xref: /dflybsd-src/sys/dev/drm/i915/intel_ringbuffer.c (revision 52ffb7ff0c002026d6ab13585c7459861b59bf9d)
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29 
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 
36 /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
37  * but keeps the logic simple. Indeed, the whole purpose of this macro is just
38  * to give some inclination as to some of the magic values used in the various
39  * workarounds!
40  */
41 #define CACHELINE_BYTES 64
42 
43 static inline int __ring_space(int head, int tail, int size)
44 {
45 	int space = head - (tail + I915_RING_FREE_SPACE);
46 	if (space < 0)
47 		space += size;
48 	return space;
49 }
50 
51 static inline int ring_space(struct intel_engine_cs *ring)
52 {
53 	struct intel_ringbuffer *ringbuf = ring->buffer;
54 	return __ring_space(ringbuf->head & HEAD_ADDR, ringbuf->tail, ringbuf->size);
55 }
56 
57 static bool intel_ring_stopped(struct intel_engine_cs *ring)
58 {
59 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
60 	return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
61 }
62 
63 void __intel_ring_advance(struct intel_engine_cs *ring)
64 {
65 	struct intel_ringbuffer *ringbuf = ring->buffer;
66 	ringbuf->tail &= ringbuf->size - 1;
67 	if (intel_ring_stopped(ring))
68 		return;
69 	ring->write_tail(ring, ringbuf->tail);
70 }
71 
72 static int
73 gen2_render_ring_flush(struct intel_engine_cs *ring,
74 		       u32	invalidate_domains,
75 		       u32	flush_domains)
76 {
77 	u32 cmd;
78 	int ret;
79 
80 	cmd = MI_FLUSH;
81 	if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
82 		cmd |= MI_NO_WRITE_FLUSH;
83 
84 	if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
85 		cmd |= MI_READ_FLUSH;
86 
87 	ret = intel_ring_begin(ring, 2);
88 	if (ret)
89 		return ret;
90 
91 	intel_ring_emit(ring, cmd);
92 	intel_ring_emit(ring, MI_NOOP);
93 	intel_ring_advance(ring);
94 
95 	return 0;
96 }
97 
98 static int
99 gen4_render_ring_flush(struct intel_engine_cs *ring,
100 		       u32	invalidate_domains,
101 		       u32	flush_domains)
102 {
103 	struct drm_device *dev = ring->dev;
104 	u32 cmd;
105 	int ret;
106 
107 	/*
108 	 * read/write caches:
109 	 *
110 	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
111 	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
112 	 * also flushed at 2d versus 3d pipeline switches.
113 	 *
114 	 * read-only caches:
115 	 *
116 	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
117 	 * MI_READ_FLUSH is set, and is always flushed on 965.
118 	 *
119 	 * I915_GEM_DOMAIN_COMMAND may not exist?
120 	 *
121 	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
122 	 * invalidated when MI_EXE_FLUSH is set.
123 	 *
124 	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
125 	 * invalidated with every MI_FLUSH.
126 	 *
127 	 * TLBs:
128 	 *
129 	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
130 	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
131 	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
132 	 * are flushed at any MI_FLUSH.
133 	 */
134 
135 	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
136 	if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
137 		cmd &= ~MI_NO_WRITE_FLUSH;
138 	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
139 		cmd |= MI_EXE_FLUSH;
140 
141 	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
142 	    (IS_G4X(dev) || IS_GEN5(dev)))
143 		cmd |= MI_INVALIDATE_ISP;
144 
145 	ret = intel_ring_begin(ring, 2);
146 	if (ret)
147 		return ret;
148 
149 	intel_ring_emit(ring, cmd);
150 	intel_ring_emit(ring, MI_NOOP);
151 	intel_ring_advance(ring);
152 
153 	return 0;
154 }
155 
156 /**
157  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
158  * implementing two workarounds on gen6.  From section 1.4.7.1
159  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
160  *
161  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
162  * produced by non-pipelined state commands), software needs to first
163  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
164  * 0.
165  *
166  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
167  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
168  *
169  * And the workaround for these two requires this workaround first:
170  *
171  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
172  * BEFORE the pipe-control with a post-sync op and no write-cache
173  * flushes.
174  *
175  * And this last workaround is tricky because of the requirements on
176  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
177  * volume 2 part 1:
178  *
179  *     "1 of the following must also be set:
180  *      - Render Target Cache Flush Enable ([12] of DW1)
181  *      - Depth Cache Flush Enable ([0] of DW1)
182  *      - Stall at Pixel Scoreboard ([1] of DW1)
183  *      - Depth Stall ([13] of DW1)
184  *      - Post-Sync Operation ([13] of DW1)
185  *      - Notify Enable ([8] of DW1)"
186  *
187  * The cache flushes require the workaround flush that triggered this
188  * one, so we can't use it.  Depth stall would trigger the same.
189  * Post-sync nonzero is what triggered this second workaround, so we
190  * can't use that one either.  Notify enable is IRQs, which aren't
191  * really our business.  That leaves only stall at scoreboard.
192  */
193 static int
194 intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
195 {
196 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
197 	int ret;
198 
199 
200 	ret = intel_ring_begin(ring, 6);
201 	if (ret)
202 		return ret;
203 
204 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
205 	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
206 			PIPE_CONTROL_STALL_AT_SCOREBOARD);
207 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
208 	intel_ring_emit(ring, 0); /* low dword */
209 	intel_ring_emit(ring, 0); /* high dword */
210 	intel_ring_emit(ring, MI_NOOP);
211 	intel_ring_advance(ring);
212 
213 	ret = intel_ring_begin(ring, 6);
214 	if (ret)
215 		return ret;
216 
217 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
218 	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
219 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
220 	intel_ring_emit(ring, 0);
221 	intel_ring_emit(ring, 0);
222 	intel_ring_emit(ring, MI_NOOP);
223 	intel_ring_advance(ring);
224 
225 	return 0;
226 }
227 
228 static int
229 gen6_render_ring_flush(struct intel_engine_cs *ring,
230                          u32 invalidate_domains, u32 flush_domains)
231 {
232 	u32 flags = 0;
233 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
234 	int ret;
235 
236 	/* Force SNB workarounds for PIPE_CONTROL flushes */
237 	ret = intel_emit_post_sync_nonzero_flush(ring);
238 	if (ret)
239 		return ret;
240 
241 	/* Just flush everything.  Experiments have shown that reducing the
242 	 * number of bits based on the write domains has little performance
243 	 * impact.
244 	 */
245 	if (flush_domains) {
246 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
247 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
248 		/*
249 		 * Ensure that any following seqno writes only happen
250 		 * when the render cache is indeed flushed.
251 		 */
252 		flags |= PIPE_CONTROL_CS_STALL;
253 	}
254 	if (invalidate_domains) {
255 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
256 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
257 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
258 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
259 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
260 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
261 		/*
262 		 * TLB invalidate requires a post-sync write.
263 		 */
264 		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
265 	}
266 
267 	ret = intel_ring_begin(ring, 4);
268 	if (ret)
269 		return ret;
270 
271 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
272 	intel_ring_emit(ring, flags);
273 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
274 	intel_ring_emit(ring, 0);
275 	intel_ring_advance(ring);
276 
277 	return 0;
278 }
279 
280 static int
281 gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
282 {
283 	int ret;
284 
285 	ret = intel_ring_begin(ring, 4);
286 	if (ret)
287 		return ret;
288 
289 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
290 	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
291 			      PIPE_CONTROL_STALL_AT_SCOREBOARD);
292 	intel_ring_emit(ring, 0);
293 	intel_ring_emit(ring, 0);
294 	intel_ring_advance(ring);
295 
296 	return 0;
297 }
298 
299 static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
300 {
301 	int ret;
302 
303 	if (!ring->fbc_dirty)
304 		return 0;
305 
306 	ret = intel_ring_begin(ring, 6);
307 	if (ret)
308 		return ret;
309 	/* WaFbcNukeOn3DBlt:ivb/hsw */
310 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
311 	intel_ring_emit(ring, MSG_FBC_REND_STATE);
312 	intel_ring_emit(ring, value);
313 	intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
314 	intel_ring_emit(ring, MSG_FBC_REND_STATE);
315 	intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
316 	intel_ring_advance(ring);
317 
318 	ring->fbc_dirty = false;
319 	return 0;
320 }
321 
322 static int
323 gen7_render_ring_flush(struct intel_engine_cs *ring,
324 		       u32 invalidate_domains, u32 flush_domains)
325 {
326 	u32 flags = 0;
327 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
328 	int ret;
329 
330 	/*
331 	 * Ensure that any following seqno writes only happen when the render
332 	 * cache is indeed flushed.
333 	 *
334 	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
335 	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
336 	 * don't try to be clever and just set it unconditionally.
337 	 */
338 	flags |= PIPE_CONTROL_CS_STALL;
339 
340 	/* Just flush everything.  Experiments have shown that reducing the
341 	 * number of bits based on the write domains has little performance
342 	 * impact.
343 	 */
344 	if (flush_domains) {
345 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
346 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
347 	}
348 	if (invalidate_domains) {
349 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
350 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
351 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
352 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
353 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
354 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
355 		/*
356 		 * TLB invalidate requires a post-sync write.
357 		 */
358 		flags |= PIPE_CONTROL_QW_WRITE;
359 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
360 
361 		/* Workaround: we must issue a pipe_control with CS-stall bit
362 		 * set before a pipe_control command that has the state cache
363 		 * invalidate bit set. */
364 		gen7_render_ring_cs_stall_wa(ring);
365 	}
366 
367 	ret = intel_ring_begin(ring, 4);
368 	if (ret)
369 		return ret;
370 
371 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
372 	intel_ring_emit(ring, flags);
373 	intel_ring_emit(ring, scratch_addr);
374 	intel_ring_emit(ring, 0);
375 	intel_ring_advance(ring);
376 
377 	if (!invalidate_domains && flush_domains)
378 		return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
379 
380 	return 0;
381 }
382 
383 static int
384 gen8_render_ring_flush(struct intel_engine_cs *ring,
385 		       u32 invalidate_domains, u32 flush_domains)
386 {
387 	u32 flags = 0;
388 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
389 	int ret;
390 
391 	flags |= PIPE_CONTROL_CS_STALL;
392 
393 	if (flush_domains) {
394 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
395 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
396 	}
397 	if (invalidate_domains) {
398 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
399 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
400 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
401 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
402 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
403 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
404 		flags |= PIPE_CONTROL_QW_WRITE;
405 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
406 	}
407 
408 	ret = intel_ring_begin(ring, 6);
409 	if (ret)
410 		return ret;
411 
412 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
413 	intel_ring_emit(ring, flags);
414 	intel_ring_emit(ring, scratch_addr);
415 	intel_ring_emit(ring, 0);
416 	intel_ring_emit(ring, 0);
417 	intel_ring_emit(ring, 0);
418 	intel_ring_advance(ring);
419 
420 	return 0;
421 
422 }
423 
424 static void ring_write_tail(struct intel_engine_cs *ring,
425 			    u32 value)
426 {
427 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
428 	I915_WRITE_TAIL(ring, value);
429 }
430 
431 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
432 {
433 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
434 	u64 acthd;
435 
436 	if (INTEL_INFO(ring->dev)->gen >= 8)
437 		acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
438 					 RING_ACTHD_UDW(ring->mmio_base));
439 	else if (INTEL_INFO(ring->dev)->gen >= 4)
440 		acthd = I915_READ(RING_ACTHD(ring->mmio_base));
441 	else
442 		acthd = I915_READ(ACTHD);
443 
444 	return acthd;
445 }
446 
447 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
448 {
449 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
450 	u32 addr;
451 
452 	addr = dev_priv->status_page_dmah->busaddr;
453 	if (INTEL_INFO(ring->dev)->gen >= 4)
454 		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
455 	I915_WRITE(HWS_PGA, addr);
456 }
457 
458 static bool stop_ring(struct intel_engine_cs *ring)
459 {
460 	struct drm_i915_private *dev_priv = to_i915(ring->dev);
461 
462 	if (!IS_GEN2(ring->dev)) {
463 		I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
464 		if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
465 			DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
466 			return false;
467 		}
468 	}
469 
470 	I915_WRITE_CTL(ring, 0);
471 	I915_WRITE_HEAD(ring, 0);
472 	ring->write_tail(ring, 0);
473 
474 	if (!IS_GEN2(ring->dev)) {
475 		(void)I915_READ_CTL(ring);
476 		I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
477 	}
478 
479 	return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
480 }
481 
482 static int init_ring_common(struct intel_engine_cs *ring)
483 {
484 	struct drm_device *dev = ring->dev;
485 	struct drm_i915_private *dev_priv = dev->dev_private;
486 	struct intel_ringbuffer *ringbuf = ring->buffer;
487 	struct drm_i915_gem_object *obj = ringbuf->obj;
488 	int ret = 0;
489 
490 	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
491 
492 	if (!stop_ring(ring)) {
493 		/* G45 ring initialization often fails to reset head to zero */
494 		DRM_DEBUG_KMS("%s head not reset to zero "
495 			      "ctl %08x head %08x tail %08x start %08x\n",
496 			      ring->name,
497 			      I915_READ_CTL(ring),
498 			      I915_READ_HEAD(ring),
499 			      I915_READ_TAIL(ring),
500 			      I915_READ_START(ring));
501 
502 		if (!stop_ring(ring)) {
503 			DRM_ERROR("failed to set %s head to zero "
504 				  "ctl %08x head %08x tail %08x start %08x\n",
505 				  ring->name,
506 				  I915_READ_CTL(ring),
507 				  I915_READ_HEAD(ring),
508 				  I915_READ_TAIL(ring),
509 				  I915_READ_START(ring));
510 			ret = -EIO;
511 			goto out;
512 		}
513 	}
514 
515 	if (I915_NEED_GFX_HWS(dev))
516 		intel_ring_setup_status_page(ring);
517 	else
518 		ring_setup_phys_status_page(ring);
519 
520 	/* Initialize the ring. This must happen _after_ we've cleared the ring
521 	 * registers with the above sequence (the readback of the HEAD registers
522 	 * also enforces ordering), otherwise the hw might lose the new ring
523 	 * register values. */
524 	I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
525 	I915_WRITE_CTL(ring,
526 			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
527 			| RING_VALID);
528 
529 	/* If the head is still not zero, the ring is dead */
530 	if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
531 		     I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
532 		     (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
533 		DRM_ERROR("%s initialization failed "
534 			  "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
535 			  ring->name,
536 			  I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
537 			  I915_READ_HEAD(ring), I915_READ_TAIL(ring),
538 			  I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
539 		ret = -EIO;
540 		goto out;
541 	}
542 
543 	if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
544 		i915_kernel_lost_context(ring->dev);
545 	else {
546 		ringbuf->head = I915_READ_HEAD(ring);
547 		ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
548 		ringbuf->space = ring_space(ring);
549 		ringbuf->last_retired_head = -1;
550 	}
551 
552 	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
553 
554 out:
555 	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
556 
557 	return ret;
558 }
559 
560 static int
561 init_pipe_control(struct intel_engine_cs *ring)
562 {
563 	int ret;
564 
565 	if (ring->scratch.obj)
566 		return 0;
567 
568 	ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
569 	if (ring->scratch.obj == NULL) {
570 		DRM_ERROR("Failed to allocate seqno page\n");
571 		ret = -ENOMEM;
572 		goto err;
573 	}
574 
575 	ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
576 	if (ret)
577 		goto err_unref;
578 
579 	ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
580 	if (ret)
581 		goto err_unref;
582 
583 	ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
584 	ring->scratch.cpu_page = kmap(ring->scratch.obj->pages[0]);
585 	if (ring->scratch.cpu_page == NULL) {
586 		ret = -ENOMEM;
587 		goto err_unpin;
588 	}
589 
590 	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
591 			 ring->name, ring->scratch.gtt_offset);
592 	return 0;
593 
594 err_unpin:
595 	i915_gem_object_ggtt_unpin(ring->scratch.obj);
596 err_unref:
597 	drm_gem_object_unreference(&ring->scratch.obj->base);
598 err:
599 	return ret;
600 }
601 
602 static int init_render_ring(struct intel_engine_cs *ring)
603 {
604 	struct drm_device *dev = ring->dev;
605 	struct drm_i915_private *dev_priv = dev->dev_private;
606 	int ret = init_ring_common(ring);
607 
608 	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
609 	if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
610 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
611 
612 	/* We need to disable the AsyncFlip performance optimisations in order
613 	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
614 	 * programmed to '1' on all products.
615 	 *
616 	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
617 	 */
618 	if (INTEL_INFO(dev)->gen >= 6)
619 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
620 
621 	/* Required for the hardware to program scanline values for waiting */
622 	/* WaEnableFlushTlbInvalidationMode:snb */
623 	if (INTEL_INFO(dev)->gen == 6)
624 		I915_WRITE(GFX_MODE,
625 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
626 
627 	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
628 	if (IS_GEN7(dev))
629 		I915_WRITE(GFX_MODE_GEN7,
630 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
631 			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
632 
633 	if (INTEL_INFO(dev)->gen >= 5) {
634 		ret = init_pipe_control(ring);
635 		if (ret)
636 			return ret;
637 	}
638 
639 	if (IS_GEN6(dev)) {
640 		/* From the Sandybridge PRM, volume 1 part 3, page 24:
641 		 * "If this bit is set, STCunit will have LRA as replacement
642 		 *  policy. [...] This bit must be reset.  LRA replacement
643 		 *  policy is not supported."
644 		 */
645 		I915_WRITE(CACHE_MODE_0,
646 			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
647 	}
648 
649 	if (INTEL_INFO(dev)->gen >= 6)
650 		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
651 
652 	if (HAS_L3_DPF(dev))
653 		I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
654 
655 	return ret;
656 }
657 
658 static void render_ring_cleanup(struct intel_engine_cs *ring)
659 {
660 	struct drm_device *dev = ring->dev;
661 
662 	if (ring->scratch.obj == NULL)
663 		return;
664 
665 	if (INTEL_INFO(dev)->gen >= 5) {
666 		kunmap(ring->scratch.obj->pages[0]);
667 		i915_gem_object_ggtt_unpin(ring->scratch.obj);
668 	}
669 
670 	drm_gem_object_unreference(&ring->scratch.obj->base);
671 	ring->scratch.obj = NULL;
672 }
673 
674 static int gen6_signal(struct intel_engine_cs *signaller,
675 		       unsigned int num_dwords)
676 {
677 	struct drm_device *dev = signaller->dev;
678 	struct drm_i915_private *dev_priv = dev->dev_private;
679 	struct intel_engine_cs *useless;
680 	int i, ret;
681 
682 	/* NB: In order to be able to do semaphore MBOX updates for varying
683 	 * number of rings, it's easiest if we round up each individual update
684 	 * to a multiple of 2 (since ring updates must always be a multiple of
685 	 * 2) even though the actual update only requires 3 dwords.
686 	 */
687 #define MBOX_UPDATE_DWORDS 4
688 	if (i915_semaphore_is_enabled(dev))
689 		num_dwords += ((I915_NUM_RINGS-1) * MBOX_UPDATE_DWORDS);
690 	else
691 		return intel_ring_begin(signaller, num_dwords);
692 
693 	ret = intel_ring_begin(signaller, num_dwords);
694 	if (ret)
695 		return ret;
696 #undef MBOX_UPDATE_DWORDS
697 
698 	for_each_ring(useless, dev_priv, i) {
699 		u32 mbox_reg = signaller->semaphore.mbox.signal[i];
700 		if (mbox_reg != GEN6_NOSYNC) {
701 			intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
702 			intel_ring_emit(signaller, mbox_reg);
703 			intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
704 			intel_ring_emit(signaller, MI_NOOP);
705 		} else {
706 			intel_ring_emit(signaller, MI_NOOP);
707 			intel_ring_emit(signaller, MI_NOOP);
708 			intel_ring_emit(signaller, MI_NOOP);
709 			intel_ring_emit(signaller, MI_NOOP);
710 		}
711 	}
712 
713 	return 0;
714 }
715 
716 /**
717  * gen6_add_request - Update the semaphore mailbox registers
718  *
719  * @ring - ring that is adding a request
720  * @seqno - return seqno stuck into the ring
721  *
722  * Update the mailbox registers in the *other* rings with the current seqno.
723  * This acts like a signal in the canonical semaphore.
724  */
725 static int
726 gen6_add_request(struct intel_engine_cs *ring)
727 {
728 	int ret;
729 
730 	ret = ring->semaphore.signal(ring, 4);
731 	if (ret)
732 		return ret;
733 
734 	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
735 	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
736 	intel_ring_emit(ring, ring->outstanding_lazy_seqno);
737 	intel_ring_emit(ring, MI_USER_INTERRUPT);
738 	__intel_ring_advance(ring);
739 
740 	return 0;
741 }
742 
743 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
744 					      u32 seqno)
745 {
746 	struct drm_i915_private *dev_priv = dev->dev_private;
747 	return dev_priv->last_seqno < seqno;
748 }
749 
750 /**
751  * intel_ring_sync - sync the waiter to the signaller on seqno
752  *
753  * @waiter - ring that is waiting
754  * @signaller - ring which has, or will signal
755  * @seqno - seqno which the waiter will block on
756  */
757 static int
758 gen6_ring_sync(struct intel_engine_cs *waiter,
759 	       struct intel_engine_cs *signaller,
760 	       u32 seqno)
761 {
762 	u32 dw1 = MI_SEMAPHORE_MBOX |
763 		  MI_SEMAPHORE_COMPARE |
764 		  MI_SEMAPHORE_REGISTER;
765 	u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
766 	int ret;
767 
768 	/* Throughout all of the GEM code, seqno passed implies our current
769 	 * seqno is >= the last seqno executed. However for hardware the
770 	 * comparison is strictly greater than.
771 	 */
772 	seqno -= 1;
773 
774 	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
775 
776 	ret = intel_ring_begin(waiter, 4);
777 	if (ret)
778 		return ret;
779 
780 	/* If seqno wrap happened, omit the wait with no-ops */
781 	if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
782 		intel_ring_emit(waiter, dw1 | wait_mbox);
783 		intel_ring_emit(waiter, seqno);
784 		intel_ring_emit(waiter, 0);
785 		intel_ring_emit(waiter, MI_NOOP);
786 	} else {
787 		intel_ring_emit(waiter, MI_NOOP);
788 		intel_ring_emit(waiter, MI_NOOP);
789 		intel_ring_emit(waiter, MI_NOOP);
790 		intel_ring_emit(waiter, MI_NOOP);
791 	}
792 	intel_ring_advance(waiter);
793 
794 	return 0;
795 }
796 
797 #define PIPE_CONTROL_FLUSH(ring__, addr__)					\
798 do {									\
799 	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
800 		 PIPE_CONTROL_DEPTH_STALL);				\
801 	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
802 	intel_ring_emit(ring__, 0);							\
803 	intel_ring_emit(ring__, 0);							\
804 } while (0)
805 
806 static int
807 pc_render_add_request(struct intel_engine_cs *ring)
808 {
809 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
810 	int ret;
811 
812 	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
813 	 * incoherent with writes to memory, i.e. completely fubar,
814 	 * so we need to use PIPE_NOTIFY instead.
815 	 *
816 	 * However, we also need to workaround the qword write
817 	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
818 	 * memory before requesting an interrupt.
819 	 */
820 	ret = intel_ring_begin(ring, 32);
821 	if (ret)
822 		return ret;
823 
824 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
825 			PIPE_CONTROL_WRITE_FLUSH |
826 			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
827 	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
828 	intel_ring_emit(ring, ring->outstanding_lazy_seqno);
829 	intel_ring_emit(ring, 0);
830 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
831 	scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
832 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
833 	scratch_addr += 2 * CACHELINE_BYTES;
834 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
835 	scratch_addr += 2 * CACHELINE_BYTES;
836 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
837 	scratch_addr += 2 * CACHELINE_BYTES;
838 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
839 	scratch_addr += 2 * CACHELINE_BYTES;
840 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
841 
842 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
843 			PIPE_CONTROL_WRITE_FLUSH |
844 			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
845 			PIPE_CONTROL_NOTIFY);
846 	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
847 	intel_ring_emit(ring, ring->outstanding_lazy_seqno);
848 	intel_ring_emit(ring, 0);
849 	__intel_ring_advance(ring);
850 
851 	return 0;
852 }
853 
854 static u32
855 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
856 {
857 	/* Workaround to force correct ordering between irq and seqno writes on
858 	 * ivb (and maybe also on snb) by reading from a CS register (like
859 	 * ACTHD) before reading the status page. */
860 	if (!lazy_coherency) {
861 		struct drm_i915_private *dev_priv = ring->dev->dev_private;
862 		POSTING_READ(RING_ACTHD(ring->mmio_base));
863 	}
864 
865 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
866 }
867 
868 static u32
869 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
870 {
871 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
872 }
873 
874 static void
875 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
876 {
877 	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
878 }
879 
880 static u32
881 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
882 {
883 	return ring->scratch.cpu_page[0];
884 }
885 
886 static void
887 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
888 {
889 	ring->scratch.cpu_page[0] = seqno;
890 }
891 
892 static bool
893 gen5_ring_get_irq(struct intel_engine_cs *ring)
894 {
895 	struct drm_device *dev = ring->dev;
896 	struct drm_i915_private *dev_priv = dev->dev_private;
897 
898 	if (!dev->irq_enabled)
899 		return false;
900 
901 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
902 	if (ring->irq_refcount++ == 0)
903 		ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
904 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
905 
906 	return true;
907 }
908 
909 static void
910 gen5_ring_put_irq(struct intel_engine_cs *ring)
911 {
912 	struct drm_device *dev = ring->dev;
913 	struct drm_i915_private *dev_priv = dev->dev_private;
914 
915 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
916 	if (--ring->irq_refcount == 0)
917 		ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
918 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
919 }
920 
921 static bool
922 i9xx_ring_get_irq(struct intel_engine_cs *ring)
923 {
924 	struct drm_device *dev = ring->dev;
925 	struct drm_i915_private *dev_priv = dev->dev_private;
926 
927 	if (!dev->irq_enabled)
928 		return false;
929 
930 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
931 	if (ring->irq_refcount++ == 0) {
932 		dev_priv->irq_mask &= ~ring->irq_enable_mask;
933 		I915_WRITE(IMR, dev_priv->irq_mask);
934 		POSTING_READ(IMR);
935 	}
936 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
937 
938 	return true;
939 }
940 
941 static void
942 i9xx_ring_put_irq(struct intel_engine_cs *ring)
943 {
944 	struct drm_device *dev = ring->dev;
945 	struct drm_i915_private *dev_priv = dev->dev_private;
946 
947 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
948 	if (--ring->irq_refcount == 0) {
949 		dev_priv->irq_mask |= ring->irq_enable_mask;
950 		I915_WRITE(IMR, dev_priv->irq_mask);
951 		POSTING_READ(IMR);
952 	}
953 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
954 }
955 
956 static bool
957 i8xx_ring_get_irq(struct intel_engine_cs *ring)
958 {
959 	struct drm_device *dev = ring->dev;
960 	struct drm_i915_private *dev_priv = dev->dev_private;
961 
962 	if (!dev->irq_enabled)
963 		return false;
964 
965 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
966 	if (ring->irq_refcount++ == 0) {
967 		dev_priv->irq_mask &= ~ring->irq_enable_mask;
968 		I915_WRITE16(IMR, dev_priv->irq_mask);
969 		POSTING_READ16(IMR);
970 	}
971 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
972 
973 	return true;
974 }
975 
976 static void
977 i8xx_ring_put_irq(struct intel_engine_cs *ring)
978 {
979 	struct drm_device *dev = ring->dev;
980 	struct drm_i915_private *dev_priv = dev->dev_private;
981 
982 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
983 	if (--ring->irq_refcount == 0) {
984 		dev_priv->irq_mask |= ring->irq_enable_mask;
985 		I915_WRITE16(IMR, dev_priv->irq_mask);
986 		POSTING_READ16(IMR);
987 	}
988 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
989 }
990 
991 void intel_ring_setup_status_page(struct intel_engine_cs *ring)
992 {
993 	struct drm_device *dev = ring->dev;
994 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
995 	u32 mmio = 0;
996 
997 	/* The ring status page addresses are no longer next to the rest of
998 	 * the ring registers as of gen7.
999 	 */
1000 	if (IS_GEN7(dev)) {
1001 		switch (ring->id) {
1002 		case RCS:
1003 			mmio = RENDER_HWS_PGA_GEN7;
1004 			break;
1005 		case BCS:
1006 			mmio = BLT_HWS_PGA_GEN7;
1007 			break;
1008 		/*
1009 		 * VCS2 actually doesn't exist on Gen7. Only shut up
1010 		 * gcc switch check warning
1011 		 */
1012 		case VCS2:
1013 		case VCS:
1014 			mmio = BSD_HWS_PGA_GEN7;
1015 			break;
1016 		case VECS:
1017 			mmio = VEBOX_HWS_PGA_GEN7;
1018 			break;
1019 		}
1020 	} else if (IS_GEN6(ring->dev)) {
1021 		mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
1022 	} else {
1023 		/* XXX: gen8 returns to sanity */
1024 		mmio = RING_HWS_PGA(ring->mmio_base);
1025 	}
1026 
1027 	I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
1028 	POSTING_READ(mmio);
1029 
1030 	/*
1031 	 * Flush the TLB for this page
1032 	 *
1033 	 * FIXME: These two bits have disappeared on gen8, so a question
1034 	 * arises: do we still need this and if so how should we go about
1035 	 * invalidating the TLB?
1036 	 */
1037 	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
1038 		u32 reg = RING_INSTPM(ring->mmio_base);
1039 
1040 		/* ring should be idle before issuing a sync flush*/
1041 		WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1042 
1043 		I915_WRITE(reg,
1044 			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1045 					      INSTPM_SYNC_FLUSH));
1046 		if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1047 			     1000))
1048 			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1049 				  ring->name);
1050 	}
1051 }
1052 
1053 static int
1054 bsd_ring_flush(struct intel_engine_cs *ring,
1055 	       u32     invalidate_domains,
1056 	       u32     flush_domains)
1057 {
1058 	int ret;
1059 
1060 	ret = intel_ring_begin(ring, 2);
1061 	if (ret)
1062 		return ret;
1063 
1064 	intel_ring_emit(ring, MI_FLUSH);
1065 	intel_ring_emit(ring, MI_NOOP);
1066 	intel_ring_advance(ring);
1067 	return 0;
1068 }
1069 
1070 static int
1071 i9xx_add_request(struct intel_engine_cs *ring)
1072 {
1073 	int ret;
1074 
1075 	ret = intel_ring_begin(ring, 4);
1076 	if (ret)
1077 		return ret;
1078 
1079 	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1080 	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1081 	intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1082 	intel_ring_emit(ring, MI_USER_INTERRUPT);
1083 	__intel_ring_advance(ring);
1084 
1085 	return 0;
1086 }
1087 
1088 static bool
1089 gen6_ring_get_irq(struct intel_engine_cs *ring)
1090 {
1091 	struct drm_device *dev = ring->dev;
1092 	struct drm_i915_private *dev_priv = dev->dev_private;
1093 
1094 	if (!dev->irq_enabled)
1095 	       return false;
1096 
1097 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1098 	if (ring->irq_refcount++ == 0) {
1099 		if (HAS_L3_DPF(dev) && ring->id == RCS)
1100 			I915_WRITE_IMR(ring,
1101 				       ~(ring->irq_enable_mask |
1102 					 GT_PARITY_ERROR(dev)));
1103 		else
1104 			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1105 		ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1106 	}
1107 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1108 
1109 	return true;
1110 }
1111 
1112 static void
1113 gen6_ring_put_irq(struct intel_engine_cs *ring)
1114 {
1115 	struct drm_device *dev = ring->dev;
1116 	struct drm_i915_private *dev_priv = dev->dev_private;
1117 
1118 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1119 	if (--ring->irq_refcount == 0) {
1120 		if (HAS_L3_DPF(dev) && ring->id == RCS)
1121 			I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1122 		else
1123 			I915_WRITE_IMR(ring, ~0);
1124 		ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1125 	}
1126 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1127 }
1128 
1129 static bool
1130 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1131 {
1132 	struct drm_device *dev = ring->dev;
1133 	struct drm_i915_private *dev_priv = dev->dev_private;
1134 
1135 	if (!dev->irq_enabled)
1136 		return false;
1137 
1138 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1139 	if (ring->irq_refcount++ == 0) {
1140 		I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1141 		snb_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1142 	}
1143 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1144 
1145 	return true;
1146 }
1147 
1148 static void
1149 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1150 {
1151 	struct drm_device *dev = ring->dev;
1152 	struct drm_i915_private *dev_priv = dev->dev_private;
1153 
1154 	if (!dev->irq_enabled)
1155 		return;
1156 
1157 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1158 	if (--ring->irq_refcount == 0) {
1159 		I915_WRITE_IMR(ring, ~0);
1160 		snb_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1161 	}
1162 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1163 }
1164 
1165 static bool
1166 gen8_ring_get_irq(struct intel_engine_cs *ring)
1167 {
1168 	struct drm_device *dev = ring->dev;
1169 	struct drm_i915_private *dev_priv = dev->dev_private;
1170 
1171 	if (!dev->irq_enabled)
1172 		return false;
1173 
1174 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1175 	if (ring->irq_refcount++ == 0) {
1176 		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1177 			I915_WRITE_IMR(ring,
1178 				       ~(ring->irq_enable_mask |
1179 					 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1180 		} else {
1181 			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1182 		}
1183 		POSTING_READ(RING_IMR(ring->mmio_base));
1184 	}
1185 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1186 
1187 	return true;
1188 }
1189 
1190 static void
1191 gen8_ring_put_irq(struct intel_engine_cs *ring)
1192 {
1193 	struct drm_device *dev = ring->dev;
1194 	struct drm_i915_private *dev_priv = dev->dev_private;
1195 
1196 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1197 	if (--ring->irq_refcount == 0) {
1198 		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1199 			I915_WRITE_IMR(ring,
1200 				       ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1201 		} else {
1202 			I915_WRITE_IMR(ring, ~0);
1203 		}
1204 		POSTING_READ(RING_IMR(ring->mmio_base));
1205 	}
1206 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1207 }
1208 
1209 static int
1210 i965_dispatch_execbuffer(struct intel_engine_cs *ring,
1211 			 u64 offset, u32 length,
1212 			 unsigned flags)
1213 {
1214 	int ret;
1215 
1216 	ret = intel_ring_begin(ring, 2);
1217 	if (ret)
1218 		return ret;
1219 
1220 	intel_ring_emit(ring,
1221 			MI_BATCH_BUFFER_START |
1222 			MI_BATCH_GTT |
1223 			(flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1224 	intel_ring_emit(ring, offset);
1225 	intel_ring_advance(ring);
1226 
1227 	return 0;
1228 }
1229 
1230 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1231 #define I830_BATCH_LIMIT (256*1024)
1232 static int
1233 i830_dispatch_execbuffer(struct intel_engine_cs *ring,
1234 				u64 offset, u32 len,
1235 				unsigned flags)
1236 {
1237 	int ret;
1238 
1239 	if (flags & I915_DISPATCH_PINNED) {
1240 		ret = intel_ring_begin(ring, 4);
1241 		if (ret)
1242 			return ret;
1243 
1244 		intel_ring_emit(ring, MI_BATCH_BUFFER);
1245 		intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1246 		intel_ring_emit(ring, offset + len - 8);
1247 		intel_ring_emit(ring, MI_NOOP);
1248 		intel_ring_advance(ring);
1249 	} else {
1250 		u32 cs_offset = ring->scratch.gtt_offset;
1251 
1252 		if (len > I830_BATCH_LIMIT)
1253 			return -ENOSPC;
1254 
1255 		ret = intel_ring_begin(ring, 9+3);
1256 		if (ret)
1257 			return ret;
1258 		/* Blit the batch (which has now all relocs applied) to the stable batch
1259 		 * scratch bo area (so that the CS never stumbles over its tlb
1260 		 * invalidation bug) ... */
1261 		intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1262 				XY_SRC_COPY_BLT_WRITE_ALPHA |
1263 				XY_SRC_COPY_BLT_WRITE_RGB);
1264 		intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1265 		intel_ring_emit(ring, 0);
1266 		intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1267 		intel_ring_emit(ring, cs_offset);
1268 		intel_ring_emit(ring, 0);
1269 		intel_ring_emit(ring, 4096);
1270 		intel_ring_emit(ring, offset);
1271 		intel_ring_emit(ring, MI_FLUSH);
1272 
1273 		/* ... and execute it. */
1274 		intel_ring_emit(ring, MI_BATCH_BUFFER);
1275 		intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1276 		intel_ring_emit(ring, cs_offset + len - 8);
1277 		intel_ring_advance(ring);
1278 	}
1279 
1280 	return 0;
1281 }
1282 
1283 static int
1284 i915_dispatch_execbuffer(struct intel_engine_cs *ring,
1285 			 u64 offset, u32 len,
1286 			 unsigned flags)
1287 {
1288 	int ret;
1289 
1290 	ret = intel_ring_begin(ring, 2);
1291 	if (ret)
1292 		return ret;
1293 
1294 	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1295 	intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1296 	intel_ring_advance(ring);
1297 
1298 	return 0;
1299 }
1300 
1301 static void cleanup_status_page(struct intel_engine_cs *ring)
1302 {
1303 	struct drm_i915_gem_object *obj;
1304 
1305 	obj = ring->status_page.obj;
1306 	if (obj == NULL)
1307 		return;
1308 
1309 	kunmap(obj->pages[0]);
1310 	i915_gem_object_ggtt_unpin(obj);
1311 	drm_gem_object_unreference(&obj->base);
1312 	ring->status_page.obj = NULL;
1313 }
1314 
1315 static int init_status_page(struct intel_engine_cs *ring)
1316 {
1317 	struct drm_i915_gem_object *obj;
1318 
1319 	if ((obj = ring->status_page.obj) == NULL) {
1320 		int ret;
1321 
1322 		obj = i915_gem_alloc_object(ring->dev, 4096);
1323 		if (obj == NULL) {
1324 			DRM_ERROR("Failed to allocate status page\n");
1325 			return -ENOMEM;
1326 		}
1327 
1328 		ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1329 		if (ret)
1330 			goto err_unref;
1331 
1332 		ret = i915_gem_obj_ggtt_pin(obj, 4096, 0);
1333 		if (ret) {
1334 err_unref:
1335 			drm_gem_object_unreference(&obj->base);
1336 			return ret;
1337 		}
1338 
1339 		ring->status_page.obj = obj;
1340 	}
1341 
1342 	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1343 	ring->status_page.page_addr = kmap(obj->pages[0]);
1344 	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1345 
1346 	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1347 			ring->name, ring->status_page.gfx_addr);
1348 
1349 	return 0;
1350 }
1351 
1352 static int init_phys_status_page(struct intel_engine_cs *ring)
1353 {
1354 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1355 
1356 	if (!dev_priv->status_page_dmah) {
1357 		dev_priv->status_page_dmah =
1358 			drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1359 		if (!dev_priv->status_page_dmah)
1360 			return -ENOMEM;
1361 	}
1362 
1363 	ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1364 	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1365 
1366 	return 0;
1367 }
1368 
1369 static int allocate_ring_buffer(struct intel_engine_cs *ring)
1370 {
1371 	struct drm_device *dev = ring->dev;
1372 	struct intel_ringbuffer *ringbuf = ring->buffer;
1373 	struct drm_i915_gem_object *obj;
1374 	int ret;
1375 
1376 	if (intel_ring_initialized(ring))
1377 		return 0;
1378 
1379 	obj = NULL;
1380 	if (!HAS_LLC(dev))
1381 		obj = i915_gem_object_create_stolen(dev, ringbuf->size);
1382 	if (obj == NULL)
1383 		obj = i915_gem_alloc_object(dev, ringbuf->size);
1384 	if (obj == NULL)
1385 		return -ENOMEM;
1386 
1387 	ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1388 	if (ret)
1389 		goto err_unref;
1390 
1391 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1392 	if (ret)
1393 		goto err_unpin;
1394 
1395 	ringbuf->virtual_start =
1396 		ioremap_wc(dev->agp->base + i915_gem_obj_ggtt_offset(obj),
1397 				ringbuf->size);
1398 	if (ringbuf->virtual_start == NULL) {
1399 		ret = -EINVAL;
1400 		goto err_unpin;
1401 	}
1402 
1403 	ringbuf->obj = obj;
1404 	return 0;
1405 
1406 err_unpin:
1407 	i915_gem_object_ggtt_unpin(obj);
1408 err_unref:
1409 	drm_gem_object_unreference(&obj->base);
1410 	return ret;
1411 }
1412 
1413 static int intel_init_ring_buffer(struct drm_device *dev,
1414 				  struct intel_engine_cs *ring)
1415 {
1416 	struct intel_ringbuffer *ringbuf = ring->buffer;
1417 	int ret;
1418 
1419 	if (ringbuf == NULL) {
1420 		ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1421 		if (!ringbuf)
1422 			return -ENOMEM;
1423 		ring->buffer = ringbuf;
1424 	}
1425 
1426 	ring->dev = dev;
1427 	INIT_LIST_HEAD(&ring->active_list);
1428 	INIT_LIST_HEAD(&ring->request_list);
1429 	ringbuf->size = 32 * PAGE_SIZE;
1430 	memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
1431 
1432 	init_waitqueue_head(&ring->irq_queue);
1433 
1434 	if (I915_NEED_GFX_HWS(dev)) {
1435 		ret = init_status_page(ring);
1436 		if (ret)
1437 			goto error;
1438 	} else {
1439 		BUG_ON(ring->id != RCS);
1440 		ret = init_phys_status_page(ring);
1441 		if (ret)
1442 			goto error;
1443 	}
1444 
1445 	ret = allocate_ring_buffer(ring);
1446 	if (ret) {
1447 		DRM_ERROR("Failed to allocate ringbuffer %s: %d\n", ring->name, ret);
1448 		goto error;
1449 	}
1450 
1451 	/* Workaround an erratum on the i830 which causes a hang if
1452 	 * the TAIL pointer points to within the last 2 cachelines
1453 	 * of the buffer.
1454 	 */
1455 	ringbuf->effective_size = ringbuf->size;
1456 	if (IS_I830(dev) || IS_845G(dev))
1457 		ringbuf->effective_size -= 2 * CACHELINE_BYTES;
1458 
1459 	ret = i915_cmd_parser_init_ring(ring);
1460 	if (ret)
1461 		goto error;
1462 
1463 	ret = ring->init(ring);
1464 	if (ret)
1465 		goto error;
1466 
1467 	return 0;
1468 
1469 error:
1470 	kfree(ringbuf);
1471 	ring->buffer = NULL;
1472 	return ret;
1473 }
1474 
1475 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
1476 {
1477 	struct drm_i915_private *dev_priv = to_i915(ring->dev);
1478 	struct intel_ringbuffer *ringbuf = ring->buffer;
1479 
1480 	if (!intel_ring_initialized(ring))
1481 		return;
1482 
1483 	intel_stop_ring_buffer(ring);
1484 	WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
1485 
1486 	pmap_unmapdev((vm_offset_t)ringbuf->virtual_start, ringbuf->size);
1487 
1488 	i915_gem_object_ggtt_unpin(ringbuf->obj);
1489 	drm_gem_object_unreference(&ringbuf->obj->base);
1490 	ringbuf->obj = NULL;
1491 	ring->preallocated_lazy_request = NULL;
1492 	ring->outstanding_lazy_seqno = 0;
1493 
1494 	if (ring->cleanup)
1495 		ring->cleanup(ring);
1496 
1497 	cleanup_status_page(ring);
1498 
1499 	i915_cmd_parser_fini_ring(ring);
1500 
1501 	kfree(ringbuf);
1502 	ring->buffer = NULL;
1503 }
1504 
1505 static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
1506 {
1507 	struct intel_ringbuffer *ringbuf = ring->buffer;
1508 	struct drm_i915_gem_request *request;
1509 	u32 seqno = 0;
1510 	int ret;
1511 
1512 	if (ringbuf->last_retired_head != -1) {
1513 		ringbuf->head = ringbuf->last_retired_head;
1514 		ringbuf->last_retired_head = -1;
1515 
1516 		ringbuf->space = ring_space(ring);
1517 		if (ringbuf->space >= n)
1518 			return 0;
1519 	}
1520 
1521 	list_for_each_entry(request, &ring->request_list, list) {
1522 		if (__ring_space(request->tail, ringbuf->tail, ringbuf->size) >= n) {
1523 			seqno = request->seqno;
1524 			break;
1525 		}
1526 	}
1527 
1528 	if (seqno == 0)
1529 		return -ENOSPC;
1530 
1531 	ret = i915_wait_seqno(ring, seqno);
1532 	if (ret)
1533 		return ret;
1534 
1535 	i915_gem_retire_requests_ring(ring);
1536 	ringbuf->head = ringbuf->last_retired_head;
1537 	ringbuf->last_retired_head = -1;
1538 
1539 	ringbuf->space = ring_space(ring);
1540 	return 0;
1541 }
1542 
1543 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
1544 {
1545 	struct drm_device *dev = ring->dev;
1546 	struct drm_i915_private *dev_priv = dev->dev_private;
1547 	struct intel_ringbuffer *ringbuf = ring->buffer;
1548 	unsigned long end;
1549 	int ret;
1550 
1551 	ret = intel_ring_wait_request(ring, n);
1552 	if (ret != -ENOSPC)
1553 		return ret;
1554 
1555 	/* force the tail write in case we have been skipping them */
1556 	__intel_ring_advance(ring);
1557 
1558 	/* With GEM the hangcheck timer should kick us out of the loop,
1559 	 * leaving it early runs the risk of corrupting GEM state (due
1560 	 * to running on almost untested codepaths). But on resume
1561 	 * timers don't work yet, so prevent a complete hang in that
1562 	 * case by choosing an insanely large timeout. */
1563 	end = jiffies + 60 * HZ;
1564 
1565 	trace_i915_ring_wait_begin(ring);
1566 	do {
1567 		ringbuf->head = I915_READ_HEAD(ring);
1568 		ringbuf->space = ring_space(ring);
1569 		if (ringbuf->space >= n) {
1570 			ret = 0;
1571 			break;
1572 		}
1573 
1574 #if 0
1575 		if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
1576 		    dev->primary->master) {
1577 			struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1578 			if (master_priv->sarea_priv)
1579 				master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1580 		}
1581 #else
1582 		if (dev_priv->sarea_priv)
1583 			dev_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1584 #endif
1585 
1586 
1587 		msleep(1);
1588 
1589 #if 0
1590 		if (dev_priv->mm.interruptible && signal_pending(current)) {
1591 			ret = -ERESTARTSYS;
1592 			break;
1593 		}
1594 #endif
1595 
1596 		ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1597 					   dev_priv->mm.interruptible);
1598 		if (ret)
1599 			break;
1600 
1601 		if (time_after(jiffies, end)) {
1602 			ret = -EBUSY;
1603 			break;
1604 		}
1605 	} while (1);
1606 	trace_i915_ring_wait_end(ring);
1607 	return ret;
1608 }
1609 
1610 static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
1611 {
1612 	uint32_t __iomem *virt;
1613 	struct intel_ringbuffer *ringbuf = ring->buffer;
1614 	int rem = ringbuf->size - ringbuf->tail;
1615 
1616 	if (ringbuf->space < rem) {
1617 		int ret = ring_wait_for_space(ring, rem);
1618 		if (ret)
1619 			return ret;
1620 	}
1621 
1622 	virt = (unsigned int *)((char *)ringbuf->virtual_start + ringbuf->tail);
1623 	rem /= 4;
1624 	while (rem--)
1625 		iowrite32(MI_NOOP, virt++);
1626 
1627 	ringbuf->tail = 0;
1628 	ringbuf->space = ring_space(ring);
1629 
1630 	return 0;
1631 }
1632 
1633 int intel_ring_idle(struct intel_engine_cs *ring)
1634 {
1635 	u32 seqno;
1636 	int ret;
1637 
1638 	/* We need to add any requests required to flush the objects and ring */
1639 	if (ring->outstanding_lazy_seqno) {
1640 		ret = i915_add_request(ring, NULL);
1641 		if (ret)
1642 			return ret;
1643 	}
1644 
1645 	/* Wait upon the last request to be completed */
1646 	if (list_empty(&ring->request_list))
1647 		return 0;
1648 
1649 	seqno = list_entry(ring->request_list.prev,
1650 			   struct drm_i915_gem_request,
1651 			   list)->seqno;
1652 
1653 	return i915_wait_seqno(ring, seqno);
1654 }
1655 
1656 static int
1657 intel_ring_alloc_seqno(struct intel_engine_cs *ring)
1658 {
1659 	if (ring->outstanding_lazy_seqno)
1660 		return 0;
1661 
1662 	if (ring->preallocated_lazy_request == NULL) {
1663 		struct drm_i915_gem_request *request;
1664 
1665 		request = kmalloc(sizeof(*request), M_DRM, M_WAITOK);
1666 		if (request == NULL)
1667 			return -ENOMEM;
1668 
1669 		ring->preallocated_lazy_request = request;
1670 	}
1671 
1672 	return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
1673 }
1674 
1675 static int __intel_ring_prepare(struct intel_engine_cs *ring,
1676 				int bytes)
1677 {
1678 	struct intel_ringbuffer *ringbuf = ring->buffer;
1679 	int ret;
1680 
1681 	if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
1682 		ret = intel_wrap_ring_buffer(ring);
1683 		if (unlikely(ret))
1684 			return ret;
1685 	}
1686 
1687 	if (unlikely(ringbuf->space < bytes)) {
1688 		ret = ring_wait_for_space(ring, bytes);
1689 		if (unlikely(ret))
1690 			return ret;
1691 	}
1692 
1693 	return 0;
1694 }
1695 
1696 int intel_ring_begin(struct intel_engine_cs *ring,
1697 		     int num_dwords)
1698 {
1699 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1700 	int ret;
1701 
1702 	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1703 				   dev_priv->mm.interruptible);
1704 	if (ret)
1705 		return ret;
1706 
1707 	ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
1708 	if (ret)
1709 		return ret;
1710 
1711 	/* Preallocate the olr before touching the ring */
1712 	ret = intel_ring_alloc_seqno(ring);
1713 	if (ret)
1714 		return ret;
1715 
1716 	ring->buffer->space -= num_dwords * sizeof(uint32_t);
1717 	return 0;
1718 }
1719 
1720 /* Align the ring tail to a cacheline boundary */
1721 int intel_ring_cacheline_align(struct intel_engine_cs *ring)
1722 {
1723 	int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
1724 	int ret;
1725 
1726 	if (num_dwords == 0)
1727 		return 0;
1728 
1729 	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
1730 	ret = intel_ring_begin(ring, num_dwords);
1731 	if (ret)
1732 		return ret;
1733 
1734 	while (num_dwords--)
1735 		intel_ring_emit(ring, MI_NOOP);
1736 
1737 	intel_ring_advance(ring);
1738 
1739 	return 0;
1740 }
1741 
1742 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
1743 {
1744 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1745 
1746 	BUG_ON(ring->outstanding_lazy_seqno);
1747 
1748 	if (INTEL_INFO(ring->dev)->gen >= 6) {
1749 		I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1750 		I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
1751 		if (HAS_VEBOX(ring->dev))
1752 			I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
1753 	}
1754 
1755 	ring->set_seqno(ring, seqno);
1756 	ring->hangcheck.seqno = seqno;
1757 }
1758 
1759 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
1760 				     u32 value)
1761 {
1762 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1763 
1764        /* Every tail move must follow the sequence below */
1765 
1766 	/* Disable notification that the ring is IDLE. The GT
1767 	 * will then assume that it is busy and bring it out of rc6.
1768 	 */
1769 	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1770 		   _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1771 
1772 	/* Clear the context id. Here be magic! */
1773 	I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1774 
1775 	/* Wait for the ring not to be idle, i.e. for it to wake up. */
1776 	if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1777 		      GEN6_BSD_SLEEP_INDICATOR) == 0,
1778 		     50))
1779 		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1780 
1781 	/* Now that the ring is fully powered up, update the tail */
1782 	I915_WRITE_TAIL(ring, value);
1783 	POSTING_READ(RING_TAIL(ring->mmio_base));
1784 
1785 	/* Let the ring send IDLE messages to the GT again,
1786 	 * and so let it sleep to conserve power when idle.
1787 	 */
1788 	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1789 		   _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1790 }
1791 
1792 static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
1793 			       u32 invalidate, u32 flush)
1794 {
1795 	uint32_t cmd;
1796 	int ret;
1797 
1798 	ret = intel_ring_begin(ring, 4);
1799 	if (ret)
1800 		return ret;
1801 
1802 	cmd = MI_FLUSH_DW;
1803 	if (INTEL_INFO(ring->dev)->gen >= 8)
1804 		cmd += 1;
1805 	/*
1806 	 * Bspec vol 1c.5 - video engine command streamer:
1807 	 * "If ENABLED, all TLBs will be invalidated once the flush
1808 	 * operation is complete. This bit is only valid when the
1809 	 * Post-Sync Operation field is a value of 1h or 3h."
1810 	 */
1811 	if (invalidate & I915_GEM_GPU_DOMAINS)
1812 		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1813 			MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1814 	intel_ring_emit(ring, cmd);
1815 	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1816 	if (INTEL_INFO(ring->dev)->gen >= 8) {
1817 		intel_ring_emit(ring, 0); /* upper addr */
1818 		intel_ring_emit(ring, 0); /* value */
1819 	} else  {
1820 		intel_ring_emit(ring, 0);
1821 		intel_ring_emit(ring, MI_NOOP);
1822 	}
1823 	intel_ring_advance(ring);
1824 	return 0;
1825 }
1826 
1827 static int
1828 gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
1829 			      u64 offset, u32 len,
1830 			      unsigned flags)
1831 {
1832 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1833 	bool ppgtt = dev_priv->mm.aliasing_ppgtt != NULL &&
1834 		!(flags & I915_DISPATCH_SECURE);
1835 	int ret;
1836 
1837 	ret = intel_ring_begin(ring, 4);
1838 	if (ret)
1839 		return ret;
1840 
1841 	/* FIXME(BDW): Address space and security selectors. */
1842 	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1843 	intel_ring_emit(ring, lower_32_bits(offset));
1844 	intel_ring_emit(ring, upper_32_bits(offset));
1845 	intel_ring_emit(ring, MI_NOOP);
1846 	intel_ring_advance(ring);
1847 
1848 	return 0;
1849 }
1850 
1851 static int
1852 hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
1853 			      u64 offset, u32 len,
1854 			      unsigned flags)
1855 {
1856 	int ret;
1857 
1858 	ret = intel_ring_begin(ring, 2);
1859 	if (ret)
1860 		return ret;
1861 
1862 	intel_ring_emit(ring,
1863 			MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
1864 			(flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
1865 	/* bit0-7 is the length on GEN6+ */
1866 	intel_ring_emit(ring, offset);
1867 	intel_ring_advance(ring);
1868 
1869 	return 0;
1870 }
1871 
1872 static int
1873 gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
1874 			      u64 offset, u32 len,
1875 			      unsigned flags)
1876 {
1877 	int ret;
1878 
1879 	ret = intel_ring_begin(ring, 2);
1880 	if (ret)
1881 		return ret;
1882 
1883 	intel_ring_emit(ring,
1884 			MI_BATCH_BUFFER_START |
1885 			(flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1886 	/* bit0-7 is the length on GEN6+ */
1887 	intel_ring_emit(ring, offset);
1888 	intel_ring_advance(ring);
1889 
1890 	return 0;
1891 }
1892 
1893 /* Blitter support (SandyBridge+) */
1894 
1895 static int gen6_ring_flush(struct intel_engine_cs *ring,
1896 			   u32 invalidate, u32 flush)
1897 {
1898 	struct drm_device *dev = ring->dev;
1899 	uint32_t cmd;
1900 	int ret;
1901 
1902 	ret = intel_ring_begin(ring, 4);
1903 	if (ret)
1904 		return ret;
1905 
1906 	cmd = MI_FLUSH_DW;
1907 	if (INTEL_INFO(ring->dev)->gen >= 8)
1908 		cmd += 1;
1909 	/*
1910 	 * Bspec vol 1c.3 - blitter engine command streamer:
1911 	 * "If ENABLED, all TLBs will be invalidated once the flush
1912 	 * operation is complete. This bit is only valid when the
1913 	 * Post-Sync Operation field is a value of 1h or 3h."
1914 	 */
1915 	if (invalidate & I915_GEM_DOMAIN_RENDER)
1916 		cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1917 			MI_FLUSH_DW_OP_STOREDW;
1918 	intel_ring_emit(ring, cmd);
1919 	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1920 	if (INTEL_INFO(ring->dev)->gen >= 8) {
1921 		intel_ring_emit(ring, 0); /* upper addr */
1922 		intel_ring_emit(ring, 0); /* value */
1923 	} else  {
1924 		intel_ring_emit(ring, 0);
1925 		intel_ring_emit(ring, MI_NOOP);
1926 	}
1927 	intel_ring_advance(ring);
1928 
1929 	if (IS_GEN7(dev) && !invalidate && flush)
1930 		return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
1931 
1932 	return 0;
1933 }
1934 
1935 int intel_init_render_ring_buffer(struct drm_device *dev)
1936 {
1937 	struct drm_i915_private *dev_priv = dev->dev_private;
1938 	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1939 
1940 	ring->name = "render ring";
1941 	ring->id = RCS;
1942 	ring->mmio_base = RENDER_RING_BASE;
1943 
1944 	if (INTEL_INFO(dev)->gen >= 6) {
1945 		ring->add_request = gen6_add_request;
1946 		ring->flush = gen7_render_ring_flush;
1947 		if (INTEL_INFO(dev)->gen == 6)
1948 			ring->flush = gen6_render_ring_flush;
1949 		if (INTEL_INFO(dev)->gen >= 8) {
1950 			ring->flush = gen8_render_ring_flush;
1951 			ring->irq_get = gen8_ring_get_irq;
1952 			ring->irq_put = gen8_ring_put_irq;
1953 		} else {
1954 			ring->irq_get = gen6_ring_get_irq;
1955 			ring->irq_put = gen6_ring_put_irq;
1956 		}
1957 		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
1958 		ring->get_seqno = gen6_ring_get_seqno;
1959 		ring->set_seqno = ring_set_seqno;
1960 		ring->semaphore.sync_to = gen6_ring_sync;
1961 		ring->semaphore.signal = gen6_signal;
1962 		/*
1963 		 * The current semaphore is only applied on pre-gen8 platform.
1964 		 * And there is no VCS2 ring on the pre-gen8 platform. So the
1965 		 * semaphore between RCS and VCS2 is initialized as INVALID.
1966 		 * Gen8 will initialize the sema between VCS2 and RCS later.
1967 		 */
1968 		ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
1969 		ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
1970 		ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
1971 		ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
1972 		ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
1973 		ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
1974 		ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
1975 		ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
1976 		ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
1977 		ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
1978 	} else if (IS_GEN5(dev)) {
1979 		ring->add_request = pc_render_add_request;
1980 		ring->flush = gen4_render_ring_flush;
1981 		ring->get_seqno = pc_render_get_seqno;
1982 		ring->set_seqno = pc_render_set_seqno;
1983 		ring->irq_get = gen5_ring_get_irq;
1984 		ring->irq_put = gen5_ring_put_irq;
1985 		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
1986 					GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
1987 	} else {
1988 		ring->add_request = i9xx_add_request;
1989 		if (INTEL_INFO(dev)->gen < 4)
1990 			ring->flush = gen2_render_ring_flush;
1991 		else
1992 			ring->flush = gen4_render_ring_flush;
1993 		ring->get_seqno = ring_get_seqno;
1994 		ring->set_seqno = ring_set_seqno;
1995 		if (IS_GEN2(dev)) {
1996 			ring->irq_get = i8xx_ring_get_irq;
1997 			ring->irq_put = i8xx_ring_put_irq;
1998 		} else {
1999 			ring->irq_get = i9xx_ring_get_irq;
2000 			ring->irq_put = i9xx_ring_put_irq;
2001 		}
2002 		ring->irq_enable_mask = I915_USER_INTERRUPT;
2003 	}
2004 	ring->write_tail = ring_write_tail;
2005 	if (IS_HASWELL(dev))
2006 		ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2007 	else if (IS_GEN8(dev))
2008 		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2009 	else if (INTEL_INFO(dev)->gen >= 6)
2010 		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2011 	else if (INTEL_INFO(dev)->gen >= 4)
2012 		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2013 	else if (IS_I830(dev) || IS_845G(dev))
2014 		ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2015 	else
2016 		ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2017 	ring->init = init_render_ring;
2018 	ring->cleanup = render_ring_cleanup;
2019 
2020 	/* Workaround batchbuffer to combat CS tlb bug. */
2021 	if (HAS_BROKEN_CS_TLB(dev)) {
2022 		struct drm_i915_gem_object *obj;
2023 		int ret;
2024 
2025 		obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
2026 		if (obj == NULL) {
2027 			DRM_ERROR("Failed to allocate batch bo\n");
2028 			return -ENOMEM;
2029 		}
2030 
2031 		ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2032 		if (ret != 0) {
2033 			drm_gem_object_unreference(&obj->base);
2034 			DRM_ERROR("Failed to ping batch bo\n");
2035 			return ret;
2036 		}
2037 
2038 		ring->scratch.obj = obj;
2039 		ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2040 	}
2041 
2042 	return intel_init_ring_buffer(dev, ring);
2043 }
2044 
2045 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
2046 {
2047 	struct drm_i915_private *dev_priv = dev->dev_private;
2048 	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2049 	struct intel_ringbuffer *ringbuf = ring->buffer;
2050 	int ret;
2051 
2052 	if (ringbuf == NULL) {
2053 		ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2054 		if (!ringbuf)
2055 			return -ENOMEM;
2056 		ring->buffer = ringbuf;
2057 	}
2058 
2059 	ring->name = "render ring";
2060 	ring->id = RCS;
2061 	ring->mmio_base = RENDER_RING_BASE;
2062 
2063 	if (INTEL_INFO(dev)->gen >= 6) {
2064 		/* non-kms not supported on gen6+ */
2065 		ret = -ENODEV;
2066 		goto err_ringbuf;
2067 	}
2068 
2069 	/* Note: gem is not supported on gen5/ilk without kms (the corresponding
2070 	 * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
2071 	 * the special gen5 functions. */
2072 	ring->add_request = i9xx_add_request;
2073 	if (INTEL_INFO(dev)->gen < 4)
2074 		ring->flush = gen2_render_ring_flush;
2075 	else
2076 		ring->flush = gen4_render_ring_flush;
2077 	ring->get_seqno = ring_get_seqno;
2078 	ring->set_seqno = ring_set_seqno;
2079 	if (IS_GEN2(dev)) {
2080 		ring->irq_get = i8xx_ring_get_irq;
2081 		ring->irq_put = i8xx_ring_put_irq;
2082 	} else {
2083 		ring->irq_get = i9xx_ring_get_irq;
2084 		ring->irq_put = i9xx_ring_put_irq;
2085 	}
2086 	ring->irq_enable_mask = I915_USER_INTERRUPT;
2087 	ring->write_tail = ring_write_tail;
2088 	if (INTEL_INFO(dev)->gen >= 4)
2089 		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2090 	else if (IS_I830(dev) || IS_845G(dev))
2091 		ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2092 	else
2093 		ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2094 	ring->init = init_render_ring;
2095 	ring->cleanup = render_ring_cleanup;
2096 
2097 	ring->dev = dev;
2098 	INIT_LIST_HEAD(&ring->active_list);
2099 	INIT_LIST_HEAD(&ring->request_list);
2100 
2101 	ringbuf->size = size;
2102 	ringbuf->effective_size = ringbuf->size;
2103 	if (IS_I830(ring->dev) || IS_845G(ring->dev))
2104 		ringbuf->effective_size -= 2 * CACHELINE_BYTES;
2105 
2106 	ringbuf->virtual_start = ioremap_wc(start, size);
2107 	if (ringbuf->virtual_start == NULL) {
2108 		DRM_ERROR("can not ioremap virtual address for"
2109 			  " ring buffer\n");
2110 		ret = -ENOMEM;
2111 		goto err_ringbuf;
2112 	}
2113 
2114 	if (!I915_NEED_GFX_HWS(dev)) {
2115 		ret = init_phys_status_page(ring);
2116 		if (ret)
2117 			goto err_vstart;
2118 	}
2119 
2120 	return 0;
2121 
2122 err_vstart:
2123 	pmap_unmapdev((vm_offset_t)ring->buffer->virtual_start, size);
2124 err_ringbuf:
2125 	kfree(ringbuf);
2126 	ring->buffer = NULL;
2127 	return ret;
2128 }
2129 
2130 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2131 {
2132 	struct drm_i915_private *dev_priv = dev->dev_private;
2133 	struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2134 
2135 	ring->name = "bsd ring";
2136 	ring->id = VCS;
2137 
2138 	ring->write_tail = ring_write_tail;
2139 	if (INTEL_INFO(dev)->gen >= 6) {
2140 		ring->mmio_base = GEN6_BSD_RING_BASE;
2141 		/* gen6 bsd needs a special wa for tail updates */
2142 		if (IS_GEN6(dev))
2143 			ring->write_tail = gen6_bsd_ring_write_tail;
2144 		ring->flush = gen6_bsd_ring_flush;
2145 		ring->add_request = gen6_add_request;
2146 		ring->get_seqno = gen6_ring_get_seqno;
2147 		ring->set_seqno = ring_set_seqno;
2148 		if (INTEL_INFO(dev)->gen >= 8) {
2149 			ring->irq_enable_mask =
2150 				GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2151 			ring->irq_get = gen8_ring_get_irq;
2152 			ring->irq_put = gen8_ring_put_irq;
2153 			ring->dispatch_execbuffer =
2154 				gen8_ring_dispatch_execbuffer;
2155 		} else {
2156 			ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2157 			ring->irq_get = gen6_ring_get_irq;
2158 			ring->irq_put = gen6_ring_put_irq;
2159 			ring->dispatch_execbuffer =
2160 				gen6_ring_dispatch_execbuffer;
2161 		}
2162 		ring->semaphore.sync_to = gen6_ring_sync;
2163 		ring->semaphore.signal = gen6_signal;
2164 		/*
2165 		 * The current semaphore is only applied on pre-gen8 platform.
2166 		 * And there is no VCS2 ring on the pre-gen8 platform. So the
2167 		 * semaphore between VCS and VCS2 is initialized as INVALID.
2168 		 * Gen8 will initialize the sema between VCS2 and VCS later.
2169 		 */
2170 		ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2171 		ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2172 		ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2173 		ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2174 		ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2175 		ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2176 		ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2177 		ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2178 		ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2179 		ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2180 	} else {
2181 		ring->mmio_base = BSD_RING_BASE;
2182 		ring->flush = bsd_ring_flush;
2183 		ring->add_request = i9xx_add_request;
2184 		ring->get_seqno = ring_get_seqno;
2185 		ring->set_seqno = ring_set_seqno;
2186 		if (IS_GEN5(dev)) {
2187 			ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2188 			ring->irq_get = gen5_ring_get_irq;
2189 			ring->irq_put = gen5_ring_put_irq;
2190 		} else {
2191 			ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2192 			ring->irq_get = i9xx_ring_get_irq;
2193 			ring->irq_put = i9xx_ring_put_irq;
2194 		}
2195 		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2196 	}
2197 	ring->init = init_ring_common;
2198 
2199 	return intel_init_ring_buffer(dev, ring);
2200 }
2201 
2202 /**
2203  * Initialize the second BSD ring for Broadwell GT3.
2204  * It is noted that this only exists on Broadwell GT3.
2205  */
2206 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2207 {
2208 	struct drm_i915_private *dev_priv = dev->dev_private;
2209 	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2210 
2211 	if ((INTEL_INFO(dev)->gen != 8)) {
2212 		DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
2213 		return -EINVAL;
2214 	}
2215 
2216 	ring->name = "bds2_ring";
2217 	ring->id = VCS2;
2218 
2219 	ring->write_tail = ring_write_tail;
2220 	ring->mmio_base = GEN8_BSD2_RING_BASE;
2221 	ring->flush = gen6_bsd_ring_flush;
2222 	ring->add_request = gen6_add_request;
2223 	ring->get_seqno = gen6_ring_get_seqno;
2224 	ring->set_seqno = ring_set_seqno;
2225 	ring->irq_enable_mask =
2226 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2227 	ring->irq_get = gen8_ring_get_irq;
2228 	ring->irq_put = gen8_ring_put_irq;
2229 	ring->dispatch_execbuffer =
2230 			gen8_ring_dispatch_execbuffer;
2231 	ring->semaphore.sync_to = gen6_ring_sync;
2232 	ring->semaphore.signal = gen6_signal;
2233 	/*
2234 	 * The current semaphore is only applied on the pre-gen8. And there
2235 	 * is no bsd2 ring on the pre-gen8. So now the semaphore_register
2236 	 * between VCS2 and other ring is initialized as invalid.
2237 	 * Gen8 will initialize the sema between VCS2 and other ring later.
2238 	 */
2239 	ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2240 	ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2241 	ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2242 	ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2243 	ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2244 	ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2245 	ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2246 	ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2247 	ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2248 	ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2249 
2250 	ring->init = init_ring_common;
2251 
2252 	return intel_init_ring_buffer(dev, ring);
2253 }
2254 
2255 int intel_init_blt_ring_buffer(struct drm_device *dev)
2256 {
2257 	struct drm_i915_private *dev_priv = dev->dev_private;
2258 	struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2259 
2260 	ring->name = "blitter ring";
2261 	ring->id = BCS;
2262 
2263 	ring->mmio_base = BLT_RING_BASE;
2264 	ring->write_tail = ring_write_tail;
2265 	ring->flush = gen6_ring_flush;
2266 	ring->add_request = gen6_add_request;
2267 	ring->get_seqno = gen6_ring_get_seqno;
2268 	ring->set_seqno = ring_set_seqno;
2269 	if (INTEL_INFO(dev)->gen >= 8) {
2270 		ring->irq_enable_mask =
2271 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2272 		ring->irq_get = gen8_ring_get_irq;
2273 		ring->irq_put = gen8_ring_put_irq;
2274 		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2275 	} else {
2276 		ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2277 		ring->irq_get = gen6_ring_get_irq;
2278 		ring->irq_put = gen6_ring_put_irq;
2279 		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2280 	}
2281 	ring->semaphore.sync_to = gen6_ring_sync;
2282 	ring->semaphore.signal = gen6_signal;
2283 	/*
2284 	 * The current semaphore is only applied on pre-gen8 platform. And
2285 	 * there is no VCS2 ring on the pre-gen8 platform. So the semaphore
2286 	 * between BCS and VCS2 is initialized as INVALID.
2287 	 * Gen8 will initialize the sema between BCS and VCS2 later.
2288 	 */
2289 	ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2290 	ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2291 	ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2292 	ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2293 	ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2294 	ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2295 	ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2296 	ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2297 	ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2298 	ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2299 	ring->init = init_ring_common;
2300 
2301 	return intel_init_ring_buffer(dev, ring);
2302 }
2303 
2304 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2305 {
2306 	struct drm_i915_private *dev_priv = dev->dev_private;
2307 	struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2308 
2309 	ring->name = "video enhancement ring";
2310 	ring->id = VECS;
2311 
2312 	ring->mmio_base = VEBOX_RING_BASE;
2313 	ring->write_tail = ring_write_tail;
2314 	ring->flush = gen6_ring_flush;
2315 	ring->add_request = gen6_add_request;
2316 	ring->get_seqno = gen6_ring_get_seqno;
2317 	ring->set_seqno = ring_set_seqno;
2318 
2319 	if (INTEL_INFO(dev)->gen >= 8) {
2320 		ring->irq_enable_mask =
2321 			GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2322 		ring->irq_get = gen8_ring_get_irq;
2323 		ring->irq_put = gen8_ring_put_irq;
2324 		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2325 	} else {
2326 		ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2327 		ring->irq_get = hsw_vebox_get_irq;
2328 		ring->irq_put = hsw_vebox_put_irq;
2329 		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2330 	}
2331 	ring->semaphore.sync_to = gen6_ring_sync;
2332 	ring->semaphore.signal = gen6_signal;
2333 	ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2334 	ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2335 	ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2336 	ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2337 	ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2338 	ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2339 	ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2340 	ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2341 	ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2342 	ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2343 	ring->init = init_ring_common;
2344 
2345 	return intel_init_ring_buffer(dev, ring);
2346 }
2347 
2348 int
2349 intel_ring_flush_all_caches(struct intel_engine_cs *ring)
2350 {
2351 	int ret;
2352 
2353 	if (!ring->gpu_caches_dirty)
2354 		return 0;
2355 
2356 	ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2357 	if (ret)
2358 		return ret;
2359 
2360 	trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2361 
2362 	ring->gpu_caches_dirty = false;
2363 	return 0;
2364 }
2365 
2366 int
2367 intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
2368 {
2369 	uint32_t flush_domains;
2370 	int ret;
2371 
2372 	flush_domains = 0;
2373 	if (ring->gpu_caches_dirty)
2374 		flush_domains = I915_GEM_GPU_DOMAINS;
2375 
2376 	ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2377 	if (ret)
2378 		return ret;
2379 
2380 	trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2381 
2382 	ring->gpu_caches_dirty = false;
2383 	return 0;
2384 }
2385 
2386 void
2387 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2388 {
2389 	int ret;
2390 
2391 	if (!intel_ring_initialized(ring))
2392 		return;
2393 
2394 	ret = intel_ring_idle(ring);
2395 	if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2396 		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2397 			  ring->name, ret);
2398 
2399 	stop_ring(ring);
2400 }
2401