xref: /dflybsd-src/sys/dev/drm/i915/intel_ringbuffer.c (revision 4badba3841ae9f4d60211d1c5ed006e17b38c299)
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  * $FreeBSD: head/sys/dev/drm2/i915/intel_ringbuffer.c 253709 2013-07-27 16:42:29Z kib $
29  */
30 
31 #include <drm/drmP.h>
32 #include <drm/i915_drm.h>
33 #include "i915_drv.h"
34 #include "intel_drv.h"
35 #include "intel_ringbuffer.h"
36 #include <sys/sched.h>
37 
38 /*
39  * 965+ support PIPE_CONTROL commands, which provide finer grained control
40  * over cache flushing.
41  */
42 struct pipe_control {
43 	struct drm_i915_gem_object *obj;
44 	volatile u32 *cpu_page;
45 	u32 gtt_offset;
46 };
47 
48 void
49 i915_trace_irq_get(struct intel_ring_buffer *ring, uint32_t seqno)
50 {
51 
52 	if (ring->trace_irq_seqno == 0) {
53 		lockmgr(&ring->irq_lock, LK_EXCLUSIVE);
54 		if (ring->irq_get(ring))
55 			ring->trace_irq_seqno = seqno;
56 		lockmgr(&ring->irq_lock, LK_RELEASE);
57 	}
58 }
59 
60 static inline int ring_space(struct intel_ring_buffer *ring)
61 {
62 	int space = (ring->head & HEAD_ADDR) - (ring->tail + 8);
63 	if (space < 0)
64 		space += ring->size;
65 	return space;
66 }
67 
68 static int
69 render_ring_flush(struct intel_ring_buffer *ring,
70 		  uint32_t	invalidate_domains,
71 		  uint32_t	flush_domains)
72 {
73 	struct drm_device *dev = ring->dev;
74 	uint32_t cmd;
75 	int ret;
76 
77 	/*
78 	 * read/write caches:
79 	 *
80 	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
81 	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
82 	 * also flushed at 2d versus 3d pipeline switches.
83 	 *
84 	 * read-only caches:
85 	 *
86 	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
87 	 * MI_READ_FLUSH is set, and is always flushed on 965.
88 	 *
89 	 * I915_GEM_DOMAIN_COMMAND may not exist?
90 	 *
91 	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
92 	 * invalidated when MI_EXE_FLUSH is set.
93 	 *
94 	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
95 	 * invalidated with every MI_FLUSH.
96 	 *
97 	 * TLBs:
98 	 *
99 	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
100 	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
101 	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
102 	 * are flushed at any MI_FLUSH.
103 	 */
104 
105 	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
106 	if ((invalidate_domains|flush_domains) &
107 	    I915_GEM_DOMAIN_RENDER)
108 		cmd &= ~MI_NO_WRITE_FLUSH;
109 	if (INTEL_INFO(dev)->gen < 4) {
110 		/*
111 		 * On the 965, the sampler cache always gets flushed
112 		 * and this bit is reserved.
113 		 */
114 		if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
115 			cmd |= MI_READ_FLUSH;
116 	}
117 	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
118 		cmd |= MI_EXE_FLUSH;
119 
120 	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
121 	    (IS_G4X(dev) || IS_GEN5(dev)))
122 		cmd |= MI_INVALIDATE_ISP;
123 
124 	ret = intel_ring_begin(ring, 2);
125 	if (ret)
126 		return ret;
127 
128 	intel_ring_emit(ring, cmd);
129 	intel_ring_emit(ring, MI_NOOP);
130 	intel_ring_advance(ring);
131 
132 	return 0;
133 }
134 
135 /**
136  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
137  * implementing two workarounds on gen6.  From section 1.4.7.1
138  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
139  *
140  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
141  * produced by non-pipelined state commands), software needs to first
142  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
143  * 0.
144  *
145  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
146  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
147  *
148  * And the workaround for these two requires this workaround first:
149  *
150  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
151  * BEFORE the pipe-control with a post-sync op and no write-cache
152  * flushes.
153  *
154  * And this last workaround is tricky because of the requirements on
155  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
156  * volume 2 part 1:
157  *
158  *     "1 of the following must also be set:
159  *      - Render Target Cache Flush Enable ([12] of DW1)
160  *      - Depth Cache Flush Enable ([0] of DW1)
161  *      - Stall at Pixel Scoreboard ([1] of DW1)
162  *      - Depth Stall ([13] of DW1)
163  *      - Post-Sync Operation ([13] of DW1)
164  *      - Notify Enable ([8] of DW1)"
165  *
166  * The cache flushes require the workaround flush that triggered this
167  * one, so we can't use it.  Depth stall would trigger the same.
168  * Post-sync nonzero is what triggered this second workaround, so we
169  * can't use that one either.  Notify enable is IRQs, which aren't
170  * really our business.  That leaves only stall at scoreboard.
171  */
172 static int
173 intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
174 {
175 	struct pipe_control *pc = ring->private;
176 	u32 scratch_addr = pc->gtt_offset + 128;
177 	int ret;
178 
179 
180 	ret = intel_ring_begin(ring, 6);
181 	if (ret)
182 		return ret;
183 
184 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
185 	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
186 			PIPE_CONTROL_STALL_AT_SCOREBOARD);
187 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
188 	intel_ring_emit(ring, 0); /* low dword */
189 	intel_ring_emit(ring, 0); /* high dword */
190 	intel_ring_emit(ring, MI_NOOP);
191 	intel_ring_advance(ring);
192 
193 	ret = intel_ring_begin(ring, 6);
194 	if (ret)
195 		return ret;
196 
197 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
198 	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
199 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
200 	intel_ring_emit(ring, 0);
201 	intel_ring_emit(ring, 0);
202 	intel_ring_emit(ring, MI_NOOP);
203 	intel_ring_advance(ring);
204 
205 	return 0;
206 }
207 
208 static int
209 gen6_render_ring_flush(struct intel_ring_buffer *ring,
210                          u32 invalidate_domains, u32 flush_domains)
211 {
212 	u32 flags = 0;
213 	struct pipe_control *pc = ring->private;
214 	u32 scratch_addr = pc->gtt_offset + 128;
215 	int ret;
216 
217 	/* Force SNB workarounds for PIPE_CONTROL flushes */
218 	intel_emit_post_sync_nonzero_flush(ring);
219 
220 	/* Just flush everything.  Experiments have shown that reducing the
221 	 * number of bits based on the write domains has little performance
222 	 * impact.
223 	 */
224 	flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
225 	flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
226 	flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
227 	flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
228 	flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
229 	flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
230 	flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
231 
232 	ret = intel_ring_begin(ring, 6);
233 	if (ret)
234 		return ret;
235 
236 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
237 	intel_ring_emit(ring, flags);
238 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
239 	intel_ring_emit(ring, 0); /* lower dword */
240 	intel_ring_emit(ring, 0); /* uppwer dword */
241 	intel_ring_emit(ring, MI_NOOP);
242 	intel_ring_advance(ring);
243 
244 	return 0;
245 }
246 
247 static void ring_write_tail(struct intel_ring_buffer *ring,
248 			    uint32_t value)
249 {
250 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
251 	I915_WRITE_TAIL(ring, value);
252 }
253 
254 u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
255 {
256 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
257 	uint32_t acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
258 			RING_ACTHD(ring->mmio_base) : ACTHD;
259 
260 	return I915_READ(acthd_reg);
261 }
262 
263 static int init_ring_common(struct intel_ring_buffer *ring)
264 {
265 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
266 	struct drm_i915_gem_object *obj = ring->obj;
267 	uint32_t head;
268 
269 	/* Stop the ring if it's running. */
270 	I915_WRITE_CTL(ring, 0);
271 	I915_WRITE_HEAD(ring, 0);
272 	ring->write_tail(ring, 0);
273 
274 	/* Initialize the ring. */
275 	I915_WRITE_START(ring, obj->gtt_offset);
276 	head = I915_READ_HEAD(ring) & HEAD_ADDR;
277 
278 	/* G45 ring initialization fails to reset head to zero */
279 	if (head != 0) {
280 		DRM_DEBUG("%s head not reset to zero "
281 			      "ctl %08x head %08x tail %08x start %08x\n",
282 			      ring->name,
283 			      I915_READ_CTL(ring),
284 			      I915_READ_HEAD(ring),
285 			      I915_READ_TAIL(ring),
286 			      I915_READ_START(ring));
287 
288 		I915_WRITE_HEAD(ring, 0);
289 
290 		if (I915_READ_HEAD(ring) & HEAD_ADDR) {
291 			DRM_ERROR("failed to set %s head to zero "
292 				  "ctl %08x head %08x tail %08x start %08x\n",
293 				  ring->name,
294 				  I915_READ_CTL(ring),
295 				  I915_READ_HEAD(ring),
296 				  I915_READ_TAIL(ring),
297 				  I915_READ_START(ring));
298 		}
299 	}
300 
301 	I915_WRITE_CTL(ring,
302 			((ring->size - PAGE_SIZE) & RING_NR_PAGES)
303 			| RING_VALID);
304 
305 	/* If the head is still not zero, the ring is dead */
306 	if (_intel_wait_for(ring->dev,
307 	    (I915_READ_CTL(ring) & RING_VALID) != 0 &&
308 	     I915_READ_START(ring) == obj->gtt_offset &&
309 	     (I915_READ_HEAD(ring) & HEAD_ADDR) == 0,
310 	    50, 1, "915rii")) {
311 		DRM_ERROR("%s initialization failed "
312 				"ctl %08x head %08x tail %08x start %08x\n",
313 				ring->name,
314 				I915_READ_CTL(ring),
315 				I915_READ_HEAD(ring),
316 				I915_READ_TAIL(ring),
317 				I915_READ_START(ring));
318 		return -EIO;
319 	}
320 
321 	if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
322 		i915_kernel_lost_context(ring->dev);
323 	else {
324 		ring->head = I915_READ_HEAD(ring);
325 		ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
326 		ring->space = ring_space(ring);
327 	}
328 
329 	return 0;
330 }
331 
332 static int
333 init_pipe_control(struct intel_ring_buffer *ring)
334 {
335 	struct pipe_control *pc;
336 	struct drm_i915_gem_object *obj;
337 	int ret;
338 
339 	if (ring->private)
340 		return 0;
341 
342 	pc = kmalloc(sizeof(*pc), DRM_I915_GEM, M_WAITOK);
343 	if (!pc)
344 		return -ENOMEM;
345 
346 	obj = i915_gem_alloc_object(ring->dev, 4096);
347 	if (obj == NULL) {
348 		DRM_ERROR("Failed to allocate seqno page\n");
349 		ret = -ENOMEM;
350 		goto err;
351 	}
352 
353 	i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
354 
355 	ret = i915_gem_object_pin(obj, 4096, true);
356 	if (ret)
357 		goto err_unref;
358 
359 	pc->gtt_offset = obj->gtt_offset;
360 	pc->cpu_page = (uint32_t *)kmem_alloc_nofault(&kernel_map, PAGE_SIZE, PAGE_SIZE);
361 	if (pc->cpu_page == NULL)
362 		goto err_unpin;
363 	pmap_qenter((uintptr_t)pc->cpu_page, &obj->pages[0], 1);
364 	pmap_invalidate_cache_range((vm_offset_t)pc->cpu_page,
365 	    (vm_offset_t)pc->cpu_page + PAGE_SIZE);
366 
367 	pc->obj = obj;
368 	ring->private = pc;
369 	return 0;
370 
371 err_unpin:
372 	i915_gem_object_unpin(obj);
373 err_unref:
374 	drm_gem_object_unreference(&obj->base);
375 err:
376 	drm_free(pc, DRM_I915_GEM);
377 	return ret;
378 }
379 
380 static void
381 cleanup_pipe_control(struct intel_ring_buffer *ring)
382 {
383 	struct pipe_control *pc = ring->private;
384 	struct drm_i915_gem_object *obj;
385 
386 	if (!ring->private)
387 		return;
388 
389 	obj = pc->obj;
390 	pmap_qremove((vm_offset_t)pc->cpu_page, 1);
391 	kmem_free(&kernel_map, (uintptr_t)pc->cpu_page, PAGE_SIZE);
392 	i915_gem_object_unpin(obj);
393 	drm_gem_object_unreference(&obj->base);
394 
395 	drm_free(pc, DRM_I915_GEM);
396 	ring->private = NULL;
397 }
398 
399 static int init_render_ring(struct intel_ring_buffer *ring)
400 {
401 	struct drm_device *dev = ring->dev;
402 	struct drm_i915_private *dev_priv = dev->dev_private;
403 	int ret = init_ring_common(ring);
404 
405 	if (INTEL_INFO(dev)->gen > 3) {
406 		int mode = VS_TIMER_DISPATCH << 16 | VS_TIMER_DISPATCH;
407 		I915_WRITE(MI_MODE, mode);
408 		if (IS_GEN7(dev))
409 			I915_WRITE(GFX_MODE_GEN7,
410 				   GFX_MODE_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
411 				   GFX_MODE_ENABLE(GFX_REPLAY_MODE));
412 	}
413 
414 	if (INTEL_INFO(dev)->gen >= 5) {
415 		ret = init_pipe_control(ring);
416 		if (ret)
417 			return ret;
418 	}
419 
420 
421 	if (IS_GEN6(dev)) {
422 		/* From the Sandybridge PRM, volume 1 part 3, page 24:
423 		 * "If this bit is set, STCunit will have LRA as replacement
424 		 *  policy. [...] This bit must be reset.  LRA replacement
425 		 *  policy is not supported."
426 		 */
427 		I915_WRITE(CACHE_MODE_0,
428 			   CM0_STC_EVICT_DISABLE_LRA_SNB << CM0_MASK_SHIFT);
429 	}
430 
431 	if (INTEL_INFO(dev)->gen >= 6) {
432 		I915_WRITE(INSTPM,
433 			   INSTPM_FORCE_ORDERING << 16 | INSTPM_FORCE_ORDERING);
434 	}
435 
436 	return ret;
437 }
438 
439 static void render_ring_cleanup(struct intel_ring_buffer *ring)
440 {
441 	if (!ring->private)
442 		return;
443 
444 	cleanup_pipe_control(ring);
445 }
446 
447 static void
448 update_mboxes(struct intel_ring_buffer *ring,
449 	    u32 seqno,
450 	    u32 mmio_offset)
451 {
452 	intel_ring_emit(ring, MI_SEMAPHORE_MBOX |
453 			      MI_SEMAPHORE_GLOBAL_GTT |
454 			      MI_SEMAPHORE_REGISTER |
455 			      MI_SEMAPHORE_UPDATE);
456 	intel_ring_emit(ring, seqno);
457 	intel_ring_emit(ring, mmio_offset);
458 }
459 
460 /**
461  * gen6_add_request - Update the semaphore mailbox registers
462  *
463  * @ring - ring that is adding a request
464  * @seqno - return seqno stuck into the ring
465  *
466  * Update the mailbox registers in the *other* rings with the current seqno.
467  * This acts like a signal in the canonical semaphore.
468  */
469 static int
470 gen6_add_request(struct intel_ring_buffer *ring,
471 		 u32 *seqno)
472 {
473 	u32 mbox1_reg;
474 	u32 mbox2_reg;
475 	int ret;
476 
477 	ret = intel_ring_begin(ring, 10);
478 	if (ret)
479 		return ret;
480 
481 	mbox1_reg = ring->signal_mbox[0];
482 	mbox2_reg = ring->signal_mbox[1];
483 
484 	*seqno = i915_gem_next_request_seqno(ring);
485 
486 	update_mboxes(ring, *seqno, mbox1_reg);
487 	update_mboxes(ring, *seqno, mbox2_reg);
488 	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
489 	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
490 	intel_ring_emit(ring, *seqno);
491 	intel_ring_emit(ring, MI_USER_INTERRUPT);
492 	intel_ring_advance(ring);
493 
494 	return 0;
495 }
496 
497 /**
498  * intel_ring_sync - sync the waiter to the signaller on seqno
499  *
500  * @waiter - ring that is waiting
501  * @signaller - ring which has, or will signal
502  * @seqno - seqno which the waiter will block on
503  */
504 static int
505 intel_ring_sync(struct intel_ring_buffer *waiter,
506 		struct intel_ring_buffer *signaller,
507 		int ring,
508 		u32 seqno)
509 {
510 	int ret;
511 	u32 dw1 = MI_SEMAPHORE_MBOX |
512 		  MI_SEMAPHORE_COMPARE |
513 		  MI_SEMAPHORE_REGISTER;
514 
515 	ret = intel_ring_begin(waiter, 4);
516 	if (ret)
517 		return ret;
518 
519 	intel_ring_emit(waiter, dw1 | signaller->semaphore_register[ring]);
520 	intel_ring_emit(waiter, seqno);
521 	intel_ring_emit(waiter, 0);
522 	intel_ring_emit(waiter, MI_NOOP);
523 	intel_ring_advance(waiter);
524 
525 	return 0;
526 }
527 
528 int render_ring_sync_to(struct intel_ring_buffer *waiter,
529     struct intel_ring_buffer *signaller, u32 seqno);
530 int gen6_bsd_ring_sync_to(struct intel_ring_buffer *waiter,
531     struct intel_ring_buffer *signaller, u32 seqno);
532 int gen6_blt_ring_sync_to(struct intel_ring_buffer *waiter,
533     struct intel_ring_buffer *signaller, u32 seqno);
534 
535 /* VCS->RCS (RVSYNC) or BCS->RCS (RBSYNC) */
536 int
537 render_ring_sync_to(struct intel_ring_buffer *waiter,
538 		    struct intel_ring_buffer *signaller,
539 		    u32 seqno)
540 {
541 	KASSERT(signaller->semaphore_register[RCS] != MI_SEMAPHORE_SYNC_INVALID,
542 	    ("valid RCS semaphore"));
543 	return intel_ring_sync(waiter,
544 			       signaller,
545 			       RCS,
546 			       seqno);
547 }
548 
549 /* RCS->VCS (VRSYNC) or BCS->VCS (VBSYNC) */
550 int
551 gen6_bsd_ring_sync_to(struct intel_ring_buffer *waiter,
552 		      struct intel_ring_buffer *signaller,
553 		      u32 seqno)
554 {
555 	KASSERT(signaller->semaphore_register[VCS] != MI_SEMAPHORE_SYNC_INVALID,
556 	    ("Valid VCS semaphore"));
557 	return intel_ring_sync(waiter,
558 			       signaller,
559 			       VCS,
560 			       seqno);
561 }
562 
563 /* RCS->BCS (BRSYNC) or VCS->BCS (BVSYNC) */
564 int
565 gen6_blt_ring_sync_to(struct intel_ring_buffer *waiter,
566 		      struct intel_ring_buffer *signaller,
567 		      u32 seqno)
568 {
569 	KASSERT(signaller->semaphore_register[BCS] != MI_SEMAPHORE_SYNC_INVALID,
570 	    ("Valid BCS semaphore"));
571 	return intel_ring_sync(waiter,
572 			       signaller,
573 			       BCS,
574 			       seqno);
575 }
576 
577 #define PIPE_CONTROL_FLUSH(ring__, addr__)					\
578 do {									\
579 	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
580 		 PIPE_CONTROL_DEPTH_STALL);				\
581 	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
582 	intel_ring_emit(ring__, 0);							\
583 	intel_ring_emit(ring__, 0);							\
584 } while (0)
585 
586 static int
587 pc_render_add_request(struct intel_ring_buffer *ring,
588 		      uint32_t *result)
589 {
590 	u32 seqno = i915_gem_next_request_seqno(ring);
591 	struct pipe_control *pc = ring->private;
592 	u32 scratch_addr = pc->gtt_offset + 128;
593 	int ret;
594 
595 	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
596 	 * incoherent with writes to memory, i.e. completely fubar,
597 	 * so we need to use PIPE_NOTIFY instead.
598 	 *
599 	 * However, we also need to workaround the qword write
600 	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
601 	 * memory before requesting an interrupt.
602 	 */
603 	ret = intel_ring_begin(ring, 32);
604 	if (ret)
605 		return ret;
606 
607 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
608 			PIPE_CONTROL_WRITE_FLUSH |
609 			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
610 	intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
611 	intel_ring_emit(ring, seqno);
612 	intel_ring_emit(ring, 0);
613 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
614 	scratch_addr += 128; /* write to separate cachelines */
615 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
616 	scratch_addr += 128;
617 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
618 	scratch_addr += 128;
619 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
620 	scratch_addr += 128;
621 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
622 	scratch_addr += 128;
623 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
624 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
625 			PIPE_CONTROL_WRITE_FLUSH |
626 			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
627 			PIPE_CONTROL_NOTIFY);
628 	intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
629 	intel_ring_emit(ring, seqno);
630 	intel_ring_emit(ring, 0);
631 	intel_ring_advance(ring);
632 
633 	*result = seqno;
634 	return 0;
635 }
636 
637 static int
638 render_ring_add_request(struct intel_ring_buffer *ring,
639 			uint32_t *result)
640 {
641 	u32 seqno = i915_gem_next_request_seqno(ring);
642 	int ret;
643 
644 	ret = intel_ring_begin(ring, 4);
645 	if (ret)
646 		return ret;
647 
648 	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
649 	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
650 	intel_ring_emit(ring, seqno);
651 	intel_ring_emit(ring, MI_USER_INTERRUPT);
652 	intel_ring_advance(ring);
653 
654 	*result = seqno;
655 	return 0;
656 }
657 
658  static u32
659 gen6_ring_get_seqno(struct intel_ring_buffer *ring)
660 {
661 	struct drm_device *dev = ring->dev;
662 
663 	/* Workaround to force correct ordering between irq and seqno writes on
664 	 * ivb (and maybe also on snb) by reading from a CS register (like
665 	 * ACTHD) before reading the status page. */
666 	if (/* IS_GEN6(dev) || */IS_GEN7(dev))
667 		intel_ring_get_active_head(ring);
668 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
669 }
670 
671 static uint32_t
672 ring_get_seqno(struct intel_ring_buffer *ring)
673 {
674 	if (ring->status_page.page_addr == NULL)
675 		return (-1);
676 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
677 }
678 
679 static uint32_t
680 pc_render_get_seqno(struct intel_ring_buffer *ring)
681 {
682 	struct pipe_control *pc = ring->private;
683 	if (pc != NULL)
684 		return pc->cpu_page[0];
685 	else
686 		return (-1);
687 }
688 
689 static void
690 ironlake_enable_irq(drm_i915_private_t *dev_priv, uint32_t mask)
691 {
692 	dev_priv->gt_irq_mask &= ~mask;
693 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
694 	POSTING_READ(GTIMR);
695 }
696 
697 static void
698 ironlake_disable_irq(drm_i915_private_t *dev_priv, uint32_t mask)
699 {
700 	dev_priv->gt_irq_mask |= mask;
701 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
702 	POSTING_READ(GTIMR);
703 }
704 
705 static void
706 i915_enable_irq(drm_i915_private_t *dev_priv, uint32_t mask)
707 {
708 	dev_priv->irq_mask &= ~mask;
709 	I915_WRITE(IMR, dev_priv->irq_mask);
710 	POSTING_READ(IMR);
711 }
712 
713 static void
714 i915_disable_irq(drm_i915_private_t *dev_priv, uint32_t mask)
715 {
716 	dev_priv->irq_mask |= mask;
717 	I915_WRITE(IMR, dev_priv->irq_mask);
718 	POSTING_READ(IMR);
719 }
720 
721 static bool
722 render_ring_get_irq(struct intel_ring_buffer *ring)
723 {
724 	struct drm_device *dev = ring->dev;
725 	drm_i915_private_t *dev_priv = dev->dev_private;
726 
727 	if (!dev->irq_enabled)
728 		return false;
729 
730 	KKASSERT(lockstatus(&ring->irq_lock, curthread) != 0);
731 	if (ring->irq_refcount++ == 0) {
732 		if (HAS_PCH_SPLIT(dev))
733 			ironlake_enable_irq(dev_priv,
734 					    GT_PIPE_NOTIFY | GT_USER_INTERRUPT);
735 		else
736 			i915_enable_irq(dev_priv, I915_USER_INTERRUPT);
737 	}
738 
739 	return true;
740 }
741 
742 static void
743 render_ring_put_irq(struct intel_ring_buffer *ring)
744 {
745 	struct drm_device *dev = ring->dev;
746 	drm_i915_private_t *dev_priv = dev->dev_private;
747 
748 	KKASSERT(lockstatus(&ring->irq_lock, curthread) != 0);
749 	if (--ring->irq_refcount == 0) {
750 		if (HAS_PCH_SPLIT(dev))
751 			ironlake_disable_irq(dev_priv,
752 					     GT_USER_INTERRUPT |
753 					     GT_PIPE_NOTIFY);
754 		else
755 			i915_disable_irq(dev_priv, I915_USER_INTERRUPT);
756 	}
757 }
758 
759 void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
760 {
761 	struct drm_device *dev = ring->dev;
762 	drm_i915_private_t *dev_priv = dev->dev_private;
763 	uint32_t mmio = 0;
764 
765 	/* The ring status page addresses are no longer next to the rest of
766 	 * the ring registers as of gen7.
767 	 */
768 	if (IS_GEN7(dev)) {
769 		switch (ring->id) {
770 		case RCS:
771 			mmio = RENDER_HWS_PGA_GEN7;
772 			break;
773 		case BCS:
774 			mmio = BLT_HWS_PGA_GEN7;
775 			break;
776 		case VCS:
777 			mmio = BSD_HWS_PGA_GEN7;
778 			break;
779 		}
780 	} else if (IS_GEN6(dev)) {
781 		mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
782 	} else {
783 		mmio = RING_HWS_PGA(ring->mmio_base);
784 	}
785 
786 	I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
787 	POSTING_READ(mmio);
788 }
789 
790 static int
791 bsd_ring_flush(struct intel_ring_buffer *ring,
792 	       uint32_t     invalidate_domains,
793 	       uint32_t     flush_domains)
794 {
795 	int ret;
796 
797 	ret = intel_ring_begin(ring, 2);
798 	if (ret)
799 		return ret;
800 
801 	intel_ring_emit(ring, MI_FLUSH);
802 	intel_ring_emit(ring, MI_NOOP);
803 	intel_ring_advance(ring);
804 	return 0;
805 }
806 
807 static int
808 ring_add_request(struct intel_ring_buffer *ring,
809 		 uint32_t *result)
810 {
811 	uint32_t seqno;
812 	int ret;
813 
814 	ret = intel_ring_begin(ring, 4);
815 	if (ret)
816 		return ret;
817 
818 	seqno = i915_gem_next_request_seqno(ring);
819 
820 	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
821 	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
822 	intel_ring_emit(ring, seqno);
823 	intel_ring_emit(ring, MI_USER_INTERRUPT);
824 	intel_ring_advance(ring);
825 
826 	*result = seqno;
827 	return 0;
828 }
829 
830 static bool
831 gen6_ring_get_irq(struct intel_ring_buffer *ring, uint32_t gflag, uint32_t rflag)
832 {
833 	struct drm_device *dev = ring->dev;
834 	drm_i915_private_t *dev_priv = dev->dev_private;
835 
836 	if (!dev->irq_enabled)
837 	       return false;
838 
839 	gen6_gt_force_wake_get(dev_priv);
840 
841 	KKASSERT(lockstatus(&ring->irq_lock, curthread) != 0);
842 	if (ring->irq_refcount++ == 0) {
843 		ring->irq_mask &= ~rflag;
844 		I915_WRITE_IMR(ring, ring->irq_mask);
845 		ironlake_enable_irq(dev_priv, gflag);
846 	}
847 
848 	return true;
849 }
850 
851 static void
852 gen6_ring_put_irq(struct intel_ring_buffer *ring, uint32_t gflag, uint32_t rflag)
853 {
854 	struct drm_device *dev = ring->dev;
855 	drm_i915_private_t *dev_priv = dev->dev_private;
856 
857 	KKASSERT(lockstatus(&ring->irq_lock, curthread) != 0);
858 	if (--ring->irq_refcount == 0) {
859 		ring->irq_mask |= rflag;
860 		I915_WRITE_IMR(ring, ring->irq_mask);
861 		ironlake_disable_irq(dev_priv, gflag);
862 	}
863 
864 	gen6_gt_force_wake_put(dev_priv);
865 }
866 
867 static bool
868 bsd_ring_get_irq(struct intel_ring_buffer *ring)
869 {
870 	struct drm_device *dev = ring->dev;
871 	drm_i915_private_t *dev_priv = dev->dev_private;
872 
873 	if (!dev->irq_enabled)
874 		return false;
875 
876 	KKASSERT(lockstatus(&ring->irq_lock, curthread) != 0);
877 	if (ring->irq_refcount++ == 0) {
878 		if (IS_G4X(dev))
879 			i915_enable_irq(dev_priv, I915_BSD_USER_INTERRUPT);
880 		else
881 			ironlake_enable_irq(dev_priv, GT_BSD_USER_INTERRUPT);
882 	}
883 
884 	return true;
885 }
886 static void
887 bsd_ring_put_irq(struct intel_ring_buffer *ring)
888 {
889 	struct drm_device *dev = ring->dev;
890 	drm_i915_private_t *dev_priv = dev->dev_private;
891 
892 	KKASSERT(lockstatus(&ring->irq_lock, curthread) != 0);
893 	if (--ring->irq_refcount == 0) {
894 		if (IS_G4X(dev))
895 			i915_disable_irq(dev_priv, I915_BSD_USER_INTERRUPT);
896 		else
897 			ironlake_disable_irq(dev_priv, GT_BSD_USER_INTERRUPT);
898 	}
899 }
900 
901 static int
902 ring_dispatch_execbuffer(struct intel_ring_buffer *ring, uint32_t offset,
903     uint32_t length)
904 {
905 	int ret;
906 
907 	ret = intel_ring_begin(ring, 2);
908 	if (ret)
909 		return ret;
910 
911 	intel_ring_emit(ring,
912 			MI_BATCH_BUFFER_START | (2 << 6) |
913 			MI_BATCH_NON_SECURE_I965);
914 	intel_ring_emit(ring, offset);
915 	intel_ring_advance(ring);
916 
917 	return 0;
918 }
919 
920 static int
921 render_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
922 				uint32_t offset, uint32_t len)
923 {
924 	struct drm_device *dev = ring->dev;
925 	int ret;
926 
927 	if (IS_I830(dev) || IS_845G(dev)) {
928 		ret = intel_ring_begin(ring, 4);
929 		if (ret)
930 			return ret;
931 
932 		intel_ring_emit(ring, MI_BATCH_BUFFER);
933 		intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
934 		intel_ring_emit(ring, offset + len - 8);
935 		intel_ring_emit(ring, 0);
936 	} else {
937 		ret = intel_ring_begin(ring, 2);
938 		if (ret)
939 			return ret;
940 
941 		if (INTEL_INFO(dev)->gen >= 4) {
942 			intel_ring_emit(ring,
943 					MI_BATCH_BUFFER_START | (2 << 6) |
944 					MI_BATCH_NON_SECURE_I965);
945 			intel_ring_emit(ring, offset);
946 		} else {
947 			intel_ring_emit(ring,
948 					MI_BATCH_BUFFER_START | (2 << 6));
949 			intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
950 		}
951 	}
952 	intel_ring_advance(ring);
953 
954 	return 0;
955 }
956 
957 static void cleanup_status_page(struct intel_ring_buffer *ring)
958 {
959 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
960 	struct drm_i915_gem_object *obj;
961 
962 	obj = ring->status_page.obj;
963 	if (obj == NULL)
964 		return;
965 
966 	pmap_qremove((vm_offset_t)ring->status_page.page_addr, 1);
967 	kmem_free(&kernel_map, (vm_offset_t)ring->status_page.page_addr,
968 	    PAGE_SIZE);
969 	i915_gem_object_unpin(obj);
970 	drm_gem_object_unreference(&obj->base);
971 	ring->status_page.obj = NULL;
972 
973 	memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
974 }
975 
976 static int init_status_page(struct intel_ring_buffer *ring)
977 {
978 	struct drm_device *dev = ring->dev;
979 	drm_i915_private_t *dev_priv = dev->dev_private;
980 	struct drm_i915_gem_object *obj;
981 	int ret;
982 
983 	obj = i915_gem_alloc_object(dev, 4096);
984 	if (obj == NULL) {
985 		DRM_ERROR("Failed to allocate status page\n");
986 		ret = -ENOMEM;
987 		goto err;
988 	}
989 
990 	i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
991 
992 	ret = i915_gem_object_pin(obj, 4096, true);
993 	if (ret != 0) {
994 		goto err_unref;
995 	}
996 
997 	ring->status_page.gfx_addr = obj->gtt_offset;
998 	ring->status_page.page_addr = (void *)kmem_alloc_nofault(&kernel_map,
999 	    PAGE_SIZE, PAGE_SIZE);
1000 	if (ring->status_page.page_addr == NULL) {
1001 		memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
1002 		goto err_unpin;
1003 	}
1004 	pmap_qenter((vm_offset_t)ring->status_page.page_addr, &obj->pages[0],
1005 	    1);
1006 	pmap_invalidate_cache_range((vm_offset_t)ring->status_page.page_addr,
1007 	    (vm_offset_t)ring->status_page.page_addr + PAGE_SIZE);
1008 	ring->status_page.obj = obj;
1009 	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1010 
1011 	intel_ring_setup_status_page(ring);
1012 	DRM_DEBUG("i915: init_status_page %s hws offset: 0x%08x\n",
1013 			ring->name, ring->status_page.gfx_addr);
1014 
1015 	return 0;
1016 
1017 err_unpin:
1018 	i915_gem_object_unpin(obj);
1019 err_unref:
1020 	drm_gem_object_unreference(&obj->base);
1021 err:
1022 	return ret;
1023 }
1024 
1025 static
1026 int intel_init_ring_buffer(struct drm_device *dev,
1027 			   struct intel_ring_buffer *ring)
1028 {
1029 	struct drm_i915_gem_object *obj;
1030 	int ret;
1031 
1032 	ring->dev = dev;
1033 	INIT_LIST_HEAD(&ring->active_list);
1034 	INIT_LIST_HEAD(&ring->request_list);
1035 	INIT_LIST_HEAD(&ring->gpu_write_list);
1036 
1037 	lockinit(&ring->irq_lock, "ringb", 0, LK_CANRECURSE);
1038 	ring->irq_mask = ~0;
1039 
1040 	if (I915_NEED_GFX_HWS(dev)) {
1041 		ret = init_status_page(ring);
1042 		if (ret)
1043 			return ret;
1044 	}
1045 
1046 	obj = i915_gem_alloc_object(dev, ring->size);
1047 	if (obj == NULL) {
1048 		DRM_ERROR("Failed to allocate ringbuffer\n");
1049 		ret = -ENOMEM;
1050 		goto err_hws;
1051 	}
1052 
1053 	ring->obj = obj;
1054 
1055 	ret = i915_gem_object_pin(obj, PAGE_SIZE, true);
1056 	if (ret)
1057 		goto err_unref;
1058 
1059 	ring->map.size = ring->size;
1060 	ring->map.offset = dev->agp->base + obj->gtt_offset;
1061 	ring->map.type = 0;
1062 	ring->map.flags = 0;
1063 	ring->map.mtrr = 0;
1064 
1065 	drm_core_ioremap_wc(&ring->map, dev);
1066 	if (ring->map.virtual == NULL) {
1067 		DRM_ERROR("Failed to map ringbuffer.\n");
1068 		ret = -EINVAL;
1069 		goto err_unpin;
1070 	}
1071 
1072 	ring->virtual_start = ring->map.virtual;
1073 	ret = ring->init(ring);
1074 	if (ret)
1075 		goto err_unmap;
1076 
1077 	/* Workaround an erratum on the i830 which causes a hang if
1078 	 * the TAIL pointer points to within the last 2 cachelines
1079 	 * of the buffer.
1080 	 */
1081 	ring->effective_size = ring->size;
1082 	if (IS_I830(ring->dev) || IS_845G(ring->dev))
1083 		ring->effective_size -= 128;
1084 
1085 	return 0;
1086 
1087 err_unmap:
1088 	drm_core_ioremapfree(&ring->map, dev);
1089 err_unpin:
1090 	i915_gem_object_unpin(obj);
1091 err_unref:
1092 	drm_gem_object_unreference(&obj->base);
1093 	ring->obj = NULL;
1094 err_hws:
1095 	cleanup_status_page(ring);
1096 	return ret;
1097 }
1098 
1099 void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1100 {
1101 	struct drm_i915_private *dev_priv;
1102 	int ret;
1103 
1104 	if (ring->obj == NULL)
1105 		return;
1106 
1107 	/* Disable the ring buffer. The ring must be idle at this point */
1108 	dev_priv = ring->dev->dev_private;
1109 	ret = intel_wait_ring_idle(ring);
1110 	I915_WRITE_CTL(ring, 0);
1111 
1112 	drm_core_ioremapfree(&ring->map, ring->dev);
1113 
1114 	i915_gem_object_unpin(ring->obj);
1115 	drm_gem_object_unreference(&ring->obj->base);
1116 	ring->obj = NULL;
1117 
1118 	if (ring->cleanup)
1119 		ring->cleanup(ring);
1120 
1121 	cleanup_status_page(ring);
1122 }
1123 
1124 static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1125 {
1126 	unsigned int *virt;
1127 	int rem = ring->size - ring->tail;
1128 
1129 	if (ring->space < rem) {
1130 		int ret = intel_wait_ring_buffer(ring, rem);
1131 		if (ret)
1132 			return ret;
1133 	}
1134 
1135 	virt = (unsigned int *)((char *)ring->virtual_start + ring->tail);
1136 	rem /= 8;
1137 	while (rem--) {
1138 		*virt++ = MI_NOOP;
1139 		*virt++ = MI_NOOP;
1140 	}
1141 
1142 	ring->tail = 0;
1143 	ring->space = ring_space(ring);
1144 
1145 	return 0;
1146 }
1147 
1148 static int intel_ring_wait_seqno(struct intel_ring_buffer *ring, u32 seqno)
1149 {
1150 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1151 	bool was_interruptible;
1152 	int ret;
1153 
1154 	/* XXX As we have not yet audited all the paths to check that
1155 	 * they are ready for ERESTARTSYS from intel_ring_begin, do not
1156 	 * allow us to be interruptible by a signal.
1157 	 */
1158 	was_interruptible = dev_priv->mm.interruptible;
1159 	dev_priv->mm.interruptible = false;
1160 
1161 	ret = i915_wait_request(ring, seqno, true);
1162 
1163 	dev_priv->mm.interruptible = was_interruptible;
1164 
1165 	return ret;
1166 }
1167 
1168 static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1169 {
1170 	struct drm_i915_gem_request *request;
1171 	u32 seqno = 0;
1172 	int ret;
1173 
1174 	i915_gem_retire_requests_ring(ring);
1175 
1176 	if (ring->last_retired_head != -1) {
1177 		ring->head = ring->last_retired_head;
1178 		ring->last_retired_head = -1;
1179 		ring->space = ring_space(ring);
1180 		if (ring->space >= n)
1181 			return 0;
1182 	}
1183 
1184 	list_for_each_entry(request, &ring->request_list, list) {
1185 		int space;
1186 
1187 		if (request->tail == -1)
1188 			continue;
1189 
1190 		space = request->tail - (ring->tail + 8);
1191 		if (space < 0)
1192 			space += ring->size;
1193 		if (space >= n) {
1194 			seqno = request->seqno;
1195 			break;
1196 		}
1197 
1198 		/* Consume this request in case we need more space than
1199 		 * is available and so need to prevent a race between
1200 		 * updating last_retired_head and direct reads of
1201 		 * I915_RING_HEAD. It also provides a nice sanity check.
1202 		 */
1203 		request->tail = -1;
1204 	}
1205 
1206 	if (seqno == 0)
1207 		return -ENOSPC;
1208 
1209 	ret = intel_ring_wait_seqno(ring, seqno);
1210 	if (ret)
1211 		return ret;
1212 
1213 	if (ring->last_retired_head == -1)
1214 		return -ENOSPC;
1215 
1216 	ring->head = ring->last_retired_head;
1217 	ring->last_retired_head = -1;
1218 	ring->space = ring_space(ring);
1219 	if (ring->space < n)
1220 		return -ENOSPC;
1221 
1222 	return 0;
1223 }
1224 
1225 int intel_wait_ring_buffer(struct intel_ring_buffer *ring, int n)
1226 {
1227 	struct drm_device *dev = ring->dev;
1228 	struct drm_i915_private *dev_priv = dev->dev_private;
1229 	int end;
1230 	int ret;
1231 
1232 	ret = intel_ring_wait_request(ring, n);
1233 	if (ret != -ENOSPC)
1234 		return ret;
1235 
1236 	if (drm_core_check_feature(dev, DRIVER_GEM))
1237 		/* With GEM the hangcheck timer should kick us out of the loop,
1238 		 * leaving it early runs the risk of corrupting GEM state (due
1239 		 * to running on almost untested codepaths). But on resume
1240 		 * timers don't work yet, so prevent a complete hang in that
1241 		 * case by choosing an insanely large timeout. */
1242 		end = ticks + hz * 60;
1243 	else
1244 		end = ticks + hz * 3;
1245 	do {
1246 		ring->head = I915_READ_HEAD(ring);
1247 		ring->space = ring_space(ring);
1248 		if (ring->space >= n) {
1249 			return 0;
1250 		}
1251 
1252 #if 0
1253 		if (dev->primary->master) {
1254 			struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1255 			if (master_priv->sarea_priv)
1256 				master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1257 		}
1258 #else
1259 		if (dev_priv->sarea_priv)
1260 			dev_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1261 #endif
1262 
1263 		DELAY(1000);
1264 		if (atomic_load_acq_32(&dev_priv->mm.wedged) != 0) {
1265 			return -EAGAIN;
1266 		}
1267 	} while (!time_after(ticks, end));
1268 	return -EBUSY;
1269 }
1270 
1271 int intel_ring_begin(struct intel_ring_buffer *ring,
1272 		     int num_dwords)
1273 {
1274 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1275 	int n = 4*num_dwords;
1276 	int ret;
1277 
1278 	if (atomic_load_acq_int(&dev_priv->mm.wedged))
1279 		return -EIO;
1280 
1281 	if (ring->tail + n > ring->effective_size) {
1282 		ret = intel_wrap_ring_buffer(ring);
1283 		if (ret != 0)
1284 			return ret;
1285 	}
1286 
1287 	if (ring->space < n) {
1288 		ret = intel_wait_ring_buffer(ring, n);
1289 		if (ret != 0)
1290 			return ret;
1291 	}
1292 
1293 	ring->space -= n;
1294 	return 0;
1295 }
1296 
1297 void intel_ring_advance(struct intel_ring_buffer *ring)
1298 {
1299 	ring->tail &= ring->size - 1;
1300 	ring->write_tail(ring, ring->tail);
1301 }
1302 
1303 static const struct intel_ring_buffer render_ring = {
1304 	.name			= "render ring",
1305 	.id			= RCS,
1306 	.mmio_base		= RENDER_RING_BASE,
1307 	.size			= 32 * PAGE_SIZE,
1308 	.init			= init_render_ring,
1309 	.write_tail		= ring_write_tail,
1310 	.flush			= render_ring_flush,
1311 	.add_request		= render_ring_add_request,
1312 	.get_seqno		= ring_get_seqno,
1313 	.irq_get		= render_ring_get_irq,
1314 	.irq_put		= render_ring_put_irq,
1315 	.dispatch_execbuffer	= render_ring_dispatch_execbuffer,
1316 	.cleanup		= render_ring_cleanup,
1317 	.sync_to		= render_ring_sync_to,
1318 	.semaphore_register	= {MI_SEMAPHORE_SYNC_INVALID,
1319 				   MI_SEMAPHORE_SYNC_RV,
1320 				   MI_SEMAPHORE_SYNC_RB},
1321 	.signal_mbox		= {GEN6_VRSYNC, GEN6_BRSYNC},
1322 };
1323 
1324 /* ring buffer for bit-stream decoder */
1325 
1326 static const struct intel_ring_buffer bsd_ring = {
1327 	.name                   = "bsd ring",
1328 	.id			= VCS,
1329 	.mmio_base		= BSD_RING_BASE,
1330 	.size			= 32 * PAGE_SIZE,
1331 	.init			= init_ring_common,
1332 	.write_tail		= ring_write_tail,
1333 	.flush			= bsd_ring_flush,
1334 	.add_request		= ring_add_request,
1335 	.get_seqno		= ring_get_seqno,
1336 	.irq_get		= bsd_ring_get_irq,
1337 	.irq_put		= bsd_ring_put_irq,
1338 	.dispatch_execbuffer	= ring_dispatch_execbuffer,
1339 };
1340 
1341 
1342 static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1343 				     uint32_t value)
1344 {
1345 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1346 
1347 	/* Every tail move must follow the sequence below */
1348 	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1349 	    GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_MODIFY_MASK |
1350 	    GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_DISABLE);
1351 	I915_WRITE(GEN6_BSD_RNCID, 0x0);
1352 
1353 	if (_intel_wait_for(ring->dev,
1354 	    (I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1355 	     GEN6_BSD_SLEEP_PSMI_CONTROL_IDLE_INDICATOR) == 0, 50,
1356 	    true, "915g6i") != 0)
1357 		DRM_ERROR("timed out waiting for IDLE Indicator\n");
1358 
1359 	I915_WRITE_TAIL(ring, value);
1360 	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1361 	    GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_MODIFY_MASK |
1362 	    GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_ENABLE);
1363 }
1364 
1365 static int gen6_ring_flush(struct intel_ring_buffer *ring,
1366 			   uint32_t invalidate, uint32_t flush)
1367 {
1368 	uint32_t cmd;
1369 	int ret;
1370 
1371 	ret = intel_ring_begin(ring, 4);
1372 	if (ret)
1373 		return ret;
1374 
1375 	cmd = MI_FLUSH_DW;
1376 	if (invalidate & I915_GEM_GPU_DOMAINS)
1377 		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
1378 	intel_ring_emit(ring, cmd);
1379 	intel_ring_emit(ring, 0);
1380 	intel_ring_emit(ring, 0);
1381 	intel_ring_emit(ring, MI_NOOP);
1382 	intel_ring_advance(ring);
1383 	return 0;
1384 }
1385 
1386 static int
1387 gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1388 			      uint32_t offset, uint32_t len)
1389 {
1390 	int ret;
1391 
1392 	ret = intel_ring_begin(ring, 2);
1393 	if (ret)
1394 		return ret;
1395 
1396 	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_NON_SECURE_I965);
1397 	/* bit0-7 is the length on GEN6+ */
1398 	intel_ring_emit(ring, offset);
1399 	intel_ring_advance(ring);
1400 
1401 	return 0;
1402 }
1403 
1404 static bool
1405 gen6_render_ring_get_irq(struct intel_ring_buffer *ring)
1406 {
1407 	return gen6_ring_get_irq(ring,
1408 				 GT_USER_INTERRUPT,
1409 				 GEN6_RENDER_USER_INTERRUPT);
1410 }
1411 
1412 static void
1413 gen6_render_ring_put_irq(struct intel_ring_buffer *ring)
1414 {
1415 	return gen6_ring_put_irq(ring,
1416 				 GT_USER_INTERRUPT,
1417 				 GEN6_RENDER_USER_INTERRUPT);
1418 }
1419 
1420 static bool
1421 gen6_bsd_ring_get_irq(struct intel_ring_buffer *ring)
1422 {
1423 	return gen6_ring_get_irq(ring,
1424 				 GT_GEN6_BSD_USER_INTERRUPT,
1425 				 GEN6_BSD_USER_INTERRUPT);
1426 }
1427 
1428 static void
1429 gen6_bsd_ring_put_irq(struct intel_ring_buffer *ring)
1430 {
1431 	return gen6_ring_put_irq(ring,
1432 				 GT_GEN6_BSD_USER_INTERRUPT,
1433 				 GEN6_BSD_USER_INTERRUPT);
1434 }
1435 
1436 /* ring buffer for Video Codec for Gen6+ */
1437 static const struct intel_ring_buffer gen6_bsd_ring = {
1438 	.name			= "gen6 bsd ring",
1439 	.id			= VCS,
1440 	.mmio_base		= GEN6_BSD_RING_BASE,
1441 	.size			= 32 * PAGE_SIZE,
1442 	.init			= init_ring_common,
1443 	.write_tail		= gen6_bsd_ring_write_tail,
1444 	.flush			= gen6_ring_flush,
1445 	.add_request		= gen6_add_request,
1446 	.get_seqno		= gen6_ring_get_seqno,
1447 	.irq_get		= gen6_bsd_ring_get_irq,
1448 	.irq_put		= gen6_bsd_ring_put_irq,
1449 	.dispatch_execbuffer	= gen6_ring_dispatch_execbuffer,
1450 	.sync_to		= gen6_bsd_ring_sync_to,
1451 	.semaphore_register	= {MI_SEMAPHORE_SYNC_VR,
1452 				   MI_SEMAPHORE_SYNC_INVALID,
1453 				   MI_SEMAPHORE_SYNC_VB},
1454 	.signal_mbox		= {GEN6_RVSYNC, GEN6_BVSYNC},
1455 };
1456 
1457 /* Blitter support (SandyBridge+) */
1458 
1459 static bool
1460 blt_ring_get_irq(struct intel_ring_buffer *ring)
1461 {
1462 	return gen6_ring_get_irq(ring,
1463 				 GT_BLT_USER_INTERRUPT,
1464 				 GEN6_BLITTER_USER_INTERRUPT);
1465 }
1466 
1467 static void
1468 blt_ring_put_irq(struct intel_ring_buffer *ring)
1469 {
1470 	gen6_ring_put_irq(ring,
1471 			  GT_BLT_USER_INTERRUPT,
1472 			  GEN6_BLITTER_USER_INTERRUPT);
1473 }
1474 
1475 static int blt_ring_flush(struct intel_ring_buffer *ring,
1476 			  uint32_t invalidate, uint32_t flush)
1477 {
1478 	uint32_t cmd;
1479 	int ret;
1480 
1481 	ret = intel_ring_begin(ring, 4);
1482 	if (ret)
1483 		return ret;
1484 
1485 	cmd = MI_FLUSH_DW;
1486 	if (invalidate & I915_GEM_DOMAIN_RENDER)
1487 		cmd |= MI_INVALIDATE_TLB;
1488 	intel_ring_emit(ring, cmd);
1489 	intel_ring_emit(ring, 0);
1490 	intel_ring_emit(ring, 0);
1491 	intel_ring_emit(ring, MI_NOOP);
1492 	intel_ring_advance(ring);
1493 	return 0;
1494 }
1495 
1496 static const struct intel_ring_buffer gen6_blt_ring = {
1497 	.name			= "blt ring",
1498 	.id			= BCS,
1499 	.mmio_base		= BLT_RING_BASE,
1500 	.size			= 32 * PAGE_SIZE,
1501 	.init			= init_ring_common,
1502 	.write_tail		= ring_write_tail,
1503 	.flush			= blt_ring_flush,
1504 	.add_request		= gen6_add_request,
1505 	.get_seqno		= gen6_ring_get_seqno,
1506 	.irq_get		= blt_ring_get_irq,
1507 	.irq_put		= blt_ring_put_irq,
1508 	.dispatch_execbuffer	= gen6_ring_dispatch_execbuffer,
1509 	.sync_to		= gen6_blt_ring_sync_to,
1510 	.semaphore_register	= {MI_SEMAPHORE_SYNC_BR,
1511 				   MI_SEMAPHORE_SYNC_BV,
1512 				   MI_SEMAPHORE_SYNC_INVALID},
1513 	.signal_mbox		= {GEN6_RBSYNC, GEN6_VBSYNC},
1514 };
1515 
1516 int intel_init_render_ring_buffer(struct drm_device *dev)
1517 {
1518 	drm_i915_private_t *dev_priv = dev->dev_private;
1519 	struct intel_ring_buffer *ring = &dev_priv->rings[RCS];
1520 
1521 	*ring = render_ring;
1522 	if (INTEL_INFO(dev)->gen >= 6) {
1523 		ring->add_request = gen6_add_request;
1524 		ring->flush = gen6_render_ring_flush;
1525 		ring->irq_get = gen6_render_ring_get_irq;
1526 		ring->irq_put = gen6_render_ring_put_irq;
1527 		ring->get_seqno = gen6_ring_get_seqno;
1528 	} else if (IS_GEN5(dev)) {
1529 		ring->add_request = pc_render_add_request;
1530 		ring->get_seqno = pc_render_get_seqno;
1531 	}
1532 
1533 	if (!I915_NEED_GFX_HWS(dev)) {
1534 		ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1535 		memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1536 	}
1537 
1538 	return intel_init_ring_buffer(dev, ring);
1539 }
1540 
1541 int intel_render_ring_init_dri(struct drm_device *dev, uint64_t start,
1542     uint32_t size)
1543 {
1544 	drm_i915_private_t *dev_priv = dev->dev_private;
1545 	struct intel_ring_buffer *ring = &dev_priv->rings[RCS];
1546 
1547 	*ring = render_ring;
1548 	if (INTEL_INFO(dev)->gen >= 6) {
1549 		ring->add_request = gen6_add_request;
1550 		ring->irq_get = gen6_render_ring_get_irq;
1551 		ring->irq_put = gen6_render_ring_put_irq;
1552 	} else if (IS_GEN5(dev)) {
1553 		ring->add_request = pc_render_add_request;
1554 		ring->get_seqno = pc_render_get_seqno;
1555 	}
1556 
1557 	ring->dev = dev;
1558 	INIT_LIST_HEAD(&ring->active_list);
1559 	INIT_LIST_HEAD(&ring->request_list);
1560 	INIT_LIST_HEAD(&ring->gpu_write_list);
1561 
1562 	ring->size = size;
1563 	ring->effective_size = ring->size;
1564 	if (IS_I830(ring->dev))
1565 		ring->effective_size -= 128;
1566 
1567 	ring->map.offset = start;
1568 	ring->map.size = size;
1569 	ring->map.type = 0;
1570 	ring->map.flags = 0;
1571 	ring->map.mtrr = 0;
1572 
1573 	drm_core_ioremap_wc(&ring->map, dev);
1574 	if (ring->map.virtual == NULL) {
1575 		DRM_ERROR("can not ioremap virtual address for"
1576 			  " ring buffer\n");
1577 		return -ENOMEM;
1578 	}
1579 
1580 	ring->virtual_start = (void *)ring->map.virtual;
1581 	return 0;
1582 }
1583 
1584 int intel_init_bsd_ring_buffer(struct drm_device *dev)
1585 {
1586 	drm_i915_private_t *dev_priv = dev->dev_private;
1587 	struct intel_ring_buffer *ring = &dev_priv->rings[VCS];
1588 
1589 	if (IS_GEN6(dev) || IS_GEN7(dev))
1590 		*ring = gen6_bsd_ring;
1591 	else
1592 		*ring = bsd_ring;
1593 
1594 	return intel_init_ring_buffer(dev, ring);
1595 }
1596 
1597 int intel_init_blt_ring_buffer(struct drm_device *dev)
1598 {
1599 	drm_i915_private_t *dev_priv = dev->dev_private;
1600 	struct intel_ring_buffer *ring = &dev_priv->rings[BCS];
1601 
1602 	*ring = gen6_blt_ring;
1603 
1604 	return intel_init_ring_buffer(dev, ring);
1605 }
1606