xref: /dflybsd-src/sys/dev/drm/i915/intel_ringbuffer.c (revision 450f08dbfd98cded95c51be4079ef10f5adb3241)
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  * $FreeBSD: head/sys/dev/drm2/i915/intel_ringbuffer.c 253709 2013-07-27 16:42:29Z kib $
29  */
30 
31 #include <dev/drm/drmP.h>
32 #include <dev/drm/drm.h>
33 #include "i915_drm.h"
34 #include "i915_drv.h"
35 #include "intel_drv.h"
36 #include "intel_ringbuffer.h"
37 #include <sys/sched.h>
38 
39 /*
40  * 965+ support PIPE_CONTROL commands, which provide finer grained control
41  * over cache flushing.
42  */
43 struct pipe_control {
44 	struct drm_i915_gem_object *obj;
45 	volatile u32 *cpu_page;
46 	u32 gtt_offset;
47 };
48 
49 void
50 i915_trace_irq_get(struct intel_ring_buffer *ring, uint32_t seqno)
51 {
52 
53 	if (ring->trace_irq_seqno == 0) {
54 		lockmgr(&ring->irq_lock, LK_EXCLUSIVE);
55 		if (ring->irq_get(ring))
56 			ring->trace_irq_seqno = seqno;
57 		lockmgr(&ring->irq_lock, LK_RELEASE);
58 	}
59 }
60 
61 static inline int ring_space(struct intel_ring_buffer *ring)
62 {
63 	int space = (ring->head & HEAD_ADDR) - (ring->tail + 8);
64 	if (space < 0)
65 		space += ring->size;
66 	return space;
67 }
68 
69 static int
70 render_ring_flush(struct intel_ring_buffer *ring,
71 		  uint32_t	invalidate_domains,
72 		  uint32_t	flush_domains)
73 {
74 	struct drm_device *dev = ring->dev;
75 	uint32_t cmd;
76 	int ret;
77 
78 	/*
79 	 * read/write caches:
80 	 *
81 	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
82 	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
83 	 * also flushed at 2d versus 3d pipeline switches.
84 	 *
85 	 * read-only caches:
86 	 *
87 	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
88 	 * MI_READ_FLUSH is set, and is always flushed on 965.
89 	 *
90 	 * I915_GEM_DOMAIN_COMMAND may not exist?
91 	 *
92 	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
93 	 * invalidated when MI_EXE_FLUSH is set.
94 	 *
95 	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
96 	 * invalidated with every MI_FLUSH.
97 	 *
98 	 * TLBs:
99 	 *
100 	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
101 	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
102 	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
103 	 * are flushed at any MI_FLUSH.
104 	 */
105 
106 	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
107 	if ((invalidate_domains|flush_domains) &
108 	    I915_GEM_DOMAIN_RENDER)
109 		cmd &= ~MI_NO_WRITE_FLUSH;
110 	if (INTEL_INFO(dev)->gen < 4) {
111 		/*
112 		 * On the 965, the sampler cache always gets flushed
113 		 * and this bit is reserved.
114 		 */
115 		if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
116 			cmd |= MI_READ_FLUSH;
117 	}
118 	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
119 		cmd |= MI_EXE_FLUSH;
120 
121 	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
122 	    (IS_G4X(dev) || IS_GEN5(dev)))
123 		cmd |= MI_INVALIDATE_ISP;
124 
125 	ret = intel_ring_begin(ring, 2);
126 	if (ret)
127 		return ret;
128 
129 	intel_ring_emit(ring, cmd);
130 	intel_ring_emit(ring, MI_NOOP);
131 	intel_ring_advance(ring);
132 
133 	return 0;
134 }
135 
136 /**
137  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
138  * implementing two workarounds on gen6.  From section 1.4.7.1
139  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
140  *
141  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
142  * produced by non-pipelined state commands), software needs to first
143  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
144  * 0.
145  *
146  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
147  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
148  *
149  * And the workaround for these two requires this workaround first:
150  *
151  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
152  * BEFORE the pipe-control with a post-sync op and no write-cache
153  * flushes.
154  *
155  * And this last workaround is tricky because of the requirements on
156  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
157  * volume 2 part 1:
158  *
159  *     "1 of the following must also be set:
160  *      - Render Target Cache Flush Enable ([12] of DW1)
161  *      - Depth Cache Flush Enable ([0] of DW1)
162  *      - Stall at Pixel Scoreboard ([1] of DW1)
163  *      - Depth Stall ([13] of DW1)
164  *      - Post-Sync Operation ([13] of DW1)
165  *      - Notify Enable ([8] of DW1)"
166  *
167  * The cache flushes require the workaround flush that triggered this
168  * one, so we can't use it.  Depth stall would trigger the same.
169  * Post-sync nonzero is what triggered this second workaround, so we
170  * can't use that one either.  Notify enable is IRQs, which aren't
171  * really our business.  That leaves only stall at scoreboard.
172  */
173 static int
174 intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
175 {
176 	struct pipe_control *pc = ring->private;
177 	u32 scratch_addr = pc->gtt_offset + 128;
178 	int ret;
179 
180 
181 	ret = intel_ring_begin(ring, 6);
182 	if (ret)
183 		return ret;
184 
185 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
186 	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
187 			PIPE_CONTROL_STALL_AT_SCOREBOARD);
188 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
189 	intel_ring_emit(ring, 0); /* low dword */
190 	intel_ring_emit(ring, 0); /* high dword */
191 	intel_ring_emit(ring, MI_NOOP);
192 	intel_ring_advance(ring);
193 
194 	ret = intel_ring_begin(ring, 6);
195 	if (ret)
196 		return ret;
197 
198 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
199 	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
200 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
201 	intel_ring_emit(ring, 0);
202 	intel_ring_emit(ring, 0);
203 	intel_ring_emit(ring, MI_NOOP);
204 	intel_ring_advance(ring);
205 
206 	return 0;
207 }
208 
209 static int
210 gen6_render_ring_flush(struct intel_ring_buffer *ring,
211                          u32 invalidate_domains, u32 flush_domains)
212 {
213 	u32 flags = 0;
214 	struct pipe_control *pc = ring->private;
215 	u32 scratch_addr = pc->gtt_offset + 128;
216 	int ret;
217 
218 	/* Force SNB workarounds for PIPE_CONTROL flushes */
219 	intel_emit_post_sync_nonzero_flush(ring);
220 
221 	/* Just flush everything.  Experiments have shown that reducing the
222 	 * number of bits based on the write domains has little performance
223 	 * impact.
224 	 */
225 	flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
226 	flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
227 	flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
228 	flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
229 	flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
230 	flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
231 	flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
232 
233 	ret = intel_ring_begin(ring, 6);
234 	if (ret)
235 		return ret;
236 
237 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
238 	intel_ring_emit(ring, flags);
239 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
240 	intel_ring_emit(ring, 0); /* lower dword */
241 	intel_ring_emit(ring, 0); /* uppwer dword */
242 	intel_ring_emit(ring, MI_NOOP);
243 	intel_ring_advance(ring);
244 
245 	return 0;
246 }
247 
248 static void ring_write_tail(struct intel_ring_buffer *ring,
249 			    uint32_t value)
250 {
251 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
252 	I915_WRITE_TAIL(ring, value);
253 }
254 
255 u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
256 {
257 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
258 	uint32_t acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
259 			RING_ACTHD(ring->mmio_base) : ACTHD;
260 
261 	return I915_READ(acthd_reg);
262 }
263 
264 static int init_ring_common(struct intel_ring_buffer *ring)
265 {
266 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
267 	struct drm_i915_gem_object *obj = ring->obj;
268 	uint32_t head;
269 
270 	/* Stop the ring if it's running. */
271 	I915_WRITE_CTL(ring, 0);
272 	I915_WRITE_HEAD(ring, 0);
273 	ring->write_tail(ring, 0);
274 
275 	/* Initialize the ring. */
276 	I915_WRITE_START(ring, obj->gtt_offset);
277 	head = I915_READ_HEAD(ring) & HEAD_ADDR;
278 
279 	/* G45 ring initialization fails to reset head to zero */
280 	if (head != 0) {
281 		DRM_DEBUG("%s head not reset to zero "
282 			      "ctl %08x head %08x tail %08x start %08x\n",
283 			      ring->name,
284 			      I915_READ_CTL(ring),
285 			      I915_READ_HEAD(ring),
286 			      I915_READ_TAIL(ring),
287 			      I915_READ_START(ring));
288 
289 		I915_WRITE_HEAD(ring, 0);
290 
291 		if (I915_READ_HEAD(ring) & HEAD_ADDR) {
292 			DRM_ERROR("failed to set %s head to zero "
293 				  "ctl %08x head %08x tail %08x start %08x\n",
294 				  ring->name,
295 				  I915_READ_CTL(ring),
296 				  I915_READ_HEAD(ring),
297 				  I915_READ_TAIL(ring),
298 				  I915_READ_START(ring));
299 		}
300 	}
301 
302 	I915_WRITE_CTL(ring,
303 			((ring->size - PAGE_SIZE) & RING_NR_PAGES)
304 			| RING_VALID);
305 
306 	/* If the head is still not zero, the ring is dead */
307 	if (_intel_wait_for(ring->dev,
308 	    (I915_READ_CTL(ring) & RING_VALID) != 0 &&
309 	     I915_READ_START(ring) == obj->gtt_offset &&
310 	     (I915_READ_HEAD(ring) & HEAD_ADDR) == 0,
311 	    50, 1, "915rii")) {
312 		DRM_ERROR("%s initialization failed "
313 				"ctl %08x head %08x tail %08x start %08x\n",
314 				ring->name,
315 				I915_READ_CTL(ring),
316 				I915_READ_HEAD(ring),
317 				I915_READ_TAIL(ring),
318 				I915_READ_START(ring));
319 		return -EIO;
320 	}
321 
322 	if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
323 		i915_kernel_lost_context(ring->dev);
324 	else {
325 		ring->head = I915_READ_HEAD(ring);
326 		ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
327 		ring->space = ring_space(ring);
328 	}
329 
330 	return 0;
331 }
332 
333 static int
334 init_pipe_control(struct intel_ring_buffer *ring)
335 {
336 	struct pipe_control *pc;
337 	struct drm_i915_gem_object *obj;
338 	int ret;
339 
340 	if (ring->private)
341 		return 0;
342 
343 	pc = kmalloc(sizeof(*pc), DRM_I915_GEM, M_WAITOK);
344 	if (!pc)
345 		return -ENOMEM;
346 
347 	obj = i915_gem_alloc_object(ring->dev, 4096);
348 	if (obj == NULL) {
349 		DRM_ERROR("Failed to allocate seqno page\n");
350 		ret = -ENOMEM;
351 		goto err;
352 	}
353 
354 	i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
355 
356 	ret = i915_gem_object_pin(obj, 4096, true);
357 	if (ret)
358 		goto err_unref;
359 
360 	pc->gtt_offset = obj->gtt_offset;
361 	pc->cpu_page = (uint32_t *)kmem_alloc_nofault(&kernel_map, PAGE_SIZE, PAGE_SIZE);
362 	if (pc->cpu_page == NULL)
363 		goto err_unpin;
364 	pmap_qenter((uintptr_t)pc->cpu_page, &obj->pages[0], 1);
365 	pmap_invalidate_cache_range((vm_offset_t)pc->cpu_page,
366 	    (vm_offset_t)pc->cpu_page + PAGE_SIZE);
367 
368 	pc->obj = obj;
369 	ring->private = pc;
370 	return 0;
371 
372 err_unpin:
373 	i915_gem_object_unpin(obj);
374 err_unref:
375 	drm_gem_object_unreference(&obj->base);
376 err:
377 	drm_free(pc, DRM_I915_GEM);
378 	return ret;
379 }
380 
381 static void
382 cleanup_pipe_control(struct intel_ring_buffer *ring)
383 {
384 	struct pipe_control *pc = ring->private;
385 	struct drm_i915_gem_object *obj;
386 
387 	if (!ring->private)
388 		return;
389 
390 	obj = pc->obj;
391 	pmap_qremove((vm_offset_t)pc->cpu_page, 1);
392 	kmem_free(&kernel_map, (uintptr_t)pc->cpu_page, PAGE_SIZE);
393 	i915_gem_object_unpin(obj);
394 	drm_gem_object_unreference(&obj->base);
395 
396 	drm_free(pc, DRM_I915_GEM);
397 	ring->private = NULL;
398 }
399 
400 static int init_render_ring(struct intel_ring_buffer *ring)
401 {
402 	struct drm_device *dev = ring->dev;
403 	struct drm_i915_private *dev_priv = dev->dev_private;
404 	int ret = init_ring_common(ring);
405 
406 	if (INTEL_INFO(dev)->gen > 3) {
407 		int mode = VS_TIMER_DISPATCH << 16 | VS_TIMER_DISPATCH;
408 		I915_WRITE(MI_MODE, mode);
409 		if (IS_GEN7(dev))
410 			I915_WRITE(GFX_MODE_GEN7,
411 				   GFX_MODE_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
412 				   GFX_MODE_ENABLE(GFX_REPLAY_MODE));
413 	}
414 
415 	if (INTEL_INFO(dev)->gen >= 5) {
416 		ret = init_pipe_control(ring);
417 		if (ret)
418 			return ret;
419 	}
420 
421 
422 	if (IS_GEN6(dev)) {
423 		/* From the Sandybridge PRM, volume 1 part 3, page 24:
424 		 * "If this bit is set, STCunit will have LRA as replacement
425 		 *  policy. [...] This bit must be reset.  LRA replacement
426 		 *  policy is not supported."
427 		 */
428 		I915_WRITE(CACHE_MODE_0,
429 			   CM0_STC_EVICT_DISABLE_LRA_SNB << CM0_MASK_SHIFT);
430 	}
431 
432 	if (INTEL_INFO(dev)->gen >= 6) {
433 		I915_WRITE(INSTPM,
434 			   INSTPM_FORCE_ORDERING << 16 | INSTPM_FORCE_ORDERING);
435 	}
436 
437 	return ret;
438 }
439 
440 static void render_ring_cleanup(struct intel_ring_buffer *ring)
441 {
442 	if (!ring->private)
443 		return;
444 
445 	cleanup_pipe_control(ring);
446 }
447 
448 static void
449 update_mboxes(struct intel_ring_buffer *ring,
450 	    u32 seqno,
451 	    u32 mmio_offset)
452 {
453 	intel_ring_emit(ring, MI_SEMAPHORE_MBOX |
454 			      MI_SEMAPHORE_GLOBAL_GTT |
455 			      MI_SEMAPHORE_REGISTER |
456 			      MI_SEMAPHORE_UPDATE);
457 	intel_ring_emit(ring, seqno);
458 	intel_ring_emit(ring, mmio_offset);
459 }
460 
461 /**
462  * gen6_add_request - Update the semaphore mailbox registers
463  *
464  * @ring - ring that is adding a request
465  * @seqno - return seqno stuck into the ring
466  *
467  * Update the mailbox registers in the *other* rings with the current seqno.
468  * This acts like a signal in the canonical semaphore.
469  */
470 static int
471 gen6_add_request(struct intel_ring_buffer *ring,
472 		 u32 *seqno)
473 {
474 	u32 mbox1_reg;
475 	u32 mbox2_reg;
476 	int ret;
477 
478 	ret = intel_ring_begin(ring, 10);
479 	if (ret)
480 		return ret;
481 
482 	mbox1_reg = ring->signal_mbox[0];
483 	mbox2_reg = ring->signal_mbox[1];
484 
485 	*seqno = i915_gem_next_request_seqno(ring);
486 
487 	update_mboxes(ring, *seqno, mbox1_reg);
488 	update_mboxes(ring, *seqno, mbox2_reg);
489 	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
490 	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
491 	intel_ring_emit(ring, *seqno);
492 	intel_ring_emit(ring, MI_USER_INTERRUPT);
493 	intel_ring_advance(ring);
494 
495 	return 0;
496 }
497 
498 /**
499  * intel_ring_sync - sync the waiter to the signaller on seqno
500  *
501  * @waiter - ring that is waiting
502  * @signaller - ring which has, or will signal
503  * @seqno - seqno which the waiter will block on
504  */
505 static int
506 intel_ring_sync(struct intel_ring_buffer *waiter,
507 		struct intel_ring_buffer *signaller,
508 		int ring,
509 		u32 seqno)
510 {
511 	int ret;
512 	u32 dw1 = MI_SEMAPHORE_MBOX |
513 		  MI_SEMAPHORE_COMPARE |
514 		  MI_SEMAPHORE_REGISTER;
515 
516 	ret = intel_ring_begin(waiter, 4);
517 	if (ret)
518 		return ret;
519 
520 	intel_ring_emit(waiter, dw1 | signaller->semaphore_register[ring]);
521 	intel_ring_emit(waiter, seqno);
522 	intel_ring_emit(waiter, 0);
523 	intel_ring_emit(waiter, MI_NOOP);
524 	intel_ring_advance(waiter);
525 
526 	return 0;
527 }
528 
529 int render_ring_sync_to(struct intel_ring_buffer *waiter,
530     struct intel_ring_buffer *signaller, u32 seqno);
531 int gen6_bsd_ring_sync_to(struct intel_ring_buffer *waiter,
532     struct intel_ring_buffer *signaller, u32 seqno);
533 int gen6_blt_ring_sync_to(struct intel_ring_buffer *waiter,
534     struct intel_ring_buffer *signaller, u32 seqno);
535 
536 /* VCS->RCS (RVSYNC) or BCS->RCS (RBSYNC) */
537 int
538 render_ring_sync_to(struct intel_ring_buffer *waiter,
539 		    struct intel_ring_buffer *signaller,
540 		    u32 seqno)
541 {
542 	KASSERT(signaller->semaphore_register[RCS] != MI_SEMAPHORE_SYNC_INVALID,
543 	    ("valid RCS semaphore"));
544 	return intel_ring_sync(waiter,
545 			       signaller,
546 			       RCS,
547 			       seqno);
548 }
549 
550 /* RCS->VCS (VRSYNC) or BCS->VCS (VBSYNC) */
551 int
552 gen6_bsd_ring_sync_to(struct intel_ring_buffer *waiter,
553 		      struct intel_ring_buffer *signaller,
554 		      u32 seqno)
555 {
556 	KASSERT(signaller->semaphore_register[VCS] != MI_SEMAPHORE_SYNC_INVALID,
557 	    ("Valid VCS semaphore"));
558 	return intel_ring_sync(waiter,
559 			       signaller,
560 			       VCS,
561 			       seqno);
562 }
563 
564 /* RCS->BCS (BRSYNC) or VCS->BCS (BVSYNC) */
565 int
566 gen6_blt_ring_sync_to(struct intel_ring_buffer *waiter,
567 		      struct intel_ring_buffer *signaller,
568 		      u32 seqno)
569 {
570 	KASSERT(signaller->semaphore_register[BCS] != MI_SEMAPHORE_SYNC_INVALID,
571 	    ("Valid BCS semaphore"));
572 	return intel_ring_sync(waiter,
573 			       signaller,
574 			       BCS,
575 			       seqno);
576 }
577 
578 #define PIPE_CONTROL_FLUSH(ring__, addr__)					\
579 do {									\
580 	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
581 		 PIPE_CONTROL_DEPTH_STALL);				\
582 	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
583 	intel_ring_emit(ring__, 0);							\
584 	intel_ring_emit(ring__, 0);							\
585 } while (0)
586 
587 static int
588 pc_render_add_request(struct intel_ring_buffer *ring,
589 		      uint32_t *result)
590 {
591 	u32 seqno = i915_gem_next_request_seqno(ring);
592 	struct pipe_control *pc = ring->private;
593 	u32 scratch_addr = pc->gtt_offset + 128;
594 	int ret;
595 
596 	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
597 	 * incoherent with writes to memory, i.e. completely fubar,
598 	 * so we need to use PIPE_NOTIFY instead.
599 	 *
600 	 * However, we also need to workaround the qword write
601 	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
602 	 * memory before requesting an interrupt.
603 	 */
604 	ret = intel_ring_begin(ring, 32);
605 	if (ret)
606 		return ret;
607 
608 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
609 			PIPE_CONTROL_WRITE_FLUSH |
610 			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
611 	intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
612 	intel_ring_emit(ring, seqno);
613 	intel_ring_emit(ring, 0);
614 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
615 	scratch_addr += 128; /* write to separate cachelines */
616 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
617 	scratch_addr += 128;
618 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
619 	scratch_addr += 128;
620 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
621 	scratch_addr += 128;
622 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
623 	scratch_addr += 128;
624 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
625 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
626 			PIPE_CONTROL_WRITE_FLUSH |
627 			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
628 			PIPE_CONTROL_NOTIFY);
629 	intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
630 	intel_ring_emit(ring, seqno);
631 	intel_ring_emit(ring, 0);
632 	intel_ring_advance(ring);
633 
634 	*result = seqno;
635 	return 0;
636 }
637 
638 static int
639 render_ring_add_request(struct intel_ring_buffer *ring,
640 			uint32_t *result)
641 {
642 	u32 seqno = i915_gem_next_request_seqno(ring);
643 	int ret;
644 
645 	ret = intel_ring_begin(ring, 4);
646 	if (ret)
647 		return ret;
648 
649 	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
650 	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
651 	intel_ring_emit(ring, seqno);
652 	intel_ring_emit(ring, MI_USER_INTERRUPT);
653 	intel_ring_advance(ring);
654 
655 	*result = seqno;
656 	return 0;
657 }
658 
659  static u32
660 gen6_ring_get_seqno(struct intel_ring_buffer *ring)
661 {
662 	struct drm_device *dev = ring->dev;
663 
664 	/* Workaround to force correct ordering between irq and seqno writes on
665 	 * ivb (and maybe also on snb) by reading from a CS register (like
666 	 * ACTHD) before reading the status page. */
667 	if (/* IS_GEN6(dev) || */IS_GEN7(dev))
668 		intel_ring_get_active_head(ring);
669 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
670 }
671 
672 static uint32_t
673 ring_get_seqno(struct intel_ring_buffer *ring)
674 {
675 	if (ring->status_page.page_addr == NULL)
676 		return (-1);
677 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
678 }
679 
680 static uint32_t
681 pc_render_get_seqno(struct intel_ring_buffer *ring)
682 {
683 	struct pipe_control *pc = ring->private;
684 	if (pc != NULL)
685 		return pc->cpu_page[0];
686 	else
687 		return (-1);
688 }
689 
690 static void
691 ironlake_enable_irq(drm_i915_private_t *dev_priv, uint32_t mask)
692 {
693 	dev_priv->gt_irq_mask &= ~mask;
694 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
695 	POSTING_READ(GTIMR);
696 }
697 
698 static void
699 ironlake_disable_irq(drm_i915_private_t *dev_priv, uint32_t mask)
700 {
701 	dev_priv->gt_irq_mask |= mask;
702 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
703 	POSTING_READ(GTIMR);
704 }
705 
706 static void
707 i915_enable_irq(drm_i915_private_t *dev_priv, uint32_t mask)
708 {
709 	dev_priv->irq_mask &= ~mask;
710 	I915_WRITE(IMR, dev_priv->irq_mask);
711 	POSTING_READ(IMR);
712 }
713 
714 static void
715 i915_disable_irq(drm_i915_private_t *dev_priv, uint32_t mask)
716 {
717 	dev_priv->irq_mask |= mask;
718 	I915_WRITE(IMR, dev_priv->irq_mask);
719 	POSTING_READ(IMR);
720 }
721 
722 static bool
723 render_ring_get_irq(struct intel_ring_buffer *ring)
724 {
725 	struct drm_device *dev = ring->dev;
726 	drm_i915_private_t *dev_priv = dev->dev_private;
727 
728 	if (!dev->irq_enabled)
729 		return false;
730 
731 	KKASSERT(lockstatus(&ring->irq_lock, curthread) != 0);
732 	if (ring->irq_refcount++ == 0) {
733 		if (HAS_PCH_SPLIT(dev))
734 			ironlake_enable_irq(dev_priv,
735 					    GT_PIPE_NOTIFY | GT_USER_INTERRUPT);
736 		else
737 			i915_enable_irq(dev_priv, I915_USER_INTERRUPT);
738 	}
739 
740 	return true;
741 }
742 
743 static void
744 render_ring_put_irq(struct intel_ring_buffer *ring)
745 {
746 	struct drm_device *dev = ring->dev;
747 	drm_i915_private_t *dev_priv = dev->dev_private;
748 
749 	KKASSERT(lockstatus(&ring->irq_lock, curthread) != 0);
750 	if (--ring->irq_refcount == 0) {
751 		if (HAS_PCH_SPLIT(dev))
752 			ironlake_disable_irq(dev_priv,
753 					     GT_USER_INTERRUPT |
754 					     GT_PIPE_NOTIFY);
755 		else
756 			i915_disable_irq(dev_priv, I915_USER_INTERRUPT);
757 	}
758 }
759 
760 void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
761 {
762 	struct drm_device *dev = ring->dev;
763 	drm_i915_private_t *dev_priv = dev->dev_private;
764 	uint32_t mmio = 0;
765 
766 	/* The ring status page addresses are no longer next to the rest of
767 	 * the ring registers as of gen7.
768 	 */
769 	if (IS_GEN7(dev)) {
770 		switch (ring->id) {
771 		case RCS:
772 			mmio = RENDER_HWS_PGA_GEN7;
773 			break;
774 		case BCS:
775 			mmio = BLT_HWS_PGA_GEN7;
776 			break;
777 		case VCS:
778 			mmio = BSD_HWS_PGA_GEN7;
779 			break;
780 		}
781 	} else if (IS_GEN6(dev)) {
782 		mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
783 	} else {
784 		mmio = RING_HWS_PGA(ring->mmio_base);
785 	}
786 
787 	I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
788 	POSTING_READ(mmio);
789 }
790 
791 static int
792 bsd_ring_flush(struct intel_ring_buffer *ring,
793 	       uint32_t     invalidate_domains,
794 	       uint32_t     flush_domains)
795 {
796 	int ret;
797 
798 	ret = intel_ring_begin(ring, 2);
799 	if (ret)
800 		return ret;
801 
802 	intel_ring_emit(ring, MI_FLUSH);
803 	intel_ring_emit(ring, MI_NOOP);
804 	intel_ring_advance(ring);
805 	return 0;
806 }
807 
808 static int
809 ring_add_request(struct intel_ring_buffer *ring,
810 		 uint32_t *result)
811 {
812 	uint32_t seqno;
813 	int ret;
814 
815 	ret = intel_ring_begin(ring, 4);
816 	if (ret)
817 		return ret;
818 
819 	seqno = i915_gem_next_request_seqno(ring);
820 
821 	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
822 	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
823 	intel_ring_emit(ring, seqno);
824 	intel_ring_emit(ring, MI_USER_INTERRUPT);
825 	intel_ring_advance(ring);
826 
827 	*result = seqno;
828 	return 0;
829 }
830 
831 static bool
832 gen6_ring_get_irq(struct intel_ring_buffer *ring, uint32_t gflag, uint32_t rflag)
833 {
834 	struct drm_device *dev = ring->dev;
835 	drm_i915_private_t *dev_priv = dev->dev_private;
836 
837 	if (!dev->irq_enabled)
838 	       return false;
839 
840 	gen6_gt_force_wake_get(dev_priv);
841 
842 	KKASSERT(lockstatus(&ring->irq_lock, curthread) != 0);
843 	if (ring->irq_refcount++ == 0) {
844 		ring->irq_mask &= ~rflag;
845 		I915_WRITE_IMR(ring, ring->irq_mask);
846 		ironlake_enable_irq(dev_priv, gflag);
847 	}
848 
849 	return true;
850 }
851 
852 static void
853 gen6_ring_put_irq(struct intel_ring_buffer *ring, uint32_t gflag, uint32_t rflag)
854 {
855 	struct drm_device *dev = ring->dev;
856 	drm_i915_private_t *dev_priv = dev->dev_private;
857 
858 	KKASSERT(lockstatus(&ring->irq_lock, curthread) != 0);
859 	if (--ring->irq_refcount == 0) {
860 		ring->irq_mask |= rflag;
861 		I915_WRITE_IMR(ring, ring->irq_mask);
862 		ironlake_disable_irq(dev_priv, gflag);
863 	}
864 
865 	gen6_gt_force_wake_put(dev_priv);
866 }
867 
868 static bool
869 bsd_ring_get_irq(struct intel_ring_buffer *ring)
870 {
871 	struct drm_device *dev = ring->dev;
872 	drm_i915_private_t *dev_priv = dev->dev_private;
873 
874 	if (!dev->irq_enabled)
875 		return false;
876 
877 	KKASSERT(lockstatus(&ring->irq_lock, curthread) != 0);
878 	if (ring->irq_refcount++ == 0) {
879 		if (IS_G4X(dev))
880 			i915_enable_irq(dev_priv, I915_BSD_USER_INTERRUPT);
881 		else
882 			ironlake_enable_irq(dev_priv, GT_BSD_USER_INTERRUPT);
883 	}
884 
885 	return true;
886 }
887 static void
888 bsd_ring_put_irq(struct intel_ring_buffer *ring)
889 {
890 	struct drm_device *dev = ring->dev;
891 	drm_i915_private_t *dev_priv = dev->dev_private;
892 
893 	KKASSERT(lockstatus(&ring->irq_lock, curthread) != 0);
894 	if (--ring->irq_refcount == 0) {
895 		if (IS_G4X(dev))
896 			i915_disable_irq(dev_priv, I915_BSD_USER_INTERRUPT);
897 		else
898 			ironlake_disable_irq(dev_priv, GT_BSD_USER_INTERRUPT);
899 	}
900 }
901 
902 static int
903 ring_dispatch_execbuffer(struct intel_ring_buffer *ring, uint32_t offset,
904     uint32_t length)
905 {
906 	int ret;
907 
908 	ret = intel_ring_begin(ring, 2);
909 	if (ret)
910 		return ret;
911 
912 	intel_ring_emit(ring,
913 			MI_BATCH_BUFFER_START | (2 << 6) |
914 			MI_BATCH_NON_SECURE_I965);
915 	intel_ring_emit(ring, offset);
916 	intel_ring_advance(ring);
917 
918 	return 0;
919 }
920 
921 static int
922 render_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
923 				uint32_t offset, uint32_t len)
924 {
925 	struct drm_device *dev = ring->dev;
926 	int ret;
927 
928 	if (IS_I830(dev) || IS_845G(dev)) {
929 		ret = intel_ring_begin(ring, 4);
930 		if (ret)
931 			return ret;
932 
933 		intel_ring_emit(ring, MI_BATCH_BUFFER);
934 		intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
935 		intel_ring_emit(ring, offset + len - 8);
936 		intel_ring_emit(ring, 0);
937 	} else {
938 		ret = intel_ring_begin(ring, 2);
939 		if (ret)
940 			return ret;
941 
942 		if (INTEL_INFO(dev)->gen >= 4) {
943 			intel_ring_emit(ring,
944 					MI_BATCH_BUFFER_START | (2 << 6) |
945 					MI_BATCH_NON_SECURE_I965);
946 			intel_ring_emit(ring, offset);
947 		} else {
948 			intel_ring_emit(ring,
949 					MI_BATCH_BUFFER_START | (2 << 6));
950 			intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
951 		}
952 	}
953 	intel_ring_advance(ring);
954 
955 	return 0;
956 }
957 
958 static void cleanup_status_page(struct intel_ring_buffer *ring)
959 {
960 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
961 	struct drm_i915_gem_object *obj;
962 
963 	obj = ring->status_page.obj;
964 	if (obj == NULL)
965 		return;
966 
967 	pmap_qremove((vm_offset_t)ring->status_page.page_addr, 1);
968 	kmem_free(&kernel_map, (vm_offset_t)ring->status_page.page_addr,
969 	    PAGE_SIZE);
970 	i915_gem_object_unpin(obj);
971 	drm_gem_object_unreference(&obj->base);
972 	ring->status_page.obj = NULL;
973 
974 	memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
975 }
976 
977 static int init_status_page(struct intel_ring_buffer *ring)
978 {
979 	struct drm_device *dev = ring->dev;
980 	drm_i915_private_t *dev_priv = dev->dev_private;
981 	struct drm_i915_gem_object *obj;
982 	int ret;
983 
984 	obj = i915_gem_alloc_object(dev, 4096);
985 	if (obj == NULL) {
986 		DRM_ERROR("Failed to allocate status page\n");
987 		ret = -ENOMEM;
988 		goto err;
989 	}
990 
991 	i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
992 
993 	ret = i915_gem_object_pin(obj, 4096, true);
994 	if (ret != 0) {
995 		goto err_unref;
996 	}
997 
998 	ring->status_page.gfx_addr = obj->gtt_offset;
999 	ring->status_page.page_addr = (void *)kmem_alloc_nofault(&kernel_map,
1000 	    PAGE_SIZE, PAGE_SIZE);
1001 	if (ring->status_page.page_addr == NULL) {
1002 		memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
1003 		goto err_unpin;
1004 	}
1005 	pmap_qenter((vm_offset_t)ring->status_page.page_addr, &obj->pages[0],
1006 	    1);
1007 	pmap_invalidate_cache_range((vm_offset_t)ring->status_page.page_addr,
1008 	    (vm_offset_t)ring->status_page.page_addr + PAGE_SIZE);
1009 	ring->status_page.obj = obj;
1010 	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1011 
1012 	intel_ring_setup_status_page(ring);
1013 	DRM_DEBUG("i915: init_status_page %s hws offset: 0x%08x\n",
1014 			ring->name, ring->status_page.gfx_addr);
1015 
1016 	return 0;
1017 
1018 err_unpin:
1019 	i915_gem_object_unpin(obj);
1020 err_unref:
1021 	drm_gem_object_unreference(&obj->base);
1022 err:
1023 	return ret;
1024 }
1025 
1026 static
1027 int intel_init_ring_buffer(struct drm_device *dev,
1028 			   struct intel_ring_buffer *ring)
1029 {
1030 	struct drm_i915_gem_object *obj;
1031 	int ret;
1032 
1033 	ring->dev = dev;
1034 	INIT_LIST_HEAD(&ring->active_list);
1035 	INIT_LIST_HEAD(&ring->request_list);
1036 	INIT_LIST_HEAD(&ring->gpu_write_list);
1037 
1038 	lockinit(&ring->irq_lock, "ringb", 0, LK_CANRECURSE);
1039 	ring->irq_mask = ~0;
1040 
1041 	if (I915_NEED_GFX_HWS(dev)) {
1042 		ret = init_status_page(ring);
1043 		if (ret)
1044 			return ret;
1045 	}
1046 
1047 	obj = i915_gem_alloc_object(dev, ring->size);
1048 	if (obj == NULL) {
1049 		DRM_ERROR("Failed to allocate ringbuffer\n");
1050 		ret = -ENOMEM;
1051 		goto err_hws;
1052 	}
1053 
1054 	ring->obj = obj;
1055 
1056 	ret = i915_gem_object_pin(obj, PAGE_SIZE, true);
1057 	if (ret)
1058 		goto err_unref;
1059 
1060 	ring->map.size = ring->size;
1061 	ring->map.offset = dev->agp->base + obj->gtt_offset;
1062 	ring->map.type = 0;
1063 	ring->map.flags = 0;
1064 	ring->map.mtrr = 0;
1065 
1066 	drm_core_ioremap_wc(&ring->map, dev);
1067 	if (ring->map.virtual == NULL) {
1068 		DRM_ERROR("Failed to map ringbuffer.\n");
1069 		ret = -EINVAL;
1070 		goto err_unpin;
1071 	}
1072 
1073 	ring->virtual_start = ring->map.virtual;
1074 	ret = ring->init(ring);
1075 	if (ret)
1076 		goto err_unmap;
1077 
1078 	/* Workaround an erratum on the i830 which causes a hang if
1079 	 * the TAIL pointer points to within the last 2 cachelines
1080 	 * of the buffer.
1081 	 */
1082 	ring->effective_size = ring->size;
1083 	if (IS_I830(ring->dev) || IS_845G(ring->dev))
1084 		ring->effective_size -= 128;
1085 
1086 	return 0;
1087 
1088 err_unmap:
1089 	drm_core_ioremapfree(&ring->map, dev);
1090 err_unpin:
1091 	i915_gem_object_unpin(obj);
1092 err_unref:
1093 	drm_gem_object_unreference(&obj->base);
1094 	ring->obj = NULL;
1095 err_hws:
1096 	cleanup_status_page(ring);
1097 	return ret;
1098 }
1099 
1100 void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1101 {
1102 	struct drm_i915_private *dev_priv;
1103 	int ret;
1104 
1105 	if (ring->obj == NULL)
1106 		return;
1107 
1108 	/* Disable the ring buffer. The ring must be idle at this point */
1109 	dev_priv = ring->dev->dev_private;
1110 	ret = intel_wait_ring_idle(ring);
1111 	I915_WRITE_CTL(ring, 0);
1112 
1113 	drm_core_ioremapfree(&ring->map, ring->dev);
1114 
1115 	i915_gem_object_unpin(ring->obj);
1116 	drm_gem_object_unreference(&ring->obj->base);
1117 	ring->obj = NULL;
1118 
1119 	if (ring->cleanup)
1120 		ring->cleanup(ring);
1121 
1122 	cleanup_status_page(ring);
1123 }
1124 
1125 static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1126 {
1127 	unsigned int *virt;
1128 	int rem = ring->size - ring->tail;
1129 
1130 	if (ring->space < rem) {
1131 		int ret = intel_wait_ring_buffer(ring, rem);
1132 		if (ret)
1133 			return ret;
1134 	}
1135 
1136 	virt = (unsigned int *)((char *)ring->virtual_start + ring->tail);
1137 	rem /= 8;
1138 	while (rem--) {
1139 		*virt++ = MI_NOOP;
1140 		*virt++ = MI_NOOP;
1141 	}
1142 
1143 	ring->tail = 0;
1144 	ring->space = ring_space(ring);
1145 
1146 	return 0;
1147 }
1148 
1149 static int intel_ring_wait_seqno(struct intel_ring_buffer *ring, u32 seqno)
1150 {
1151 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1152 	bool was_interruptible;
1153 	int ret;
1154 
1155 	/* XXX As we have not yet audited all the paths to check that
1156 	 * they are ready for ERESTARTSYS from intel_ring_begin, do not
1157 	 * allow us to be interruptible by a signal.
1158 	 */
1159 	was_interruptible = dev_priv->mm.interruptible;
1160 	dev_priv->mm.interruptible = false;
1161 
1162 	ret = i915_wait_request(ring, seqno, true);
1163 
1164 	dev_priv->mm.interruptible = was_interruptible;
1165 
1166 	return ret;
1167 }
1168 
1169 static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1170 {
1171 	struct drm_i915_gem_request *request;
1172 	u32 seqno = 0;
1173 	int ret;
1174 
1175 	i915_gem_retire_requests_ring(ring);
1176 
1177 	if (ring->last_retired_head != -1) {
1178 		ring->head = ring->last_retired_head;
1179 		ring->last_retired_head = -1;
1180 		ring->space = ring_space(ring);
1181 		if (ring->space >= n)
1182 			return 0;
1183 	}
1184 
1185 	list_for_each_entry(request, &ring->request_list, list) {
1186 		int space;
1187 
1188 		if (request->tail == -1)
1189 			continue;
1190 
1191 		space = request->tail - (ring->tail + 8);
1192 		if (space < 0)
1193 			space += ring->size;
1194 		if (space >= n) {
1195 			seqno = request->seqno;
1196 			break;
1197 		}
1198 
1199 		/* Consume this request in case we need more space than
1200 		 * is available and so need to prevent a race between
1201 		 * updating last_retired_head and direct reads of
1202 		 * I915_RING_HEAD. It also provides a nice sanity check.
1203 		 */
1204 		request->tail = -1;
1205 	}
1206 
1207 	if (seqno == 0)
1208 		return -ENOSPC;
1209 
1210 	ret = intel_ring_wait_seqno(ring, seqno);
1211 	if (ret)
1212 		return ret;
1213 
1214 	if (ring->last_retired_head == -1)
1215 		return -ENOSPC;
1216 
1217 	ring->head = ring->last_retired_head;
1218 	ring->last_retired_head = -1;
1219 	ring->space = ring_space(ring);
1220 	if (ring->space < n)
1221 		return -ENOSPC;
1222 
1223 	return 0;
1224 }
1225 
1226 int intel_wait_ring_buffer(struct intel_ring_buffer *ring, int n)
1227 {
1228 	struct drm_device *dev = ring->dev;
1229 	struct drm_i915_private *dev_priv = dev->dev_private;
1230 	int end;
1231 	int ret;
1232 
1233 	ret = intel_ring_wait_request(ring, n);
1234 	if (ret != -ENOSPC)
1235 		return ret;
1236 
1237 	if (drm_core_check_feature(dev, DRIVER_GEM))
1238 		/* With GEM the hangcheck timer should kick us out of the loop,
1239 		 * leaving it early runs the risk of corrupting GEM state (due
1240 		 * to running on almost untested codepaths). But on resume
1241 		 * timers don't work yet, so prevent a complete hang in that
1242 		 * case by choosing an insanely large timeout. */
1243 		end = ticks + hz * 60;
1244 	else
1245 		end = ticks + hz * 3;
1246 	do {
1247 		ring->head = I915_READ_HEAD(ring);
1248 		ring->space = ring_space(ring);
1249 		if (ring->space >= n) {
1250 			return 0;
1251 		}
1252 
1253 #if 0
1254 		if (dev->primary->master) {
1255 			struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1256 			if (master_priv->sarea_priv)
1257 				master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1258 		}
1259 #else
1260 		if (dev_priv->sarea_priv)
1261 			dev_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1262 #endif
1263 
1264 		DELAY(1000);
1265 		if (atomic_load_acq_32(&dev_priv->mm.wedged) != 0) {
1266 			return -EAGAIN;
1267 		}
1268 	} while (!time_after(ticks, end));
1269 	return -EBUSY;
1270 }
1271 
1272 int intel_ring_begin(struct intel_ring_buffer *ring,
1273 		     int num_dwords)
1274 {
1275 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1276 	int n = 4*num_dwords;
1277 	int ret;
1278 
1279 	if (atomic_load_acq_int(&dev_priv->mm.wedged))
1280 		return -EIO;
1281 
1282 	if (ring->tail + n > ring->effective_size) {
1283 		ret = intel_wrap_ring_buffer(ring);
1284 		if (ret != 0)
1285 			return ret;
1286 	}
1287 
1288 	if (ring->space < n) {
1289 		ret = intel_wait_ring_buffer(ring, n);
1290 		if (ret != 0)
1291 			return ret;
1292 	}
1293 
1294 	ring->space -= n;
1295 	return 0;
1296 }
1297 
1298 void intel_ring_advance(struct intel_ring_buffer *ring)
1299 {
1300 	ring->tail &= ring->size - 1;
1301 	ring->write_tail(ring, ring->tail);
1302 }
1303 
1304 static const struct intel_ring_buffer render_ring = {
1305 	.name			= "render ring",
1306 	.id			= RCS,
1307 	.mmio_base		= RENDER_RING_BASE,
1308 	.size			= 32 * PAGE_SIZE,
1309 	.init			= init_render_ring,
1310 	.write_tail		= ring_write_tail,
1311 	.flush			= render_ring_flush,
1312 	.add_request		= render_ring_add_request,
1313 	.get_seqno		= ring_get_seqno,
1314 	.irq_get		= render_ring_get_irq,
1315 	.irq_put		= render_ring_put_irq,
1316 	.dispatch_execbuffer	= render_ring_dispatch_execbuffer,
1317 	.cleanup		= render_ring_cleanup,
1318 	.sync_to		= render_ring_sync_to,
1319 	.semaphore_register	= {MI_SEMAPHORE_SYNC_INVALID,
1320 				   MI_SEMAPHORE_SYNC_RV,
1321 				   MI_SEMAPHORE_SYNC_RB},
1322 	.signal_mbox		= {GEN6_VRSYNC, GEN6_BRSYNC},
1323 };
1324 
1325 /* ring buffer for bit-stream decoder */
1326 
1327 static const struct intel_ring_buffer bsd_ring = {
1328 	.name                   = "bsd ring",
1329 	.id			= VCS,
1330 	.mmio_base		= BSD_RING_BASE,
1331 	.size			= 32 * PAGE_SIZE,
1332 	.init			= init_ring_common,
1333 	.write_tail		= ring_write_tail,
1334 	.flush			= bsd_ring_flush,
1335 	.add_request		= ring_add_request,
1336 	.get_seqno		= ring_get_seqno,
1337 	.irq_get		= bsd_ring_get_irq,
1338 	.irq_put		= bsd_ring_put_irq,
1339 	.dispatch_execbuffer	= ring_dispatch_execbuffer,
1340 };
1341 
1342 
1343 static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1344 				     uint32_t value)
1345 {
1346 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1347 
1348 	/* Every tail move must follow the sequence below */
1349 	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1350 	    GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_MODIFY_MASK |
1351 	    GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_DISABLE);
1352 	I915_WRITE(GEN6_BSD_RNCID, 0x0);
1353 
1354 	if (_intel_wait_for(ring->dev,
1355 	    (I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1356 	     GEN6_BSD_SLEEP_PSMI_CONTROL_IDLE_INDICATOR) == 0, 50,
1357 	    true, "915g6i") != 0)
1358 		DRM_ERROR("timed out waiting for IDLE Indicator\n");
1359 
1360 	I915_WRITE_TAIL(ring, value);
1361 	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1362 	    GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_MODIFY_MASK |
1363 	    GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_ENABLE);
1364 }
1365 
1366 static int gen6_ring_flush(struct intel_ring_buffer *ring,
1367 			   uint32_t invalidate, uint32_t flush)
1368 {
1369 	uint32_t cmd;
1370 	int ret;
1371 
1372 	ret = intel_ring_begin(ring, 4);
1373 	if (ret)
1374 		return ret;
1375 
1376 	cmd = MI_FLUSH_DW;
1377 	if (invalidate & I915_GEM_GPU_DOMAINS)
1378 		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
1379 	intel_ring_emit(ring, cmd);
1380 	intel_ring_emit(ring, 0);
1381 	intel_ring_emit(ring, 0);
1382 	intel_ring_emit(ring, MI_NOOP);
1383 	intel_ring_advance(ring);
1384 	return 0;
1385 }
1386 
1387 static int
1388 gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1389 			      uint32_t offset, uint32_t len)
1390 {
1391 	int ret;
1392 
1393 	ret = intel_ring_begin(ring, 2);
1394 	if (ret)
1395 		return ret;
1396 
1397 	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_NON_SECURE_I965);
1398 	/* bit0-7 is the length on GEN6+ */
1399 	intel_ring_emit(ring, offset);
1400 	intel_ring_advance(ring);
1401 
1402 	return 0;
1403 }
1404 
1405 static bool
1406 gen6_render_ring_get_irq(struct intel_ring_buffer *ring)
1407 {
1408 	return gen6_ring_get_irq(ring,
1409 				 GT_USER_INTERRUPT,
1410 				 GEN6_RENDER_USER_INTERRUPT);
1411 }
1412 
1413 static void
1414 gen6_render_ring_put_irq(struct intel_ring_buffer *ring)
1415 {
1416 	return gen6_ring_put_irq(ring,
1417 				 GT_USER_INTERRUPT,
1418 				 GEN6_RENDER_USER_INTERRUPT);
1419 }
1420 
1421 static bool
1422 gen6_bsd_ring_get_irq(struct intel_ring_buffer *ring)
1423 {
1424 	return gen6_ring_get_irq(ring,
1425 				 GT_GEN6_BSD_USER_INTERRUPT,
1426 				 GEN6_BSD_USER_INTERRUPT);
1427 }
1428 
1429 static void
1430 gen6_bsd_ring_put_irq(struct intel_ring_buffer *ring)
1431 {
1432 	return gen6_ring_put_irq(ring,
1433 				 GT_GEN6_BSD_USER_INTERRUPT,
1434 				 GEN6_BSD_USER_INTERRUPT);
1435 }
1436 
1437 /* ring buffer for Video Codec for Gen6+ */
1438 static const struct intel_ring_buffer gen6_bsd_ring = {
1439 	.name			= "gen6 bsd ring",
1440 	.id			= VCS,
1441 	.mmio_base		= GEN6_BSD_RING_BASE,
1442 	.size			= 32 * PAGE_SIZE,
1443 	.init			= init_ring_common,
1444 	.write_tail		= gen6_bsd_ring_write_tail,
1445 	.flush			= gen6_ring_flush,
1446 	.add_request		= gen6_add_request,
1447 	.get_seqno		= gen6_ring_get_seqno,
1448 	.irq_get		= gen6_bsd_ring_get_irq,
1449 	.irq_put		= gen6_bsd_ring_put_irq,
1450 	.dispatch_execbuffer	= gen6_ring_dispatch_execbuffer,
1451 	.sync_to		= gen6_bsd_ring_sync_to,
1452 	.semaphore_register	= {MI_SEMAPHORE_SYNC_VR,
1453 				   MI_SEMAPHORE_SYNC_INVALID,
1454 				   MI_SEMAPHORE_SYNC_VB},
1455 	.signal_mbox		= {GEN6_RVSYNC, GEN6_BVSYNC},
1456 };
1457 
1458 /* Blitter support (SandyBridge+) */
1459 
1460 static bool
1461 blt_ring_get_irq(struct intel_ring_buffer *ring)
1462 {
1463 	return gen6_ring_get_irq(ring,
1464 				 GT_BLT_USER_INTERRUPT,
1465 				 GEN6_BLITTER_USER_INTERRUPT);
1466 }
1467 
1468 static void
1469 blt_ring_put_irq(struct intel_ring_buffer *ring)
1470 {
1471 	gen6_ring_put_irq(ring,
1472 			  GT_BLT_USER_INTERRUPT,
1473 			  GEN6_BLITTER_USER_INTERRUPT);
1474 }
1475 
1476 static int blt_ring_flush(struct intel_ring_buffer *ring,
1477 			  uint32_t invalidate, uint32_t flush)
1478 {
1479 	uint32_t cmd;
1480 	int ret;
1481 
1482 	ret = intel_ring_begin(ring, 4);
1483 	if (ret)
1484 		return ret;
1485 
1486 	cmd = MI_FLUSH_DW;
1487 	if (invalidate & I915_GEM_DOMAIN_RENDER)
1488 		cmd |= MI_INVALIDATE_TLB;
1489 	intel_ring_emit(ring, cmd);
1490 	intel_ring_emit(ring, 0);
1491 	intel_ring_emit(ring, 0);
1492 	intel_ring_emit(ring, MI_NOOP);
1493 	intel_ring_advance(ring);
1494 	return 0;
1495 }
1496 
1497 static const struct intel_ring_buffer gen6_blt_ring = {
1498 	.name			= "blt ring",
1499 	.id			= BCS,
1500 	.mmio_base		= BLT_RING_BASE,
1501 	.size			= 32 * PAGE_SIZE,
1502 	.init			= init_ring_common,
1503 	.write_tail		= ring_write_tail,
1504 	.flush			= blt_ring_flush,
1505 	.add_request		= gen6_add_request,
1506 	.get_seqno		= gen6_ring_get_seqno,
1507 	.irq_get		= blt_ring_get_irq,
1508 	.irq_put		= blt_ring_put_irq,
1509 	.dispatch_execbuffer	= gen6_ring_dispatch_execbuffer,
1510 	.sync_to		= gen6_blt_ring_sync_to,
1511 	.semaphore_register	= {MI_SEMAPHORE_SYNC_BR,
1512 				   MI_SEMAPHORE_SYNC_BV,
1513 				   MI_SEMAPHORE_SYNC_INVALID},
1514 	.signal_mbox		= {GEN6_RBSYNC, GEN6_VBSYNC},
1515 };
1516 
1517 int intel_init_render_ring_buffer(struct drm_device *dev)
1518 {
1519 	drm_i915_private_t *dev_priv = dev->dev_private;
1520 	struct intel_ring_buffer *ring = &dev_priv->rings[RCS];
1521 
1522 	*ring = render_ring;
1523 	if (INTEL_INFO(dev)->gen >= 6) {
1524 		ring->add_request = gen6_add_request;
1525 		ring->flush = gen6_render_ring_flush;
1526 		ring->irq_get = gen6_render_ring_get_irq;
1527 		ring->irq_put = gen6_render_ring_put_irq;
1528 		ring->get_seqno = gen6_ring_get_seqno;
1529 	} else if (IS_GEN5(dev)) {
1530 		ring->add_request = pc_render_add_request;
1531 		ring->get_seqno = pc_render_get_seqno;
1532 	}
1533 
1534 	if (!I915_NEED_GFX_HWS(dev)) {
1535 		ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1536 		memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1537 	}
1538 
1539 	return intel_init_ring_buffer(dev, ring);
1540 }
1541 
1542 int intel_render_ring_init_dri(struct drm_device *dev, uint64_t start,
1543     uint32_t size)
1544 {
1545 	drm_i915_private_t *dev_priv = dev->dev_private;
1546 	struct intel_ring_buffer *ring = &dev_priv->rings[RCS];
1547 
1548 	*ring = render_ring;
1549 	if (INTEL_INFO(dev)->gen >= 6) {
1550 		ring->add_request = gen6_add_request;
1551 		ring->irq_get = gen6_render_ring_get_irq;
1552 		ring->irq_put = gen6_render_ring_put_irq;
1553 	} else if (IS_GEN5(dev)) {
1554 		ring->add_request = pc_render_add_request;
1555 		ring->get_seqno = pc_render_get_seqno;
1556 	}
1557 
1558 	ring->dev = dev;
1559 	INIT_LIST_HEAD(&ring->active_list);
1560 	INIT_LIST_HEAD(&ring->request_list);
1561 	INIT_LIST_HEAD(&ring->gpu_write_list);
1562 
1563 	ring->size = size;
1564 	ring->effective_size = ring->size;
1565 	if (IS_I830(ring->dev))
1566 		ring->effective_size -= 128;
1567 
1568 	ring->map.offset = start;
1569 	ring->map.size = size;
1570 	ring->map.type = 0;
1571 	ring->map.flags = 0;
1572 	ring->map.mtrr = 0;
1573 
1574 	drm_core_ioremap_wc(&ring->map, dev);
1575 	if (ring->map.virtual == NULL) {
1576 		DRM_ERROR("can not ioremap virtual address for"
1577 			  " ring buffer\n");
1578 		return -ENOMEM;
1579 	}
1580 
1581 	ring->virtual_start = (void *)ring->map.virtual;
1582 	return 0;
1583 }
1584 
1585 int intel_init_bsd_ring_buffer(struct drm_device *dev)
1586 {
1587 	drm_i915_private_t *dev_priv = dev->dev_private;
1588 	struct intel_ring_buffer *ring = &dev_priv->rings[VCS];
1589 
1590 	if (IS_GEN6(dev) || IS_GEN7(dev))
1591 		*ring = gen6_bsd_ring;
1592 	else
1593 		*ring = bsd_ring;
1594 
1595 	return intel_init_ring_buffer(dev, ring);
1596 }
1597 
1598 int intel_init_blt_ring_buffer(struct drm_device *dev)
1599 {
1600 	drm_i915_private_t *dev_priv = dev->dev_private;
1601 	struct intel_ring_buffer *ring = &dev_priv->rings[BCS];
1602 
1603 	*ring = gen6_blt_ring;
1604 
1605 	return intel_init_ring_buffer(dev, ring);
1606 }
1607