xref: /dflybsd-src/sys/dev/drm/i915/intel_pm.c (revision f6e8a0a1ed3e226aca4aaecd4a43bf356a576c56)
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include "intel_drv.h"
30 #include "i915_drv.h"
31 
32 #define FORCEWAKE_ACK_TIMEOUT_MS 2
33 
34 void i8xx_disable_fbc(struct drm_device *dev)
35 {
36 	struct drm_i915_private *dev_priv = dev->dev_private;
37 	u32 fbc_ctl;
38 
39 	/* Disable compression */
40 	fbc_ctl = I915_READ(FBC_CONTROL);
41 	if ((fbc_ctl & FBC_CTL_EN) == 0)
42 		return;
43 
44 	fbc_ctl &= ~FBC_CTL_EN;
45 	I915_WRITE(FBC_CONTROL, fbc_ctl);
46 
47 	/* Wait for compressing bit to clear */
48 	if (_intel_wait_for(dev,
49 	    (I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10,
50 	    1, "915fbd")) {
51 		DRM_DEBUG_KMS("FBC idle timed out\n");
52 		return;
53 	}
54 
55 	DRM_DEBUG_KMS("disabled FBC\n");
56 }
57 
58 void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
59 {
60 	struct drm_device *dev = crtc->dev;
61 	struct drm_i915_private *dev_priv = dev->dev_private;
62 	struct drm_framebuffer *fb = crtc->fb;
63 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
64 	struct drm_i915_gem_object *obj = intel_fb->obj;
65 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
66 	int cfb_pitch;
67 	int plane, i;
68 	u32 fbc_ctl, fbc_ctl2;
69 
70 	cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
71 	if (fb->pitches[0] < cfb_pitch)
72 		cfb_pitch = fb->pitches[0];
73 
74 	/* FBC_CTL wants 64B units */
75 	cfb_pitch = (cfb_pitch / 64) - 1;
76 	plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
77 
78 	/* Clear old tags */
79 	for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
80 		I915_WRITE(FBC_TAG + (i * 4), 0);
81 
82 	/* Set it up... */
83 	fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
84 	fbc_ctl2 |= plane;
85 	I915_WRITE(FBC_CONTROL2, fbc_ctl2);
86 	I915_WRITE(FBC_FENCE_OFF, crtc->y);
87 
88 	/* enable it... */
89 	fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
90 	if (IS_I945GM(dev))
91 		fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
92 	fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
93 	fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
94 	fbc_ctl |= obj->fence_reg;
95 	I915_WRITE(FBC_CONTROL, fbc_ctl);
96 
97 	DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
98 		      cfb_pitch, crtc->y, intel_crtc->plane);
99 }
100 
101 bool i8xx_fbc_enabled(struct drm_device *dev)
102 {
103 	struct drm_i915_private *dev_priv = dev->dev_private;
104 
105 	return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
106 }
107 
108 void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
109 {
110 	struct drm_device *dev = crtc->dev;
111 	struct drm_i915_private *dev_priv = dev->dev_private;
112 	struct drm_framebuffer *fb = crtc->fb;
113 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
114 	struct drm_i915_gem_object *obj = intel_fb->obj;
115 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
116 	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
117 	unsigned long stall_watermark = 200;
118 	u32 dpfc_ctl;
119 
120 	dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
121 	dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
122 	I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
123 
124 	I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
125 		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
126 		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
127 	I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
128 
129 	/* enable it... */
130 	I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
131 
132 	DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
133 }
134 
135 void g4x_disable_fbc(struct drm_device *dev)
136 {
137 	struct drm_i915_private *dev_priv = dev->dev_private;
138 	u32 dpfc_ctl;
139 
140 	/* Disable compression */
141 	dpfc_ctl = I915_READ(DPFC_CONTROL);
142 	if (dpfc_ctl & DPFC_CTL_EN) {
143 		dpfc_ctl &= ~DPFC_CTL_EN;
144 		I915_WRITE(DPFC_CONTROL, dpfc_ctl);
145 
146 		DRM_DEBUG_KMS("disabled FBC\n");
147 	}
148 }
149 
150 bool g4x_fbc_enabled(struct drm_device *dev)
151 {
152 	struct drm_i915_private *dev_priv = dev->dev_private;
153 
154 	return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
155 }
156 
157 static void sandybridge_blit_fbc_update(struct drm_device *dev)
158 {
159 	struct drm_i915_private *dev_priv = dev->dev_private;
160 	u32 blt_ecoskpd;
161 
162 	/* Make sure blitter notifies FBC of writes */
163 	gen6_gt_force_wake_get(dev_priv);
164 	blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
165 	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
166 		GEN6_BLITTER_LOCK_SHIFT;
167 	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
168 	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
169 	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
170 	blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
171 			 GEN6_BLITTER_LOCK_SHIFT);
172 	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
173 	POSTING_READ(GEN6_BLITTER_ECOSKPD);
174 	gen6_gt_force_wake_put(dev_priv);
175 }
176 
177 void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
178 {
179 	struct drm_device *dev = crtc->dev;
180 	struct drm_i915_private *dev_priv = dev->dev_private;
181 	struct drm_framebuffer *fb = crtc->fb;
182 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
183 	struct drm_i915_gem_object *obj = intel_fb->obj;
184 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
185 	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
186 	unsigned long stall_watermark = 200;
187 	u32 dpfc_ctl;
188 
189 	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
190 	dpfc_ctl &= DPFC_RESERVED;
191 	dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
192 	/* Set persistent mode for front-buffer rendering, ala X. */
193 	dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
194 	dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
195 	I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
196 
197 	I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
198 		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
199 		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
200 	I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
201 	I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
202 	/* enable it... */
203 	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
204 
205 	if (IS_GEN6(dev)) {
206 		I915_WRITE(SNB_DPFC_CTL_SA,
207 			   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
208 		I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
209 		sandybridge_blit_fbc_update(dev);
210 	}
211 
212 	DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
213 }
214 
215 void ironlake_disable_fbc(struct drm_device *dev)
216 {
217 	struct drm_i915_private *dev_priv = dev->dev_private;
218 	u32 dpfc_ctl;
219 
220 	/* Disable compression */
221 	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
222 	if (dpfc_ctl & DPFC_CTL_EN) {
223 		dpfc_ctl &= ~DPFC_CTL_EN;
224 		I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
225 
226 		DRM_DEBUG_KMS("disabled FBC\n");
227 	}
228 }
229 
230 bool ironlake_fbc_enabled(struct drm_device *dev)
231 {
232 	struct drm_i915_private *dev_priv = dev->dev_private;
233 
234 	return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
235 }
236 
237 bool intel_fbc_enabled(struct drm_device *dev)
238 {
239 	struct drm_i915_private *dev_priv = dev->dev_private;
240 
241 	if (!dev_priv->display.fbc_enabled)
242 		return false;
243 
244 	return dev_priv->display.fbc_enabled(dev);
245 }
246 
247 static void intel_fbc_work_fn(struct work_struct *__work)
248 {
249 	struct intel_fbc_work *work =
250 		container_of(to_delayed_work(__work),
251 			     struct intel_fbc_work, work);
252 	struct drm_device *dev = work->crtc->dev;
253 	struct drm_i915_private *dev_priv = dev->dev_private;
254 
255 	DRM_LOCK(dev);
256 	if (work == dev_priv->fbc_work) {
257 		/* Double check that we haven't switched fb without cancelling
258 		 * the prior work.
259 		 */
260 		if (work->crtc->fb == work->fb) {
261 			dev_priv->display.enable_fbc(work->crtc,
262 						     work->interval);
263 
264 			dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
265 			dev_priv->cfb_fb = work->crtc->fb->base.id;
266 			dev_priv->cfb_y = work->crtc->y;
267 		}
268 
269 		dev_priv->fbc_work = NULL;
270 	}
271 	DRM_UNLOCK(dev);
272 
273 	drm_free(work, DRM_MEM_KMS);
274 }
275 
276 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
277 {
278 	if (dev_priv->fbc_work == NULL)
279 		return;
280 
281 	DRM_DEBUG_KMS("cancelling pending FBC enable\n");
282 
283 	/* Synchronisation is provided by struct_mutex and checking of
284 	 * dev_priv->fbc_work, so we can perform the cancellation
285 	 * entirely asynchronously.
286 	 */
287 	if (cancel_delayed_work(&dev_priv->fbc_work->work))
288 		/* tasklet was killed before being run, clean up */
289 		kfree(dev_priv->fbc_work, DRM_MEM_KMS);
290 
291 	/* Mark the work as no longer wanted so that if it does
292 	 * wake-up (because the work was already running and waiting
293 	 * for our mutex), it will discover that is no longer
294 	 * necessary to run.
295 	 */
296 	dev_priv->fbc_work = NULL;
297 }
298 
299 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
300 {
301 	struct intel_fbc_work *work;
302 	struct drm_device *dev = crtc->dev;
303 	struct drm_i915_private *dev_priv = dev->dev_private;
304 
305 	if (!dev_priv->display.enable_fbc)
306 		return;
307 
308 	intel_cancel_fbc_work(dev_priv);
309 
310 	work = kmalloc(sizeof(*work), DRM_MEM_KMS, M_WAITOK | M_ZERO);
311 	work->crtc = crtc;
312 	work->fb = crtc->fb;
313 	work->interval = interval;
314 	INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
315 
316 	dev_priv->fbc_work = work;
317 
318 	DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
319 
320 	/* Delay the actual enabling to let pageflipping cease and the
321 	 * display to settle before starting the compression. Note that
322 	 * this delay also serves a second purpose: it allows for a
323 	 * vblank to pass after disabling the FBC before we attempt
324 	 * to modify the control registers.
325 	 *
326 	 * A more complicated solution would involve tracking vblanks
327 	 * following the termination of the page-flipping sequence
328 	 * and indeed performing the enable as a co-routine and not
329 	 * waiting synchronously upon the vblank.
330 	 */
331 	schedule_delayed_work(&work->work, msecs_to_jiffies(50));
332 }
333 
334 void intel_disable_fbc(struct drm_device *dev)
335 {
336 	struct drm_i915_private *dev_priv = dev->dev_private;
337 
338 	intel_cancel_fbc_work(dev_priv);
339 
340 	if (!dev_priv->display.disable_fbc)
341 		return;
342 
343 	dev_priv->display.disable_fbc(dev);
344 	dev_priv->cfb_plane = -1;
345 }
346 
347 /**
348  * intel_update_fbc - enable/disable FBC as needed
349  * @dev: the drm_device
350  *
351  * Set up the framebuffer compression hardware at mode set time.  We
352  * enable it if possible:
353  *   - plane A only (on pre-965)
354  *   - no pixel mulitply/line duplication
355  *   - no alpha buffer discard
356  *   - no dual wide
357  *   - framebuffer <= 2048 in width, 1536 in height
358  *
359  * We can't assume that any compression will take place (worst case),
360  * so the compressed buffer has to be the same size as the uncompressed
361  * one.  It also must reside (along with the line length buffer) in
362  * stolen memory.
363  *
364  * We need to enable/disable FBC on a global basis.
365  */
366 void intel_update_fbc(struct drm_device *dev)
367 {
368 	struct drm_i915_private *dev_priv = dev->dev_private;
369 	struct drm_crtc *crtc = NULL, *tmp_crtc;
370 	struct intel_crtc *intel_crtc;
371 	struct drm_framebuffer *fb;
372 	struct intel_framebuffer *intel_fb;
373 	struct drm_i915_gem_object *obj;
374 	int enable_fbc;
375 
376 	DRM_DEBUG_KMS("\n");
377 
378 	if (!i915_powersave)
379 		return;
380 
381 	if (!I915_HAS_FBC(dev))
382 		return;
383 
384 	/*
385 	 * If FBC is already on, we just have to verify that we can
386 	 * keep it that way...
387 	 * Need to disable if:
388 	 *   - more than one pipe is active
389 	 *   - changing FBC params (stride, fence, mode)
390 	 *   - new fb is too large to fit in compressed buffer
391 	 *   - going to an unsupported config (interlace, pixel multiply, etc.)
392 	 */
393 	list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
394 		if (tmp_crtc->enabled && tmp_crtc->fb) {
395 			if (crtc) {
396 				DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
397 				dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
398 				goto out_disable;
399 			}
400 			crtc = tmp_crtc;
401 		}
402 	}
403 
404 	if (!crtc || crtc->fb == NULL) {
405 		DRM_DEBUG_KMS("no output, disabling\n");
406 		dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
407 		goto out_disable;
408 	}
409 
410 	intel_crtc = to_intel_crtc(crtc);
411 	fb = crtc->fb;
412 	intel_fb = to_intel_framebuffer(fb);
413 	obj = intel_fb->obj;
414 
415 	enable_fbc = i915_enable_fbc;
416 	if (enable_fbc < 0) {
417 		DRM_DEBUG_KMS("fbc set to per-chip default\n");
418 		enable_fbc = 1;
419 		if (INTEL_INFO(dev)->gen <= 6)
420 			enable_fbc = 0;
421 	}
422 	if (!enable_fbc) {
423 		DRM_DEBUG_KMS("fbc disabled per module param\n");
424 		dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
425 		goto out_disable;
426 	}
427 	if (intel_fb->obj->base.size > dev_priv->cfb_size) {
428 		DRM_DEBUG_KMS("framebuffer too large, disabling "
429 			      "compression\n");
430 		dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
431 		goto out_disable;
432 	}
433 	if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
434 	    (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
435 		DRM_DEBUG_KMS("mode incompatible with compression, "
436 			      "disabling\n");
437 		dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
438 		goto out_disable;
439 	}
440 	if ((crtc->mode.hdisplay > 2048) ||
441 	    (crtc->mode.vdisplay > 1536)) {
442 		DRM_DEBUG_KMS("mode too large for compression, disabling\n");
443 		dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
444 		goto out_disable;
445 	}
446 	if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
447 		DRM_DEBUG_KMS("plane not 0, disabling compression\n");
448 		dev_priv->no_fbc_reason = FBC_BAD_PLANE;
449 		goto out_disable;
450 	}
451 	if (obj->tiling_mode != I915_TILING_X ||
452 	    obj->fence_reg == I915_FENCE_REG_NONE) {
453 		DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
454 		dev_priv->no_fbc_reason = FBC_NOT_TILED;
455 		goto out_disable;
456 	}
457 
458 #ifdef DDB
459 	/* If the kernel debugger is active, always disable compression */
460 	if (db_active)
461 		goto out_disable;
462 #endif
463 
464 	/* If the scanout has not changed, don't modify the FBC settings.
465 	 * Note that we make the fundamental assumption that the fb->obj
466 	 * cannot be unpinned (and have its GTT offset and fence revoked)
467 	 * without first being decoupled from the scanout and FBC disabled.
468 	 */
469 	if (dev_priv->cfb_plane == intel_crtc->plane &&
470 	    dev_priv->cfb_fb == fb->base.id &&
471 	    dev_priv->cfb_y == crtc->y)
472 		return;
473 
474 	if (intel_fbc_enabled(dev)) {
475 		/* We update FBC along two paths, after changing fb/crtc
476 		 * configuration (modeswitching) and after page-flipping
477 		 * finishes. For the latter, we know that not only did
478 		 * we disable the FBC at the start of the page-flip
479 		 * sequence, but also more than one vblank has passed.
480 		 *
481 		 * For the former case of modeswitching, it is possible
482 		 * to switch between two FBC valid configurations
483 		 * instantaneously so we do need to disable the FBC
484 		 * before we can modify its control registers. We also
485 		 * have to wait for the next vblank for that to take
486 		 * effect. However, since we delay enabling FBC we can
487 		 * assume that a vblank has passed since disabling and
488 		 * that we can safely alter the registers in the deferred
489 		 * callback.
490 		 *
491 		 * In the scenario that we go from a valid to invalid
492 		 * and then back to valid FBC configuration we have
493 		 * no strict enforcement that a vblank occurred since
494 		 * disabling the FBC. However, along all current pipe
495 		 * disabling paths we do need to wait for a vblank at
496 		 * some point. And we wait before enabling FBC anyway.
497 		 */
498 		DRM_DEBUG_KMS("disabling active FBC for update\n");
499 		intel_disable_fbc(dev);
500 	}
501 
502 	intel_enable_fbc(crtc, 500);
503 	return;
504 
505 out_disable:
506 	/* Multiple disables should be harmless */
507 	if (intel_fbc_enabled(dev)) {
508 		DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
509 		intel_disable_fbc(dev);
510 	}
511 }
512 
513 void i915_ironlake_get_mem_freq(struct drm_device *dev);
514 void i915_pineview_get_mem_freq(struct drm_device *dev);
515 
516 void i915_pineview_get_mem_freq(struct drm_device *dev)
517 {
518 	drm_i915_private_t *dev_priv = dev->dev_private;
519 	u32 tmp;
520 
521 	tmp = I915_READ(CLKCFG);
522 
523 	switch (tmp & CLKCFG_FSB_MASK) {
524 	case CLKCFG_FSB_533:
525 		dev_priv->fsb_freq = 533; /* 133*4 */
526 		break;
527 	case CLKCFG_FSB_800:
528 		dev_priv->fsb_freq = 800; /* 200*4 */
529 		break;
530 	case CLKCFG_FSB_667:
531 		dev_priv->fsb_freq =  667; /* 167*4 */
532 		break;
533 	case CLKCFG_FSB_400:
534 		dev_priv->fsb_freq = 400; /* 100*4 */
535 		break;
536 	}
537 
538 	switch (tmp & CLKCFG_MEM_MASK) {
539 	case CLKCFG_MEM_533:
540 		dev_priv->mem_freq = 533;
541 		break;
542 	case CLKCFG_MEM_667:
543 		dev_priv->mem_freq = 667;
544 		break;
545 	case CLKCFG_MEM_800:
546 		dev_priv->mem_freq = 800;
547 		break;
548 	}
549 
550 	/* detect pineview DDR3 setting */
551 	tmp = I915_READ(CSHRDDR3CTL);
552 	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
553 }
554 
555 void i915_ironlake_get_mem_freq(struct drm_device *dev)
556 {
557 	drm_i915_private_t *dev_priv = dev->dev_private;
558 	u16 ddrpll, csipll;
559 
560 	ddrpll = I915_READ16(DDRMPLL1);
561 	csipll = I915_READ16(CSIPLL0);
562 
563 	switch (ddrpll & 0xff) {
564 	case 0xc:
565 		dev_priv->mem_freq = 800;
566 		break;
567 	case 0x10:
568 		dev_priv->mem_freq = 1066;
569 		break;
570 	case 0x14:
571 		dev_priv->mem_freq = 1333;
572 		break;
573 	case 0x18:
574 		dev_priv->mem_freq = 1600;
575 		break;
576 	default:
577 		DRM_DEBUG("unknown memory frequency 0x%02x\n",
578 				 ddrpll & 0xff);
579 		dev_priv->mem_freq = 0;
580 		break;
581 	}
582 
583 	dev_priv->r_t = dev_priv->mem_freq;
584 
585 	switch (csipll & 0x3ff) {
586 	case 0x00c:
587 		dev_priv->fsb_freq = 3200;
588 		break;
589 	case 0x00e:
590 		dev_priv->fsb_freq = 3733;
591 		break;
592 	case 0x010:
593 		dev_priv->fsb_freq = 4266;
594 		break;
595 	case 0x012:
596 		dev_priv->fsb_freq = 4800;
597 		break;
598 	case 0x014:
599 		dev_priv->fsb_freq = 5333;
600 		break;
601 	case 0x016:
602 		dev_priv->fsb_freq = 5866;
603 		break;
604 	case 0x018:
605 		dev_priv->fsb_freq = 6400;
606 		break;
607 	default:
608 		DRM_DEBUG("unknown fsb frequency 0x%04x\n",
609 				 csipll & 0x3ff);
610 		dev_priv->fsb_freq = 0;
611 		break;
612 	}
613 
614 	if (dev_priv->fsb_freq == 3200) {
615 		dev_priv->c_m = 0;
616 	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
617 		dev_priv->c_m = 1;
618 	} else {
619 		dev_priv->c_m = 2;
620 	}
621 }
622 
623 /* Pineview has different values for various configs */
624 static const struct intel_watermark_params pineview_display_wm = {
625 	PINEVIEW_DISPLAY_FIFO,
626 	PINEVIEW_MAX_WM,
627 	PINEVIEW_DFT_WM,
628 	PINEVIEW_GUARD_WM,
629 	PINEVIEW_FIFO_LINE_SIZE
630 };
631 static const struct intel_watermark_params pineview_display_hplloff_wm = {
632 	PINEVIEW_DISPLAY_FIFO,
633 	PINEVIEW_MAX_WM,
634 	PINEVIEW_DFT_HPLLOFF_WM,
635 	PINEVIEW_GUARD_WM,
636 	PINEVIEW_FIFO_LINE_SIZE
637 };
638 static const struct intel_watermark_params pineview_cursor_wm = {
639 	PINEVIEW_CURSOR_FIFO,
640 	PINEVIEW_CURSOR_MAX_WM,
641 	PINEVIEW_CURSOR_DFT_WM,
642 	PINEVIEW_CURSOR_GUARD_WM,
643 	PINEVIEW_FIFO_LINE_SIZE,
644 };
645 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
646 	PINEVIEW_CURSOR_FIFO,
647 	PINEVIEW_CURSOR_MAX_WM,
648 	PINEVIEW_CURSOR_DFT_WM,
649 	PINEVIEW_CURSOR_GUARD_WM,
650 	PINEVIEW_FIFO_LINE_SIZE
651 };
652 static const struct intel_watermark_params g4x_wm_info = {
653 	G4X_FIFO_SIZE,
654 	G4X_MAX_WM,
655 	G4X_MAX_WM,
656 	2,
657 	G4X_FIFO_LINE_SIZE,
658 };
659 static const struct intel_watermark_params g4x_cursor_wm_info = {
660 	I965_CURSOR_FIFO,
661 	I965_CURSOR_MAX_WM,
662 	I965_CURSOR_DFT_WM,
663 	2,
664 	G4X_FIFO_LINE_SIZE,
665 };
666 static const struct intel_watermark_params i965_cursor_wm_info = {
667 	I965_CURSOR_FIFO,
668 	I965_CURSOR_MAX_WM,
669 	I965_CURSOR_DFT_WM,
670 	2,
671 	I915_FIFO_LINE_SIZE,
672 };
673 static const struct intel_watermark_params i945_wm_info = {
674 	I945_FIFO_SIZE,
675 	I915_MAX_WM,
676 	1,
677 	2,
678 	I915_FIFO_LINE_SIZE
679 };
680 static const struct intel_watermark_params i915_wm_info = {
681 	I915_FIFO_SIZE,
682 	I915_MAX_WM,
683 	1,
684 	2,
685 	I915_FIFO_LINE_SIZE
686 };
687 static const struct intel_watermark_params i855_wm_info = {
688 	I855GM_FIFO_SIZE,
689 	I915_MAX_WM,
690 	1,
691 	2,
692 	I830_FIFO_LINE_SIZE
693 };
694 static const struct intel_watermark_params i830_wm_info = {
695 	I830_FIFO_SIZE,
696 	I915_MAX_WM,
697 	1,
698 	2,
699 	I830_FIFO_LINE_SIZE
700 };
701 
702 static const struct intel_watermark_params ironlake_display_wm_info = {
703 	ILK_DISPLAY_FIFO,
704 	ILK_DISPLAY_MAXWM,
705 	ILK_DISPLAY_DFTWM,
706 	2,
707 	ILK_FIFO_LINE_SIZE
708 };
709 static const struct intel_watermark_params ironlake_cursor_wm_info = {
710 	ILK_CURSOR_FIFO,
711 	ILK_CURSOR_MAXWM,
712 	ILK_CURSOR_DFTWM,
713 	2,
714 	ILK_FIFO_LINE_SIZE
715 };
716 static const struct intel_watermark_params ironlake_display_srwm_info = {
717 	ILK_DISPLAY_SR_FIFO,
718 	ILK_DISPLAY_MAX_SRWM,
719 	ILK_DISPLAY_DFT_SRWM,
720 	2,
721 	ILK_FIFO_LINE_SIZE
722 };
723 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
724 	ILK_CURSOR_SR_FIFO,
725 	ILK_CURSOR_MAX_SRWM,
726 	ILK_CURSOR_DFT_SRWM,
727 	2,
728 	ILK_FIFO_LINE_SIZE
729 };
730 
731 static const struct intel_watermark_params sandybridge_display_wm_info = {
732 	SNB_DISPLAY_FIFO,
733 	SNB_DISPLAY_MAXWM,
734 	SNB_DISPLAY_DFTWM,
735 	2,
736 	SNB_FIFO_LINE_SIZE
737 };
738 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
739 	SNB_CURSOR_FIFO,
740 	SNB_CURSOR_MAXWM,
741 	SNB_CURSOR_DFTWM,
742 	2,
743 	SNB_FIFO_LINE_SIZE
744 };
745 static const struct intel_watermark_params sandybridge_display_srwm_info = {
746 	SNB_DISPLAY_SR_FIFO,
747 	SNB_DISPLAY_MAX_SRWM,
748 	SNB_DISPLAY_DFT_SRWM,
749 	2,
750 	SNB_FIFO_LINE_SIZE
751 };
752 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
753 	SNB_CURSOR_SR_FIFO,
754 	SNB_CURSOR_MAX_SRWM,
755 	SNB_CURSOR_DFT_SRWM,
756 	2,
757 	SNB_FIFO_LINE_SIZE
758 };
759 
760 
761 /**
762  * intel_calculate_wm - calculate watermark level
763  * @clock_in_khz: pixel clock
764  * @wm: chip FIFO params
765  * @pixel_size: display pixel size
766  * @latency_ns: memory latency for the platform
767  *
768  * Calculate the watermark level (the level at which the display plane will
769  * start fetching from memory again).  Each chip has a different display
770  * FIFO size and allocation, so the caller needs to figure that out and pass
771  * in the correct intel_watermark_params structure.
772  *
773  * As the pixel clock runs, the FIFO will be drained at a rate that depends
774  * on the pixel size.  When it reaches the watermark level, it'll start
775  * fetching FIFO line sized based chunks from memory until the FIFO fills
776  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
777  * will occur, and a display engine hang could result.
778  */
779 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
780 					const struct intel_watermark_params *wm,
781 					int fifo_size,
782 					int pixel_size,
783 					unsigned long latency_ns)
784 {
785 	long entries_required, wm_size;
786 
787 	/*
788 	 * Note: we need to make sure we don't overflow for various clock &
789 	 * latency values.
790 	 * clocks go from a few thousand to several hundred thousand.
791 	 * latency is usually a few thousand
792 	 */
793 	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
794 		1000;
795 	entries_required = howmany(entries_required, wm->cacheline_size);
796 
797 	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
798 
799 	wm_size = fifo_size - (entries_required + wm->guard_size);
800 
801 	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
802 
803 	/* Don't promote wm_size to unsigned... */
804 	if (wm_size > (long)wm->max_wm)
805 		wm_size = wm->max_wm;
806 	if (wm_size <= 0)
807 		wm_size = wm->default_wm;
808 	return wm_size;
809 }
810 
811 struct cxsr_latency {
812 	int is_desktop;
813 	int is_ddr3;
814 	unsigned long fsb_freq;
815 	unsigned long mem_freq;
816 	unsigned long display_sr;
817 	unsigned long display_hpll_disable;
818 	unsigned long cursor_sr;
819 	unsigned long cursor_hpll_disable;
820 };
821 
822 static const struct cxsr_latency cxsr_latency_table[] = {
823 	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
824 	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
825 	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
826 	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
827 	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
828 
829 	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
830 	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
831 	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
832 	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
833 	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
834 
835 	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
836 	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
837 	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
838 	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
839 	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
840 
841 	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
842 	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
843 	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
844 	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
845 	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
846 
847 	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
848 	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
849 	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
850 	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
851 	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
852 
853 	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
854 	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
855 	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
856 	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
857 	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
858 };
859 
860 const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
861 							 int is_ddr3,
862 							 int fsb,
863 							 int mem)
864 {
865 	const struct cxsr_latency *latency;
866 	int i;
867 
868 	if (fsb == 0 || mem == 0)
869 		return NULL;
870 
871 	for (i = 0; i < DRM_ARRAY_SIZE(cxsr_latency_table); i++) {
872 		latency = &cxsr_latency_table[i];
873 		if (is_desktop == latency->is_desktop &&
874 		    is_ddr3 == latency->is_ddr3 &&
875 		    fsb == latency->fsb_freq && mem == latency->mem_freq)
876 			return latency;
877 	}
878 
879 	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
880 
881 	return NULL;
882 }
883 
884 void pineview_disable_cxsr(struct drm_device *dev)
885 {
886 	struct drm_i915_private *dev_priv = dev->dev_private;
887 
888 	/* deactivate cxsr */
889 	I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
890 }
891 
892 /*
893  * Latency for FIFO fetches is dependent on several factors:
894  *   - memory configuration (speed, channels)
895  *   - chipset
896  *   - current MCH state
897  * It can be fairly high in some situations, so here we assume a fairly
898  * pessimal value.  It's a tradeoff between extra memory fetches (if we
899  * set this value too high, the FIFO will fetch frequently to stay full)
900  * and power consumption (set it too low to save power and we might see
901  * FIFO underruns and display "flicker").
902  *
903  * A value of 5us seems to be a good balance; safe for very low end
904  * platforms but not overly aggressive on lower latency configs.
905  */
906 static const int latency_ns = 5000;
907 
908 int i9xx_get_fifo_size(struct drm_device *dev, int plane)
909 {
910 	struct drm_i915_private *dev_priv = dev->dev_private;
911 	uint32_t dsparb = I915_READ(DSPARB);
912 	int size;
913 
914 	size = dsparb & 0x7f;
915 	if (plane)
916 		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
917 
918 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
919 		      plane ? "B" : "A", size);
920 
921 	return size;
922 }
923 
924 int i85x_get_fifo_size(struct drm_device *dev, int plane)
925 {
926 	struct drm_i915_private *dev_priv = dev->dev_private;
927 	uint32_t dsparb = I915_READ(DSPARB);
928 	int size;
929 
930 	size = dsparb & 0x1ff;
931 	if (plane)
932 		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
933 	size >>= 1; /* Convert to cachelines */
934 
935 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
936 		      plane ? "B" : "A", size);
937 
938 	return size;
939 }
940 
941 int i845_get_fifo_size(struct drm_device *dev, int plane)
942 {
943 	struct drm_i915_private *dev_priv = dev->dev_private;
944 	uint32_t dsparb = I915_READ(DSPARB);
945 	int size;
946 
947 	size = dsparb & 0x7f;
948 	size >>= 2; /* Convert to cachelines */
949 
950 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
951 		      plane ? "B" : "A",
952 		      size);
953 
954 	return size;
955 }
956 
957 int i830_get_fifo_size(struct drm_device *dev, int plane)
958 {
959 	struct drm_i915_private *dev_priv = dev->dev_private;
960 	uint32_t dsparb = I915_READ(DSPARB);
961 	int size;
962 
963 	size = dsparb & 0x7f;
964 	size >>= 1; /* Convert to cachelines */
965 
966 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
967 		      plane ? "B" : "A", size);
968 
969 	return size;
970 }
971 
972 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
973 {
974 	struct drm_crtc *crtc, *enabled = NULL;
975 
976 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
977 		if (crtc->enabled && crtc->fb) {
978 			if (enabled)
979 				return NULL;
980 			enabled = crtc;
981 		}
982 	}
983 
984 	return enabled;
985 }
986 
987 void pineview_update_wm(struct drm_device *dev)
988 {
989 	struct drm_i915_private *dev_priv = dev->dev_private;
990 	struct drm_crtc *crtc;
991 	const struct cxsr_latency *latency;
992 	u32 reg;
993 	unsigned long wm;
994 
995 	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
996 					 dev_priv->fsb_freq, dev_priv->mem_freq);
997 	if (!latency) {
998 		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
999 		pineview_disable_cxsr(dev);
1000 		return;
1001 	}
1002 
1003 	crtc = single_enabled_crtc(dev);
1004 	if (crtc) {
1005 		int clock = crtc->mode.clock;
1006 		int pixel_size = crtc->fb->bits_per_pixel / 8;
1007 
1008 		/* Display SR */
1009 		wm = intel_calculate_wm(clock, &pineview_display_wm,
1010 					pineview_display_wm.fifo_size,
1011 					pixel_size, latency->display_sr);
1012 		reg = I915_READ(DSPFW1);
1013 		reg &= ~DSPFW_SR_MASK;
1014 		reg |= wm << DSPFW_SR_SHIFT;
1015 		I915_WRITE(DSPFW1, reg);
1016 		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1017 
1018 		/* cursor SR */
1019 		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1020 					pineview_display_wm.fifo_size,
1021 					pixel_size, latency->cursor_sr);
1022 		reg = I915_READ(DSPFW3);
1023 		reg &= ~DSPFW_CURSOR_SR_MASK;
1024 		reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1025 		I915_WRITE(DSPFW3, reg);
1026 
1027 		/* Display HPLL off SR */
1028 		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1029 					pineview_display_hplloff_wm.fifo_size,
1030 					pixel_size, latency->display_hpll_disable);
1031 		reg = I915_READ(DSPFW3);
1032 		reg &= ~DSPFW_HPLL_SR_MASK;
1033 		reg |= wm & DSPFW_HPLL_SR_MASK;
1034 		I915_WRITE(DSPFW3, reg);
1035 
1036 		/* cursor HPLL off SR */
1037 		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1038 					pineview_display_hplloff_wm.fifo_size,
1039 					pixel_size, latency->cursor_hpll_disable);
1040 		reg = I915_READ(DSPFW3);
1041 		reg &= ~DSPFW_HPLL_CURSOR_MASK;
1042 		reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1043 		I915_WRITE(DSPFW3, reg);
1044 		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1045 
1046 		/* activate cxsr */
1047 		I915_WRITE(DSPFW3,
1048 			   I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1049 		DRM_DEBUG_KMS("Self-refresh is enabled\n");
1050 	} else {
1051 		pineview_disable_cxsr(dev);
1052 		DRM_DEBUG_KMS("Self-refresh is disabled\n");
1053 	}
1054 }
1055 
1056 static bool g4x_compute_wm0(struct drm_device *dev,
1057 			    int plane,
1058 			    const struct intel_watermark_params *display,
1059 			    int display_latency_ns,
1060 			    const struct intel_watermark_params *cursor,
1061 			    int cursor_latency_ns,
1062 			    int *plane_wm,
1063 			    int *cursor_wm)
1064 {
1065 	struct drm_crtc *crtc;
1066 	int htotal, hdisplay, clock, pixel_size;
1067 	int line_time_us, line_count;
1068 	int entries, tlb_miss;
1069 
1070 	crtc = intel_get_crtc_for_plane(dev, plane);
1071 	if (crtc->fb == NULL || !crtc->enabled) {
1072 		*cursor_wm = cursor->guard_size;
1073 		*plane_wm = display->guard_size;
1074 		return false;
1075 	}
1076 
1077 	htotal = crtc->mode.htotal;
1078 	hdisplay = crtc->mode.hdisplay;
1079 	clock = crtc->mode.clock;
1080 	pixel_size = crtc->fb->bits_per_pixel / 8;
1081 
1082 	/* Use the small buffer method to calculate plane watermark */
1083 	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1084 	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1085 	if (tlb_miss > 0)
1086 		entries += tlb_miss;
1087 	entries = howmany(entries, display->cacheline_size);
1088 	*plane_wm = entries + display->guard_size;
1089 	if (*plane_wm > (int)display->max_wm)
1090 		*plane_wm = display->max_wm;
1091 
1092 	/* Use the large buffer method to calculate cursor watermark */
1093 	line_time_us = ((htotal * 1000) / clock);
1094 	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1095 	entries = line_count * 64 * pixel_size;
1096 	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1097 	if (tlb_miss > 0)
1098 		entries += tlb_miss;
1099 	entries = howmany(entries, cursor->cacheline_size);
1100 	*cursor_wm = entries + cursor->guard_size;
1101 	if (*cursor_wm > (int)cursor->max_wm)
1102 		*cursor_wm = (int)cursor->max_wm;
1103 
1104 	return true;
1105 }
1106 
1107 /*
1108  * Check the wm result.
1109  *
1110  * If any calculated watermark values is larger than the maximum value that
1111  * can be programmed into the associated watermark register, that watermark
1112  * must be disabled.
1113  */
1114 static bool g4x_check_srwm(struct drm_device *dev,
1115 			   int display_wm, int cursor_wm,
1116 			   const struct intel_watermark_params *display,
1117 			   const struct intel_watermark_params *cursor)
1118 {
1119 	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1120 		      display_wm, cursor_wm);
1121 
1122 	if (display_wm > display->max_wm) {
1123 		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1124 			      display_wm, display->max_wm);
1125 		return false;
1126 	}
1127 
1128 	if (cursor_wm > cursor->max_wm) {
1129 		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1130 			      cursor_wm, cursor->max_wm);
1131 		return false;
1132 	}
1133 
1134 	if (!(display_wm || cursor_wm)) {
1135 		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1136 		return false;
1137 	}
1138 
1139 	return true;
1140 }
1141 
1142 static bool g4x_compute_srwm(struct drm_device *dev,
1143 			     int plane,
1144 			     int latency_ns,
1145 			     const struct intel_watermark_params *display,
1146 			     const struct intel_watermark_params *cursor,
1147 			     int *display_wm, int *cursor_wm)
1148 {
1149 	struct drm_crtc *crtc;
1150 	int hdisplay, htotal, pixel_size, clock;
1151 	unsigned long line_time_us;
1152 	int line_count, line_size;
1153 	int small, large;
1154 	int entries;
1155 
1156 	if (!latency_ns) {
1157 		*display_wm = *cursor_wm = 0;
1158 		return false;
1159 	}
1160 
1161 	crtc = intel_get_crtc_for_plane(dev, plane);
1162 	hdisplay = crtc->mode.hdisplay;
1163 	htotal = crtc->mode.htotal;
1164 	clock = crtc->mode.clock;
1165 	pixel_size = crtc->fb->bits_per_pixel / 8;
1166 
1167 	line_time_us = (htotal * 1000) / clock;
1168 	line_count = (latency_ns / line_time_us + 1000) / 1000;
1169 	line_size = hdisplay * pixel_size;
1170 
1171 	/* Use the minimum of the small and large buffer method for primary */
1172 	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1173 	large = line_count * line_size;
1174 
1175 	entries = howmany(min(small, large), display->cacheline_size);
1176 	*display_wm = entries + display->guard_size;
1177 
1178 	/* calculate the self-refresh watermark for display cursor */
1179 	entries = line_count * pixel_size * 64;
1180 	entries = howmany(entries, cursor->cacheline_size);
1181 	*cursor_wm = entries + cursor->guard_size;
1182 
1183 	return g4x_check_srwm(dev,
1184 			      *display_wm, *cursor_wm,
1185 			      display, cursor);
1186 }
1187 
1188 #define single_plane_enabled(mask) ((mask) != 0 && powerof2(mask))
1189 
1190 void g4x_update_wm(struct drm_device *dev)
1191 {
1192 	static const int sr_latency_ns = 12000;
1193 	struct drm_i915_private *dev_priv = dev->dev_private;
1194 	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1195 	int plane_sr, cursor_sr;
1196 	unsigned int enabled = 0;
1197 
1198 	if (g4x_compute_wm0(dev, 0,
1199 			    &g4x_wm_info, latency_ns,
1200 			    &g4x_cursor_wm_info, latency_ns,
1201 			    &planea_wm, &cursora_wm))
1202 		enabled |= 1;
1203 
1204 	if (g4x_compute_wm0(dev, 1,
1205 			    &g4x_wm_info, latency_ns,
1206 			    &g4x_cursor_wm_info, latency_ns,
1207 			    &planeb_wm, &cursorb_wm))
1208 		enabled |= 2;
1209 
1210 	plane_sr = cursor_sr = 0;
1211 	if (single_plane_enabled(enabled) &&
1212 	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1213 			     sr_latency_ns,
1214 			     &g4x_wm_info,
1215 			     &g4x_cursor_wm_info,
1216 			     &plane_sr, &cursor_sr))
1217 		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1218 	else
1219 		I915_WRITE(FW_BLC_SELF,
1220 			   I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1221 
1222 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1223 		      planea_wm, cursora_wm,
1224 		      planeb_wm, cursorb_wm,
1225 		      plane_sr, cursor_sr);
1226 
1227 	I915_WRITE(DSPFW1,
1228 		   (plane_sr << DSPFW_SR_SHIFT) |
1229 		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1230 		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1231 		   planea_wm);
1232 	I915_WRITE(DSPFW2,
1233 		   (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
1234 		   (cursora_wm << DSPFW_CURSORA_SHIFT));
1235 	/* HPLL off in SR has some issues on G4x... disable it */
1236 	I915_WRITE(DSPFW3,
1237 		   (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
1238 		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1239 }
1240 
1241 void i965_update_wm(struct drm_device *dev)
1242 {
1243 	struct drm_i915_private *dev_priv = dev->dev_private;
1244 	struct drm_crtc *crtc;
1245 	int srwm = 1;
1246 	int cursor_sr = 16;
1247 
1248 	/* Calc sr entries for one plane configs */
1249 	crtc = single_enabled_crtc(dev);
1250 	if (crtc) {
1251 		/* self-refresh has much higher latency */
1252 		static const int sr_latency_ns = 12000;
1253 		int clock = crtc->mode.clock;
1254 		int htotal = crtc->mode.htotal;
1255 		int hdisplay = crtc->mode.hdisplay;
1256 		int pixel_size = crtc->fb->bits_per_pixel / 8;
1257 		unsigned long line_time_us;
1258 		int entries;
1259 
1260 		line_time_us = ((htotal * 1000) / clock);
1261 
1262 		/* Use ns/us then divide to preserve precision */
1263 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1264 			pixel_size * hdisplay;
1265 		entries = howmany(entries, I915_FIFO_LINE_SIZE);
1266 		srwm = I965_FIFO_SIZE - entries;
1267 		if (srwm < 0)
1268 			srwm = 1;
1269 		srwm &= 0x1ff;
1270 		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1271 			      entries, srwm);
1272 
1273 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1274 			pixel_size * 64;
1275 		entries = howmany(entries, i965_cursor_wm_info.cacheline_size);
1276 		cursor_sr = i965_cursor_wm_info.fifo_size -
1277 			(entries + i965_cursor_wm_info.guard_size);
1278 
1279 		if (cursor_sr > i965_cursor_wm_info.max_wm)
1280 			cursor_sr = i965_cursor_wm_info.max_wm;
1281 
1282 		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1283 			      "cursor %d\n", srwm, cursor_sr);
1284 
1285 		if (IS_CRESTLINE(dev))
1286 			I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1287 	} else {
1288 		/* Turn off self refresh if both pipes are enabled */
1289 		if (IS_CRESTLINE(dev))
1290 			I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1291 				   & ~FW_BLC_SELF_EN);
1292 	}
1293 
1294 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1295 		      srwm);
1296 
1297 	/* 965 has limitations... */
1298 	I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1299 		   (8 << 16) | (8 << 8) | (8 << 0));
1300 	I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1301 	/* update cursor SR watermark */
1302 	I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1303 }
1304 
1305 void i9xx_update_wm(struct drm_device *dev)
1306 {
1307 	struct drm_i915_private *dev_priv = dev->dev_private;
1308 	const struct intel_watermark_params *wm_info;
1309 	uint32_t fwater_lo;
1310 	uint32_t fwater_hi;
1311 	int cwm, srwm = 1;
1312 	int fifo_size;
1313 	int planea_wm, planeb_wm;
1314 	struct drm_crtc *crtc, *enabled = NULL;
1315 
1316 	if (IS_I945GM(dev))
1317 		wm_info = &i945_wm_info;
1318 	else if (!IS_GEN2(dev))
1319 		wm_info = &i915_wm_info;
1320 	else
1321 		wm_info = &i855_wm_info;
1322 
1323 	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1324 	crtc = intel_get_crtc_for_plane(dev, 0);
1325 	if (crtc->enabled && crtc->fb) {
1326 		planea_wm = intel_calculate_wm(crtc->mode.clock,
1327 					       wm_info, fifo_size,
1328 					       crtc->fb->bits_per_pixel / 8,
1329 					       latency_ns);
1330 		enabled = crtc;
1331 	} else
1332 		planea_wm = fifo_size - wm_info->guard_size;
1333 
1334 	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1335 	crtc = intel_get_crtc_for_plane(dev, 1);
1336 	if (crtc->enabled && crtc->fb) {
1337 		planeb_wm = intel_calculate_wm(crtc->mode.clock,
1338 					       wm_info, fifo_size,
1339 					       crtc->fb->bits_per_pixel / 8,
1340 					       latency_ns);
1341 		if (enabled == NULL)
1342 			enabled = crtc;
1343 		else
1344 			enabled = NULL;
1345 	} else
1346 		planeb_wm = fifo_size - wm_info->guard_size;
1347 
1348 	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1349 
1350 	/*
1351 	 * Overlay gets an aggressive default since video jitter is bad.
1352 	 */
1353 	cwm = 2;
1354 
1355 	/* Play safe and disable self-refresh before adjusting watermarks. */
1356 	if (IS_I945G(dev) || IS_I945GM(dev))
1357 		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1358 	else if (IS_I915GM(dev))
1359 		I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1360 
1361 	/* Calc sr entries for one plane configs */
1362 	if (HAS_FW_BLC(dev) && enabled) {
1363 		/* self-refresh has much higher latency */
1364 		static const int sr_latency_ns = 6000;
1365 		int clock = enabled->mode.clock;
1366 		int htotal = enabled->mode.htotal;
1367 		int hdisplay = enabled->mode.hdisplay;
1368 		int pixel_size = enabled->fb->bits_per_pixel / 8;
1369 		unsigned long line_time_us;
1370 		int entries;
1371 
1372 		line_time_us = (htotal * 1000) / clock;
1373 
1374 		/* Use ns/us then divide to preserve precision */
1375 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1376 			pixel_size * hdisplay;
1377 		entries = howmany(entries, wm_info->cacheline_size);
1378 		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1379 		srwm = wm_info->fifo_size - entries;
1380 		if (srwm < 0)
1381 			srwm = 1;
1382 
1383 		if (IS_I945G(dev) || IS_I945GM(dev))
1384 			I915_WRITE(FW_BLC_SELF,
1385 				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1386 		else if (IS_I915GM(dev))
1387 			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1388 	}
1389 
1390 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1391 		      planea_wm, planeb_wm, cwm, srwm);
1392 
1393 	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1394 	fwater_hi = (cwm & 0x1f);
1395 
1396 	/* Set request length to 8 cachelines per fetch */
1397 	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1398 	fwater_hi = fwater_hi | (1 << 8);
1399 
1400 	I915_WRITE(FW_BLC, fwater_lo);
1401 	I915_WRITE(FW_BLC2, fwater_hi);
1402 
1403 	if (HAS_FW_BLC(dev)) {
1404 		if (enabled) {
1405 			if (IS_I945G(dev) || IS_I945GM(dev))
1406 				I915_WRITE(FW_BLC_SELF,
1407 					   FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1408 			else if (IS_I915GM(dev))
1409 				I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1410 			DRM_DEBUG_KMS("memory self refresh enabled\n");
1411 		} else
1412 			DRM_DEBUG_KMS("memory self refresh disabled\n");
1413 	}
1414 }
1415 
1416 void i830_update_wm(struct drm_device *dev)
1417 {
1418 	struct drm_i915_private *dev_priv = dev->dev_private;
1419 	struct drm_crtc *crtc;
1420 	uint32_t fwater_lo;
1421 	int planea_wm;
1422 
1423 	crtc = single_enabled_crtc(dev);
1424 	if (crtc == NULL)
1425 		return;
1426 
1427 	planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
1428 				       dev_priv->display.get_fifo_size(dev, 0),
1429 				       crtc->fb->bits_per_pixel / 8,
1430 				       latency_ns);
1431 	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1432 	fwater_lo |= (3<<8) | planea_wm;
1433 
1434 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1435 
1436 	I915_WRITE(FW_BLC, fwater_lo);
1437 }
1438 
1439 #define ILK_LP0_PLANE_LATENCY		700
1440 #define ILK_LP0_CURSOR_LATENCY		1300
1441 
1442 /*
1443  * Check the wm result.
1444  *
1445  * If any calculated watermark values is larger than the maximum value that
1446  * can be programmed into the associated watermark register, that watermark
1447  * must be disabled.
1448  */
1449 static bool ironlake_check_srwm(struct drm_device *dev, int level,
1450 				int fbc_wm, int display_wm, int cursor_wm,
1451 				const struct intel_watermark_params *display,
1452 				const struct intel_watermark_params *cursor)
1453 {
1454 	struct drm_i915_private *dev_priv = dev->dev_private;
1455 
1456 	DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1457 		      " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1458 
1459 	if (fbc_wm > SNB_FBC_MAX_SRWM) {
1460 		DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1461 			      fbc_wm, SNB_FBC_MAX_SRWM, level);
1462 
1463 		/* fbc has it's own way to disable FBC WM */
1464 		I915_WRITE(DISP_ARB_CTL,
1465 			   I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1466 		return false;
1467 	}
1468 
1469 	if (display_wm > display->max_wm) {
1470 		DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1471 			      display_wm, SNB_DISPLAY_MAX_SRWM, level);
1472 		return false;
1473 	}
1474 
1475 	if (cursor_wm > cursor->max_wm) {
1476 		DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1477 			      cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1478 		return false;
1479 	}
1480 
1481 	if (!(fbc_wm || display_wm || cursor_wm)) {
1482 		DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1483 		return false;
1484 	}
1485 
1486 	return true;
1487 }
1488 
1489 /*
1490  * Compute watermark values of WM[1-3],
1491  */
1492 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1493 				  int latency_ns,
1494 				  const struct intel_watermark_params *display,
1495 				  const struct intel_watermark_params *cursor,
1496 				  int *fbc_wm, int *display_wm, int *cursor_wm)
1497 {
1498 	struct drm_crtc *crtc;
1499 	unsigned long line_time_us;
1500 	int hdisplay, htotal, pixel_size, clock;
1501 	int line_count, line_size;
1502 	int small, large;
1503 	int entries;
1504 
1505 	if (!latency_ns) {
1506 		*fbc_wm = *display_wm = *cursor_wm = 0;
1507 		return false;
1508 	}
1509 
1510 	crtc = intel_get_crtc_for_plane(dev, plane);
1511 	hdisplay = crtc->mode.hdisplay;
1512 	htotal = crtc->mode.htotal;
1513 	clock = crtc->mode.clock;
1514 	pixel_size = crtc->fb->bits_per_pixel / 8;
1515 
1516 	line_time_us = (htotal * 1000) / clock;
1517 	line_count = (latency_ns / line_time_us + 1000) / 1000;
1518 	line_size = hdisplay * pixel_size;
1519 
1520 	/* Use the minimum of the small and large buffer method for primary */
1521 	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1522 	large = line_count * line_size;
1523 
1524 	entries = howmany(min(small, large), display->cacheline_size);
1525 	*display_wm = entries + display->guard_size;
1526 
1527 	/*
1528 	 * Spec says:
1529 	 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1530 	 */
1531 	*fbc_wm = howmany(*display_wm * 64, line_size) + 2;
1532 
1533 	/* calculate the self-refresh watermark for display cursor */
1534 	entries = line_count * pixel_size * 64;
1535 	entries = howmany(entries, cursor->cacheline_size);
1536 	*cursor_wm = entries + cursor->guard_size;
1537 
1538 	return ironlake_check_srwm(dev, level,
1539 				   *fbc_wm, *display_wm, *cursor_wm,
1540 				   display, cursor);
1541 }
1542 
1543 void ironlake_update_wm(struct drm_device *dev)
1544 {
1545 	struct drm_i915_private *dev_priv = dev->dev_private;
1546 	int fbc_wm, plane_wm, cursor_wm;
1547 	unsigned int enabled;
1548 
1549 	enabled = 0;
1550 	if (g4x_compute_wm0(dev, 0,
1551 			    &ironlake_display_wm_info,
1552 			    ILK_LP0_PLANE_LATENCY,
1553 			    &ironlake_cursor_wm_info,
1554 			    ILK_LP0_CURSOR_LATENCY,
1555 			    &plane_wm, &cursor_wm)) {
1556 		I915_WRITE(WM0_PIPEA_ILK,
1557 			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1558 		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1559 			      " plane %d, " "cursor: %d\n",
1560 			      plane_wm, cursor_wm);
1561 		enabled |= 1;
1562 	}
1563 
1564 	if (g4x_compute_wm0(dev, 1,
1565 			    &ironlake_display_wm_info,
1566 			    ILK_LP0_PLANE_LATENCY,
1567 			    &ironlake_cursor_wm_info,
1568 			    ILK_LP0_CURSOR_LATENCY,
1569 			    &plane_wm, &cursor_wm)) {
1570 		I915_WRITE(WM0_PIPEB_ILK,
1571 			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1572 		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1573 			      " plane %d, cursor: %d\n",
1574 			      plane_wm, cursor_wm);
1575 		enabled |= 2;
1576 	}
1577 
1578 	/*
1579 	 * Calculate and update the self-refresh watermark only when one
1580 	 * display plane is used.
1581 	 */
1582 	I915_WRITE(WM3_LP_ILK, 0);
1583 	I915_WRITE(WM2_LP_ILK, 0);
1584 	I915_WRITE(WM1_LP_ILK, 0);
1585 
1586 	if (!single_plane_enabled(enabled))
1587 		return;
1588 	enabled = ffs(enabled) - 1;
1589 
1590 	/* WM1 */
1591 	if (!ironlake_compute_srwm(dev, 1, enabled,
1592 				   ILK_READ_WM1_LATENCY() * 500,
1593 				   &ironlake_display_srwm_info,
1594 				   &ironlake_cursor_srwm_info,
1595 				   &fbc_wm, &plane_wm, &cursor_wm))
1596 		return;
1597 
1598 	I915_WRITE(WM1_LP_ILK,
1599 		   WM1_LP_SR_EN |
1600 		   (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1601 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1602 		   (plane_wm << WM1_LP_SR_SHIFT) |
1603 		   cursor_wm);
1604 
1605 	/* WM2 */
1606 	if (!ironlake_compute_srwm(dev, 2, enabled,
1607 				   ILK_READ_WM2_LATENCY() * 500,
1608 				   &ironlake_display_srwm_info,
1609 				   &ironlake_cursor_srwm_info,
1610 				   &fbc_wm, &plane_wm, &cursor_wm))
1611 		return;
1612 
1613 	I915_WRITE(WM2_LP_ILK,
1614 		   WM2_LP_EN |
1615 		   (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1616 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1617 		   (plane_wm << WM1_LP_SR_SHIFT) |
1618 		   cursor_wm);
1619 
1620 	/*
1621 	 * WM3 is unsupported on ILK, probably because we don't have latency
1622 	 * data for that power state
1623 	 */
1624 }
1625 
1626 void sandybridge_update_wm(struct drm_device *dev)
1627 {
1628 	struct drm_i915_private *dev_priv = dev->dev_private;
1629 	int latency = SNB_READ_WM0_LATENCY() * 100;	/* In unit 0.1us */
1630 	u32 val;
1631 	int fbc_wm, plane_wm, cursor_wm;
1632 	unsigned int enabled;
1633 
1634 	enabled = 0;
1635 	if (g4x_compute_wm0(dev, 0,
1636 			    &sandybridge_display_wm_info, latency,
1637 			    &sandybridge_cursor_wm_info, latency,
1638 			    &plane_wm, &cursor_wm)) {
1639 		val = I915_READ(WM0_PIPEA_ILK);
1640 		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1641 		I915_WRITE(WM0_PIPEA_ILK, val |
1642 			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1643 		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1644 			      " plane %d, " "cursor: %d\n",
1645 			      plane_wm, cursor_wm);
1646 		enabled |= 1;
1647 	}
1648 
1649 	if (g4x_compute_wm0(dev, 1,
1650 			    &sandybridge_display_wm_info, latency,
1651 			    &sandybridge_cursor_wm_info, latency,
1652 			    &plane_wm, &cursor_wm)) {
1653 		val = I915_READ(WM0_PIPEB_ILK);
1654 		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1655 		I915_WRITE(WM0_PIPEB_ILK, val |
1656 			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1657 		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1658 			      " plane %d, cursor: %d\n",
1659 			      plane_wm, cursor_wm);
1660 		enabled |= 2;
1661 	}
1662 
1663 	/* IVB has 3 pipes */
1664 	if (IS_IVYBRIDGE(dev) &&
1665 	    g4x_compute_wm0(dev, 2,
1666 			    &sandybridge_display_wm_info, latency,
1667 			    &sandybridge_cursor_wm_info, latency,
1668 			    &plane_wm, &cursor_wm)) {
1669 		val = I915_READ(WM0_PIPEC_IVB);
1670 		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1671 		I915_WRITE(WM0_PIPEC_IVB, val |
1672 			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1673 		DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
1674 			      " plane %d, cursor: %d\n",
1675 			      plane_wm, cursor_wm);
1676 		enabled |= 3;
1677 	}
1678 
1679 	/*
1680 	 * Calculate and update the self-refresh watermark only when one
1681 	 * display plane is used.
1682 	 *
1683 	 * SNB support 3 levels of watermark.
1684 	 *
1685 	 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1686 	 * and disabled in the descending order
1687 	 *
1688 	 */
1689 	I915_WRITE(WM3_LP_ILK, 0);
1690 	I915_WRITE(WM2_LP_ILK, 0);
1691 	I915_WRITE(WM1_LP_ILK, 0);
1692 
1693 	if (!single_plane_enabled(enabled) ||
1694 	    dev_priv->sprite_scaling_enabled)
1695 		return;
1696 	enabled = ffs(enabled) - 1;
1697 
1698 	/* WM1 */
1699 	if (!ironlake_compute_srwm(dev, 1, enabled,
1700 				   SNB_READ_WM1_LATENCY() * 500,
1701 				   &sandybridge_display_srwm_info,
1702 				   &sandybridge_cursor_srwm_info,
1703 				   &fbc_wm, &plane_wm, &cursor_wm))
1704 		return;
1705 
1706 	I915_WRITE(WM1_LP_ILK,
1707 		   WM1_LP_SR_EN |
1708 		   (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1709 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1710 		   (plane_wm << WM1_LP_SR_SHIFT) |
1711 		   cursor_wm);
1712 
1713 	/* WM2 */
1714 	if (!ironlake_compute_srwm(dev, 2, enabled,
1715 				   SNB_READ_WM2_LATENCY() * 500,
1716 				   &sandybridge_display_srwm_info,
1717 				   &sandybridge_cursor_srwm_info,
1718 				   &fbc_wm, &plane_wm, &cursor_wm))
1719 		return;
1720 
1721 	I915_WRITE(WM2_LP_ILK,
1722 		   WM2_LP_EN |
1723 		   (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1724 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1725 		   (plane_wm << WM1_LP_SR_SHIFT) |
1726 		   cursor_wm);
1727 
1728 	/* WM3 */
1729 	if (!ironlake_compute_srwm(dev, 3, enabled,
1730 				   SNB_READ_WM3_LATENCY() * 500,
1731 				   &sandybridge_display_srwm_info,
1732 				   &sandybridge_cursor_srwm_info,
1733 				   &fbc_wm, &plane_wm, &cursor_wm))
1734 		return;
1735 
1736 	I915_WRITE(WM3_LP_ILK,
1737 		   WM3_LP_EN |
1738 		   (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1739 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1740 		   (plane_wm << WM1_LP_SR_SHIFT) |
1741 		   cursor_wm);
1742 }
1743 
1744 static bool
1745 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
1746 			      uint32_t sprite_width, int pixel_size,
1747 			      const struct intel_watermark_params *display,
1748 			      int display_latency_ns, int *sprite_wm)
1749 {
1750 	struct drm_crtc *crtc;
1751 	int clock;
1752 	int entries, tlb_miss;
1753 
1754 	crtc = intel_get_crtc_for_plane(dev, plane);
1755 	if (crtc->fb == NULL || !crtc->enabled) {
1756 		*sprite_wm = display->guard_size;
1757 		return false;
1758 	}
1759 
1760 	clock = crtc->mode.clock;
1761 
1762 	/* Use the small buffer method to calculate the sprite watermark */
1763 	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1764 	tlb_miss = display->fifo_size*display->cacheline_size -
1765 		sprite_width * 8;
1766 	if (tlb_miss > 0)
1767 		entries += tlb_miss;
1768 	entries = howmany(entries, display->cacheline_size);
1769 	*sprite_wm = entries + display->guard_size;
1770 	if (*sprite_wm > (int)display->max_wm)
1771 		*sprite_wm = display->max_wm;
1772 
1773 	return true;
1774 }
1775 
1776 static bool
1777 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
1778 				uint32_t sprite_width, int pixel_size,
1779 				const struct intel_watermark_params *display,
1780 				int latency_ns, int *sprite_wm)
1781 {
1782 	struct drm_crtc *crtc;
1783 	unsigned long line_time_us;
1784 	int clock;
1785 	int line_count, line_size;
1786 	int small, large;
1787 	int entries;
1788 
1789 	if (!latency_ns) {
1790 		*sprite_wm = 0;
1791 		return false;
1792 	}
1793 
1794 	crtc = intel_get_crtc_for_plane(dev, plane);
1795 	clock = crtc->mode.clock;
1796 	if (!clock) {
1797 		*sprite_wm = 0;
1798 		return false;
1799 	}
1800 
1801 	line_time_us = (sprite_width * 1000) / clock;
1802 	if (!line_time_us) {
1803 		*sprite_wm = 0;
1804 		return false;
1805 	}
1806 
1807 	line_count = (latency_ns / line_time_us + 1000) / 1000;
1808 	line_size = sprite_width * pixel_size;
1809 
1810 	/* Use the minimum of the small and large buffer method for primary */
1811 	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1812 	large = line_count * line_size;
1813 
1814 	entries = howmany(min(small, large), display->cacheline_size);
1815 	*sprite_wm = entries + display->guard_size;
1816 
1817 	return *sprite_wm > 0x3ff ? false : true;
1818 }
1819 
1820 void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
1821 					 uint32_t sprite_width, int pixel_size)
1822 {
1823 	struct drm_i915_private *dev_priv = dev->dev_private;
1824 	int latency = SNB_READ_WM0_LATENCY() * 100;	/* In unit 0.1us */
1825 	u32 val;
1826 	int sprite_wm, reg;
1827 	int ret;
1828 
1829 	switch (pipe) {
1830 	case 0:
1831 		reg = WM0_PIPEA_ILK;
1832 		break;
1833 	case 1:
1834 		reg = WM0_PIPEB_ILK;
1835 		break;
1836 	case 2:
1837 		reg = WM0_PIPEC_IVB;
1838 		break;
1839 	default:
1840 		return; /* bad pipe */
1841 	}
1842 
1843 	ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
1844 					    &sandybridge_display_wm_info,
1845 					    latency, &sprite_wm);
1846 	if (!ret) {
1847 		DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
1848 			      pipe);
1849 		return;
1850 	}
1851 
1852 	val = I915_READ(reg);
1853 	val &= ~WM0_PIPE_SPRITE_MASK;
1854 	I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
1855 	DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
1856 
1857 
1858 	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
1859 					      pixel_size,
1860 					      &sandybridge_display_srwm_info,
1861 					      SNB_READ_WM1_LATENCY() * 500,
1862 					      &sprite_wm);
1863 	if (!ret) {
1864 		DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
1865 			      pipe);
1866 		return;
1867 	}
1868 	I915_WRITE(WM1S_LP_ILK, sprite_wm);
1869 
1870 	/* Only IVB has two more LP watermarks for sprite */
1871 	if (!IS_IVYBRIDGE(dev))
1872 		return;
1873 
1874 	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
1875 					      pixel_size,
1876 					      &sandybridge_display_srwm_info,
1877 					      SNB_READ_WM2_LATENCY() * 500,
1878 					      &sprite_wm);
1879 	if (!ret) {
1880 		DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
1881 			      pipe);
1882 		return;
1883 	}
1884 	I915_WRITE(WM2S_LP_IVB, sprite_wm);
1885 
1886 	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
1887 					      pixel_size,
1888 					      &sandybridge_display_srwm_info,
1889 					      SNB_READ_WM3_LATENCY() * 500,
1890 					      &sprite_wm);
1891 	if (!ret) {
1892 		DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
1893 			      pipe);
1894 		return;
1895 	}
1896 	I915_WRITE(WM3S_LP_IVB, sprite_wm);
1897 }
1898 
1899 /**
1900  * intel_update_watermarks - update FIFO watermark values based on current modes
1901  *
1902  * Calculate watermark values for the various WM regs based on current mode
1903  * and plane configuration.
1904  *
1905  * There are several cases to deal with here:
1906  *   - normal (i.e. non-self-refresh)
1907  *   - self-refresh (SR) mode
1908  *   - lines are large relative to FIFO size (buffer can hold up to 2)
1909  *   - lines are small relative to FIFO size (buffer can hold more than 2
1910  *     lines), so need to account for TLB latency
1911  *
1912  *   The normal calculation is:
1913  *     watermark = dotclock * bytes per pixel * latency
1914  *   where latency is platform & configuration dependent (we assume pessimal
1915  *   values here).
1916  *
1917  *   The SR calculation is:
1918  *     watermark = (trunc(latency/line time)+1) * surface width *
1919  *       bytes per pixel
1920  *   where
1921  *     line time = htotal / dotclock
1922  *     surface width = hdisplay for normal plane and 64 for cursor
1923  *   and latency is assumed to be high, as above.
1924  *
1925  * The final value programmed to the register should always be rounded up,
1926  * and include an extra 2 entries to account for clock crossings.
1927  *
1928  * We don't use the sprite, so we can ignore that.  And on Crestline we have
1929  * to set the non-SR watermarks to 8.
1930  */
1931 void intel_update_watermarks(struct drm_device *dev)
1932 {
1933 	struct drm_i915_private *dev_priv = dev->dev_private;
1934 
1935 	if (dev_priv->display.update_wm)
1936 		dev_priv->display.update_wm(dev);
1937 }
1938 
1939 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
1940 				    uint32_t sprite_width, int pixel_size)
1941 {
1942 	struct drm_i915_private *dev_priv = dev->dev_private;
1943 
1944 	if (dev_priv->display.update_sprite_wm)
1945 		dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
1946 						   pixel_size);
1947 }
1948 
1949 static struct drm_i915_gem_object *
1950 intel_alloc_context_page(struct drm_device *dev)
1951 {
1952 	struct drm_i915_gem_object *ctx;
1953 	int ret;
1954 
1955 	DRM_LOCK_ASSERT(dev);
1956 
1957 	ctx = i915_gem_alloc_object(dev, 4096);
1958 	if (!ctx) {
1959 		DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
1960 		return NULL;
1961 	}
1962 
1963 	ret = i915_gem_object_pin(ctx, 4096, true);
1964 	if (ret) {
1965 		DRM_ERROR("failed to pin power context: %d\n", ret);
1966 		goto err_unref;
1967 	}
1968 
1969 	ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
1970 	if (ret) {
1971 		DRM_ERROR("failed to set-domain on power context: %d\n", ret);
1972 		goto err_unpin;
1973 	}
1974 
1975 	return ctx;
1976 
1977 err_unpin:
1978 	i915_gem_object_unpin(ctx);
1979 err_unref:
1980 	drm_gem_object_unreference(&ctx->base);
1981 	DRM_UNLOCK(dev);
1982 	return NULL;
1983 }
1984 
1985 /**
1986  * Lock protecting IPS related data structures
1987  */
1988 struct lock mchdev_lock;
1989 LOCK_SYSINIT(mchdev, &mchdev_lock, "mchdev", LK_CANRECURSE);
1990 
1991 /* Global for IPS driver to get at the current i915 device. Protected by
1992  * mchdev_lock. */
1993 struct drm_i915_private *i915_mch_dev;
1994 
1995 bool ironlake_set_drps(struct drm_device *dev, u8 val)
1996 {
1997 	struct drm_i915_private *dev_priv = dev->dev_private;
1998 	u16 rgvswctl;
1999 
2000 	rgvswctl = I915_READ16(MEMSWCTL);
2001 	if (rgvswctl & MEMCTL_CMD_STS) {
2002 		DRM_DEBUG("gpu busy, RCS change rejected\n");
2003 		return false; /* still busy with another command */
2004 	}
2005 
2006 	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2007 		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2008 	I915_WRITE16(MEMSWCTL, rgvswctl);
2009 	POSTING_READ16(MEMSWCTL);
2010 
2011 	rgvswctl |= MEMCTL_CMD_STS;
2012 	I915_WRITE16(MEMSWCTL, rgvswctl);
2013 
2014 	return true;
2015 }
2016 
2017 void ironlake_enable_drps(struct drm_device *dev)
2018 {
2019 	struct drm_i915_private *dev_priv = dev->dev_private;
2020 	u32 rgvmodectl = I915_READ(MEMMODECTL);
2021 	u8 fmax, fmin, fstart, vstart;
2022 
2023 	/* Enable temp reporting */
2024 	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2025 	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2026 
2027 	/* 100ms RC evaluation intervals */
2028 	I915_WRITE(RCUPEI, 100000);
2029 	I915_WRITE(RCDNEI, 100000);
2030 
2031 	/* Set max/min thresholds to 90ms and 80ms respectively */
2032 	I915_WRITE(RCBMAXAVG, 90000);
2033 	I915_WRITE(RCBMINAVG, 80000);
2034 
2035 	I915_WRITE(MEMIHYST, 1);
2036 
2037 	/* Set up min, max, and cur for interrupt handling */
2038 	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2039 	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2040 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2041 		MEMMODE_FSTART_SHIFT;
2042 
2043 	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2044 		PXVFREQ_PX_SHIFT;
2045 
2046 	dev_priv->fmax = fmax; /* IPS callback will increase this */
2047 	dev_priv->fstart = fstart;
2048 
2049 	dev_priv->rps.max_delay = fstart;
2050 	dev_priv->rps.min_delay = fmin;
2051 	dev_priv->rps.cur_delay = fstart;
2052 
2053 	DRM_DEBUG("fmax: %d, fmin: %d, fstart: %d\n",
2054 			 fmax, fmin, fstart);
2055 
2056 	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2057 
2058 	/*
2059 	 * Interrupts will be enabled in ironlake_irq_postinstall
2060 	 */
2061 
2062 	I915_WRITE(VIDSTART, vstart);
2063 	POSTING_READ(VIDSTART);
2064 
2065 	rgvmodectl |= MEMMODE_SWMODE_EN;
2066 	I915_WRITE(MEMMODECTL, rgvmodectl);
2067 
2068 	if (_intel_wait_for(dev,
2069 	    (I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10,
2070 	    1, "915per"))
2071 		DRM_ERROR("stuck trying to change perf mode\n");
2072 	DELAY(1000);
2073 
2074 	ironlake_set_drps(dev, fstart);
2075 
2076 	dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2077 		I915_READ(0x112e0);
2078 	dev_priv->last_time1 = jiffies_to_msecs(jiffies);
2079 	dev_priv->last_count2 = I915_READ(0x112f4);
2080 	nanotime(&dev_priv->last_time2);
2081 }
2082 
2083 void ironlake_disable_drps(struct drm_device *dev)
2084 {
2085 	struct drm_i915_private *dev_priv = dev->dev_private;
2086 	u16 rgvswctl = I915_READ16(MEMSWCTL);
2087 
2088 	/* Ack interrupts, disable EFC interrupt */
2089 	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2090 	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2091 	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2092 	I915_WRITE(DEIIR, DE_PCU_EVENT);
2093 	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2094 
2095 	/* Go back to the starting frequency */
2096 	ironlake_set_drps(dev, dev_priv->fstart);
2097 	DELAY(1000);
2098 	rgvswctl |= MEMCTL_CMD_STS;
2099 	I915_WRITE(MEMSWCTL, rgvswctl);
2100 	DELAY(1000);
2101 
2102 }
2103 
2104 void gen6_set_rps(struct drm_device *dev, u8 val)
2105 {
2106 	struct drm_i915_private *dev_priv = dev->dev_private;
2107 	u32 swreq;
2108 
2109 	swreq = (val & 0x3ff) << 25;
2110 	I915_WRITE(GEN6_RPNSWREQ, swreq);
2111 }
2112 
2113 void gen6_disable_rps(struct drm_device *dev)
2114 {
2115 	struct drm_i915_private *dev_priv = dev->dev_private;
2116 
2117 	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
2118 	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
2119 	I915_WRITE(GEN6_PMIER, 0);
2120 	/* Complete PM interrupt masking here doesn't race with the rps work
2121 	 * item again unmasking PM interrupts because that is using a different
2122 	 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
2123 	 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
2124 
2125 	spin_lock(&dev_priv->rps.lock);
2126 	dev_priv->rps.pm_iir = 0;
2127 	spin_unlock(&dev_priv->rps.lock);
2128 
2129 	I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2130 }
2131 
2132 static unsigned long intel_pxfreq(u32 vidfreq)
2133 {
2134 	unsigned long freq;
2135 	int div = (vidfreq & 0x3f0000) >> 16;
2136 	int post = (vidfreq & 0x3000) >> 12;
2137 	int pre = (vidfreq & 0x7);
2138 
2139 	if (!pre)
2140 		return 0;
2141 
2142 	freq = ((div * 133333) / ((1<<post) * pre));
2143 
2144 	return freq;
2145 }
2146 
2147 static const struct cparams {
2148 	u16 i;
2149 	u16 t;
2150 	u16 m;
2151 	u16 c;
2152 } cparams[] = {
2153 	{ 1, 1333, 301, 28664 },
2154 	{ 1, 1066, 294, 24460 },
2155 	{ 1, 800, 294, 25192 },
2156 	{ 0, 1333, 276, 27605 },
2157 	{ 0, 1066, 276, 27605 },
2158 	{ 0, 800, 231, 23784 },
2159 };
2160 
2161 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
2162 {
2163 	u64 total_count, diff, ret;
2164 	u32 count1, count2, count3, m = 0, c = 0;
2165 	unsigned long now = jiffies_to_msecs(jiffies), diff1;
2166 	int i;
2167 
2168 	diff1 = now - dev_priv->last_time1;
2169 	/*
2170 	 * sysctl(8) reads the value of sysctl twice in rapid
2171 	 * succession.  There is high chance that it happens in the
2172 	 * same timer tick.  Use the cached value to not divide by
2173 	 * zero and give the hw a chance to gather more samples.
2174 	 */
2175 	if (diff1 <= 10)
2176 		return (dev_priv->chipset_power);
2177 
2178 	count1 = I915_READ(DMIEC);
2179 	count2 = I915_READ(DDREC);
2180 	count3 = I915_READ(CSIEC);
2181 
2182 	total_count = count1 + count2 + count3;
2183 
2184 	/* FIXME: handle per-counter overflow */
2185 	if (total_count < dev_priv->last_count1) {
2186 		diff = ~0UL - dev_priv->last_count1;
2187 		diff += total_count;
2188 	} else {
2189 		diff = total_count - dev_priv->last_count1;
2190 	}
2191 
2192 	for (i = 0; i < DRM_ARRAY_SIZE(cparams); i++) {
2193 		if (cparams[i].i == dev_priv->c_m &&
2194 		    cparams[i].t == dev_priv->r_t) {
2195 			m = cparams[i].m;
2196 			c = cparams[i].c;
2197 			break;
2198 		}
2199 	}
2200 
2201 	diff = diff / diff1;
2202 	ret = ((m * diff) + c);
2203 	ret = ret / 10;
2204 
2205 	dev_priv->last_count1 = total_count;
2206 	dev_priv->last_time1 = now;
2207 
2208 	dev_priv->chipset_power = ret;
2209 	return (ret);
2210 }
2211 
2212 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
2213 {
2214 	unsigned long m, x, b;
2215 	u32 tsfs;
2216 
2217 	tsfs = I915_READ(TSFS);
2218 
2219 	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
2220 	x = I915_READ8(TR1);
2221 
2222 	b = tsfs & TSFS_INTR_MASK;
2223 
2224 	return ((m * x) / 127) - b;
2225 }
2226 
2227 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
2228 {
2229 	static const struct v_table {
2230 		u16 vd; /* in .1 mil */
2231 		u16 vm; /* in .1 mil */
2232 	} v_table[] = {
2233 		{ 0, 0, },
2234 		{ 375, 0, },
2235 		{ 500, 0, },
2236 		{ 625, 0, },
2237 		{ 750, 0, },
2238 		{ 875, 0, },
2239 		{ 1000, 0, },
2240 		{ 1125, 0, },
2241 		{ 4125, 3000, },
2242 		{ 4125, 3000, },
2243 		{ 4125, 3000, },
2244 		{ 4125, 3000, },
2245 		{ 4125, 3000, },
2246 		{ 4125, 3000, },
2247 		{ 4125, 3000, },
2248 		{ 4125, 3000, },
2249 		{ 4125, 3000, },
2250 		{ 4125, 3000, },
2251 		{ 4125, 3000, },
2252 		{ 4125, 3000, },
2253 		{ 4125, 3000, },
2254 		{ 4125, 3000, },
2255 		{ 4125, 3000, },
2256 		{ 4125, 3000, },
2257 		{ 4125, 3000, },
2258 		{ 4125, 3000, },
2259 		{ 4125, 3000, },
2260 		{ 4125, 3000, },
2261 		{ 4125, 3000, },
2262 		{ 4125, 3000, },
2263 		{ 4125, 3000, },
2264 		{ 4125, 3000, },
2265 		{ 4250, 3125, },
2266 		{ 4375, 3250, },
2267 		{ 4500, 3375, },
2268 		{ 4625, 3500, },
2269 		{ 4750, 3625, },
2270 		{ 4875, 3750, },
2271 		{ 5000, 3875, },
2272 		{ 5125, 4000, },
2273 		{ 5250, 4125, },
2274 		{ 5375, 4250, },
2275 		{ 5500, 4375, },
2276 		{ 5625, 4500, },
2277 		{ 5750, 4625, },
2278 		{ 5875, 4750, },
2279 		{ 6000, 4875, },
2280 		{ 6125, 5000, },
2281 		{ 6250, 5125, },
2282 		{ 6375, 5250, },
2283 		{ 6500, 5375, },
2284 		{ 6625, 5500, },
2285 		{ 6750, 5625, },
2286 		{ 6875, 5750, },
2287 		{ 7000, 5875, },
2288 		{ 7125, 6000, },
2289 		{ 7250, 6125, },
2290 		{ 7375, 6250, },
2291 		{ 7500, 6375, },
2292 		{ 7625, 6500, },
2293 		{ 7750, 6625, },
2294 		{ 7875, 6750, },
2295 		{ 8000, 6875, },
2296 		{ 8125, 7000, },
2297 		{ 8250, 7125, },
2298 		{ 8375, 7250, },
2299 		{ 8500, 7375, },
2300 		{ 8625, 7500, },
2301 		{ 8750, 7625, },
2302 		{ 8875, 7750, },
2303 		{ 9000, 7875, },
2304 		{ 9125, 8000, },
2305 		{ 9250, 8125, },
2306 		{ 9375, 8250, },
2307 		{ 9500, 8375, },
2308 		{ 9625, 8500, },
2309 		{ 9750, 8625, },
2310 		{ 9875, 8750, },
2311 		{ 10000, 8875, },
2312 		{ 10125, 9000, },
2313 		{ 10250, 9125, },
2314 		{ 10375, 9250, },
2315 		{ 10500, 9375, },
2316 		{ 10625, 9500, },
2317 		{ 10750, 9625, },
2318 		{ 10875, 9750, },
2319 		{ 11000, 9875, },
2320 		{ 11125, 10000, },
2321 		{ 11250, 10125, },
2322 		{ 11375, 10250, },
2323 		{ 11500, 10375, },
2324 		{ 11625, 10500, },
2325 		{ 11750, 10625, },
2326 		{ 11875, 10750, },
2327 		{ 12000, 10875, },
2328 		{ 12125, 11000, },
2329 		{ 12250, 11125, },
2330 		{ 12375, 11250, },
2331 		{ 12500, 11375, },
2332 		{ 12625, 11500, },
2333 		{ 12750, 11625, },
2334 		{ 12875, 11750, },
2335 		{ 13000, 11875, },
2336 		{ 13125, 12000, },
2337 		{ 13250, 12125, },
2338 		{ 13375, 12250, },
2339 		{ 13500, 12375, },
2340 		{ 13625, 12500, },
2341 		{ 13750, 12625, },
2342 		{ 13875, 12750, },
2343 		{ 14000, 12875, },
2344 		{ 14125, 13000, },
2345 		{ 14250, 13125, },
2346 		{ 14375, 13250, },
2347 		{ 14500, 13375, },
2348 		{ 14625, 13500, },
2349 		{ 14750, 13625, },
2350 		{ 14875, 13750, },
2351 		{ 15000, 13875, },
2352 		{ 15125, 14000, },
2353 		{ 15250, 14125, },
2354 		{ 15375, 14250, },
2355 		{ 15500, 14375, },
2356 		{ 15625, 14500, },
2357 		{ 15750, 14625, },
2358 		{ 15875, 14750, },
2359 		{ 16000, 14875, },
2360 		{ 16125, 15000, },
2361 	};
2362 	if (dev_priv->info->is_mobile)
2363 		return v_table[pxvid].vm;
2364 	else
2365 		return v_table[pxvid].vd;
2366 }
2367 
2368 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
2369 {
2370 	struct timespec now, diff1;
2371 	u64 diff;
2372 	unsigned long diffms;
2373 	u32 count;
2374 
2375 	if (dev_priv->info->gen != 5)
2376 		return;
2377 
2378 	nanotime(&now);
2379 	diff1 = now;
2380 	timespecsub(&diff1, &dev_priv->last_time2);
2381 
2382 	/* Don't divide by 0 */
2383 	diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
2384 	if (!diffms)
2385 		return;
2386 
2387 	count = I915_READ(GFXEC);
2388 
2389 	if (count < dev_priv->last_count2) {
2390 		diff = ~0UL - dev_priv->last_count2;
2391 		diff += count;
2392 	} else {
2393 		diff = count - dev_priv->last_count2;
2394 	}
2395 
2396 	dev_priv->last_count2 = count;
2397 	dev_priv->last_time2 = now;
2398 
2399 	/* More magic constants... */
2400 	diff = diff * 1181;
2401 	diff = diff / (diffms * 10);
2402 	dev_priv->gfx_power = diff;
2403 }
2404 
2405 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
2406 {
2407 	unsigned long t, corr, state1, corr2, state2;
2408 	u32 pxvid, ext_v;
2409 
2410 	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
2411 	pxvid = (pxvid >> 24) & 0x7f;
2412 	ext_v = pvid_to_extvid(dev_priv, pxvid);
2413 
2414 	state1 = ext_v;
2415 
2416 	t = i915_mch_val(dev_priv);
2417 
2418 	/* Revel in the empirically derived constants */
2419 
2420 	/* Correction factor in 1/100000 units */
2421 	if (t > 80)
2422 		corr = ((t * 2349) + 135940);
2423 	else if (t >= 50)
2424 		corr = ((t * 964) + 29317);
2425 	else /* < 50 */
2426 		corr = ((t * 301) + 1004);
2427 
2428 	corr = corr * ((150142 * state1) / 10000 - 78642);
2429 	corr /= 100000;
2430 	corr2 = (corr * dev_priv->corr);
2431 
2432 	state2 = (corr2 * state1) / 10000;
2433 	state2 /= 100; /* convert to mW */
2434 
2435 	i915_update_gfx_val(dev_priv);
2436 
2437 	return dev_priv->gfx_power + state2;
2438 }
2439 
2440 /**
2441  * i915_read_mch_val - return value for IPS use
2442  *
2443  * Calculate and return a value for the IPS driver to use when deciding whether
2444  * we have thermal and power headroom to increase CPU or GPU power budget.
2445  */
2446 unsigned long i915_read_mch_val(void)
2447 {
2448 	struct drm_i915_private *dev_priv;
2449 	unsigned long chipset_val, graphics_val, ret = 0;
2450 
2451 	lockmgr(&mchdev_lock, LK_EXCLUSIVE);
2452 	if (!i915_mch_dev)
2453 		goto out_unlock;
2454 	dev_priv = i915_mch_dev;
2455 
2456 	chipset_val = i915_chipset_val(dev_priv);
2457 	graphics_val = i915_gfx_val(dev_priv);
2458 
2459 	ret = chipset_val + graphics_val;
2460 
2461 out_unlock:
2462 	lockmgr(&mchdev_lock, LK_RELEASE);
2463 
2464 	return ret;
2465 }
2466 
2467 /**
2468  * i915_gpu_raise - raise GPU frequency limit
2469  *
2470  * Raise the limit; IPS indicates we have thermal headroom.
2471  */
2472 bool i915_gpu_raise(void)
2473 {
2474 	struct drm_i915_private *dev_priv;
2475 	bool ret = true;
2476 
2477 	lockmgr(&mchdev_lock, LK_EXCLUSIVE);
2478 	if (!i915_mch_dev) {
2479 		ret = false;
2480 		goto out_unlock;
2481 	}
2482 	dev_priv = i915_mch_dev;
2483 
2484 	if (dev_priv->rps.max_delay > dev_priv->fmax)
2485 		dev_priv->rps.max_delay--;
2486 
2487 out_unlock:
2488 	lockmgr(&mchdev_lock, LK_RELEASE);
2489 
2490 	return ret;
2491 }
2492 
2493 /**
2494  * i915_gpu_lower - lower GPU frequency limit
2495  *
2496  * IPS indicates we're close to a thermal limit, so throttle back the GPU
2497  * frequency maximum.
2498  */
2499 bool i915_gpu_lower(void)
2500 {
2501 	struct drm_i915_private *dev_priv;
2502 	bool ret = true;
2503 
2504 	lockmgr(&mchdev_lock, LK_EXCLUSIVE);
2505 	if (!i915_mch_dev) {
2506 		ret = false;
2507 		goto out_unlock;
2508 	}
2509 	dev_priv = i915_mch_dev;
2510 
2511 	if (dev_priv->rps.max_delay < dev_priv->rps.min_delay)
2512 		dev_priv->rps.max_delay++;
2513 
2514 out_unlock:
2515 	lockmgr(&mchdev_lock, LK_RELEASE);
2516 
2517 	return ret;
2518 }
2519 
2520 /**
2521  * i915_gpu_busy - indicate GPU business to IPS
2522  *
2523  * Tell the IPS driver whether or not the GPU is busy.
2524  */
2525 bool i915_gpu_busy(void)
2526 {
2527 	struct drm_i915_private *dev_priv;
2528 	bool ret = false;
2529 
2530 	lockmgr(&mchdev_lock, LK_EXCLUSIVE);
2531 	if (!i915_mch_dev)
2532 		goto out_unlock;
2533 	dev_priv = i915_mch_dev;
2534 
2535 	ret = dev_priv->busy;
2536 
2537 out_unlock:
2538 	lockmgr(&mchdev_lock, LK_RELEASE);
2539 
2540 	return ret;
2541 }
2542 
2543 /**
2544  * i915_gpu_turbo_disable - disable graphics turbo
2545  *
2546  * Disable graphics turbo by resetting the max frequency and setting the
2547  * current frequency to the default.
2548  */
2549 bool i915_gpu_turbo_disable(void)
2550 {
2551 	struct drm_i915_private *dev_priv;
2552 	bool ret = true;
2553 
2554 	lockmgr(&mchdev_lock, LK_EXCLUSIVE);
2555 	if (!i915_mch_dev) {
2556 		ret = false;
2557 		goto out_unlock;
2558 	}
2559 	dev_priv = i915_mch_dev;
2560 
2561 	dev_priv->rps.max_delay = dev_priv->fstart;
2562 
2563 	if (!ironlake_set_drps(dev_priv->dev, dev_priv->fstart))
2564 		ret = false;
2565 
2566 out_unlock:
2567 	lockmgr(&mchdev_lock, LK_RELEASE);
2568 
2569 	return ret;
2570 }
2571 
2572 void intel_init_emon(struct drm_device *dev)
2573 {
2574 	struct drm_i915_private *dev_priv = dev->dev_private;
2575 	u32 lcfuse;
2576 	u8 pxw[16];
2577 	int i;
2578 
2579 	/* Disable to program */
2580 	I915_WRITE(ECR, 0);
2581 	POSTING_READ(ECR);
2582 
2583 	/* Program energy weights for various events */
2584 	I915_WRITE(SDEW, 0x15040d00);
2585 	I915_WRITE(CSIEW0, 0x007f0000);
2586 	I915_WRITE(CSIEW1, 0x1e220004);
2587 	I915_WRITE(CSIEW2, 0x04000004);
2588 
2589 	for (i = 0; i < 5; i++)
2590 		I915_WRITE(PEW + (i * 4), 0);
2591 	for (i = 0; i < 3; i++)
2592 		I915_WRITE(DEW + (i * 4), 0);
2593 
2594 	/* Program P-state weights to account for frequency power adjustment */
2595 	for (i = 0; i < 16; i++) {
2596 		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
2597 		unsigned long freq = intel_pxfreq(pxvidfreq);
2598 		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
2599 			PXVFREQ_PX_SHIFT;
2600 		unsigned long val;
2601 
2602 		val = vid * vid;
2603 		val *= (freq / 1000);
2604 		val *= 255;
2605 		val /= (127*127*900);
2606 		if (val > 0xff)
2607 			DRM_ERROR("bad pxval: %ld\n", val);
2608 		pxw[i] = val;
2609 	}
2610 	/* Render standby states get 0 weight */
2611 	pxw[14] = 0;
2612 	pxw[15] = 0;
2613 
2614 	for (i = 0; i < 4; i++) {
2615 		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
2616 			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
2617 		I915_WRITE(PXW + (i * 4), val);
2618 	}
2619 
2620 	/* Adjust magic regs to magic values (more experimental results) */
2621 	I915_WRITE(OGW0, 0);
2622 	I915_WRITE(OGW1, 0);
2623 	I915_WRITE(EG0, 0x00007f00);
2624 	I915_WRITE(EG1, 0x0000000e);
2625 	I915_WRITE(EG2, 0x000e0000);
2626 	I915_WRITE(EG3, 0x68000300);
2627 	I915_WRITE(EG4, 0x42000000);
2628 	I915_WRITE(EG5, 0x00140031);
2629 	I915_WRITE(EG6, 0);
2630 	I915_WRITE(EG7, 0);
2631 
2632 	for (i = 0; i < 8; i++)
2633 		I915_WRITE(PXWL + (i * 4), 0);
2634 
2635 	/* Enable PMON + select events */
2636 	I915_WRITE(ECR, 0x80000019);
2637 
2638 	lcfuse = I915_READ(LCFUSE02);
2639 
2640 	dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
2641 }
2642 
2643 void intel_disable_gt_powersave(struct drm_device *dev)
2644 {
2645 	struct drm_i915_private *dev_priv = dev->dev_private;
2646 
2647 	if (IS_IRONLAKE_M(dev)) {
2648 		ironlake_disable_drps(dev);
2649 		ironlake_disable_rc6(dev);
2650 	} else if (INTEL_INFO(dev)->gen >= 6 && !IS_VALLEYVIEW(dev)) {
2651 		cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
2652 		lockmgr(&dev_priv->rps.hw_lock, LK_EXCLUSIVE);
2653 		gen6_disable_rps(dev);
2654 		lockmgr(&dev_priv->rps.hw_lock, LK_RELEASE);
2655 	}
2656 }
2657 
2658 static int intel_enable_rc6(struct drm_device *dev)
2659 {
2660 	/*
2661 	 * Respect the kernel parameter if it is set
2662 	 */
2663 	if (i915_enable_rc6 >= 0)
2664 		return i915_enable_rc6;
2665 
2666 	/*
2667 	 * Disable RC6 on Ironlake
2668 	 */
2669 	if (INTEL_INFO(dev)->gen == 5)
2670 		return 0;
2671 
2672 	/*
2673 	 * Enable rc6 on Sandybridge if DMA remapping is disabled
2674 	 */
2675 	if (INTEL_INFO(dev)->gen == 6) {
2676 		DRM_DEBUG_DRIVER(
2677 		    "Sandybridge: intel_iommu_enabled %s -- RC6 %sabled\n",
2678 		     intel_iommu_enabled ? "true" : "false",
2679 		     !intel_iommu_enabled ? "en" : "dis");
2680 		return (intel_iommu_enabled ? 0 : INTEL_RC6_ENABLE);
2681 	}
2682 	DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
2683 	return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
2684 }
2685 
2686 void gen6_enable_rps(struct drm_i915_private *dev_priv)
2687 {
2688 	u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
2689 	u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
2690 	u32 pcu_mbox, rc6_mask = 0;
2691 	u32 gtfifodbg;
2692 	int cur_freq, min_freq, max_freq;
2693 	int rc6_mode;
2694 	int i;
2695 
2696 	/* Here begins a magic sequence of register writes to enable
2697 	 * auto-downclocking.
2698 	 *
2699 	 * Perhaps there might be some value in exposing these to
2700 	 * userspace...
2701 	 */
2702 	I915_WRITE(GEN6_RC_STATE, 0);
2703 
2704 	/* Clear the DBG now so we don't confuse earlier errors */
2705 	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
2706 		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
2707 		I915_WRITE(GTFIFODBG, gtfifodbg);
2708 	}
2709 
2710 	gen6_gt_force_wake_get(dev_priv);
2711 
2712 	/* disable the counters and set deterministic thresholds */
2713 	I915_WRITE(GEN6_RC_CONTROL, 0);
2714 
2715 	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
2716 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
2717 	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
2718 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
2719 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
2720 
2721 	for (i = 0; i < I915_NUM_RINGS; i++)
2722 		I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
2723 
2724 	I915_WRITE(GEN6_RC_SLEEP, 0);
2725 	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
2726 	I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
2727 	I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
2728 	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
2729 
2730 	rc6_mode = intel_enable_rc6(dev_priv->dev);
2731 	if (rc6_mode & INTEL_RC6_ENABLE)
2732 		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
2733 
2734 	if (rc6_mode & INTEL_RC6p_ENABLE)
2735 		rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
2736 
2737 	if (rc6_mode & INTEL_RC6pp_ENABLE)
2738 		rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
2739 
2740 	DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
2741 			(rc6_mode & INTEL_RC6_ENABLE) ? "on" : "off",
2742 			(rc6_mode & INTEL_RC6p_ENABLE) ? "on" : "off",
2743 			(rc6_mode & INTEL_RC6pp_ENABLE) ? "on" : "off");
2744 
2745 	I915_WRITE(GEN6_RC_CONTROL,
2746 		   rc6_mask |
2747 		   GEN6_RC_CTL_EI_MODE(1) |
2748 		   GEN6_RC_CTL_HW_ENABLE);
2749 
2750 	I915_WRITE(GEN6_RPNSWREQ,
2751 		   GEN6_FREQUENCY(10) |
2752 		   GEN6_OFFSET(0) |
2753 		   GEN6_AGGRESSIVE_TURBO);
2754 	I915_WRITE(GEN6_RC_VIDEO_FREQ,
2755 		   GEN6_FREQUENCY(12));
2756 
2757 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
2758 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
2759 		   18 << 24 |
2760 		   6 << 16);
2761 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
2762 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
2763 	I915_WRITE(GEN6_RP_UP_EI, 100000);
2764 	I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
2765 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
2766 	I915_WRITE(GEN6_RP_CONTROL,
2767 		   GEN6_RP_MEDIA_TURBO |
2768 		   GEN6_RP_MEDIA_HW_MODE |
2769 		   GEN6_RP_MEDIA_IS_GFX |
2770 		   GEN6_RP_ENABLE |
2771 		   GEN6_RP_UP_BUSY_AVG |
2772 		   GEN6_RP_DOWN_IDLE_CONT);
2773 
2774 	if (_intel_wait_for(dev,
2775 	    (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0, 500,
2776 	    1, "915pr1"))
2777 		DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
2778 
2779 	I915_WRITE(GEN6_PCODE_DATA, 0);
2780 	I915_WRITE(GEN6_PCODE_MAILBOX,
2781 		   GEN6_PCODE_READY |
2782 		   GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
2783 	if (_intel_wait_for(dev,
2784 	    (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0, 500,
2785 	    1, "915pr2"))
2786 		DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
2787 
2788 	min_freq = (rp_state_cap & 0xff0000) >> 16;
2789 	max_freq = rp_state_cap & 0xff;
2790 	cur_freq = (gt_perf_status & 0xff00) >> 8;
2791 
2792 	/* Check for overclock support */
2793 	if (_intel_wait_for(dev,
2794 	    (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0, 500,
2795 	    1, "915pr3"))
2796 		DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
2797 	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
2798 	pcu_mbox = I915_READ(GEN6_PCODE_DATA);
2799 	if (_intel_wait_for(dev,
2800 	    (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0, 500,
2801 	    1, "915pr4"))
2802 		DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
2803 	if (pcu_mbox & (1<<31)) { /* OC supported */
2804 		max_freq = pcu_mbox & 0xff;
2805 		DRM_DEBUG("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
2806 	}
2807 
2808 	/* In units of 100MHz */
2809 	dev_priv->rps.max_delay = max_freq;
2810 	dev_priv->rps.min_delay = min_freq;
2811 	dev_priv->rps.cur_delay = cur_freq;
2812 
2813 	/* requires MSI enabled */
2814 	I915_WRITE(GEN6_PMIER,
2815 		   GEN6_PM_MBOX_EVENT |
2816 		   GEN6_PM_THERMAL_EVENT |
2817 		   GEN6_PM_RP_DOWN_TIMEOUT |
2818 		   GEN6_PM_RP_UP_THRESHOLD |
2819 		   GEN6_PM_RP_DOWN_THRESHOLD |
2820 		   GEN6_PM_RP_UP_EI_EXPIRED |
2821 		   GEN6_PM_RP_DOWN_EI_EXPIRED);
2822 	spin_lock(&dev_priv->rps.lock);
2823 	WARN_ON(dev_priv->rps.pm_iir != 0);
2824 	I915_WRITE(GEN6_PMIMR, 0);
2825 	spin_unlock(&dev_priv->rps.lock);
2826 	/* enable all PM interrupts */
2827 	I915_WRITE(GEN6_PMINTRMSK, 0);
2828 
2829 	gen6_gt_force_wake_put(dev_priv);
2830 }
2831 
2832 void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
2833 {
2834 	struct drm_device *dev;
2835 	int min_freq = 15;
2836 	int gpu_freq, ia_freq, max_ia_freq;
2837 	int scaling_factor = 180;
2838 	uint64_t tsc_freq;
2839 
2840 	dev = dev_priv->dev;
2841 #if 0
2842 	max_ia_freq = cpufreq_quick_get_max(0);
2843 	/*
2844 	 * Default to measured freq if none found, PCU will ensure we don't go
2845 	 * over
2846 	 */
2847 	if (!max_ia_freq)
2848 		max_ia_freq = tsc_freq;
2849 
2850 	/* Convert from Hz to MHz */
2851 	max_ia_freq /= 1000;
2852 #else
2853 	tsc_freq = atomic_load_acq_64(&tsc_freq);
2854 	max_ia_freq = tsc_freq / 1000 / 1000;
2855 #endif
2856 
2857 	DRM_LOCK(dev);
2858 
2859 	/*
2860 	 * For each potential GPU frequency, load a ring frequency we'd like
2861 	 * to use for memory access.  We do this by specifying the IA frequency
2862 	 * the PCU should use as a reference to determine the ring frequency.
2863 	 */
2864 	for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
2865 	     gpu_freq--) {
2866 		int diff = dev_priv->rps.max_delay - gpu_freq;
2867 		int d;
2868 
2869 		/*
2870 		 * For GPU frequencies less than 750MHz, just use the lowest
2871 		 * ring freq.
2872 		 */
2873 		if (gpu_freq < min_freq)
2874 			ia_freq = 800;
2875 		else
2876 			ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
2877 		d = 100;
2878 		ia_freq = (ia_freq + d / 2) / d;
2879 
2880 		I915_WRITE(GEN6_PCODE_DATA,
2881 			   (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
2882 			   gpu_freq);
2883 		I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
2884 			   GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
2885 		if (_intel_wait_for(dev,
2886 		    (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
2887 		    10, 1, "915frq")) {
2888 			DRM_ERROR("pcode write of freq table timed out\n");
2889 			continue;
2890 		}
2891 	}
2892 
2893 	DRM_UNLOCK(dev);
2894 }
2895 
2896 void ironlake_init_clock_gating(struct drm_device *dev)
2897 {
2898 	struct drm_i915_private *dev_priv = dev->dev_private;
2899 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
2900 
2901 	/* Required for FBC */
2902 	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
2903 		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
2904 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
2905 
2906 	I915_WRITE(PCH_3DCGDIS0,
2907 		   MARIUNIT_CLOCK_GATE_DISABLE |
2908 		   SVSMUNIT_CLOCK_GATE_DISABLE);
2909 	I915_WRITE(PCH_3DCGDIS1,
2910 		   VFMUNIT_CLOCK_GATE_DISABLE);
2911 
2912 	/*
2913 	 * According to the spec the following bits should be set in
2914 	 * order to enable memory self-refresh
2915 	 * The bit 22/21 of 0x42004
2916 	 * The bit 5 of 0x42020
2917 	 * The bit 15 of 0x45000
2918 	 */
2919 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
2920 		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
2921 		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
2922 	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
2923 	I915_WRITE(DISP_ARB_CTL,
2924 		   (I915_READ(DISP_ARB_CTL) |
2925 		    DISP_FBC_WM_DIS));
2926 	I915_WRITE(WM3_LP_ILK, 0);
2927 	I915_WRITE(WM2_LP_ILK, 0);
2928 	I915_WRITE(WM1_LP_ILK, 0);
2929 
2930 	/*
2931 	 * Based on the document from hardware guys the following bits
2932 	 * should be set unconditionally in order to enable FBC.
2933 	 * The bit 22 of 0x42000
2934 	 * The bit 22 of 0x42004
2935 	 * The bit 7,8,9 of 0x42020.
2936 	 */
2937 	if (IS_IRONLAKE_M(dev)) {
2938 		I915_WRITE(ILK_DISPLAY_CHICKEN1,
2939 			   I915_READ(ILK_DISPLAY_CHICKEN1) |
2940 			   ILK_FBCQ_DIS);
2941 		I915_WRITE(ILK_DISPLAY_CHICKEN2,
2942 			   I915_READ(ILK_DISPLAY_CHICKEN2) |
2943 			   ILK_DPARB_GATE);
2944 	}
2945 
2946 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
2947 
2948 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
2949 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
2950 		   ILK_ELPIN_409_SELECT);
2951 	I915_WRITE(_3D_CHICKEN2,
2952 		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
2953 		   _3D_CHICKEN2_WM_READ_PIPELINED);
2954 
2955 	/* WaDisableRenderCachePipelinedFlush */
2956 	I915_WRITE(CACHE_MODE_0,
2957 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
2958 
2959 	ibx_init_clock_gating(dev);
2960 }
2961 
2962 void cpt_init_clock_gating(struct drm_device *dev)
2963 {
2964 	struct drm_i915_private *dev_priv = dev->dev_private;
2965 	int pipe;
2966 
2967 	/*
2968 	 * On Ibex Peak and Cougar Point, we need to disable clock
2969 	 * gating for the panel power sequencer or it will fail to
2970 	 * start up when no ports are active.
2971 	 */
2972 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
2973 	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
2974 		   DPLS_EDP_PPS_FIX_DIS);
2975 	/* The below fixes the weird display corruption, a few pixels shifted
2976 	 * downward, on (only) LVDS of some HP laptops with IVY.
2977 	 */
2978 	for_each_pipe(pipe)
2979 		I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_CHICKEN2_TIMING_OVERRIDE);
2980 	/* WADP0ClockGatingDisable */
2981 	for_each_pipe(pipe) {
2982 		I915_WRITE(TRANS_CHICKEN1(pipe),
2983 			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
2984 	}
2985 }
2986 
2987 void gen6_init_clock_gating(struct drm_device *dev)
2988 {
2989 	struct drm_i915_private *dev_priv = dev->dev_private;
2990 	int pipe;
2991 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
2992 
2993 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
2994 
2995 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
2996 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
2997 		   ILK_ELPIN_409_SELECT);
2998 
2999 	/* WaDisableHiZPlanesWhenMSAAEnabled */
3000 	I915_WRITE(_3D_CHICKEN,
3001 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
3002 
3003 	/* WaSetupGtModeTdRowDispatch */
3004 	if (IS_SNB_GT1(dev))
3005 		I915_WRITE(GEN6_GT_MODE,
3006 			   _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
3007 
3008 	I915_WRITE(WM3_LP_ILK, 0);
3009 	I915_WRITE(WM2_LP_ILK, 0);
3010 	I915_WRITE(WM1_LP_ILK, 0);
3011 
3012 	I915_WRITE(CACHE_MODE_0,
3013 		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
3014 
3015 	I915_WRITE(GEN6_UCGCTL1,
3016 		   I915_READ(GEN6_UCGCTL1) |
3017 		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
3018 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
3019 
3020 	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3021 	 * gating disable must be set.  Failure to set it results in
3022 	 * flickering pixels due to Z write ordering failures after
3023 	 * some amount of runtime in the Mesa "fire" demo, and Unigine
3024 	 * Sanctuary and Tropics, and apparently anything else with
3025 	 * alpha test or pixel discard.
3026 	 *
3027 	 * According to the spec, bit 11 (RCCUNIT) must also be set,
3028 	 * but we didn't debug actual testcases to find it out.
3029 	 *
3030 	 * Also apply WaDisableVDSUnitClockGating and
3031 	 * WaDisableRCPBUnitClockGating.
3032 	 */
3033 	I915_WRITE(GEN6_UCGCTL2,
3034 		   GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
3035 		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3036 		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3037 
3038 	/* Bspec says we need to always set all mask bits. */
3039 	I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
3040 		   _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
3041 
3042 	/*
3043 	 * According to the spec the following bits should be
3044 	 * set in order to enable memory self-refresh and fbc:
3045 	 * The bit21 and bit22 of 0x42000
3046 	 * The bit21 and bit22 of 0x42004
3047 	 * The bit5 and bit7 of 0x42020
3048 	 * The bit14 of 0x70180
3049 	 * The bit14 of 0x71180
3050 	 */
3051 	I915_WRITE(ILK_DISPLAY_CHICKEN1,
3052 		   I915_READ(ILK_DISPLAY_CHICKEN1) |
3053 		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
3054 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
3055 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
3056 		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
3057 	I915_WRITE(ILK_DSPCLK_GATE_D,
3058 		   I915_READ(ILK_DSPCLK_GATE_D) |
3059 		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
3060 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
3061 
3062 	/* WaMbcDriverBootEnable */
3063 	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3064 		   GEN6_MBCTL_ENABLE_BOOT_FETCH);
3065 
3066 	for_each_pipe(pipe) {
3067 		I915_WRITE(DSPCNTR(pipe),
3068 			   I915_READ(DSPCNTR(pipe)) |
3069 			   DISPPLANE_TRICKLE_FEED_DISABLE);
3070 		intel_flush_display_plane(dev_priv, pipe);
3071 	}
3072 
3073 	/* The default value should be 0x200 according to docs, but the two
3074 	 * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
3075 	I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
3076 	I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
3077 
3078 	cpt_init_clock_gating(dev);
3079 }
3080 
3081 void ivybridge_init_clock_gating(struct drm_device *dev)
3082 {
3083 	struct drm_i915_private *dev_priv = dev->dev_private;
3084 	int pipe;
3085 	uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
3086 
3087 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3088 
3089 	I915_WRITE(WM3_LP_ILK, 0);
3090 	I915_WRITE(WM2_LP_ILK, 0);
3091 	I915_WRITE(WM1_LP_ILK, 0);
3092 
3093 	/* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3094 	 * This implements the WaDisableRCZUnitClockGating workaround.
3095 	 */
3096 	I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
3097 
3098 	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
3099 
3100 	I915_WRITE(IVB_CHICKEN3,
3101 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3102 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
3103 
3104 	/* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3105 	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3106 		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3107 
3108 	/* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3109 	I915_WRITE(GEN7_L3CNTLREG1,
3110 			GEN7_WA_FOR_GEN7_L3_CONTROL);
3111 	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3112 			GEN7_WA_L3_CHICKEN_MODE);
3113 
3114 	/* This is required by WaCatErrorRejectionIssue */
3115 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3116 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3117 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3118 
3119 	for_each_pipe(pipe) {
3120 		I915_WRITE(DSPCNTR(pipe),
3121 			   I915_READ(DSPCNTR(pipe)) |
3122 			   DISPPLANE_TRICKLE_FEED_DISABLE);
3123 		intel_flush_display_plane(dev_priv, pipe);
3124 	}
3125 }
3126 
3127 void g4x_init_clock_gating(struct drm_device *dev)
3128 {
3129 	struct drm_i915_private *dev_priv = dev->dev_private;
3130 	uint32_t dspclk_gate;
3131 
3132 	I915_WRITE(RENCLK_GATE_D1, 0);
3133 	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
3134 		   GS_UNIT_CLOCK_GATE_DISABLE |
3135 		   CL_UNIT_CLOCK_GATE_DISABLE);
3136 	I915_WRITE(RAMCLK_GATE_D, 0);
3137 	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
3138 		OVRUNIT_CLOCK_GATE_DISABLE |
3139 		OVCUNIT_CLOCK_GATE_DISABLE;
3140 	if (IS_GM45(dev))
3141 		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
3142 	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
3143 }
3144 
3145 void crestline_init_clock_gating(struct drm_device *dev)
3146 {
3147 	struct drm_i915_private *dev_priv = dev->dev_private;
3148 
3149 	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
3150 	I915_WRITE(RENCLK_GATE_D2, 0);
3151 	I915_WRITE(DSPCLK_GATE_D, 0);
3152 	I915_WRITE(RAMCLK_GATE_D, 0);
3153 	I915_WRITE16(DEUC, 0);
3154 }
3155 
3156 void broadwater_init_clock_gating(struct drm_device *dev)
3157 {
3158 	struct drm_i915_private *dev_priv = dev->dev_private;
3159 
3160 	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
3161 		   I965_RCC_CLOCK_GATE_DISABLE |
3162 		   I965_RCPB_CLOCK_GATE_DISABLE |
3163 		   I965_ISC_CLOCK_GATE_DISABLE |
3164 		   I965_FBC_CLOCK_GATE_DISABLE);
3165 	I915_WRITE(RENCLK_GATE_D2, 0);
3166 }
3167 
3168 void gen3_init_clock_gating(struct drm_device *dev)
3169 {
3170 	struct drm_i915_private *dev_priv = dev->dev_private;
3171 	u32 dstate = I915_READ(D_STATE);
3172 
3173 	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
3174 		DSTATE_DOT_CLOCK_GATING;
3175 	I915_WRITE(D_STATE, dstate);
3176 }
3177 
3178 void i85x_init_clock_gating(struct drm_device *dev)
3179 {
3180 	struct drm_i915_private *dev_priv = dev->dev_private;
3181 
3182 	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
3183 }
3184 
3185 void i830_init_clock_gating(struct drm_device *dev)
3186 {
3187 	struct drm_i915_private *dev_priv = dev->dev_private;
3188 
3189 	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
3190 }
3191 
3192 void ibx_init_clock_gating(struct drm_device *dev)
3193 {
3194 	struct drm_i915_private *dev_priv = dev->dev_private;
3195 
3196 	/*
3197 	 * On Ibex Peak and Cougar Point, we need to disable clock
3198 	 * gating for the panel power sequencer or it will fail to
3199 	 * start up when no ports are active.
3200 	 */
3201 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3202 }
3203 
3204 static void ironlake_teardown_rc6(struct drm_device *dev)
3205 {
3206 	struct drm_i915_private *dev_priv = dev->dev_private;
3207 
3208 	if (dev_priv->renderctx) {
3209 		i915_gem_object_unpin(dev_priv->renderctx);
3210 		drm_gem_object_unreference(&dev_priv->renderctx->base);
3211 		dev_priv->renderctx = NULL;
3212 	}
3213 
3214 	if (dev_priv->pwrctx) {
3215 		i915_gem_object_unpin(dev_priv->pwrctx);
3216 		drm_gem_object_unreference(&dev_priv->pwrctx->base);
3217 		dev_priv->pwrctx = NULL;
3218 	}
3219 }
3220 
3221 void ironlake_disable_rc6(struct drm_device *dev)
3222 {
3223 	struct drm_i915_private *dev_priv = dev->dev_private;
3224 
3225 	if (I915_READ(PWRCTXA)) {
3226 		/* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
3227 		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
3228 		(void)_intel_wait_for(dev,
3229 		    ((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
3230 		    50, 1, "915pro");
3231 
3232 		I915_WRITE(PWRCTXA, 0);
3233 		POSTING_READ(PWRCTXA);
3234 
3235 		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3236 		POSTING_READ(RSTDBYCTL);
3237 	}
3238 
3239 	ironlake_teardown_rc6(dev);
3240 }
3241 
3242 static int ironlake_setup_rc6(struct drm_device *dev)
3243 {
3244 	struct drm_i915_private *dev_priv = dev->dev_private;
3245 
3246 	if (dev_priv->renderctx == NULL)
3247 		dev_priv->renderctx = intel_alloc_context_page(dev);
3248 	if (!dev_priv->renderctx)
3249 		return -ENOMEM;
3250 
3251 	if (dev_priv->pwrctx == NULL)
3252 		dev_priv->pwrctx = intel_alloc_context_page(dev);
3253 	if (!dev_priv->pwrctx) {
3254 		ironlake_teardown_rc6(dev);
3255 		return -ENOMEM;
3256 	}
3257 
3258 	return 0;
3259 }
3260 
3261 void ironlake_enable_rc6(struct drm_device *dev)
3262 {
3263 	struct drm_i915_private *dev_priv = dev->dev_private;
3264 	int ret;
3265 
3266 	/* rc6 disabled by default due to repeated reports of hanging during
3267 	 * boot and resume.
3268 	 */
3269 	if (!intel_enable_rc6(dev))
3270 		return;
3271 
3272 	DRM_LOCK(dev);
3273 	ret = ironlake_setup_rc6(dev);
3274 	if (ret) {
3275 		DRM_UNLOCK(dev);
3276 		return;
3277 	}
3278 
3279 	/*
3280 	 * GPU can automatically power down the render unit if given a page
3281 	 * to save state.
3282 	 */
3283 	ret = BEGIN_LP_RING(6);
3284 	if (ret) {
3285 		ironlake_teardown_rc6(dev);
3286 		DRM_UNLOCK(dev);
3287 		return;
3288 	}
3289 
3290 	OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
3291 	OUT_RING(MI_SET_CONTEXT);
3292 	OUT_RING(dev_priv->renderctx->gtt_offset |
3293 		 MI_MM_SPACE_GTT |
3294 		 MI_SAVE_EXT_STATE_EN |
3295 		 MI_RESTORE_EXT_STATE_EN |
3296 		 MI_RESTORE_INHIBIT);
3297 	OUT_RING(MI_SUSPEND_FLUSH);
3298 	OUT_RING(MI_NOOP);
3299 	OUT_RING(MI_FLUSH);
3300 	ADVANCE_LP_RING();
3301 
3302 	/*
3303 	 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
3304 	 * does an implicit flush, combined with MI_FLUSH above, it should be
3305 	 * safe to assume that renderctx is valid
3306 	 */
3307 	ret = intel_wait_ring_idle(LP_RING(dev_priv));
3308 	if (ret) {
3309 		DRM_ERROR("failed to enable ironlake power savings\n");
3310 		ironlake_teardown_rc6(dev);
3311 		DRM_UNLOCK(dev);
3312 		return;
3313 	}
3314 
3315 	I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
3316 	I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3317 	DRM_UNLOCK(dev);
3318 }
3319 
3320 void intel_init_clock_gating(struct drm_device *dev)
3321 {
3322 	struct drm_i915_private *dev_priv = dev->dev_private;
3323 
3324 	dev_priv->display.init_clock_gating(dev);
3325 
3326 	if (dev_priv->display.init_pch_clock_gating)
3327 		dev_priv->display.init_pch_clock_gating(dev);
3328 }
3329 
3330 static void __gen6_gt_wait_for_thread_c0(struct drm_i915_private *dev_priv)
3331 {
3332 	u32 gt_thread_status_mask;
3333 
3334 	if (IS_HASWELL(dev_priv->dev))
3335 		gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK_HSW;
3336 	else
3337 		gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK;
3338 
3339 	/* w/a for a sporadic read returning 0 by waiting for the GT
3340 	 * thread to wake up.
3341 	 */
3342 	if (wait_for_atomic_us((I915_READ_NOTRACE(GEN6_GT_THREAD_STATUS_REG) & gt_thread_status_mask) == 0, 500))
3343 		DRM_ERROR("GT thread status wait timed out\n");
3344 }
3345 
3346 static void __gen6_gt_force_wake_reset(struct drm_i915_private *dev_priv)
3347 {
3348 	I915_WRITE_NOTRACE(FORCEWAKE, 0);
3349 	POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
3350 }
3351 
3352 static void __gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
3353 {
3354 	u32 forcewake_ack;
3355 
3356 	if (IS_HASWELL(dev_priv->dev))
3357 		forcewake_ack = FORCEWAKE_ACK_HSW;
3358 	else
3359 		forcewake_ack = FORCEWAKE_ACK;
3360 
3361 	if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1) == 0,
3362 			    FORCEWAKE_ACK_TIMEOUT_MS))
3363 		DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
3364 
3365 	I915_WRITE_NOTRACE(FORCEWAKE, FORCEWAKE_KERNEL);
3366 	POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
3367 
3368 	if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1),
3369 			    FORCEWAKE_ACK_TIMEOUT_MS))
3370 		DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
3371 
3372 	__gen6_gt_wait_for_thread_c0(dev_priv);
3373 }
3374 
3375 static void __gen6_gt_force_wake_mt_reset(struct drm_i915_private *dev_priv)
3376 {
3377 	I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(0xffff));
3378 	/* something from same cacheline, but !FORCEWAKE_MT */
3379 	POSTING_READ(ECOBUS);
3380 }
3381 
3382 static void __gen6_gt_force_wake_mt_get(struct drm_i915_private *dev_priv)
3383 {
3384 	int count;
3385 
3386 	count = 0;
3387 	while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_MT_ACK) & 1))
3388 		DELAY(10);
3389 
3390 	I915_WRITE_NOTRACE(FORCEWAKE_MT, (1<<16) | 1);
3391 	POSTING_READ(FORCEWAKE_MT);
3392 
3393 	count = 0;
3394 	while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_MT_ACK) & 1) == 0)
3395 		DELAY(10);
3396 }
3397 
3398 /*
3399  * Generally this is called implicitly by the register read function. However,
3400  * if some sequence requires the GT to not power down then this function should
3401  * be called at the beginning of the sequence followed by a call to
3402  * gen6_gt_force_wake_put() at the end of the sequence.
3403  */
3404 void gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
3405 {
3406 
3407 	lockmgr(&dev_priv->gt_lock, LK_EXCLUSIVE);
3408 	if (dev_priv->forcewake_count++ == 0)
3409 		dev_priv->gt.force_wake_get(dev_priv);
3410 	lockmgr(&dev_priv->gt_lock, LK_RELEASE);
3411 }
3412 
3413 void gen6_gt_check_fifodbg(struct drm_i915_private *dev_priv)
3414 {
3415 	u32 gtfifodbg;
3416 	gtfifodbg = I915_READ_NOTRACE(GTFIFODBG);
3417 	if (WARN(gtfifodbg & GT_FIFO_CPU_ERROR_MASK,
3418 	     "MMIO read or write has been dropped %x\n", gtfifodbg))
3419 		I915_WRITE_NOTRACE(GTFIFODBG, GT_FIFO_CPU_ERROR_MASK);
3420 }
3421 
3422 static void __gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
3423 {
3424 	I915_WRITE_NOTRACE(FORCEWAKE, 0);
3425 	/* something from same cacheline, but !FORCEWAKE */
3426 	POSTING_READ(ECOBUS);
3427 	gen6_gt_check_fifodbg(dev_priv);
3428 }
3429 
3430 static void __gen6_gt_force_wake_mt_put(struct drm_i915_private *dev_priv)
3431 {
3432 	I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
3433 	/* something from same cacheline, but !FORCEWAKE_MT */
3434 	POSTING_READ(ECOBUS);
3435 	gen6_gt_check_fifodbg(dev_priv);
3436 }
3437 
3438 /*
3439  * see gen6_gt_force_wake_get()
3440  */
3441 void gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
3442 {
3443 	lockmgr(&dev_priv->gt_lock, LK_EXCLUSIVE);
3444 	if (--dev_priv->forcewake_count == 0)
3445 		dev_priv->gt.force_wake_put(dev_priv);
3446 	lockmgr(&dev_priv->gt_lock, LK_RELEASE);
3447 }
3448 
3449 int __gen6_gt_wait_for_fifo(struct drm_i915_private *dev_priv)
3450 {
3451 	int ret = 0;
3452 
3453 	if (dev_priv->gt_fifo_count < GT_FIFO_NUM_RESERVED_ENTRIES) {
3454 		int loop = 500;
3455 		u32 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
3456 		while (fifo <= GT_FIFO_NUM_RESERVED_ENTRIES && loop--) {
3457 			udelay(10);
3458 			fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
3459 		}
3460 		if (loop < 0 && fifo <= GT_FIFO_NUM_RESERVED_ENTRIES) {
3461 			kprintf("%s loop\n", __func__);
3462 			++ret;
3463 		}
3464 		dev_priv->gt_fifo_count = fifo;
3465 	}
3466 	dev_priv->gt_fifo_count--;
3467 
3468 	return ret;
3469 }
3470 
3471 static void vlv_force_wake_reset(struct drm_i915_private *dev_priv)
3472 {
3473 	I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(0xffff));
3474 	/* something from same cacheline, but !FORCEWAKE_VLV */
3475 	POSTING_READ(FORCEWAKE_ACK_VLV);
3476 }
3477 
3478 static void vlv_force_wake_get(struct drm_i915_private *dev_priv)
3479 {
3480 	if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & 1) == 0,
3481 			    FORCEWAKE_ACK_TIMEOUT_MS))
3482 		DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
3483 
3484 	I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
3485 
3486 	if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & 1),
3487 			    FORCEWAKE_ACK_TIMEOUT_MS))
3488 		DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
3489 
3490 	__gen6_gt_wait_for_thread_c0(dev_priv);
3491 }
3492 
3493 static void vlv_force_wake_put(struct drm_i915_private *dev_priv)
3494 {
3495 	I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
3496 	/* something from same cacheline, but !FORCEWAKE_VLV */
3497 	POSTING_READ(FORCEWAKE_ACK_VLV);
3498 	gen6_gt_check_fifodbg(dev_priv);
3499 }
3500 
3501 void intel_gt_reset(struct drm_device *dev)
3502 {
3503 	struct drm_i915_private *dev_priv = dev->dev_private;
3504 
3505 	if (IS_VALLEYVIEW(dev)) {
3506 		vlv_force_wake_reset(dev_priv);
3507 	} else if (INTEL_INFO(dev)->gen >= 6) {
3508 		__gen6_gt_force_wake_reset(dev_priv);
3509 		if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3510 			__gen6_gt_force_wake_mt_reset(dev_priv);
3511 	}
3512 }
3513 
3514 void intel_gt_init(struct drm_device *dev)
3515 {
3516 	struct drm_i915_private *dev_priv = dev->dev_private;
3517 
3518 	lockinit(&dev_priv->gt_lock, "915gt", 0, LK_CANRECURSE);
3519 
3520 	intel_gt_reset(dev);
3521 
3522 	if (IS_VALLEYVIEW(dev)) {
3523 		dev_priv->gt.force_wake_get = vlv_force_wake_get;
3524 		dev_priv->gt.force_wake_put = vlv_force_wake_put;
3525 	} else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
3526 		dev_priv->gt.force_wake_get = __gen6_gt_force_wake_mt_get;
3527 		dev_priv->gt.force_wake_put = __gen6_gt_force_wake_mt_put;
3528 	} else if (IS_GEN6(dev)) {
3529 		dev_priv->gt.force_wake_get = __gen6_gt_force_wake_get;
3530 		dev_priv->gt.force_wake_put = __gen6_gt_force_wake_put;
3531 	}
3532 #if 0
3533 	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
3534 			  intel_gen6_powersave_work);
3535 #endif
3536 }
3537