return 0;
1408 
1409 err_unpin:
1410 	i915_gem_object_ggtt_unpin(obj);
1411 err_unref:
1412 	drm_gem_object_unreference(&obj->base);
1413 	return ret;
1414 }
1415 
1416 static int intel_init_ring_buffer(struct drm_device *dev,
1417 				  struct intel_engine_cs *ring)
1418 {
1419 	struct intel_ringbuffer *ringbuf = ring->buffer;
1420 	int ret;
1421 
1422 	if (ringbuf == NULL) {
1423 		ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1424 		if (!ringbuf)
1425 			return -ENOMEM;
1426 		ring->buffer = ringbuf;
1427 	}
1428 
1429 	ring->dev = dev;
1430 	INIT_LIST_HEAD(&ring->active_list);
1431 	INIT_LIST_HEAD(&ring->request_list);
1432 	ringbuf->size = 32 * PAGE_SIZE;
1433 	memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
1434 
1435 	init_waitqueue_head(&ring->irq_queue);
1436 
1437 	if (I915_NEED_GFX_HWS(dev)) {
1438 		ret = init_status_page(ring);
1439 		if (ret)
1440 			goto error;
1441 	} else {
1442 		BUG_ON(ring->id != RCS);
1443 		ret = init_phys_status_page(ring);
1444 		if (ret)
1445 			goto error;
1446 	}
1447 
1448 	ret = allocate_ring_buffer(ring);
1449 	if (ret) {
1450 		DRM_ERROR("Failed to allocate ringbuffer %s: %d\n", ring->name, ret);
1451 		goto error;
1452 	}
1453 
1454 	/* Workaround an erratum on the i830 which causes a hang if
1455 	 * the TAIL pointer points to within the last 2 cachelines
1456 	 * of the buffer.
1457 	 */
1458 	ringbuf->effective_size = ringbuf->size;
1459 	if (IS_I830(dev) || IS_845G(dev))
1460 		ringbuf->effective_size -= 2 * CACHELINE_BYTES;
1461 
1462 	ret = i915_cmd_parser_init_ring(ring);
1463 	if (ret)
1464 		goto error;
1465 
1466 	ret = ring->init(ring);
1467 	if (ret)
1468 		goto error;
1469 
1470 	return 0;
1471 
1472 error:
1473 	kfree(ringbuf);
1474 	ring->buffer = NULL;
1475 	return ret;
1476 }
1477 
1478 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
1479 {
1480 	struct drm_i915_private *dev_priv = to_i915(ring->dev);
1481 	struct intel_ringbuffer *ringbuf = ring->buffer;
1482 
1483 	if (!intel_ring_initialized(ring))
1484 		return;
1485 
1486 	intel_stop_ring_buffer(ring);
1487 	WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
1488 
1489 	pmap_unmapdev((vm_offset_t)ringbuf->virtual_start, ringbuf->size);
1490 
1491 	i915_gem_object_ggtt_unpin(ringbuf->obj);
1492 	drm_gem_object_unreference(&ringbuf->obj->base);
1493 	ringbuf->obj = NULL;
1494 	ring->preallocated_lazy_request = NULL;
1495 	ring->outstanding_lazy_seqno = 0;
1496 
1497 	if (ring->cleanup)
1498 		ring->cleanup(ring);
1499 
1500 	cleanup_status_page(ring);
1501 
1502 	i915_cmd_parser_fini_ring(ring);
1503 
1504 	kfree(ringbuf);
1505 	ring->buffer = NULL;
1506 }
1507 
1508 static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
1509 {
1510 	struct intel_ringbuffer *ringbuf = ring->buffer;
1511 	struct drm_i915_gem_request *request;
1512 	u32 seqno = 0;
1513 	int ret;
1514 
1515 	if (ringbuf->last_retired_head != -1) {
1516 		ringbuf->head = ringbuf->last_retired_head;
1517 		ringbuf->last_retired_head = -1;
1518 
1519 		ringbuf->space = ring_space(ring);
1520 		if (ringbuf->space >= n)
1521 			return 0;
1522 	}
1523 
1524 	list_for_each_entry(request, &ring->request_list, list) {
1525 		if (__ring_space(request->tail, ringbuf->tail, ringbuf->size) >= n) {
1526 			seqno = request->seqno;
1527 			break;
1528 		}
1529 	}
1530 
1531 	if (seqno == 0)
1532 		return -ENOSPC;
1533 
1534 	ret = i915_wait_seqno(ring, seqno);
1535 	if (ret)
1536 		return ret;
1537 
1538 	i915_gem_retire_requests_ring(ring);
1539 	ringbuf->head = ringbuf->last_retired_head;
1540 	ringbuf->last_retired_head = -1;
1541 
1542 	ringbuf->space = ring_space(ring);
1543 	return 0;
1544 }
1545 
1546 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
1547 {
1548 	struct drm_device *dev = ring->dev;
1549 	struct drm_i915_private *dev_priv = dev->dev_private;
1550 	struct intel_ringbuffer *ringbuf = ring->buffer;
1551 	unsigned long end;
1552 	int ret;
1553 
1554 	ret = intel_ring_wait_request(ring, n);
1555 	if (ret != -ENOSPC)
1556 		return ret;
1557 
1558 	/* force the tail write in case we have been skipping them */
1559 	__intel_ring_advance(ring);
1560 
1561 	/* With GEM the hangcheck timer should kick us out of the loop,
1562 	 * leaving it early runs the risk of corrupting GEM state (due
1563 	 * to running on almost untested codepaths). But on resume
1564 	 * timers don't work yet, so prevent a complete hang in that
1565 	 * case by choosing an insanely large timeout. */
1566 	end = jiffies + 60 * HZ;
1567 
1568 	trace_i915_ring_wait_begin(ring);
1569 	do {
1570 		ringbuf->head = I915_READ_HEAD(ring);
1571 		ringbuf->space = ring_space(ring);
1572 		if (ringbuf->space >= n) {
1573 			ret = 0;
1574 			break;
1575 		}
1576 
1577 #if 0
1578 		if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
1579 		    dev->primary->master) {
1580 			struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1581 			if (master_priv->sarea_priv)
1582 				master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1583 		}
1584 #else
1585 		if (dev_priv->sarea_priv)
1586 			dev_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1587 #endif
1588 
1589 
1590 		msleep(1);
1591 
1592 #if 0
1593 		if (dev_priv->mm.interruptible && signal_pending(current)) {
1594 			ret = -ERESTARTSYS;
1595 			break;
1596 		}
1597 #endif
1598 
1599 		ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1600 					   dev_priv->mm.interruptible);
1601 		if (ret)
1602 			break;
1603 
1604 		if (time_after(jiffies, end)) {
1605 			ret = -EBUSY;
1606 			break;
1607 		}
1608 	} while (1);
1609 	trace_i915_ring_wait_end(ring);
1610 	return ret;
1611 }
1612 
1613 static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
1614 {
1615 	uint32_t __iomem *virt;
1616 	struct intel_ringbuffer *ringbuf = ring->buffer;
1617 	int rem = ringbuf->size - ringbuf->tail;
1618 
1619 	if (ringbuf->space < rem) {
1620 		int ret = ring_wait_for_space(ring, rem);
1621 		if (ret)
1622 			return ret;
1623 	}
1624 
1625 	virt = (unsigned int *)((char *)ringbuf->virtual_start + ringbuf->tail);
1626 	rem /= 4;
1627 	while (rem--)
1628 		iowrite32(MI_NOOP, virt++);
1629 
1630 	ringbuf->tail = 0;
1631 	ringbuf->space = ring_space(ring);
1632 
1633 	return 0;
1634 }
1635 
1636 int intel_ring_idle(struct intel_engine_cs *ring)
1637 {
1638 	u32 seqno;
1639 	int ret;
1640 
1641 	/* We need to add any requests required to flush the objects and ring */
1642 	if (ring->outstanding_lazy_seqno) {
1643 		ret = i915_add_request(ring, NULL);
1644 		if (ret)
1645 			return ret;
1646 	}
1647 
1648 	/* Wait upon the last request to be completed */
1649 	if (list_empty(&ring->request_list))
1650 		return 0;
1651 
1652 	seqno = list_entry(ring->request_list.prev,
1653 			   struct drm_i915_gem_request,
1654 			   list)->seqno;
1655 
1656 	return i915_wait_seqno(ring, seqno);
1657 }
1658 
1659 static int
1660 intel_ring_alloc_seqno(struct intel_engine_cs *ring)
1661 {
1662 	if (ring->outstanding_lazy_seqno)
1663 		return 0;
1664 
1665 	if (ring->preallocated_lazy_request == NULL) {
1666 		struct drm_i915_gem_request *request;
1667 
1668 		request = kmalloc(sizeof(*request), M_DRM, M_WAITOK);
1669 		if (request == NULL)
1670 			return -ENOMEM;
1671 
1672 		ring->preallocated_lazy_request = request;
1673 	}
1674 
1675 	return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
1676 }
1677 
1678 static int __intel_ring_prepare(struct intel_engine_cs *ring,
1679 				int bytes)
1680 {
1681 	struct intel_ringbuffer *ringbuf = ring->buffer;
1682 	int ret;
1683 
1684 	if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
1685 		ret = intel_wrap_ring_buffer(ring);
1686 		if (unlikely(ret))
1687 			return ret;
1688 	}
1689 
1690 	if (unlikely(ringbuf->space < bytes)) {
1691 		ret = ring_wait_for_space(ring, bytes);
1692 		if (unlikely(ret))
1693 			return ret;
1694 	}
1695 
1696 	return 0;
1697 }
1698 
1699 int intel_ring_begin(struct intel_engine_cs *ring,
1700 		     int num_dwords)
1701 {
1702 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1703 	int ret;
1704 
1705 	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1706 				   dev_priv->mm.interruptible);
1707 	if (ret)
1708 		return ret;
1709 
1710 	ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
1711 	if (ret)
1712 		return ret;
1713 
1714 	/* Preallocate the olr before touching the ring */
1715 	ret = intel_ring_alloc_seqno(ring);
1716 	if (ret)
1717 		return ret;
1718 
1719 	ring->buffer->space -= num_dwords * sizeof(uint32_t);
1720 	return 0;
1721 }
1722 
1723 /* Align the ring tail to a cacheline boundary */
1724 int intel_ring_cacheline_align(struct intel_engine_cs *ring)
1725 {
1726 	int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
1727 	int ret;
1728 
1729 	if (num_dwords == 0)
1730 		return 0;
1731 
1732 	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
1733 	ret = intel_ring_begin(ring, num_dwords);
1734 	if (ret)
1735 		return ret;
1736 
1737 	while (num_dwords--)
1738 		intel_ring_emit(ring, MI_NOOP);
1739 
1740 	intel_ring_advance(ring);
1741 
1742 	return 0;
1743 }
1744 
1745 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
1746 {
1747 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1748 
1749 	BUG_ON(ring->outstanding_lazy_seqno);
1750 
1751 	if (INTEL_INFO(ring->dev)->gen >= 6) {
1752 		I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1753 		I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
1754 		if (HAS_VEBOX(ring->dev))
1755 			I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
1756 	}
1757 
1758 	ring->set_seqno(ring, seqno);
1759 	ring->hangcheck.seqno = seqno;
1760 }
1761 
1762 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
1763 				     u32 value)
1764 {
1765 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1766 
1767        /* Every tail move must follow the sequence below */
1768 
1769 	/* Disable notification that the ring is IDLE. The GT
1770 	 * will then assume that it is busy and bring it out of rc6.
1771 	 */
1772 	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1773 		   _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1774 
1775 	/* Clear the context id. Here be magic! */
1776 	I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1777 
1778 	/* Wait for the ring not to be idle, i.e. for it to wake up. */
1779 	if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1780 		      GEN6_BSD_SLEEP_INDICATOR) == 0,
1781 		     50))
1782 		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1783 
1784 	/* Now that the ring is fully powered up, update the tail */
1785 	I915_WRITE_TAIL(ring, value);
1786 	POSTING_READ(RING_TAIL(ring->mmio_base));
1787 
1788 	/* Let the ring send IDLE messages to the GT again,
1789 	 * and so let it sleep to conserve power when idle.
1790 	 */
1791 	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1792 		   _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1793 }
1794 
1795 static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
1796 			       u32 invalidate, u32 flush)
1797 {
1798 	uint32_t cmd;
1799 	int ret;
1800 
1801 	ret = intel_ring_begin(ring, 4);
1802 	if (ret)
1803 		return ret;
1804 
1805 	cmd = MI_FLUSH_DW;
1806 	if (INTEL_INFO(ring->dev)->gen >= 8)
1807 		cmd += 1;
1808 	/*
1809 	 * Bspec vol 1c.5 - video engine command streamer:
1810 	 * "If ENABLED, all TLBs will be invalidated once the flush
1811 	 * operation is complete. This bit is only valid when the
1812 	 * Post-Sync Operation field is a value of 1h or 3h."
1813 	 */
1814 	if (invalidate & I915_GEM_GPU_DOMAINS)
1815 		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1816 			MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1817 	intel_ring_emit(ring, cmd);
1818 	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1819 	if (INTEL_INFO(ring->dev)->gen >= 8) {
1820 		intel_ring_emit(ring, 0); /* upper addr */
1821 		intel_ring_emit(ring, 0); /* value */
1822 	} else  {
1823 		intel_ring_emit(ring, 0);
1824 		intel_ring_emit(ring, MI_NOOP);
1825 	}
1826 	intel_ring_advance(ring);
1827 	return 0;
1828 }
1829 
1830 static int
1831 gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
1832 			      u64 offset, u32 len,
1833 			      unsigned flags)
1834 {
1835 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1836 	bool ppgtt = dev_priv->mm.aliasing_ppgtt != NULL &&
1837 		!(flags & I915_DISPATCH_SECURE);
1838 	int ret;
1839 
1840 	ret = intel_ring_begin(ring, 4);
1841 	if (ret)
1842 		return ret;
1843 
1844 	/* FIXME(BDW): Address space and security selectors. */
1845 	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1846 	intel_ring_emit(ring, lower_32_bits(offset));
1847 	intel_ring_emit(ring, upper_32_bits(offset));
1848 	intel_ring_emit(ring, MI_NOOP);
1849 	intel_ring_advance(ring);
1850 
1851 	return 0;
1852 }
1853 
1854 static int
1855 hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
1856 			      u64 offset, u32 len,
1857 			      unsigned flags)
1858 {
1859 	int ret;
1860 
1861 	ret = intel_ring_begin(ring, 2);
1862 	if (ret)
1863 		return ret;
1864 
1865 	intel_ring_emit(ring,
1866 			MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
1867 			(flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
1868 	/* bit0-7 is the length on GEN6+ */
1869 	intel_ring_emit(ring, offset);
1870 	intel_ring_advance(ring);
1871 
1872 	return 0;
1873 }
1874 
1875 static int
1876 gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
1877 			      u64 offset, u32 len,
1878 			      unsigned flags)
1879 {
1880 	int ret;
1881 
1882 	ret = intel_ring_begin(ring, 2);
1883 	if (ret)
1884 		return ret;
1885 
1886 	intel_ring_emit(ring,
1887 			MI_BATCH_BUFFER_START |
1888 			(flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1889 	/* bit0-7 is the length on GEN6+ */
1890 	intel_ring_emit(ring, offset);
1891 	intel_ring_advance(ring);
1892 
1893 	return 0;
1894 }
1895 
1896 /* Blitter support (SandyBridge+) */
1897 
1898 static int gen6_ring_flush(struct intel_engine_cs *ring,
1899 			   u32 invalidate, u32 flush)
1900 {
1901 	struct drm_device *dev = ring->dev;
1902 	uint32_t cmd;
1903 	int ret;
1904 
1905 	ret = intel_ring_begin(ring, 4);
1906 	if (ret)
1907 		return ret;
1908 
1909 	cmd = MI_FLUSH_DW;
1910 	if (INTEL_INFO(ring->dev)->gen >= 8)
1911 		cmd += 1;
1912 	/*
1913 	 * Bspec vol 1c.3 - blitter engine command streamer:
1914 	 * "If ENABLED, all TLBs will be invalidated once the flush
1915 	 * operation is complete. This bit is only valid when the
1916 	 * Post-Sync Operation field is a value of 1h or 3h."
1917 	 */
1918 	if (invalidate & I915_GEM_DOMAIN_RENDER)
1919 		cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1920 			MI_FLUSH_DW_OP_STOREDW;
1921 	intel_ring_emit(ring, cmd);
1922 	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1923 	if (INTEL_INFO(ring->dev)->gen >= 8) {
1924 		intel_ring_emit(ring, 0); /* upper addr */
1925 		intel_ring_emit(ring, 0); /* value */
1926 	} else  {
1927 		intel_ring_emit(ring, 0);
1928 		intel_ring_emit(ring, MI_NOOP);
1929 	}
1930 	intel_ring_advance(ring);
1931 
1932 	if (IS_GEN7(dev) && !invalidate && flush)
1933 		return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
1934 
1935 	return 0;
1936 }
1937 
1938 int intel_init_render_ring_buffer(struct drm_device *dev)
1939 {
1940 	struct drm_i915_private *dev_priv = dev->dev_private;
1941 	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1942 
1943 	ring->name = "render ring";
1944 	ring->id = RCS;
1945 	ring->mmio_base = RENDER_RING_BASE;
1946 
1947 	if (INTEL_INFO(dev)->gen >= 6) {
1948 		ring->add_request = gen6_add_request;
1949 		ring->flush = gen7_render_ring_flush;
1950 		if (INTEL_INFO(dev)->gen == 6)
1951 			ring->flush = gen6_render_ring_flush;
1952 		if (INTEL_INFO(dev)->gen >= 8) {
1953 			ring->flush = gen8_render_ring_flush;
1954 			ring->irq_get = gen8_ring_get_irq;
1955 			ring->irq_put = gen8_ring_put_irq;
1956 		} else {
1957 			ring->irq_get = gen6_ring_get_irq;
1958 			ring->irq_put = gen6_ring_put_irq;
1959 		}
1960 		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
1961 		ring->get_seqno = gen6_ring_get_seqno;
1962 		ring->set_seqno = ring_set_seqno;
1963 		ring->semaphore.sync_to = gen6_ring_sync;
1964 		ring->semaphore.signal = gen6_signal;
1965 		/*
1966 		 * The current semaphore is only applied on pre-gen8 platform.
1967 		 * And there is no VCS2 ring on the pre-gen8 platform. So the
1968 		 * semaphore between RCS and VCS2 is initialized as INVALID.
1969 		 * Gen8 will initialize the sema between VCS2 and RCS later.
1970 		 */
1971 		ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
1972 		ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
1973 		ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
1974 		ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
1975 		ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
1976 		ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
1977 		ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
1978 		ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
1979 		ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
1980 		ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
1981 	} else if (IS_GEN5(dev)) {
1982 		ring->add_request = pc_render_add_request;
1983 		ring->flush = gen4_render_ring_flush;
1984 		ring->get_seqno = pc_render_get_seqno;
1985 		ring->set_seqno = pc_render_set_seqno;
1986 		ring->irq_get = gen5_ring_get_irq;
1987 		ring->irq_put = gen5_ring_put_irq;
1988 		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
1989 					GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
1990 	} else {
1991 		ring->add_request = i9xx_add_request;
1992 		if (INTEL_INFO(dev)->gen < 4)
1993 			ring->flush = gen2_render_ring_flush;
1994 		else
1995 			ring->flush = gen4_render_ring_flush;
1996 		ring->get_seqno = ring_get_seqno;
1997 		ring->set_seqno = ring_set_seqno;
1998 		if (IS_GEN2(dev)) {
1999 			ring->irq_get = i8xx_ring_get_irq;
2000 			ring->irq_put = i8xx_ring_put_irq;
2001 		} else {
2002 			ring->irq_get = i9xx_ring_get_irq;
2003 			ring->irq_put = i9xx_ring_put_irq;
2004 		}
2005 		ring->irq_enable_mask = I915_USER_INTERRUPT;
2006 	}
2007 	ring->write_tail = ring_write_tail;
2008 	if (IS_HASWELL(dev))
2009 		ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2010 	else if (IS_GEN8(dev))
2011 		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2012 	else if (INTEL_INFO(dev)->gen >= 6)
2013 		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2014 	else if (INTEL_INFO(dev)->gen >= 4)
2015 		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2016 	else if (IS_I830(dev) || IS_845G(dev))
2017 		ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2018 	else
2019 		ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2020 	ring->init = init_render_ring;
2021 	ring->cleanup = render_ring_cleanup;
2022 
2023 	/* Workaround batchbuffer to combat CS tlb bug. */
2024 	if (HAS_BROKEN_CS_TLB(dev)) {
2025 		struct drm_i915_gem_object *obj;
2026 		int ret;
2027 
2028 		obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
2029 		if (obj == NULL) {
2030 			DRM_ERROR("Failed to allocate batch bo\n");
2031 			return -ENOMEM;
2032 		}
2033 
2034 		ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2035 		if (ret != 0) {
2036 			drm_gem_object_unreference(&obj->base);
2037 			DRM_ERROR("Failed to ping batch bo\n");
2038 			return ret;
2039 		}
2040 
2041 		ring->scratch.obj = obj;
2042 		ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2043 	}
2044 
2045 	return intel_init_ring_buffer(dev, ring);
2046 }
2047 
2048 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
2049 {
2050 	struct drm_i915_private *dev_priv = dev->dev_private;
2051 	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2052 	struct intel_ringbuffer *ringbuf = ring->buffer;
2053 	int ret;
2054 
2055 	if (ringbuf == NULL) {
2056 		ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2057 		if (!ringbuf)
2058 			return -ENOMEM;
2059 		ring->buffer = ringbuf;
2060 	}
2061 
2062 	ring->name = "render ring";
2063 	ring->id = RCS;
2064 	ring->mmio_base = RENDER_RING_BASE;
2065 
2066 	if (INTEL_INFO(dev)->gen >= 6) {
2067 		/* non-kms not supported on gen6+ */
2068 		ret = -ENODEV;
2069 		goto err_ringbuf;
2070 	}
2071 
2072 	/* Note: gem is not supported on gen5/ilk without kms (the corresponding
2073 	 * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
2074 	 * the special gen5 functions. */
2075 	ring->add_request = i9xx_add_request;
2076 	if (INTEL_INFO(dev)->gen < 4)
2077 		ring->flush = gen2_render_ring_flush;
2078 	else
2079 		ring->flush = gen4_render_ring_flush;
2080 	ring->get_seqno = ring_get_seqno;
2081 	ring->set_seqno = ring_set_seqno;
2082 	if (IS_GEN2(dev)) {
2083 		ring->irq_get = i8xx_ring_get_irq;
2084 		ring->irq_put = i8xx_ring_put_irq;
2085 	} else {
2086 		ring->irq_get = i9xx_ring_get_irq;
2087 		ring->irq_put = i9xx_ring_put_irq;
2088 	}
2089 	ring->irq_enable_mask = I915_USER_INTERRUPT;
2090 	ring->write_tail = ring_write_tail;
2091 	if (INTEL_INFO(dev)->gen >= 4)
2092 		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2093 	else if (IS_I830(dev) || IS_845G(dev))
2094 		ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2095 	else
2096 		ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2097 	ring->init = init_render_ring;
2098 	ring->cleanup = render_ring_cleanup;
2099 
2100 	ring->dev = dev;
2101 	INIT_LIST_HEAD(&ring->active_list);
2102 	INIT_LIST_HEAD(&ring->request_list);
2103 
2104 	ringbuf->size = size;
2105 	ringbuf->effective_size = ringbuf->size;
2106 	if (IS_I830(ring->dev) || IS_845G(ring->dev))
2107 		ringbuf->effective_size -= 2 * CACHELINE_BYTES;
2108 
2109 	ringbuf->virtual_start = ioremap_wc(start, size);
2110 	if (ringbuf->virtual_start == NULL) {
2111 		DRM_ERROR("can not ioremap virtual address for"
2112 			  " ring buffer\n");
2113 		ret = -ENOMEM;
2114 		goto err_ringbuf;
2115 	}
2116 
2117 	if (!I915_NEED_GFX_HWS(dev)) {
2118 		ret = init_phys_status_page(ring);
2119 		if (ret)
2120 			goto err_vstart;
2121 	}
2122 
2123 	return 0;
2124 
2125 err_vstart:
2126 	pmap_unmapdev((vm_offset_t)ring->buffer->virtual_start, size);
2127 err_ringbuf:
2128 	kfree(ringbuf);
2129 	ring->buffer = NULL;
2130 	return ret;
2131 }
2132 
2133 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2134 {
2135 	struct drm_i915_private *dev_priv = dev->dev_private;
2136 	struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2137 
2138 	ring->name = "bsd ring";
2139 	ring->id = VCS;
2140 
2141 	ring->write_tail = ring_write_tail;
2142 	if (INTEL_INFO(dev)->gen >= 6) {
2143 		ring->mmio_base = GEN6_BSD_RING_BASE;
2144 		/* gen6 bsd needs a special wa for tail updates */
2145 		if (IS_GEN6(dev))
2146 			ring->write_tail = gen6_bsd_ring_write_tail;
2147 		ring->flush = gen6_bsd_ring_flush;
2148 		ring->add_request = gen6_add_request;
2149 		ring->get_seqno = gen6_ring_get_seqno;
2150 		ring->set_seqno = ring_set_seqno;
2151 		if (INTEL_INFO(dev)->gen >= 8) {
2152 			ring->irq_enable_mask =
2153 				GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2154 			ring->irq_get = gen8_ring_get_irq;
2155 			ring->irq_put = gen8_ring_put_irq;
2156 			ring->dispatch_execbuffer =
2157 				gen8_ring_dispatch_execbuffer;
2158 		} else {
2159 			ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2160 			ring->irq_get = gen6_ring_get_irq;
2161 			ring->irq_put = gen6_ring_put_irq;
2162 			ring->dispatch_execbuffer =
2163 				gen6_ring_dispatch_execbuffer;
2164 		}
2165 		ring->semaphore.sync_to = gen6_ring_sync;
2166 		ring->semaphore.signal = gen6_signal;
2167 		/*
2168 		 * The current semaphore is only applied on pre-gen8 platform.
2169 		 * And there is no VCS2 ring on the pre-gen8 platform. So the
2170 		 * semaphore between VCS and VCS2 is initialized as INVALID.
2171 		 * Gen8 will initialize the sema between VCS2 and VCS later.
2172 		 */
2173 		ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2174 		ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2175 		ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2176 		ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2177 		ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2178 		ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2179 		ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2180 		ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2181 		ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2182 		ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2183 	} else {
2184 		ring->mmio_base = BSD_RING_BASE;
2185 		ring->flush = bsd_ring_flush;
2186 		ring->add_request = i9xx_add_request;
2187 		ring->get_seqno = ring_get_seqno;
2188 		ring->set_seqno = ring_set_seqno;
2189 		if (IS_GEN5(dev)) {
2190 			ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2191 			ring->irq_get = gen5_ring_get_irq;
2192 			ring->irq_put = gen5_ring_put_irq;
2193 		} else {
2194 			ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2195 			ring->irq_get = i9xx_ring_get_irq;
2196 			ring->irq_put = i9xx_ring_put_irq;
2197 		}
2198 		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2199 	}
2200 	ring->init = init_ring_common;
2201 
2202 	return intel_init_ring_buffer(dev, ring);
2203 }
2204 
2205 /**
2206  * Initialize the second BSD ring for Broadwell GT3.
2207  * It is noted that this only exists on Broadwell GT3.
2208  */
2209 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2210 {
2211 	struct drm_i915_private *dev_priv = dev->dev_private;
2212 	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2213 
2214 	if ((INTEL_INFO(dev)->gen != 8)) {
2215 		DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
2216 		return -EINVAL;
2217 	}
2218 
2219 	ring->name = "bds2_ring";
2220 	ring->id = VCS2;
2221 
2222 	ring->write_tail = ring_write_tail;
2223 	ring->mmio_base = GEN8_BSD2_RING_BASE;
2224 	ring->flush = gen6_bsd_ring_flush;
2225 	ring->add_request = gen6_add_request;
2226 	ring->get_seqno = gen6_ring_get_seqno;
2227 	ring->set_seqno = ring_set_seqno;
2228 	ring->irq_enable_mask =
2229 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2230 	ring->irq_get = gen8_ring_get_irq;
2231 	ring->irq_put = gen8_ring_put_irq;
2232 	ring->dispatch_execbuffer =
2233 			gen8_ring_dispatch_execbuffer;
2234 	ring->semaphore.sync_to = gen6_ring_sync;
2235 	ring->semaphore.signal = gen6_signal;
2236 	/*
2237 	 * The current semaphore is only applied on the pre-gen8. And there
2238 	 * is no bsd2 ring on the pre-gen8. So now the semaphore_register
2239 	 * between VCS2 and other ring is initialized as invalid.
2240 	 * Gen8 will initialize the sema between VCS2 and other ring later.
2241 	 */
2242 	ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2243 	ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2244 	ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2245 	ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2246 	ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2247 	ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2248 	ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2249 	ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2250 	ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2251 	ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2252 
2253 	ring->init = init_ring_common;
2254 
2255 	return intel_init_ring_buffer(dev, ring);
2256 }
2257 
2258 int intel_init_blt_ring_buffer(struct drm_device *dev)
2259 {
2260 	struct drm_i915_private *dev_priv = dev->dev_private;
2261 	struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2262 
2263 	ring->name = "blitter ring";
2264 	ring->id = BCS;
2265 
2266 	ring->mmio_base = BLT_RING_BASE;
2267 	ring->write_tail = ring_write_tail;
2268 	ring->flush = gen6_ring_flush;
2269 	ring->add_request = gen6_add_request;
2270 	ring->get_seqno = gen6_ring_get_seqno;
2271 	ring->set_seqno = ring_set_seqno;
2272 	if (INTEL_INFO(dev)->gen >= 8) {
2273 		ring->irq_enable_mask =
2274 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2275 		ring->irq_get = gen8_ring_get_irq;
2276 		ring->irq_put = gen8_ring_put_irq;
2277 		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2278 	} else {
2279 		ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2280 		ring->irq_get = gen6_ring_get_irq;
2281 		ring->irq_put = gen6_ring_put_irq;
2282 		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2283 	}
2284 	ring->semaphore.sync_to = gen6_ring_sync;
2285 	ring->semaphore.signal = gen6_signal;
2286 	/*
2287 	 * The current semaphore is only applied on pre-gen8 platform. And
2288 	 * there is no VCS2 ring on the pre-gen8 platform. So the semaphore
2289 	 * between BCS and VCS2 is initialized as INVALID.
2290 	 * Gen8 will initialize the sema between BCS and VCS2 later.
2291 	 */
2292 	ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2293 	ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2294 	ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2295 	ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2296 	ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2297 	ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2298 	ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2299 	ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2300 	ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2301 	ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2302 	ring->init = init_ring_common;
2303 
2304 	return intel_init_ring_buffer(dev, ring);
2305 }
2306 
2307 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2308 {
2309 	struct drm_i915_private *dev_priv = dev->dev_private;
2310 	struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2311 
2312 	ring->name = "video enhancement ring";
2313 	ring->id = VECS;
2314 
2315 	ring->mmio_base = VEBOX_RING_BASE;
2316 	ring->write_tail = ring_write_tail;
2317 	ring->flush = gen6_ring_flush;
2318 	ring->add_request = gen6_add_request;
2319 	ring->get_seqno = gen6_ring_get_seqno;
2320 	ring->set_seqno = ring_set_seqno;
2321 
2322 	if (INTEL_INFO(dev)->gen >= 8) {
2323 		ring->irq_enable_mask =
2324 			GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2325 		ring->irq_get = gen8_ring_get_irq;
2326 		ring->irq_put = gen8_ring_put_irq;
2327 		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2328 	} else {
2329 		ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2330 		ring->irq_get = hsw_vebox_get_irq;
2331 		ring->irq_put = hsw_vebox_put_irq;
2332 		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2333 	}
2334 	ring->semaphore.sync_to = gen6_ring_sync;
2335 	ring->semaphore.signal = gen6_signal;
2336 	ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2337 	ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2338 	ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2339 	ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2340 	ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2341 	ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2342 	ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2343 	ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2344 	ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2345 	ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2346 	ring->init = init_ring_common;
2347 
2348 	return intel_init_ring_buffer(dev, ring);
2349 }
2350 
2351 int
2352 intel_ring_flush_all_caches(struct intel_engine_cs *ring)
2353 {
2354 	int ret;
2355 
2356 	if (!ring->gpu_caches_dirty)
2357 		return 0;
2358 
2359 	ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2360 	if (ret)
2361 		return ret;
2362 
2363 	trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2364 
2365 	ring->gpu_caches_dirty = false;
2366 	return 0;
2367 }
2368 
2369 int
2370 intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
2371 {
2372 	uint32_t flush_domains;
2373 	int ret;
2374 
2375 	flush_domains = 0;
2376 	if (ring->gpu_caches_dirty)
2377 		flush_domains = I915_GEM_GPU_DOMAINS;
2378 
2379 	ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2380 	if (ret)
2381 		return ret;
2382 
2383 	trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2384 
2385 	ring->gpu_caches_dirty = false;
2386 	return 0;
2387 }
2388 
2389 void
2390 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2391 {
2392 	int ret;
2393 
2394 	if (!intel_ring_initialized(ring))
2395 		return;
2396 
2397 	ret = intel_ring_idle(ring);
2398 	if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2399 		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2400 			  ring->name, ret);
2401 
2402 	stop_ring(ring);
2403 }
2404