xref: /dflybsd-src/sys/dev/drm/i915/intel_pm.c (revision 56f51086aa3f6f77915d41cf7d311585f0086a49)
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27 
28 #include "i915_drv.h"
29 #include "intel_drv.h"
30 #include <linux/module.h>
31 #include <machine/clock.h>
32 
33 /**
34  * DOC: RC6
35  *
36  * RC6 is a special power stage which allows the GPU to enter an very
37  * low-voltage mode when idle, using down to 0V while at this stage.  This
38  * stage is entered automatically when the GPU is idle when RC6 support is
39  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
40  *
41  * There are different RC6 modes available in Intel GPU, which differentiate
42  * among each other with the latency required to enter and leave RC6 and
43  * voltage consumed by the GPU in different states.
44  *
45  * The combination of the following flags define which states GPU is allowed
46  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
47  * RC6pp is deepest RC6. Their support by hardware varies according to the
48  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
49  * which brings the most power savings; deeper states save more power, but
50  * require higher latency to switch to and wake up.
51  */
52 #define INTEL_RC6_ENABLE			(1<<0)
53 #define INTEL_RC6p_ENABLE			(1<<1)
54 #define INTEL_RC6pp_ENABLE			(1<<2)
55 
56 static void bxt_init_clock_gating(struct drm_device *dev)
57 {
58 	struct drm_i915_private *dev_priv = dev->dev_private;
59 
60 	/* WaDisableSDEUnitClockGating:bxt */
61 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
62 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
63 
64 	/*
65 	 * FIXME:
66 	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
67 	 */
68 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
69 		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
70 
71 	/*
72 	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
73 	 * to stay fully on.
74 	 */
75 	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
76 		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
77 			   PWM1_GATING_DIS | PWM2_GATING_DIS);
78 }
79 
80 static void i915_pineview_get_mem_freq(struct drm_device *dev)
81 {
82 	struct drm_i915_private *dev_priv = dev->dev_private;
83 	u32 tmp;
84 
85 	tmp = I915_READ(CLKCFG);
86 
87 	switch (tmp & CLKCFG_FSB_MASK) {
88 	case CLKCFG_FSB_533:
89 		dev_priv->fsb_freq = 533; /* 133*4 */
90 		break;
91 	case CLKCFG_FSB_800:
92 		dev_priv->fsb_freq = 800; /* 200*4 */
93 		break;
94 	case CLKCFG_FSB_667:
95 		dev_priv->fsb_freq =  667; /* 167*4 */
96 		break;
97 	case CLKCFG_FSB_400:
98 		dev_priv->fsb_freq = 400; /* 100*4 */
99 		break;
100 	}
101 
102 	switch (tmp & CLKCFG_MEM_MASK) {
103 	case CLKCFG_MEM_533:
104 		dev_priv->mem_freq = 533;
105 		break;
106 	case CLKCFG_MEM_667:
107 		dev_priv->mem_freq = 667;
108 		break;
109 	case CLKCFG_MEM_800:
110 		dev_priv->mem_freq = 800;
111 		break;
112 	}
113 
114 	/* detect pineview DDR3 setting */
115 	tmp = I915_READ(CSHRDDR3CTL);
116 	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
117 }
118 
119 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
120 {
121 	struct drm_i915_private *dev_priv = dev->dev_private;
122 	u16 ddrpll, csipll;
123 
124 	ddrpll = I915_READ16(DDRMPLL1);
125 	csipll = I915_READ16(CSIPLL0);
126 
127 	switch (ddrpll & 0xff) {
128 	case 0xc:
129 		dev_priv->mem_freq = 800;
130 		break;
131 	case 0x10:
132 		dev_priv->mem_freq = 1066;
133 		break;
134 	case 0x14:
135 		dev_priv->mem_freq = 1333;
136 		break;
137 	case 0x18:
138 		dev_priv->mem_freq = 1600;
139 		break;
140 	default:
141 		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
142 				 ddrpll & 0xff);
143 		dev_priv->mem_freq = 0;
144 		break;
145 	}
146 
147 	dev_priv->ips.r_t = dev_priv->mem_freq;
148 
149 	switch (csipll & 0x3ff) {
150 	case 0x00c:
151 		dev_priv->fsb_freq = 3200;
152 		break;
153 	case 0x00e:
154 		dev_priv->fsb_freq = 3733;
155 		break;
156 	case 0x010:
157 		dev_priv->fsb_freq = 4266;
158 		break;
159 	case 0x012:
160 		dev_priv->fsb_freq = 4800;
161 		break;
162 	case 0x014:
163 		dev_priv->fsb_freq = 5333;
164 		break;
165 	case 0x016:
166 		dev_priv->fsb_freq = 5866;
167 		break;
168 	case 0x018:
169 		dev_priv->fsb_freq = 6400;
170 		break;
171 	default:
172 		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
173 				 csipll & 0x3ff);
174 		dev_priv->fsb_freq = 0;
175 		break;
176 	}
177 
178 	if (dev_priv->fsb_freq == 3200) {
179 		dev_priv->ips.c_m = 0;
180 	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
181 		dev_priv->ips.c_m = 1;
182 	} else {
183 		dev_priv->ips.c_m = 2;
184 	}
185 }
186 
187 static const struct cxsr_latency cxsr_latency_table[] = {
188 	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
189 	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
190 	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
191 	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
192 	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
193 
194 	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
195 	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
196 	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
197 	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
198 	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
199 
200 	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
201 	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
202 	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
203 	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
204 	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
205 
206 	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
207 	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
208 	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
209 	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
210 	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
211 
212 	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
213 	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
214 	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
215 	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
216 	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
217 
218 	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
219 	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
220 	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
221 	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
222 	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
223 };
224 
225 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
226 							 int is_ddr3,
227 							 int fsb,
228 							 int mem)
229 {
230 	const struct cxsr_latency *latency;
231 	int i;
232 
233 	if (fsb == 0 || mem == 0)
234 		return NULL;
235 
236 	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
237 		latency = &cxsr_latency_table[i];
238 		if (is_desktop == latency->is_desktop &&
239 		    is_ddr3 == latency->is_ddr3 &&
240 		    fsb == latency->fsb_freq && mem == latency->mem_freq)
241 			return latency;
242 	}
243 
244 	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
245 
246 	return NULL;
247 }
248 
249 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
250 {
251 	u32 val;
252 
253 	mutex_lock(&dev_priv->rps.hw_lock);
254 
255 	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
256 	if (enable)
257 		val &= ~FORCE_DDR_HIGH_FREQ;
258 	else
259 		val |= FORCE_DDR_HIGH_FREQ;
260 	val &= ~FORCE_DDR_LOW_FREQ;
261 	val |= FORCE_DDR_FREQ_REQ_ACK;
262 	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
263 
264 	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
265 		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
266 		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
267 
268 	mutex_unlock(&dev_priv->rps.hw_lock);
269 }
270 
271 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
272 {
273 	u32 val;
274 
275 	mutex_lock(&dev_priv->rps.hw_lock);
276 
277 	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
278 	if (enable)
279 		val |= DSP_MAXFIFO_PM5_ENABLE;
280 	else
281 		val &= ~DSP_MAXFIFO_PM5_ENABLE;
282 	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
283 
284 	mutex_unlock(&dev_priv->rps.hw_lock);
285 }
286 
287 #define FW_WM(value, plane) \
288 	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
289 
290 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
291 {
292 	struct drm_device *dev = dev_priv->dev;
293 	u32 val;
294 
295 	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
296 		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
297 		POSTING_READ(FW_BLC_SELF_VLV);
298 		dev_priv->wm.vlv.cxsr = enable;
299 	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
300 		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
301 		POSTING_READ(FW_BLC_SELF);
302 	} else if (IS_PINEVIEW(dev)) {
303 		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
304 		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
305 		I915_WRITE(DSPFW3, val);
306 		POSTING_READ(DSPFW3);
307 	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
308 		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
309 			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
310 		I915_WRITE(FW_BLC_SELF, val);
311 		POSTING_READ(FW_BLC_SELF);
312 	} else if (IS_I915GM(dev)) {
313 		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
314 			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
315 		I915_WRITE(INSTPM, val);
316 		POSTING_READ(INSTPM);
317 	} else {
318 		return;
319 	}
320 
321 	DRM_DEBUG_KMS("memory self-refresh is %s\n",
322 		      enable ? "enabled" : "disabled");
323 }
324 
325 
326 /*
327  * Latency for FIFO fetches is dependent on several factors:
328  *   - memory configuration (speed, channels)
329  *   - chipset
330  *   - current MCH state
331  * It can be fairly high in some situations, so here we assume a fairly
332  * pessimal value.  It's a tradeoff between extra memory fetches (if we
333  * set this value too high, the FIFO will fetch frequently to stay full)
334  * and power consumption (set it too low to save power and we might see
335  * FIFO underruns and display "flicker").
336  *
337  * A value of 5us seems to be a good balance; safe for very low end
338  * platforms but not overly aggressive on lower latency configs.
339  */
340 static const int pessimal_latency_ns = 5000;
341 
342 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
343 	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
344 
345 static int vlv_get_fifo_size(struct drm_device *dev,
346 			      enum i915_pipe pipe, int plane)
347 {
348 	struct drm_i915_private *dev_priv = dev->dev_private;
349 	int sprite0_start, sprite1_start, size;
350 
351 	switch (pipe) {
352 		uint32_t dsparb, dsparb2, dsparb3;
353 	case PIPE_A:
354 		dsparb = I915_READ(DSPARB);
355 		dsparb2 = I915_READ(DSPARB2);
356 		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
357 		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
358 		break;
359 	case PIPE_B:
360 		dsparb = I915_READ(DSPARB);
361 		dsparb2 = I915_READ(DSPARB2);
362 		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
363 		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
364 		break;
365 	case PIPE_C:
366 		dsparb2 = I915_READ(DSPARB2);
367 		dsparb3 = I915_READ(DSPARB3);
368 		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
369 		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
370 		break;
371 	default:
372 		return 0;
373 	}
374 
375 	switch (plane) {
376 	case 0:
377 		size = sprite0_start;
378 		break;
379 	case 1:
380 		size = sprite1_start - sprite0_start;
381 		break;
382 	case 2:
383 		size = 512 - 1 - sprite1_start;
384 		break;
385 	default:
386 		return 0;
387 	}
388 
389 	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
390 		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
391 		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
392 		      size);
393 
394 	return size;
395 }
396 
397 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
398 {
399 	struct drm_i915_private *dev_priv = dev->dev_private;
400 	uint32_t dsparb = I915_READ(DSPARB);
401 	int size;
402 
403 	size = dsparb & 0x7f;
404 	if (plane)
405 		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
406 
407 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
408 		      plane ? "B" : "A", size);
409 
410 	return size;
411 }
412 
413 static int i830_get_fifo_size(struct drm_device *dev, int plane)
414 {
415 	struct drm_i915_private *dev_priv = dev->dev_private;
416 	uint32_t dsparb = I915_READ(DSPARB);
417 	int size;
418 
419 	size = dsparb & 0x1ff;
420 	if (plane)
421 		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
422 	size >>= 1; /* Convert to cachelines */
423 
424 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
425 		      plane ? "B" : "A", size);
426 
427 	return size;
428 }
429 
430 static int i845_get_fifo_size(struct drm_device *dev, int plane)
431 {
432 	struct drm_i915_private *dev_priv = dev->dev_private;
433 	uint32_t dsparb = I915_READ(DSPARB);
434 	int size;
435 
436 	size = dsparb & 0x7f;
437 	size >>= 2; /* Convert to cachelines */
438 
439 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
440 		      plane ? "B" : "A",
441 		      size);
442 
443 	return size;
444 }
445 
446 /* Pineview has different values for various configs */
447 static const struct intel_watermark_params pineview_display_wm = {
448 	.fifo_size = PINEVIEW_DISPLAY_FIFO,
449 	.max_wm = PINEVIEW_MAX_WM,
450 	.default_wm = PINEVIEW_DFT_WM,
451 	.guard_size = PINEVIEW_GUARD_WM,
452 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
453 };
454 static const struct intel_watermark_params pineview_display_hplloff_wm = {
455 	.fifo_size = PINEVIEW_DISPLAY_FIFO,
456 	.max_wm = PINEVIEW_MAX_WM,
457 	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
458 	.guard_size = PINEVIEW_GUARD_WM,
459 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
460 };
461 static const struct intel_watermark_params pineview_cursor_wm = {
462 	.fifo_size = PINEVIEW_CURSOR_FIFO,
463 	.max_wm = PINEVIEW_CURSOR_MAX_WM,
464 	.default_wm = PINEVIEW_CURSOR_DFT_WM,
465 	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
466 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
467 };
468 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
469 	.fifo_size = PINEVIEW_CURSOR_FIFO,
470 	.max_wm = PINEVIEW_CURSOR_MAX_WM,
471 	.default_wm = PINEVIEW_CURSOR_DFT_WM,
472 	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
473 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
474 };
475 static const struct intel_watermark_params g4x_wm_info = {
476 	.fifo_size = G4X_FIFO_SIZE,
477 	.max_wm = G4X_MAX_WM,
478 	.default_wm = G4X_MAX_WM,
479 	.guard_size = 2,
480 	.cacheline_size = G4X_FIFO_LINE_SIZE,
481 };
482 static const struct intel_watermark_params g4x_cursor_wm_info = {
483 	.fifo_size = I965_CURSOR_FIFO,
484 	.max_wm = I965_CURSOR_MAX_WM,
485 	.default_wm = I965_CURSOR_DFT_WM,
486 	.guard_size = 2,
487 	.cacheline_size = G4X_FIFO_LINE_SIZE,
488 };
489 static const struct intel_watermark_params valleyview_wm_info = {
490 	.fifo_size = VALLEYVIEW_FIFO_SIZE,
491 	.max_wm = VALLEYVIEW_MAX_WM,
492 	.default_wm = VALLEYVIEW_MAX_WM,
493 	.guard_size = 2,
494 	.cacheline_size = G4X_FIFO_LINE_SIZE,
495 };
496 static const struct intel_watermark_params valleyview_cursor_wm_info = {
497 	.fifo_size = I965_CURSOR_FIFO,
498 	.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
499 	.default_wm = I965_CURSOR_DFT_WM,
500 	.guard_size = 2,
501 	.cacheline_size = G4X_FIFO_LINE_SIZE,
502 };
503 static const struct intel_watermark_params i965_cursor_wm_info = {
504 	.fifo_size = I965_CURSOR_FIFO,
505 	.max_wm = I965_CURSOR_MAX_WM,
506 	.default_wm = I965_CURSOR_DFT_WM,
507 	.guard_size = 2,
508 	.cacheline_size = I915_FIFO_LINE_SIZE,
509 };
510 static const struct intel_watermark_params i945_wm_info = {
511 	.fifo_size = I945_FIFO_SIZE,
512 	.max_wm = I915_MAX_WM,
513 	.default_wm = 1,
514 	.guard_size = 2,
515 	.cacheline_size = I915_FIFO_LINE_SIZE,
516 };
517 static const struct intel_watermark_params i915_wm_info = {
518 	.fifo_size = I915_FIFO_SIZE,
519 	.max_wm = I915_MAX_WM,
520 	.default_wm = 1,
521 	.guard_size = 2,
522 	.cacheline_size = I915_FIFO_LINE_SIZE,
523 };
524 static const struct intel_watermark_params i830_a_wm_info = {
525 	.fifo_size = I855GM_FIFO_SIZE,
526 	.max_wm = I915_MAX_WM,
527 	.default_wm = 1,
528 	.guard_size = 2,
529 	.cacheline_size = I830_FIFO_LINE_SIZE,
530 };
531 static const struct intel_watermark_params i830_bc_wm_info = {
532 	.fifo_size = I855GM_FIFO_SIZE,
533 	.max_wm = I915_MAX_WM/2,
534 	.default_wm = 1,
535 	.guard_size = 2,
536 	.cacheline_size = I830_FIFO_LINE_SIZE,
537 };
538 static const struct intel_watermark_params i845_wm_info = {
539 	.fifo_size = I830_FIFO_SIZE,
540 	.max_wm = I915_MAX_WM,
541 	.default_wm = 1,
542 	.guard_size = 2,
543 	.cacheline_size = I830_FIFO_LINE_SIZE,
544 };
545 
546 /**
547  * intel_calculate_wm - calculate watermark level
548  * @clock_in_khz: pixel clock
549  * @wm: chip FIFO params
550  * @cpp: bytes per pixel
551  * @latency_ns: memory latency for the platform
552  *
553  * Calculate the watermark level (the level at which the display plane will
554  * start fetching from memory again).  Each chip has a different display
555  * FIFO size and allocation, so the caller needs to figure that out and pass
556  * in the correct intel_watermark_params structure.
557  *
558  * As the pixel clock runs, the FIFO will be drained at a rate that depends
559  * on the pixel size.  When it reaches the watermark level, it'll start
560  * fetching FIFO line sized based chunks from memory until the FIFO fills
561  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
562  * will occur, and a display engine hang could result.
563  */
564 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
565 					const struct intel_watermark_params *wm,
566 					int fifo_size, int cpp,
567 					unsigned long latency_ns)
568 {
569 	long entries_required, wm_size;
570 
571 	/*
572 	 * Note: we need to make sure we don't overflow for various clock &
573 	 * latency values.
574 	 * clocks go from a few thousand to several hundred thousand.
575 	 * latency is usually a few thousand
576 	 */
577 	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
578 		1000;
579 	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
580 
581 	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
582 
583 	wm_size = fifo_size - (entries_required + wm->guard_size);
584 
585 	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
586 
587 	/* Don't promote wm_size to unsigned... */
588 	if (wm_size > (long)wm->max_wm)
589 		wm_size = wm->max_wm;
590 	if (wm_size <= 0)
591 		wm_size = wm->default_wm;
592 
593 	/*
594 	 * Bspec seems to indicate that the value shouldn't be lower than
595 	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
596 	 * Lets go for 8 which is the burst size since certain platforms
597 	 * already use a hardcoded 8 (which is what the spec says should be
598 	 * done).
599 	 */
600 	if (wm_size <= 8)
601 		wm_size = 8;
602 
603 	return wm_size;
604 }
605 
606 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
607 {
608 	struct drm_crtc *crtc, *enabled = NULL;
609 
610 	for_each_crtc(dev, crtc) {
611 		if (intel_crtc_active(crtc)) {
612 			if (enabled)
613 				return NULL;
614 			enabled = crtc;
615 		}
616 	}
617 
618 	return enabled;
619 }
620 
621 static void pineview_update_wm(struct drm_crtc *unused_crtc)
622 {
623 	struct drm_device *dev = unused_crtc->dev;
624 	struct drm_i915_private *dev_priv = dev->dev_private;
625 	struct drm_crtc *crtc;
626 	const struct cxsr_latency *latency;
627 	u32 reg;
628 	unsigned long wm;
629 
630 	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
631 					 dev_priv->fsb_freq, dev_priv->mem_freq);
632 	if (!latency) {
633 		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
634 		intel_set_memory_cxsr(dev_priv, false);
635 		return;
636 	}
637 
638 	crtc = single_enabled_crtc(dev);
639 	if (crtc) {
640 		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
641 		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
642 		int clock = adjusted_mode->crtc_clock;
643 
644 		/* Display SR */
645 		wm = intel_calculate_wm(clock, &pineview_display_wm,
646 					pineview_display_wm.fifo_size,
647 					cpp, latency->display_sr);
648 		reg = I915_READ(DSPFW1);
649 		reg &= ~DSPFW_SR_MASK;
650 		reg |= FW_WM(wm, SR);
651 		I915_WRITE(DSPFW1, reg);
652 		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
653 
654 		/* cursor SR */
655 		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
656 					pineview_display_wm.fifo_size,
657 					cpp, latency->cursor_sr);
658 		reg = I915_READ(DSPFW3);
659 		reg &= ~DSPFW_CURSOR_SR_MASK;
660 		reg |= FW_WM(wm, CURSOR_SR);
661 		I915_WRITE(DSPFW3, reg);
662 
663 		/* Display HPLL off SR */
664 		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
665 					pineview_display_hplloff_wm.fifo_size,
666 					cpp, latency->display_hpll_disable);
667 		reg = I915_READ(DSPFW3);
668 		reg &= ~DSPFW_HPLL_SR_MASK;
669 		reg |= FW_WM(wm, HPLL_SR);
670 		I915_WRITE(DSPFW3, reg);
671 
672 		/* cursor HPLL off SR */
673 		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
674 					pineview_display_hplloff_wm.fifo_size,
675 					cpp, latency->cursor_hpll_disable);
676 		reg = I915_READ(DSPFW3);
677 		reg &= ~DSPFW_HPLL_CURSOR_MASK;
678 		reg |= FW_WM(wm, HPLL_CURSOR);
679 		I915_WRITE(DSPFW3, reg);
680 		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
681 
682 		intel_set_memory_cxsr(dev_priv, true);
683 	} else {
684 		intel_set_memory_cxsr(dev_priv, false);
685 	}
686 }
687 
688 static bool g4x_compute_wm0(struct drm_device *dev,
689 			    int plane,
690 			    const struct intel_watermark_params *display,
691 			    int display_latency_ns,
692 			    const struct intel_watermark_params *cursor,
693 			    int cursor_latency_ns,
694 			    int *plane_wm,
695 			    int *cursor_wm)
696 {
697 	struct drm_crtc *crtc;
698 	const struct drm_display_mode *adjusted_mode;
699 	int htotal, hdisplay, clock, cpp;
700 	int line_time_us, line_count;
701 	int entries, tlb_miss;
702 
703 	crtc = intel_get_crtc_for_plane(dev, plane);
704 	if (!intel_crtc_active(crtc)) {
705 		*cursor_wm = cursor->guard_size;
706 		*plane_wm = display->guard_size;
707 		return false;
708 	}
709 
710 	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
711 	clock = adjusted_mode->crtc_clock;
712 	htotal = adjusted_mode->crtc_htotal;
713 	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
714 	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
715 
716 	/* Use the small buffer method to calculate plane watermark */
717 	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
718 	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
719 	if (tlb_miss > 0)
720 		entries += tlb_miss;
721 	entries = DIV_ROUND_UP(entries, display->cacheline_size);
722 	*plane_wm = entries + display->guard_size;
723 	if (*plane_wm > (int)display->max_wm)
724 		*plane_wm = display->max_wm;
725 
726 	/* Use the large buffer method to calculate cursor watermark */
727 	line_time_us = max(htotal * 1000 / clock, 1);
728 	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
729 	entries = line_count * crtc->cursor->state->crtc_w * cpp;
730 	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
731 	if (tlb_miss > 0)
732 		entries += tlb_miss;
733 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
734 	*cursor_wm = entries + cursor->guard_size;
735 	if (*cursor_wm > (int)cursor->max_wm)
736 		*cursor_wm = (int)cursor->max_wm;
737 
738 	return true;
739 }
740 
741 /*
742  * Check the wm result.
743  *
744  * If any calculated watermark values is larger than the maximum value that
745  * can be programmed into the associated watermark register, that watermark
746  * must be disabled.
747  */
748 static bool g4x_check_srwm(struct drm_device *dev,
749 			   int display_wm, int cursor_wm,
750 			   const struct intel_watermark_params *display,
751 			   const struct intel_watermark_params *cursor)
752 {
753 	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
754 		      display_wm, cursor_wm);
755 
756 	if (display_wm > display->max_wm) {
757 		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
758 			      display_wm, display->max_wm);
759 		return false;
760 	}
761 
762 	if (cursor_wm > cursor->max_wm) {
763 		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
764 			      cursor_wm, cursor->max_wm);
765 		return false;
766 	}
767 
768 	if (!(display_wm || cursor_wm)) {
769 		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
770 		return false;
771 	}
772 
773 	return true;
774 }
775 
776 static bool g4x_compute_srwm(struct drm_device *dev,
777 			     int plane,
778 			     int latency_ns,
779 			     const struct intel_watermark_params *display,
780 			     const struct intel_watermark_params *cursor,
781 			     int *display_wm, int *cursor_wm)
782 {
783 	struct drm_crtc *crtc;
784 	const struct drm_display_mode *adjusted_mode;
785 	int hdisplay, htotal, cpp, clock;
786 	unsigned long line_time_us;
787 	int line_count, line_size;
788 	int small, large;
789 	int entries;
790 
791 	if (!latency_ns) {
792 		*display_wm = *cursor_wm = 0;
793 		return false;
794 	}
795 
796 	crtc = intel_get_crtc_for_plane(dev, plane);
797 	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
798 	clock = adjusted_mode->crtc_clock;
799 	htotal = adjusted_mode->crtc_htotal;
800 	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
801 	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
802 
803 	line_time_us = max(htotal * 1000 / clock, 1);
804 	line_count = (latency_ns / line_time_us + 1000) / 1000;
805 	line_size = hdisplay * cpp;
806 
807 	/* Use the minimum of the small and large buffer method for primary */
808 	small = ((clock * cpp / 1000) * latency_ns) / 1000;
809 	large = line_count * line_size;
810 
811 	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
812 	*display_wm = entries + display->guard_size;
813 
814 	/* calculate the self-refresh watermark for display cursor */
815 	entries = line_count * cpp * crtc->cursor->state->crtc_w;
816 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
817 	*cursor_wm = entries + cursor->guard_size;
818 
819 	return g4x_check_srwm(dev,
820 			      *display_wm, *cursor_wm,
821 			      display, cursor);
822 }
823 
824 #define FW_WM_VLV(value, plane) \
825 	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
826 
827 static void vlv_write_wm_values(struct intel_crtc *crtc,
828 				const struct vlv_wm_values *wm)
829 {
830 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
831 	enum i915_pipe pipe = crtc->pipe;
832 
833 	I915_WRITE(VLV_DDL(pipe),
834 		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
835 		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
836 		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
837 		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
838 
839 	I915_WRITE(DSPFW1,
840 		   FW_WM(wm->sr.plane, SR) |
841 		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
842 		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
843 		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
844 	I915_WRITE(DSPFW2,
845 		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
846 		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
847 		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
848 	I915_WRITE(DSPFW3,
849 		   FW_WM(wm->sr.cursor, CURSOR_SR));
850 
851 	if (IS_CHERRYVIEW(dev_priv)) {
852 		I915_WRITE(DSPFW7_CHV,
853 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
854 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
855 		I915_WRITE(DSPFW8_CHV,
856 			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
857 			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
858 		I915_WRITE(DSPFW9_CHV,
859 			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
860 			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
861 		I915_WRITE(DSPHOWM,
862 			   FW_WM(wm->sr.plane >> 9, SR_HI) |
863 			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
864 			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
865 			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
866 			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
867 			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
868 			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
869 			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
870 			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
871 			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
872 	} else {
873 		I915_WRITE(DSPFW7,
874 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
875 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
876 		I915_WRITE(DSPHOWM,
877 			   FW_WM(wm->sr.plane >> 9, SR_HI) |
878 			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
879 			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
880 			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
881 			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
882 			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
883 			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
884 	}
885 
886 	/* zero (unused) WM1 watermarks */
887 	I915_WRITE(DSPFW4, 0);
888 	I915_WRITE(DSPFW5, 0);
889 	I915_WRITE(DSPFW6, 0);
890 	I915_WRITE(DSPHOWM1, 0);
891 
892 	POSTING_READ(DSPFW1);
893 }
894 
895 #undef FW_WM_VLV
896 
897 enum vlv_wm_level {
898 	VLV_WM_LEVEL_PM2,
899 	VLV_WM_LEVEL_PM5,
900 	VLV_WM_LEVEL_DDR_DVFS,
901 };
902 
903 /* latency must be in 0.1us units. */
904 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
905 				   unsigned int pipe_htotal,
906 				   unsigned int horiz_pixels,
907 				   unsigned int cpp,
908 				   unsigned int latency)
909 {
910 	unsigned int ret;
911 
912 	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
913 	ret = (ret + 1) * horiz_pixels * cpp;
914 	ret = DIV_ROUND_UP(ret, 64);
915 
916 	return ret;
917 }
918 
919 static void vlv_setup_wm_latency(struct drm_device *dev)
920 {
921 	struct drm_i915_private *dev_priv = dev->dev_private;
922 
923 	/* all latencies in usec */
924 	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
925 
926 	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
927 
928 	if (IS_CHERRYVIEW(dev_priv)) {
929 		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
930 		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
931 
932 		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
933 	}
934 }
935 
936 static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
937 				     struct intel_crtc *crtc,
938 				     const struct intel_plane_state *state,
939 				     int level)
940 {
941 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
942 	int clock, htotal, cpp, width, wm;
943 
944 	if (dev_priv->wm.pri_latency[level] == 0)
945 		return USHRT_MAX;
946 
947 	if (!state->visible)
948 		return 0;
949 
950 	cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
951 	clock = crtc->config->base.adjusted_mode.crtc_clock;
952 	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
953 	width = crtc->config->pipe_src_w;
954 	if (WARN_ON(htotal == 0))
955 		htotal = 1;
956 
957 	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
958 		/*
959 		 * FIXME the formula gives values that are
960 		 * too big for the cursor FIFO, and hence we
961 		 * would never be able to use cursors. For
962 		 * now just hardcode the watermark.
963 		 */
964 		wm = 63;
965 	} else {
966 		wm = vlv_wm_method2(clock, htotal, width, cpp,
967 				    dev_priv->wm.pri_latency[level] * 10);
968 	}
969 
970 	return min_t(int, wm, USHRT_MAX);
971 }
972 
973 static void vlv_compute_fifo(struct intel_crtc *crtc)
974 {
975 	struct drm_device *dev = crtc->base.dev;
976 	struct vlv_wm_state *wm_state = &crtc->wm_state;
977 	struct intel_plane *plane;
978 	unsigned int total_rate = 0;
979 	const int fifo_size = 512 - 1;
980 	int fifo_extra, fifo_left = fifo_size;
981 
982 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
983 		struct intel_plane_state *state =
984 			to_intel_plane_state(plane->base.state);
985 
986 		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
987 			continue;
988 
989 		if (state->visible) {
990 			wm_state->num_active_planes++;
991 			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
992 		}
993 	}
994 
995 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
996 		struct intel_plane_state *state =
997 			to_intel_plane_state(plane->base.state);
998 		unsigned int rate;
999 
1000 		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1001 			plane->wm.fifo_size = 63;
1002 			continue;
1003 		}
1004 
1005 		if (!state->visible) {
1006 			plane->wm.fifo_size = 0;
1007 			continue;
1008 		}
1009 
1010 		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1011 		plane->wm.fifo_size = fifo_size * rate / total_rate;
1012 		fifo_left -= plane->wm.fifo_size;
1013 	}
1014 
1015 	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1016 
1017 	/* spread the remainder evenly */
1018 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1019 		int plane_extra;
1020 
1021 		if (fifo_left == 0)
1022 			break;
1023 
1024 		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1025 			continue;
1026 
1027 		/* give it all to the first plane if none are active */
1028 		if (plane->wm.fifo_size == 0 &&
1029 		    wm_state->num_active_planes)
1030 			continue;
1031 
1032 		plane_extra = min(fifo_extra, fifo_left);
1033 		plane->wm.fifo_size += plane_extra;
1034 		fifo_left -= plane_extra;
1035 	}
1036 
1037 	WARN_ON(fifo_left != 0);
1038 }
1039 
1040 static void vlv_invert_wms(struct intel_crtc *crtc)
1041 {
1042 	struct vlv_wm_state *wm_state = &crtc->wm_state;
1043 	int level;
1044 
1045 	for (level = 0; level < wm_state->num_levels; level++) {
1046 		struct drm_device *dev = crtc->base.dev;
1047 		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1048 		struct intel_plane *plane;
1049 
1050 		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1051 		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1052 
1053 		for_each_intel_plane_on_crtc(dev, crtc, plane) {
1054 			switch (plane->base.type) {
1055 				int sprite;
1056 			case DRM_PLANE_TYPE_CURSOR:
1057 				wm_state->wm[level].cursor = plane->wm.fifo_size -
1058 					wm_state->wm[level].cursor;
1059 				break;
1060 			case DRM_PLANE_TYPE_PRIMARY:
1061 				wm_state->wm[level].primary = plane->wm.fifo_size -
1062 					wm_state->wm[level].primary;
1063 				break;
1064 			case DRM_PLANE_TYPE_OVERLAY:
1065 				sprite = plane->plane;
1066 				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1067 					wm_state->wm[level].sprite[sprite];
1068 				break;
1069 			}
1070 		}
1071 	}
1072 }
1073 
1074 static void vlv_compute_wm(struct intel_crtc *crtc)
1075 {
1076 	struct drm_device *dev = crtc->base.dev;
1077 	struct vlv_wm_state *wm_state = &crtc->wm_state;
1078 	struct intel_plane *plane;
1079 	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1080 	int level;
1081 
1082 	memset(wm_state, 0, sizeof(*wm_state));
1083 
1084 	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1085 	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1086 
1087 	wm_state->num_active_planes = 0;
1088 
1089 	vlv_compute_fifo(crtc);
1090 
1091 	if (wm_state->num_active_planes != 1)
1092 		wm_state->cxsr = false;
1093 
1094 	if (wm_state->cxsr) {
1095 		for (level = 0; level < wm_state->num_levels; level++) {
1096 			wm_state->sr[level].plane = sr_fifo_size;
1097 			wm_state->sr[level].cursor = 63;
1098 		}
1099 	}
1100 
1101 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1102 		struct intel_plane_state *state =
1103 			to_intel_plane_state(plane->base.state);
1104 
1105 		if (!state->visible)
1106 			continue;
1107 
1108 		/* normal watermarks */
1109 		for (level = 0; level < wm_state->num_levels; level++) {
1110 			int wm = vlv_compute_wm_level(plane, crtc, state, level);
1111 			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1112 
1113 			/* hack */
1114 			if (WARN_ON(level == 0 && wm > max_wm))
1115 				wm = max_wm;
1116 
1117 			if (wm > plane->wm.fifo_size)
1118 				break;
1119 
1120 			switch (plane->base.type) {
1121 				int sprite;
1122 			case DRM_PLANE_TYPE_CURSOR:
1123 				wm_state->wm[level].cursor = wm;
1124 				break;
1125 			case DRM_PLANE_TYPE_PRIMARY:
1126 				wm_state->wm[level].primary = wm;
1127 				break;
1128 			case DRM_PLANE_TYPE_OVERLAY:
1129 				sprite = plane->plane;
1130 				wm_state->wm[level].sprite[sprite] = wm;
1131 				break;
1132 			}
1133 		}
1134 
1135 		wm_state->num_levels = level;
1136 
1137 		if (!wm_state->cxsr)
1138 			continue;
1139 
1140 		/* maxfifo watermarks */
1141 		switch (plane->base.type) {
1142 			int sprite, level;
1143 		case DRM_PLANE_TYPE_CURSOR:
1144 			for (level = 0; level < wm_state->num_levels; level++)
1145 				wm_state->sr[level].cursor =
1146 					wm_state->wm[level].cursor;
1147 			break;
1148 		case DRM_PLANE_TYPE_PRIMARY:
1149 			for (level = 0; level < wm_state->num_levels; level++)
1150 				wm_state->sr[level].plane =
1151 					min(wm_state->sr[level].plane,
1152 					    wm_state->wm[level].primary);
1153 			break;
1154 		case DRM_PLANE_TYPE_OVERLAY:
1155 			sprite = plane->plane;
1156 			for (level = 0; level < wm_state->num_levels; level++)
1157 				wm_state->sr[level].plane =
1158 					min(wm_state->sr[level].plane,
1159 					    wm_state->wm[level].sprite[sprite]);
1160 			break;
1161 		}
1162 	}
1163 
1164 	/* clear any (partially) filled invalid levels */
1165 	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1166 		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1167 		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1168 	}
1169 
1170 	vlv_invert_wms(crtc);
1171 }
1172 
1173 #define VLV_FIFO(plane, value) \
1174 	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1175 
1176 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1177 {
1178 	struct drm_device *dev = crtc->base.dev;
1179 	struct drm_i915_private *dev_priv = to_i915(dev);
1180 	struct intel_plane *plane;
1181 	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1182 
1183 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1184 		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1185 			WARN_ON(plane->wm.fifo_size != 63);
1186 			continue;
1187 		}
1188 
1189 		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1190 			sprite0_start = plane->wm.fifo_size;
1191 		else if (plane->plane == 0)
1192 			sprite1_start = sprite0_start + plane->wm.fifo_size;
1193 		else
1194 			fifo_size = sprite1_start + plane->wm.fifo_size;
1195 	}
1196 
1197 	WARN_ON(fifo_size != 512 - 1);
1198 
1199 	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1200 		      pipe_name(crtc->pipe), sprite0_start,
1201 		      sprite1_start, fifo_size);
1202 
1203 	switch (crtc->pipe) {
1204 		uint32_t dsparb, dsparb2, dsparb3;
1205 	case PIPE_A:
1206 		dsparb = I915_READ(DSPARB);
1207 		dsparb2 = I915_READ(DSPARB2);
1208 
1209 		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1210 			    VLV_FIFO(SPRITEB, 0xff));
1211 		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1212 			   VLV_FIFO(SPRITEB, sprite1_start));
1213 
1214 		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1215 			     VLV_FIFO(SPRITEB_HI, 0x1));
1216 		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1217 			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1218 
1219 		I915_WRITE(DSPARB, dsparb);
1220 		I915_WRITE(DSPARB2, dsparb2);
1221 		break;
1222 	case PIPE_B:
1223 		dsparb = I915_READ(DSPARB);
1224 		dsparb2 = I915_READ(DSPARB2);
1225 
1226 		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1227 			    VLV_FIFO(SPRITED, 0xff));
1228 		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1229 			   VLV_FIFO(SPRITED, sprite1_start));
1230 
1231 		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1232 			     VLV_FIFO(SPRITED_HI, 0xff));
1233 		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1234 			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1235 
1236 		I915_WRITE(DSPARB, dsparb);
1237 		I915_WRITE(DSPARB2, dsparb2);
1238 		break;
1239 	case PIPE_C:
1240 		dsparb3 = I915_READ(DSPARB3);
1241 		dsparb2 = I915_READ(DSPARB2);
1242 
1243 		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1244 			     VLV_FIFO(SPRITEF, 0xff));
1245 		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1246 			    VLV_FIFO(SPRITEF, sprite1_start));
1247 
1248 		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1249 			     VLV_FIFO(SPRITEF_HI, 0xff));
1250 		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1251 			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1252 
1253 		I915_WRITE(DSPARB3, dsparb3);
1254 		I915_WRITE(DSPARB2, dsparb2);
1255 		break;
1256 	default:
1257 		break;
1258 	}
1259 }
1260 
1261 #undef VLV_FIFO
1262 
1263 static void vlv_merge_wm(struct drm_device *dev,
1264 			 struct vlv_wm_values *wm)
1265 {
1266 	struct intel_crtc *crtc;
1267 	int num_active_crtcs = 0;
1268 
1269 	wm->level = to_i915(dev)->wm.max_level;
1270 	wm->cxsr = true;
1271 
1272 	for_each_intel_crtc(dev, crtc) {
1273 		const struct vlv_wm_state *wm_state = &crtc->wm_state;
1274 
1275 		if (!crtc->active)
1276 			continue;
1277 
1278 		if (!wm_state->cxsr)
1279 			wm->cxsr = false;
1280 
1281 		num_active_crtcs++;
1282 		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1283 	}
1284 
1285 	if (num_active_crtcs != 1)
1286 		wm->cxsr = false;
1287 
1288 	if (num_active_crtcs > 1)
1289 		wm->level = VLV_WM_LEVEL_PM2;
1290 
1291 	for_each_intel_crtc(dev, crtc) {
1292 		struct vlv_wm_state *wm_state = &crtc->wm_state;
1293 		enum i915_pipe pipe = crtc->pipe;
1294 
1295 		if (!crtc->active)
1296 			continue;
1297 
1298 		wm->pipe[pipe] = wm_state->wm[wm->level];
1299 		if (wm->cxsr)
1300 			wm->sr = wm_state->sr[wm->level];
1301 
1302 		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1303 		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1304 		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1305 		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1306 	}
1307 }
1308 
1309 static void vlv_update_wm(struct drm_crtc *crtc)
1310 {
1311 	struct drm_device *dev = crtc->dev;
1312 	struct drm_i915_private *dev_priv = dev->dev_private;
1313 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1314 	enum i915_pipe pipe = intel_crtc->pipe;
1315 	struct vlv_wm_values wm = {};
1316 
1317 	vlv_compute_wm(intel_crtc);
1318 	vlv_merge_wm(dev, &wm);
1319 
1320 	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1321 		/* FIXME should be part of crtc atomic commit */
1322 		vlv_pipe_set_fifo_size(intel_crtc);
1323 		return;
1324 	}
1325 
1326 	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1327 	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1328 		chv_set_memory_dvfs(dev_priv, false);
1329 
1330 	if (wm.level < VLV_WM_LEVEL_PM5 &&
1331 	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1332 		chv_set_memory_pm5(dev_priv, false);
1333 
1334 	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1335 		intel_set_memory_cxsr(dev_priv, false);
1336 
1337 	/* FIXME should be part of crtc atomic commit */
1338 	vlv_pipe_set_fifo_size(intel_crtc);
1339 
1340 	vlv_write_wm_values(intel_crtc, &wm);
1341 
1342 	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1343 		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1344 		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1345 		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1346 		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1347 
1348 	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1349 		intel_set_memory_cxsr(dev_priv, true);
1350 
1351 	if (wm.level >= VLV_WM_LEVEL_PM5 &&
1352 	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1353 		chv_set_memory_pm5(dev_priv, true);
1354 
1355 	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1356 	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1357 		chv_set_memory_dvfs(dev_priv, true);
1358 
1359 	dev_priv->wm.vlv = wm;
1360 }
1361 
1362 #define single_plane_enabled(mask) is_power_of_2(mask)
1363 
1364 static void g4x_update_wm(struct drm_crtc *crtc)
1365 {
1366 	struct drm_device *dev = crtc->dev;
1367 	static const int sr_latency_ns = 12000;
1368 	struct drm_i915_private *dev_priv = dev->dev_private;
1369 	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1370 	int plane_sr, cursor_sr;
1371 	unsigned int enabled = 0;
1372 	bool cxsr_enabled;
1373 
1374 	if (g4x_compute_wm0(dev, PIPE_A,
1375 			    &g4x_wm_info, pessimal_latency_ns,
1376 			    &g4x_cursor_wm_info, pessimal_latency_ns,
1377 			    &planea_wm, &cursora_wm))
1378 		enabled |= 1 << PIPE_A;
1379 
1380 	if (g4x_compute_wm0(dev, PIPE_B,
1381 			    &g4x_wm_info, pessimal_latency_ns,
1382 			    &g4x_cursor_wm_info, pessimal_latency_ns,
1383 			    &planeb_wm, &cursorb_wm))
1384 		enabled |= 1 << PIPE_B;
1385 
1386 	if (single_plane_enabled(enabled) &&
1387 	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1388 			     sr_latency_ns,
1389 			     &g4x_wm_info,
1390 			     &g4x_cursor_wm_info,
1391 			     &plane_sr, &cursor_sr)) {
1392 		cxsr_enabled = true;
1393 	} else {
1394 		cxsr_enabled = false;
1395 		intel_set_memory_cxsr(dev_priv, false);
1396 		plane_sr = cursor_sr = 0;
1397 	}
1398 
1399 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1400 		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1401 		      planea_wm, cursora_wm,
1402 		      planeb_wm, cursorb_wm,
1403 		      plane_sr, cursor_sr);
1404 
1405 	I915_WRITE(DSPFW1,
1406 		   FW_WM(plane_sr, SR) |
1407 		   FW_WM(cursorb_wm, CURSORB) |
1408 		   FW_WM(planeb_wm, PLANEB) |
1409 		   FW_WM(planea_wm, PLANEA));
1410 	I915_WRITE(DSPFW2,
1411 		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1412 		   FW_WM(cursora_wm, CURSORA));
1413 	/* HPLL off in SR has some issues on G4x... disable it */
1414 	I915_WRITE(DSPFW3,
1415 		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1416 		   FW_WM(cursor_sr, CURSOR_SR));
1417 
1418 	if (cxsr_enabled)
1419 		intel_set_memory_cxsr(dev_priv, true);
1420 }
1421 
1422 static void i965_update_wm(struct drm_crtc *unused_crtc)
1423 {
1424 	struct drm_device *dev = unused_crtc->dev;
1425 	struct drm_i915_private *dev_priv = dev->dev_private;
1426 	struct drm_crtc *crtc;
1427 	int srwm = 1;
1428 	int cursor_sr = 16;
1429 	bool cxsr_enabled;
1430 
1431 	/* Calc sr entries for one plane configs */
1432 	crtc = single_enabled_crtc(dev);
1433 	if (crtc) {
1434 		/* self-refresh has much higher latency */
1435 		static const int sr_latency_ns = 12000;
1436 		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1437 		int clock = adjusted_mode->crtc_clock;
1438 		int htotal = adjusted_mode->crtc_htotal;
1439 		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1440 		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1441 		unsigned long line_time_us;
1442 		int entries;
1443 
1444 		line_time_us = max(htotal * 1000 / clock, 1);
1445 
1446 		/* Use ns/us then divide to preserve precision */
1447 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1448 			cpp * hdisplay;
1449 		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1450 		srwm = I965_FIFO_SIZE - entries;
1451 		if (srwm < 0)
1452 			srwm = 1;
1453 		srwm &= 0x1ff;
1454 		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1455 			      entries, srwm);
1456 
1457 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1458 			cpp * crtc->cursor->state->crtc_w;
1459 		entries = DIV_ROUND_UP(entries,
1460 					  i965_cursor_wm_info.cacheline_size);
1461 		cursor_sr = i965_cursor_wm_info.fifo_size -
1462 			(entries + i965_cursor_wm_info.guard_size);
1463 
1464 		if (cursor_sr > i965_cursor_wm_info.max_wm)
1465 			cursor_sr = i965_cursor_wm_info.max_wm;
1466 
1467 		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1468 			      "cursor %d\n", srwm, cursor_sr);
1469 
1470 		cxsr_enabled = true;
1471 	} else {
1472 		cxsr_enabled = false;
1473 		/* Turn off self refresh if both pipes are enabled */
1474 		intel_set_memory_cxsr(dev_priv, false);
1475 	}
1476 
1477 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1478 		      srwm);
1479 
1480 	/* 965 has limitations... */
1481 	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1482 		   FW_WM(8, CURSORB) |
1483 		   FW_WM(8, PLANEB) |
1484 		   FW_WM(8, PLANEA));
1485 	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1486 		   FW_WM(8, PLANEC_OLD));
1487 	/* update cursor SR watermark */
1488 	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1489 
1490 	if (cxsr_enabled)
1491 		intel_set_memory_cxsr(dev_priv, true);
1492 }
1493 
1494 #undef FW_WM
1495 
1496 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1497 {
1498 	struct drm_device *dev = unused_crtc->dev;
1499 	struct drm_i915_private *dev_priv = dev->dev_private;
1500 	const struct intel_watermark_params *wm_info;
1501 	uint32_t fwater_lo;
1502 	uint32_t fwater_hi;
1503 	int cwm, srwm = 1;
1504 	int fifo_size;
1505 	int planea_wm, planeb_wm;
1506 	struct drm_crtc *crtc, *enabled = NULL;
1507 
1508 	if (IS_I945GM(dev))
1509 		wm_info = &i945_wm_info;
1510 	else if (!IS_GEN2(dev))
1511 		wm_info = &i915_wm_info;
1512 	else
1513 		wm_info = &i830_a_wm_info;
1514 
1515 	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1516 	crtc = intel_get_crtc_for_plane(dev, 0);
1517 	if (intel_crtc_active(crtc)) {
1518 		const struct drm_display_mode *adjusted_mode;
1519 		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1520 		if (IS_GEN2(dev))
1521 			cpp = 4;
1522 
1523 		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1524 		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1525 					       wm_info, fifo_size, cpp,
1526 					       pessimal_latency_ns);
1527 		enabled = crtc;
1528 	} else {
1529 		planea_wm = fifo_size - wm_info->guard_size;
1530 		if (planea_wm > (long)wm_info->max_wm)
1531 			planea_wm = wm_info->max_wm;
1532 	}
1533 
1534 	if (IS_GEN2(dev))
1535 		wm_info = &i830_bc_wm_info;
1536 
1537 	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1538 	crtc = intel_get_crtc_for_plane(dev, 1);
1539 	if (intel_crtc_active(crtc)) {
1540 		const struct drm_display_mode *adjusted_mode;
1541 		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1542 		if (IS_GEN2(dev))
1543 			cpp = 4;
1544 
1545 		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1546 		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1547 					       wm_info, fifo_size, cpp,
1548 					       pessimal_latency_ns);
1549 		if (enabled == NULL)
1550 			enabled = crtc;
1551 		else
1552 			enabled = NULL;
1553 	} else {
1554 		planeb_wm = fifo_size - wm_info->guard_size;
1555 		if (planeb_wm > (long)wm_info->max_wm)
1556 			planeb_wm = wm_info->max_wm;
1557 	}
1558 
1559 	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1560 
1561 	if (IS_I915GM(dev) && enabled) {
1562 		struct drm_i915_gem_object *obj;
1563 
1564 		obj = intel_fb_obj(enabled->primary->state->fb);
1565 
1566 		/* self-refresh seems busted with untiled */
1567 		if (obj->tiling_mode == I915_TILING_NONE)
1568 			enabled = NULL;
1569 	}
1570 
1571 	/*
1572 	 * Overlay gets an aggressive default since video jitter is bad.
1573 	 */
1574 	cwm = 2;
1575 
1576 	/* Play safe and disable self-refresh before adjusting watermarks. */
1577 	intel_set_memory_cxsr(dev_priv, false);
1578 
1579 	/* Calc sr entries for one plane configs */
1580 	if (HAS_FW_BLC(dev) && enabled) {
1581 		/* self-refresh has much higher latency */
1582 		static const int sr_latency_ns = 6000;
1583 		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1584 		int clock = adjusted_mode->crtc_clock;
1585 		int htotal = adjusted_mode->crtc_htotal;
1586 		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1587 		int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
1588 		unsigned long line_time_us;
1589 		int entries;
1590 
1591 		line_time_us = max(htotal * 1000 / clock, 1);
1592 
1593 		/* Use ns/us then divide to preserve precision */
1594 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1595 			cpp * hdisplay;
1596 		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1597 		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1598 		srwm = wm_info->fifo_size - entries;
1599 		if (srwm < 0)
1600 			srwm = 1;
1601 
1602 		if (IS_I945G(dev) || IS_I945GM(dev))
1603 			I915_WRITE(FW_BLC_SELF,
1604 				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1605 		else if (IS_I915GM(dev))
1606 			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1607 	}
1608 
1609 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1610 		      planea_wm, planeb_wm, cwm, srwm);
1611 
1612 	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1613 	fwater_hi = (cwm & 0x1f);
1614 
1615 	/* Set request length to 8 cachelines per fetch */
1616 	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1617 	fwater_hi = fwater_hi | (1 << 8);
1618 
1619 	I915_WRITE(FW_BLC, fwater_lo);
1620 	I915_WRITE(FW_BLC2, fwater_hi);
1621 
1622 	if (enabled)
1623 		intel_set_memory_cxsr(dev_priv, true);
1624 }
1625 
1626 static void i845_update_wm(struct drm_crtc *unused_crtc)
1627 {
1628 	struct drm_device *dev = unused_crtc->dev;
1629 	struct drm_i915_private *dev_priv = dev->dev_private;
1630 	struct drm_crtc *crtc;
1631 	const struct drm_display_mode *adjusted_mode;
1632 	uint32_t fwater_lo;
1633 	int planea_wm;
1634 
1635 	crtc = single_enabled_crtc(dev);
1636 	if (crtc == NULL)
1637 		return;
1638 
1639 	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1640 	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1641 				       &i845_wm_info,
1642 				       dev_priv->display.get_fifo_size(dev, 0),
1643 				       4, pessimal_latency_ns);
1644 	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1645 	fwater_lo |= (3<<8) | planea_wm;
1646 
1647 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1648 
1649 	I915_WRITE(FW_BLC, fwater_lo);
1650 }
1651 
1652 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1653 {
1654 	uint32_t pixel_rate;
1655 
1656 	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1657 
1658 	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1659 	 * adjust the pixel_rate here. */
1660 
1661 	if (pipe_config->pch_pfit.enabled) {
1662 		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1663 		uint32_t pfit_size = pipe_config->pch_pfit.size;
1664 
1665 		pipe_w = pipe_config->pipe_src_w;
1666 		pipe_h = pipe_config->pipe_src_h;
1667 
1668 		pfit_w = (pfit_size >> 16) & 0xFFFF;
1669 		pfit_h = pfit_size & 0xFFFF;
1670 		if (pipe_w < pfit_w)
1671 			pipe_w = pfit_w;
1672 		if (pipe_h < pfit_h)
1673 			pipe_h = pfit_h;
1674 
1675 		if (WARN_ON(!pfit_w || !pfit_h))
1676 			return pixel_rate;
1677 
1678 		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1679 				     pfit_w * pfit_h);
1680 	}
1681 
1682 	return pixel_rate;
1683 }
1684 
1685 /* latency must be in 0.1us units. */
1686 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1687 {
1688 	uint64_t ret;
1689 
1690 	if (WARN(latency == 0, "Latency value missing\n"))
1691 		return UINT_MAX;
1692 
1693 	ret = (uint64_t) pixel_rate * cpp * latency;
1694 	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1695 
1696 	return ret;
1697 }
1698 
1699 /* latency must be in 0.1us units. */
1700 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1701 			       uint32_t horiz_pixels, uint8_t cpp,
1702 			       uint32_t latency)
1703 {
1704 	uint32_t ret;
1705 
1706 	if (WARN(latency == 0, "Latency value missing\n"))
1707 		return UINT_MAX;
1708 	if (WARN_ON(!pipe_htotal))
1709 		return UINT_MAX;
1710 
1711 	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1712 	ret = (ret + 1) * horiz_pixels * cpp;
1713 	ret = DIV_ROUND_UP(ret, 64) + 2;
1714 	return ret;
1715 }
1716 
1717 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1718 			   uint8_t cpp)
1719 {
1720 	/*
1721 	 * Neither of these should be possible since this function shouldn't be
1722 	 * called if the CRTC is off or the plane is invisible.  But let's be
1723 	 * extra paranoid to avoid a potential divide-by-zero if we screw up
1724 	 * elsewhere in the driver.
1725 	 */
1726 	if (WARN_ON(!cpp))
1727 		return 0;
1728 	if (WARN_ON(!horiz_pixels))
1729 		return 0;
1730 
1731 	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1732 }
1733 
1734 struct ilk_wm_maximums {
1735 	uint16_t pri;
1736 	uint16_t spr;
1737 	uint16_t cur;
1738 	uint16_t fbc;
1739 };
1740 
1741 /*
1742  * For both WM_PIPE and WM_LP.
1743  * mem_value must be in 0.1us units.
1744  */
1745 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1746 				   const struct intel_plane_state *pstate,
1747 				   uint32_t mem_value,
1748 				   bool is_lp)
1749 {
1750 	int cpp = pstate->base.fb ?
1751 		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1752 	uint32_t method1, method2;
1753 
1754 	if (!cstate->base.active || !pstate->visible)
1755 		return 0;
1756 
1757 	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1758 
1759 	if (!is_lp)
1760 		return method1;
1761 
1762 	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1763 				 cstate->base.adjusted_mode.crtc_htotal,
1764 				 drm_rect_width(&pstate->dst),
1765 				 cpp, mem_value);
1766 
1767 	return min(method1, method2);
1768 }
1769 
1770 /*
1771  * For both WM_PIPE and WM_LP.
1772  * mem_value must be in 0.1us units.
1773  */
1774 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1775 				   const struct intel_plane_state *pstate,
1776 				   uint32_t mem_value)
1777 {
1778 	int cpp = pstate->base.fb ?
1779 		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1780 	uint32_t method1, method2;
1781 
1782 	if (!cstate->base.active || !pstate->visible)
1783 		return 0;
1784 
1785 	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1786 	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1787 				 cstate->base.adjusted_mode.crtc_htotal,
1788 				 drm_rect_width(&pstate->dst),
1789 				 cpp, mem_value);
1790 	return min(method1, method2);
1791 }
1792 
1793 /*
1794  * For both WM_PIPE and WM_LP.
1795  * mem_value must be in 0.1us units.
1796  */
1797 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1798 				   const struct intel_plane_state *pstate,
1799 				   uint32_t mem_value)
1800 {
1801 	/*
1802 	 * We treat the cursor plane as always-on for the purposes of watermark
1803 	 * calculation.  Until we have two-stage watermark programming merged,
1804 	 * this is necessary to avoid flickering.
1805 	 */
1806 	int cpp = 4;
1807 	int width = pstate->visible ? pstate->base.crtc_w : 64;
1808 
1809 	if (!cstate->base.active)
1810 		return 0;
1811 
1812 	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1813 			      cstate->base.adjusted_mode.crtc_htotal,
1814 			      width, cpp, mem_value);
1815 }
1816 
1817 /* Only for WM_LP. */
1818 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1819 				   const struct intel_plane_state *pstate,
1820 				   uint32_t pri_val)
1821 {
1822 	int cpp = pstate->base.fb ?
1823 		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1824 
1825 	if (!cstate->base.active || !pstate->visible)
1826 		return 0;
1827 
1828 	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), cpp);
1829 }
1830 
1831 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1832 {
1833 	if (INTEL_INFO(dev)->gen >= 8)
1834 		return 3072;
1835 	else if (INTEL_INFO(dev)->gen >= 7)
1836 		return 768;
1837 	else
1838 		return 512;
1839 }
1840 
1841 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1842 					 int level, bool is_sprite)
1843 {
1844 	if (INTEL_INFO(dev)->gen >= 8)
1845 		/* BDW primary/sprite plane watermarks */
1846 		return level == 0 ? 255 : 2047;
1847 	else if (INTEL_INFO(dev)->gen >= 7)
1848 		/* IVB/HSW primary/sprite plane watermarks */
1849 		return level == 0 ? 127 : 1023;
1850 	else if (!is_sprite)
1851 		/* ILK/SNB primary plane watermarks */
1852 		return level == 0 ? 127 : 511;
1853 	else
1854 		/* ILK/SNB sprite plane watermarks */
1855 		return level == 0 ? 63 : 255;
1856 }
1857 
1858 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1859 					  int level)
1860 {
1861 	if (INTEL_INFO(dev)->gen >= 7)
1862 		return level == 0 ? 63 : 255;
1863 	else
1864 		return level == 0 ? 31 : 63;
1865 }
1866 
1867 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1868 {
1869 	if (INTEL_INFO(dev)->gen >= 8)
1870 		return 31;
1871 	else
1872 		return 15;
1873 }
1874 
1875 /* Calculate the maximum primary/sprite plane watermark */
1876 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1877 				     int level,
1878 				     const struct intel_wm_config *config,
1879 				     enum intel_ddb_partitioning ddb_partitioning,
1880 				     bool is_sprite)
1881 {
1882 	unsigned int fifo_size = ilk_display_fifo_size(dev);
1883 
1884 	/* if sprites aren't enabled, sprites get nothing */
1885 	if (is_sprite && !config->sprites_enabled)
1886 		return 0;
1887 
1888 	/* HSW allows LP1+ watermarks even with multiple pipes */
1889 	if (level == 0 || config->num_pipes_active > 1) {
1890 		fifo_size /= INTEL_INFO(dev)->num_pipes;
1891 
1892 		/*
1893 		 * For some reason the non self refresh
1894 		 * FIFO size is only half of the self
1895 		 * refresh FIFO size on ILK/SNB.
1896 		 */
1897 		if (INTEL_INFO(dev)->gen <= 6)
1898 			fifo_size /= 2;
1899 	}
1900 
1901 	if (config->sprites_enabled) {
1902 		/* level 0 is always calculated with 1:1 split */
1903 		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1904 			if (is_sprite)
1905 				fifo_size *= 5;
1906 			fifo_size /= 6;
1907 		} else {
1908 			fifo_size /= 2;
1909 		}
1910 	}
1911 
1912 	/* clamp to max that the registers can hold */
1913 	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1914 }
1915 
1916 /* Calculate the maximum cursor plane watermark */
1917 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1918 				      int level,
1919 				      const struct intel_wm_config *config)
1920 {
1921 	/* HSW LP1+ watermarks w/ multiple pipes */
1922 	if (level > 0 && config->num_pipes_active > 1)
1923 		return 64;
1924 
1925 	/* otherwise just report max that registers can hold */
1926 	return ilk_cursor_wm_reg_max(dev, level);
1927 }
1928 
1929 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1930 				    int level,
1931 				    const struct intel_wm_config *config,
1932 				    enum intel_ddb_partitioning ddb_partitioning,
1933 				    struct ilk_wm_maximums *max)
1934 {
1935 	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1936 	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1937 	max->cur = ilk_cursor_wm_max(dev, level, config);
1938 	max->fbc = ilk_fbc_wm_reg_max(dev);
1939 }
1940 
1941 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1942 					int level,
1943 					struct ilk_wm_maximums *max)
1944 {
1945 	max->pri = ilk_plane_wm_reg_max(dev, level, false);
1946 	max->spr = ilk_plane_wm_reg_max(dev, level, true);
1947 	max->cur = ilk_cursor_wm_reg_max(dev, level);
1948 	max->fbc = ilk_fbc_wm_reg_max(dev);
1949 }
1950 
1951 static bool ilk_validate_wm_level(int level,
1952 				  const struct ilk_wm_maximums *max,
1953 				  struct intel_wm_level *result)
1954 {
1955 	bool ret;
1956 
1957 	/* already determined to be invalid? */
1958 	if (!result->enable)
1959 		return false;
1960 
1961 	result->enable = result->pri_val <= max->pri &&
1962 			 result->spr_val <= max->spr &&
1963 			 result->cur_val <= max->cur;
1964 
1965 	ret = result->enable;
1966 
1967 	/*
1968 	 * HACK until we can pre-compute everything,
1969 	 * and thus fail gracefully if LP0 watermarks
1970 	 * are exceeded...
1971 	 */
1972 	if (level == 0 && !result->enable) {
1973 		if (result->pri_val > max->pri)
1974 			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1975 				      level, result->pri_val, max->pri);
1976 		if (result->spr_val > max->spr)
1977 			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1978 				      level, result->spr_val, max->spr);
1979 		if (result->cur_val > max->cur)
1980 			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1981 				      level, result->cur_val, max->cur);
1982 
1983 		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1984 		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1985 		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1986 		result->enable = true;
1987 	}
1988 
1989 	return ret;
1990 }
1991 
1992 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1993 				 const struct intel_crtc *intel_crtc,
1994 				 int level,
1995 				 struct intel_crtc_state *cstate,
1996 				 struct intel_plane_state *pristate,
1997 				 struct intel_plane_state *sprstate,
1998 				 struct intel_plane_state *curstate,
1999 				 struct intel_wm_level *result)
2000 {
2001 	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2002 	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2003 	uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2004 
2005 	/* WM1+ latency values stored in 0.5us units */
2006 	if (level > 0) {
2007 		pri_latency *= 5;
2008 		spr_latency *= 5;
2009 		cur_latency *= 5;
2010 	}
2011 
2012 	result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2013 					     pri_latency, level);
2014 	result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2015 	result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2016 	result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2017 	result->enable = true;
2018 }
2019 
2020 static uint32_t
2021 hsw_compute_linetime_wm(struct drm_device *dev,
2022 			struct intel_crtc_state *cstate)
2023 {
2024 	struct drm_i915_private *dev_priv = dev->dev_private;
2025 	const struct drm_display_mode *adjusted_mode =
2026 		&cstate->base.adjusted_mode;
2027 	u32 linetime, ips_linetime;
2028 
2029 	if (!cstate->base.active)
2030 		return 0;
2031 	if (WARN_ON(adjusted_mode->crtc_clock == 0))
2032 		return 0;
2033 	if (WARN_ON(dev_priv->cdclk_freq == 0))
2034 		return 0;
2035 
2036 	/* The WM are computed with base on how long it takes to fill a single
2037 	 * row at the given clock rate, multiplied by 8.
2038 	 * */
2039 	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2040 				     adjusted_mode->crtc_clock);
2041 	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2042 					 dev_priv->cdclk_freq);
2043 
2044 	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2045 	       PIPE_WM_LINETIME_TIME(linetime);
2046 }
2047 
2048 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2049 {
2050 	struct drm_i915_private *dev_priv = dev->dev_private;
2051 
2052 	if (IS_GEN9(dev)) {
2053 		uint32_t val;
2054 		int ret, i;
2055 		int level, max_level = ilk_wm_max_level(dev);
2056 
2057 		/* read the first set of memory latencies[0:3] */
2058 		val = 0; /* data0 to be programmed to 0 for first set */
2059 		mutex_lock(&dev_priv->rps.hw_lock);
2060 		ret = sandybridge_pcode_read(dev_priv,
2061 					     GEN9_PCODE_READ_MEM_LATENCY,
2062 					     &val);
2063 		mutex_unlock(&dev_priv->rps.hw_lock);
2064 
2065 		if (ret) {
2066 			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2067 			return;
2068 		}
2069 
2070 		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2071 		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2072 				GEN9_MEM_LATENCY_LEVEL_MASK;
2073 		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2074 				GEN9_MEM_LATENCY_LEVEL_MASK;
2075 		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2076 				GEN9_MEM_LATENCY_LEVEL_MASK;
2077 
2078 		/* read the second set of memory latencies[4:7] */
2079 		val = 1; /* data0 to be programmed to 1 for second set */
2080 		mutex_lock(&dev_priv->rps.hw_lock);
2081 		ret = sandybridge_pcode_read(dev_priv,
2082 					     GEN9_PCODE_READ_MEM_LATENCY,
2083 					     &val);
2084 		mutex_unlock(&dev_priv->rps.hw_lock);
2085 		if (ret) {
2086 			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2087 			return;
2088 		}
2089 
2090 		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2091 		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2092 				GEN9_MEM_LATENCY_LEVEL_MASK;
2093 		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2094 				GEN9_MEM_LATENCY_LEVEL_MASK;
2095 		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2096 				GEN9_MEM_LATENCY_LEVEL_MASK;
2097 
2098 		/*
2099 		 * WaWmMemoryReadLatency:skl
2100 		 *
2101 		 * punit doesn't take into account the read latency so we need
2102 		 * to add 2us to the various latency levels we retrieve from
2103 		 * the punit.
2104 		 *   - W0 is a bit special in that it's the only level that
2105 		 *   can't be disabled if we want to have display working, so
2106 		 *   we always add 2us there.
2107 		 *   - For levels >=1, punit returns 0us latency when they are
2108 		 *   disabled, so we respect that and don't add 2us then
2109 		 *
2110 		 * Additionally, if a level n (n > 1) has a 0us latency, all
2111 		 * levels m (m >= n) need to be disabled. We make sure to
2112 		 * sanitize the values out of the punit to satisfy this
2113 		 * requirement.
2114 		 */
2115 		wm[0] += 2;
2116 		for (level = 1; level <= max_level; level++)
2117 			if (wm[level] != 0)
2118 				wm[level] += 2;
2119 			else {
2120 				for (i = level + 1; i <= max_level; i++)
2121 					wm[i] = 0;
2122 
2123 				break;
2124 			}
2125 	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2126 		uint64_t sskpd = I915_READ64(MCH_SSKPD);
2127 
2128 		wm[0] = (sskpd >> 56) & 0xFF;
2129 		if (wm[0] == 0)
2130 			wm[0] = sskpd & 0xF;
2131 		wm[1] = (sskpd >> 4) & 0xFF;
2132 		wm[2] = (sskpd >> 12) & 0xFF;
2133 		wm[3] = (sskpd >> 20) & 0x1FF;
2134 		wm[4] = (sskpd >> 32) & 0x1FF;
2135 	} else if (INTEL_INFO(dev)->gen >= 6) {
2136 		uint32_t sskpd = I915_READ(MCH_SSKPD);
2137 
2138 		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2139 		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2140 		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2141 		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2142 	} else if (INTEL_INFO(dev)->gen >= 5) {
2143 		uint32_t mltr = I915_READ(MLTR_ILK);
2144 
2145 		/* ILK primary LP0 latency is 700 ns */
2146 		wm[0] = 7;
2147 		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2148 		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2149 	}
2150 }
2151 
2152 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2153 {
2154 	/* ILK sprite LP0 latency is 1300 ns */
2155 	if (INTEL_INFO(dev)->gen == 5)
2156 		wm[0] = 13;
2157 }
2158 
2159 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2160 {
2161 	/* ILK cursor LP0 latency is 1300 ns */
2162 	if (INTEL_INFO(dev)->gen == 5)
2163 		wm[0] = 13;
2164 
2165 	/* WaDoubleCursorLP3Latency:ivb */
2166 	if (IS_IVYBRIDGE(dev))
2167 		wm[3] *= 2;
2168 }
2169 
2170 int ilk_wm_max_level(const struct drm_device *dev)
2171 {
2172 	/* how many WM levels are we expecting */
2173 	if (INTEL_INFO(dev)->gen >= 9)
2174 		return 7;
2175 	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2176 		return 4;
2177 	else if (INTEL_INFO(dev)->gen >= 6)
2178 		return 3;
2179 	else
2180 		return 2;
2181 }
2182 
2183 static void intel_print_wm_latency(struct drm_device *dev,
2184 				   const char *name,
2185 				   const uint16_t wm[8])
2186 {
2187 	int level, max_level = ilk_wm_max_level(dev);
2188 
2189 	for (level = 0; level <= max_level; level++) {
2190 		unsigned int latency = wm[level];
2191 
2192 		if (latency == 0) {
2193 			DRM_ERROR("%s WM%d latency not provided\n",
2194 				  name, level);
2195 			continue;
2196 		}
2197 
2198 		/*
2199 		 * - latencies are in us on gen9.
2200 		 * - before then, WM1+ latency values are in 0.5us units
2201 		 */
2202 		if (IS_GEN9(dev))
2203 			latency *= 10;
2204 		else if (level > 0)
2205 			latency *= 5;
2206 
2207 		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2208 			      name, level, wm[level],
2209 			      latency / 10, latency % 10);
2210 	}
2211 }
2212 
2213 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2214 				    uint16_t wm[5], uint16_t min)
2215 {
2216 	int level, max_level = ilk_wm_max_level(dev_priv->dev);
2217 
2218 	if (wm[0] >= min)
2219 		return false;
2220 
2221 	wm[0] = max(wm[0], min);
2222 	for (level = 1; level <= max_level; level++)
2223 		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2224 
2225 	return true;
2226 }
2227 
2228 static void snb_wm_latency_quirk(struct drm_device *dev)
2229 {
2230 	struct drm_i915_private *dev_priv = dev->dev_private;
2231 	bool changed;
2232 
2233 	/*
2234 	 * The BIOS provided WM memory latency values are often
2235 	 * inadequate for high resolution displays. Adjust them.
2236 	 */
2237 	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2238 		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2239 		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2240 
2241 	if (!changed)
2242 		return;
2243 
2244 	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2245 	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2246 	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2247 	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2248 }
2249 
2250 static void ilk_setup_wm_latency(struct drm_device *dev)
2251 {
2252 	struct drm_i915_private *dev_priv = dev->dev_private;
2253 
2254 	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2255 
2256 	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2257 	       sizeof(dev_priv->wm.pri_latency));
2258 	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2259 	       sizeof(dev_priv->wm.pri_latency));
2260 
2261 	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2262 	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2263 
2264 	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2265 	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2266 	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2267 
2268 	if (IS_GEN6(dev))
2269 		snb_wm_latency_quirk(dev);
2270 }
2271 
2272 static void skl_setup_wm_latency(struct drm_device *dev)
2273 {
2274 	struct drm_i915_private *dev_priv = dev->dev_private;
2275 
2276 	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2277 	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2278 }
2279 
2280 /* Compute new watermarks for the pipe */
2281 static int ilk_compute_pipe_wm(struct intel_crtc *intel_crtc,
2282 			       struct drm_atomic_state *state)
2283 {
2284 	struct intel_pipe_wm *pipe_wm;
2285 	struct drm_device *dev = intel_crtc->base.dev;
2286 	const struct drm_i915_private *dev_priv = dev->dev_private;
2287 	struct intel_crtc_state *cstate = NULL;
2288 	struct intel_plane *intel_plane;
2289 	struct drm_plane_state *ps;
2290 	struct intel_plane_state *pristate = NULL;
2291 	struct intel_plane_state *sprstate = NULL;
2292 	struct intel_plane_state *curstate = NULL;
2293 	int level, max_level = ilk_wm_max_level(dev);
2294 	/* LP0 watermark maximums depend on this pipe alone */
2295 	struct intel_wm_config config = {
2296 		.num_pipes_active = 1,
2297 	};
2298 	struct ilk_wm_maximums max;
2299 
2300 	cstate = intel_atomic_get_crtc_state(state, intel_crtc);
2301 	if (IS_ERR(cstate))
2302 		return PTR_ERR(cstate);
2303 
2304 	pipe_wm = &cstate->wm.optimal.ilk;
2305 	memset(pipe_wm, 0, sizeof(*pipe_wm));
2306 
2307 	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2308 		ps = drm_atomic_get_plane_state(state,
2309 						&intel_plane->base);
2310 		if (IS_ERR(ps))
2311 			return PTR_ERR(ps);
2312 
2313 		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2314 			pristate = to_intel_plane_state(ps);
2315 		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2316 			sprstate = to_intel_plane_state(ps);
2317 		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2318 			curstate = to_intel_plane_state(ps);
2319 	}
2320 
2321 	config.sprites_enabled = sprstate->visible;
2322 	config.sprites_scaled = sprstate->visible &&
2323 		(drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
2324 		drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
2325 
2326 	pipe_wm->pipe_enabled = cstate->base.active;
2327 	pipe_wm->sprites_enabled = config.sprites_enabled;
2328 	pipe_wm->sprites_scaled = config.sprites_scaled;
2329 
2330 	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2331 	if (INTEL_INFO(dev)->gen <= 6 && sprstate->visible)
2332 		max_level = 1;
2333 
2334 	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2335 	if (config.sprites_scaled)
2336 		max_level = 0;
2337 
2338 	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2339 			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
2340 
2341 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2342 		pipe_wm->linetime = hsw_compute_linetime_wm(dev, cstate);
2343 
2344 	/* LP0 watermarks always use 1/2 DDB partitioning */
2345 	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2346 
2347 	/* At least LP0 must be valid */
2348 	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2349 		return -EINVAL;
2350 
2351 	ilk_compute_wm_reg_maximums(dev, 1, &max);
2352 
2353 	for (level = 1; level <= max_level; level++) {
2354 		struct intel_wm_level wm = {};
2355 
2356 		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2357 				     pristate, sprstate, curstate, &wm);
2358 
2359 		/*
2360 		 * Disable any watermark level that exceeds the
2361 		 * register maximums since such watermarks are
2362 		 * always invalid.
2363 		 */
2364 		if (!ilk_validate_wm_level(level, &max, &wm))
2365 			break;
2366 
2367 		pipe_wm->wm[level] = wm;
2368 	}
2369 
2370 	return 0;
2371 }
2372 
2373 /*
2374  * Merge the watermarks from all active pipes for a specific level.
2375  */
2376 static void ilk_merge_wm_level(struct drm_device *dev,
2377 			       int level,
2378 			       struct intel_wm_level *ret_wm)
2379 {
2380 	struct intel_crtc *intel_crtc;
2381 
2382 	ret_wm->enable = true;
2383 
2384 	for_each_intel_crtc(dev, intel_crtc) {
2385 		const struct intel_crtc_state *cstate =
2386 			to_intel_crtc_state(intel_crtc->base.state);
2387 		const struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
2388 		const struct intel_wm_level *wm = &active->wm[level];
2389 
2390 		if (!active->pipe_enabled)
2391 			continue;
2392 
2393 		/*
2394 		 * The watermark values may have been used in the past,
2395 		 * so we must maintain them in the registers for some
2396 		 * time even if the level is now disabled.
2397 		 */
2398 		if (!wm->enable)
2399 			ret_wm->enable = false;
2400 
2401 		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2402 		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2403 		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2404 		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2405 	}
2406 }
2407 
2408 /*
2409  * Merge all low power watermarks for all active pipes.
2410  */
2411 static void ilk_wm_merge(struct drm_device *dev,
2412 			 const struct intel_wm_config *config,
2413 			 const struct ilk_wm_maximums *max,
2414 			 struct intel_pipe_wm *merged)
2415 {
2416 	struct drm_i915_private *dev_priv = dev->dev_private;
2417 	int level, max_level = ilk_wm_max_level(dev);
2418 	int last_enabled_level = max_level;
2419 
2420 	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2421 	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2422 	    config->num_pipes_active > 1)
2423 		return;
2424 
2425 	/* ILK: FBC WM must be disabled always */
2426 	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2427 
2428 	/* merge each WM1+ level */
2429 	for (level = 1; level <= max_level; level++) {
2430 		struct intel_wm_level *wm = &merged->wm[level];
2431 
2432 		ilk_merge_wm_level(dev, level, wm);
2433 
2434 		if (level > last_enabled_level)
2435 			wm->enable = false;
2436 		else if (!ilk_validate_wm_level(level, max, wm))
2437 			/* make sure all following levels get disabled */
2438 			last_enabled_level = level - 1;
2439 
2440 		/*
2441 		 * The spec says it is preferred to disable
2442 		 * FBC WMs instead of disabling a WM level.
2443 		 */
2444 		if (wm->fbc_val > max->fbc) {
2445 			if (wm->enable)
2446 				merged->fbc_wm_enabled = false;
2447 			wm->fbc_val = 0;
2448 		}
2449 	}
2450 
2451 	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2452 	/*
2453 	 * FIXME this is racy. FBC might get enabled later.
2454 	 * What we should check here is whether FBC can be
2455 	 * enabled sometime later.
2456 	 */
2457 	if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2458 	    intel_fbc_is_active(dev_priv)) {
2459 		for (level = 2; level <= max_level; level++) {
2460 			struct intel_wm_level *wm = &merged->wm[level];
2461 
2462 			wm->enable = false;
2463 		}
2464 	}
2465 }
2466 
2467 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2468 {
2469 	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2470 	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2471 }
2472 
2473 /* The value we need to program into the WM_LPx latency field */
2474 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2475 {
2476 	struct drm_i915_private *dev_priv = dev->dev_private;
2477 
2478 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2479 		return 2 * level;
2480 	else
2481 		return dev_priv->wm.pri_latency[level];
2482 }
2483 
2484 static void ilk_compute_wm_results(struct drm_device *dev,
2485 				   const struct intel_pipe_wm *merged,
2486 				   enum intel_ddb_partitioning partitioning,
2487 				   struct ilk_wm_values *results)
2488 {
2489 	struct intel_crtc *intel_crtc;
2490 	int level, wm_lp;
2491 
2492 	results->enable_fbc_wm = merged->fbc_wm_enabled;
2493 	results->partitioning = partitioning;
2494 
2495 	/* LP1+ register values */
2496 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2497 		const struct intel_wm_level *r;
2498 
2499 		level = ilk_wm_lp_to_level(wm_lp, merged);
2500 
2501 		r = &merged->wm[level];
2502 
2503 		/*
2504 		 * Maintain the watermark values even if the level is
2505 		 * disabled. Doing otherwise could cause underruns.
2506 		 */
2507 		results->wm_lp[wm_lp - 1] =
2508 			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2509 			(r->pri_val << WM1_LP_SR_SHIFT) |
2510 			r->cur_val;
2511 
2512 		if (r->enable)
2513 			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2514 
2515 		if (INTEL_INFO(dev)->gen >= 8)
2516 			results->wm_lp[wm_lp - 1] |=
2517 				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2518 		else
2519 			results->wm_lp[wm_lp - 1] |=
2520 				r->fbc_val << WM1_LP_FBC_SHIFT;
2521 
2522 		/*
2523 		 * Always set WM1S_LP_EN when spr_val != 0, even if the
2524 		 * level is disabled. Doing otherwise could cause underruns.
2525 		 */
2526 		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2527 			WARN_ON(wm_lp != 1);
2528 			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2529 		} else
2530 			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2531 	}
2532 
2533 	/* LP0 register values */
2534 	for_each_intel_crtc(dev, intel_crtc) {
2535 		const struct intel_crtc_state *cstate =
2536 			to_intel_crtc_state(intel_crtc->base.state);
2537 		enum i915_pipe pipe = intel_crtc->pipe;
2538 		const struct intel_wm_level *r = &cstate->wm.optimal.ilk.wm[0];
2539 
2540 		if (WARN_ON(!r->enable))
2541 			continue;
2542 
2543 		results->wm_linetime[pipe] = cstate->wm.optimal.ilk.linetime;
2544 
2545 		results->wm_pipe[pipe] =
2546 			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2547 			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2548 			r->cur_val;
2549 	}
2550 }
2551 
2552 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2553  * case both are at the same level. Prefer r1 in case they're the same. */
2554 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2555 						  struct intel_pipe_wm *r1,
2556 						  struct intel_pipe_wm *r2)
2557 {
2558 	int level, max_level = ilk_wm_max_level(dev);
2559 	int level1 = 0, level2 = 0;
2560 
2561 	for (level = 1; level <= max_level; level++) {
2562 		if (r1->wm[level].enable)
2563 			level1 = level;
2564 		if (r2->wm[level].enable)
2565 			level2 = level;
2566 	}
2567 
2568 	if (level1 == level2) {
2569 		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2570 			return r2;
2571 		else
2572 			return r1;
2573 	} else if (level1 > level2) {
2574 		return r1;
2575 	} else {
2576 		return r2;
2577 	}
2578 }
2579 
2580 /* dirty bits used to track which watermarks need changes */
2581 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2582 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2583 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2584 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2585 #define WM_DIRTY_FBC (1 << 24)
2586 #define WM_DIRTY_DDB (1 << 25)
2587 
2588 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2589 					 const struct ilk_wm_values *old,
2590 					 const struct ilk_wm_values *new)
2591 {
2592 	unsigned int dirty = 0;
2593 	enum i915_pipe pipe;
2594 	int wm_lp;
2595 
2596 	for_each_pipe(dev_priv, pipe) {
2597 		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2598 			dirty |= WM_DIRTY_LINETIME(pipe);
2599 			/* Must disable LP1+ watermarks too */
2600 			dirty |= WM_DIRTY_LP_ALL;
2601 		}
2602 
2603 		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2604 			dirty |= WM_DIRTY_PIPE(pipe);
2605 			/* Must disable LP1+ watermarks too */
2606 			dirty |= WM_DIRTY_LP_ALL;
2607 		}
2608 	}
2609 
2610 	if (old->enable_fbc_wm != new->enable_fbc_wm) {
2611 		dirty |= WM_DIRTY_FBC;
2612 		/* Must disable LP1+ watermarks too */
2613 		dirty |= WM_DIRTY_LP_ALL;
2614 	}
2615 
2616 	if (old->partitioning != new->partitioning) {
2617 		dirty |= WM_DIRTY_DDB;
2618 		/* Must disable LP1+ watermarks too */
2619 		dirty |= WM_DIRTY_LP_ALL;
2620 	}
2621 
2622 	/* LP1+ watermarks already deemed dirty, no need to continue */
2623 	if (dirty & WM_DIRTY_LP_ALL)
2624 		return dirty;
2625 
2626 	/* Find the lowest numbered LP1+ watermark in need of an update... */
2627 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2628 		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2629 		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2630 			break;
2631 	}
2632 
2633 	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2634 	for (; wm_lp <= 3; wm_lp++)
2635 		dirty |= WM_DIRTY_LP(wm_lp);
2636 
2637 	return dirty;
2638 }
2639 
2640 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2641 			       unsigned int dirty)
2642 {
2643 	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2644 	bool changed = false;
2645 
2646 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2647 		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2648 		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2649 		changed = true;
2650 	}
2651 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2652 		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2653 		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2654 		changed = true;
2655 	}
2656 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2657 		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2658 		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2659 		changed = true;
2660 	}
2661 
2662 	/*
2663 	 * Don't touch WM1S_LP_EN here.
2664 	 * Doing so could cause underruns.
2665 	 */
2666 
2667 	return changed;
2668 }
2669 
2670 /*
2671  * The spec says we shouldn't write when we don't need, because every write
2672  * causes WMs to be re-evaluated, expending some power.
2673  */
2674 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2675 				struct ilk_wm_values *results)
2676 {
2677 	struct drm_device *dev = dev_priv->dev;
2678 	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2679 	unsigned int dirty;
2680 	uint32_t val;
2681 
2682 	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2683 	if (!dirty)
2684 		return;
2685 
2686 	_ilk_disable_lp_wm(dev_priv, dirty);
2687 
2688 	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2689 		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2690 	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2691 		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2692 	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2693 		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2694 
2695 	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2696 		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2697 	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2698 		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2699 	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2700 		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2701 
2702 	if (dirty & WM_DIRTY_DDB) {
2703 		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2704 			val = I915_READ(WM_MISC);
2705 			if (results->partitioning == INTEL_DDB_PART_1_2)
2706 				val &= ~WM_MISC_DATA_PARTITION_5_6;
2707 			else
2708 				val |= WM_MISC_DATA_PARTITION_5_6;
2709 			I915_WRITE(WM_MISC, val);
2710 		} else {
2711 			val = I915_READ(DISP_ARB_CTL2);
2712 			if (results->partitioning == INTEL_DDB_PART_1_2)
2713 				val &= ~DISP_DATA_PARTITION_5_6;
2714 			else
2715 				val |= DISP_DATA_PARTITION_5_6;
2716 			I915_WRITE(DISP_ARB_CTL2, val);
2717 		}
2718 	}
2719 
2720 	if (dirty & WM_DIRTY_FBC) {
2721 		val = I915_READ(DISP_ARB_CTL);
2722 		if (results->enable_fbc_wm)
2723 			val &= ~DISP_FBC_WM_DIS;
2724 		else
2725 			val |= DISP_FBC_WM_DIS;
2726 		I915_WRITE(DISP_ARB_CTL, val);
2727 	}
2728 
2729 	if (dirty & WM_DIRTY_LP(1) &&
2730 	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2731 		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2732 
2733 	if (INTEL_INFO(dev)->gen >= 7) {
2734 		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2735 			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2736 		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2737 			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2738 	}
2739 
2740 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2741 		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2742 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2743 		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2744 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2745 		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2746 
2747 	dev_priv->wm.hw = *results;
2748 }
2749 
2750 static bool ilk_disable_lp_wm(struct drm_device *dev)
2751 {
2752 	struct drm_i915_private *dev_priv = dev->dev_private;
2753 
2754 	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2755 }
2756 
2757 /*
2758  * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2759  * different active planes.
2760  */
2761 
2762 #define SKL_DDB_SIZE		896	/* in blocks */
2763 #define BXT_DDB_SIZE		512
2764 
2765 /*
2766  * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
2767  * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
2768  * other universal planes are in indices 1..n.  Note that this may leave unused
2769  * indices between the top "sprite" plane and the cursor.
2770  */
2771 static int
2772 skl_wm_plane_id(const struct intel_plane *plane)
2773 {
2774 	switch (plane->base.type) {
2775 	case DRM_PLANE_TYPE_PRIMARY:
2776 		return 0;
2777 	case DRM_PLANE_TYPE_CURSOR:
2778 		return PLANE_CURSOR;
2779 	case DRM_PLANE_TYPE_OVERLAY:
2780 		return plane->plane + 1;
2781 	default:
2782 		MISSING_CASE(plane->base.type);
2783 		return plane->plane;
2784 	}
2785 }
2786 
2787 static void
2788 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2789 				   const struct intel_crtc_state *cstate,
2790 				   const struct intel_wm_config *config,
2791 				   struct skl_ddb_entry *alloc /* out */)
2792 {
2793 	struct drm_crtc *for_crtc = cstate->base.crtc;
2794 	struct drm_crtc *crtc;
2795 	unsigned int pipe_size, ddb_size;
2796 	int nth_active_pipe;
2797 
2798 	if (!cstate->base.active) {
2799 		alloc->start = 0;
2800 		alloc->end = 0;
2801 		return;
2802 	}
2803 
2804 	if (IS_BROXTON(dev))
2805 		ddb_size = BXT_DDB_SIZE;
2806 	else
2807 		ddb_size = SKL_DDB_SIZE;
2808 
2809 	ddb_size -= 4; /* 4 blocks for bypass path allocation */
2810 
2811 	nth_active_pipe = 0;
2812 	for_each_crtc(dev, crtc) {
2813 		if (!to_intel_crtc(crtc)->active)
2814 			continue;
2815 
2816 		if (crtc == for_crtc)
2817 			break;
2818 
2819 		nth_active_pipe++;
2820 	}
2821 
2822 	pipe_size = ddb_size / config->num_pipes_active;
2823 	alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2824 	alloc->end = alloc->start + pipe_size;
2825 }
2826 
2827 static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
2828 {
2829 	if (config->num_pipes_active == 1)
2830 		return 32;
2831 
2832 	return 8;
2833 }
2834 
2835 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2836 {
2837 	entry->start = reg & 0x3ff;
2838 	entry->end = (reg >> 16) & 0x3ff;
2839 	if (entry->end)
2840 		entry->end += 1;
2841 }
2842 
2843 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2844 			  struct skl_ddb_allocation *ddb /* out */)
2845 {
2846 	enum i915_pipe pipe;
2847 	int plane;
2848 	u32 val;
2849 
2850 	memset(ddb, 0, sizeof(*ddb));
2851 
2852 	for_each_pipe(dev_priv, pipe) {
2853 		enum intel_display_power_domain power_domain;
2854 
2855 		power_domain = POWER_DOMAIN_PIPE(pipe);
2856 		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2857 			continue;
2858 
2859 		for_each_plane(dev_priv, pipe, plane) {
2860 			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2861 			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2862 						   val);
2863 		}
2864 
2865 		val = I915_READ(CUR_BUF_CFG(pipe));
2866 		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
2867 					   val);
2868 
2869 		intel_display_power_put(dev_priv, power_domain);
2870 	}
2871 }
2872 
2873 static unsigned int
2874 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
2875 			     struct drm_plane_state *pstate,
2876 			     int y)
2877 {
2878 	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
2879 	struct drm_framebuffer *fb = pstate->fb;
2880 	uint32_t width = 0, height = 0;
2881 
2882 	width = drm_rect_width(&intel_pstate->src) >> 16;
2883 	height = drm_rect_height(&intel_pstate->src) >> 16;
2884 
2885 	if (intel_rotation_90_or_270(pstate->rotation))
2886 		swap(width, height);
2887 
2888 	/* for planar format */
2889 	if (fb->pixel_format == DRM_FORMAT_NV12) {
2890 		if (y)  /* y-plane data rate */
2891 			return width * height *
2892 				drm_format_plane_cpp(fb->pixel_format, 0);
2893 		else    /* uv-plane data rate */
2894 			return (width / 2) * (height / 2) *
2895 				drm_format_plane_cpp(fb->pixel_format, 1);
2896 	}
2897 
2898 	/* for packed formats */
2899 	return width * height * drm_format_plane_cpp(fb->pixel_format, 0);
2900 }
2901 
2902 /*
2903  * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2904  * a 8192x4096@32bpp framebuffer:
2905  *   3 * 4096 * 8192  * 4 < 2^32
2906  */
2907 static unsigned int
2908 skl_get_total_relative_data_rate(const struct intel_crtc_state *cstate)
2909 {
2910 	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2911 	struct drm_device *dev = intel_crtc->base.dev;
2912 	struct intel_plane *intel_plane;
2913 	unsigned int total_data_rate = 0;
2914 
2915 	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2916 		struct drm_plane_state *pstate = intel_plane->base.state;
2917 
2918 		if (pstate->fb == NULL)
2919 			continue;
2920 
2921 		if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2922 			continue;
2923 
2924 		/* packed/uv */
2925 		total_data_rate += skl_plane_relative_data_rate(cstate,
2926 								pstate,
2927 								0);
2928 
2929 		if (pstate->fb->pixel_format == DRM_FORMAT_NV12)
2930 			/* y-plane */
2931 			total_data_rate += skl_plane_relative_data_rate(cstate,
2932 									pstate,
2933 									1);
2934 	}
2935 
2936 	return total_data_rate;
2937 }
2938 
2939 static void
2940 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
2941 		      struct skl_ddb_allocation *ddb /* out */)
2942 {
2943 	struct drm_crtc *crtc = cstate->base.crtc;
2944 	struct drm_device *dev = crtc->dev;
2945 	struct drm_i915_private *dev_priv = to_i915(dev);
2946 	struct intel_wm_config *config = &dev_priv->wm.config;
2947 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2948 	struct intel_plane *intel_plane;
2949 	enum i915_pipe pipe = intel_crtc->pipe;
2950 	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2951 	uint16_t alloc_size, start, cursor_blocks;
2952 	uint16_t minimum[I915_MAX_PLANES];
2953 	uint16_t y_minimum[I915_MAX_PLANES];
2954 	unsigned int total_data_rate;
2955 
2956 	skl_ddb_get_pipe_allocation_limits(dev, cstate, config, alloc);
2957 	alloc_size = skl_ddb_entry_size(alloc);
2958 	if (alloc_size == 0) {
2959 		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2960 		memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
2961 		       sizeof(ddb->plane[pipe][PLANE_CURSOR]));
2962 		return;
2963 	}
2964 
2965 	cursor_blocks = skl_cursor_allocation(config);
2966 	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
2967 	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
2968 
2969 	alloc_size -= cursor_blocks;
2970 	alloc->end -= cursor_blocks;
2971 
2972 	/* 1. Allocate the mininum required blocks for each active plane */
2973 	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2974 		struct drm_plane *plane = &intel_plane->base;
2975 		struct drm_framebuffer *fb = plane->state->fb;
2976 		int id = skl_wm_plane_id(intel_plane);
2977 
2978 		if (!to_intel_plane_state(plane->state)->visible)
2979 			continue;
2980 
2981 		if (plane->type == DRM_PLANE_TYPE_CURSOR)
2982 			continue;
2983 
2984 		minimum[id] = 8;
2985 		alloc_size -= minimum[id];
2986 		y_minimum[id] = (fb->pixel_format == DRM_FORMAT_NV12) ? 8 : 0;
2987 		alloc_size -= y_minimum[id];
2988 	}
2989 
2990 	/*
2991 	 * 2. Distribute the remaining space in proportion to the amount of
2992 	 * data each plane needs to fetch from memory.
2993 	 *
2994 	 * FIXME: we may not allocate every single block here.
2995 	 */
2996 	total_data_rate = skl_get_total_relative_data_rate(cstate);
2997 
2998 	start = alloc->start;
2999 	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3000 		struct drm_plane *plane = &intel_plane->base;
3001 		struct drm_plane_state *pstate = intel_plane->base.state;
3002 		unsigned int data_rate, y_data_rate;
3003 		uint16_t plane_blocks, y_plane_blocks = 0;
3004 		int id = skl_wm_plane_id(intel_plane);
3005 
3006 		if (!to_intel_plane_state(pstate)->visible)
3007 			continue;
3008 		if (plane->type == DRM_PLANE_TYPE_CURSOR)
3009 			continue;
3010 
3011 		data_rate = skl_plane_relative_data_rate(cstate, pstate, 0);
3012 
3013 		/*
3014 		 * allocation for (packed formats) or (uv-plane part of planar format):
3015 		 * promote the expression to 64 bits to avoid overflowing, the
3016 		 * result is < available as data_rate / total_data_rate < 1
3017 		 */
3018 		plane_blocks = minimum[id];
3019 		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
3020 					total_data_rate);
3021 
3022 		ddb->plane[pipe][id].start = start;
3023 		ddb->plane[pipe][id].end = start + plane_blocks;
3024 
3025 		start += plane_blocks;
3026 
3027 		/*
3028 		 * allocation for y_plane part of planar format:
3029 		 */
3030 		if (pstate->fb->pixel_format == DRM_FORMAT_NV12) {
3031 			y_data_rate = skl_plane_relative_data_rate(cstate,
3032 								   pstate,
3033 								   1);
3034 			y_plane_blocks = y_minimum[id];
3035 			y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
3036 						total_data_rate);
3037 
3038 			ddb->y_plane[pipe][id].start = start;
3039 			ddb->y_plane[pipe][id].end = start + y_plane_blocks;
3040 
3041 			start += y_plane_blocks;
3042 		}
3043 
3044 	}
3045 
3046 }
3047 
3048 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3049 {
3050 	/* TODO: Take into account the scalers once we support them */
3051 	return config->base.adjusted_mode.crtc_clock;
3052 }
3053 
3054 /*
3055  * The max latency should be 257 (max the punit can code is 255 and we add 2us
3056  * for the read latency) and cpp should always be <= 8, so that
3057  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3058  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3059 */
3060 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3061 {
3062 	uint32_t wm_intermediate_val, ret;
3063 
3064 	if (latency == 0)
3065 		return UINT_MAX;
3066 
3067 	wm_intermediate_val = latency * pixel_rate * cpp / 512;
3068 	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3069 
3070 	return ret;
3071 }
3072 
3073 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3074 			       uint32_t horiz_pixels, uint8_t cpp,
3075 			       uint64_t tiling, uint32_t latency)
3076 {
3077 	uint32_t ret;
3078 	uint32_t plane_bytes_per_line, plane_blocks_per_line;
3079 	uint32_t wm_intermediate_val;
3080 
3081 	if (latency == 0)
3082 		return UINT_MAX;
3083 
3084 	plane_bytes_per_line = horiz_pixels * cpp;
3085 
3086 	if (tiling == I915_FORMAT_MOD_Y_TILED ||
3087 	    tiling == I915_FORMAT_MOD_Yf_TILED) {
3088 		plane_bytes_per_line *= 4;
3089 		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3090 		plane_blocks_per_line /= 4;
3091 	} else {
3092 		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3093 	}
3094 
3095 	wm_intermediate_val = latency * pixel_rate;
3096 	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3097 				plane_blocks_per_line;
3098 
3099 	return ret;
3100 }
3101 
3102 static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
3103 				       const struct intel_crtc *intel_crtc)
3104 {
3105 	struct drm_device *dev = intel_crtc->base.dev;
3106 	struct drm_i915_private *dev_priv = dev->dev_private;
3107 	const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
3108 
3109 	/*
3110 	 * If ddb allocation of pipes changed, it may require recalculation of
3111 	 * watermarks
3112 	 */
3113 	if (memcmp(new_ddb->pipe, cur_ddb->pipe, sizeof(new_ddb->pipe)))
3114 		return true;
3115 
3116 	return false;
3117 }
3118 
3119 static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3120 				 struct intel_crtc_state *cstate,
3121 				 struct intel_plane *intel_plane,
3122 				 uint16_t ddb_allocation,
3123 				 int level,
3124 				 uint16_t *out_blocks, /* out */
3125 				 uint8_t *out_lines /* out */)
3126 {
3127 	struct drm_plane *plane = &intel_plane->base;
3128 	struct drm_framebuffer *fb = plane->state->fb;
3129 	struct intel_plane_state *intel_pstate =
3130 					to_intel_plane_state(plane->state);
3131 	uint32_t latency = dev_priv->wm.skl_latency[level];
3132 	uint32_t method1, method2;
3133 	uint32_t plane_bytes_per_line, plane_blocks_per_line;
3134 	uint32_t res_blocks, res_lines;
3135 	uint32_t selected_result;
3136 	uint8_t cpp;
3137 	uint32_t width = 0, height = 0;
3138 
3139 	if (latency == 0 || !cstate->base.active || !intel_pstate->visible)
3140 		return false;
3141 
3142 	width = drm_rect_width(&intel_pstate->src) >> 16;
3143 	height = drm_rect_height(&intel_pstate->src) >> 16;
3144 
3145 	if (intel_rotation_90_or_270(plane->state->rotation))
3146 		swap(width, height);
3147 
3148 	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3149 	method1 = skl_wm_method1(skl_pipe_pixel_rate(cstate),
3150 				 cpp, latency);
3151 	method2 = skl_wm_method2(skl_pipe_pixel_rate(cstate),
3152 				 cstate->base.adjusted_mode.crtc_htotal,
3153 				 width,
3154 				 cpp,
3155 				 fb->modifier[0],
3156 				 latency);
3157 
3158 	plane_bytes_per_line = width * cpp;
3159 	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3160 
3161 	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3162 	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3163 		uint32_t min_scanlines = 4;
3164 		uint32_t y_tile_minimum;
3165 		if (intel_rotation_90_or_270(plane->state->rotation)) {
3166 			int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3167 				drm_format_plane_cpp(fb->pixel_format, 1) :
3168 				drm_format_plane_cpp(fb->pixel_format, 0);
3169 
3170 			switch (cpp) {
3171 			case 1:
3172 				min_scanlines = 16;
3173 				break;
3174 			case 2:
3175 				min_scanlines = 8;
3176 				break;
3177 			case 8:
3178 				WARN(1, "Unsupported pixel depth for rotation");
3179 			}
3180 		}
3181 		y_tile_minimum = plane_blocks_per_line * min_scanlines;
3182 		selected_result = max(method2, y_tile_minimum);
3183 	} else {
3184 		if ((ddb_allocation / plane_blocks_per_line) >= 1)
3185 			selected_result = min(method1, method2);
3186 		else
3187 			selected_result = method1;
3188 	}
3189 
3190 	res_blocks = selected_result + 1;
3191 	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3192 
3193 	if (level >= 1 && level <= 7) {
3194 		if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3195 		    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3196 			res_lines += 4;
3197 		else
3198 			res_blocks++;
3199 	}
3200 
3201 	if (res_blocks >= ddb_allocation || res_lines > 31)
3202 		return false;
3203 
3204 	*out_blocks = res_blocks;
3205 	*out_lines = res_lines;
3206 
3207 	return true;
3208 }
3209 
3210 static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3211 				 struct skl_ddb_allocation *ddb,
3212 				 struct intel_crtc_state *cstate,
3213 				 int level,
3214 				 struct skl_wm_level *result)
3215 {
3216 	struct drm_device *dev = dev_priv->dev;
3217 	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3218 	struct intel_plane *intel_plane;
3219 	uint16_t ddb_blocks;
3220 	enum i915_pipe pipe = intel_crtc->pipe;
3221 
3222 	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3223 		int i = skl_wm_plane_id(intel_plane);
3224 
3225 		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3226 
3227 		result->plane_en[i] = skl_compute_plane_wm(dev_priv,
3228 						cstate,
3229 						intel_plane,
3230 						ddb_blocks,
3231 						level,
3232 						&result->plane_res_b[i],
3233 						&result->plane_res_l[i]);
3234 	}
3235 }
3236 
3237 static uint32_t
3238 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3239 {
3240 	if (!cstate->base.active)
3241 		return 0;
3242 
3243 	if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3244 		return 0;
3245 
3246 	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3247 			    skl_pipe_pixel_rate(cstate));
3248 }
3249 
3250 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3251 				      struct skl_wm_level *trans_wm /* out */)
3252 {
3253 	struct drm_crtc *crtc = cstate->base.crtc;
3254 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3255 	struct intel_plane *intel_plane;
3256 
3257 	if (!cstate->base.active)
3258 		return;
3259 
3260 	/* Until we know more, just disable transition WMs */
3261 	for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
3262 		int i = skl_wm_plane_id(intel_plane);
3263 
3264 		trans_wm->plane_en[i] = false;
3265 	}
3266 }
3267 
3268 static void skl_compute_pipe_wm(struct intel_crtc_state *cstate,
3269 				struct skl_ddb_allocation *ddb,
3270 				struct skl_pipe_wm *pipe_wm)
3271 {
3272 	struct drm_device *dev = cstate->base.crtc->dev;
3273 	const struct drm_i915_private *dev_priv = dev->dev_private;
3274 	int level, max_level = ilk_wm_max_level(dev);
3275 
3276 	for (level = 0; level <= max_level; level++) {
3277 		skl_compute_wm_level(dev_priv, ddb, cstate,
3278 				     level, &pipe_wm->wm[level]);
3279 	}
3280 	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3281 
3282 	skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3283 }
3284 
3285 static void skl_compute_wm_results(struct drm_device *dev,
3286 				   struct skl_pipe_wm *p_wm,
3287 				   struct skl_wm_values *r,
3288 				   struct intel_crtc *intel_crtc)
3289 {
3290 	int level, max_level = ilk_wm_max_level(dev);
3291 	enum i915_pipe pipe = intel_crtc->pipe;
3292 	uint32_t temp;
3293 	int i;
3294 
3295 	for (level = 0; level <= max_level; level++) {
3296 		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3297 			temp = 0;
3298 
3299 			temp |= p_wm->wm[level].plane_res_l[i] <<
3300 					PLANE_WM_LINES_SHIFT;
3301 			temp |= p_wm->wm[level].plane_res_b[i];
3302 			if (p_wm->wm[level].plane_en[i])
3303 				temp |= PLANE_WM_EN;
3304 
3305 			r->plane[pipe][i][level] = temp;
3306 		}
3307 
3308 		temp = 0;
3309 
3310 		temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3311 		temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3312 
3313 		if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3314 			temp |= PLANE_WM_EN;
3315 
3316 		r->plane[pipe][PLANE_CURSOR][level] = temp;
3317 
3318 	}
3319 
3320 	/* transition WMs */
3321 	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3322 		temp = 0;
3323 		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3324 		temp |= p_wm->trans_wm.plane_res_b[i];
3325 		if (p_wm->trans_wm.plane_en[i])
3326 			temp |= PLANE_WM_EN;
3327 
3328 		r->plane_trans[pipe][i] = temp;
3329 	}
3330 
3331 	temp = 0;
3332 	temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3333 	temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
3334 	if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3335 		temp |= PLANE_WM_EN;
3336 
3337 	r->plane_trans[pipe][PLANE_CURSOR] = temp;
3338 
3339 	r->wm_linetime[pipe] = p_wm->linetime;
3340 }
3341 
3342 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
3343 				i915_reg_t reg,
3344 				const struct skl_ddb_entry *entry)
3345 {
3346 	if (entry->end)
3347 		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3348 	else
3349 		I915_WRITE(reg, 0);
3350 }
3351 
3352 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3353 				const struct skl_wm_values *new)
3354 {
3355 	struct drm_device *dev = dev_priv->dev;
3356 	struct intel_crtc *crtc;
3357 
3358 	for_each_intel_crtc(dev, crtc) {
3359 		int i, level, max_level = ilk_wm_max_level(dev);
3360 		enum i915_pipe pipe = crtc->pipe;
3361 
3362 		if (!new->dirty[pipe])
3363 			continue;
3364 
3365 		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3366 
3367 		for (level = 0; level <= max_level; level++) {
3368 			for (i = 0; i < intel_num_planes(crtc); i++)
3369 				I915_WRITE(PLANE_WM(pipe, i, level),
3370 					   new->plane[pipe][i][level]);
3371 			I915_WRITE(CUR_WM(pipe, level),
3372 				   new->plane[pipe][PLANE_CURSOR][level]);
3373 		}
3374 		for (i = 0; i < intel_num_planes(crtc); i++)
3375 			I915_WRITE(PLANE_WM_TRANS(pipe, i),
3376 				   new->plane_trans[pipe][i]);
3377 		I915_WRITE(CUR_WM_TRANS(pipe),
3378 			   new->plane_trans[pipe][PLANE_CURSOR]);
3379 
3380 		for (i = 0; i < intel_num_planes(crtc); i++) {
3381 			skl_ddb_entry_write(dev_priv,
3382 					    PLANE_BUF_CFG(pipe, i),
3383 					    &new->ddb.plane[pipe][i]);
3384 			skl_ddb_entry_write(dev_priv,
3385 					    PLANE_NV12_BUF_CFG(pipe, i),
3386 					    &new->ddb.y_plane[pipe][i]);
3387 		}
3388 
3389 		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3390 				    &new->ddb.plane[pipe][PLANE_CURSOR]);
3391 	}
3392 }
3393 
3394 /*
3395  * When setting up a new DDB allocation arrangement, we need to correctly
3396  * sequence the times at which the new allocations for the pipes are taken into
3397  * account or we'll have pipes fetching from space previously allocated to
3398  * another pipe.
3399  *
3400  * Roughly the sequence looks like:
3401  *  1. re-allocate the pipe(s) with the allocation being reduced and not
3402  *     overlapping with a previous light-up pipe (another way to put it is:
3403  *     pipes with their new allocation strickly included into their old ones).
3404  *  2. re-allocate the other pipes that get their allocation reduced
3405  *  3. allocate the pipes having their allocation increased
3406  *
3407  * Steps 1. and 2. are here to take care of the following case:
3408  * - Initially DDB looks like this:
3409  *     |   B    |   C    |
3410  * - enable pipe A.
3411  * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3412  *   allocation
3413  *     |  A  |  B  |  C  |
3414  *
3415  * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3416  */
3417 
3418 static void
3419 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum i915_pipe pipe, int pass)
3420 {
3421 	int plane;
3422 
3423 	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3424 
3425 	for_each_plane(dev_priv, pipe, plane) {
3426 		I915_WRITE(PLANE_SURF(pipe, plane),
3427 			   I915_READ(PLANE_SURF(pipe, plane)));
3428 	}
3429 	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3430 }
3431 
3432 static bool
3433 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3434 			    const struct skl_ddb_allocation *new,
3435 			    enum i915_pipe pipe)
3436 {
3437 	uint16_t old_size, new_size;
3438 
3439 	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3440 	new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3441 
3442 	return old_size != new_size &&
3443 	       new->pipe[pipe].start >= old->pipe[pipe].start &&
3444 	       new->pipe[pipe].end <= old->pipe[pipe].end;
3445 }
3446 
3447 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3448 				struct skl_wm_values *new_values)
3449 {
3450 	struct drm_device *dev = dev_priv->dev;
3451 	struct skl_ddb_allocation *cur_ddb, *new_ddb;
3452 	bool reallocated[I915_MAX_PIPES] = {};
3453 	struct intel_crtc *crtc;
3454 	enum i915_pipe pipe;
3455 
3456 	new_ddb = &new_values->ddb;
3457 	cur_ddb = &dev_priv->wm.skl_hw.ddb;
3458 
3459 	/*
3460 	 * First pass: flush the pipes with the new allocation contained into
3461 	 * the old space.
3462 	 *
3463 	 * We'll wait for the vblank on those pipes to ensure we can safely
3464 	 * re-allocate the freed space without this pipe fetching from it.
3465 	 */
3466 	for_each_intel_crtc(dev, crtc) {
3467 		if (!crtc->active)
3468 			continue;
3469 
3470 		pipe = crtc->pipe;
3471 
3472 		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3473 			continue;
3474 
3475 		skl_wm_flush_pipe(dev_priv, pipe, 1);
3476 		intel_wait_for_vblank(dev, pipe);
3477 
3478 		reallocated[pipe] = true;
3479 	}
3480 
3481 
3482 	/*
3483 	 * Second pass: flush the pipes that are having their allocation
3484 	 * reduced, but overlapping with a previous allocation.
3485 	 *
3486 	 * Here as well we need to wait for the vblank to make sure the freed
3487 	 * space is not used anymore.
3488 	 */
3489 	for_each_intel_crtc(dev, crtc) {
3490 		if (!crtc->active)
3491 			continue;
3492 
3493 		pipe = crtc->pipe;
3494 
3495 		if (reallocated[pipe])
3496 			continue;
3497 
3498 		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3499 		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3500 			skl_wm_flush_pipe(dev_priv, pipe, 2);
3501 			intel_wait_for_vblank(dev, pipe);
3502 			reallocated[pipe] = true;
3503 		}
3504 	}
3505 
3506 	/*
3507 	 * Third pass: flush the pipes that got more space allocated.
3508 	 *
3509 	 * We don't need to actively wait for the update here, next vblank
3510 	 * will just get more DDB space with the correct WM values.
3511 	 */
3512 	for_each_intel_crtc(dev, crtc) {
3513 		if (!crtc->active)
3514 			continue;
3515 
3516 		pipe = crtc->pipe;
3517 
3518 		/*
3519 		 * At this point, only the pipes more space than before are
3520 		 * left to re-allocate.
3521 		 */
3522 		if (reallocated[pipe])
3523 			continue;
3524 
3525 		skl_wm_flush_pipe(dev_priv, pipe, 3);
3526 	}
3527 }
3528 
3529 static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3530 			       struct skl_ddb_allocation *ddb, /* out */
3531 			       struct skl_pipe_wm *pipe_wm /* out */)
3532 {
3533 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3534 	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3535 
3536 	skl_allocate_pipe_ddb(cstate, ddb);
3537 	skl_compute_pipe_wm(cstate, ddb, pipe_wm);
3538 
3539 	if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3540 		return false;
3541 
3542 	intel_crtc->wm.active.skl = *pipe_wm;
3543 
3544 	return true;
3545 }
3546 
3547 static void skl_update_other_pipe_wm(struct drm_device *dev,
3548 				     struct drm_crtc *crtc,
3549 				     struct skl_wm_values *r)
3550 {
3551 	struct intel_crtc *intel_crtc;
3552 	struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3553 
3554 	/*
3555 	 * If the WM update hasn't changed the allocation for this_crtc (the
3556 	 * crtc we are currently computing the new WM values for), other
3557 	 * enabled crtcs will keep the same allocation and we don't need to
3558 	 * recompute anything for them.
3559 	 */
3560 	if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3561 		return;
3562 
3563 	/*
3564 	 * Otherwise, because of this_crtc being freshly enabled/disabled, the
3565 	 * other active pipes need new DDB allocation and WM values.
3566 	 */
3567 	for_each_intel_crtc(dev, intel_crtc) {
3568 		struct skl_pipe_wm pipe_wm = {};
3569 		bool wm_changed;
3570 
3571 		if (this_crtc->pipe == intel_crtc->pipe)
3572 			continue;
3573 
3574 		if (!intel_crtc->active)
3575 			continue;
3576 
3577 		wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3578 						&r->ddb, &pipe_wm);
3579 
3580 		/*
3581 		 * If we end up re-computing the other pipe WM values, it's
3582 		 * because it was really needed, so we expect the WM values to
3583 		 * be different.
3584 		 */
3585 		WARN_ON(!wm_changed);
3586 
3587 		skl_compute_wm_results(dev, &pipe_wm, r, intel_crtc);
3588 		r->dirty[intel_crtc->pipe] = true;
3589 	}
3590 }
3591 
3592 static void skl_clear_wm(struct skl_wm_values *watermarks, enum i915_pipe pipe)
3593 {
3594 	watermarks->wm_linetime[pipe] = 0;
3595 	memset(watermarks->plane[pipe], 0,
3596 	       sizeof(uint32_t) * 8 * I915_MAX_PLANES);
3597 	memset(watermarks->plane_trans[pipe],
3598 	       0, sizeof(uint32_t) * I915_MAX_PLANES);
3599 	watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
3600 
3601 	/* Clear ddb entries for pipe */
3602 	memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
3603 	memset(&watermarks->ddb.plane[pipe], 0,
3604 	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3605 	memset(&watermarks->ddb.y_plane[pipe], 0,
3606 	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3607 	memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
3608 	       sizeof(struct skl_ddb_entry));
3609 
3610 }
3611 
3612 static void skl_update_wm(struct drm_crtc *crtc)
3613 {
3614 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3615 	struct drm_device *dev = crtc->dev;
3616 	struct drm_i915_private *dev_priv = dev->dev_private;
3617 	struct skl_wm_values *results = &dev_priv->wm.skl_results;
3618 	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3619 	struct skl_pipe_wm *pipe_wm = &cstate->wm.optimal.skl;
3620 
3621 
3622 	/* Clear all dirty flags */
3623 	memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);
3624 
3625 	skl_clear_wm(results, intel_crtc->pipe);
3626 
3627 	if (!skl_update_pipe_wm(crtc, &results->ddb, pipe_wm))
3628 		return;
3629 
3630 	skl_compute_wm_results(dev, pipe_wm, results, intel_crtc);
3631 	results->dirty[intel_crtc->pipe] = true;
3632 
3633 	skl_update_other_pipe_wm(dev, crtc, results);
3634 	skl_write_wm_values(dev_priv, results);
3635 	skl_flush_wm_values(dev_priv, results);
3636 
3637 	/* store the new configuration */
3638 	dev_priv->wm.skl_hw = *results;
3639 }
3640 
3641 static void ilk_compute_wm_config(struct drm_device *dev,
3642 				  struct intel_wm_config *config)
3643 {
3644 	struct intel_crtc *crtc;
3645 
3646 	/* Compute the currently _active_ config */
3647 	for_each_intel_crtc(dev, crtc) {
3648 		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
3649 
3650 		if (!wm->pipe_enabled)
3651 			continue;
3652 
3653 		config->sprites_enabled |= wm->sprites_enabled;
3654 		config->sprites_scaled |= wm->sprites_scaled;
3655 		config->num_pipes_active++;
3656 	}
3657 }
3658 
3659 static void ilk_program_watermarks(struct intel_crtc_state *cstate)
3660 {
3661 	struct drm_crtc *crtc = cstate->base.crtc;
3662 	struct drm_device *dev = crtc->dev;
3663 	struct drm_i915_private *dev_priv = to_i915(dev);
3664 	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3665 	struct ilk_wm_maximums max;
3666 	struct intel_wm_config config = {};
3667 	struct ilk_wm_values results = {};
3668 	enum intel_ddb_partitioning partitioning;
3669 
3670 	ilk_compute_wm_config(dev, &config);
3671 
3672 	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3673 	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3674 
3675 	/* 5/6 split only in single pipe config on IVB+ */
3676 	if (INTEL_INFO(dev)->gen >= 7 &&
3677 	    config.num_pipes_active == 1 && config.sprites_enabled) {
3678 		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3679 		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3680 
3681 		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3682 	} else {
3683 		best_lp_wm = &lp_wm_1_2;
3684 	}
3685 
3686 	partitioning = (best_lp_wm == &lp_wm_1_2) ?
3687 		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3688 
3689 	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3690 
3691 	ilk_write_wm_values(dev_priv, &results);
3692 }
3693 
3694 static void ilk_update_wm(struct drm_crtc *crtc)
3695 {
3696 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3697 	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3698 
3699 	WARN_ON(cstate->base.active != intel_crtc->active);
3700 
3701 	/*
3702 	 * IVB workaround: must disable low power watermarks for at least
3703 	 * one frame before enabling scaling.  LP watermarks can be re-enabled
3704 	 * when scaling is disabled.
3705 	 *
3706 	 * WaCxSRDisabledForSpriteScaling:ivb
3707 	 */
3708 	if (cstate->disable_lp_wm) {
3709 		ilk_disable_lp_wm(crtc->dev);
3710 		intel_wait_for_vblank(crtc->dev, intel_crtc->pipe);
3711 	}
3712 
3713 	intel_crtc->wm.active.ilk = cstate->wm.optimal.ilk;
3714 
3715 	ilk_program_watermarks(cstate);
3716 }
3717 
3718 static void skl_pipe_wm_active_state(uint32_t val,
3719 				     struct skl_pipe_wm *active,
3720 				     bool is_transwm,
3721 				     bool is_cursor,
3722 				     int i,
3723 				     int level)
3724 {
3725 	bool is_enabled = (val & PLANE_WM_EN) != 0;
3726 
3727 	if (!is_transwm) {
3728 		if (!is_cursor) {
3729 			active->wm[level].plane_en[i] = is_enabled;
3730 			active->wm[level].plane_res_b[i] =
3731 					val & PLANE_WM_BLOCKS_MASK;
3732 			active->wm[level].plane_res_l[i] =
3733 					(val >> PLANE_WM_LINES_SHIFT) &
3734 						PLANE_WM_LINES_MASK;
3735 		} else {
3736 			active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
3737 			active->wm[level].plane_res_b[PLANE_CURSOR] =
3738 					val & PLANE_WM_BLOCKS_MASK;
3739 			active->wm[level].plane_res_l[PLANE_CURSOR] =
3740 					(val >> PLANE_WM_LINES_SHIFT) &
3741 						PLANE_WM_LINES_MASK;
3742 		}
3743 	} else {
3744 		if (!is_cursor) {
3745 			active->trans_wm.plane_en[i] = is_enabled;
3746 			active->trans_wm.plane_res_b[i] =
3747 					val & PLANE_WM_BLOCKS_MASK;
3748 			active->trans_wm.plane_res_l[i] =
3749 					(val >> PLANE_WM_LINES_SHIFT) &
3750 						PLANE_WM_LINES_MASK;
3751 		} else {
3752 			active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
3753 			active->trans_wm.plane_res_b[PLANE_CURSOR] =
3754 					val & PLANE_WM_BLOCKS_MASK;
3755 			active->trans_wm.plane_res_l[PLANE_CURSOR] =
3756 					(val >> PLANE_WM_LINES_SHIFT) &
3757 						PLANE_WM_LINES_MASK;
3758 		}
3759 	}
3760 }
3761 
3762 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3763 {
3764 	struct drm_device *dev = crtc->dev;
3765 	struct drm_i915_private *dev_priv = dev->dev_private;
3766 	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3767 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3768 	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3769 	struct skl_pipe_wm *active = &cstate->wm.optimal.skl;
3770 	enum i915_pipe pipe = intel_crtc->pipe;
3771 	int level, i, max_level;
3772 	uint32_t temp;
3773 
3774 	max_level = ilk_wm_max_level(dev);
3775 
3776 	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3777 
3778 	for (level = 0; level <= max_level; level++) {
3779 		for (i = 0; i < intel_num_planes(intel_crtc); i++)
3780 			hw->plane[pipe][i][level] =
3781 					I915_READ(PLANE_WM(pipe, i, level));
3782 		hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
3783 	}
3784 
3785 	for (i = 0; i < intel_num_planes(intel_crtc); i++)
3786 		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3787 	hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
3788 
3789 	if (!intel_crtc->active)
3790 		return;
3791 
3792 	hw->dirty[pipe] = true;
3793 
3794 	active->linetime = hw->wm_linetime[pipe];
3795 
3796 	for (level = 0; level <= max_level; level++) {
3797 		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3798 			temp = hw->plane[pipe][i][level];
3799 			skl_pipe_wm_active_state(temp, active, false,
3800 						false, i, level);
3801 		}
3802 		temp = hw->plane[pipe][PLANE_CURSOR][level];
3803 		skl_pipe_wm_active_state(temp, active, false, true, i, level);
3804 	}
3805 
3806 	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3807 		temp = hw->plane_trans[pipe][i];
3808 		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3809 	}
3810 
3811 	temp = hw->plane_trans[pipe][PLANE_CURSOR];
3812 	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3813 
3814 	intel_crtc->wm.active.skl = *active;
3815 }
3816 
3817 void skl_wm_get_hw_state(struct drm_device *dev)
3818 {
3819 	struct drm_i915_private *dev_priv = dev->dev_private;
3820 	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3821 	struct drm_crtc *crtc;
3822 
3823 	skl_ddb_get_hw_state(dev_priv, ddb);
3824 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3825 		skl_pipe_wm_get_hw_state(crtc);
3826 }
3827 
3828 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3829 {
3830 	struct drm_device *dev = crtc->dev;
3831 	struct drm_i915_private *dev_priv = dev->dev_private;
3832 	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3833 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3834 	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3835 	struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
3836 	enum i915_pipe pipe = intel_crtc->pipe;
3837 	static const i915_reg_t wm0_pipe_reg[] = {
3838 		[PIPE_A] = WM0_PIPEA_ILK,
3839 		[PIPE_B] = WM0_PIPEB_ILK,
3840 		[PIPE_C] = WM0_PIPEC_IVB,
3841 	};
3842 
3843 	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3844 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3845 		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3846 
3847 	active->pipe_enabled = intel_crtc->active;
3848 
3849 	if (active->pipe_enabled) {
3850 		u32 tmp = hw->wm_pipe[pipe];
3851 
3852 		/*
3853 		 * For active pipes LP0 watermark is marked as
3854 		 * enabled, and LP1+ watermaks as disabled since
3855 		 * we can't really reverse compute them in case
3856 		 * multiple pipes are active.
3857 		 */
3858 		active->wm[0].enable = true;
3859 		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3860 		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3861 		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3862 		active->linetime = hw->wm_linetime[pipe];
3863 	} else {
3864 		int level, max_level = ilk_wm_max_level(dev);
3865 
3866 		/*
3867 		 * For inactive pipes, all watermark levels
3868 		 * should be marked as enabled but zeroed,
3869 		 * which is what we'd compute them to.
3870 		 */
3871 		for (level = 0; level <= max_level; level++)
3872 			active->wm[level].enable = true;
3873 	}
3874 
3875 	intel_crtc->wm.active.ilk = *active;
3876 }
3877 
3878 #define _FW_WM(value, plane) \
3879 	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
3880 #define _FW_WM_VLV(value, plane) \
3881 	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
3882 
3883 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
3884 			       struct vlv_wm_values *wm)
3885 {
3886 	enum i915_pipe pipe;
3887 	uint32_t tmp;
3888 
3889 	for_each_pipe(dev_priv, pipe) {
3890 		tmp = I915_READ(VLV_DDL(pipe));
3891 
3892 		wm->ddl[pipe].primary =
3893 			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3894 		wm->ddl[pipe].cursor =
3895 			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3896 		wm->ddl[pipe].sprite[0] =
3897 			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3898 		wm->ddl[pipe].sprite[1] =
3899 			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3900 	}
3901 
3902 	tmp = I915_READ(DSPFW1);
3903 	wm->sr.plane = _FW_WM(tmp, SR);
3904 	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
3905 	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
3906 	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
3907 
3908 	tmp = I915_READ(DSPFW2);
3909 	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
3910 	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
3911 	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
3912 
3913 	tmp = I915_READ(DSPFW3);
3914 	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
3915 
3916 	if (IS_CHERRYVIEW(dev_priv)) {
3917 		tmp = I915_READ(DSPFW7_CHV);
3918 		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3919 		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3920 
3921 		tmp = I915_READ(DSPFW8_CHV);
3922 		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
3923 		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
3924 
3925 		tmp = I915_READ(DSPFW9_CHV);
3926 		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
3927 		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
3928 
3929 		tmp = I915_READ(DSPHOWM);
3930 		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3931 		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
3932 		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
3933 		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
3934 		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3935 		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3936 		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3937 		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3938 		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3939 		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
3940 	} else {
3941 		tmp = I915_READ(DSPFW7);
3942 		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3943 		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3944 
3945 		tmp = I915_READ(DSPHOWM);
3946 		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3947 		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3948 		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3949 		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3950 		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3951 		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3952 		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
3953 	}
3954 }
3955 
3956 #undef _FW_WM
3957 #undef _FW_WM_VLV
3958 
3959 void vlv_wm_get_hw_state(struct drm_device *dev)
3960 {
3961 	struct drm_i915_private *dev_priv = to_i915(dev);
3962 	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
3963 	struct intel_plane *plane;
3964 	enum i915_pipe pipe;
3965 	u32 val;
3966 
3967 	vlv_read_wm_values(dev_priv, wm);
3968 
3969 	for_each_intel_plane(dev, plane) {
3970 		switch (plane->base.type) {
3971 			int sprite;
3972 		case DRM_PLANE_TYPE_CURSOR:
3973 			plane->wm.fifo_size = 63;
3974 			break;
3975 		case DRM_PLANE_TYPE_PRIMARY:
3976 			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
3977 			break;
3978 		case DRM_PLANE_TYPE_OVERLAY:
3979 			sprite = plane->plane;
3980 			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
3981 			break;
3982 		}
3983 	}
3984 
3985 	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
3986 	wm->level = VLV_WM_LEVEL_PM2;
3987 
3988 	if (IS_CHERRYVIEW(dev_priv)) {
3989 		mutex_lock(&dev_priv->rps.hw_lock);
3990 
3991 		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
3992 		if (val & DSP_MAXFIFO_PM5_ENABLE)
3993 			wm->level = VLV_WM_LEVEL_PM5;
3994 
3995 		/*
3996 		 * If DDR DVFS is disabled in the BIOS, Punit
3997 		 * will never ack the request. So if that happens
3998 		 * assume we don't have to enable/disable DDR DVFS
3999 		 * dynamically. To test that just set the REQ_ACK
4000 		 * bit to poke the Punit, but don't change the
4001 		 * HIGH/LOW bits so that we don't actually change
4002 		 * the current state.
4003 		 */
4004 		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4005 		val |= FORCE_DDR_FREQ_REQ_ACK;
4006 		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4007 
4008 		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4009 			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4010 			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4011 				      "assuming DDR DVFS is disabled\n");
4012 			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4013 		} else {
4014 			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4015 			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4016 				wm->level = VLV_WM_LEVEL_DDR_DVFS;
4017 		}
4018 
4019 		mutex_unlock(&dev_priv->rps.hw_lock);
4020 	}
4021 
4022 	for_each_pipe(dev_priv, pipe)
4023 		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4024 			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4025 			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4026 
4027 	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4028 		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4029 }
4030 
4031 void ilk_wm_get_hw_state(struct drm_device *dev)
4032 {
4033 	struct drm_i915_private *dev_priv = dev->dev_private;
4034 	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4035 	struct drm_crtc *crtc;
4036 
4037 	for_each_crtc(dev, crtc)
4038 		ilk_pipe_wm_get_hw_state(crtc);
4039 
4040 	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4041 	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4042 	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4043 
4044 	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4045 	if (INTEL_INFO(dev)->gen >= 7) {
4046 		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4047 		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4048 	}
4049 
4050 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4051 		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4052 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4053 	else if (IS_IVYBRIDGE(dev))
4054 		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4055 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4056 
4057 	hw->enable_fbc_wm =
4058 		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4059 }
4060 
4061 /**
4062  * intel_update_watermarks - update FIFO watermark values based on current modes
4063  *
4064  * Calculate watermark values for the various WM regs based on current mode
4065  * and plane configuration.
4066  *
4067  * There are several cases to deal with here:
4068  *   - normal (i.e. non-self-refresh)
4069  *   - self-refresh (SR) mode
4070  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4071  *   - lines are small relative to FIFO size (buffer can hold more than 2
4072  *     lines), so need to account for TLB latency
4073  *
4074  *   The normal calculation is:
4075  *     watermark = dotclock * bytes per pixel * latency
4076  *   where latency is platform & configuration dependent (we assume pessimal
4077  *   values here).
4078  *
4079  *   The SR calculation is:
4080  *     watermark = (trunc(latency/line time)+1) * surface width *
4081  *       bytes per pixel
4082  *   where
4083  *     line time = htotal / dotclock
4084  *     surface width = hdisplay for normal plane and 64 for cursor
4085  *   and latency is assumed to be high, as above.
4086  *
4087  * The final value programmed to the register should always be rounded up,
4088  * and include an extra 2 entries to account for clock crossings.
4089  *
4090  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4091  * to set the non-SR watermarks to 8.
4092  */
4093 void intel_update_watermarks(struct drm_crtc *crtc)
4094 {
4095 	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4096 
4097 	if (dev_priv->display.update_wm)
4098 		dev_priv->display.update_wm(crtc);
4099 }
4100 
4101 /*
4102  * Lock protecting IPS related data structures
4103  */
4104 struct lock mchdev_lock;
4105 LOCK_SYSINIT(mchdev, &mchdev_lock, "mchdev", LK_CANRECURSE);
4106 
4107 /* Global for IPS driver to get at the current i915 device. Protected by
4108  * mchdev_lock. */
4109 static struct drm_i915_private *i915_mch_dev;
4110 
4111 bool ironlake_set_drps(struct drm_device *dev, u8 val)
4112 {
4113 	struct drm_i915_private *dev_priv = dev->dev_private;
4114 	u16 rgvswctl;
4115 
4116 	assert_spin_locked(&mchdev_lock);
4117 
4118 	rgvswctl = I915_READ16(MEMSWCTL);
4119 	if (rgvswctl & MEMCTL_CMD_STS) {
4120 		DRM_DEBUG("gpu busy, RCS change rejected\n");
4121 		return false; /* still busy with another command */
4122 	}
4123 
4124 	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4125 		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4126 	I915_WRITE16(MEMSWCTL, rgvswctl);
4127 	POSTING_READ16(MEMSWCTL);
4128 
4129 	rgvswctl |= MEMCTL_CMD_STS;
4130 	I915_WRITE16(MEMSWCTL, rgvswctl);
4131 
4132 	return true;
4133 }
4134 
4135 static void ironlake_enable_drps(struct drm_device *dev)
4136 {
4137 	struct drm_i915_private *dev_priv = dev->dev_private;
4138 	u32 rgvmodectl;
4139 	u8 fmax, fmin, fstart, vstart;
4140 
4141 	spin_lock_irq(&mchdev_lock);
4142 
4143 	rgvmodectl = I915_READ(MEMMODECTL);
4144 
4145 	/* Enable temp reporting */
4146 	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4147 	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4148 
4149 	/* 100ms RC evaluation intervals */
4150 	I915_WRITE(RCUPEI, 100000);
4151 	I915_WRITE(RCDNEI, 100000);
4152 
4153 	/* Set max/min thresholds to 90ms and 80ms respectively */
4154 	I915_WRITE(RCBMAXAVG, 90000);
4155 	I915_WRITE(RCBMINAVG, 80000);
4156 
4157 	I915_WRITE(MEMIHYST, 1);
4158 
4159 	/* Set up min, max, and cur for interrupt handling */
4160 	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4161 	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4162 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4163 		MEMMODE_FSTART_SHIFT;
4164 
4165 	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4166 		PXVFREQ_PX_SHIFT;
4167 
4168 	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4169 	dev_priv->ips.fstart = fstart;
4170 
4171 	dev_priv->ips.max_delay = fstart;
4172 	dev_priv->ips.min_delay = fmin;
4173 	dev_priv->ips.cur_delay = fstart;
4174 
4175 	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4176 			 fmax, fmin, fstart);
4177 
4178 	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4179 
4180 	/*
4181 	 * Interrupts will be enabled in ironlake_irq_postinstall
4182 	 */
4183 
4184 	I915_WRITE(VIDSTART, vstart);
4185 	POSTING_READ(VIDSTART);
4186 
4187 	rgvmodectl |= MEMMODE_SWMODE_EN;
4188 	I915_WRITE(MEMMODECTL, rgvmodectl);
4189 
4190 	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4191 		DRM_ERROR("stuck trying to change perf mode\n");
4192 	mdelay(1);
4193 
4194 	ironlake_set_drps(dev, fstart);
4195 
4196 	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4197 		I915_READ(DDREC) + I915_READ(CSIEC);
4198 	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4199 	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4200 	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4201 
4202 	spin_unlock_irq(&mchdev_lock);
4203 }
4204 
4205 static void ironlake_disable_drps(struct drm_device *dev)
4206 {
4207 	struct drm_i915_private *dev_priv = dev->dev_private;
4208 	u16 rgvswctl;
4209 
4210 	spin_lock_irq(&mchdev_lock);
4211 
4212 	rgvswctl = I915_READ16(MEMSWCTL);
4213 
4214 	/* Ack interrupts, disable EFC interrupt */
4215 	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4216 	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4217 	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4218 	I915_WRITE(DEIIR, DE_PCU_EVENT);
4219 	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4220 
4221 	/* Go back to the starting frequency */
4222 	ironlake_set_drps(dev, dev_priv->ips.fstart);
4223 	mdelay(1);
4224 	rgvswctl |= MEMCTL_CMD_STS;
4225 	I915_WRITE(MEMSWCTL, rgvswctl);
4226 	mdelay(1);
4227 
4228 	spin_unlock_irq(&mchdev_lock);
4229 }
4230 
4231 /* There's a funny hw issue where the hw returns all 0 when reading from
4232  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4233  * ourselves, instead of doing a rmw cycle (which might result in us clearing
4234  * all limits and the gpu stuck at whatever frequency it is at atm).
4235  */
4236 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4237 {
4238 	u32 limits;
4239 
4240 	/* Only set the down limit when we've reached the lowest level to avoid
4241 	 * getting more interrupts, otherwise leave this clear. This prevents a
4242 	 * race in the hw when coming out of rc6: There's a tiny window where
4243 	 * the hw runs at the minimal clock before selecting the desired
4244 	 * frequency, if the down threshold expires in that window we will not
4245 	 * receive a down interrupt. */
4246 	if (IS_GEN9(dev_priv->dev)) {
4247 		limits = (dev_priv->rps.max_freq_softlimit) << 23;
4248 		if (val <= dev_priv->rps.min_freq_softlimit)
4249 			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4250 	} else {
4251 		limits = dev_priv->rps.max_freq_softlimit << 24;
4252 		if (val <= dev_priv->rps.min_freq_softlimit)
4253 			limits |= dev_priv->rps.min_freq_softlimit << 16;
4254 	}
4255 
4256 	return limits;
4257 }
4258 
4259 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4260 {
4261 	int new_power;
4262 	u32 threshold_up = 0, threshold_down = 0; /* in % */
4263 	u32 ei_up = 0, ei_down = 0;
4264 
4265 	new_power = dev_priv->rps.power;
4266 	switch (dev_priv->rps.power) {
4267 	case LOW_POWER:
4268 		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4269 			new_power = BETWEEN;
4270 		break;
4271 
4272 	case BETWEEN:
4273 		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4274 			new_power = LOW_POWER;
4275 		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4276 			new_power = HIGH_POWER;
4277 		break;
4278 
4279 	case HIGH_POWER:
4280 		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4281 			new_power = BETWEEN;
4282 		break;
4283 	}
4284 	/* Max/min bins are special */
4285 	if (val <= dev_priv->rps.min_freq_softlimit)
4286 		new_power = LOW_POWER;
4287 	if (val >= dev_priv->rps.max_freq_softlimit)
4288 		new_power = HIGH_POWER;
4289 	if (new_power == dev_priv->rps.power)
4290 		return;
4291 
4292 	/* Note the units here are not exactly 1us, but 1280ns. */
4293 	switch (new_power) {
4294 	case LOW_POWER:
4295 		/* Upclock if more than 95% busy over 16ms */
4296 		ei_up = 16000;
4297 		threshold_up = 95;
4298 
4299 		/* Downclock if less than 85% busy over 32ms */
4300 		ei_down = 32000;
4301 		threshold_down = 85;
4302 		break;
4303 
4304 	case BETWEEN:
4305 		/* Upclock if more than 90% busy over 13ms */
4306 		ei_up = 13000;
4307 		threshold_up = 90;
4308 
4309 		/* Downclock if less than 75% busy over 32ms */
4310 		ei_down = 32000;
4311 		threshold_down = 75;
4312 		break;
4313 
4314 	case HIGH_POWER:
4315 		/* Upclock if more than 85% busy over 10ms */
4316 		ei_up = 10000;
4317 		threshold_up = 85;
4318 
4319 		/* Downclock if less than 60% busy over 32ms */
4320 		ei_down = 32000;
4321 		threshold_down = 60;
4322 		break;
4323 	}
4324 
4325 	I915_WRITE(GEN6_RP_UP_EI,
4326 		GT_INTERVAL_FROM_US(dev_priv, ei_up));
4327 	I915_WRITE(GEN6_RP_UP_THRESHOLD,
4328 		GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
4329 
4330 	I915_WRITE(GEN6_RP_DOWN_EI,
4331 		GT_INTERVAL_FROM_US(dev_priv, ei_down));
4332 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4333 		GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
4334 
4335 	 I915_WRITE(GEN6_RP_CONTROL,
4336 		    GEN6_RP_MEDIA_TURBO |
4337 		    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4338 		    GEN6_RP_MEDIA_IS_GFX |
4339 		    GEN6_RP_ENABLE |
4340 		    GEN6_RP_UP_BUSY_AVG |
4341 		    GEN6_RP_DOWN_IDLE_AVG);
4342 
4343 	dev_priv->rps.power = new_power;
4344 	dev_priv->rps.up_threshold = threshold_up;
4345 	dev_priv->rps.down_threshold = threshold_down;
4346 	dev_priv->rps.last_adj = 0;
4347 }
4348 
4349 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4350 {
4351 	u32 mask = 0;
4352 
4353 	if (val > dev_priv->rps.min_freq_softlimit)
4354 		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4355 	if (val < dev_priv->rps.max_freq_softlimit)
4356 		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4357 
4358 	mask &= dev_priv->pm_rps_events;
4359 
4360 	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4361 }
4362 
4363 /* gen6_set_rps is called to update the frequency request, but should also be
4364  * called when the range (min_delay and max_delay) is modified so that we can
4365  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4366 static void gen6_set_rps(struct drm_device *dev, u8 val)
4367 {
4368 	struct drm_i915_private *dev_priv = dev->dev_private;
4369 
4370 	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4371 	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
4372 		return;
4373 
4374 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4375 	WARN_ON(val > dev_priv->rps.max_freq);
4376 	WARN_ON(val < dev_priv->rps.min_freq);
4377 
4378 	/* min/max delay may still have been modified so be sure to
4379 	 * write the limits value.
4380 	 */
4381 	if (val != dev_priv->rps.cur_freq) {
4382 		gen6_set_rps_thresholds(dev_priv, val);
4383 
4384 		if (IS_GEN9(dev))
4385 			I915_WRITE(GEN6_RPNSWREQ,
4386 				   GEN9_FREQUENCY(val));
4387 		else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4388 			I915_WRITE(GEN6_RPNSWREQ,
4389 				   HSW_FREQUENCY(val));
4390 		else
4391 			I915_WRITE(GEN6_RPNSWREQ,
4392 				   GEN6_FREQUENCY(val) |
4393 				   GEN6_OFFSET(0) |
4394 				   GEN6_AGGRESSIVE_TURBO);
4395 	}
4396 
4397 	/* Make sure we continue to get interrupts
4398 	 * until we hit the minimum or maximum frequencies.
4399 	 */
4400 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4401 	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4402 
4403 	POSTING_READ(GEN6_RPNSWREQ);
4404 
4405 	dev_priv->rps.cur_freq = val;
4406 	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4407 }
4408 
4409 static void valleyview_set_rps(struct drm_device *dev, u8 val)
4410 {
4411 	struct drm_i915_private *dev_priv = dev->dev_private;
4412 
4413 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4414 	WARN_ON(val > dev_priv->rps.max_freq);
4415 	WARN_ON(val < dev_priv->rps.min_freq);
4416 
4417 	if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
4418 		      "Odd GPU freq value\n"))
4419 		val &= ~1;
4420 
4421 	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4422 
4423 	if (val != dev_priv->rps.cur_freq) {
4424 		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4425 		if (!IS_CHERRYVIEW(dev_priv))
4426 			gen6_set_rps_thresholds(dev_priv, val);
4427 	}
4428 
4429 	dev_priv->rps.cur_freq = val;
4430 	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4431 }
4432 
4433 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4434  *
4435  * * If Gfx is Idle, then
4436  * 1. Forcewake Media well.
4437  * 2. Request idle freq.
4438  * 3. Release Forcewake of Media well.
4439 */
4440 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4441 {
4442 	u32 val = dev_priv->rps.idle_freq;
4443 
4444 	if (dev_priv->rps.cur_freq <= val)
4445 		return;
4446 
4447 	/* Wake up the media well, as that takes a lot less
4448 	 * power than the Render well. */
4449 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4450 	valleyview_set_rps(dev_priv->dev, val);
4451 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4452 }
4453 
4454 void gen6_rps_busy(struct drm_i915_private *dev_priv)
4455 {
4456 	mutex_lock(&dev_priv->rps.hw_lock);
4457 	if (dev_priv->rps.enabled) {
4458 		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
4459 			gen6_rps_reset_ei(dev_priv);
4460 		I915_WRITE(GEN6_PMINTRMSK,
4461 			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4462 	}
4463 	mutex_unlock(&dev_priv->rps.hw_lock);
4464 }
4465 
4466 void gen6_rps_idle(struct drm_i915_private *dev_priv)
4467 {
4468 	struct drm_device *dev = dev_priv->dev;
4469 
4470 	mutex_lock(&dev_priv->rps.hw_lock);
4471 	if (dev_priv->rps.enabled) {
4472 		if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4473 			vlv_set_rps_idle(dev_priv);
4474 		else
4475 			gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4476 		dev_priv->rps.last_adj = 0;
4477 		I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4478 	}
4479 	mutex_unlock(&dev_priv->rps.hw_lock);
4480 
4481 	lockmgr(&dev_priv->rps.client_lock, LK_EXCLUSIVE);
4482 	while (!list_empty(&dev_priv->rps.clients))
4483 		list_del_init(dev_priv->rps.clients.next);
4484 	lockmgr(&dev_priv->rps.client_lock, LK_RELEASE);
4485 }
4486 
4487 void gen6_rps_boost(struct drm_i915_private *dev_priv,
4488 		    struct intel_rps_client *rps,
4489 		    unsigned long submitted)
4490 {
4491 	/* This is intentionally racy! We peek at the state here, then
4492 	 * validate inside the RPS worker.
4493 	 */
4494 	if (!(dev_priv->mm.busy &&
4495 	      dev_priv->rps.enabled &&
4496 	      dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
4497 		return;
4498 
4499 	/* Force a RPS boost (and don't count it against the client) if
4500 	 * the GPU is severely congested.
4501 	 */
4502 	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4503 		rps = NULL;
4504 
4505 	lockmgr(&dev_priv->rps.client_lock, LK_EXCLUSIVE);
4506 	if (rps == NULL || list_empty(&rps->link)) {
4507 		spin_lock_irq(&dev_priv->irq_lock);
4508 		if (dev_priv->rps.interrupts_enabled) {
4509 			dev_priv->rps.client_boost = true;
4510 			queue_work(dev_priv->wq, &dev_priv->rps.work);
4511 		}
4512 		spin_unlock_irq(&dev_priv->irq_lock);
4513 
4514 		if (rps != NULL) {
4515 			list_add(&rps->link, &dev_priv->rps.clients);
4516 			rps->boosts++;
4517 		} else
4518 			dev_priv->rps.boosts++;
4519 	}
4520 	lockmgr(&dev_priv->rps.client_lock, LK_RELEASE);
4521 }
4522 
4523 void intel_set_rps(struct drm_device *dev, u8 val)
4524 {
4525 	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4526 		valleyview_set_rps(dev, val);
4527 	else
4528 		gen6_set_rps(dev, val);
4529 }
4530 
4531 static void gen9_disable_rps(struct drm_device *dev)
4532 {
4533 	struct drm_i915_private *dev_priv = dev->dev_private;
4534 
4535 	I915_WRITE(GEN6_RC_CONTROL, 0);
4536 	I915_WRITE(GEN9_PG_ENABLE, 0);
4537 }
4538 
4539 static void gen6_disable_rps(struct drm_device *dev)
4540 {
4541 	struct drm_i915_private *dev_priv = dev->dev_private;
4542 
4543 	I915_WRITE(GEN6_RC_CONTROL, 0);
4544 	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4545 }
4546 
4547 static void cherryview_disable_rps(struct drm_device *dev)
4548 {
4549 	struct drm_i915_private *dev_priv = dev->dev_private;
4550 
4551 	I915_WRITE(GEN6_RC_CONTROL, 0);
4552 }
4553 
4554 static void valleyview_disable_rps(struct drm_device *dev)
4555 {
4556 	struct drm_i915_private *dev_priv = dev->dev_private;
4557 
4558 	/* we're doing forcewake before Disabling RC6,
4559 	 * This what the BIOS expects when going into suspend */
4560 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4561 
4562 	I915_WRITE(GEN6_RC_CONTROL, 0);
4563 
4564 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4565 }
4566 
4567 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
4568 {
4569 	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
4570 		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4571 			mode = GEN6_RC_CTL_RC6_ENABLE;
4572 		else
4573 			mode = 0;
4574 	}
4575 	if (HAS_RC6p(dev))
4576 		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4577 			      onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
4578 			      onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
4579 			      onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
4580 
4581 	else
4582 		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4583 			      onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
4584 }
4585 
4586 static bool bxt_check_bios_rc6_setup(const struct drm_device *dev)
4587 {
4588 	struct drm_i915_private *dev_priv = dev->dev_private;
4589 	bool enable_rc6 = true;
4590 	unsigned long rc6_ctx_base;
4591 
4592 	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
4593 		DRM_DEBUG_KMS("RC6 Base location not set properly.\n");
4594 		enable_rc6 = false;
4595 	}
4596 
4597 	/*
4598 	 * The exact context size is not known for BXT, so assume a page size
4599 	 * for this check.
4600 	 */
4601 	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
4602 	if (!((rc6_ctx_base >= dev_priv->gtt.stolen_reserved_base) &&
4603 	      (rc6_ctx_base + PAGE_SIZE <= dev_priv->gtt.stolen_reserved_base +
4604 					dev_priv->gtt.stolen_reserved_size))) {
4605 		DRM_DEBUG_KMS("RC6 Base address not as expected.\n");
4606 		enable_rc6 = false;
4607 	}
4608 
4609 	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
4610 	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
4611 	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
4612 	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
4613 		DRM_DEBUG_KMS("Engine Idle wait time not set properly.\n");
4614 		enable_rc6 = false;
4615 	}
4616 
4617 	if (!(I915_READ(GEN6_RC_CONTROL) & (GEN6_RC_CTL_RC6_ENABLE |
4618 					    GEN6_RC_CTL_HW_ENABLE)) &&
4619 	    ((I915_READ(GEN6_RC_CONTROL) & GEN6_RC_CTL_HW_ENABLE) ||
4620 	     !(I915_READ(GEN6_RC_STATE) & RC6_STATE))) {
4621 		DRM_DEBUG_KMS("HW/SW RC6 is not enabled by BIOS.\n");
4622 		enable_rc6 = false;
4623 	}
4624 
4625 	return enable_rc6;
4626 }
4627 
4628 int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4629 {
4630 	/* No RC6 before Ironlake and code is gone for ilk. */
4631 	if (INTEL_INFO(dev)->gen < 6)
4632 		return 0;
4633 
4634 	if (!enable_rc6)
4635 		return 0;
4636 
4637 	if (IS_BROXTON(dev) && !bxt_check_bios_rc6_setup(dev)) {
4638 		DRM_INFO("RC6 disabled by BIOS\n");
4639 		return 0;
4640 	}
4641 
4642 	/* Respect the kernel parameter if it is set */
4643 	if (enable_rc6 >= 0) {
4644 		int mask;
4645 
4646 		if (HAS_RC6p(dev))
4647 			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
4648 			       INTEL_RC6pp_ENABLE;
4649 		else
4650 			mask = INTEL_RC6_ENABLE;
4651 
4652 		if ((enable_rc6 & mask) != enable_rc6)
4653 			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
4654 				      enable_rc6 & mask, enable_rc6, mask);
4655 
4656 		return enable_rc6 & mask;
4657 	}
4658 
4659 	if (IS_IVYBRIDGE(dev))
4660 		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4661 
4662 	return INTEL_RC6_ENABLE;
4663 }
4664 
4665 int intel_enable_rc6(const struct drm_device *dev)
4666 {
4667 	return i915.enable_rc6;
4668 }
4669 
4670 static void gen6_init_rps_frequencies(struct drm_device *dev)
4671 {
4672 	struct drm_i915_private *dev_priv = dev->dev_private;
4673 	uint32_t rp_state_cap;
4674 	u32 ddcc_status = 0;
4675 	int ret;
4676 
4677 	/* All of these values are in units of 50MHz */
4678 	dev_priv->rps.cur_freq		= 0;
4679 	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
4680 	if (IS_BROXTON(dev)) {
4681 		rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
4682 		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
4683 		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4684 		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
4685 	} else {
4686 		rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4687 		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
4688 		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4689 		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
4690 	}
4691 
4692 	/* hw_max = RP0 until we check for overclocking */
4693 	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;
4694 
4695 	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4696 	if (IS_HASWELL(dev) || IS_BROADWELL(dev) ||
4697 	    IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4698 		ret = sandybridge_pcode_read(dev_priv,
4699 					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4700 					&ddcc_status);
4701 		if (0 == ret)
4702 			dev_priv->rps.efficient_freq =
4703 				clamp_t(u8,
4704 					((ddcc_status >> 8) & 0xff),
4705 					dev_priv->rps.min_freq,
4706 					dev_priv->rps.max_freq);
4707 	}
4708 
4709 	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4710 		/* Store the frequency values in 16.66 MHZ units, which is
4711 		   the natural hardware unit for SKL */
4712 		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
4713 		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
4714 		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
4715 		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
4716 		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
4717 	}
4718 
4719 	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4720 
4721 	/* Preserve min/max settings in case of re-init */
4722 	if (dev_priv->rps.max_freq_softlimit == 0)
4723 		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4724 
4725 	if (dev_priv->rps.min_freq_softlimit == 0) {
4726 		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4727 			dev_priv->rps.min_freq_softlimit =
4728 				max_t(int, dev_priv->rps.efficient_freq,
4729 				      intel_freq_opcode(dev_priv, 450));
4730 		else
4731 			dev_priv->rps.min_freq_softlimit =
4732 				dev_priv->rps.min_freq;
4733 	}
4734 }
4735 
4736 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
4737 static void gen9_enable_rps(struct drm_device *dev)
4738 {
4739 	struct drm_i915_private *dev_priv = dev->dev_private;
4740 
4741 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4742 
4743 	gen6_init_rps_frequencies(dev);
4744 
4745 	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4746 	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
4747 		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4748 		return;
4749 	}
4750 
4751 	/* Program defaults and thresholds for RPS*/
4752 	I915_WRITE(GEN6_RC_VIDEO_FREQ,
4753 		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
4754 
4755 	/* 1 second timeout*/
4756 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
4757 		GT_INTERVAL_FROM_US(dev_priv, 1000000));
4758 
4759 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
4760 
4761 	/* Leaning on the below call to gen6_set_rps to program/setup the
4762 	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
4763 	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
4764 	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4765 	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4766 
4767 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4768 }
4769 
4770 static void gen9_enable_rc6(struct drm_device *dev)
4771 {
4772 	struct drm_i915_private *dev_priv = dev->dev_private;
4773 	struct intel_engine_cs *ring;
4774 	uint32_t rc6_mask = 0;
4775 	int unused;
4776 
4777 	/* 1a: Software RC state - RC0 */
4778 	I915_WRITE(GEN6_RC_STATE, 0);
4779 
4780 	/* 1b: Get forcewake during program sequence. Although the driver
4781 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4782 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4783 
4784 	/* 2a: Disable RC states. */
4785 	I915_WRITE(GEN6_RC_CONTROL, 0);
4786 
4787 	/* 2b: Program RC6 thresholds.*/
4788 
4789 	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
4790 	if (IS_SKYLAKE(dev))
4791 		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
4792 	else
4793 		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
4794 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4795 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4796 	for_each_ring(ring, dev_priv, unused)
4797 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4798 
4799 	if (HAS_GUC_UCODE(dev))
4800 		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
4801 
4802 	I915_WRITE(GEN6_RC_SLEEP, 0);
4803 
4804 	/* 2c: Program Coarse Power Gating Policies. */
4805 	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
4806 	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
4807 
4808 	/* 3a: Enable RC6 */
4809 	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4810 		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4811 	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
4812 	/* WaRsUseTimeoutMode */
4813 	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
4814 	    IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
4815 		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
4816 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4817 			   GEN7_RC_CTL_TO_MODE |
4818 			   rc6_mask);
4819 	} else {
4820 		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4821 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4822 			   GEN6_RC_CTL_EI_MODE(1) |
4823 			   rc6_mask);
4824 	}
4825 
4826 	/*
4827 	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4828 	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
4829 	 */
4830 	if (NEEDS_WaRsDisableCoarsePowerGating(dev))
4831 		I915_WRITE(GEN9_PG_ENABLE, 0);
4832 	else
4833 		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4834 				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
4835 
4836 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4837 
4838 }
4839 
4840 static void gen8_enable_rps(struct drm_device *dev)
4841 {
4842 	struct drm_i915_private *dev_priv = dev->dev_private;
4843 	struct intel_engine_cs *ring;
4844 	uint32_t rc6_mask = 0;
4845 	int unused;
4846 
4847 	/* 1a: Software RC state - RC0 */
4848 	I915_WRITE(GEN6_RC_STATE, 0);
4849 
4850 	/* 1c & 1d: Get forcewake during program sequence. Although the driver
4851 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4852 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4853 
4854 	/* 2a: Disable RC states. */
4855 	I915_WRITE(GEN6_RC_CONTROL, 0);
4856 
4857 	/* Initialize rps frequencies */
4858 	gen6_init_rps_frequencies(dev);
4859 
4860 	/* 2b: Program RC6 thresholds.*/
4861 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4862 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4863 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4864 	for_each_ring(ring, dev_priv, unused)
4865 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4866 	I915_WRITE(GEN6_RC_SLEEP, 0);
4867 	if (IS_BROADWELL(dev))
4868 		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4869 	else
4870 		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4871 
4872 	/* 3: Enable RC6 */
4873 	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4874 		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4875 	intel_print_rc6_info(dev, rc6_mask);
4876 	if (IS_BROADWELL(dev))
4877 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4878 				GEN7_RC_CTL_TO_MODE |
4879 				rc6_mask);
4880 	else
4881 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4882 				GEN6_RC_CTL_EI_MODE(1) |
4883 				rc6_mask);
4884 
4885 	/* 4 Program defaults and thresholds for RPS*/
4886 	I915_WRITE(GEN6_RPNSWREQ,
4887 		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4888 	I915_WRITE(GEN6_RC_VIDEO_FREQ,
4889 		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4890 	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4891 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4892 
4893 	/* Docs recommend 900MHz, and 300 MHz respectively */
4894 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
4895 		   dev_priv->rps.max_freq_softlimit << 24 |
4896 		   dev_priv->rps.min_freq_softlimit << 16);
4897 
4898 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4899 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4900 	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4901 	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4902 
4903 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4904 
4905 	/* 5: Enable RPS */
4906 	I915_WRITE(GEN6_RP_CONTROL,
4907 		   GEN6_RP_MEDIA_TURBO |
4908 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
4909 		   GEN6_RP_MEDIA_IS_GFX |
4910 		   GEN6_RP_ENABLE |
4911 		   GEN6_RP_UP_BUSY_AVG |
4912 		   GEN6_RP_DOWN_IDLE_AVG);
4913 
4914 	/* 6: Ring frequency + overclocking (our driver does this later */
4915 
4916 	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4917 	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4918 
4919 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4920 }
4921 
4922 static void gen6_enable_rps(struct drm_device *dev)
4923 {
4924 	struct drm_i915_private *dev_priv = dev->dev_private;
4925 	struct intel_engine_cs *ring;
4926 	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4927 	u32 gtfifodbg;
4928 	int rc6_mode;
4929 	int i, ret;
4930 
4931 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4932 
4933 	/* Here begins a magic sequence of register writes to enable
4934 	 * auto-downclocking.
4935 	 *
4936 	 * Perhaps there might be some value in exposing these to
4937 	 * userspace...
4938 	 */
4939 	I915_WRITE(GEN6_RC_STATE, 0);
4940 
4941 	/* Clear the DBG now so we don't confuse earlier errors */
4942 	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4943 		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
4944 		I915_WRITE(GTFIFODBG, gtfifodbg);
4945 	}
4946 
4947 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4948 
4949 	/* Initialize rps frequencies */
4950 	gen6_init_rps_frequencies(dev);
4951 
4952 	/* disable the counters and set deterministic thresholds */
4953 	I915_WRITE(GEN6_RC_CONTROL, 0);
4954 
4955 	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
4956 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
4957 	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
4958 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4959 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4960 
4961 	for_each_ring(ring, dev_priv, i)
4962 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4963 
4964 	I915_WRITE(GEN6_RC_SLEEP, 0);
4965 	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4966 	if (IS_IVYBRIDGE(dev))
4967 		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
4968 	else
4969 		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4970 	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4971 	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
4972 
4973 	/* Check if we are enabling RC6 */
4974 	rc6_mode = intel_enable_rc6(dev_priv->dev);
4975 	if (rc6_mode & INTEL_RC6_ENABLE)
4976 		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
4977 
4978 	/* We don't use those on Haswell */
4979 	if (!IS_HASWELL(dev)) {
4980 		if (rc6_mode & INTEL_RC6p_ENABLE)
4981 			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4982 
4983 		if (rc6_mode & INTEL_RC6pp_ENABLE)
4984 			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
4985 	}
4986 
4987 	intel_print_rc6_info(dev, rc6_mask);
4988 
4989 	I915_WRITE(GEN6_RC_CONTROL,
4990 		   rc6_mask |
4991 		   GEN6_RC_CTL_EI_MODE(1) |
4992 		   GEN6_RC_CTL_HW_ENABLE);
4993 
4994 	/* Power down if completely idle for over 50ms */
4995 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4996 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4997 
4998 	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4999 	if (ret)
5000 		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5001 
5002 	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
5003 	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
5004 		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5005 				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
5006 				 (pcu_mbox & 0xff) * 50);
5007 		dev_priv->rps.max_freq = pcu_mbox & 0xff;
5008 	}
5009 
5010 	dev_priv->rps.power = HIGH_POWER; /* force a reset */
5011 	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
5012 
5013 	rc6vids = 0;
5014 	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5015 	if (IS_GEN6(dev) && ret) {
5016 		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5017 	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5018 		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5019 			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5020 		rc6vids &= 0xffff00;
5021 		rc6vids |= GEN6_ENCODE_RC6_VID(450);
5022 		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5023 		if (ret)
5024 			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5025 	}
5026 
5027 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5028 }
5029 
5030 static void __gen6_update_ring_freq(struct drm_device *dev)
5031 {
5032 	struct drm_i915_private *dev_priv = dev->dev_private;
5033 	int min_freq = 15;
5034 	unsigned int gpu_freq;
5035 	unsigned int max_ia_freq, min_ring_freq;
5036 	unsigned int max_gpu_freq, min_gpu_freq;
5037 	int scaling_factor = 180;
5038 
5039 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5040 
5041 #if 0
5042 	policy = cpufreq_cpu_get(0);
5043 	if (policy) {
5044 		max_ia_freq = policy->cpuinfo.max_freq;
5045 		cpufreq_cpu_put(policy);
5046 	} else {
5047 		/*
5048 		 * Default to measured freq if none found, PCU will ensure we
5049 		 * don't go over
5050 		 */
5051 		max_ia_freq = tsc_khz;
5052 	}
5053 #else
5054 	max_ia_freq = tsc_frequency / 1000;
5055 #endif
5056 
5057 	/* Convert from kHz to MHz */
5058 	max_ia_freq /= 1000;
5059 
5060 	min_ring_freq = I915_READ(DCLK) & 0xf;
5061 	/* convert DDR frequency from units of 266.6MHz to bandwidth */
5062 	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5063 
5064 	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5065 		/* Convert GT frequency to 50 HZ units */
5066 		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5067 		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5068 	} else {
5069 		min_gpu_freq = dev_priv->rps.min_freq;
5070 		max_gpu_freq = dev_priv->rps.max_freq;
5071 	}
5072 
5073 	/*
5074 	 * For each potential GPU frequency, load a ring frequency we'd like
5075 	 * to use for memory access.  We do this by specifying the IA frequency
5076 	 * the PCU should use as a reference to determine the ring frequency.
5077 	 */
5078 	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5079 		int diff = max_gpu_freq - gpu_freq;
5080 		unsigned int ia_freq = 0, ring_freq = 0;
5081 
5082 		if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5083 			/*
5084 			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
5085 			 * No floor required for ring frequency on SKL.
5086 			 */
5087 			ring_freq = gpu_freq;
5088 		} else if (INTEL_INFO(dev)->gen >= 8) {
5089 			/* max(2 * GT, DDR). NB: GT is 50MHz units */
5090 			ring_freq = max(min_ring_freq, gpu_freq);
5091 		} else if (IS_HASWELL(dev)) {
5092 			ring_freq = mult_frac(gpu_freq, 5, 4);
5093 			ring_freq = max(min_ring_freq, ring_freq);
5094 			/* leave ia_freq as the default, chosen by cpufreq */
5095 		} else {
5096 			/* On older processors, there is no separate ring
5097 			 * clock domain, so in order to boost the bandwidth
5098 			 * of the ring, we need to upclock the CPU (ia_freq).
5099 			 *
5100 			 * For GPU frequencies less than 750MHz,
5101 			 * just use the lowest ring freq.
5102 			 */
5103 			if (gpu_freq < min_freq)
5104 				ia_freq = 800;
5105 			else
5106 				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5107 			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5108 		}
5109 
5110 		sandybridge_pcode_write(dev_priv,
5111 					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5112 					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5113 					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5114 					gpu_freq);
5115 	}
5116 }
5117 
5118 void gen6_update_ring_freq(struct drm_device *dev)
5119 {
5120 	struct drm_i915_private *dev_priv = dev->dev_private;
5121 
5122 	if (!HAS_CORE_RING_FREQ(dev))
5123 		return;
5124 
5125 	mutex_lock(&dev_priv->rps.hw_lock);
5126 	__gen6_update_ring_freq(dev);
5127 	mutex_unlock(&dev_priv->rps.hw_lock);
5128 }
5129 
5130 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5131 {
5132 	struct drm_device *dev = dev_priv->dev;
5133 	u32 val, rp0;
5134 
5135 	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5136 
5137 	switch (INTEL_INFO(dev)->eu_total) {
5138 	case 8:
5139 		/* (2 * 4) config */
5140 		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5141 		break;
5142 	case 12:
5143 		/* (2 * 6) config */
5144 		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5145 		break;
5146 	case 16:
5147 		/* (2 * 8) config */
5148 	default:
5149 		/* Setting (2 * 8) Min RP0 for any other combination */
5150 		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5151 		break;
5152 	}
5153 
5154 	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5155 
5156 	return rp0;
5157 }
5158 
5159 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5160 {
5161 	u32 val, rpe;
5162 
5163 	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5164 	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5165 
5166 	return rpe;
5167 }
5168 
5169 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5170 {
5171 	u32 val, rp1;
5172 
5173 	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5174 	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5175 
5176 	return rp1;
5177 }
5178 
5179 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5180 {
5181 	u32 val, rp1;
5182 
5183 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5184 
5185 	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5186 
5187 	return rp1;
5188 }
5189 
5190 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5191 {
5192 	u32 val, rp0;
5193 
5194 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5195 
5196 	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5197 	/* Clamp to max */
5198 	rp0 = min_t(u32, rp0, 0xea);
5199 
5200 	return rp0;
5201 }
5202 
5203 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5204 {
5205 	u32 val, rpe;
5206 
5207 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5208 	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5209 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5210 	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5211 
5212 	return rpe;
5213 }
5214 
5215 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5216 {
5217 	u32 val;
5218 
5219 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5220 	/*
5221 	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
5222 	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
5223 	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
5224 	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
5225 	 * to make sure it matches what Punit accepts.
5226 	 */
5227 	return max_t(u32, val, 0xc0);
5228 }
5229 
5230 /* Check that the pctx buffer wasn't move under us. */
5231 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5232 {
5233 	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5234 
5235 	/* DragonFly - if EDID fails vlv_pctx can wind up NULL */
5236 	if (WARN_ON(!dev_priv->vlv_pctx))
5237 		return;
5238 
5239 	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5240 			     dev_priv->vlv_pctx->stolen->start);
5241 }
5242 
5243 
5244 /* Check that the pcbr address is not empty. */
5245 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5246 {
5247 	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5248 
5249 	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5250 }
5251 
5252 static void cherryview_setup_pctx(struct drm_device *dev)
5253 {
5254 	struct drm_i915_private *dev_priv = dev->dev_private;
5255 	unsigned long pctx_paddr, paddr;
5256 	struct i915_gtt *gtt = &dev_priv->gtt;
5257 	u32 pcbr;
5258 	int pctx_size = 32*1024;
5259 
5260 	pcbr = I915_READ(VLV_PCBR);
5261 	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5262 		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5263 		paddr = (dev_priv->mm.stolen_base +
5264 			 (gtt->stolen_size - pctx_size));
5265 
5266 		pctx_paddr = (paddr & (~4095));
5267 		I915_WRITE(VLV_PCBR, pctx_paddr);
5268 	}
5269 
5270 	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5271 }
5272 
5273 static void valleyview_setup_pctx(struct drm_device *dev)
5274 {
5275 	struct drm_i915_private *dev_priv = dev->dev_private;
5276 	struct drm_i915_gem_object *pctx;
5277 	unsigned long pctx_paddr;
5278 	u32 pcbr;
5279 	int pctx_size = 24*1024;
5280 
5281 	mutex_lock(&dev->struct_mutex);
5282 
5283 	pcbr = I915_READ(VLV_PCBR);
5284 	if (pcbr) {
5285 		/* BIOS set it up already, grab the pre-alloc'd space */
5286 		int pcbr_offset;
5287 
5288 		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5289 		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
5290 								      pcbr_offset,
5291 								      I915_GTT_OFFSET_NONE,
5292 								      pctx_size);
5293 		goto out;
5294 	}
5295 
5296 	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5297 
5298 	/*
5299 	 * From the Gunit register HAS:
5300 	 * The Gfx driver is expected to program this register and ensure
5301 	 * proper allocation within Gfx stolen memory.  For example, this
5302 	 * register should be programmed such than the PCBR range does not
5303 	 * overlap with other ranges, such as the frame buffer, protected
5304 	 * memory, or any other relevant ranges.
5305 	 */
5306 	pctx = i915_gem_object_create_stolen(dev, pctx_size);
5307 	if (!pctx) {
5308 		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5309 		goto out;
5310 	}
5311 
5312 	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5313 	I915_WRITE(VLV_PCBR, pctx_paddr);
5314 
5315 out:
5316 	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5317 	dev_priv->vlv_pctx = pctx;
5318 	mutex_unlock(&dev->struct_mutex);
5319 }
5320 
5321 static void valleyview_cleanup_pctx(struct drm_device *dev)
5322 {
5323 	struct drm_i915_private *dev_priv = dev->dev_private;
5324 
5325 	if (WARN_ON(!dev_priv->vlv_pctx))
5326 		return;
5327 
5328 	drm_gem_object_unreference_unlocked(&dev_priv->vlv_pctx->base);
5329 	dev_priv->vlv_pctx = NULL;
5330 }
5331 
5332 static void valleyview_init_gt_powersave(struct drm_device *dev)
5333 {
5334 	struct drm_i915_private *dev_priv = dev->dev_private;
5335 	u32 val;
5336 
5337 	valleyview_setup_pctx(dev);
5338 
5339 	mutex_lock(&dev_priv->rps.hw_lock);
5340 
5341 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5342 	switch ((val >> 6) & 3) {
5343 	case 0:
5344 	case 1:
5345 		dev_priv->mem_freq = 800;
5346 		break;
5347 	case 2:
5348 		dev_priv->mem_freq = 1066;
5349 		break;
5350 	case 3:
5351 		dev_priv->mem_freq = 1333;
5352 		break;
5353 	}
5354 	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5355 
5356 	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5357 	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5358 	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5359 			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5360 			 dev_priv->rps.max_freq);
5361 
5362 	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5363 	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5364 			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5365 			 dev_priv->rps.efficient_freq);
5366 
5367 	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5368 	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5369 			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5370 			 dev_priv->rps.rp1_freq);
5371 
5372 	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5373 	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5374 			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5375 			 dev_priv->rps.min_freq);
5376 
5377 	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5378 
5379 	/* Preserve min/max settings in case of re-init */
5380 	if (dev_priv->rps.max_freq_softlimit == 0)
5381 		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5382 
5383 	if (dev_priv->rps.min_freq_softlimit == 0)
5384 		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5385 
5386 	mutex_unlock(&dev_priv->rps.hw_lock);
5387 }
5388 
5389 static void cherryview_init_gt_powersave(struct drm_device *dev)
5390 {
5391 	struct drm_i915_private *dev_priv = dev->dev_private;
5392 	u32 val;
5393 
5394 	cherryview_setup_pctx(dev);
5395 
5396 	mutex_lock(&dev_priv->rps.hw_lock);
5397 
5398 	mutex_lock(&dev_priv->sb_lock);
5399 	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5400 	mutex_unlock(&dev_priv->sb_lock);
5401 
5402 	switch ((val >> 2) & 0x7) {
5403 	case 3:
5404 		dev_priv->mem_freq = 2000;
5405 		break;
5406 	default:
5407 		dev_priv->mem_freq = 1600;
5408 		break;
5409 	}
5410 	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5411 
5412 	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5413 	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5414 	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5415 			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5416 			 dev_priv->rps.max_freq);
5417 
5418 	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5419 	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5420 			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5421 			 dev_priv->rps.efficient_freq);
5422 
5423 	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5424 	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5425 			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5426 			 dev_priv->rps.rp1_freq);
5427 
5428 	/* PUnit validated range is only [RPe, RP0] */
5429 	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5430 	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5431 			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5432 			 dev_priv->rps.min_freq);
5433 
5434 	WARN_ONCE((dev_priv->rps.max_freq |
5435 		   dev_priv->rps.efficient_freq |
5436 		   dev_priv->rps.rp1_freq |
5437 		   dev_priv->rps.min_freq) & 1,
5438 		  "Odd GPU freq values\n");
5439 
5440 	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5441 
5442 	/* Preserve min/max settings in case of re-init */
5443 	if (dev_priv->rps.max_freq_softlimit == 0)
5444 		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5445 
5446 	if (dev_priv->rps.min_freq_softlimit == 0)
5447 		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5448 
5449 	mutex_unlock(&dev_priv->rps.hw_lock);
5450 }
5451 
5452 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
5453 {
5454 	valleyview_cleanup_pctx(dev);
5455 }
5456 
5457 static void cherryview_enable_rps(struct drm_device *dev)
5458 {
5459 	struct drm_i915_private *dev_priv = dev->dev_private;
5460 	struct intel_engine_cs *ring;
5461 	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5462 	int i;
5463 
5464 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5465 
5466 	gtfifodbg = I915_READ(GTFIFODBG);
5467 	if (gtfifodbg) {
5468 		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5469 				 gtfifodbg);
5470 		I915_WRITE(GTFIFODBG, gtfifodbg);
5471 	}
5472 
5473 	cherryview_check_pctx(dev_priv);
5474 
5475 	/* 1a & 1b: Get forcewake during program sequence. Although the driver
5476 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5477 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5478 
5479 	/*  Disable RC states. */
5480 	I915_WRITE(GEN6_RC_CONTROL, 0);
5481 
5482 	/* 2a: Program RC6 thresholds.*/
5483 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5484 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5485 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5486 
5487 	for_each_ring(ring, dev_priv, i)
5488 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5489 	I915_WRITE(GEN6_RC_SLEEP, 0);
5490 
5491 	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5492 	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5493 
5494 	/* allows RC6 residency counter to work */
5495 	I915_WRITE(VLV_COUNTER_CONTROL,
5496 		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5497 				      VLV_MEDIA_RC6_COUNT_EN |
5498 				      VLV_RENDER_RC6_COUNT_EN));
5499 
5500 	/* For now we assume BIOS is allocating and populating the PCBR  */
5501 	pcbr = I915_READ(VLV_PCBR);
5502 
5503 	/* 3: Enable RC6 */
5504 	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
5505 						(pcbr >> VLV_PCBR_ADDR_SHIFT))
5506 		rc6_mode = GEN7_RC_CTL_TO_MODE;
5507 
5508 	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5509 
5510 	/* 4 Program defaults and thresholds for RPS*/
5511 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5512 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5513 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5514 	I915_WRITE(GEN6_RP_UP_EI, 66000);
5515 	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5516 
5517 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5518 
5519 	/* 5: Enable RPS */
5520 	I915_WRITE(GEN6_RP_CONTROL,
5521 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5522 		   GEN6_RP_MEDIA_IS_GFX |
5523 		   GEN6_RP_ENABLE |
5524 		   GEN6_RP_UP_BUSY_AVG |
5525 		   GEN6_RP_DOWN_IDLE_AVG);
5526 
5527 	/* Setting Fixed Bias */
5528 	val = VLV_OVERRIDE_EN |
5529 		  VLV_SOC_TDP_EN |
5530 		  CHV_BIAS_CPU_50_SOC_50;
5531 	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5532 
5533 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5534 
5535 	/* RPS code assumes GPLL is used */
5536 	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5537 
5538 	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5539 	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5540 
5541 	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5542 	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5543 			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5544 			 dev_priv->rps.cur_freq);
5545 
5546 	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5547 			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5548 			 dev_priv->rps.efficient_freq);
5549 
5550 	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5551 
5552 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5553 }
5554 
5555 static void valleyview_enable_rps(struct drm_device *dev)
5556 {
5557 	struct drm_i915_private *dev_priv = dev->dev_private;
5558 	struct intel_engine_cs *ring;
5559 	u32 gtfifodbg, val, rc6_mode = 0;
5560 	int i;
5561 
5562 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5563 
5564 	valleyview_check_pctx(dev_priv);
5565 
5566 	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5567 		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5568 				 gtfifodbg);
5569 		I915_WRITE(GTFIFODBG, gtfifodbg);
5570 	}
5571 
5572 	/* If VLV, Forcewake all wells, else re-direct to regular path */
5573 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5574 
5575 	/*  Disable RC states. */
5576 	I915_WRITE(GEN6_RC_CONTROL, 0);
5577 
5578 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5579 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5580 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5581 	I915_WRITE(GEN6_RP_UP_EI, 66000);
5582 	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5583 
5584 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5585 
5586 	I915_WRITE(GEN6_RP_CONTROL,
5587 		   GEN6_RP_MEDIA_TURBO |
5588 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5589 		   GEN6_RP_MEDIA_IS_GFX |
5590 		   GEN6_RP_ENABLE |
5591 		   GEN6_RP_UP_BUSY_AVG |
5592 		   GEN6_RP_DOWN_IDLE_CONT);
5593 
5594 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5595 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5596 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5597 
5598 	for_each_ring(ring, dev_priv, i)
5599 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5600 
5601 	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5602 
5603 	/* allows RC6 residency counter to work */
5604 	I915_WRITE(VLV_COUNTER_CONTROL,
5605 		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5606 				      VLV_RENDER_RC0_COUNT_EN |
5607 				      VLV_MEDIA_RC6_COUNT_EN |
5608 				      VLV_RENDER_RC6_COUNT_EN));
5609 
5610 	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5611 		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
5612 
5613 	intel_print_rc6_info(dev, rc6_mode);
5614 
5615 	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5616 
5617 	/* Setting Fixed Bias */
5618 	val = VLV_OVERRIDE_EN |
5619 		  VLV_SOC_TDP_EN |
5620 		  VLV_BIAS_CPU_125_SOC_875;
5621 	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5622 
5623 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5624 
5625 	/* RPS code assumes GPLL is used */
5626 	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5627 
5628 	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5629 	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5630 
5631 	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5632 	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5633 			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5634 			 dev_priv->rps.cur_freq);
5635 
5636 	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5637 			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5638 			 dev_priv->rps.efficient_freq);
5639 
5640 	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5641 
5642 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5643 }
5644 
5645 static unsigned long intel_pxfreq(u32 vidfreq)
5646 {
5647 	unsigned long freq;
5648 	int div = (vidfreq & 0x3f0000) >> 16;
5649 	int post = (vidfreq & 0x3000) >> 12;
5650 	int pre = (vidfreq & 0x7);
5651 
5652 	if (!pre)
5653 		return 0;
5654 
5655 	freq = ((div * 133333) / ((1<<post) * pre));
5656 
5657 	return freq;
5658 }
5659 
5660 static const struct cparams {
5661 	u16 i;
5662 	u16 t;
5663 	u16 m;
5664 	u16 c;
5665 } cparams[] = {
5666 	{ 1, 1333, 301, 28664 },
5667 	{ 1, 1066, 294, 24460 },
5668 	{ 1, 800, 294, 25192 },
5669 	{ 0, 1333, 276, 27605 },
5670 	{ 0, 1066, 276, 27605 },
5671 	{ 0, 800, 231, 23784 },
5672 };
5673 
5674 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5675 {
5676 	u64 total_count, diff, ret;
5677 	u32 count1, count2, count3, m = 0, c = 0;
5678 	unsigned long now = jiffies_to_msecs(jiffies), diff1;
5679 	int i;
5680 
5681 	assert_spin_locked(&mchdev_lock);
5682 
5683 	diff1 = now - dev_priv->ips.last_time1;
5684 
5685 	/* Prevent division-by-zero if we are asking too fast.
5686 	 * Also, we don't get interesting results if we are polling
5687 	 * faster than once in 10ms, so just return the saved value
5688 	 * in such cases.
5689 	 */
5690 	if (diff1 <= 10)
5691 		return dev_priv->ips.chipset_power;
5692 
5693 	count1 = I915_READ(DMIEC);
5694 	count2 = I915_READ(DDREC);
5695 	count3 = I915_READ(CSIEC);
5696 
5697 	total_count = count1 + count2 + count3;
5698 
5699 	/* FIXME: handle per-counter overflow */
5700 	if (total_count < dev_priv->ips.last_count1) {
5701 		diff = ~0UL - dev_priv->ips.last_count1;
5702 		diff += total_count;
5703 	} else {
5704 		diff = total_count - dev_priv->ips.last_count1;
5705 	}
5706 
5707 	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5708 		if (cparams[i].i == dev_priv->ips.c_m &&
5709 		    cparams[i].t == dev_priv->ips.r_t) {
5710 			m = cparams[i].m;
5711 			c = cparams[i].c;
5712 			break;
5713 		}
5714 	}
5715 
5716 	diff = div_u64(diff, diff1);
5717 	ret = ((m * diff) + c);
5718 	ret = div_u64(ret, 10);
5719 
5720 	dev_priv->ips.last_count1 = total_count;
5721 	dev_priv->ips.last_time1 = now;
5722 
5723 	dev_priv->ips.chipset_power = ret;
5724 
5725 	return ret;
5726 }
5727 
5728 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5729 {
5730 	struct drm_device *dev = dev_priv->dev;
5731 	unsigned long val;
5732 
5733 	if (INTEL_INFO(dev)->gen != 5)
5734 		return 0;
5735 
5736 	spin_lock_irq(&mchdev_lock);
5737 
5738 	val = __i915_chipset_val(dev_priv);
5739 
5740 	spin_unlock_irq(&mchdev_lock);
5741 
5742 	return val;
5743 }
5744 
5745 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5746 {
5747 	unsigned long m, x, b;
5748 	u32 tsfs;
5749 
5750 	tsfs = I915_READ(TSFS);
5751 
5752 	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5753 	x = I915_READ8(TR1);
5754 
5755 	b = tsfs & TSFS_INTR_MASK;
5756 
5757 	return ((m * x) / 127) - b;
5758 }
5759 
5760 static int _pxvid_to_vd(u8 pxvid)
5761 {
5762 	if (pxvid == 0)
5763 		return 0;
5764 
5765 	if (pxvid >= 8 && pxvid < 31)
5766 		pxvid = 31;
5767 
5768 	return (pxvid + 2) * 125;
5769 }
5770 
5771 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5772 {
5773 	struct drm_device *dev = dev_priv->dev;
5774 	const int vd = _pxvid_to_vd(pxvid);
5775 	const int vm = vd - 1125;
5776 
5777 	if (INTEL_INFO(dev)->is_mobile)
5778 		return vm > 0 ? vm : 0;
5779 
5780 	return vd;
5781 }
5782 
5783 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5784 {
5785 	u64 now, diff, diffms;
5786 	u32 count;
5787 
5788 	assert_spin_locked(&mchdev_lock);
5789 
5790 	now = ktime_get_raw_ns();
5791 	diffms = now - dev_priv->ips.last_time2;
5792 	do_div(diffms, NSEC_PER_MSEC);
5793 
5794 	/* Don't divide by 0 */
5795 	if (!diffms)
5796 		return;
5797 
5798 	count = I915_READ(GFXEC);
5799 
5800 	if (count < dev_priv->ips.last_count2) {
5801 		diff = ~0UL - dev_priv->ips.last_count2;
5802 		diff += count;
5803 	} else {
5804 		diff = count - dev_priv->ips.last_count2;
5805 	}
5806 
5807 	dev_priv->ips.last_count2 = count;
5808 	dev_priv->ips.last_time2 = now;
5809 
5810 	/* More magic constants... */
5811 	diff = diff * 1181;
5812 	diff = div_u64(diff, diffms * 10);
5813 	dev_priv->ips.gfx_power = diff;
5814 }
5815 
5816 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5817 {
5818 	struct drm_device *dev = dev_priv->dev;
5819 
5820 	if (INTEL_INFO(dev)->gen != 5)
5821 		return;
5822 
5823 	spin_lock_irq(&mchdev_lock);
5824 
5825 	__i915_update_gfx_val(dev_priv);
5826 
5827 	spin_unlock_irq(&mchdev_lock);
5828 }
5829 
5830 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5831 {
5832 	unsigned long t, corr, state1, corr2, state2;
5833 	u32 pxvid, ext_v;
5834 
5835 	assert_spin_locked(&mchdev_lock);
5836 
5837 	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
5838 	pxvid = (pxvid >> 24) & 0x7f;
5839 	ext_v = pvid_to_extvid(dev_priv, pxvid);
5840 
5841 	state1 = ext_v;
5842 
5843 	t = i915_mch_val(dev_priv);
5844 
5845 	/* Revel in the empirically derived constants */
5846 
5847 	/* Correction factor in 1/100000 units */
5848 	if (t > 80)
5849 		corr = ((t * 2349) + 135940);
5850 	else if (t >= 50)
5851 		corr = ((t * 964) + 29317);
5852 	else /* < 50 */
5853 		corr = ((t * 301) + 1004);
5854 
5855 	corr = corr * ((150142 * state1) / 10000 - 78642);
5856 	corr /= 100000;
5857 	corr2 = (corr * dev_priv->ips.corr);
5858 
5859 	state2 = (corr2 * state1) / 10000;
5860 	state2 /= 100; /* convert to mW */
5861 
5862 	__i915_update_gfx_val(dev_priv);
5863 
5864 	return dev_priv->ips.gfx_power + state2;
5865 }
5866 
5867 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5868 {
5869 	struct drm_device *dev = dev_priv->dev;
5870 	unsigned long val;
5871 
5872 	if (INTEL_INFO(dev)->gen != 5)
5873 		return 0;
5874 
5875 	spin_lock_irq(&mchdev_lock);
5876 
5877 	val = __i915_gfx_val(dev_priv);
5878 
5879 	spin_unlock_irq(&mchdev_lock);
5880 
5881 	return val;
5882 }
5883 
5884 /**
5885  * i915_read_mch_val - return value for IPS use
5886  *
5887  * Calculate and return a value for the IPS driver to use when deciding whether
5888  * we have thermal and power headroom to increase CPU or GPU power budget.
5889  */
5890 unsigned long i915_read_mch_val(void)
5891 {
5892 	struct drm_i915_private *dev_priv;
5893 	unsigned long chipset_val, graphics_val, ret = 0;
5894 
5895 	spin_lock_irq(&mchdev_lock);
5896 	if (!i915_mch_dev)
5897 		goto out_unlock;
5898 	dev_priv = i915_mch_dev;
5899 
5900 	chipset_val = __i915_chipset_val(dev_priv);
5901 	graphics_val = __i915_gfx_val(dev_priv);
5902 
5903 	ret = chipset_val + graphics_val;
5904 
5905 out_unlock:
5906 	spin_unlock_irq(&mchdev_lock);
5907 
5908 	return ret;
5909 }
5910 
5911 /**
5912  * i915_gpu_raise - raise GPU frequency limit
5913  *
5914  * Raise the limit; IPS indicates we have thermal headroom.
5915  */
5916 bool i915_gpu_raise(void)
5917 {
5918 	struct drm_i915_private *dev_priv;
5919 	bool ret = true;
5920 
5921 	spin_lock_irq(&mchdev_lock);
5922 	if (!i915_mch_dev) {
5923 		ret = false;
5924 		goto out_unlock;
5925 	}
5926 	dev_priv = i915_mch_dev;
5927 
5928 	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5929 		dev_priv->ips.max_delay--;
5930 
5931 out_unlock:
5932 	spin_unlock_irq(&mchdev_lock);
5933 
5934 	return ret;
5935 }
5936 
5937 /**
5938  * i915_gpu_lower - lower GPU frequency limit
5939  *
5940  * IPS indicates we're close to a thermal limit, so throttle back the GPU
5941  * frequency maximum.
5942  */
5943 bool i915_gpu_lower(void)
5944 {
5945 	struct drm_i915_private *dev_priv;
5946 	bool ret = true;
5947 
5948 	spin_lock_irq(&mchdev_lock);
5949 	if (!i915_mch_dev) {
5950 		ret = false;
5951 		goto out_unlock;
5952 	}
5953 	dev_priv = i915_mch_dev;
5954 
5955 	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
5956 		dev_priv->ips.max_delay++;
5957 
5958 out_unlock:
5959 	spin_unlock_irq(&mchdev_lock);
5960 
5961 	return ret;
5962 }
5963 
5964 /**
5965  * i915_gpu_busy - indicate GPU business to IPS
5966  *
5967  * Tell the IPS driver whether or not the GPU is busy.
5968  */
5969 bool i915_gpu_busy(void)
5970 {
5971 	struct drm_i915_private *dev_priv;
5972 	struct intel_engine_cs *ring;
5973 	bool ret = false;
5974 	int i;
5975 
5976 	spin_lock_irq(&mchdev_lock);
5977 	if (!i915_mch_dev)
5978 		goto out_unlock;
5979 	dev_priv = i915_mch_dev;
5980 
5981 	for_each_ring(ring, dev_priv, i)
5982 		ret |= !list_empty(&ring->request_list);
5983 
5984 out_unlock:
5985 	spin_unlock_irq(&mchdev_lock);
5986 
5987 	return ret;
5988 }
5989 
5990 /**
5991  * i915_gpu_turbo_disable - disable graphics turbo
5992  *
5993  * Disable graphics turbo by resetting the max frequency and setting the
5994  * current frequency to the default.
5995  */
5996 bool i915_gpu_turbo_disable(void)
5997 {
5998 	struct drm_i915_private *dev_priv;
5999 	bool ret = true;
6000 
6001 	spin_lock_irq(&mchdev_lock);
6002 	if (!i915_mch_dev) {
6003 		ret = false;
6004 		goto out_unlock;
6005 	}
6006 	dev_priv = i915_mch_dev;
6007 
6008 	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6009 
6010 	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
6011 		ret = false;
6012 
6013 out_unlock:
6014 	spin_unlock_irq(&mchdev_lock);
6015 
6016 	return ret;
6017 }
6018 
6019 #if 0
6020 /**
6021  * Tells the intel_ips driver that the i915 driver is now loaded, if
6022  * IPS got loaded first.
6023  *
6024  * This awkward dance is so that neither module has to depend on the
6025  * other in order for IPS to do the appropriate communication of
6026  * GPU turbo limits to i915.
6027  */
6028 static void
6029 ips_ping_for_i915_load(void)
6030 {
6031 	void (*link)(void);
6032 
6033 	link = symbol_get(ips_link_to_i915_driver);
6034 	if (link) {
6035 		link();
6036 		symbol_put(ips_link_to_i915_driver);
6037 	}
6038 }
6039 #endif
6040 
6041 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6042 {
6043 	/* We only register the i915 ips part with intel-ips once everything is
6044 	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6045 	spin_lock_irq(&mchdev_lock);
6046 	i915_mch_dev = dev_priv;
6047 	spin_unlock_irq(&mchdev_lock);
6048 
6049 }
6050 
6051 void intel_gpu_ips_teardown(void)
6052 {
6053 	spin_lock_irq(&mchdev_lock);
6054 	i915_mch_dev = NULL;
6055 	spin_unlock_irq(&mchdev_lock);
6056 }
6057 
6058 static void intel_init_emon(struct drm_device *dev)
6059 {
6060 	struct drm_i915_private *dev_priv = dev->dev_private;
6061 	u32 lcfuse;
6062 	u8 pxw[16];
6063 	int i;
6064 
6065 	/* Disable to program */
6066 	I915_WRITE(ECR, 0);
6067 	POSTING_READ(ECR);
6068 
6069 	/* Program energy weights for various events */
6070 	I915_WRITE(SDEW, 0x15040d00);
6071 	I915_WRITE(CSIEW0, 0x007f0000);
6072 	I915_WRITE(CSIEW1, 0x1e220004);
6073 	I915_WRITE(CSIEW2, 0x04000004);
6074 
6075 	for (i = 0; i < 5; i++)
6076 		I915_WRITE(PEW(i), 0);
6077 	for (i = 0; i < 3; i++)
6078 		I915_WRITE(DEW(i), 0);
6079 
6080 	/* Program P-state weights to account for frequency power adjustment */
6081 	for (i = 0; i < 16; i++) {
6082 		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6083 		unsigned long freq = intel_pxfreq(pxvidfreq);
6084 		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6085 			PXVFREQ_PX_SHIFT;
6086 		unsigned long val;
6087 
6088 		val = vid * vid;
6089 		val *= (freq / 1000);
6090 		val *= 255;
6091 		val /= (127*127*900);
6092 		if (val > 0xff)
6093 			DRM_ERROR("bad pxval: %ld\n", val);
6094 		pxw[i] = val;
6095 	}
6096 	/* Render standby states get 0 weight */
6097 	pxw[14] = 0;
6098 	pxw[15] = 0;
6099 
6100 	for (i = 0; i < 4; i++) {
6101 		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6102 			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6103 		I915_WRITE(PXW(i), val);
6104 	}
6105 
6106 	/* Adjust magic regs to magic values (more experimental results) */
6107 	I915_WRITE(OGW0, 0);
6108 	I915_WRITE(OGW1, 0);
6109 	I915_WRITE(EG0, 0x00007f00);
6110 	I915_WRITE(EG1, 0x0000000e);
6111 	I915_WRITE(EG2, 0x000e0000);
6112 	I915_WRITE(EG3, 0x68000300);
6113 	I915_WRITE(EG4, 0x42000000);
6114 	I915_WRITE(EG5, 0x00140031);
6115 	I915_WRITE(EG6, 0);
6116 	I915_WRITE(EG7, 0);
6117 
6118 	for (i = 0; i < 8; i++)
6119 		I915_WRITE(PXWL(i), 0);
6120 
6121 	/* Enable PMON + select events */
6122 	I915_WRITE(ECR, 0x80000019);
6123 
6124 	lcfuse = I915_READ(LCFUSE02);
6125 
6126 	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6127 }
6128 
6129 void intel_init_gt_powersave(struct drm_device *dev)
6130 {
6131 	struct drm_i915_private *dev_priv = dev->dev_private;
6132 
6133 	/*
6134 	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6135 	 * requirement.
6136 	 */
6137 	if (!i915.enable_rc6) {
6138 		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6139 		intel_runtime_pm_get(dev_priv);
6140 	}
6141 
6142 	if (IS_CHERRYVIEW(dev))
6143 		cherryview_init_gt_powersave(dev);
6144 	else if (IS_VALLEYVIEW(dev))
6145 		valleyview_init_gt_powersave(dev);
6146 }
6147 
6148 void intel_cleanup_gt_powersave(struct drm_device *dev)
6149 {
6150 	struct drm_i915_private *dev_priv = dev->dev_private;
6151 
6152 	if (IS_CHERRYVIEW(dev))
6153 		return;
6154 	else if (IS_VALLEYVIEW(dev))
6155 		valleyview_cleanup_gt_powersave(dev);
6156 
6157 	if (!i915.enable_rc6)
6158 		intel_runtime_pm_put(dev_priv);
6159 }
6160 
6161 static void gen6_suspend_rps(struct drm_device *dev)
6162 {
6163 #if 0
6164 	struct drm_i915_private *dev_priv = dev->dev_private;
6165 
6166 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
6167 #endif
6168 
6169 	gen6_disable_rps_interrupts(dev);
6170 }
6171 
6172 /**
6173  * intel_suspend_gt_powersave - suspend PM work and helper threads
6174  * @dev: drm device
6175  *
6176  * We don't want to disable RC6 or other features here, we just want
6177  * to make sure any work we've queued has finished and won't bother
6178  * us while we're suspended.
6179  */
6180 void intel_suspend_gt_powersave(struct drm_device *dev)
6181 {
6182 	struct drm_i915_private *dev_priv = dev->dev_private;
6183 
6184 	if (INTEL_INFO(dev)->gen < 6)
6185 		return;
6186 
6187 	gen6_suspend_rps(dev);
6188 
6189 	/* Force GPU to min freq during suspend */
6190 	gen6_rps_idle(dev_priv);
6191 }
6192 
6193 void intel_disable_gt_powersave(struct drm_device *dev)
6194 {
6195 	struct drm_i915_private *dev_priv = dev->dev_private;
6196 
6197 	if (IS_IRONLAKE_M(dev)) {
6198 		ironlake_disable_drps(dev);
6199 	} else if (INTEL_INFO(dev)->gen >= 6) {
6200 		intel_suspend_gt_powersave(dev);
6201 
6202 		mutex_lock(&dev_priv->rps.hw_lock);
6203 		if (INTEL_INFO(dev)->gen >= 9)
6204 			gen9_disable_rps(dev);
6205 		else if (IS_CHERRYVIEW(dev))
6206 			cherryview_disable_rps(dev);
6207 		else if (IS_VALLEYVIEW(dev))
6208 			valleyview_disable_rps(dev);
6209 		else
6210 			gen6_disable_rps(dev);
6211 
6212 		dev_priv->rps.enabled = false;
6213 		mutex_unlock(&dev_priv->rps.hw_lock);
6214 	}
6215 }
6216 
6217 static void intel_gen6_powersave_work(struct work_struct *work)
6218 {
6219 	struct drm_i915_private *dev_priv =
6220 		container_of(work, struct drm_i915_private,
6221 			     rps.delayed_resume_work.work);
6222 	struct drm_device *dev = dev_priv->dev;
6223 
6224 	mutex_lock(&dev_priv->rps.hw_lock);
6225 
6226 	gen6_reset_rps_interrupts(dev);
6227 
6228 	if (IS_CHERRYVIEW(dev)) {
6229 		cherryview_enable_rps(dev);
6230 	} else if (IS_VALLEYVIEW(dev)) {
6231 		valleyview_enable_rps(dev);
6232 	} else if (INTEL_INFO(dev)->gen >= 9) {
6233 		gen9_enable_rc6(dev);
6234 		gen9_enable_rps(dev);
6235 		if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
6236 			__gen6_update_ring_freq(dev);
6237 	} else if (IS_BROADWELL(dev)) {
6238 		gen8_enable_rps(dev);
6239 		__gen6_update_ring_freq(dev);
6240 	} else {
6241 		gen6_enable_rps(dev);
6242 		__gen6_update_ring_freq(dev);
6243 	}
6244 
6245 	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6246 	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6247 
6248 	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6249 	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6250 
6251 	dev_priv->rps.enabled = true;
6252 
6253 	gen6_enable_rps_interrupts(dev);
6254 
6255 	mutex_unlock(&dev_priv->rps.hw_lock);
6256 
6257 	intel_runtime_pm_put(dev_priv);
6258 }
6259 
6260 void intel_enable_gt_powersave(struct drm_device *dev)
6261 {
6262 	struct drm_i915_private *dev_priv = dev->dev_private;
6263 
6264 	/* Powersaving is controlled by the host when inside a VM */
6265 	if (intel_vgpu_active(dev))
6266 		return;
6267 
6268 	if (IS_IRONLAKE_M(dev)) {
6269 		ironlake_enable_drps(dev);
6270 		mutex_lock(&dev->struct_mutex);
6271 		intel_init_emon(dev);
6272 		mutex_unlock(&dev->struct_mutex);
6273 	} else if (INTEL_INFO(dev)->gen >= 6) {
6274 		/*
6275 		 * PCU communication is slow and this doesn't need to be
6276 		 * done at any specific time, so do this out of our fast path
6277 		 * to make resume and init faster.
6278 		 *
6279 		 * We depend on the HW RC6 power context save/restore
6280 		 * mechanism when entering D3 through runtime PM suspend. So
6281 		 * disable RPM until RPS/RC6 is properly setup. We can only
6282 		 * get here via the driver load/system resume/runtime resume
6283 		 * paths, so the _noresume version is enough (and in case of
6284 		 * runtime resume it's necessary).
6285 		 */
6286 		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6287 					   round_jiffies_up_relative(HZ)))
6288 			intel_runtime_pm_get_noresume(dev_priv);
6289 	}
6290 }
6291 
6292 void intel_reset_gt_powersave(struct drm_device *dev)
6293 {
6294 	struct drm_i915_private *dev_priv = dev->dev_private;
6295 
6296 	if (INTEL_INFO(dev)->gen < 6)
6297 		return;
6298 
6299 	gen6_suspend_rps(dev);
6300 	dev_priv->rps.enabled = false;
6301 }
6302 
6303 static void ibx_init_clock_gating(struct drm_device *dev)
6304 {
6305 	struct drm_i915_private *dev_priv = dev->dev_private;
6306 
6307 	/*
6308 	 * On Ibex Peak and Cougar Point, we need to disable clock
6309 	 * gating for the panel power sequencer or it will fail to
6310 	 * start up when no ports are active.
6311 	 */
6312 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6313 }
6314 
6315 static void g4x_disable_trickle_feed(struct drm_device *dev)
6316 {
6317 	struct drm_i915_private *dev_priv = dev->dev_private;
6318 	enum i915_pipe pipe;
6319 
6320 	for_each_pipe(dev_priv, pipe) {
6321 		I915_WRITE(DSPCNTR(pipe),
6322 			   I915_READ(DSPCNTR(pipe)) |
6323 			   DISPPLANE_TRICKLE_FEED_DISABLE);
6324 
6325 		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6326 		POSTING_READ(DSPSURF(pipe));
6327 	}
6328 }
6329 
6330 static void ilk_init_lp_watermarks(struct drm_device *dev)
6331 {
6332 	struct drm_i915_private *dev_priv = dev->dev_private;
6333 
6334 	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6335 	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6336 	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6337 
6338 	/*
6339 	 * Don't touch WM1S_LP_EN here.
6340 	 * Doing so could cause underruns.
6341 	 */
6342 }
6343 
6344 static void ironlake_init_clock_gating(struct drm_device *dev)
6345 {
6346 	struct drm_i915_private *dev_priv = dev->dev_private;
6347 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6348 
6349 	/*
6350 	 * Required for FBC
6351 	 * WaFbcDisableDpfcClockGating:ilk
6352 	 */
6353 	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6354 		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6355 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6356 
6357 	I915_WRITE(PCH_3DCGDIS0,
6358 		   MARIUNIT_CLOCK_GATE_DISABLE |
6359 		   SVSMUNIT_CLOCK_GATE_DISABLE);
6360 	I915_WRITE(PCH_3DCGDIS1,
6361 		   VFMUNIT_CLOCK_GATE_DISABLE);
6362 
6363 	/*
6364 	 * According to the spec the following bits should be set in
6365 	 * order to enable memory self-refresh
6366 	 * The bit 22/21 of 0x42004
6367 	 * The bit 5 of 0x42020
6368 	 * The bit 15 of 0x45000
6369 	 */
6370 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6371 		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
6372 		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6373 	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6374 	I915_WRITE(DISP_ARB_CTL,
6375 		   (I915_READ(DISP_ARB_CTL) |
6376 		    DISP_FBC_WM_DIS));
6377 
6378 	ilk_init_lp_watermarks(dev);
6379 
6380 	/*
6381 	 * Based on the document from hardware guys the following bits
6382 	 * should be set unconditionally in order to enable FBC.
6383 	 * The bit 22 of 0x42000
6384 	 * The bit 22 of 0x42004
6385 	 * The bit 7,8,9 of 0x42020.
6386 	 */
6387 	if (IS_IRONLAKE_M(dev)) {
6388 		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6389 		I915_WRITE(ILK_DISPLAY_CHICKEN1,
6390 			   I915_READ(ILK_DISPLAY_CHICKEN1) |
6391 			   ILK_FBCQ_DIS);
6392 		I915_WRITE(ILK_DISPLAY_CHICKEN2,
6393 			   I915_READ(ILK_DISPLAY_CHICKEN2) |
6394 			   ILK_DPARB_GATE);
6395 	}
6396 
6397 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6398 
6399 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6400 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6401 		   ILK_ELPIN_409_SELECT);
6402 	I915_WRITE(_3D_CHICKEN2,
6403 		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6404 		   _3D_CHICKEN2_WM_READ_PIPELINED);
6405 
6406 	/* WaDisableRenderCachePipelinedFlush:ilk */
6407 	I915_WRITE(CACHE_MODE_0,
6408 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6409 
6410 	/* WaDisable_RenderCache_OperationalFlush:ilk */
6411 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6412 
6413 	g4x_disable_trickle_feed(dev);
6414 
6415 	ibx_init_clock_gating(dev);
6416 }
6417 
6418 static void cpt_init_clock_gating(struct drm_device *dev)
6419 {
6420 	struct drm_i915_private *dev_priv = dev->dev_private;
6421 	int pipe;
6422 	uint32_t val;
6423 
6424 	/*
6425 	 * On Ibex Peak and Cougar Point, we need to disable clock
6426 	 * gating for the panel power sequencer or it will fail to
6427 	 * start up when no ports are active.
6428 	 */
6429 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6430 		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6431 		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6432 	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6433 		   DPLS_EDP_PPS_FIX_DIS);
6434 	/* The below fixes the weird display corruption, a few pixels shifted
6435 	 * downward, on (only) LVDS of some HP laptops with IVY.
6436 	 */
6437 	for_each_pipe(dev_priv, pipe) {
6438 		val = I915_READ(TRANS_CHICKEN2(pipe));
6439 		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6440 		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6441 		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6442 			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6443 		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6444 		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6445 		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6446 		I915_WRITE(TRANS_CHICKEN2(pipe), val);
6447 	}
6448 	/* WADP0ClockGatingDisable */
6449 	for_each_pipe(dev_priv, pipe) {
6450 		I915_WRITE(TRANS_CHICKEN1(pipe),
6451 			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6452 	}
6453 }
6454 
6455 static void gen6_check_mch_setup(struct drm_device *dev)
6456 {
6457 	struct drm_i915_private *dev_priv = dev->dev_private;
6458 	uint32_t tmp;
6459 
6460 	tmp = I915_READ(MCH_SSKPD);
6461 	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6462 		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6463 			      tmp);
6464 }
6465 
6466 static void gen6_init_clock_gating(struct drm_device *dev)
6467 {
6468 	struct drm_i915_private *dev_priv = dev->dev_private;
6469 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6470 
6471 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6472 
6473 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6474 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6475 		   ILK_ELPIN_409_SELECT);
6476 
6477 	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6478 	I915_WRITE(_3D_CHICKEN,
6479 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6480 
6481 	/* WaDisable_RenderCache_OperationalFlush:snb */
6482 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6483 
6484 	/*
6485 	 * BSpec recoomends 8x4 when MSAA is used,
6486 	 * however in practice 16x4 seems fastest.
6487 	 *
6488 	 * Note that PS/WM thread counts depend on the WIZ hashing
6489 	 * disable bit, which we don't touch here, but it's good
6490 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6491 	 */
6492 	I915_WRITE(GEN6_GT_MODE,
6493 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6494 
6495 	ilk_init_lp_watermarks(dev);
6496 
6497 	I915_WRITE(CACHE_MODE_0,
6498 		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6499 
6500 	I915_WRITE(GEN6_UCGCTL1,
6501 		   I915_READ(GEN6_UCGCTL1) |
6502 		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6503 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6504 
6505 	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6506 	 * gating disable must be set.  Failure to set it results in
6507 	 * flickering pixels due to Z write ordering failures after
6508 	 * some amount of runtime in the Mesa "fire" demo, and Unigine
6509 	 * Sanctuary and Tropics, and apparently anything else with
6510 	 * alpha test or pixel discard.
6511 	 *
6512 	 * According to the spec, bit 11 (RCCUNIT) must also be set,
6513 	 * but we didn't debug actual testcases to find it out.
6514 	 *
6515 	 * WaDisableRCCUnitClockGating:snb
6516 	 * WaDisableRCPBUnitClockGating:snb
6517 	 */
6518 	I915_WRITE(GEN6_UCGCTL2,
6519 		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6520 		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6521 
6522 	/* WaStripsFansDisableFastClipPerformanceFix:snb */
6523 	I915_WRITE(_3D_CHICKEN3,
6524 		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6525 
6526 	/*
6527 	 * Bspec says:
6528 	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6529 	 * 3DSTATE_SF number of SF output attributes is more than 16."
6530 	 */
6531 	I915_WRITE(_3D_CHICKEN3,
6532 		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6533 
6534 	/*
6535 	 * According to the spec the following bits should be
6536 	 * set in order to enable memory self-refresh and fbc:
6537 	 * The bit21 and bit22 of 0x42000
6538 	 * The bit21 and bit22 of 0x42004
6539 	 * The bit5 and bit7 of 0x42020
6540 	 * The bit14 of 0x70180
6541 	 * The bit14 of 0x71180
6542 	 *
6543 	 * WaFbcAsynchFlipDisableFbcQueue:snb
6544 	 */
6545 	I915_WRITE(ILK_DISPLAY_CHICKEN1,
6546 		   I915_READ(ILK_DISPLAY_CHICKEN1) |
6547 		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6548 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6549 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6550 		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6551 	I915_WRITE(ILK_DSPCLK_GATE_D,
6552 		   I915_READ(ILK_DSPCLK_GATE_D) |
6553 		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
6554 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6555 
6556 	g4x_disable_trickle_feed(dev);
6557 
6558 	cpt_init_clock_gating(dev);
6559 
6560 	gen6_check_mch_setup(dev);
6561 }
6562 
6563 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6564 {
6565 	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6566 
6567 	/*
6568 	 * WaVSThreadDispatchOverride:ivb,vlv
6569 	 *
6570 	 * This actually overrides the dispatch
6571 	 * mode for all thread types.
6572 	 */
6573 	reg &= ~GEN7_FF_SCHED_MASK;
6574 	reg |= GEN7_FF_TS_SCHED_HW;
6575 	reg |= GEN7_FF_VS_SCHED_HW;
6576 	reg |= GEN7_FF_DS_SCHED_HW;
6577 
6578 	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6579 }
6580 
6581 static void lpt_init_clock_gating(struct drm_device *dev)
6582 {
6583 	struct drm_i915_private *dev_priv = dev->dev_private;
6584 
6585 	/*
6586 	 * TODO: this bit should only be enabled when really needed, then
6587 	 * disabled when not needed anymore in order to save power.
6588 	 */
6589 	if (HAS_PCH_LPT_LP(dev))
6590 		I915_WRITE(SOUTH_DSPCLK_GATE_D,
6591 			   I915_READ(SOUTH_DSPCLK_GATE_D) |
6592 			   PCH_LP_PARTITION_LEVEL_DISABLE);
6593 
6594 	/* WADPOClockGatingDisable:hsw */
6595 	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
6596 		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6597 		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6598 }
6599 
6600 static void lpt_suspend_hw(struct drm_device *dev)
6601 {
6602 	struct drm_i915_private *dev_priv = dev->dev_private;
6603 
6604 	if (HAS_PCH_LPT_LP(dev)) {
6605 		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6606 
6607 		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6608 		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6609 	}
6610 }
6611 
6612 static void broadwell_init_clock_gating(struct drm_device *dev)
6613 {
6614 	struct drm_i915_private *dev_priv = dev->dev_private;
6615 	enum i915_pipe pipe;
6616 	uint32_t misccpctl;
6617 
6618 	ilk_init_lp_watermarks(dev);
6619 
6620 	/* WaSwitchSolVfFArbitrationPriority:bdw */
6621 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6622 
6623 	/* WaPsrDPAMaskVBlankInSRD:bdw */
6624 	I915_WRITE(CHICKEN_PAR1_1,
6625 		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6626 
6627 	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6628 	for_each_pipe(dev_priv, pipe) {
6629 		I915_WRITE(CHICKEN_PIPESL_1(pipe),
6630 			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
6631 			   BDW_DPRS_MASK_VBLANK_SRD);
6632 	}
6633 
6634 	/* WaVSRefCountFullforceMissDisable:bdw */
6635 	/* WaDSRefCountFullforceMissDisable:bdw */
6636 	I915_WRITE(GEN7_FF_THREAD_MODE,
6637 		   I915_READ(GEN7_FF_THREAD_MODE) &
6638 		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6639 
6640 	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6641 		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6642 
6643 	/* WaDisableSDEUnitClockGating:bdw */
6644 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6645 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6646 
6647 	/*
6648 	 * WaProgramL3SqcReg1Default:bdw
6649 	 * WaTempDisableDOPClkGating:bdw
6650 	 */
6651 	misccpctl = I915_READ(GEN7_MISCCPCTL);
6652 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6653 	I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
6654 	/*
6655 	 * Wait at least 100 clocks before re-enabling clock gating. See
6656 	 * the definition of L3SQCREG1 in BSpec.
6657 	 */
6658 	POSTING_READ(GEN8_L3SQCREG1);
6659 	udelay(1);
6660 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6661 
6662 	/*
6663 	 * WaGttCachingOffByDefault:bdw
6664 	 * GTT cache may not work with big pages, so if those
6665 	 * are ever enabled GTT cache may need to be disabled.
6666 	 */
6667 	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6668 
6669 	lpt_init_clock_gating(dev);
6670 }
6671 
6672 static void haswell_init_clock_gating(struct drm_device *dev)
6673 {
6674 	struct drm_i915_private *dev_priv = dev->dev_private;
6675 
6676 	ilk_init_lp_watermarks(dev);
6677 
6678 	/* L3 caching of data atomics doesn't work -- disable it. */
6679 	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6680 	I915_WRITE(HSW_ROW_CHICKEN3,
6681 		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6682 
6683 	/* This is required by WaCatErrorRejectionIssue:hsw */
6684 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6685 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6686 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6687 
6688 	/* WaVSRefCountFullforceMissDisable:hsw */
6689 	I915_WRITE(GEN7_FF_THREAD_MODE,
6690 		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6691 
6692 	/* WaDisable_RenderCache_OperationalFlush:hsw */
6693 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6694 
6695 	/* enable HiZ Raw Stall Optimization */
6696 	I915_WRITE(CACHE_MODE_0_GEN7,
6697 		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6698 
6699 	/* WaDisable4x2SubspanOptimization:hsw */
6700 	I915_WRITE(CACHE_MODE_1,
6701 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6702 
6703 	/*
6704 	 * BSpec recommends 8x4 when MSAA is used,
6705 	 * however in practice 16x4 seems fastest.
6706 	 *
6707 	 * Note that PS/WM thread counts depend on the WIZ hashing
6708 	 * disable bit, which we don't touch here, but it's good
6709 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6710 	 */
6711 	I915_WRITE(GEN7_GT_MODE,
6712 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6713 
6714 	/* WaSampleCChickenBitEnable:hsw */
6715 	I915_WRITE(HALF_SLICE_CHICKEN3,
6716 		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6717 
6718 	/* WaSwitchSolVfFArbitrationPriority:hsw */
6719 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6720 
6721 	/* WaRsPkgCStateDisplayPMReq:hsw */
6722 	I915_WRITE(CHICKEN_PAR1_1,
6723 		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6724 
6725 	lpt_init_clock_gating(dev);
6726 }
6727 
6728 static void ivybridge_init_clock_gating(struct drm_device *dev)
6729 {
6730 	struct drm_i915_private *dev_priv = dev->dev_private;
6731 	uint32_t snpcr;
6732 
6733 	ilk_init_lp_watermarks(dev);
6734 
6735 	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6736 
6737 	/* WaDisableEarlyCull:ivb */
6738 	I915_WRITE(_3D_CHICKEN3,
6739 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6740 
6741 	/* WaDisableBackToBackFlipFix:ivb */
6742 	I915_WRITE(IVB_CHICKEN3,
6743 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6744 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
6745 
6746 	/* WaDisablePSDDualDispatchEnable:ivb */
6747 	if (IS_IVB_GT1(dev))
6748 		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6749 			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6750 
6751 	/* WaDisable_RenderCache_OperationalFlush:ivb */
6752 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6753 
6754 	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6755 	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6756 		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6757 
6758 	/* WaApplyL3ControlAndL3ChickenMode:ivb */
6759 	I915_WRITE(GEN7_L3CNTLREG1,
6760 			GEN7_WA_FOR_GEN7_L3_CONTROL);
6761 	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6762 		   GEN7_WA_L3_CHICKEN_MODE);
6763 	if (IS_IVB_GT1(dev))
6764 		I915_WRITE(GEN7_ROW_CHICKEN2,
6765 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6766 	else {
6767 		/* must write both registers */
6768 		I915_WRITE(GEN7_ROW_CHICKEN2,
6769 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6770 		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6771 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6772 	}
6773 
6774 	/* WaForceL3Serialization:ivb */
6775 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6776 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6777 
6778 	/*
6779 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6780 	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6781 	 */
6782 	I915_WRITE(GEN6_UCGCTL2,
6783 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6784 
6785 	/* This is required by WaCatErrorRejectionIssue:ivb */
6786 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6787 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6788 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6789 
6790 	g4x_disable_trickle_feed(dev);
6791 
6792 	gen7_setup_fixed_func_scheduler(dev_priv);
6793 
6794 	if (0) { /* causes HiZ corruption on ivb:gt1 */
6795 		/* enable HiZ Raw Stall Optimization */
6796 		I915_WRITE(CACHE_MODE_0_GEN7,
6797 			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6798 	}
6799 
6800 	/* WaDisable4x2SubspanOptimization:ivb */
6801 	I915_WRITE(CACHE_MODE_1,
6802 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6803 
6804 	/*
6805 	 * BSpec recommends 8x4 when MSAA is used,
6806 	 * however in practice 16x4 seems fastest.
6807 	 *
6808 	 * Note that PS/WM thread counts depend on the WIZ hashing
6809 	 * disable bit, which we don't touch here, but it's good
6810 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6811 	 */
6812 	I915_WRITE(GEN7_GT_MODE,
6813 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6814 
6815 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6816 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
6817 	snpcr |= GEN6_MBC_SNPCR_MED;
6818 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6819 
6820 	if (!HAS_PCH_NOP(dev))
6821 		cpt_init_clock_gating(dev);
6822 
6823 	gen6_check_mch_setup(dev);
6824 }
6825 
6826 static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
6827 {
6828 	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6829 
6830 	/*
6831 	 * Disable trickle feed and enable pnd deadline calculation
6832 	 */
6833 	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6834 	I915_WRITE(CBR1_VLV, 0);
6835 }
6836 
6837 static void valleyview_init_clock_gating(struct drm_device *dev)
6838 {
6839 	struct drm_i915_private *dev_priv = dev->dev_private;
6840 
6841 	vlv_init_display_clock_gating(dev_priv);
6842 
6843 	/* WaDisableEarlyCull:vlv */
6844 	I915_WRITE(_3D_CHICKEN3,
6845 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6846 
6847 	/* WaDisableBackToBackFlipFix:vlv */
6848 	I915_WRITE(IVB_CHICKEN3,
6849 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6850 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
6851 
6852 	/* WaPsdDispatchEnable:vlv */
6853 	/* WaDisablePSDDualDispatchEnable:vlv */
6854 	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6855 		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6856 				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6857 
6858 	/* WaDisable_RenderCache_OperationalFlush:vlv */
6859 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6860 
6861 	/* WaForceL3Serialization:vlv */
6862 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6863 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6864 
6865 	/* WaDisableDopClockGating:vlv */
6866 	I915_WRITE(GEN7_ROW_CHICKEN2,
6867 		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6868 
6869 	/* This is required by WaCatErrorRejectionIssue:vlv */
6870 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6871 		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6872 		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6873 
6874 	gen7_setup_fixed_func_scheduler(dev_priv);
6875 
6876 	/*
6877 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6878 	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6879 	 */
6880 	I915_WRITE(GEN6_UCGCTL2,
6881 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6882 
6883 	/* WaDisableL3Bank2xClockGate:vlv
6884 	 * Disabling L3 clock gating- MMIO 940c[25] = 1
6885 	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6886 	I915_WRITE(GEN7_UCGCTL4,
6887 		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6888 
6889 	/*
6890 	 * BSpec says this must be set, even though
6891 	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
6892 	 */
6893 	I915_WRITE(CACHE_MODE_1,
6894 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6895 
6896 	/*
6897 	 * BSpec recommends 8x4 when MSAA is used,
6898 	 * however in practice 16x4 seems fastest.
6899 	 *
6900 	 * Note that PS/WM thread counts depend on the WIZ hashing
6901 	 * disable bit, which we don't touch here, but it's good
6902 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6903 	 */
6904 	I915_WRITE(GEN7_GT_MODE,
6905 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6906 
6907 	/*
6908 	 * WaIncreaseL3CreditsForVLVB0:vlv
6909 	 * This is the hardware default actually.
6910 	 */
6911 	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
6912 
6913 	/*
6914 	 * WaDisableVLVClockGating_VBIIssue:vlv
6915 	 * Disable clock gating on th GCFG unit to prevent a delay
6916 	 * in the reporting of vblank events.
6917 	 */
6918 	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6919 }
6920 
6921 static void cherryview_init_clock_gating(struct drm_device *dev)
6922 {
6923 	struct drm_i915_private *dev_priv = dev->dev_private;
6924 
6925 	vlv_init_display_clock_gating(dev_priv);
6926 
6927 	/* WaVSRefCountFullforceMissDisable:chv */
6928 	/* WaDSRefCountFullforceMissDisable:chv */
6929 	I915_WRITE(GEN7_FF_THREAD_MODE,
6930 		   I915_READ(GEN7_FF_THREAD_MODE) &
6931 		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6932 
6933 	/* WaDisableSemaphoreAndSyncFlipWait:chv */
6934 	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6935 		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6936 
6937 	/* WaDisableCSUnitClockGating:chv */
6938 	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6939 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6940 
6941 	/* WaDisableSDEUnitClockGating:chv */
6942 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6943 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6944 
6945 	/*
6946 	 * GTT cache may not work with big pages, so if those
6947 	 * are ever enabled GTT cache may need to be disabled.
6948 	 */
6949 	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6950 }
6951 
6952 static void g4x_init_clock_gating(struct drm_device *dev)
6953 {
6954 	struct drm_i915_private *dev_priv = dev->dev_private;
6955 	uint32_t dspclk_gate;
6956 
6957 	I915_WRITE(RENCLK_GATE_D1, 0);
6958 	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
6959 		   GS_UNIT_CLOCK_GATE_DISABLE |
6960 		   CL_UNIT_CLOCK_GATE_DISABLE);
6961 	I915_WRITE(RAMCLK_GATE_D, 0);
6962 	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
6963 		OVRUNIT_CLOCK_GATE_DISABLE |
6964 		OVCUNIT_CLOCK_GATE_DISABLE;
6965 	if (IS_GM45(dev))
6966 		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
6967 	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6968 
6969 	/* WaDisableRenderCachePipelinedFlush */
6970 	I915_WRITE(CACHE_MODE_0,
6971 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6972 
6973 	/* WaDisable_RenderCache_OperationalFlush:g4x */
6974 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6975 
6976 	g4x_disable_trickle_feed(dev);
6977 }
6978 
6979 static void crestline_init_clock_gating(struct drm_device *dev)
6980 {
6981 	struct drm_i915_private *dev_priv = dev->dev_private;
6982 
6983 	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
6984 	I915_WRITE(RENCLK_GATE_D2, 0);
6985 	I915_WRITE(DSPCLK_GATE_D, 0);
6986 	I915_WRITE(RAMCLK_GATE_D, 0);
6987 	I915_WRITE16(DEUC, 0);
6988 	I915_WRITE(MI_ARB_STATE,
6989 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6990 
6991 	/* WaDisable_RenderCache_OperationalFlush:gen4 */
6992 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6993 }
6994 
6995 static void broadwater_init_clock_gating(struct drm_device *dev)
6996 {
6997 	struct drm_i915_private *dev_priv = dev->dev_private;
6998 
6999 	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7000 		   I965_RCC_CLOCK_GATE_DISABLE |
7001 		   I965_RCPB_CLOCK_GATE_DISABLE |
7002 		   I965_ISC_CLOCK_GATE_DISABLE |
7003 		   I965_FBC_CLOCK_GATE_DISABLE);
7004 	I915_WRITE(RENCLK_GATE_D2, 0);
7005 	I915_WRITE(MI_ARB_STATE,
7006 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7007 
7008 	/* WaDisable_RenderCache_OperationalFlush:gen4 */
7009 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7010 }
7011 
7012 static void gen3_init_clock_gating(struct drm_device *dev)
7013 {
7014 	struct drm_i915_private *dev_priv = dev->dev_private;
7015 	u32 dstate = I915_READ(D_STATE);
7016 
7017 	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7018 		DSTATE_DOT_CLOCK_GATING;
7019 	I915_WRITE(D_STATE, dstate);
7020 
7021 	if (IS_PINEVIEW(dev))
7022 		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7023 
7024 	/* IIR "flip pending" means done if this bit is set */
7025 	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7026 
7027 	/* interrupts should cause a wake up from C3 */
7028 	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7029 
7030 	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7031 	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7032 
7033 	I915_WRITE(MI_ARB_STATE,
7034 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7035 }
7036 
7037 static void i85x_init_clock_gating(struct drm_device *dev)
7038 {
7039 	struct drm_i915_private *dev_priv = dev->dev_private;
7040 
7041 	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7042 
7043 	/* interrupts should cause a wake up from C3 */
7044 	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7045 		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7046 
7047 	I915_WRITE(MEM_MODE,
7048 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7049 }
7050 
7051 static void i830_init_clock_gating(struct drm_device *dev)
7052 {
7053 	struct drm_i915_private *dev_priv = dev->dev_private;
7054 
7055 	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7056 
7057 	I915_WRITE(MEM_MODE,
7058 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7059 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7060 }
7061 
7062 void intel_init_clock_gating(struct drm_device *dev)
7063 {
7064 	struct drm_i915_private *dev_priv = dev->dev_private;
7065 
7066 	if (dev_priv->display.init_clock_gating)
7067 		dev_priv->display.init_clock_gating(dev);
7068 }
7069 
7070 void intel_suspend_hw(struct drm_device *dev)
7071 {
7072 	if (HAS_PCH_LPT(dev))
7073 		lpt_suspend_hw(dev);
7074 }
7075 
7076 /* Set up chip specific power management-related functions */
7077 void intel_init_pm(struct drm_device *dev)
7078 {
7079 	struct drm_i915_private *dev_priv = dev->dev_private;
7080 
7081 	intel_fbc_init(dev_priv);
7082 
7083 	/* For cxsr */
7084 	if (IS_PINEVIEW(dev))
7085 		i915_pineview_get_mem_freq(dev);
7086 	else if (IS_GEN5(dev))
7087 		i915_ironlake_get_mem_freq(dev);
7088 
7089 	/* For FIFO watermark updates */
7090 	if (INTEL_INFO(dev)->gen >= 9) {
7091 		skl_setup_wm_latency(dev);
7092 
7093 		if (IS_BROXTON(dev))
7094 			dev_priv->display.init_clock_gating =
7095 				bxt_init_clock_gating;
7096 		dev_priv->display.update_wm = skl_update_wm;
7097 	} else if (HAS_PCH_SPLIT(dev)) {
7098 		ilk_setup_wm_latency(dev);
7099 
7100 		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7101 		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7102 		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7103 		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7104 			dev_priv->display.update_wm = ilk_update_wm;
7105 			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7106 			dev_priv->display.program_watermarks = ilk_program_watermarks;
7107 		} else {
7108 			DRM_DEBUG_KMS("Failed to read display plane latency. "
7109 				      "Disable CxSR\n");
7110 		}
7111 
7112 		if (IS_GEN5(dev))
7113 			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7114 		else if (IS_GEN6(dev))
7115 			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7116 		else if (IS_IVYBRIDGE(dev))
7117 			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7118 		else if (IS_HASWELL(dev))
7119 			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7120 		else if (INTEL_INFO(dev)->gen == 8)
7121 			dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7122 	} else if (IS_CHERRYVIEW(dev)) {
7123 		vlv_setup_wm_latency(dev);
7124 
7125 		dev_priv->display.update_wm = vlv_update_wm;
7126 		dev_priv->display.init_clock_gating =
7127 			cherryview_init_clock_gating;
7128 	} else if (IS_VALLEYVIEW(dev)) {
7129 		vlv_setup_wm_latency(dev);
7130 
7131 		dev_priv->display.update_wm = vlv_update_wm;
7132 		dev_priv->display.init_clock_gating =
7133 			valleyview_init_clock_gating;
7134 	} else if (IS_PINEVIEW(dev)) {
7135 		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7136 					    dev_priv->is_ddr3,
7137 					    dev_priv->fsb_freq,
7138 					    dev_priv->mem_freq)) {
7139 			DRM_INFO("failed to find known CxSR latency "
7140 				 "(found ddr%s fsb freq %d, mem freq %d), "
7141 				 "disabling CxSR\n",
7142 				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
7143 				 dev_priv->fsb_freq, dev_priv->mem_freq);
7144 			/* Disable CxSR and never update its watermark again */
7145 			intel_set_memory_cxsr(dev_priv, false);
7146 			dev_priv->display.update_wm = NULL;
7147 		} else
7148 			dev_priv->display.update_wm = pineview_update_wm;
7149 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7150 	} else if (IS_G4X(dev)) {
7151 		dev_priv->display.update_wm = g4x_update_wm;
7152 		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7153 	} else if (IS_GEN4(dev)) {
7154 		dev_priv->display.update_wm = i965_update_wm;
7155 		if (IS_CRESTLINE(dev))
7156 			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7157 		else if (IS_BROADWATER(dev))
7158 			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7159 	} else if (IS_GEN3(dev)) {
7160 		dev_priv->display.update_wm = i9xx_update_wm;
7161 		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7162 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7163 	} else if (IS_GEN2(dev)) {
7164 		if (INTEL_INFO(dev)->num_pipes == 1) {
7165 			dev_priv->display.update_wm = i845_update_wm;
7166 			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7167 		} else {
7168 			dev_priv->display.update_wm = i9xx_update_wm;
7169 			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7170 		}
7171 
7172 		if (IS_I85X(dev) || IS_I865G(dev))
7173 			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7174 		else
7175 			dev_priv->display.init_clock_gating = i830_init_clock_gating;
7176 	} else {
7177 		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7178 	}
7179 }
7180 
7181 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7182 {
7183 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7184 
7185 	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7186 		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7187 		return -EAGAIN;
7188 	}
7189 
7190 	I915_WRITE(GEN6_PCODE_DATA, *val);
7191 	I915_WRITE(GEN6_PCODE_DATA1, 0);
7192 	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7193 
7194 	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7195 		     500)) {
7196 		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7197 		return -ETIMEDOUT;
7198 	}
7199 
7200 	*val = I915_READ(GEN6_PCODE_DATA);
7201 	I915_WRITE(GEN6_PCODE_DATA, 0);
7202 
7203 	return 0;
7204 }
7205 
7206 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
7207 {
7208 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7209 
7210 	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7211 		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7212 		return -EAGAIN;
7213 	}
7214 
7215 	I915_WRITE(GEN6_PCODE_DATA, val);
7216 	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7217 
7218 	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7219 		     500)) {
7220 		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7221 		return -ETIMEDOUT;
7222 	}
7223 
7224 	I915_WRITE(GEN6_PCODE_DATA, 0);
7225 
7226 	return 0;
7227 }
7228 
7229 static int vlv_gpu_freq_div(unsigned int czclk_freq)
7230 {
7231 	switch (czclk_freq) {
7232 	case 200:
7233 		return 10;
7234 	case 267:
7235 		return 12;
7236 	case 320:
7237 	case 333:
7238 		return 16;
7239 	case 400:
7240 		return 20;
7241 	default:
7242 		return -1;
7243 	}
7244 }
7245 
7246 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7247 {
7248 	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7249 
7250 	div = vlv_gpu_freq_div(czclk_freq);
7251 	if (div < 0)
7252 		return div;
7253 
7254 	return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
7255 }
7256 
7257 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7258 {
7259 	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7260 
7261 	mul = vlv_gpu_freq_div(czclk_freq);
7262 	if (mul < 0)
7263 		return mul;
7264 
7265 	return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
7266 }
7267 
7268 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7269 {
7270 	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7271 
7272 	div = vlv_gpu_freq_div(czclk_freq);
7273 	if (div < 0)
7274 		return div;
7275 	div /= 2;
7276 
7277 	return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
7278 }
7279 
7280 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7281 {
7282 	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7283 
7284 	mul = vlv_gpu_freq_div(czclk_freq);
7285 	if (mul < 0)
7286 		return mul;
7287 	mul /= 2;
7288 
7289 	/* CHV needs even values */
7290 	return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
7291 }
7292 
7293 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7294 {
7295 	if (IS_GEN9(dev_priv->dev))
7296 		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
7297 					 GEN9_FREQ_SCALER);
7298 	else if (IS_CHERRYVIEW(dev_priv->dev))
7299 		return chv_gpu_freq(dev_priv, val);
7300 	else if (IS_VALLEYVIEW(dev_priv->dev))
7301 		return byt_gpu_freq(dev_priv, val);
7302 	else
7303 		return val * GT_FREQUENCY_MULTIPLIER;
7304 }
7305 
7306 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7307 {
7308 	if (IS_GEN9(dev_priv->dev))
7309 		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
7310 					 GT_FREQUENCY_MULTIPLIER);
7311 	else if (IS_CHERRYVIEW(dev_priv->dev))
7312 		return chv_freq_opcode(dev_priv, val);
7313 	else if (IS_VALLEYVIEW(dev_priv->dev))
7314 		return byt_freq_opcode(dev_priv, val);
7315 	else
7316 		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7317 }
7318 
7319 struct request_boost {
7320 	struct work_struct work;
7321 	struct drm_i915_gem_request *req;
7322 };
7323 
7324 static void __intel_rps_boost_work(struct work_struct *work)
7325 {
7326 	struct request_boost *boost = container_of(work, struct request_boost, work);
7327 	struct drm_i915_gem_request *req = boost->req;
7328 
7329 	if (!i915_gem_request_completed(req, true))
7330 		gen6_rps_boost(to_i915(req->ring->dev), NULL,
7331 			       req->emitted_jiffies);
7332 
7333 	i915_gem_request_unreference__unlocked(req);
7334 	kfree(boost);
7335 }
7336 
7337 void intel_queue_rps_boost_for_request(struct drm_device *dev,
7338 				       struct drm_i915_gem_request *req)
7339 {
7340 	struct request_boost *boost;
7341 
7342 	if (req == NULL || INTEL_INFO(dev)->gen < 6)
7343 		return;
7344 
7345 	if (i915_gem_request_completed(req, true))
7346 		return;
7347 
7348 	boost = kmalloc(sizeof(*boost), M_DRM, M_NOWAIT);
7349 	if (boost == NULL)
7350 		return;
7351 
7352 	i915_gem_request_reference(req);
7353 	boost->req = req;
7354 
7355 	INIT_WORK(&boost->work, __intel_rps_boost_work);
7356 	queue_work(to_i915(dev)->wq, &boost->work);
7357 }
7358 
7359 void intel_pm_setup(struct drm_device *dev)
7360 {
7361 	struct drm_i915_private *dev_priv = dev->dev_private;
7362 
7363 	lockinit(&dev_priv->rps.hw_lock, "i915 rps.hw_lock", 0, LK_CANRECURSE);
7364 	lockinit(&dev_priv->rps.client_lock, "i915rcl", 0, LK_CANRECURSE);
7365 
7366 	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7367 			  intel_gen6_powersave_work);
7368 	INIT_LIST_HEAD(&dev_priv->rps.clients);
7369 	INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
7370 	INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7371 
7372 	dev_priv->pm.suspended = false;
7373 	atomic_set(&dev_priv->pm.wakeref_count, 0);
7374 	atomic_set(&dev_priv->pm.atomic_seq, 0);
7375 }
7376