xref: /dflybsd-src/sys/dev/drm/i915/intel_ringbuffer.c (revision 085476612a07754b8438b2c12f80a7ee1e2a4cc7)
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29 
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 
36 /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
37  * but keeps the logic simple. Indeed, the whole purpose of this macro is just
38  * to give some inclination as to some of the magic values used in the various
39  * workarounds!
40  */
41 #define CACHELINE_BYTES 64
42 
43 static inline int __ring_space(int head, int tail, int size)
44 {
45 	int space = head - (tail + I915_RING_FREE_SPACE);
46 	if (space < 0)
47 		space += size;
48 	return space;
49 }
50 
51 static inline int ring_space(struct intel_engine_cs *ring)
52 {
53 	struct intel_ringbuffer *ringbuf = ring->buffer;
54 	return __ring_space(ringbuf->head & HEAD_ADDR, ringbuf->tail, ringbuf->size);
55 }
56 
57 static bool intel_ring_stopped(struct intel_engine_cs *ring)
58 {
59 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
60 	return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
61 }
62 
63 void __intel_ring_advance(struct intel_engine_cs *ring)
64 {
65 	struct intel_ringbuffer *ringbuf = ring->buffer;
66 	ringbuf->tail &= ringbuf->size - 1;
67 	if (intel_ring_stopped(ring))
68 		return;
69 	ring->write_tail(ring, ringbuf->tail);
70 }
71 
72 static int
73 gen2_render_ring_flush(struct intel_engine_cs *ring,
74 		       u32	invalidate_domains,
75 		       u32	flush_domains)
76 {
77 	u32 cmd;
78 	int ret;
79 
80 	cmd = MI_FLUSH;
81 	if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
82 		cmd |= MI_NO_WRITE_FLUSH;
83 
84 	if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
85 		cmd |= MI_READ_FLUSH;
86 
87 	ret = intel_ring_begin(ring, 2);
88 	if (ret)
89 		return ret;
90 
91 	intel_ring_emit(ring, cmd);
92 	intel_ring_emit(ring, MI_NOOP);
93 	intel_ring_advance(ring);
94 
95 	return 0;
96 }
97 
98 static int
99 gen4_render_ring_flush(struct intel_engine_cs *ring,
100 		       u32	invalidate_domains,
101 		       u32	flush_domains)
102 {
103 	struct drm_device *dev = ring->dev;
104 	u32 cmd;
105 	int ret;
106 
107 	/*
108 	 * read/write caches:
109 	 *
110 	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
111 	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
112 	 * also flushed at 2d versus 3d pipeline switches.
113 	 *
114 	 * read-only caches:
115 	 *
116 	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
117 	 * MI_READ_FLUSH is set, and is always flushed on 965.
118 	 *
119 	 * I915_GEM_DOMAIN_COMMAND may not exist?
120 	 *
121 	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
122 	 * invalidated when MI_EXE_FLUSH is set.
123 	 *
124 	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
125 	 * invalidated with every MI_FLUSH.
126 	 *
127 	 * TLBs:
128 	 *
129 	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
130 	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
131 	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
132 	 * are flushed at any MI_FLUSH.
133 	 */
134 
135 	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
136 	if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
137 		cmd &= ~MI_NO_WRITE_FLUSH;
138 	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
139 		cmd |= MI_EXE_FLUSH;
140 
141 	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
142 	    (IS_G4X(dev) || IS_GEN5(dev)))
143 		cmd |= MI_INVALIDATE_ISP;
144 
145 	ret = intel_ring_begin(ring, 2);
146 	if (ret)
147 		return ret;
148 
149 	intel_ring_emit(ring, cmd);
150 	intel_ring_emit(ring, MI_NOOP);
151 	intel_ring_advance(ring);
152 
153 	return 0;
154 }
155 
156 /**
157  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
158  * implementing two workarounds on gen6.  From section 1.4.7.1
159  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
160  *
161  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
162  * produced by non-pipelined state commands), software needs to first
163  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
164  * 0.
165  *
166  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
167  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
168  *
169  * And the workaround for these two requires this workaround first:
170  *
171  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
172  * BEFORE the pipe-control with a post-sync op and no write-cache
173  * flushes.
174  *
175  * And this last workaround is tricky because of the requirements on
176  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
177  * volume 2 part 1:
178  *
179  *     "1 of the following must also be set:
180  *      - Render Target Cache Flush Enable ([12] of DW1)
181  *      - Depth Cache Flush Enable ([0] of DW1)
182  *      - Stall at Pixel Scoreboard ([1] of DW1)
183  *      - Depth Stall ([13] of DW1)
184  *      - Post-Sync Operation ([13] of DW1)
185  *      - Notify Enable ([8] of DW1)"
186  *
187  * The cache flushes require the workaround flush that triggered this
188  * one, so we can't use it.  Depth stall would trigger the same.
189  * Post-sync nonzero is what triggered this second workaround, so we
190  * can't use that one either.  Notify enable is IRQs, which aren't
191  * really our business.  That leaves only stall at scoreboard.
192  */
193 static int
194 intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
195 {
196 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
197 	int ret;
198 
199 
200 	ret = intel_ring_begin(ring, 6);
201 	if (ret)
202 		return ret;
203 
204 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
205 	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
206 			PIPE_CONTROL_STALL_AT_SCOREBOARD);
207 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
208 	intel_ring_emit(ring, 0); /* low dword */
209 	intel_ring_emit(ring, 0); /* high dword */
210 	intel_ring_emit(ring, MI_NOOP);
211 	intel_ring_advance(ring);
212 
213 	ret = intel_ring_begin(ring, 6);
214 	if (ret)
215 		return ret;
216 
217 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
218 	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
219 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
220 	intel_ring_emit(ring, 0);
221 	intel_ring_emit(ring, 0);
222 	intel_ring_emit(ring, MI_NOOP);
223 	intel_ring_advance(ring);
224 
225 	return 0;
226 }
227 
228 static int
229 gen6_render_ring_flush(struct intel_engine_cs *ring,
230                          u32 invalidate_domains, u32 flush_domains)
231 {
232 	u32 flags = 0;
233 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
234 	int ret;
235 
236 	/* Force SNB workarounds for PIPE_CONTROL flushes */
237 	ret = intel_emit_post_sync_nonzero_flush(ring);
238 	if (ret)
239 		return ret;
240 
241 	/* Just flush everything.  Experiments have shown that reducing the
242 	 * number of bits based on the write domains has little performance
243 	 * impact.
244 	 */
245 	if (flush_domains) {
246 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
247 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
248 		/*
249 		 * Ensure that any following seqno writes only happen
250 		 * when the render cache is indeed flushed.
251 		 */
252 		flags |= PIPE_CONTROL_CS_STALL;
253 	}
254 	if (invalidate_domains) {
255 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
256 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
257 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
258 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
259 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
260 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
261 		/*
262 		 * TLB invalidate requires a post-sync write.
263 		 */
264 		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
265 	}
266 
267 	ret = intel_ring_begin(ring, 4);
268 	if (ret)
269 		return ret;
270 
271 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
272 	intel_ring_emit(ring, flags);
273 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
274 	intel_ring_emit(ring, 0);
275 	intel_ring_advance(ring);
276 
277 	return 0;
278 }
279 
280 static int
281 gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
282 {
283 	int ret;
284 
285 	ret = intel_ring_begin(ring, 4);
286 	if (ret)
287 		return ret;
288 
289 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
290 	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
291 			      PIPE_CONTROL_STALL_AT_SCOREBOARD);
292 	intel_ring_emit(ring, 0);
293 	intel_ring_emit(ring, 0);
294 	intel_ring_advance(ring);
295 
296 	return 0;
297 }
298 
299 static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
300 {
301 	int ret;
302 
303 	if (!ring->fbc_dirty)
304 		return 0;
305 
306 	ret = intel_ring_begin(ring, 6);
307 	if (ret)
308 		return ret;
309 	/* WaFbcNukeOn3DBlt:ivb/hsw */
310 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
311 	intel_ring_emit(ring, MSG_FBC_REND_STATE);
312 	intel_ring_emit(ring, value);
313 	intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
314 	intel_ring_emit(ring, MSG_FBC_REND_STATE);
315 	intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
316 	intel_ring_advance(ring);
317 
318 	ring->fbc_dirty = false;
319 	return 0;
320 }
321 
322 static int
323 gen7_render_ring_flush(struct intel_engine_cs *ring,
324 		       u32 invalidate_domains, u32 flush_domains)
325 {
326 	u32 flags = 0;
327 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
328 	int ret;
329 
330 	/*
331 	 * Ensure that any following seqno writes only happen when the render
332 	 * cache is indeed flushed.
333 	 *
334 	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
335 	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
336 	 * don't try to be clever and just set it unconditionally.
337 	 */
338 	flags |= PIPE_CONTROL_CS_STALL;
339 
340 	/* Just flush everything.  Experiments have shown that reducing the
341 	 * number of bits based on the write domains has little performance
342 	 * impact.
343 	 */
344 	if (flush_domains) {
345 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
346 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
347 	}
348 	if (invalidate_domains) {
349 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
350 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
351 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
352 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
353 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
354 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
355 		/*
356 		 * TLB invalidate requires a post-sync write.
357 		 */
358 		flags |= PIPE_CONTROL_QW_WRITE;
359 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
360 
361 		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
362 
363 		/* Workaround: we must issue a pipe_control with CS-stall bit
364 		 * set before a pipe_control command that has the state cache
365 		 * invalidate bit set. */
366 		gen7_render_ring_cs_stall_wa(ring);
367 	}
368 
369 	ret = intel_ring_begin(ring, 4);
370 	if (ret)
371 		return ret;
372 
373 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
374 	intel_ring_emit(ring, flags);
375 	intel_ring_emit(ring, scratch_addr);
376 	intel_ring_emit(ring, 0);
377 	intel_ring_advance(ring);
378 
379 	if (!invalidate_domains && flush_domains)
380 		return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
381 
382 	return 0;
383 }
384 
385 static int
386 gen8_render_ring_flush(struct intel_engine_cs *ring,
387 		       u32 invalidate_domains, u32 flush_domains)
388 {
389 	u32 flags = 0;
390 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
391 	int ret;
392 
393 	flags |= PIPE_CONTROL_CS_STALL;
394 
395 	if (flush_domains) {
396 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
397 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
398 	}
399 	if (invalidate_domains) {
400 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
401 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
402 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
403 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
404 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
405 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
406 		flags |= PIPE_CONTROL_QW_WRITE;
407 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
408 	}
409 
410 	ret = intel_ring_begin(ring, 6);
411 	if (ret)
412 		return ret;
413 
414 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
415 	intel_ring_emit(ring, flags);
416 	intel_ring_emit(ring, scratch_addr);
417 	intel_ring_emit(ring, 0);
418 	intel_ring_emit(ring, 0);
419 	intel_ring_emit(ring, 0);
420 	intel_ring_advance(ring);
421 
422 	return 0;
423 
424 }
425 
426 static void ring_write_tail(struct intel_engine_cs *ring,
427 			    u32 value)
428 {
429 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
430 	I915_WRITE_TAIL(ring, value);
431 }
432 
433 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
434 {
435 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
436 	u64 acthd;
437 
438 	if (INTEL_INFO(ring->dev)->gen >= 8)
439 		acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
440 					 RING_ACTHD_UDW(ring->mmio_base));
441 	else if (INTEL_INFO(ring->dev)->gen >= 4)
442 		acthd = I915_READ(RING_ACTHD(ring->mmio_base));
443 	else
444 		acthd = I915_READ(ACTHD);
445 
446 	return acthd;
447 }
448 
449 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
450 {
451 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
452 	u32 addr;
453 
454 	addr = dev_priv->status_page_dmah->busaddr;
455 	if (INTEL_INFO(ring->dev)->gen >= 4)
456 		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
457 	I915_WRITE(HWS_PGA, addr);
458 }
459 
460 static bool stop_ring(struct intel_engine_cs *ring)
461 {
462 	struct drm_i915_private *dev_priv = to_i915(ring->dev);
463 
464 	if (!IS_GEN2(ring->dev)) {
465 		I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
466 		if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
467 			DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
468 			return false;
469 		}
470 	}
471 
472 	I915_WRITE_CTL(ring, 0);
473 	I915_WRITE_HEAD(ring, 0);
474 	ring->write_tail(ring, 0);
475 
476 	if (!IS_GEN2(ring->dev)) {
477 		(void)I915_READ_CTL(ring);
478 		I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
479 	}
480 
481 	return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
482 }
483 
484 static int init_ring_common(struct intel_engine_cs *ring)
485 {
486 	struct drm_device *dev = ring->dev;
487 	struct drm_i915_private *dev_priv = dev->dev_private;
488 	struct intel_ringbuffer *ringbuf = ring->buffer;
489 	struct drm_i915_gem_object *obj = ringbuf->obj;
490 	int ret = 0;
491 
492 	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
493 
494 	if (!stop_ring(ring)) {
495 		/* G45 ring initialization often fails to reset head to zero */
496 		DRM_DEBUG_KMS("%s head not reset to zero "
497 			      "ctl %08x head %08x tail %08x start %08x\n",
498 			      ring->name,
499 			      I915_READ_CTL(ring),
500 			      I915_READ_HEAD(ring),
501 			      I915_READ_TAIL(ring),
502 			      I915_READ_START(ring));
503 
504 		if (!stop_ring(ring)) {
505 			DRM_ERROR("failed to set %s head to zero "
506 				  "ctl %08x head %08x tail %08x start %08x\n",
507 				  ring->name,
508 				  I915_READ_CTL(ring),
509 				  I915_READ_HEAD(ring),
510 				  I915_READ_TAIL(ring),
511 				  I915_READ_START(ring));
512 			ret = -EIO;
513 			goto out;
514 		}
515 	}
516 
517 	if (I915_NEED_GFX_HWS(dev))
518 		intel_ring_setup_status_page(ring);
519 	else
520 		ring_setup_phys_status_page(ring);
521 
522 	/* Enforce ordering by reading HEAD register back */
523 	I915_READ_HEAD(ring);
524 
525 	/* Initialize the ring. This must happen _after_ we've cleared the ring
526 	 * registers with the above sequence (the readback of the HEAD registers
527 	 * also enforces ordering), otherwise the hw might lose the new ring
528 	 * register values. */
529 	I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
530 	I915_WRITE_CTL(ring,
531 			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
532 			| RING_VALID);
533 
534 	/* If the head is still not zero, the ring is dead */
535 	if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
536 		     I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
537 		     (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
538 		DRM_ERROR("%s initialization failed "
539 			  "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
540 			  ring->name,
541 			  I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
542 			  I915_READ_HEAD(ring), I915_READ_TAIL(ring),
543 			  I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
544 		ret = -EIO;
545 		goto out;
546 	}
547 
548 	if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
549 		i915_kernel_lost_context(ring->dev);
550 	else {
551 		ringbuf->head = I915_READ_HEAD(ring);
552 		ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
553 		ringbuf->space = ring_space(ring);
554 		ringbuf->last_retired_head = -1;
555 	}
556 
557 	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
558 
559 out:
560 	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
561 
562 	return ret;
563 }
564 
565 static int
566 init_pipe_control(struct intel_engine_cs *ring)
567 {
568 	int ret;
569 
570 	if (ring->scratch.obj)
571 		return 0;
572 
573 	ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
574 	if (ring->scratch.obj == NULL) {
575 		DRM_ERROR("Failed to allocate seqno page\n");
576 		ret = -ENOMEM;
577 		goto err;
578 	}
579 
580 	ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
581 	if (ret)
582 		goto err_unref;
583 
584 	ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
585 	if (ret)
586 		goto err_unref;
587 
588 	ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
589 	ring->scratch.cpu_page = kmap(ring->scratch.obj->pages[0]);
590 	if (ring->scratch.cpu_page == NULL) {
591 		ret = -ENOMEM;
592 		goto err_unpin;
593 	}
594 
595 	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
596 			 ring->name, ring->scratch.gtt_offset);
597 	return 0;
598 
599 err_unpin:
600 	i915_gem_object_ggtt_unpin(ring->scratch.obj);
601 err_unref:
602 	drm_gem_object_unreference(&ring->scratch.obj->base);
603 err:
604 	return ret;
605 }
606 
607 static int init_render_ring(struct intel_engine_cs *ring)
608 {
609 	struct drm_device *dev = ring->dev;
610 	struct drm_i915_private *dev_priv = dev->dev_private;
611 	int ret = init_ring_common(ring);
612 
613 	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
614 	if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
615 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
616 
617 	/* We need to disable the AsyncFlip performance optimisations in order
618 	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
619 	 * programmed to '1' on all products.
620 	 *
621 	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
622 	 */
623 	if (INTEL_INFO(dev)->gen >= 6)
624 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
625 
626 	/* Required for the hardware to program scanline values for waiting */
627 	/* WaEnableFlushTlbInvalidationMode:snb */
628 	if (INTEL_INFO(dev)->gen == 6)
629 		I915_WRITE(GFX_MODE,
630 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
631 
632 	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
633 	if (IS_GEN7(dev))
634 		I915_WRITE(GFX_MODE_GEN7,
635 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
636 			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
637 
638 	if (INTEL_INFO(dev)->gen >= 5) {
639 		ret = init_pipe_control(ring);
640 		if (ret)
641 			return ret;
642 	}
643 
644 	if (IS_GEN6(dev)) {
645 		/* From the Sandybridge PRM, volume 1 part 3, page 24:
646 		 * "If this bit is set, STCunit will have LRA as replacement
647 		 *  policy. [...] This bit must be reset.  LRA replacement
648 		 *  policy is not supported."
649 		 */
650 		I915_WRITE(CACHE_MODE_0,
651 			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
652 	}
653 
654 	if (INTEL_INFO(dev)->gen >= 6)
655 		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
656 
657 	if (HAS_L3_DPF(dev))
658 		I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
659 
660 	return ret;
661 }
662 
663 static void render_ring_cleanup(struct intel_engine_cs *ring)
664 {
665 	struct drm_device *dev = ring->dev;
666 
667 	if (ring->scratch.obj == NULL)
668 		return;
669 
670 	if (INTEL_INFO(dev)->gen >= 5) {
671 		kunmap(ring->scratch.obj->pages[0]);
672 		i915_gem_object_ggtt_unpin(ring->scratch.obj);
673 	}
674 
675 	drm_gem_object_unreference(&ring->scratch.obj->base);
676 	ring->scratch.obj = NULL;
677 }
678 
679 static int gen6_signal(struct intel_engine_cs *signaller,
680 		       unsigned int num_dwords)
681 {
682 	struct drm_device *dev = signaller->dev;
683 	struct drm_i915_private *dev_priv = dev->dev_private;
684 	struct intel_engine_cs *useless;
685 	int i, ret;
686 
687 	/* NB: In order to be able to do semaphore MBOX updates for varying
688 	 * number of rings, it's easiest if we round up each individual update
689 	 * to a multiple of 2 (since ring updates must always be a multiple of
690 	 * 2) even though the actual update only requires 3 dwords.
691 	 */
692 #define MBOX_UPDATE_DWORDS 4
693 	if (i915_semaphore_is_enabled(dev))
694 		num_dwords += ((I915_NUM_RINGS-1) * MBOX_UPDATE_DWORDS);
695 	else
696 		return intel_ring_begin(signaller, num_dwords);
697 
698 	ret = intel_ring_begin(signaller, num_dwords);
699 	if (ret)
700 		return ret;
701 #undef MBOX_UPDATE_DWORDS
702 
703 	for_each_ring(useless, dev_priv, i) {
704 		u32 mbox_reg = signaller->semaphore.mbox.signal[i];
705 		if (mbox_reg != GEN6_NOSYNC) {
706 			intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
707 			intel_ring_emit(signaller, mbox_reg);
708 			intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
709 			intel_ring_emit(signaller, MI_NOOP);
710 		} else {
711 			intel_ring_emit(signaller, MI_NOOP);
712 			intel_ring_emit(signaller, MI_NOOP);
713 			intel_ring_emit(signaller, MI_NOOP);
714 			intel_ring_emit(signaller, MI_NOOP);
715 		}
716 	}
717 
718 	return 0;
719 }
720 
721 /**
722  * gen6_add_request - Update the semaphore mailbox registers
723  *
724  * @ring - ring that is adding a request
725  * @seqno - return seqno stuck into the ring
726  *
727  * Update the mailbox registers in the *other* rings with the current seqno.
728  * This acts like a signal in the canonical semaphore.
729  */
730 static int
731 gen6_add_request(struct intel_engine_cs *ring)
732 {
733 	int ret;
734 
735 	ret = ring->semaphore.signal(ring, 4);
736 	if (ret)
737 		return ret;
738 
739 	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
740 	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
741 	intel_ring_emit(ring, ring->outstanding_lazy_seqno);
742 	intel_ring_emit(ring, MI_USER_INTERRUPT);
743 	__intel_ring_advance(ring);
744 
745 	return 0;
746 }
747 
748 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
749 					      u32 seqno)
750 {
751 	struct drm_i915_private *dev_priv = dev->dev_private;
752 	return dev_priv->last_seqno < seqno;
753 }
754 
755 /**
756  * intel_ring_sync - sync the waiter to the signaller on seqno
757  *
758  * @waiter - ring that is waiting
759  * @signaller - ring which has, or will signal
760  * @seqno - seqno which the waiter will block on
761  */
762 static int
763 gen6_ring_sync(struct intel_engine_cs *waiter,
764 	       struct intel_engine_cs *signaller,
765 	       u32 seqno)
766 {
767 	u32 dw1 = MI_SEMAPHORE_MBOX |
768 		  MI_SEMAPHORE_COMPARE |
769 		  MI_SEMAPHORE_REGISTER;
770 	u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
771 	int ret;
772 
773 	/* Throughout all of the GEM code, seqno passed implies our current
774 	 * seqno is >= the last seqno executed. However for hardware the
775 	 * comparison is strictly greater than.
776 	 */
777 	seqno -= 1;
778 
779 	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
780 
781 	ret = intel_ring_begin(waiter, 4);
782 	if (ret)
783 		return ret;
784 
785 	/* If seqno wrap happened, omit the wait with no-ops */
786 	if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
787 		intel_ring_emit(waiter, dw1 | wait_mbox);
788 		intel_ring_emit(waiter, seqno);
789 		intel_ring_emit(waiter, 0);
790 		intel_ring_emit(waiter, MI_NOOP);
791 	} else {
792 		intel_ring_emit(waiter, MI_NOOP);
793 		intel_ring_emit(waiter, MI_NOOP);
794 		intel_ring_emit(waiter, MI_NOOP);
795 		intel_ring_emit(waiter, MI_NOOP);
796 	}
797 	intel_ring_advance(waiter);
798 
799 	return 0;
800 }
801 
802 #define PIPE_CONTROL_FLUSH(ring__, addr__)					\
803 do {									\
804 	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
805 		 PIPE_CONTROL_DEPTH_STALL);				\
806 	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
807 	intel_ring_emit(ring__, 0);							\
808 	intel_ring_emit(ring__, 0);							\
809 } while (0)
810 
811 static int
812 pc_render_add_request(struct intel_engine_cs *ring)
813 {
814 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
815 	int ret;
816 
817 	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
818 	 * incoherent with writes to memory, i.e. completely fubar,
819 	 * so we need to use PIPE_NOTIFY instead.
820 	 *
821 	 * However, we also need to workaround the qword write
822 	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
823 	 * memory before requesting an interrupt.
824 	 */
825 	ret = intel_ring_begin(ring, 32);
826 	if (ret)
827 		return ret;
828 
829 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
830 			PIPE_CONTROL_WRITE_FLUSH |
831 			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
832 	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
833 	intel_ring_emit(ring, ring->outstanding_lazy_seqno);
834 	intel_ring_emit(ring, 0);
835 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
836 	scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
837 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
838 	scratch_addr += 2 * CACHELINE_BYTES;
839 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
840 	scratch_addr += 2 * CACHELINE_BYTES;
841 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
842 	scratch_addr += 2 * CACHELINE_BYTES;
843 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
844 	scratch_addr += 2 * CACHELINE_BYTES;
845 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
846 
847 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
848 			PIPE_CONTROL_WRITE_FLUSH |
849 			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
850 			PIPE_CONTROL_NOTIFY);
851 	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
852 	intel_ring_emit(ring, ring->outstanding_lazy_seqno);
853 	intel_ring_emit(ring, 0);
854 	__intel_ring_advance(ring);
855 
856 	return 0;
857 }
858 
859 static u32
860 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
861 {
862 	/* Workaround to force correct ordering between irq and seqno writes on
863 	 * ivb (and maybe also on snb) by reading from a CS register (like
864 	 * ACTHD) before reading the status page. */
865 	if (!lazy_coherency) {
866 		struct drm_i915_private *dev_priv = ring->dev->dev_private;
867 		POSTING_READ(RING_ACTHD(ring->mmio_base));
868 	}
869 
870 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
871 }
872 
873 static u32
874 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
875 {
876 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
877 }
878 
879 static void
880 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
881 {
882 	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
883 }
884 
885 static u32
886 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
887 {
888 	return ring->scratch.cpu_page[0];
889 }
890 
891 static void
892 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
893 {
894 	ring->scratch.cpu_page[0] = seqno;
895 }
896 
897 static bool
898 gen5_ring_get_irq(struct intel_engine_cs *ring)
899 {
900 	struct drm_device *dev = ring->dev;
901 	struct drm_i915_private *dev_priv = dev->dev_private;
902 
903 	if (!dev->irq_enabled)
904 		return false;
905 
906 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
907 	if (ring->irq_refcount++ == 0)
908 		ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
909 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
910 
911 	return true;
912 }
913 
914 static void
915 gen5_ring_put_irq(struct intel_engine_cs *ring)
916 {
917 	struct drm_device *dev = ring->dev;
918 	struct drm_i915_private *dev_priv = dev->dev_private;
919 
920 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
921 	if (--ring->irq_refcount == 0)
922 		ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
923 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
924 }
925 
926 static bool
927 i9xx_ring_get_irq(struct intel_engine_cs *ring)
928 {
929 	struct drm_device *dev = ring->dev;
930 	struct drm_i915_private *dev_priv = dev->dev_private;
931 
932 	if (!dev->irq_enabled)
933 		return false;
934 
935 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
936 	if (ring->irq_refcount++ == 0) {
937 		dev_priv->irq_mask &= ~ring->irq_enable_mask;
938 		I915_WRITE(IMR, dev_priv->irq_mask);
939 		POSTING_READ(IMR);
940 	}
941 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
942 
943 	return true;
944 }
945 
946 static void
947 i9xx_ring_put_irq(struct intel_engine_cs *ring)
948 {
949 	struct drm_device *dev = ring->dev;
950 	struct drm_i915_private *dev_priv = dev->dev_private;
951 
952 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
953 	if (--ring->irq_refcount == 0) {
954 		dev_priv->irq_mask |= ring->irq_enable_mask;
955 		I915_WRITE(IMR, dev_priv->irq_mask);
956 		POSTING_READ(IMR);
957 	}
958 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
959 }
960 
961 static bool
962 i8xx_ring_get_irq(struct intel_engine_cs *ring)
963 {
964 	struct drm_device *dev = ring->dev;
965 	struct drm_i915_private *dev_priv = dev->dev_private;
966 
967 	if (!dev->irq_enabled)
968 		return false;
969 
970 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
971 	if (ring->irq_refcount++ == 0) {
972 		dev_priv->irq_mask &= ~ring->irq_enable_mask;
973 		I915_WRITE16(IMR, dev_priv->irq_mask);
974 		POSTING_READ16(IMR);
975 	}
976 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
977 
978 	return true;
979 }
980 
981 static void
982 i8xx_ring_put_irq(struct intel_engine_cs *ring)
983 {
984 	struct drm_device *dev = ring->dev;
985 	struct drm_i915_private *dev_priv = dev->dev_private;
986 
987 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
988 	if (--ring->irq_refcount == 0) {
989 		dev_priv->irq_mask |= ring->irq_enable_mask;
990 		I915_WRITE16(IMR, dev_priv->irq_mask);
991 		POSTING_READ16(IMR);
992 	}
993 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
994 }
995 
996 void intel_ring_setup_status_page(struct intel_engine_cs *ring)
997 {
998 	struct drm_device *dev = ring->dev;
999 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1000 	u32 mmio = 0;
1001 
1002 	/* The ring status page addresses are no longer next to the rest of
1003 	 * the ring registers as of gen7.
1004 	 */
1005 	if (IS_GEN7(dev)) {
1006 		switch (ring->id) {
1007 		case RCS:
1008 			mmio = RENDER_HWS_PGA_GEN7;
1009 			break;
1010 		case BCS:
1011 			mmio = BLT_HWS_PGA_GEN7;
1012 			break;
1013 		/*
1014 		 * VCS2 actually doesn't exist on Gen7. Only shut up
1015 		 * gcc switch check warning
1016 		 */
1017 		case VCS2:
1018 		case VCS:
1019 			mmio = BSD_HWS_PGA_GEN7;
1020 			break;
1021 		case VECS:
1022 			mmio = VEBOX_HWS_PGA_GEN7;
1023 			break;
1024 		}
1025 	} else if (IS_GEN6(ring->dev)) {
1026 		mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
1027 	} else {
1028 		/* XXX: gen8 returns to sanity */
1029 		mmio = RING_HWS_PGA(ring->mmio_base);
1030 	}
1031 
1032 	I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
1033 	POSTING_READ(mmio);
1034 
1035 	/*
1036 	 * Flush the TLB for this page
1037 	 *
1038 	 * FIXME: These two bits have disappeared on gen8, so a question
1039 	 * arises: do we still need this and if so how should we go about
1040 	 * invalidating the TLB?
1041 	 */
1042 	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
1043 		u32 reg = RING_INSTPM(ring->mmio_base);
1044 
1045 		/* ring should be idle before issuing a sync flush*/
1046 		WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1047 
1048 		I915_WRITE(reg,
1049 			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1050 					      INSTPM_SYNC_FLUSH));
1051 		if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1052 			     1000))
1053 			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1054 				  ring->name);
1055 	}
1056 }
1057 
1058 static int
1059 bsd_ring_flush(struct intel_engine_cs *ring,
1060 	       u32     invalidate_domains,
1061 	       u32     flush_domains)
1062 {
1063 	int ret;
1064 
1065 	ret = intel_ring_begin(ring, 2);
1066 	if (ret)
1067 		return ret;
1068 
1069 	intel_ring_emit(ring, MI_FLUSH);
1070 	intel_ring_emit(ring, MI_NOOP);
1071 	intel_ring_advance(ring);
1072 	return 0;
1073 }
1074 
1075 static int
1076 i9xx_add_request(struct intel_engine_cs *ring)
1077 {
1078 	int ret;
1079 
1080 	ret = intel_ring_begin(ring, 4);
1081 	if (ret)
1082 		return ret;
1083 
1084 	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1085 	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1086 	intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1087 	intel_ring_emit(ring, MI_USER_INTERRUPT);
1088 	__intel_ring_advance(ring);
1089 
1090 	return 0;
1091 }
1092 
1093 static bool
1094 gen6_ring_get_irq(struct intel_engine_cs *ring)
1095 {
1096 	struct drm_device *dev = ring->dev;
1097 	struct drm_i915_private *dev_priv = dev->dev_private;
1098 
1099 	if (!dev->irq_enabled)
1100 	       return false;
1101 
1102 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1103 	if (ring->irq_refcount++ == 0) {
1104 		if (HAS_L3_DPF(dev) && ring->id == RCS)
1105 			I915_WRITE_IMR(ring,
1106 				       ~(ring->irq_enable_mask |
1107 					 GT_PARITY_ERROR(dev)));
1108 		else
1109 			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1110 		ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1111 	}
1112 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1113 
1114 	return true;
1115 }
1116 
1117 static void
1118 gen6_ring_put_irq(struct intel_engine_cs *ring)
1119 {
1120 	struct drm_device *dev = ring->dev;
1121 	struct drm_i915_private *dev_priv = dev->dev_private;
1122 
1123 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1124 	if (--ring->irq_refcount == 0) {
1125 		if (HAS_L3_DPF(dev) && ring->id == RCS)
1126 			I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1127 		else
1128 			I915_WRITE_IMR(ring, ~0);
1129 		ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1130 	}
1131 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1132 }
1133 
1134 static bool
1135 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1136 {
1137 	struct drm_device *dev = ring->dev;
1138 	struct drm_i915_private *dev_priv = dev->dev_private;
1139 
1140 	if (!dev->irq_enabled)
1141 		return false;
1142 
1143 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1144 	if (ring->irq_refcount++ == 0) {
1145 		I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1146 		snb_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1147 	}
1148 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1149 
1150 	return true;
1151 }
1152 
1153 static void
1154 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1155 {
1156 	struct drm_device *dev = ring->dev;
1157 	struct drm_i915_private *dev_priv = dev->dev_private;
1158 
1159 	if (!dev->irq_enabled)
1160 		return;
1161 
1162 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1163 	if (--ring->irq_refcount == 0) {
1164 		I915_WRITE_IMR(ring, ~0);
1165 		snb_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1166 	}
1167 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1168 }
1169 
1170 static bool
1171 gen8_ring_get_irq(struct intel_engine_cs *ring)
1172 {
1173 	struct drm_device *dev = ring->dev;
1174 	struct drm_i915_private *dev_priv = dev->dev_private;
1175 
1176 	if (!dev->irq_enabled)
1177 		return false;
1178 
1179 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1180 	if (ring->irq_refcount++ == 0) {
1181 		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1182 			I915_WRITE_IMR(ring,
1183 				       ~(ring->irq_enable_mask |
1184 					 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1185 		} else {
1186 			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1187 		}
1188 		POSTING_READ(RING_IMR(ring->mmio_base));
1189 	}
1190 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1191 
1192 	return true;
1193 }
1194 
1195 static void
1196 gen8_ring_put_irq(struct intel_engine_cs *ring)
1197 {
1198 	struct drm_device *dev = ring->dev;
1199 	struct drm_i915_private *dev_priv = dev->dev_private;
1200 
1201 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1202 	if (--ring->irq_refcount == 0) {
1203 		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1204 			I915_WRITE_IMR(ring,
1205 				       ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1206 		} else {
1207 			I915_WRITE_IMR(ring, ~0);
1208 		}
1209 		POSTING_READ(RING_IMR(ring->mmio_base));
1210 	}
1211 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1212 }
1213 
1214 static int
1215 i965_dispatch_execbuffer(struct intel_engine_cs *ring,
1216 			 u64 offset, u32 length,
1217 			 unsigned flags)
1218 {
1219 	int ret;
1220 
1221 	ret = intel_ring_begin(ring, 2);
1222 	if (ret)
1223 		return ret;
1224 
1225 	intel_ring_emit(ring,
1226 			MI_BATCH_BUFFER_START |
1227 			MI_BATCH_GTT |
1228 			(flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1229 	intel_ring_emit(ring, offset);
1230 	intel_ring_advance(ring);
1231 
1232 	return 0;
1233 }
1234 
1235 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1236 #define I830_BATCH_LIMIT (256*1024)
1237 static int
1238 i830_dispatch_execbuffer(struct intel_engine_cs *ring,
1239 				u64 offset, u32 len,
1240 				unsigned flags)
1241 {
1242 	int ret;
1243 
1244 	if (flags & I915_DISPATCH_PINNED) {
1245 		ret = intel_ring_begin(ring, 4);
1246 		if (ret)
1247 			return ret;
1248 
1249 		intel_ring_emit(ring, MI_BATCH_BUFFER);
1250 		intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1251 		intel_ring_emit(ring, offset + len - 8);
1252 		intel_ring_emit(ring, MI_NOOP);
1253 		intel_ring_advance(ring);
1254 	} else {
1255 		u32 cs_offset = ring->scratch.gtt_offset;
1256 
1257 		if (len > I830_BATCH_LIMIT)
1258 			return -ENOSPC;
1259 
1260 		ret = intel_ring_begin(ring, 9+3);
1261 		if (ret)
1262 			return ret;
1263 		/* Blit the batch (which has now all relocs applied) to the stable batch
1264 		 * scratch bo area (so that the CS never stumbles over its tlb
1265 		 * invalidation bug) ... */
1266 		intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1267 				XY_SRC_COPY_BLT_WRITE_ALPHA |
1268 				XY_SRC_COPY_BLT_WRITE_RGB);
1269 		intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1270 		intel_ring_emit(ring, 0);
1271 		intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1272 		intel_ring_emit(ring, cs_offset);
1273 		intel_ring_emit(ring, 0);
1274 		intel_ring_emit(ring, 4096);
1275 		intel_ring_emit(ring, offset);
1276 		intel_ring_emit(ring, MI_FLUSH);
1277 
1278 		/* ... and execute it. */
1279 		intel_ring_emit(ring, MI_BATCH_BUFFER);
1280 		intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1281 		intel_ring_emit(ring, cs_offset + len - 8);
1282 		intel_ring_advance(ring);
1283 	}
1284 
1285 	return 0;
1286 }
1287 
1288 static int
1289 i915_dispatch_execbuffer(struct intel_engine_cs *ring,
1290 			 u64 offset, u32 len,
1291 			 unsigned flags)
1292 {
1293 	int ret;
1294 
1295 	ret = intel_ring_begin(ring, 2);
1296 	if (ret)
1297 		return ret;
1298 
1299 	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1300 	intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1301 	intel_ring_advance(ring);
1302 
1303 	return 0;
1304 }
1305 
1306 static void cleanup_status_page(struct intel_engine_cs *ring)
1307 {
1308 	struct drm_i915_gem_object *obj;
1309 
1310 	obj = ring->status_page.obj;
1311 	if (obj == NULL)
1312 		return;
1313 
1314 	kunmap(obj->pages[0]);
1315 	i915_gem_object_ggtt_unpin(obj);
1316 	drm_gem_object_unreference(&obj->base);
1317 	ring->status_page.obj = NULL;
1318 }
1319 
1320 static int init_status_page(struct intel_engine_cs *ring)
1321 {
1322 	struct drm_i915_gem_object *obj;
1323 
1324 	if ((obj = ring->status_page.obj) == NULL) {
1325 		int ret;
1326 
1327 		obj = i915_gem_alloc_object(ring->dev, 4096);
1328 		if (obj == NULL) {
1329 			DRM_ERROR("Failed to allocate status page\n");
1330 			return -ENOMEM;
1331 		}
1332 
1333 		ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1334 		if (ret)
1335 			goto err_unref;
1336 
1337 		ret = i915_gem_obj_ggtt_pin(obj, 4096, 0);
1338 		if (ret) {
1339 err_unref:
1340 			drm_gem_object_unreference(&obj->base);
1341 			return ret;
1342 		}
1343 
1344 		ring->status_page.obj = obj;
1345 	}
1346 
1347 	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1348 	ring->status_page.page_addr = kmap(obj->pages[0]);
1349 	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1350 
1351 	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1352 			ring->name, ring->status_page.gfx_addr);
1353 
1354 	return 0;
1355 }
1356 
1357 static int init_phys_status_page(struct intel_engine_cs *ring)
1358 {
1359 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1360 
1361 	if (!dev_priv->status_page_dmah) {
1362 		dev_priv->status_page_dmah =
1363 			drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1364 		if (!dev_priv->status_page_dmah)
1365 			return -ENOMEM;
1366 	}
1367 
1368 	ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1369 	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1370 
1371 	return 0;
1372 }
1373 
1374 static int allocate_ring_buffer(struct intel_engine_cs *ring)
1375 {
1376 	struct drm_device *dev = ring->dev;
1377 	struct intel_ringbuffer *ringbuf = ring->buffer;
1378 	struct drm_i915_gem_object *obj;
1379 	int ret;
1380 
1381 	if (intel_ring_initialized(ring))
1382 		return 0;
1383 
1384 	obj = NULL;
1385 	if (!HAS_LLC(dev))
1386 		obj = i915_gem_object_create_stolen(dev, ringbuf->size);
1387 	if (obj == NULL)
1388 		obj = i915_gem_alloc_object(dev, ringbuf->size);
1389 	if (obj == NULL)
1390 		return -ENOMEM;
1391 
1392 	ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1393 	if (ret)
1394 		goto err_unref;
1395 
1396 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1397 	if (ret)
1398 		goto err_unpin;
1399 
1400 	ringbuf->virtual_start =
1401 		ioremap_wc(dev->agp->base + i915_gem_obj_ggtt_offset(obj),
1402 				ringbuf->size);
1403 	if (ringbuf->virtual_start == NULL) {
1404 		ret = -EINVAL;
1405 		goto err_unpin;
1406 	}
1407 
1408 	ringbuf->obj = obj;
1409 	return 0;
1410 
1411 err_unpin:
1412 	i915_gem_object_ggtt_unpin(obj);
1413 err_unref:
1414 	drm_gem_object_unreference(&obj->base);
1415 	return ret;
1416 }
1417 
1418 static int intel_init_ring_buffer(struct drm_device *dev,
1419 				  struct intel_engine_cs *ring)
1420 {
1421 	struct intel_ringbuffer *ringbuf = ring->buffer;
1422 	int ret;
1423 
1424 	if (ringbuf == NULL) {
1425 		ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1426 		if (!ringbuf)
1427 			return -ENOMEM;
1428 		ring->buffer = ringbuf;
1429 	}
1430 
1431 	ring->dev = dev;
1432 	INIT_LIST_HEAD(&ring->active_list);
1433 	INIT_LIST_HEAD(&ring->request_list);
1434 	ringbuf->size = 32 * PAGE_SIZE;
1435 	memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
1436 
1437 	init_waitqueue_head(&ring->irq_queue);
1438 
1439 	if (I915_NEED_GFX_HWS(dev)) {
1440 		ret = init_status_page(ring);
1441 		if (ret)
1442 			goto error;
1443 	} else {
1444 		BUG_ON(ring->id != RCS);
1445 		ret = init_phys_status_page(ring);
1446 		if (ret)
1447 			goto error;
1448 	}
1449 
1450 	ret = allocate_ring_buffer(ring);
1451 	if (ret) {
1452 		DRM_ERROR("Failed to allocate ringbuffer %s: %d\n", ring->name, ret);
1453 		goto error;
1454 	}
1455 
1456 	/* Workaround an erratum on the i830 which causes a hang if
1457 	 * the TAIL pointer points to within the last 2 cachelines
1458 	 * of the buffer.
1459 	 */
1460 	ringbuf->effective_size = ringbuf->size;
1461 	if (IS_I830(dev) || IS_845G(dev))
1462 		ringbuf->effective_size -= 2 * CACHELINE_BYTES;
1463 
1464 	ret = i915_cmd_parser_init_ring(ring);
1465 	if (ret)
1466 		goto error;
1467 
1468 	ret = ring->init(ring);
1469 	if (ret)
1470 		goto error;
1471 
1472 	return 0;
1473 
1474 error:
1475 	kfree(ringbuf);
1476 	ring->buffer = NULL;
1477 	return ret;
1478 }
1479 
1480 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
1481 {
1482 	struct drm_i915_private *dev_priv = to_i915(ring->dev);
1483 	struct intel_ringbuffer *ringbuf = ring->buffer;
1484 
1485 	if (!intel_ring_initialized(ring))
1486 		return;
1487 
1488 	intel_stop_ring_buffer(ring);
1489 	WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
1490 
1491 	pmap_unmapdev((vm_offset_t)ringbuf->virtual_start, ringbuf->size);
1492 
1493 	i915_gem_object_ggtt_unpin(ringbuf->obj);
1494 	drm_gem_object_unreference(&ringbuf->obj->base);
1495 	ringbuf->obj = NULL;
1496 	ring->preallocated_lazy_request = NULL;
1497 	ring->outstanding_lazy_seqno = 0;
1498 
1499 	if (ring->cleanup)
1500 		ring->cleanup(ring);
1501 
1502 	cleanup_status_page(ring);
1503 
1504 	i915_cmd_parser_fini_ring(ring);
1505 
1506 	kfree(ringbuf);
1507 	ring->buffer = NULL;
1508 }
1509 
1510 static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
1511 {
1512 	struct intel_ringbuffer *ringbuf = ring->buffer;
1513 	struct drm_i915_gem_request *request;
1514 	u32 seqno = 0;
1515 	int ret;
1516 
1517 	if (ringbuf->last_retired_head != -1) {
1518 		ringbuf->head = ringbuf->last_retired_head;
1519 		ringbuf->last_retired_head = -1;
1520 
1521 		ringbuf->space = ring_space(ring);
1522 		if (ringbuf->space >= n)
1523 			return 0;
1524 	}
1525 
1526 	list_for_each_entry(request, &ring->request_list, list) {
1527 		if (__ring_space(request->tail, ringbuf->tail, ringbuf->size) >= n) {
1528 			seqno = request->seqno;
1529 			break;
1530 		}
1531 	}
1532 
1533 	if (seqno == 0)
1534 		return -ENOSPC;
1535 
1536 	ret = i915_wait_seqno(ring, seqno);
1537 	if (ret)
1538 		return ret;
1539 
1540 	i915_gem_retire_requests_ring(ring);
1541 	ringbuf->head = ringbuf->last_retired_head;
1542 	ringbuf->last_retired_head = -1;
1543 
1544 	ringbuf->space = ring_space(ring);
1545 	return 0;
1546 }
1547 
1548 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
1549 {
1550 	struct drm_device *dev = ring->dev;
1551 	struct drm_i915_private *dev_priv = dev->dev_private;
1552 	struct intel_ringbuffer *ringbuf = ring->buffer;
1553 	unsigned long end;
1554 	int ret;
1555 
1556 	ret = intel_ring_wait_request(ring, n);
1557 	if (ret != -ENOSPC)
1558 		return ret;
1559 
1560 	/* force the tail write in case we have been skipping them */
1561 	__intel_ring_advance(ring);
1562 
1563 	/* With GEM the hangcheck timer should kick us out of the loop,
1564 	 * leaving it early runs the risk of corrupting GEM state (due
1565 	 * to running on almost untested codepaths). But on resume
1566 	 * timers don't work yet, so prevent a complete hang in that
1567 	 * case by choosing an insanely large timeout. */
1568 	end = jiffies + 60 * HZ;
1569 
1570 	trace_i915_ring_wait_begin(ring);
1571 	do {
1572 		ringbuf->head = I915_READ_HEAD(ring);
1573 		ringbuf->space = ring_space(ring);
1574 		if (ringbuf->space >= n) {
1575 			ret = 0;
1576 			break;
1577 		}
1578 
1579 #if 0
1580 		if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
1581 		    dev->primary->master) {
1582 			struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1583 			if (master_priv->sarea_priv)
1584 				master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1585 		}
1586 #else
1587 		if (dev_priv->sarea_priv)
1588 			dev_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1589 #endif
1590 
1591 
1592 		msleep(1);
1593 
1594 #if 0
1595 		if (dev_priv->mm.interruptible && signal_pending(current)) {
1596 			ret = -ERESTARTSYS;
1597 			break;
1598 		}
1599 #endif
1600 
1601 		ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1602 					   dev_priv->mm.interruptible);
1603 		if (ret)
1604 			break;
1605 
1606 		if (time_after(jiffies, end)) {
1607 			ret = -EBUSY;
1608 			break;
1609 		}
1610 	} while (1);
1611 	trace_i915_ring_wait_end(ring);
1612 	return ret;
1613 }
1614 
1615 static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
1616 {
1617 	uint32_t __iomem *virt;
1618 	struct intel_ringbuffer *ringbuf = ring->buffer;
1619 	int rem = ringbuf->size - ringbuf->tail;
1620 
1621 	if (ringbuf->space < rem) {
1622 		int ret = ring_wait_for_space(ring, rem);
1623 		if (ret)
1624 			return ret;
1625 	}
1626 
1627 	virt = (unsigned int *)((char *)ringbuf->virtual_start + ringbuf->tail);
1628 	rem /= 4;
1629 	while (rem--)
1630 		iowrite32(MI_NOOP, virt++);
1631 
1632 	ringbuf->tail = 0;
1633 	ringbuf->space = ring_space(ring);
1634 
1635 	return 0;
1636 }
1637 
1638 int intel_ring_idle(struct intel_engine_cs *ring)
1639 {
1640 	u32 seqno;
1641 	int ret;
1642 
1643 	/* We need to add any requests required to flush the objects and ring */
1644 	if (ring->outstanding_lazy_seqno) {
1645 		ret = i915_add_request(ring, NULL);
1646 		if (ret)
1647 			return ret;
1648 	}
1649 
1650 	/* Wait upon the last request to be completed */
1651 	if (list_empty(&ring->request_list))
1652 		return 0;
1653 
1654 	seqno = list_entry(ring->request_list.prev,
1655 			   struct drm_i915_gem_request,
1656 			   list)->seqno;
1657 
1658 	return i915_wait_seqno(ring, seqno);
1659 }
1660 
1661 static int
1662 intel_ring_alloc_seqno(struct intel_engine_cs *ring)
1663 {
1664 	if (ring->outstanding_lazy_seqno)
1665 		return 0;
1666 
1667 	if (ring->preallocated_lazy_request == NULL) {
1668 		struct drm_i915_gem_request *request;
1669 
1670 		request = kmalloc(sizeof(*request), M_DRM, M_WAITOK);
1671 		if (request == NULL)
1672 			return -ENOMEM;
1673 
1674 		ring->preallocated_lazy_request = request;
1675 	}
1676 
1677 	return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
1678 }
1679 
1680 static int __intel_ring_prepare(struct intel_engine_cs *ring,
1681 				int bytes)
1682 {
1683 	struct intel_ringbuffer *ringbuf = ring->buffer;
1684 	int ret;
1685 
1686 	if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
1687 		ret = intel_wrap_ring_buffer(ring);
1688 		if (unlikely(ret))
1689 			return ret;
1690 	}
1691 
1692 	if (unlikely(ringbuf->space < bytes)) {
1693 		ret = ring_wait_for_space(ring, bytes);
1694 		if (unlikely(ret))
1695 			return ret;
1696 	}
1697 
1698 	return 0;
1699 }
1700 
1701 int intel_ring_begin(struct intel_engine_cs *ring,
1702 		     int num_dwords)
1703 {
1704 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1705 	int ret;
1706 
1707 	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1708 				   dev_priv->mm.interruptible);
1709 	if (ret)
1710 		return ret;
1711 
1712 	ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
1713 	if (ret)
1714 		return ret;
1715 
1716 	/* Preallocate the olr before touching the ring */
1717 	ret = intel_ring_alloc_seqno(ring);
1718 	if (ret)
1719 		return ret;
1720 
1721 	ring->buffer->space -= num_dwords * sizeof(uint32_t);
1722 	return 0;
1723 }
1724 
1725 /* Align the ring tail to a cacheline boundary */
1726 int intel_ring_cacheline_align(struct intel_engine_cs *ring)
1727 {
1728 	int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
1729 	int ret;
1730 
1731 	if (num_dwords == 0)
1732 		return 0;
1733 
1734 	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
1735 	ret = intel_ring_begin(ring, num_dwords);
1736 	if (ret)
1737 		return ret;
1738 
1739 	while (num_dwords--)
1740 		intel_ring_emit(ring, MI_NOOP);
1741 
1742 	intel_ring_advance(ring);
1743 
1744 	return 0;
1745 }
1746 
1747 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
1748 {
1749 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1750 
1751 	BUG_ON(ring->outstanding_lazy_seqno);
1752 
1753 	if (INTEL_INFO(ring->dev)->gen >= 6) {
1754 		I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1755 		I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
1756 		if (HAS_VEBOX(ring->dev))
1757 			I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
1758 	}
1759 
1760 	ring->set_seqno(ring, seqno);
1761 	ring->hangcheck.seqno = seqno;
1762 }
1763 
1764 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
1765 				     u32 value)
1766 {
1767 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1768 
1769        /* Every tail move must follow the sequence below */
1770 
1771 	/* Disable notification that the ring is IDLE. The GT
1772 	 * will then assume that it is busy and bring it out of rc6.
1773 	 */
1774 	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1775 		   _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1776 
1777 	/* Clear the context id. Here be magic! */
1778 	I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1779 
1780 	/* Wait for the ring not to be idle, i.e. for it to wake up. */
1781 	if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1782 		      GEN6_BSD_SLEEP_INDICATOR) == 0,
1783 		     50))
1784 		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1785 
1786 	/* Now that the ring is fully powered up, update the tail */
1787 	I915_WRITE_TAIL(ring, value);
1788 	POSTING_READ(RING_TAIL(ring->mmio_base));
1789 
1790 	/* Let the ring send IDLE messages to the GT again,
1791 	 * and so let it sleep to conserve power when idle.
1792 	 */
1793 	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1794 		   _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1795 }
1796 
1797 static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
1798 			       u32 invalidate, u32 flush)
1799 {
1800 	uint32_t cmd;
1801 	int ret;
1802 
1803 	ret = intel_ring_begin(ring, 4);
1804 	if (ret)
1805 		return ret;
1806 
1807 	cmd = MI_FLUSH_DW;
1808 	if (INTEL_INFO(ring->dev)->gen >= 8)
1809 		cmd += 1;
1810 	/*
1811 	 * Bspec vol 1c.5 - video engine command streamer:
1812 	 * "If ENABLED, all TLBs will be invalidated once the flush
1813 	 * operation is complete. This bit is only valid when the
1814 	 * Post-Sync Operation field is a value of 1h or 3h."
1815 	 */
1816 	if (invalidate & I915_GEM_GPU_DOMAINS)
1817 		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1818 			MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1819 	intel_ring_emit(ring, cmd);
1820 	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1821 	if (INTEL_INFO(ring->dev)->gen >= 8) {
1822 		intel_ring_emit(ring, 0); /* upper addr */
1823 		intel_ring_emit(ring, 0); /* value */
1824 	} else  {
1825 		intel_ring_emit(ring, 0);
1826 		intel_ring_emit(ring, MI_NOOP);
1827 	}
1828 	intel_ring_advance(ring);
1829 	return 0;
1830 }
1831 
1832 static int
1833 gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
1834 			      u64 offset, u32 len,
1835 			      unsigned flags)
1836 {
1837 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1838 	bool ppgtt = dev_priv->mm.aliasing_ppgtt != NULL &&
1839 		!(flags & I915_DISPATCH_SECURE);
1840 	int ret;
1841 
1842 	ret = intel_ring_begin(ring, 4);
1843 	if (ret)
1844 		return ret;
1845 
1846 	/* FIXME(BDW): Address space and security selectors. */
1847 	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1848 	intel_ring_emit(ring, lower_32_bits(offset));
1849 	intel_ring_emit(ring, upper_32_bits(offset));
1850 	intel_ring_emit(ring, MI_NOOP);
1851 	intel_ring_advance(ring);
1852 
1853 	return 0;
1854 }
1855 
1856 static int
1857 hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
1858 			      u64 offset, u32 len,
1859 			      unsigned flags)
1860 {
1861 	int ret;
1862 
1863 	ret = intel_ring_begin(ring, 2);
1864 	if (ret)
1865 		return ret;
1866 
1867 	intel_ring_emit(ring,
1868 			MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
1869 			(flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
1870 	/* bit0-7 is the length on GEN6+ */
1871 	intel_ring_emit(ring, offset);
1872 	intel_ring_advance(ring);
1873 
1874 	return 0;
1875 }
1876 
1877 static int
1878 gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
1879 			      u64 offset, u32 len,
1880 			      unsigned flags)
1881 {
1882 	int ret;
1883 
1884 	ret = intel_ring_begin(ring, 2);
1885 	if (ret)
1886 		return ret;
1887 
1888 	intel_ring_emit(ring,
1889 			MI_BATCH_BUFFER_START |
1890 			(flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1891 	/* bit0-7 is the length on GEN6+ */
1892 	intel_ring_emit(ring, offset);
1893 	intel_ring_advance(ring);
1894 
1895 	return 0;
1896 }
1897 
1898 /* Blitter support (SandyBridge+) */
1899 
1900 static int gen6_ring_flush(struct intel_engine_cs *ring,
1901 			   u32 invalidate, u32 flush)
1902 {
1903 	struct drm_device *dev = ring->dev;
1904 	uint32_t cmd;
1905 	int ret;
1906 
1907 	ret = intel_ring_begin(ring, 4);
1908 	if (ret)
1909 		return ret;
1910 
1911 	cmd = MI_FLUSH_DW;
1912 	if (INTEL_INFO(ring->dev)->gen >= 8)
1913 		cmd += 1;
1914 	/*
1915 	 * Bspec vol 1c.3 - blitter engine command streamer:
1916 	 * "If ENABLED, all TLBs will be invalidated once the flush
1917 	 * operation is complete. This bit is only valid when the
1918 	 * Post-Sync Operation field is a value of 1h or 3h."
1919 	 */
1920 	if (invalidate & I915_GEM_DOMAIN_RENDER)
1921 		cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1922 			MI_FLUSH_DW_OP_STOREDW;
1923 	intel_ring_emit(ring, cmd);
1924 	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1925 	if (INTEL_INFO(ring->dev)->gen >= 8) {
1926 		intel_ring_emit(ring, 0); /* upper addr */
1927 		intel_ring_emit(ring, 0); /* value */
1928 	} else  {
1929 		intel_ring_emit(ring, 0);
1930 		intel_ring_emit(ring, MI_NOOP);
1931 	}
1932 	intel_ring_advance(ring);
1933 
1934 	if (IS_GEN7(dev) && !invalidate && flush)
1935 		return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
1936 
1937 	return 0;
1938 }
1939 
1940 int intel_init_render_ring_buffer(struct drm_device *dev)
1941 {
1942 	struct drm_i915_private *dev_priv = dev->dev_private;
1943 	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1944 
1945 	ring->name = "render ring";
1946 	ring->id = RCS;
1947 	ring->mmio_base = RENDER_RING_BASE;
1948 
1949 	if (INTEL_INFO(dev)->gen >= 6) {
1950 		ring->add_request = gen6_add_request;
1951 		ring->flush = gen7_render_ring_flush;
1952 		if (INTEL_INFO(dev)->gen == 6)
1953 			ring->flush = gen6_render_ring_flush;
1954 		if (INTEL_INFO(dev)->gen >= 8) {
1955 			ring->flush = gen8_render_ring_flush;
1956 			ring->irq_get = gen8_ring_get_irq;
1957 			ring->irq_put = gen8_ring_put_irq;
1958 		} else {
1959 			ring->irq_get = gen6_ring_get_irq;
1960 			ring->irq_put = gen6_ring_put_irq;
1961 		}
1962 		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
1963 		ring->get_seqno = gen6_ring_get_seqno;
1964 		ring->set_seqno = ring_set_seqno;
1965 		ring->semaphore.sync_to = gen6_ring_sync;
1966 		ring->semaphore.signal = gen6_signal;
1967 		/*
1968 		 * The current semaphore is only applied on pre-gen8 platform.
1969 		 * And there is no VCS2 ring on the pre-gen8 platform. So the
1970 		 * semaphore between RCS and VCS2 is initialized as INVALID.
1971 		 * Gen8 will initialize the sema between VCS2 and RCS later.
1972 		 */
1973 		ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
1974 		ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
1975 		ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
1976 		ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
1977 		ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
1978 		ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
1979 		ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
1980 		ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
1981 		ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
1982 		ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
1983 	} else if (IS_GEN5(dev)) {
1984 		ring->add_request = pc_render_add_request;
1985 		ring->flush = gen4_render_ring_flush;
1986 		ring->get_seqno = pc_render_get_seqno;
1987 		ring->set_seqno = pc_render_set_seqno;
1988 		ring->irq_get = gen5_ring_get_irq;
1989 		ring->irq_put = gen5_ring_put_irq;
1990 		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
1991 					GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
1992 	} else {
1993 		ring->add_request = i9xx_add_request;
1994 		if (INTEL_INFO(dev)->gen < 4)
1995 			ring->flush = gen2_render_ring_flush;
1996 		else
1997 			ring->flush = gen4_render_ring_flush;
1998 		ring->get_seqno = ring_get_seqno;
1999 		ring->set_seqno = ring_set_seqno;
2000 		if (IS_GEN2(dev)) {
2001 			ring->irq_get = i8xx_ring_get_irq;
2002 			ring->irq_put = i8xx_ring_put_irq;
2003 		} else {
2004 			ring->irq_get = i9xx_ring_get_irq;
2005 			ring->irq_put = i9xx_ring_put_irq;
2006 		}
2007 		ring->irq_enable_mask = I915_USER_INTERRUPT;
2008 	}
2009 	ring->write_tail = ring_write_tail;
2010 	if (IS_HASWELL(dev))
2011 		ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2012 	else if (IS_GEN8(dev))
2013 		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2014 	else if (INTEL_INFO(dev)->gen >= 6)
2015 		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2016 	else if (INTEL_INFO(dev)->gen >= 4)
2017 		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2018 	else if (IS_I830(dev) || IS_845G(dev))
2019 		ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2020 	else
2021 		ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2022 	ring->init = init_render_ring;
2023 	ring->cleanup = render_ring_cleanup;
2024 
2025 	/* Workaround batchbuffer to combat CS tlb bug. */
2026 	if (HAS_BROKEN_CS_TLB(dev)) {
2027 		struct drm_i915_gem_object *obj;
2028 		int ret;
2029 
2030 		obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
2031 		if (obj == NULL) {
2032 			DRM_ERROR("Failed to allocate batch bo\n");
2033 			return -ENOMEM;
2034 		}
2035 
2036 		ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2037 		if (ret != 0) {
2038 			drm_gem_object_unreference(&obj->base);
2039 			DRM_ERROR("Failed to ping batch bo\n");
2040 			return ret;
2041 		}
2042 
2043 		ring->scratch.obj = obj;
2044 		ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2045 	}
2046 
2047 	return intel_init_ring_buffer(dev, ring);
2048 }
2049 
2050 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
2051 {
2052 	struct drm_i915_private *dev_priv = dev->dev_private;
2053 	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2054 	struct intel_ringbuffer *ringbuf = ring->buffer;
2055 	int ret;
2056 
2057 	if (ringbuf == NULL) {
2058 		ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2059 		if (!ringbuf)
2060 			return -ENOMEM;
2061 		ring->buffer = ringbuf;
2062 	}
2063 
2064 	ring->name = "render ring";
2065 	ring->id = RCS;
2066 	ring->mmio_base = RENDER_RING_BASE;
2067 
2068 	if (INTEL_INFO(dev)->gen >= 6) {
2069 		/* non-kms not supported on gen6+ */
2070 		ret = -ENODEV;
2071 		goto err_ringbuf;
2072 	}
2073 
2074 	/* Note: gem is not supported on gen5/ilk without kms (the corresponding
2075 	 * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
2076 	 * the special gen5 functions. */
2077 	ring->add_request = i9xx_add_request;
2078 	if (INTEL_INFO(dev)->gen < 4)
2079 		ring->flush = gen2_render_ring_flush;
2080 	else
2081 		ring->flush = gen4_render_ring_flush;
2082 	ring->get_seqno = ring_get_seqno;
2083 	ring->set_seqno = ring_set_seqno;
2084 	if (IS_GEN2(dev)) {
2085 		ring->irq_get = i8xx_ring_get_irq;
2086 		ring->irq_put = i8xx_ring_put_irq;
2087 	} else {
2088 		ring->irq_get = i9xx_ring_get_irq;
2089 		ring->irq_put = i9xx_ring_put_irq;
2090 	}
2091 	ring->irq_enable_mask = I915_USER_INTERRUPT;
2092 	ring->write_tail = ring_write_tail;
2093 	if (INTEL_INFO(dev)->gen >= 4)
2094 		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2095 	else if (IS_I830(dev) || IS_845G(dev))
2096 		ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2097 	else
2098 		ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2099 	ring->init = init_render_ring;
2100 	ring->cleanup = render_ring_cleanup;
2101 
2102 	ring->dev = dev;
2103 	INIT_LIST_HEAD(&ring->active_list);
2104 	INIT_LIST_HEAD(&ring->request_list);
2105 
2106 	ringbuf->size = size;
2107 	ringbuf->effective_size = ringbuf->size;
2108 	if (IS_I830(ring->dev) || IS_845G(ring->dev))
2109 		ringbuf->effective_size -= 2 * CACHELINE_BYTES;
2110 
2111 	ringbuf->virtual_start = ioremap_wc(start, size);
2112 	if (ringbuf->virtual_start == NULL) {
2113 		DRM_ERROR("can not ioremap virtual address for"
2114 			  " ring buffer\n");
2115 		ret = -ENOMEM;
2116 		goto err_ringbuf;
2117 	}
2118 
2119 	if (!I915_NEED_GFX_HWS(dev)) {
2120 		ret = init_phys_status_page(ring);
2121 		if (ret)
2122 			goto err_vstart;
2123 	}
2124 
2125 	return 0;
2126 
2127 err_vstart:
2128 	pmap_unmapdev((vm_offset_t)ring->buffer->virtual_start, size);
2129 err_ringbuf:
2130 	kfree(ringbuf);
2131 	ring->buffer = NULL;
2132 	return ret;
2133 }
2134 
2135 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2136 {
2137 	struct drm_i915_private *dev_priv = dev->dev_private;
2138 	struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2139 
2140 	ring->name = "bsd ring";
2141 	ring->id = VCS;
2142 
2143 	ring->write_tail = ring_write_tail;
2144 	if (INTEL_INFO(dev)->gen >= 6) {
2145 		ring->mmio_base = GEN6_BSD_RING_BASE;
2146 		/* gen6 bsd needs a special wa for tail updates */
2147 		if (IS_GEN6(dev))
2148 			ring->write_tail = gen6_bsd_ring_write_tail;
2149 		ring->flush = gen6_bsd_ring_flush;
2150 		ring->add_request = gen6_add_request;
2151 		ring->get_seqno = gen6_ring_get_seqno;
2152 		ring->set_seqno = ring_set_seqno;
2153 		if (INTEL_INFO(dev)->gen >= 8) {
2154 			ring->irq_enable_mask =
2155 				GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2156 			ring->irq_get = gen8_ring_get_irq;
2157 			ring->irq_put = gen8_ring_put_irq;
2158 			ring->dispatch_execbuffer =
2159 				gen8_ring_dispatch_execbuffer;
2160 		} else {
2161 			ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2162 			ring->irq_get = gen6_ring_get_irq;
2163 			ring->irq_put = gen6_ring_put_irq;
2164 			ring->dispatch_execbuffer =
2165 				gen6_ring_dispatch_execbuffer;
2166 		}
2167 		ring->semaphore.sync_to = gen6_ring_sync;
2168 		ring->semaphore.signal = gen6_signal;
2169 		/*
2170 		 * The current semaphore is only applied on pre-gen8 platform.
2171 		 * And there is no VCS2 ring on the pre-gen8 platform. So the
2172 		 * semaphore between VCS and VCS2 is initialized as INVALID.
2173 		 * Gen8 will initialize the sema between VCS2 and VCS later.
2174 		 */
2175 		ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2176 		ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2177 		ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2178 		ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2179 		ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2180 		ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2181 		ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2182 		ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2183 		ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2184 		ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2185 	} else {
2186 		ring->mmio_base = BSD_RING_BASE;
2187 		ring->flush = bsd_ring_flush;
2188 		ring->add_request = i9xx_add_request;
2189 		ring->get_seqno = ring_get_seqno;
2190 		ring->set_seqno = ring_set_seqno;
2191 		if (IS_GEN5(dev)) {
2192 			ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2193 			ring->irq_get = gen5_ring_get_irq;
2194 			ring->irq_put = gen5_ring_put_irq;
2195 		} else {
2196 			ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2197 			ring->irq_get = i9xx_ring_get_irq;
2198 			ring->irq_put = i9xx_ring_put_irq;
2199 		}
2200 		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2201 	}
2202 	ring->init = init_ring_common;
2203 
2204 	return intel_init_ring_buffer(dev, ring);
2205 }
2206 
2207 /**
2208  * Initialize the second BSD ring for Broadwell GT3.
2209  * It is noted that this only exists on Broadwell GT3.
2210  */
2211 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2212 {
2213 	struct drm_i915_private *dev_priv = dev->dev_private;
2214 	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2215 
2216 	if ((INTEL_INFO(dev)->gen != 8)) {
2217 		DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
2218 		return -EINVAL;
2219 	}
2220 
2221 	ring->name = "bds2_ring";
2222 	ring->id = VCS2;
2223 
2224 	ring->write_tail = ring_write_tail;
2225 	ring->mmio_base = GEN8_BSD2_RING_BASE;
2226 	ring->flush = gen6_bsd_ring_flush;
2227 	ring->add_request = gen6_add_request;
2228 	ring->get_seqno = gen6_ring_get_seqno;
2229 	ring->set_seqno = ring_set_seqno;
2230 	ring->irq_enable_mask =
2231 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2232 	ring->irq_get = gen8_ring_get_irq;
2233 	ring->irq_put = gen8_ring_put_irq;
2234 	ring->dispatch_execbuffer =
2235 			gen8_ring_dispatch_execbuffer;
2236 	ring->semaphore.sync_to = gen6_ring_sync;
2237 	ring->semaphore.signal = gen6_signal;
2238 	/*
2239 	 * The current semaphore is only applied on the pre-gen8. And there
2240 	 * is no bsd2 ring on the pre-gen8. So now the semaphore_register
2241 	 * between VCS2 and other ring is initialized as invalid.
2242 	 * Gen8 will initialize the sema between VCS2 and other ring later.
2243 	 */
2244 	ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2245 	ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2246 	ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2247 	ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2248 	ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2249 	ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2250 	ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2251 	ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2252 	ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2253 	ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2254 
2255 	ring->init = init_ring_common;
2256 
2257 	return intel_init_ring_buffer(dev, ring);
2258 }
2259 
2260 int intel_init_blt_ring_buffer(struct drm_device *dev)
2261 {
2262 	struct drm_i915_private *dev_priv = dev->dev_private;
2263 	struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2264 
2265 	ring->name = "blitter ring";
2266 	ring->id = BCS;
2267 
2268 	ring->mmio_base = BLT_RING_BASE;
2269 	ring->write_tail = ring_write_tail;
2270 	ring->flush = gen6_ring_flush;
2271 	ring->add_request = gen6_add_request;
2272 	ring->get_seqno = gen6_ring_get_seqno;
2273 	ring->set_seqno = ring_set_seqno;
2274 	if (INTEL_INFO(dev)->gen >= 8) {
2275 		ring->irq_enable_mask =
2276 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2277 		ring->irq_get = gen8_ring_get_irq;
2278 		ring->irq_put = gen8_ring_put_irq;
2279 		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2280 	} else {
2281 		ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2282 		ring->irq_get = gen6_ring_get_irq;
2283 		ring->irq_put = gen6_ring_put_irq;
2284 		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2285 	}
2286 	ring->semaphore.sync_to = gen6_ring_sync;
2287 	ring->semaphore.signal = gen6_signal;
2288 	/*
2289 	 * The current semaphore is only applied on pre-gen8 platform. And
2290 	 * there is no VCS2 ring on the pre-gen8 platform. So the semaphore
2291 	 * between BCS and VCS2 is initialized as INVALID.
2292 	 * Gen8 will initialize the sema between BCS and VCS2 later.
2293 	 */
2294 	ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2295 	ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2296 	ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2297 	ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2298 	ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2299 	ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2300 	ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2301 	ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2302 	ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2303 	ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2304 	ring->init = init_ring_common;
2305 
2306 	return intel_init_ring_buffer(dev, ring);
2307 }
2308 
2309 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2310 {
2311 	struct drm_i915_private *dev_priv = dev->dev_private;
2312 	struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2313 
2314 	ring->name = "video enhancement ring";
2315 	ring->id = VECS;
2316 
2317 	ring->mmio_base = VEBOX_RING_BASE;
2318 	ring->write_tail = ring_write_tail;
2319 	ring->flush = gen6_ring_flush;
2320 	ring->add_request = gen6_add_request;
2321 	ring->get_seqno = gen6_ring_get_seqno;
2322 	ring->set_seqno = ring_set_seqno;
2323 
2324 	if (INTEL_INFO(dev)->gen >= 8) {
2325 		ring->irq_enable_mask =
2326 			GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2327 		ring->irq_get = gen8_ring_get_irq;
2328 		ring->irq_put = gen8_ring_put_irq;
2329 		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2330 	} else {
2331 		ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2332 		ring->irq_get = hsw_vebox_get_irq;
2333 		ring->irq_put = hsw_vebox_put_irq;
2334 		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2335 	}
2336 	ring->semaphore.sync_to = gen6_ring_sync;
2337 	ring->semaphore.signal = gen6_signal;
2338 	ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2339 	ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2340 	ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2341 	ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2342 	ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2343 	ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2344 	ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2345 	ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2346 	ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2347 	ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2348 	ring->init = init_ring_common;
2349 
2350 	return intel_init_ring_buffer(dev, ring);
2351 }
2352 
2353 int
2354 intel_ring_flush_all_caches(struct intel_engine_cs *ring)
2355 {
2356 	int ret;
2357 
2358 	if (!ring->gpu_caches_dirty)
2359 		return 0;
2360 
2361 	ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2362 	if (ret)
2363 		return ret;
2364 
2365 	trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2366 
2367 	ring->gpu_caches_dirty = false;
2368 	return 0;
2369 }
2370 
2371 int
2372 intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
2373 {
2374 	uint32_t flush_domains;
2375 	int ret;
2376 
2377 	flush_domains = 0;
2378 	if (ring->gpu_caches_dirty)
2379 		flush_domains = I915_GEM_GPU_DOMAINS;
2380 
2381 	ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2382 	if (ret)
2383 		return ret;
2384 
2385 	trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2386 
2387 	ring->gpu_caches_dirty = false;
2388 	return 0;
2389 }
2390 
2391 void
2392 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2393 {
2394 	int ret;
2395 
2396 	if (!intel_ring_initialized(ring))
2397 		return;
2398 
2399 	ret = intel_ring_idle(ring);
2400 	if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2401 		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2402 			  ring->name, ret);
2403 
2404 	stop_ring(ring);
2405 }
2406