1 /* 2 * Copyright © 2014 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 */ 23 24 /** 25 * DOC: Panel Self Refresh (PSR/SRD) 26 * 27 * Since Haswell Display controller supports Panel Self-Refresh on display 28 * panels witch have a remote frame buffer (RFB) implemented according to PSR 29 * spec in eDP1.3. PSR feature allows the display to go to lower standby states 30 * when system is idle but display is on as it eliminates display refresh 31 * request to DDR memory completely as long as the frame buffer for that 32 * display is unchanged. 33 * 34 * Panel Self Refresh must be supported by both Hardware (source) and 35 * Panel (sink). 36 * 37 * PSR saves power by caching the framebuffer in the panel RFB, which allows us 38 * to power down the link and memory controller. For DSI panels the same idea 39 * is called "manual mode". 40 * 41 * The implementation uses the hardware-based PSR support which automatically 42 * enters/exits self-refresh mode. The hardware takes care of sending the 43 * required DP aux message and could even retrain the link (that part isn't 44 * enabled yet though). The hardware also keeps track of any frontbuffer 45 * changes to know when to exit self-refresh mode again. Unfortunately that 46 * part doesn't work too well, hence why the i915 PSR support uses the 47 * software frontbuffer tracking to make sure it doesn't miss a screen 48 * update. For this integration intel_psr_invalidate() and intel_psr_flush() 49 * get called by the frontbuffer tracking code. Note that because of locking 50 * issues the self-refresh re-enable code is done from a work queue, which 51 * must be correctly synchronized/cancelled when shutting down the pipe." 52 */ 53 54 #include <drm/drmP.h> 55 56 #include "intel_drv.h" 57 #include "i915_drv.h" 58 59 static bool is_edp_psr(struct intel_dp *intel_dp) 60 { 61 return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED; 62 } 63 64 static bool vlv_is_psr_active_on_pipe(struct drm_device *dev, int pipe) 65 { 66 struct drm_i915_private *dev_priv = dev->dev_private; 67 uint32_t val; 68 69 val = I915_READ(VLV_PSRSTAT(pipe)) & 70 VLV_EDP_PSR_CURR_STATE_MASK; 71 return (val == VLV_EDP_PSR_ACTIVE_NORFB_UP) || 72 (val == VLV_EDP_PSR_ACTIVE_SF_UPDATE); 73 } 74 75 static void intel_psr_write_vsc(struct intel_dp *intel_dp, 76 struct edp_vsc_psr *vsc_psr) 77 { 78 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 79 struct drm_device *dev = dig_port->base.base.dev; 80 struct drm_i915_private *dev_priv = dev->dev_private; 81 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc); 82 u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config->cpu_transcoder); 83 u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config->cpu_transcoder); 84 uint32_t *data = (uint32_t *) vsc_psr; 85 unsigned int i; 86 87 /* As per BSPec (Pipe Video Data Island Packet), we need to disable 88 the video DIP being updated before program video DIP data buffer 89 registers for DIP being updated. */ 90 I915_WRITE(ctl_reg, 0); 91 POSTING_READ(ctl_reg); 92 93 for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) { 94 if (i < sizeof(struct edp_vsc_psr)) 95 I915_WRITE(data_reg + i, *data++); 96 else 97 I915_WRITE(data_reg + i, 0); 98 } 99 100 I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW); 101 POSTING_READ(ctl_reg); 102 } 103 104 static void vlv_psr_setup_vsc(struct intel_dp *intel_dp) 105 { 106 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 107 struct drm_device *dev = intel_dig_port->base.base.dev; 108 struct drm_i915_private *dev_priv = dev->dev_private; 109 struct drm_crtc *crtc = intel_dig_port->base.base.crtc; 110 enum i915_pipe pipe = to_intel_crtc(crtc)->pipe; 111 uint32_t val; 112 113 /* VLV auto-generate VSC package as per EDP 1.3 spec, Table 3.10 */ 114 val = I915_READ(VLV_VSCSDP(pipe)); 115 val &= ~VLV_EDP_PSR_SDP_FREQ_MASK; 116 val |= VLV_EDP_PSR_SDP_FREQ_EVFRAME; 117 I915_WRITE(VLV_VSCSDP(pipe), val); 118 } 119 120 static void skl_psr_setup_su_vsc(struct intel_dp *intel_dp) 121 { 122 struct edp_vsc_psr psr_vsc; 123 124 /* Prepare VSC Header for SU as per EDP 1.4 spec, Table 6.11 */ 125 memset(&psr_vsc, 0, sizeof(psr_vsc)); 126 psr_vsc.sdp_header.HB0 = 0; 127 psr_vsc.sdp_header.HB1 = 0x7; 128 psr_vsc.sdp_header.HB2 = 0x3; 129 psr_vsc.sdp_header.HB3 = 0xb; 130 intel_psr_write_vsc(intel_dp, &psr_vsc); 131 } 132 133 static void hsw_psr_setup_vsc(struct intel_dp *intel_dp) 134 { 135 struct edp_vsc_psr psr_vsc; 136 137 /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */ 138 memset(&psr_vsc, 0, sizeof(psr_vsc)); 139 psr_vsc.sdp_header.HB0 = 0; 140 psr_vsc.sdp_header.HB1 = 0x7; 141 psr_vsc.sdp_header.HB2 = 0x2; 142 psr_vsc.sdp_header.HB3 = 0x8; 143 intel_psr_write_vsc(intel_dp, &psr_vsc); 144 } 145 146 static void vlv_psr_enable_sink(struct intel_dp *intel_dp) 147 { 148 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, 149 DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE); 150 } 151 152 static void hsw_psr_enable_sink(struct intel_dp *intel_dp) 153 { 154 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 155 struct drm_device *dev = dig_port->base.base.dev; 156 struct drm_i915_private *dev_priv = dev->dev_private; 157 uint32_t aux_clock_divider; 158 uint32_t aux_data_reg, aux_ctl_reg; 159 int precharge = 0x3; 160 static const uint8_t aux_msg[] = { 161 [0] = DP_AUX_NATIVE_WRITE << 4, 162 [1] = DP_SET_POWER >> 8, 163 [2] = DP_SET_POWER & 0xff, 164 [3] = 1 - 1, 165 [4] = DP_SET_POWER_D0, 166 }; 167 int i; 168 169 BUILD_BUG_ON(sizeof(aux_msg) > 20); 170 171 aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0); 172 173 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, 174 DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE); 175 176 /* Enable AUX frame sync at sink */ 177 if (dev_priv->psr.aux_frame_sync) 178 drm_dp_dpcd_writeb(&intel_dp->aux, 179 DP_SINK_DEVICE_AUX_FRAME_SYNC_CONF, 180 DP_AUX_FRAME_SYNC_ENABLE); 181 182 aux_data_reg = (INTEL_INFO(dev)->gen >= 9) ? 183 DPA_AUX_CH_DATA1 : EDP_PSR_AUX_DATA1(dev); 184 aux_ctl_reg = (INTEL_INFO(dev)->gen >= 9) ? 185 DPA_AUX_CH_CTL : EDP_PSR_AUX_CTL(dev); 186 187 /* Setup AUX registers */ 188 for (i = 0; i < sizeof(aux_msg); i += 4) 189 I915_WRITE(aux_data_reg + i, 190 intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i)); 191 192 if (INTEL_INFO(dev)->gen >= 9) { 193 uint32_t val; 194 195 val = I915_READ(aux_ctl_reg); 196 val &= ~DP_AUX_CH_CTL_TIME_OUT_MASK; 197 val |= DP_AUX_CH_CTL_TIME_OUT_1600us; 198 val &= ~DP_AUX_CH_CTL_MESSAGE_SIZE_MASK; 199 val |= (sizeof(aux_msg) << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT); 200 /* Use hardcoded data values for PSR, frame sync and GTC */ 201 val &= ~DP_AUX_CH_CTL_PSR_DATA_AUX_REG_SKL; 202 val &= ~DP_AUX_CH_CTL_FS_DATA_AUX_REG_SKL; 203 val &= ~DP_AUX_CH_CTL_GTC_DATA_AUX_REG_SKL; 204 I915_WRITE(aux_ctl_reg, val); 205 } else { 206 I915_WRITE(aux_ctl_reg, 207 DP_AUX_CH_CTL_TIME_OUT_400us | 208 (sizeof(aux_msg) << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | 209 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) | 210 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT)); 211 } 212 213 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, DP_PSR_ENABLE); 214 } 215 216 static void vlv_psr_enable_source(struct intel_dp *intel_dp) 217 { 218 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 219 struct drm_device *dev = dig_port->base.base.dev; 220 struct drm_i915_private *dev_priv = dev->dev_private; 221 struct drm_crtc *crtc = dig_port->base.base.crtc; 222 enum i915_pipe pipe = to_intel_crtc(crtc)->pipe; 223 224 /* Transition from PSR_state 0 to PSR_state 1, i.e. PSR Inactive */ 225 I915_WRITE(VLV_PSRCTL(pipe), 226 VLV_EDP_PSR_MODE_SW_TIMER | 227 VLV_EDP_PSR_SRC_TRANSMITTER_STATE | 228 VLV_EDP_PSR_ENABLE); 229 } 230 231 static void vlv_psr_activate(struct intel_dp *intel_dp) 232 { 233 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 234 struct drm_device *dev = dig_port->base.base.dev; 235 struct drm_i915_private *dev_priv = dev->dev_private; 236 struct drm_crtc *crtc = dig_port->base.base.crtc; 237 enum i915_pipe pipe = to_intel_crtc(crtc)->pipe; 238 239 /* Let's do the transition from PSR_state 1 to PSR_state 2 240 * that is PSR transition to active - static frame transmission. 241 * Then Hardware is responsible for the transition to PSR_state 3 242 * that is PSR active - no Remote Frame Buffer (RFB) update. 243 */ 244 I915_WRITE(VLV_PSRCTL(pipe), I915_READ(VLV_PSRCTL(pipe)) | 245 VLV_EDP_PSR_ACTIVE_ENTRY); 246 } 247 248 static void hsw_psr_enable_source(struct intel_dp *intel_dp) 249 { 250 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 251 struct drm_device *dev = dig_port->base.base.dev; 252 struct drm_i915_private *dev_priv = dev->dev_private; 253 254 uint32_t max_sleep_time = 0x1f; 255 /* Lately it was identified that depending on panel idle frame count 256 * calculated at HW can be off by 1. So let's use what came 257 * from VBT + 1. 258 * There are also other cases where panel demands at least 4 259 * but VBT is not being set. To cover these 2 cases lets use 260 * at least 5 when VBT isn't set to be on the safest side. 261 */ 262 uint32_t idle_frames = dev_priv->vbt.psr.idle_frames ? 263 dev_priv->vbt.psr.idle_frames + 1 : 5; 264 uint32_t val = 0x0; 265 const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES; 266 267 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) { 268 /* It doesn't mean we shouldn't send TPS patters, so let's 269 send the minimal TP1 possible and skip TP2. */ 270 val |= EDP_PSR_TP1_TIME_100us; 271 val |= EDP_PSR_TP2_TP3_TIME_0us; 272 val |= EDP_PSR_SKIP_AUX_EXIT; 273 /* Sink should be able to train with the 5 or 6 idle patterns */ 274 idle_frames += 4; 275 } 276 277 I915_WRITE(EDP_PSR_CTL(dev), val | 278 (IS_BROADWELL(dev) ? 0 : link_entry_time) | 279 max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT | 280 idle_frames << EDP_PSR_IDLE_FRAME_SHIFT | 281 EDP_PSR_ENABLE); 282 283 if (dev_priv->psr.psr2_support) 284 I915_WRITE(EDP_PSR2_CTL, EDP_PSR2_ENABLE | 285 EDP_SU_TRACK_ENABLE | EDP_PSR2_TP2_TIME_100); 286 } 287 288 static bool intel_psr_match_conditions(struct intel_dp *intel_dp) 289 { 290 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 291 struct drm_device *dev = dig_port->base.base.dev; 292 struct drm_i915_private *dev_priv = dev->dev_private; 293 struct drm_crtc *crtc = dig_port->base.base.crtc; 294 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 295 296 lockdep_assert_held(&dev_priv->psr.lock); 297 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex)); 298 WARN_ON(!drm_modeset_is_locked(&crtc->mutex)); 299 300 dev_priv->psr.source_ok = false; 301 302 if (IS_HASWELL(dev) && dig_port->port != PORT_A) { 303 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n"); 304 return false; 305 } 306 307 if (!i915.enable_psr) { 308 DRM_DEBUG_KMS("PSR disable by flag\n"); 309 return false; 310 } 311 312 if (IS_HASWELL(dev) && 313 I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config->cpu_transcoder)) & 314 S3D_ENABLE) { 315 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n"); 316 return false; 317 } 318 319 if (IS_HASWELL(dev) && 320 intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) { 321 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n"); 322 return false; 323 } 324 325 if (!IS_VALLEYVIEW(dev) && ((dev_priv->vbt.psr.full_link) || 326 (dig_port->port != PORT_A))) { 327 DRM_DEBUG_KMS("PSR condition failed: Link Standby requested/needed but not supported on this platform\n"); 328 return false; 329 } 330 331 dev_priv->psr.source_ok = true; 332 return true; 333 } 334 335 static void intel_psr_activate(struct intel_dp *intel_dp) 336 { 337 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 338 struct drm_device *dev = intel_dig_port->base.base.dev; 339 struct drm_i915_private *dev_priv = dev->dev_private; 340 341 WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE); 342 WARN_ON(dev_priv->psr.active); 343 lockdep_assert_held(&dev_priv->psr.lock); 344 345 /* Enable/Re-enable PSR on the host */ 346 if (HAS_DDI(dev)) 347 /* On HSW+ after we enable PSR on source it will activate it 348 * as soon as it match configure idle_frame count. So 349 * we just actually enable it here on activation time. 350 */ 351 hsw_psr_enable_source(intel_dp); 352 else 353 vlv_psr_activate(intel_dp); 354 355 dev_priv->psr.active = true; 356 } 357 358 /** 359 * intel_psr_enable - Enable PSR 360 * @intel_dp: Intel DP 361 * 362 * This function can only be called after the pipe is fully trained and enabled. 363 */ 364 void intel_psr_enable(struct intel_dp *intel_dp) 365 { 366 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 367 struct drm_device *dev = intel_dig_port->base.base.dev; 368 struct drm_i915_private *dev_priv = dev->dev_private; 369 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc); 370 371 if (!HAS_PSR(dev)) { 372 DRM_DEBUG_KMS("PSR not supported on this platform\n"); 373 return; 374 } 375 376 if (!is_edp_psr(intel_dp)) { 377 DRM_DEBUG_KMS("PSR not supported by this panel\n"); 378 return; 379 } 380 381 mutex_lock(&dev_priv->psr.lock); 382 if (dev_priv->psr.enabled) { 383 DRM_DEBUG_KMS("PSR already in use\n"); 384 goto unlock; 385 } 386 387 if (!intel_psr_match_conditions(intel_dp)) 388 goto unlock; 389 390 dev_priv->psr.busy_frontbuffer_bits = 0; 391 392 if (HAS_DDI(dev)) { 393 hsw_psr_setup_vsc(intel_dp); 394 395 if (dev_priv->psr.psr2_support) { 396 /* PSR2 is restricted to work with panel resolutions upto 3200x2000 */ 397 if (crtc->config->pipe_src_w > 3200 || 398 crtc->config->pipe_src_h > 2000) 399 dev_priv->psr.psr2_support = false; 400 else 401 skl_psr_setup_su_vsc(intel_dp); 402 } 403 404 /* Avoid continuous PSR exit by masking memup and hpd */ 405 I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP | 406 EDP_PSR_DEBUG_MASK_HPD); 407 408 /* Enable PSR on the panel */ 409 hsw_psr_enable_sink(intel_dp); 410 411 if (INTEL_INFO(dev)->gen >= 9) 412 intel_psr_activate(intel_dp); 413 } else { 414 vlv_psr_setup_vsc(intel_dp); 415 416 /* Enable PSR on the panel */ 417 vlv_psr_enable_sink(intel_dp); 418 419 /* On HSW+ enable_source also means go to PSR entry/active 420 * state as soon as idle_frame achieved and here would be 421 * to soon. However on VLV enable_source just enable PSR 422 * but let it on inactive state. So we might do this prior 423 * to active transition, i.e. here. 424 */ 425 vlv_psr_enable_source(intel_dp); 426 } 427 428 dev_priv->psr.enabled = intel_dp; 429 unlock: 430 mutex_unlock(&dev_priv->psr.lock); 431 } 432 433 static void vlv_psr_disable(struct intel_dp *intel_dp) 434 { 435 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 436 struct drm_device *dev = intel_dig_port->base.base.dev; 437 struct drm_i915_private *dev_priv = dev->dev_private; 438 struct intel_crtc *intel_crtc = 439 to_intel_crtc(intel_dig_port->base.base.crtc); 440 uint32_t val; 441 442 if (dev_priv->psr.active) { 443 /* Put VLV PSR back to PSR_state 0 that is PSR Disabled. */ 444 if (wait_for((I915_READ(VLV_PSRSTAT(intel_crtc->pipe)) & 445 VLV_EDP_PSR_IN_TRANS) == 0, 1)) 446 WARN(1, "PSR transition took longer than expected\n"); 447 448 val = I915_READ(VLV_PSRCTL(intel_crtc->pipe)); 449 val &= ~VLV_EDP_PSR_ACTIVE_ENTRY; 450 val &= ~VLV_EDP_PSR_ENABLE; 451 val &= ~VLV_EDP_PSR_MODE_MASK; 452 I915_WRITE(VLV_PSRCTL(intel_crtc->pipe), val); 453 454 dev_priv->psr.active = false; 455 } else { 456 WARN_ON(vlv_is_psr_active_on_pipe(dev, intel_crtc->pipe)); 457 } 458 } 459 460 static void hsw_psr_disable(struct intel_dp *intel_dp) 461 { 462 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 463 struct drm_device *dev = intel_dig_port->base.base.dev; 464 struct drm_i915_private *dev_priv = dev->dev_private; 465 466 if (dev_priv->psr.active) { 467 I915_WRITE(EDP_PSR_CTL(dev), 468 I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE); 469 470 /* Wait till PSR is idle */ 471 if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) & 472 EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10)) 473 DRM_ERROR("Timed out waiting for PSR Idle State\n"); 474 475 dev_priv->psr.active = false; 476 } else { 477 WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE); 478 } 479 } 480 481 /** 482 * intel_psr_disable - Disable PSR 483 * @intel_dp: Intel DP 484 * 485 * This function needs to be called before disabling pipe. 486 */ 487 void intel_psr_disable(struct intel_dp *intel_dp) 488 { 489 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 490 struct drm_device *dev = intel_dig_port->base.base.dev; 491 struct drm_i915_private *dev_priv = dev->dev_private; 492 493 mutex_lock(&dev_priv->psr.lock); 494 if (!dev_priv->psr.enabled) { 495 mutex_unlock(&dev_priv->psr.lock); 496 return; 497 } 498 499 if (HAS_DDI(dev)) 500 hsw_psr_disable(intel_dp); 501 else 502 vlv_psr_disable(intel_dp); 503 504 dev_priv->psr.enabled = NULL; 505 mutex_unlock(&dev_priv->psr.lock); 506 507 cancel_delayed_work_sync(&dev_priv->psr.work); 508 } 509 510 static void intel_psr_work(struct work_struct *work) 511 { 512 struct drm_i915_private *dev_priv = 513 container_of(work, typeof(*dev_priv), psr.work.work); 514 struct intel_dp *intel_dp = dev_priv->psr.enabled; 515 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc; 516 enum i915_pipe pipe = to_intel_crtc(crtc)->pipe; 517 518 /* We have to make sure PSR is ready for re-enable 519 * otherwise it keeps disabled until next full enable/disable cycle. 520 * PSR might take some time to get fully disabled 521 * and be ready for re-enable. 522 */ 523 if (HAS_DDI(dev_priv->dev)) { 524 if (wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev_priv->dev)) & 525 EDP_PSR_STATUS_STATE_MASK) == 0, 50)) { 526 DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n"); 527 return; 528 } 529 } else { 530 if (wait_for((I915_READ(VLV_PSRSTAT(pipe)) & 531 VLV_EDP_PSR_IN_TRANS) == 0, 1)) { 532 DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n"); 533 return; 534 } 535 } 536 mutex_lock(&dev_priv->psr.lock); 537 intel_dp = dev_priv->psr.enabled; 538 539 if (!intel_dp) 540 goto unlock; 541 542 /* 543 * The delayed work can race with an invalidate hence we need to 544 * recheck. Since psr_flush first clears this and then reschedules we 545 * won't ever miss a flush when bailing out here. 546 */ 547 if (dev_priv->psr.busy_frontbuffer_bits) 548 goto unlock; 549 550 intel_psr_activate(intel_dp); 551 unlock: 552 mutex_unlock(&dev_priv->psr.lock); 553 } 554 555 static void intel_psr_exit(struct drm_device *dev) 556 { 557 struct drm_i915_private *dev_priv = dev->dev_private; 558 struct intel_dp *intel_dp = dev_priv->psr.enabled; 559 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc; 560 enum i915_pipe pipe = to_intel_crtc(crtc)->pipe; 561 u32 val; 562 563 if (!dev_priv->psr.active) 564 return; 565 566 if (HAS_DDI(dev)) { 567 val = I915_READ(EDP_PSR_CTL(dev)); 568 569 WARN_ON(!(val & EDP_PSR_ENABLE)); 570 571 I915_WRITE(EDP_PSR_CTL(dev), val & ~EDP_PSR_ENABLE); 572 } else { 573 val = I915_READ(VLV_PSRCTL(pipe)); 574 575 /* Here we do the transition from PSR_state 3 to PSR_state 5 576 * directly once PSR State 4 that is active with single frame 577 * update can be skipped. PSR_state 5 that is PSR exit then 578 * Hardware is responsible to transition back to PSR_state 1 579 * that is PSR inactive. Same state after 580 * vlv_edp_psr_enable_source. 581 */ 582 val &= ~VLV_EDP_PSR_ACTIVE_ENTRY; 583 I915_WRITE(VLV_PSRCTL(pipe), val); 584 585 /* Send AUX wake up - Spec says after transitioning to PSR 586 * active we have to send AUX wake up by writing 01h in DPCD 587 * 600h of sink device. 588 * XXX: This might slow down the transition, but without this 589 * HW doesn't complete the transition to PSR_state 1 and we 590 * never get the screen updated. 591 */ 592 drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, 593 DP_SET_POWER_D0); 594 } 595 596 dev_priv->psr.active = false; 597 } 598 599 /** 600 * intel_psr_single_frame_update - Single Frame Update 601 * @dev: DRM device 602 * @frontbuffer_bits: frontbuffer plane tracking bits 603 * 604 * Some platforms support a single frame update feature that is used to 605 * send and update only one frame on Remote Frame Buffer. 606 * So far it is only implemented for Valleyview and Cherryview because 607 * hardware requires this to be done before a page flip. 608 */ 609 void intel_psr_single_frame_update(struct drm_device *dev, 610 unsigned frontbuffer_bits) 611 { 612 struct drm_i915_private *dev_priv = dev->dev_private; 613 struct drm_crtc *crtc; 614 enum i915_pipe pipe; 615 u32 val; 616 617 /* 618 * Single frame update is already supported on BDW+ but it requires 619 * many W/A and it isn't really needed. 620 */ 621 if (!IS_VALLEYVIEW(dev)) 622 return; 623 624 mutex_lock(&dev_priv->psr.lock); 625 if (!dev_priv->psr.enabled) { 626 mutex_unlock(&dev_priv->psr.lock); 627 return; 628 } 629 630 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc; 631 pipe = to_intel_crtc(crtc)->pipe; 632 633 if (frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)) { 634 val = I915_READ(VLV_PSRCTL(pipe)); 635 636 /* 637 * We need to set this bit before writing registers for a flip. 638 * This bit will be self-clear when it gets to the PSR active state. 639 */ 640 I915_WRITE(VLV_PSRCTL(pipe), val | VLV_EDP_PSR_SINGLE_FRAME_UPDATE); 641 } 642 mutex_unlock(&dev_priv->psr.lock); 643 } 644 645 /** 646 * intel_psr_invalidate - Invalidade PSR 647 * @dev: DRM device 648 * @frontbuffer_bits: frontbuffer plane tracking bits 649 * 650 * Since the hardware frontbuffer tracking has gaps we need to integrate 651 * with the software frontbuffer tracking. This function gets called every 652 * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be 653 * disabled if the frontbuffer mask contains a buffer relevant to PSR. 654 * 655 * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits." 656 */ 657 void intel_psr_invalidate(struct drm_device *dev, 658 unsigned frontbuffer_bits) 659 { 660 struct drm_i915_private *dev_priv = dev->dev_private; 661 struct drm_crtc *crtc; 662 enum i915_pipe pipe; 663 664 mutex_lock(&dev_priv->psr.lock); 665 if (!dev_priv->psr.enabled) { 666 mutex_unlock(&dev_priv->psr.lock); 667 return; 668 } 669 670 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc; 671 pipe = to_intel_crtc(crtc)->pipe; 672 673 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe); 674 dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits; 675 676 if (frontbuffer_bits) 677 intel_psr_exit(dev); 678 679 mutex_unlock(&dev_priv->psr.lock); 680 } 681 682 /** 683 * intel_psr_flush - Flush PSR 684 * @dev: DRM device 685 * @frontbuffer_bits: frontbuffer plane tracking bits 686 * @origin: which operation caused the flush 687 * 688 * Since the hardware frontbuffer tracking has gaps we need to integrate 689 * with the software frontbuffer tracking. This function gets called every 690 * time frontbuffer rendering has completed and flushed out to memory. PSR 691 * can be enabled again if no other frontbuffer relevant to PSR is dirty. 692 * 693 * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits. 694 */ 695 void intel_psr_flush(struct drm_device *dev, 696 unsigned frontbuffer_bits, enum fb_op_origin origin) 697 { 698 struct drm_i915_private *dev_priv = dev->dev_private; 699 struct drm_crtc *crtc; 700 enum i915_pipe pipe; 701 int delay_ms = HAS_DDI(dev) ? 100 : 500; 702 703 mutex_lock(&dev_priv->psr.lock); 704 if (!dev_priv->psr.enabled) { 705 mutex_unlock(&dev_priv->psr.lock); 706 return; 707 } 708 709 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc; 710 pipe = to_intel_crtc(crtc)->pipe; 711 712 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe); 713 dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits; 714 715 if (HAS_DDI(dev)) { 716 /* 717 * By definition every flush should mean invalidate + flush, 718 * however on core platforms let's minimize the 719 * disable/re-enable so we can avoid the invalidate when flip 720 * originated the flush. 721 */ 722 if (frontbuffer_bits && origin != ORIGIN_FLIP) 723 intel_psr_exit(dev); 724 } else { 725 /* 726 * On Valleyview and Cherryview we don't use hardware tracking 727 * so any plane updates or cursor moves don't result in a PSR 728 * invalidating. Which means we need to manually fake this in 729 * software for all flushes. 730 */ 731 if (frontbuffer_bits) 732 intel_psr_exit(dev); 733 } 734 735 if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits) 736 schedule_delayed_work(&dev_priv->psr.work, 737 msecs_to_jiffies(delay_ms)); 738 mutex_unlock(&dev_priv->psr.lock); 739 } 740 741 /** 742 * intel_psr_init - Init basic PSR work and mutex. 743 * @dev: DRM device 744 * 745 * This function is called only once at driver load to initialize basic 746 * PSR stuff. 747 */ 748 void intel_psr_init(struct drm_device *dev) 749 { 750 struct drm_i915_private *dev_priv = dev->dev_private; 751 752 INIT_DELAYED_WORK(&dev_priv->psr.work, intel_psr_work); 753 lockinit(&dev_priv->psr.lock, "i915dpl", 0, LK_CANRECURSE); 754 } 755