xref: /dflybsd-src/sys/dev/drm/i915/intel_pm.c (revision 20294b7e33bbb88515745d3036e94e3155ea80a9)
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include "intel_drv.h"
30 #include "i915_drv.h"
31 
32 void i8xx_disable_fbc(struct drm_device *dev)
33 {
34 	struct drm_i915_private *dev_priv = dev->dev_private;
35 	u32 fbc_ctl;
36 
37 	/* Disable compression */
38 	fbc_ctl = I915_READ(FBC_CONTROL);
39 	if ((fbc_ctl & FBC_CTL_EN) == 0)
40 		return;
41 
42 	fbc_ctl &= ~FBC_CTL_EN;
43 	I915_WRITE(FBC_CONTROL, fbc_ctl);
44 
45 	/* Wait for compressing bit to clear */
46 	if (_intel_wait_for(dev,
47 	    (I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10,
48 	    1, "915fbd")) {
49 		DRM_DEBUG_KMS("FBC idle timed out\n");
50 		return;
51 	}
52 
53 	DRM_DEBUG_KMS("disabled FBC\n");
54 }
55 
56 void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
57 {
58 	struct drm_device *dev = crtc->dev;
59 	struct drm_i915_private *dev_priv = dev->dev_private;
60 	struct drm_framebuffer *fb = crtc->fb;
61 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
62 	struct drm_i915_gem_object *obj = intel_fb->obj;
63 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
64 	int cfb_pitch;
65 	int plane, i;
66 	u32 fbc_ctl, fbc_ctl2;
67 
68 	cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
69 	if (fb->pitches[0] < cfb_pitch)
70 		cfb_pitch = fb->pitches[0];
71 
72 	/* FBC_CTL wants 64B units */
73 	cfb_pitch = (cfb_pitch / 64) - 1;
74 	plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
75 
76 	/* Clear old tags */
77 	for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
78 		I915_WRITE(FBC_TAG + (i * 4), 0);
79 
80 	/* Set it up... */
81 	fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
82 	fbc_ctl2 |= plane;
83 	I915_WRITE(FBC_CONTROL2, fbc_ctl2);
84 	I915_WRITE(FBC_FENCE_OFF, crtc->y);
85 
86 	/* enable it... */
87 	fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
88 	if (IS_I945GM(dev))
89 		fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
90 	fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
91 	fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
92 	fbc_ctl |= obj->fence_reg;
93 	I915_WRITE(FBC_CONTROL, fbc_ctl);
94 
95 	DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
96 		      cfb_pitch, crtc->y, intel_crtc->plane);
97 }
98 
99 bool i8xx_fbc_enabled(struct drm_device *dev)
100 {
101 	struct drm_i915_private *dev_priv = dev->dev_private;
102 
103 	return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
104 }
105 
106 void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
107 {
108 	struct drm_device *dev = crtc->dev;
109 	struct drm_i915_private *dev_priv = dev->dev_private;
110 	struct drm_framebuffer *fb = crtc->fb;
111 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
112 	struct drm_i915_gem_object *obj = intel_fb->obj;
113 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
114 	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
115 	unsigned long stall_watermark = 200;
116 	u32 dpfc_ctl;
117 
118 	dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
119 	dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
120 	I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
121 
122 	I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
123 		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
124 		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
125 	I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
126 
127 	/* enable it... */
128 	I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
129 
130 	DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
131 }
132 
133 void g4x_disable_fbc(struct drm_device *dev)
134 {
135 	struct drm_i915_private *dev_priv = dev->dev_private;
136 	u32 dpfc_ctl;
137 
138 	/* Disable compression */
139 	dpfc_ctl = I915_READ(DPFC_CONTROL);
140 	if (dpfc_ctl & DPFC_CTL_EN) {
141 		dpfc_ctl &= ~DPFC_CTL_EN;
142 		I915_WRITE(DPFC_CONTROL, dpfc_ctl);
143 
144 		DRM_DEBUG_KMS("disabled FBC\n");
145 	}
146 }
147 
148 bool g4x_fbc_enabled(struct drm_device *dev)
149 {
150 	struct drm_i915_private *dev_priv = dev->dev_private;
151 
152 	return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
153 }
154 
155 static void sandybridge_blit_fbc_update(struct drm_device *dev)
156 {
157 	struct drm_i915_private *dev_priv = dev->dev_private;
158 	u32 blt_ecoskpd;
159 
160 	/* Make sure blitter notifies FBC of writes */
161 	gen6_gt_force_wake_get(dev_priv);
162 	blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
163 	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
164 		GEN6_BLITTER_LOCK_SHIFT;
165 	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
166 	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
167 	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
168 	blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
169 			 GEN6_BLITTER_LOCK_SHIFT);
170 	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
171 	POSTING_READ(GEN6_BLITTER_ECOSKPD);
172 	gen6_gt_force_wake_put(dev_priv);
173 }
174 
175 void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
176 {
177 	struct drm_device *dev = crtc->dev;
178 	struct drm_i915_private *dev_priv = dev->dev_private;
179 	struct drm_framebuffer *fb = crtc->fb;
180 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
181 	struct drm_i915_gem_object *obj = intel_fb->obj;
182 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
183 	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
184 	unsigned long stall_watermark = 200;
185 	u32 dpfc_ctl;
186 
187 	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
188 	dpfc_ctl &= DPFC_RESERVED;
189 	dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
190 	/* Set persistent mode for front-buffer rendering, ala X. */
191 	dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
192 	dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
193 	I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
194 
195 	I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
196 		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
197 		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
198 	I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
199 	I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
200 	/* enable it... */
201 	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
202 
203 	if (IS_GEN6(dev)) {
204 		I915_WRITE(SNB_DPFC_CTL_SA,
205 			   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
206 		I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
207 		sandybridge_blit_fbc_update(dev);
208 	}
209 
210 	DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
211 }
212 
213 void ironlake_disable_fbc(struct drm_device *dev)
214 {
215 	struct drm_i915_private *dev_priv = dev->dev_private;
216 	u32 dpfc_ctl;
217 
218 	/* Disable compression */
219 	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
220 	if (dpfc_ctl & DPFC_CTL_EN) {
221 		dpfc_ctl &= ~DPFC_CTL_EN;
222 		I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
223 
224 		DRM_DEBUG_KMS("disabled FBC\n");
225 	}
226 }
227 
228 bool ironlake_fbc_enabled(struct drm_device *dev)
229 {
230 	struct drm_i915_private *dev_priv = dev->dev_private;
231 
232 	return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
233 }
234 
235 bool intel_fbc_enabled(struct drm_device *dev)
236 {
237 	struct drm_i915_private *dev_priv = dev->dev_private;
238 
239 	if (!dev_priv->display.fbc_enabled)
240 		return false;
241 
242 	return dev_priv->display.fbc_enabled(dev);
243 }
244 
245 static void intel_fbc_work_fn(void *arg, int pending)
246 {
247 	struct intel_fbc_work *work = arg;
248 	struct drm_device *dev = work->crtc->dev;
249 	struct drm_i915_private *dev_priv = dev->dev_private;
250 
251 	DRM_LOCK(dev);
252 	if (work == dev_priv->fbc_work) {
253 		/* Double check that we haven't switched fb without cancelling
254 		 * the prior work.
255 		 */
256 		if (work->crtc->fb == work->fb) {
257 			dev_priv->display.enable_fbc(work->crtc,
258 						     work->interval);
259 
260 			dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
261 			dev_priv->cfb_fb = work->crtc->fb->base.id;
262 			dev_priv->cfb_y = work->crtc->y;
263 		}
264 
265 		dev_priv->fbc_work = NULL;
266 	}
267 	DRM_UNLOCK(dev);
268 
269 	drm_free(work, DRM_MEM_KMS);
270 }
271 
272 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
273 {
274 	u_int pending;
275 
276 	if (dev_priv->fbc_work == NULL)
277 		return;
278 
279 	DRM_DEBUG_KMS("cancelling pending FBC enable\n");
280 
281 	/* Synchronisation is provided by struct_mutex and checking of
282 	 * dev_priv->fbc_work, so we can perform the cancellation
283 	 * entirely asynchronously.
284 	 */
285 	if (taskqueue_cancel_timeout(dev_priv->tq, &dev_priv->fbc_work->task,
286 	    &pending) == 0)
287 		/* tasklet was killed before being run, clean up */
288 		drm_free(dev_priv->fbc_work, DRM_MEM_KMS);
289 
290 	/* Mark the work as no longer wanted so that if it does
291 	 * wake-up (because the work was already running and waiting
292 	 * for our mutex), it will discover that is no longer
293 	 * necessary to run.
294 	 */
295 	dev_priv->fbc_work = NULL;
296 }
297 
298 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
299 {
300 	struct intel_fbc_work *work;
301 	struct drm_device *dev = crtc->dev;
302 	struct drm_i915_private *dev_priv = dev->dev_private;
303 
304 	if (!dev_priv->display.enable_fbc)
305 		return;
306 
307 	intel_cancel_fbc_work(dev_priv);
308 
309 	work = kmalloc(sizeof(*work), DRM_MEM_KMS, M_WAITOK | M_ZERO);
310 	work->crtc = crtc;
311 	work->fb = crtc->fb;
312 	work->interval = interval;
313 	TIMEOUT_TASK_INIT(dev_priv->tq, &work->task, 0, intel_fbc_work_fn,
314 	    work);
315 
316 	dev_priv->fbc_work = work;
317 
318 	DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
319 
320 	/* Delay the actual enabling to let pageflipping cease and the
321 	 * display to settle before starting the compression. Note that
322 	 * this delay also serves a second purpose: it allows for a
323 	 * vblank to pass after disabling the FBC before we attempt
324 	 * to modify the control registers.
325 	 *
326 	 * A more complicated solution would involve tracking vblanks
327 	 * following the termination of the page-flipping sequence
328 	 * and indeed performing the enable as a co-routine and not
329 	 * waiting synchronously upon the vblank.
330 	 */
331 	taskqueue_enqueue_timeout(dev_priv->tq, &work->task,
332 	    msecs_to_jiffies(50));
333 }
334 
335 void intel_disable_fbc(struct drm_device *dev)
336 {
337 	struct drm_i915_private *dev_priv = dev->dev_private;
338 
339 	intel_cancel_fbc_work(dev_priv);
340 
341 	if (!dev_priv->display.disable_fbc)
342 		return;
343 
344 	dev_priv->display.disable_fbc(dev);
345 	dev_priv->cfb_plane = -1;
346 }
347 
348 /**
349  * intel_update_fbc - enable/disable FBC as needed
350  * @dev: the drm_device
351  *
352  * Set up the framebuffer compression hardware at mode set time.  We
353  * enable it if possible:
354  *   - plane A only (on pre-965)
355  *   - no pixel mulitply/line duplication
356  *   - no alpha buffer discard
357  *   - no dual wide
358  *   - framebuffer <= 2048 in width, 1536 in height
359  *
360  * We can't assume that any compression will take place (worst case),
361  * so the compressed buffer has to be the same size as the uncompressed
362  * one.  It also must reside (along with the line length buffer) in
363  * stolen memory.
364  *
365  * We need to enable/disable FBC on a global basis.
366  */
367 void intel_update_fbc(struct drm_device *dev)
368 {
369 	struct drm_i915_private *dev_priv = dev->dev_private;
370 	struct drm_crtc *crtc = NULL, *tmp_crtc;
371 	struct intel_crtc *intel_crtc;
372 	struct drm_framebuffer *fb;
373 	struct intel_framebuffer *intel_fb;
374 	struct drm_i915_gem_object *obj;
375 	int enable_fbc;
376 
377 	DRM_DEBUG_KMS("\n");
378 
379 	if (!i915_powersave)
380 		return;
381 
382 	if (!I915_HAS_FBC(dev))
383 		return;
384 
385 	/*
386 	 * If FBC is already on, we just have to verify that we can
387 	 * keep it that way...
388 	 * Need to disable if:
389 	 *   - more than one pipe is active
390 	 *   - changing FBC params (stride, fence, mode)
391 	 *   - new fb is too large to fit in compressed buffer
392 	 *   - going to an unsupported config (interlace, pixel multiply, etc.)
393 	 */
394 	list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
395 		if (tmp_crtc->enabled && tmp_crtc->fb) {
396 			if (crtc) {
397 				DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
398 				dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
399 				goto out_disable;
400 			}
401 			crtc = tmp_crtc;
402 		}
403 	}
404 
405 	if (!crtc || crtc->fb == NULL) {
406 		DRM_DEBUG_KMS("no output, disabling\n");
407 		dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
408 		goto out_disable;
409 	}
410 
411 	intel_crtc = to_intel_crtc(crtc);
412 	fb = crtc->fb;
413 	intel_fb = to_intel_framebuffer(fb);
414 	obj = intel_fb->obj;
415 
416 	enable_fbc = i915_enable_fbc;
417 	if (enable_fbc < 0) {
418 		DRM_DEBUG_KMS("fbc set to per-chip default\n");
419 		enable_fbc = 1;
420 		if (INTEL_INFO(dev)->gen <= 6)
421 			enable_fbc = 0;
422 	}
423 	if (!enable_fbc) {
424 		DRM_DEBUG_KMS("fbc disabled per module param\n");
425 		dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
426 		goto out_disable;
427 	}
428 	if (intel_fb->obj->base.size > dev_priv->cfb_size) {
429 		DRM_DEBUG_KMS("framebuffer too large, disabling "
430 			      "compression\n");
431 		dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
432 		goto out_disable;
433 	}
434 	if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
435 	    (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
436 		DRM_DEBUG_KMS("mode incompatible with compression, "
437 			      "disabling\n");
438 		dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
439 		goto out_disable;
440 	}
441 	if ((crtc->mode.hdisplay > 2048) ||
442 	    (crtc->mode.vdisplay > 1536)) {
443 		DRM_DEBUG_KMS("mode too large for compression, disabling\n");
444 		dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
445 		goto out_disable;
446 	}
447 	if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
448 		DRM_DEBUG_KMS("plane not 0, disabling compression\n");
449 		dev_priv->no_fbc_reason = FBC_BAD_PLANE;
450 		goto out_disable;
451 	}
452 	if (obj->tiling_mode != I915_TILING_X ||
453 	    obj->fence_reg == I915_FENCE_REG_NONE) {
454 		DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
455 		dev_priv->no_fbc_reason = FBC_NOT_TILED;
456 		goto out_disable;
457 	}
458 
459 #ifdef DDB
460 	/* If the kernel debugger is active, always disable compression */
461 	if (db_active)
462 		goto out_disable;
463 #endif
464 
465 	/* If the scanout has not changed, don't modify the FBC settings.
466 	 * Note that we make the fundamental assumption that the fb->obj
467 	 * cannot be unpinned (and have its GTT offset and fence revoked)
468 	 * without first being decoupled from the scanout and FBC disabled.
469 	 */
470 	if (dev_priv->cfb_plane == intel_crtc->plane &&
471 	    dev_priv->cfb_fb == fb->base.id &&
472 	    dev_priv->cfb_y == crtc->y)
473 		return;
474 
475 	if (intel_fbc_enabled(dev)) {
476 		/* We update FBC along two paths, after changing fb/crtc
477 		 * configuration (modeswitching) and after page-flipping
478 		 * finishes. For the latter, we know that not only did
479 		 * we disable the FBC at the start of the page-flip
480 		 * sequence, but also more than one vblank has passed.
481 		 *
482 		 * For the former case of modeswitching, it is possible
483 		 * to switch between two FBC valid configurations
484 		 * instantaneously so we do need to disable the FBC
485 		 * before we can modify its control registers. We also
486 		 * have to wait for the next vblank for that to take
487 		 * effect. However, since we delay enabling FBC we can
488 		 * assume that a vblank has passed since disabling and
489 		 * that we can safely alter the registers in the deferred
490 		 * callback.
491 		 *
492 		 * In the scenario that we go from a valid to invalid
493 		 * and then back to valid FBC configuration we have
494 		 * no strict enforcement that a vblank occurred since
495 		 * disabling the FBC. However, along all current pipe
496 		 * disabling paths we do need to wait for a vblank at
497 		 * some point. And we wait before enabling FBC anyway.
498 		 */
499 		DRM_DEBUG_KMS("disabling active FBC for update\n");
500 		intel_disable_fbc(dev);
501 	}
502 
503 	intel_enable_fbc(crtc, 500);
504 	return;
505 
506 out_disable:
507 	/* Multiple disables should be harmless */
508 	if (intel_fbc_enabled(dev)) {
509 		DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
510 		intel_disable_fbc(dev);
511 	}
512 }
513 
514 void i915_ironlake_get_mem_freq(struct drm_device *dev);
515 void i915_pineview_get_mem_freq(struct drm_device *dev)
516 {
517 	drm_i915_private_t *dev_priv = dev->dev_private;
518 	u32 tmp;
519 
520 	tmp = I915_READ(CLKCFG);
521 
522 	switch (tmp & CLKCFG_FSB_MASK) {
523 	case CLKCFG_FSB_533:
524 		dev_priv->fsb_freq = 533; /* 133*4 */
525 		break;
526 	case CLKCFG_FSB_800:
527 		dev_priv->fsb_freq = 800; /* 200*4 */
528 		break;
529 	case CLKCFG_FSB_667:
530 		dev_priv->fsb_freq =  667; /* 167*4 */
531 		break;
532 	case CLKCFG_FSB_400:
533 		dev_priv->fsb_freq = 400; /* 100*4 */
534 		break;
535 	}
536 
537 	switch (tmp & CLKCFG_MEM_MASK) {
538 	case CLKCFG_MEM_533:
539 		dev_priv->mem_freq = 533;
540 		break;
541 	case CLKCFG_MEM_667:
542 		dev_priv->mem_freq = 667;
543 		break;
544 	case CLKCFG_MEM_800:
545 		dev_priv->mem_freq = 800;
546 		break;
547 	}
548 
549 	/* detect pineview DDR3 setting */
550 	tmp = I915_READ(CSHRDDR3CTL);
551 	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
552 }
553 
554 void i915_ironlake_get_mem_freq(struct drm_device *dev)
555 {
556 	drm_i915_private_t *dev_priv = dev->dev_private;
557 	u16 ddrpll, csipll;
558 
559 	ddrpll = I915_READ16(DDRMPLL1);
560 	csipll = I915_READ16(CSIPLL0);
561 
562 	switch (ddrpll & 0xff) {
563 	case 0xc:
564 		dev_priv->mem_freq = 800;
565 		break;
566 	case 0x10:
567 		dev_priv->mem_freq = 1066;
568 		break;
569 	case 0x14:
570 		dev_priv->mem_freq = 1333;
571 		break;
572 	case 0x18:
573 		dev_priv->mem_freq = 1600;
574 		break;
575 	default:
576 		DRM_DEBUG("unknown memory frequency 0x%02x\n",
577 				 ddrpll & 0xff);
578 		dev_priv->mem_freq = 0;
579 		break;
580 	}
581 
582 	dev_priv->r_t = dev_priv->mem_freq;
583 
584 	switch (csipll & 0x3ff) {
585 	case 0x00c:
586 		dev_priv->fsb_freq = 3200;
587 		break;
588 	case 0x00e:
589 		dev_priv->fsb_freq = 3733;
590 		break;
591 	case 0x010:
592 		dev_priv->fsb_freq = 4266;
593 		break;
594 	case 0x012:
595 		dev_priv->fsb_freq = 4800;
596 		break;
597 	case 0x014:
598 		dev_priv->fsb_freq = 5333;
599 		break;
600 	case 0x016:
601 		dev_priv->fsb_freq = 5866;
602 		break;
603 	case 0x018:
604 		dev_priv->fsb_freq = 6400;
605 		break;
606 	default:
607 		DRM_DEBUG("unknown fsb frequency 0x%04x\n",
608 				 csipll & 0x3ff);
609 		dev_priv->fsb_freq = 0;
610 		break;
611 	}
612 
613 	if (dev_priv->fsb_freq == 3200) {
614 		dev_priv->c_m = 0;
615 	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
616 		dev_priv->c_m = 1;
617 	} else {
618 		dev_priv->c_m = 2;
619 	}
620 }
621 
622 /* Pineview has different values for various configs */
623 static const struct intel_watermark_params pineview_display_wm = {
624 	PINEVIEW_DISPLAY_FIFO,
625 	PINEVIEW_MAX_WM,
626 	PINEVIEW_DFT_WM,
627 	PINEVIEW_GUARD_WM,
628 	PINEVIEW_FIFO_LINE_SIZE
629 };
630 static const struct intel_watermark_params pineview_display_hplloff_wm = {
631 	PINEVIEW_DISPLAY_FIFO,
632 	PINEVIEW_MAX_WM,
633 	PINEVIEW_DFT_HPLLOFF_WM,
634 	PINEVIEW_GUARD_WM,
635 	PINEVIEW_FIFO_LINE_SIZE
636 };
637 static const struct intel_watermark_params pineview_cursor_wm = {
638 	PINEVIEW_CURSOR_FIFO,
639 	PINEVIEW_CURSOR_MAX_WM,
640 	PINEVIEW_CURSOR_DFT_WM,
641 	PINEVIEW_CURSOR_GUARD_WM,
642 	PINEVIEW_FIFO_LINE_SIZE,
643 };
644 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
645 	PINEVIEW_CURSOR_FIFO,
646 	PINEVIEW_CURSOR_MAX_WM,
647 	PINEVIEW_CURSOR_DFT_WM,
648 	PINEVIEW_CURSOR_GUARD_WM,
649 	PINEVIEW_FIFO_LINE_SIZE
650 };
651 static const struct intel_watermark_params g4x_wm_info = {
652 	G4X_FIFO_SIZE,
653 	G4X_MAX_WM,
654 	G4X_MAX_WM,
655 	2,
656 	G4X_FIFO_LINE_SIZE,
657 };
658 static const struct intel_watermark_params g4x_cursor_wm_info = {
659 	I965_CURSOR_FIFO,
660 	I965_CURSOR_MAX_WM,
661 	I965_CURSOR_DFT_WM,
662 	2,
663 	G4X_FIFO_LINE_SIZE,
664 };
665 static const struct intel_watermark_params i965_cursor_wm_info = {
666 	I965_CURSOR_FIFO,
667 	I965_CURSOR_MAX_WM,
668 	I965_CURSOR_DFT_WM,
669 	2,
670 	I915_FIFO_LINE_SIZE,
671 };
672 static const struct intel_watermark_params i945_wm_info = {
673 	I945_FIFO_SIZE,
674 	I915_MAX_WM,
675 	1,
676 	2,
677 	I915_FIFO_LINE_SIZE
678 };
679 static const struct intel_watermark_params i915_wm_info = {
680 	I915_FIFO_SIZE,
681 	I915_MAX_WM,
682 	1,
683 	2,
684 	I915_FIFO_LINE_SIZE
685 };
686 static const struct intel_watermark_params i855_wm_info = {
687 	I855GM_FIFO_SIZE,
688 	I915_MAX_WM,
689 	1,
690 	2,
691 	I830_FIFO_LINE_SIZE
692 };
693 static const struct intel_watermark_params i830_wm_info = {
694 	I830_FIFO_SIZE,
695 	I915_MAX_WM,
696 	1,
697 	2,
698 	I830_FIFO_LINE_SIZE
699 };
700 
701 static const struct intel_watermark_params ironlake_display_wm_info = {
702 	ILK_DISPLAY_FIFO,
703 	ILK_DISPLAY_MAXWM,
704 	ILK_DISPLAY_DFTWM,
705 	2,
706 	ILK_FIFO_LINE_SIZE
707 };
708 static const struct intel_watermark_params ironlake_cursor_wm_info = {
709 	ILK_CURSOR_FIFO,
710 	ILK_CURSOR_MAXWM,
711 	ILK_CURSOR_DFTWM,
712 	2,
713 	ILK_FIFO_LINE_SIZE
714 };
715 static const struct intel_watermark_params ironlake_display_srwm_info = {
716 	ILK_DISPLAY_SR_FIFO,
717 	ILK_DISPLAY_MAX_SRWM,
718 	ILK_DISPLAY_DFT_SRWM,
719 	2,
720 	ILK_FIFO_LINE_SIZE
721 };
722 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
723 	ILK_CURSOR_SR_FIFO,
724 	ILK_CURSOR_MAX_SRWM,
725 	ILK_CURSOR_DFT_SRWM,
726 	2,
727 	ILK_FIFO_LINE_SIZE
728 };
729 
730 static const struct intel_watermark_params sandybridge_display_wm_info = {
731 	SNB_DISPLAY_FIFO,
732 	SNB_DISPLAY_MAXWM,
733 	SNB_DISPLAY_DFTWM,
734 	2,
735 	SNB_FIFO_LINE_SIZE
736 };
737 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
738 	SNB_CURSOR_FIFO,
739 	SNB_CURSOR_MAXWM,
740 	SNB_CURSOR_DFTWM,
741 	2,
742 	SNB_FIFO_LINE_SIZE
743 };
744 static const struct intel_watermark_params sandybridge_display_srwm_info = {
745 	SNB_DISPLAY_SR_FIFO,
746 	SNB_DISPLAY_MAX_SRWM,
747 	SNB_DISPLAY_DFT_SRWM,
748 	2,
749 	SNB_FIFO_LINE_SIZE
750 };
751 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
752 	SNB_CURSOR_SR_FIFO,
753 	SNB_CURSOR_MAX_SRWM,
754 	SNB_CURSOR_DFT_SRWM,
755 	2,
756 	SNB_FIFO_LINE_SIZE
757 };
758 
759 
760 /**
761  * intel_calculate_wm - calculate watermark level
762  * @clock_in_khz: pixel clock
763  * @wm: chip FIFO params
764  * @pixel_size: display pixel size
765  * @latency_ns: memory latency for the platform
766  *
767  * Calculate the watermark level (the level at which the display plane will
768  * start fetching from memory again).  Each chip has a different display
769  * FIFO size and allocation, so the caller needs to figure that out and pass
770  * in the correct intel_watermark_params structure.
771  *
772  * As the pixel clock runs, the FIFO will be drained at a rate that depends
773  * on the pixel size.  When it reaches the watermark level, it'll start
774  * fetching FIFO line sized based chunks from memory until the FIFO fills
775  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
776  * will occur, and a display engine hang could result.
777  */
778 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
779 					const struct intel_watermark_params *wm,
780 					int fifo_size,
781 					int pixel_size,
782 					unsigned long latency_ns)
783 {
784 	long entries_required, wm_size;
785 
786 	/*
787 	 * Note: we need to make sure we don't overflow for various clock &
788 	 * latency values.
789 	 * clocks go from a few thousand to several hundred thousand.
790 	 * latency is usually a few thousand
791 	 */
792 	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
793 		1000;
794 	entries_required = howmany(entries_required, wm->cacheline_size);
795 
796 	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
797 
798 	wm_size = fifo_size - (entries_required + wm->guard_size);
799 
800 	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
801 
802 	/* Don't promote wm_size to unsigned... */
803 	if (wm_size > (long)wm->max_wm)
804 		wm_size = wm->max_wm;
805 	if (wm_size <= 0)
806 		wm_size = wm->default_wm;
807 	return wm_size;
808 }
809 
810 struct cxsr_latency {
811 	int is_desktop;
812 	int is_ddr3;
813 	unsigned long fsb_freq;
814 	unsigned long mem_freq;
815 	unsigned long display_sr;
816 	unsigned long display_hpll_disable;
817 	unsigned long cursor_sr;
818 	unsigned long cursor_hpll_disable;
819 };
820 
821 static const struct cxsr_latency cxsr_latency_table[] = {
822 	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
823 	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
824 	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
825 	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
826 	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
827 
828 	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
829 	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
830 	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
831 	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
832 	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
833 
834 	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
835 	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
836 	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
837 	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
838 	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
839 
840 	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
841 	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
842 	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
843 	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
844 	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
845 
846 	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
847 	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
848 	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
849 	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
850 	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
851 
852 	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
853 	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
854 	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
855 	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
856 	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
857 };
858 
859 const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
860 							 int is_ddr3,
861 							 int fsb,
862 							 int mem)
863 {
864 	const struct cxsr_latency *latency;
865 	int i;
866 
867 	if (fsb == 0 || mem == 0)
868 		return NULL;
869 
870 	for (i = 0; i < DRM_ARRAY_SIZE(cxsr_latency_table); i++) {
871 		latency = &cxsr_latency_table[i];
872 		if (is_desktop == latency->is_desktop &&
873 		    is_ddr3 == latency->is_ddr3 &&
874 		    fsb == latency->fsb_freq && mem == latency->mem_freq)
875 			return latency;
876 	}
877 
878 	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
879 
880 	return NULL;
881 }
882 
883 void pineview_disable_cxsr(struct drm_device *dev)
884 {
885 	struct drm_i915_private *dev_priv = dev->dev_private;
886 
887 	/* deactivate cxsr */
888 	I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
889 }
890 
891 /*
892  * Latency for FIFO fetches is dependent on several factors:
893  *   - memory configuration (speed, channels)
894  *   - chipset
895  *   - current MCH state
896  * It can be fairly high in some situations, so here we assume a fairly
897  * pessimal value.  It's a tradeoff between extra memory fetches (if we
898  * set this value too high, the FIFO will fetch frequently to stay full)
899  * and power consumption (set it too low to save power and we might see
900  * FIFO underruns and display "flicker").
901  *
902  * A value of 5us seems to be a good balance; safe for very low end
903  * platforms but not overly aggressive on lower latency configs.
904  */
905 static const int latency_ns = 5000;
906 
907 int i9xx_get_fifo_size(struct drm_device *dev, int plane)
908 {
909 	struct drm_i915_private *dev_priv = dev->dev_private;
910 	uint32_t dsparb = I915_READ(DSPARB);
911 	int size;
912 
913 	size = dsparb & 0x7f;
914 	if (plane)
915 		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
916 
917 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
918 		      plane ? "B" : "A", size);
919 
920 	return size;
921 }
922 
923 int i85x_get_fifo_size(struct drm_device *dev, int plane)
924 {
925 	struct drm_i915_private *dev_priv = dev->dev_private;
926 	uint32_t dsparb = I915_READ(DSPARB);
927 	int size;
928 
929 	size = dsparb & 0x1ff;
930 	if (plane)
931 		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
932 	size >>= 1; /* Convert to cachelines */
933 
934 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
935 		      plane ? "B" : "A", size);
936 
937 	return size;
938 }
939 
940 int i845_get_fifo_size(struct drm_device *dev, int plane)
941 {
942 	struct drm_i915_private *dev_priv = dev->dev_private;
943 	uint32_t dsparb = I915_READ(DSPARB);
944 	int size;
945 
946 	size = dsparb & 0x7f;
947 	size >>= 2; /* Convert to cachelines */
948 
949 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
950 		      plane ? "B" : "A",
951 		      size);
952 
953 	return size;
954 }
955 
956 int i830_get_fifo_size(struct drm_device *dev, int plane)
957 {
958 	struct drm_i915_private *dev_priv = dev->dev_private;
959 	uint32_t dsparb = I915_READ(DSPARB);
960 	int size;
961 
962 	size = dsparb & 0x7f;
963 	size >>= 1; /* Convert to cachelines */
964 
965 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
966 		      plane ? "B" : "A", size);
967 
968 	return size;
969 }
970 
971 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
972 {
973 	struct drm_crtc *crtc, *enabled = NULL;
974 
975 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
976 		if (crtc->enabled && crtc->fb) {
977 			if (enabled)
978 				return NULL;
979 			enabled = crtc;
980 		}
981 	}
982 
983 	return enabled;
984 }
985 
986 void pineview_update_wm(struct drm_device *dev)
987 {
988 	struct drm_i915_private *dev_priv = dev->dev_private;
989 	struct drm_crtc *crtc;
990 	const struct cxsr_latency *latency;
991 	u32 reg;
992 	unsigned long wm;
993 
994 	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
995 					 dev_priv->fsb_freq, dev_priv->mem_freq);
996 	if (!latency) {
997 		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
998 		pineview_disable_cxsr(dev);
999 		return;
1000 	}
1001 
1002 	crtc = single_enabled_crtc(dev);
1003 	if (crtc) {
1004 		int clock = crtc->mode.clock;
1005 		int pixel_size = crtc->fb->bits_per_pixel / 8;
1006 
1007 		/* Display SR */
1008 		wm = intel_calculate_wm(clock, &pineview_display_wm,
1009 					pineview_display_wm.fifo_size,
1010 					pixel_size, latency->display_sr);
1011 		reg = I915_READ(DSPFW1);
1012 		reg &= ~DSPFW_SR_MASK;
1013 		reg |= wm << DSPFW_SR_SHIFT;
1014 		I915_WRITE(DSPFW1, reg);
1015 		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1016 
1017 		/* cursor SR */
1018 		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1019 					pineview_display_wm.fifo_size,
1020 					pixel_size, latency->cursor_sr);
1021 		reg = I915_READ(DSPFW3);
1022 		reg &= ~DSPFW_CURSOR_SR_MASK;
1023 		reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1024 		I915_WRITE(DSPFW3, reg);
1025 
1026 		/* Display HPLL off SR */
1027 		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1028 					pineview_display_hplloff_wm.fifo_size,
1029 					pixel_size, latency->display_hpll_disable);
1030 		reg = I915_READ(DSPFW3);
1031 		reg &= ~DSPFW_HPLL_SR_MASK;
1032 		reg |= wm & DSPFW_HPLL_SR_MASK;
1033 		I915_WRITE(DSPFW3, reg);
1034 
1035 		/* cursor HPLL off SR */
1036 		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1037 					pineview_display_hplloff_wm.fifo_size,
1038 					pixel_size, latency->cursor_hpll_disable);
1039 		reg = I915_READ(DSPFW3);
1040 		reg &= ~DSPFW_HPLL_CURSOR_MASK;
1041 		reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1042 		I915_WRITE(DSPFW3, reg);
1043 		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1044 
1045 		/* activate cxsr */
1046 		I915_WRITE(DSPFW3,
1047 			   I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1048 		DRM_DEBUG_KMS("Self-refresh is enabled\n");
1049 	} else {
1050 		pineview_disable_cxsr(dev);
1051 		DRM_DEBUG_KMS("Self-refresh is disabled\n");
1052 	}
1053 }
1054 
1055 static bool g4x_compute_wm0(struct drm_device *dev,
1056 			    int plane,
1057 			    const struct intel_watermark_params *display,
1058 			    int display_latency_ns,
1059 			    const struct intel_watermark_params *cursor,
1060 			    int cursor_latency_ns,
1061 			    int *plane_wm,
1062 			    int *cursor_wm)
1063 {
1064 	struct drm_crtc *crtc;
1065 	int htotal, hdisplay, clock, pixel_size;
1066 	int line_time_us, line_count;
1067 	int entries, tlb_miss;
1068 
1069 	crtc = intel_get_crtc_for_plane(dev, plane);
1070 	if (crtc->fb == NULL || !crtc->enabled) {
1071 		*cursor_wm = cursor->guard_size;
1072 		*plane_wm = display->guard_size;
1073 		return false;
1074 	}
1075 
1076 	htotal = crtc->mode.htotal;
1077 	hdisplay = crtc->mode.hdisplay;
1078 	clock = crtc->mode.clock;
1079 	pixel_size = crtc->fb->bits_per_pixel / 8;
1080 
1081 	/* Use the small buffer method to calculate plane watermark */
1082 	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1083 	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1084 	if (tlb_miss > 0)
1085 		entries += tlb_miss;
1086 	entries = howmany(entries, display->cacheline_size);
1087 	*plane_wm = entries + display->guard_size;
1088 	if (*plane_wm > (int)display->max_wm)
1089 		*plane_wm = display->max_wm;
1090 
1091 	/* Use the large buffer method to calculate cursor watermark */
1092 	line_time_us = ((htotal * 1000) / clock);
1093 	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1094 	entries = line_count * 64 * pixel_size;
1095 	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1096 	if (tlb_miss > 0)
1097 		entries += tlb_miss;
1098 	entries = howmany(entries, cursor->cacheline_size);
1099 	*cursor_wm = entries + cursor->guard_size;
1100 	if (*cursor_wm > (int)cursor->max_wm)
1101 		*cursor_wm = (int)cursor->max_wm;
1102 
1103 	return true;
1104 }
1105 
1106 /*
1107  * Check the wm result.
1108  *
1109  * If any calculated watermark values is larger than the maximum value that
1110  * can be programmed into the associated watermark register, that watermark
1111  * must be disabled.
1112  */
1113 static bool g4x_check_srwm(struct drm_device *dev,
1114 			   int display_wm, int cursor_wm,
1115 			   const struct intel_watermark_params *display,
1116 			   const struct intel_watermark_params *cursor)
1117 {
1118 	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1119 		      display_wm, cursor_wm);
1120 
1121 	if (display_wm > display->max_wm) {
1122 		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1123 			      display_wm, display->max_wm);
1124 		return false;
1125 	}
1126 
1127 	if (cursor_wm > cursor->max_wm) {
1128 		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1129 			      cursor_wm, cursor->max_wm);
1130 		return false;
1131 	}
1132 
1133 	if (!(display_wm || cursor_wm)) {
1134 		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1135 		return false;
1136 	}
1137 
1138 	return true;
1139 }
1140 
1141 static bool g4x_compute_srwm(struct drm_device *dev,
1142 			     int plane,
1143 			     int latency_ns,
1144 			     const struct intel_watermark_params *display,
1145 			     const struct intel_watermark_params *cursor,
1146 			     int *display_wm, int *cursor_wm)
1147 {
1148 	struct drm_crtc *crtc;
1149 	int hdisplay, htotal, pixel_size, clock;
1150 	unsigned long line_time_us;
1151 	int line_count, line_size;
1152 	int small, large;
1153 	int entries;
1154 
1155 	if (!latency_ns) {
1156 		*display_wm = *cursor_wm = 0;
1157 		return false;
1158 	}
1159 
1160 	crtc = intel_get_crtc_for_plane(dev, plane);
1161 	hdisplay = crtc->mode.hdisplay;
1162 	htotal = crtc->mode.htotal;
1163 	clock = crtc->mode.clock;
1164 	pixel_size = crtc->fb->bits_per_pixel / 8;
1165 
1166 	line_time_us = (htotal * 1000) / clock;
1167 	line_count = (latency_ns / line_time_us + 1000) / 1000;
1168 	line_size = hdisplay * pixel_size;
1169 
1170 	/* Use the minimum of the small and large buffer method for primary */
1171 	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1172 	large = line_count * line_size;
1173 
1174 	entries = howmany(min(small, large), display->cacheline_size);
1175 	*display_wm = entries + display->guard_size;
1176 
1177 	/* calculate the self-refresh watermark for display cursor */
1178 	entries = line_count * pixel_size * 64;
1179 	entries = howmany(entries, cursor->cacheline_size);
1180 	*cursor_wm = entries + cursor->guard_size;
1181 
1182 	return g4x_check_srwm(dev,
1183 			      *display_wm, *cursor_wm,
1184 			      display, cursor);
1185 }
1186 
1187 #define single_plane_enabled(mask) ((mask) != 0 && powerof2(mask))
1188 
1189 void g4x_update_wm(struct drm_device *dev)
1190 {
1191 	static const int sr_latency_ns = 12000;
1192 	struct drm_i915_private *dev_priv = dev->dev_private;
1193 	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1194 	int plane_sr, cursor_sr;
1195 	unsigned int enabled = 0;
1196 
1197 	if (g4x_compute_wm0(dev, 0,
1198 			    &g4x_wm_info, latency_ns,
1199 			    &g4x_cursor_wm_info, latency_ns,
1200 			    &planea_wm, &cursora_wm))
1201 		enabled |= 1;
1202 
1203 	if (g4x_compute_wm0(dev, 1,
1204 			    &g4x_wm_info, latency_ns,
1205 			    &g4x_cursor_wm_info, latency_ns,
1206 			    &planeb_wm, &cursorb_wm))
1207 		enabled |= 2;
1208 
1209 	plane_sr = cursor_sr = 0;
1210 	if (single_plane_enabled(enabled) &&
1211 	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1212 			     sr_latency_ns,
1213 			     &g4x_wm_info,
1214 			     &g4x_cursor_wm_info,
1215 			     &plane_sr, &cursor_sr))
1216 		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1217 	else
1218 		I915_WRITE(FW_BLC_SELF,
1219 			   I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1220 
1221 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1222 		      planea_wm, cursora_wm,
1223 		      planeb_wm, cursorb_wm,
1224 		      plane_sr, cursor_sr);
1225 
1226 	I915_WRITE(DSPFW1,
1227 		   (plane_sr << DSPFW_SR_SHIFT) |
1228 		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1229 		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1230 		   planea_wm);
1231 	I915_WRITE(DSPFW2,
1232 		   (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
1233 		   (cursora_wm << DSPFW_CURSORA_SHIFT));
1234 	/* HPLL off in SR has some issues on G4x... disable it */
1235 	I915_WRITE(DSPFW3,
1236 		   (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
1237 		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1238 }
1239 
1240 void i965_update_wm(struct drm_device *dev)
1241 {
1242 	struct drm_i915_private *dev_priv = dev->dev_private;
1243 	struct drm_crtc *crtc;
1244 	int srwm = 1;
1245 	int cursor_sr = 16;
1246 
1247 	/* Calc sr entries for one plane configs */
1248 	crtc = single_enabled_crtc(dev);
1249 	if (crtc) {
1250 		/* self-refresh has much higher latency */
1251 		static const int sr_latency_ns = 12000;
1252 		int clock = crtc->mode.clock;
1253 		int htotal = crtc->mode.htotal;
1254 		int hdisplay = crtc->mode.hdisplay;
1255 		int pixel_size = crtc->fb->bits_per_pixel / 8;
1256 		unsigned long line_time_us;
1257 		int entries;
1258 
1259 		line_time_us = ((htotal * 1000) / clock);
1260 
1261 		/* Use ns/us then divide to preserve precision */
1262 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1263 			pixel_size * hdisplay;
1264 		entries = howmany(entries, I915_FIFO_LINE_SIZE);
1265 		srwm = I965_FIFO_SIZE - entries;
1266 		if (srwm < 0)
1267 			srwm = 1;
1268 		srwm &= 0x1ff;
1269 		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1270 			      entries, srwm);
1271 
1272 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1273 			pixel_size * 64;
1274 		entries = howmany(entries, i965_cursor_wm_info.cacheline_size);
1275 		cursor_sr = i965_cursor_wm_info.fifo_size -
1276 			(entries + i965_cursor_wm_info.guard_size);
1277 
1278 		if (cursor_sr > i965_cursor_wm_info.max_wm)
1279 			cursor_sr = i965_cursor_wm_info.max_wm;
1280 
1281 		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1282 			      "cursor %d\n", srwm, cursor_sr);
1283 
1284 		if (IS_CRESTLINE(dev))
1285 			I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1286 	} else {
1287 		/* Turn off self refresh if both pipes are enabled */
1288 		if (IS_CRESTLINE(dev))
1289 			I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1290 				   & ~FW_BLC_SELF_EN);
1291 	}
1292 
1293 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1294 		      srwm);
1295 
1296 	/* 965 has limitations... */
1297 	I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1298 		   (8 << 16) | (8 << 8) | (8 << 0));
1299 	I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1300 	/* update cursor SR watermark */
1301 	I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1302 }
1303 
1304 void i9xx_update_wm(struct drm_device *dev)
1305 {
1306 	struct drm_i915_private *dev_priv = dev->dev_private;
1307 	const struct intel_watermark_params *wm_info;
1308 	uint32_t fwater_lo;
1309 	uint32_t fwater_hi;
1310 	int cwm, srwm = 1;
1311 	int fifo_size;
1312 	int planea_wm, planeb_wm;
1313 	struct drm_crtc *crtc, *enabled = NULL;
1314 
1315 	if (IS_I945GM(dev))
1316 		wm_info = &i945_wm_info;
1317 	else if (!IS_GEN2(dev))
1318 		wm_info = &i915_wm_info;
1319 	else
1320 		wm_info = &i855_wm_info;
1321 
1322 	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1323 	crtc = intel_get_crtc_for_plane(dev, 0);
1324 	if (crtc->enabled && crtc->fb) {
1325 		planea_wm = intel_calculate_wm(crtc->mode.clock,
1326 					       wm_info, fifo_size,
1327 					       crtc->fb->bits_per_pixel / 8,
1328 					       latency_ns);
1329 		enabled = crtc;
1330 	} else
1331 		planea_wm = fifo_size - wm_info->guard_size;
1332 
1333 	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1334 	crtc = intel_get_crtc_for_plane(dev, 1);
1335 	if (crtc->enabled && crtc->fb) {
1336 		planeb_wm = intel_calculate_wm(crtc->mode.clock,
1337 					       wm_info, fifo_size,
1338 					       crtc->fb->bits_per_pixel / 8,
1339 					       latency_ns);
1340 		if (enabled == NULL)
1341 			enabled = crtc;
1342 		else
1343 			enabled = NULL;
1344 	} else
1345 		planeb_wm = fifo_size - wm_info->guard_size;
1346 
1347 	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1348 
1349 	/*
1350 	 * Overlay gets an aggressive default since video jitter is bad.
1351 	 */
1352 	cwm = 2;
1353 
1354 	/* Play safe and disable self-refresh before adjusting watermarks. */
1355 	if (IS_I945G(dev) || IS_I945GM(dev))
1356 		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1357 	else if (IS_I915GM(dev))
1358 		I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1359 
1360 	/* Calc sr entries for one plane configs */
1361 	if (HAS_FW_BLC(dev) && enabled) {
1362 		/* self-refresh has much higher latency */
1363 		static const int sr_latency_ns = 6000;
1364 		int clock = enabled->mode.clock;
1365 		int htotal = enabled->mode.htotal;
1366 		int hdisplay = enabled->mode.hdisplay;
1367 		int pixel_size = enabled->fb->bits_per_pixel / 8;
1368 		unsigned long line_time_us;
1369 		int entries;
1370 
1371 		line_time_us = (htotal * 1000) / clock;
1372 
1373 		/* Use ns/us then divide to preserve precision */
1374 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1375 			pixel_size * hdisplay;
1376 		entries = howmany(entries, wm_info->cacheline_size);
1377 		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1378 		srwm = wm_info->fifo_size - entries;
1379 		if (srwm < 0)
1380 			srwm = 1;
1381 
1382 		if (IS_I945G(dev) || IS_I945GM(dev))
1383 			I915_WRITE(FW_BLC_SELF,
1384 				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1385 		else if (IS_I915GM(dev))
1386 			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1387 	}
1388 
1389 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1390 		      planea_wm, planeb_wm, cwm, srwm);
1391 
1392 	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1393 	fwater_hi = (cwm & 0x1f);
1394 
1395 	/* Set request length to 8 cachelines per fetch */
1396 	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1397 	fwater_hi = fwater_hi | (1 << 8);
1398 
1399 	I915_WRITE(FW_BLC, fwater_lo);
1400 	I915_WRITE(FW_BLC2, fwater_hi);
1401 
1402 	if (HAS_FW_BLC(dev)) {
1403 		if (enabled) {
1404 			if (IS_I945G(dev) || IS_I945GM(dev))
1405 				I915_WRITE(FW_BLC_SELF,
1406 					   FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1407 			else if (IS_I915GM(dev))
1408 				I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1409 			DRM_DEBUG_KMS("memory self refresh enabled\n");
1410 		} else
1411 			DRM_DEBUG_KMS("memory self refresh disabled\n");
1412 	}
1413 }
1414 
1415 void i830_update_wm(struct drm_device *dev)
1416 {
1417 	struct drm_i915_private *dev_priv = dev->dev_private;
1418 	struct drm_crtc *crtc;
1419 	uint32_t fwater_lo;
1420 	int planea_wm;
1421 
1422 	crtc = single_enabled_crtc(dev);
1423 	if (crtc == NULL)
1424 		return;
1425 
1426 	planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
1427 				       dev_priv->display.get_fifo_size(dev, 0),
1428 				       crtc->fb->bits_per_pixel / 8,
1429 				       latency_ns);
1430 	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1431 	fwater_lo |= (3<<8) | planea_wm;
1432 
1433 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1434 
1435 	I915_WRITE(FW_BLC, fwater_lo);
1436 }
1437 
1438 #define ILK_LP0_PLANE_LATENCY		700
1439 #define ILK_LP0_CURSOR_LATENCY		1300
1440 
1441 /*
1442  * Check the wm result.
1443  *
1444  * If any calculated watermark values is larger than the maximum value that
1445  * can be programmed into the associated watermark register, that watermark
1446  * must be disabled.
1447  */
1448 static bool ironlake_check_srwm(struct drm_device *dev, int level,
1449 				int fbc_wm, int display_wm, int cursor_wm,
1450 				const struct intel_watermark_params *display,
1451 				const struct intel_watermark_params *cursor)
1452 {
1453 	struct drm_i915_private *dev_priv = dev->dev_private;
1454 
1455 	DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1456 		      " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1457 
1458 	if (fbc_wm > SNB_FBC_MAX_SRWM) {
1459 		DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1460 			      fbc_wm, SNB_FBC_MAX_SRWM, level);
1461 
1462 		/* fbc has it's own way to disable FBC WM */
1463 		I915_WRITE(DISP_ARB_CTL,
1464 			   I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1465 		return false;
1466 	}
1467 
1468 	if (display_wm > display->max_wm) {
1469 		DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1470 			      display_wm, SNB_DISPLAY_MAX_SRWM, level);
1471 		return false;
1472 	}
1473 
1474 	if (cursor_wm > cursor->max_wm) {
1475 		DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1476 			      cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1477 		return false;
1478 	}
1479 
1480 	if (!(fbc_wm || display_wm || cursor_wm)) {
1481 		DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1482 		return false;
1483 	}
1484 
1485 	return true;
1486 }
1487 
1488 /*
1489  * Compute watermark values of WM[1-3],
1490  */
1491 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1492 				  int latency_ns,
1493 				  const struct intel_watermark_params *display,
1494 				  const struct intel_watermark_params *cursor,
1495 				  int *fbc_wm, int *display_wm, int *cursor_wm)
1496 {
1497 	struct drm_crtc *crtc;
1498 	unsigned long line_time_us;
1499 	int hdisplay, htotal, pixel_size, clock;
1500 	int line_count, line_size;
1501 	int small, large;
1502 	int entries;
1503 
1504 	if (!latency_ns) {
1505 		*fbc_wm = *display_wm = *cursor_wm = 0;
1506 		return false;
1507 	}
1508 
1509 	crtc = intel_get_crtc_for_plane(dev, plane);
1510 	hdisplay = crtc->mode.hdisplay;
1511 	htotal = crtc->mode.htotal;
1512 	clock = crtc->mode.clock;
1513 	pixel_size = crtc->fb->bits_per_pixel / 8;
1514 
1515 	line_time_us = (htotal * 1000) / clock;
1516 	line_count = (latency_ns / line_time_us + 1000) / 1000;
1517 	line_size = hdisplay * pixel_size;
1518 
1519 	/* Use the minimum of the small and large buffer method for primary */
1520 	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1521 	large = line_count * line_size;
1522 
1523 	entries = howmany(min(small, large), display->cacheline_size);
1524 	*display_wm = entries + display->guard_size;
1525 
1526 	/*
1527 	 * Spec says:
1528 	 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1529 	 */
1530 	*fbc_wm = howmany(*display_wm * 64, line_size) + 2;
1531 
1532 	/* calculate the self-refresh watermark for display cursor */
1533 	entries = line_count * pixel_size * 64;
1534 	entries = howmany(entries, cursor->cacheline_size);
1535 	*cursor_wm = entries + cursor->guard_size;
1536 
1537 	return ironlake_check_srwm(dev, level,
1538 				   *fbc_wm, *display_wm, *cursor_wm,
1539 				   display, cursor);
1540 }
1541 
1542 void ironlake_update_wm(struct drm_device *dev)
1543 {
1544 	struct drm_i915_private *dev_priv = dev->dev_private;
1545 	int fbc_wm, plane_wm, cursor_wm;
1546 	unsigned int enabled;
1547 
1548 	enabled = 0;
1549 	if (g4x_compute_wm0(dev, 0,
1550 			    &ironlake_display_wm_info,
1551 			    ILK_LP0_PLANE_LATENCY,
1552 			    &ironlake_cursor_wm_info,
1553 			    ILK_LP0_CURSOR_LATENCY,
1554 			    &plane_wm, &cursor_wm)) {
1555 		I915_WRITE(WM0_PIPEA_ILK,
1556 			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1557 		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1558 			      " plane %d, " "cursor: %d\n",
1559 			      plane_wm, cursor_wm);
1560 		enabled |= 1;
1561 	}
1562 
1563 	if (g4x_compute_wm0(dev, 1,
1564 			    &ironlake_display_wm_info,
1565 			    ILK_LP0_PLANE_LATENCY,
1566 			    &ironlake_cursor_wm_info,
1567 			    ILK_LP0_CURSOR_LATENCY,
1568 			    &plane_wm, &cursor_wm)) {
1569 		I915_WRITE(WM0_PIPEB_ILK,
1570 			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1571 		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1572 			      " plane %d, cursor: %d\n",
1573 			      plane_wm, cursor_wm);
1574 		enabled |= 2;
1575 	}
1576 
1577 	/*
1578 	 * Calculate and update the self-refresh watermark only when one
1579 	 * display plane is used.
1580 	 */
1581 	I915_WRITE(WM3_LP_ILK, 0);
1582 	I915_WRITE(WM2_LP_ILK, 0);
1583 	I915_WRITE(WM1_LP_ILK, 0);
1584 
1585 	if (!single_plane_enabled(enabled))
1586 		return;
1587 	enabled = ffs(enabled) - 1;
1588 
1589 	/* WM1 */
1590 	if (!ironlake_compute_srwm(dev, 1, enabled,
1591 				   ILK_READ_WM1_LATENCY() * 500,
1592 				   &ironlake_display_srwm_info,
1593 				   &ironlake_cursor_srwm_info,
1594 				   &fbc_wm, &plane_wm, &cursor_wm))
1595 		return;
1596 
1597 	I915_WRITE(WM1_LP_ILK,
1598 		   WM1_LP_SR_EN |
1599 		   (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1600 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1601 		   (plane_wm << WM1_LP_SR_SHIFT) |
1602 		   cursor_wm);
1603 
1604 	/* WM2 */
1605 	if (!ironlake_compute_srwm(dev, 2, enabled,
1606 				   ILK_READ_WM2_LATENCY() * 500,
1607 				   &ironlake_display_srwm_info,
1608 				   &ironlake_cursor_srwm_info,
1609 				   &fbc_wm, &plane_wm, &cursor_wm))
1610 		return;
1611 
1612 	I915_WRITE(WM2_LP_ILK,
1613 		   WM2_LP_EN |
1614 		   (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1615 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1616 		   (plane_wm << WM1_LP_SR_SHIFT) |
1617 		   cursor_wm);
1618 
1619 	/*
1620 	 * WM3 is unsupported on ILK, probably because we don't have latency
1621 	 * data for that power state
1622 	 */
1623 }
1624 
1625 void sandybridge_update_wm(struct drm_device *dev)
1626 {
1627 	struct drm_i915_private *dev_priv = dev->dev_private;
1628 	int latency = SNB_READ_WM0_LATENCY() * 100;	/* In unit 0.1us */
1629 	u32 val;
1630 	int fbc_wm, plane_wm, cursor_wm;
1631 	unsigned int enabled;
1632 
1633 	enabled = 0;
1634 	if (g4x_compute_wm0(dev, 0,
1635 			    &sandybridge_display_wm_info, latency,
1636 			    &sandybridge_cursor_wm_info, latency,
1637 			    &plane_wm, &cursor_wm)) {
1638 		val = I915_READ(WM0_PIPEA_ILK);
1639 		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1640 		I915_WRITE(WM0_PIPEA_ILK, val |
1641 			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1642 		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1643 			      " plane %d, " "cursor: %d\n",
1644 			      plane_wm, cursor_wm);
1645 		enabled |= 1;
1646 	}
1647 
1648 	if (g4x_compute_wm0(dev, 1,
1649 			    &sandybridge_display_wm_info, latency,
1650 			    &sandybridge_cursor_wm_info, latency,
1651 			    &plane_wm, &cursor_wm)) {
1652 		val = I915_READ(WM0_PIPEB_ILK);
1653 		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1654 		I915_WRITE(WM0_PIPEB_ILK, val |
1655 			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1656 		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1657 			      " plane %d, cursor: %d\n",
1658 			      plane_wm, cursor_wm);
1659 		enabled |= 2;
1660 	}
1661 
1662 	/* IVB has 3 pipes */
1663 	if (IS_IVYBRIDGE(dev) &&
1664 	    g4x_compute_wm0(dev, 2,
1665 			    &sandybridge_display_wm_info, latency,
1666 			    &sandybridge_cursor_wm_info, latency,
1667 			    &plane_wm, &cursor_wm)) {
1668 		val = I915_READ(WM0_PIPEC_IVB);
1669 		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1670 		I915_WRITE(WM0_PIPEC_IVB, val |
1671 			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1672 		DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
1673 			      " plane %d, cursor: %d\n",
1674 			      plane_wm, cursor_wm);
1675 		enabled |= 3;
1676 	}
1677 
1678 	/*
1679 	 * Calculate and update the self-refresh watermark only when one
1680 	 * display plane is used.
1681 	 *
1682 	 * SNB support 3 levels of watermark.
1683 	 *
1684 	 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1685 	 * and disabled in the descending order
1686 	 *
1687 	 */
1688 	I915_WRITE(WM3_LP_ILK, 0);
1689 	I915_WRITE(WM2_LP_ILK, 0);
1690 	I915_WRITE(WM1_LP_ILK, 0);
1691 
1692 	if (!single_plane_enabled(enabled) ||
1693 	    dev_priv->sprite_scaling_enabled)
1694 		return;
1695 	enabled = ffs(enabled) - 1;
1696 
1697 	/* WM1 */
1698 	if (!ironlake_compute_srwm(dev, 1, enabled,
1699 				   SNB_READ_WM1_LATENCY() * 500,
1700 				   &sandybridge_display_srwm_info,
1701 				   &sandybridge_cursor_srwm_info,
1702 				   &fbc_wm, &plane_wm, &cursor_wm))
1703 		return;
1704 
1705 	I915_WRITE(WM1_LP_ILK,
1706 		   WM1_LP_SR_EN |
1707 		   (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1708 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1709 		   (plane_wm << WM1_LP_SR_SHIFT) |
1710 		   cursor_wm);
1711 
1712 	/* WM2 */
1713 	if (!ironlake_compute_srwm(dev, 2, enabled,
1714 				   SNB_READ_WM2_LATENCY() * 500,
1715 				   &sandybridge_display_srwm_info,
1716 				   &sandybridge_cursor_srwm_info,
1717 				   &fbc_wm, &plane_wm, &cursor_wm))
1718 		return;
1719 
1720 	I915_WRITE(WM2_LP_ILK,
1721 		   WM2_LP_EN |
1722 		   (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1723 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1724 		   (plane_wm << WM1_LP_SR_SHIFT) |
1725 		   cursor_wm);
1726 
1727 	/* WM3 */
1728 	if (!ironlake_compute_srwm(dev, 3, enabled,
1729 				   SNB_READ_WM3_LATENCY() * 500,
1730 				   &sandybridge_display_srwm_info,
1731 				   &sandybridge_cursor_srwm_info,
1732 				   &fbc_wm, &plane_wm, &cursor_wm))
1733 		return;
1734 
1735 	I915_WRITE(WM3_LP_ILK,
1736 		   WM3_LP_EN |
1737 		   (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1738 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1739 		   (plane_wm << WM1_LP_SR_SHIFT) |
1740 		   cursor_wm);
1741 }
1742 
1743 static bool
1744 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
1745 			      uint32_t sprite_width, int pixel_size,
1746 			      const struct intel_watermark_params *display,
1747 			      int display_latency_ns, int *sprite_wm)
1748 {
1749 	struct drm_crtc *crtc;
1750 	int clock;
1751 	int entries, tlb_miss;
1752 
1753 	crtc = intel_get_crtc_for_plane(dev, plane);
1754 	if (crtc->fb == NULL || !crtc->enabled) {
1755 		*sprite_wm = display->guard_size;
1756 		return false;
1757 	}
1758 
1759 	clock = crtc->mode.clock;
1760 
1761 	/* Use the small buffer method to calculate the sprite watermark */
1762 	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1763 	tlb_miss = display->fifo_size*display->cacheline_size -
1764 		sprite_width * 8;
1765 	if (tlb_miss > 0)
1766 		entries += tlb_miss;
1767 	entries = howmany(entries, display->cacheline_size);
1768 	*sprite_wm = entries + display->guard_size;
1769 	if (*sprite_wm > (int)display->max_wm)
1770 		*sprite_wm = display->max_wm;
1771 
1772 	return true;
1773 }
1774 
1775 static bool
1776 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
1777 				uint32_t sprite_width, int pixel_size,
1778 				const struct intel_watermark_params *display,
1779 				int latency_ns, int *sprite_wm)
1780 {
1781 	struct drm_crtc *crtc;
1782 	unsigned long line_time_us;
1783 	int clock;
1784 	int line_count, line_size;
1785 	int small, large;
1786 	int entries;
1787 
1788 	if (!latency_ns) {
1789 		*sprite_wm = 0;
1790 		return false;
1791 	}
1792 
1793 	crtc = intel_get_crtc_for_plane(dev, plane);
1794 	clock = crtc->mode.clock;
1795 	if (!clock) {
1796 		*sprite_wm = 0;
1797 		return false;
1798 	}
1799 
1800 	line_time_us = (sprite_width * 1000) / clock;
1801 	if (!line_time_us) {
1802 		*sprite_wm = 0;
1803 		return false;
1804 	}
1805 
1806 	line_count = (latency_ns / line_time_us + 1000) / 1000;
1807 	line_size = sprite_width * pixel_size;
1808 
1809 	/* Use the minimum of the small and large buffer method for primary */
1810 	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1811 	large = line_count * line_size;
1812 
1813 	entries = howmany(min(small, large), display->cacheline_size);
1814 	*sprite_wm = entries + display->guard_size;
1815 
1816 	return *sprite_wm > 0x3ff ? false : true;
1817 }
1818 
1819 void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
1820 					 uint32_t sprite_width, int pixel_size)
1821 {
1822 	struct drm_i915_private *dev_priv = dev->dev_private;
1823 	int latency = SNB_READ_WM0_LATENCY() * 100;	/* In unit 0.1us */
1824 	u32 val;
1825 	int sprite_wm, reg;
1826 	int ret;
1827 
1828 	switch (pipe) {
1829 	case 0:
1830 		reg = WM0_PIPEA_ILK;
1831 		break;
1832 	case 1:
1833 		reg = WM0_PIPEB_ILK;
1834 		break;
1835 	case 2:
1836 		reg = WM0_PIPEC_IVB;
1837 		break;
1838 	default:
1839 		return; /* bad pipe */
1840 	}
1841 
1842 	ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
1843 					    &sandybridge_display_wm_info,
1844 					    latency, &sprite_wm);
1845 	if (!ret) {
1846 		DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
1847 			      pipe);
1848 		return;
1849 	}
1850 
1851 	val = I915_READ(reg);
1852 	val &= ~WM0_PIPE_SPRITE_MASK;
1853 	I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
1854 	DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
1855 
1856 
1857 	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
1858 					      pixel_size,
1859 					      &sandybridge_display_srwm_info,
1860 					      SNB_READ_WM1_LATENCY() * 500,
1861 					      &sprite_wm);
1862 	if (!ret) {
1863 		DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
1864 			      pipe);
1865 		return;
1866 	}
1867 	I915_WRITE(WM1S_LP_ILK, sprite_wm);
1868 
1869 	/* Only IVB has two more LP watermarks for sprite */
1870 	if (!IS_IVYBRIDGE(dev))
1871 		return;
1872 
1873 	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
1874 					      pixel_size,
1875 					      &sandybridge_display_srwm_info,
1876 					      SNB_READ_WM2_LATENCY() * 500,
1877 					      &sprite_wm);
1878 	if (!ret) {
1879 		DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
1880 			      pipe);
1881 		return;
1882 	}
1883 	I915_WRITE(WM2S_LP_IVB, sprite_wm);
1884 
1885 	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
1886 					      pixel_size,
1887 					      &sandybridge_display_srwm_info,
1888 					      SNB_READ_WM3_LATENCY() * 500,
1889 					      &sprite_wm);
1890 	if (!ret) {
1891 		DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
1892 			      pipe);
1893 		return;
1894 	}
1895 	I915_WRITE(WM3S_LP_IVB, sprite_wm);
1896 }
1897 
1898 /**
1899  * intel_update_watermarks - update FIFO watermark values based on current modes
1900  *
1901  * Calculate watermark values for the various WM regs based on current mode
1902  * and plane configuration.
1903  *
1904  * There are several cases to deal with here:
1905  *   - normal (i.e. non-self-refresh)
1906  *   - self-refresh (SR) mode
1907  *   - lines are large relative to FIFO size (buffer can hold up to 2)
1908  *   - lines are small relative to FIFO size (buffer can hold more than 2
1909  *     lines), so need to account for TLB latency
1910  *
1911  *   The normal calculation is:
1912  *     watermark = dotclock * bytes per pixel * latency
1913  *   where latency is platform & configuration dependent (we assume pessimal
1914  *   values here).
1915  *
1916  *   The SR calculation is:
1917  *     watermark = (trunc(latency/line time)+1) * surface width *
1918  *       bytes per pixel
1919  *   where
1920  *     line time = htotal / dotclock
1921  *     surface width = hdisplay for normal plane and 64 for cursor
1922  *   and latency is assumed to be high, as above.
1923  *
1924  * The final value programmed to the register should always be rounded up,
1925  * and include an extra 2 entries to account for clock crossings.
1926  *
1927  * We don't use the sprite, so we can ignore that.  And on Crestline we have
1928  * to set the non-SR watermarks to 8.
1929  */
1930 void intel_update_watermarks(struct drm_device *dev)
1931 {
1932 	struct drm_i915_private *dev_priv = dev->dev_private;
1933 
1934 	if (dev_priv->display.update_wm)
1935 		dev_priv->display.update_wm(dev);
1936 }
1937 
1938 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
1939 				    uint32_t sprite_width, int pixel_size)
1940 {
1941 	struct drm_i915_private *dev_priv = dev->dev_private;
1942 
1943 	if (dev_priv->display.update_sprite_wm)
1944 		dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
1945 						   pixel_size);
1946 }
1947 
1948 static struct drm_i915_gem_object *
1949 intel_alloc_context_page(struct drm_device *dev)
1950 {
1951 	struct drm_i915_gem_object *ctx;
1952 	int ret;
1953 
1954 	DRM_LOCK_ASSERT(dev);
1955 
1956 	ctx = i915_gem_alloc_object(dev, 4096);
1957 	if (!ctx) {
1958 		DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
1959 		return NULL;
1960 	}
1961 
1962 	ret = i915_gem_object_pin(ctx, 4096, true);
1963 	if (ret) {
1964 		DRM_ERROR("failed to pin power context: %d\n", ret);
1965 		goto err_unref;
1966 	}
1967 
1968 	ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
1969 	if (ret) {
1970 		DRM_ERROR("failed to set-domain on power context: %d\n", ret);
1971 		goto err_unpin;
1972 	}
1973 
1974 	return ctx;
1975 
1976 err_unpin:
1977 	i915_gem_object_unpin(ctx);
1978 err_unref:
1979 	drm_gem_object_unreference(&ctx->base);
1980 	DRM_UNLOCK(dev);
1981 	return NULL;
1982 }
1983 
1984 /**
1985  * Lock protecting IPS related data structures
1986  */
1987 struct lock mchdev_lock;
1988 LOCK_SYSINIT(mchdev, &mchdev_lock, "mchdev", LK_CANRECURSE);
1989 
1990 /* Global for IPS driver to get at the current i915 device. Protected by
1991  * mchdev_lock. */
1992 struct drm_i915_private *i915_mch_dev;
1993 
1994 bool ironlake_set_drps(struct drm_device *dev, u8 val)
1995 {
1996 	struct drm_i915_private *dev_priv = dev->dev_private;
1997 	u16 rgvswctl;
1998 
1999 	rgvswctl = I915_READ16(MEMSWCTL);
2000 	if (rgvswctl & MEMCTL_CMD_STS) {
2001 		DRM_DEBUG("gpu busy, RCS change rejected\n");
2002 		return false; /* still busy with another command */
2003 	}
2004 
2005 	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2006 		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2007 	I915_WRITE16(MEMSWCTL, rgvswctl);
2008 	POSTING_READ16(MEMSWCTL);
2009 
2010 	rgvswctl |= MEMCTL_CMD_STS;
2011 	I915_WRITE16(MEMSWCTL, rgvswctl);
2012 
2013 	return true;
2014 }
2015 
2016 void ironlake_enable_drps(struct drm_device *dev)
2017 {
2018 	struct drm_i915_private *dev_priv = dev->dev_private;
2019 	u32 rgvmodectl = I915_READ(MEMMODECTL);
2020 	u8 fmax, fmin, fstart, vstart;
2021 
2022 	/* Enable temp reporting */
2023 	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2024 	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2025 
2026 	/* 100ms RC evaluation intervals */
2027 	I915_WRITE(RCUPEI, 100000);
2028 	I915_WRITE(RCDNEI, 100000);
2029 
2030 	/* Set max/min thresholds to 90ms and 80ms respectively */
2031 	I915_WRITE(RCBMAXAVG, 90000);
2032 	I915_WRITE(RCBMINAVG, 80000);
2033 
2034 	I915_WRITE(MEMIHYST, 1);
2035 
2036 	/* Set up min, max, and cur for interrupt handling */
2037 	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2038 	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2039 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2040 		MEMMODE_FSTART_SHIFT;
2041 
2042 	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2043 		PXVFREQ_PX_SHIFT;
2044 
2045 	dev_priv->fmax = fmax; /* IPS callback will increase this */
2046 	dev_priv->fstart = fstart;
2047 
2048 	dev_priv->max_delay = fstart;
2049 	dev_priv->min_delay = fmin;
2050 	dev_priv->cur_delay = fstart;
2051 
2052 	DRM_DEBUG("fmax: %d, fmin: %d, fstart: %d\n",
2053 			 fmax, fmin, fstart);
2054 
2055 	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2056 
2057 	/*
2058 	 * Interrupts will be enabled in ironlake_irq_postinstall
2059 	 */
2060 
2061 	I915_WRITE(VIDSTART, vstart);
2062 	POSTING_READ(VIDSTART);
2063 
2064 	rgvmodectl |= MEMMODE_SWMODE_EN;
2065 	I915_WRITE(MEMMODECTL, rgvmodectl);
2066 
2067 	if (_intel_wait_for(dev,
2068 	    (I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10,
2069 	    1, "915per"))
2070 		DRM_ERROR("stuck trying to change perf mode\n");
2071 	DELAY(1000);
2072 
2073 	ironlake_set_drps(dev, fstart);
2074 
2075 	dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2076 		I915_READ(0x112e0);
2077 	dev_priv->last_time1 = jiffies_to_msecs(jiffies);
2078 	dev_priv->last_count2 = I915_READ(0x112f4);
2079 	nanotime(&dev_priv->last_time2);
2080 }
2081 
2082 void ironlake_disable_drps(struct drm_device *dev)
2083 {
2084 	struct drm_i915_private *dev_priv = dev->dev_private;
2085 	u16 rgvswctl = I915_READ16(MEMSWCTL);
2086 
2087 	/* Ack interrupts, disable EFC interrupt */
2088 	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2089 	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2090 	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2091 	I915_WRITE(DEIIR, DE_PCU_EVENT);
2092 	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2093 
2094 	/* Go back to the starting frequency */
2095 	ironlake_set_drps(dev, dev_priv->fstart);
2096 	DELAY(1000);
2097 	rgvswctl |= MEMCTL_CMD_STS;
2098 	I915_WRITE(MEMSWCTL, rgvswctl);
2099 	DELAY(1000);
2100 
2101 }
2102 
2103 void gen6_set_rps(struct drm_device *dev, u8 val)
2104 {
2105 	struct drm_i915_private *dev_priv = dev->dev_private;
2106 	u32 swreq;
2107 
2108 	swreq = (val & 0x3ff) << 25;
2109 	I915_WRITE(GEN6_RPNSWREQ, swreq);
2110 }
2111 
2112 void gen6_disable_rps(struct drm_device *dev)
2113 {
2114 	struct drm_i915_private *dev_priv = dev->dev_private;
2115 
2116 	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
2117 	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
2118 	I915_WRITE(GEN6_PMIER, 0);
2119 	/* Complete PM interrupt masking here doesn't race with the rps work
2120 	 * item again unmasking PM interrupts because that is using a different
2121 	 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
2122 	 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
2123 
2124 	lockmgr(&dev_priv->rps_lock, LK_EXCLUSIVE);
2125 	dev_priv->pm_iir = 0;
2126 	lockmgr(&dev_priv->rps_lock, LK_RELEASE);
2127 
2128 	I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2129 }
2130 
2131 static unsigned long intel_pxfreq(u32 vidfreq)
2132 {
2133 	unsigned long freq;
2134 	int div = (vidfreq & 0x3f0000) >> 16;
2135 	int post = (vidfreq & 0x3000) >> 12;
2136 	int pre = (vidfreq & 0x7);
2137 
2138 	if (!pre)
2139 		return 0;
2140 
2141 	freq = ((div * 133333) / ((1<<post) * pre));
2142 
2143 	return freq;
2144 }
2145 
2146 static const struct cparams {
2147 	u16 i;
2148 	u16 t;
2149 	u16 m;
2150 	u16 c;
2151 } cparams[] = {
2152 	{ 1, 1333, 301, 28664 },
2153 	{ 1, 1066, 294, 24460 },
2154 	{ 1, 800, 294, 25192 },
2155 	{ 0, 1333, 276, 27605 },
2156 	{ 0, 1066, 276, 27605 },
2157 	{ 0, 800, 231, 23784 },
2158 };
2159 
2160 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
2161 {
2162 	u64 total_count, diff, ret;
2163 	u32 count1, count2, count3, m = 0, c = 0;
2164 	unsigned long now = jiffies_to_msecs(jiffies), diff1;
2165 	int i;
2166 
2167 	diff1 = now - dev_priv->last_time1;
2168 	/*
2169 	 * sysctl(8) reads the value of sysctl twice in rapid
2170 	 * succession.  There is high chance that it happens in the
2171 	 * same timer tick.  Use the cached value to not divide by
2172 	 * zero and give the hw a chance to gather more samples.
2173 	 */
2174 	if (diff1 <= 10)
2175 		return (dev_priv->chipset_power);
2176 
2177 	count1 = I915_READ(DMIEC);
2178 	count2 = I915_READ(DDREC);
2179 	count3 = I915_READ(CSIEC);
2180 
2181 	total_count = count1 + count2 + count3;
2182 
2183 	/* FIXME: handle per-counter overflow */
2184 	if (total_count < dev_priv->last_count1) {
2185 		diff = ~0UL - dev_priv->last_count1;
2186 		diff += total_count;
2187 	} else {
2188 		diff = total_count - dev_priv->last_count1;
2189 	}
2190 
2191 	for (i = 0; i < DRM_ARRAY_SIZE(cparams); i++) {
2192 		if (cparams[i].i == dev_priv->c_m &&
2193 		    cparams[i].t == dev_priv->r_t) {
2194 			m = cparams[i].m;
2195 			c = cparams[i].c;
2196 			break;
2197 		}
2198 	}
2199 
2200 	diff = diff / diff1;
2201 	ret = ((m * diff) + c);
2202 	ret = ret / 10;
2203 
2204 	dev_priv->last_count1 = total_count;
2205 	dev_priv->last_time1 = now;
2206 
2207 	dev_priv->chipset_power = ret;
2208 	return (ret);
2209 }
2210 
2211 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
2212 {
2213 	unsigned long m, x, b;
2214 	u32 tsfs;
2215 
2216 	tsfs = I915_READ(TSFS);
2217 
2218 	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
2219 	x = I915_READ8(I915_TR1);
2220 
2221 	b = tsfs & TSFS_INTR_MASK;
2222 
2223 	return ((m * x) / 127) - b;
2224 }
2225 
2226 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
2227 {
2228 	static const struct v_table {
2229 		u16 vd; /* in .1 mil */
2230 		u16 vm; /* in .1 mil */
2231 	} v_table[] = {
2232 		{ 0, 0, },
2233 		{ 375, 0, },
2234 		{ 500, 0, },
2235 		{ 625, 0, },
2236 		{ 750, 0, },
2237 		{ 875, 0, },
2238 		{ 1000, 0, },
2239 		{ 1125, 0, },
2240 		{ 4125, 3000, },
2241 		{ 4125, 3000, },
2242 		{ 4125, 3000, },
2243 		{ 4125, 3000, },
2244 		{ 4125, 3000, },
2245 		{ 4125, 3000, },
2246 		{ 4125, 3000, },
2247 		{ 4125, 3000, },
2248 		{ 4125, 3000, },
2249 		{ 4125, 3000, },
2250 		{ 4125, 3000, },
2251 		{ 4125, 3000, },
2252 		{ 4125, 3000, },
2253 		{ 4125, 3000, },
2254 		{ 4125, 3000, },
2255 		{ 4125, 3000, },
2256 		{ 4125, 3000, },
2257 		{ 4125, 3000, },
2258 		{ 4125, 3000, },
2259 		{ 4125, 3000, },
2260 		{ 4125, 3000, },
2261 		{ 4125, 3000, },
2262 		{ 4125, 3000, },
2263 		{ 4125, 3000, },
2264 		{ 4250, 3125, },
2265 		{ 4375, 3250, },
2266 		{ 4500, 3375, },
2267 		{ 4625, 3500, },
2268 		{ 4750, 3625, },
2269 		{ 4875, 3750, },
2270 		{ 5000, 3875, },
2271 		{ 5125, 4000, },
2272 		{ 5250, 4125, },
2273 		{ 5375, 4250, },
2274 		{ 5500, 4375, },
2275 		{ 5625, 4500, },
2276 		{ 5750, 4625, },
2277 		{ 5875, 4750, },
2278 		{ 6000, 4875, },
2279 		{ 6125, 5000, },
2280 		{ 6250, 5125, },
2281 		{ 6375, 5250, },
2282 		{ 6500, 5375, },
2283 		{ 6625, 5500, },
2284 		{ 6750, 5625, },
2285 		{ 6875, 5750, },
2286 		{ 7000, 5875, },
2287 		{ 7125, 6000, },
2288 		{ 7250, 6125, },
2289 		{ 7375, 6250, },
2290 		{ 7500, 6375, },
2291 		{ 7625, 6500, },
2292 		{ 7750, 6625, },
2293 		{ 7875, 6750, },
2294 		{ 8000, 6875, },
2295 		{ 8125, 7000, },
2296 		{ 8250, 7125, },
2297 		{ 8375, 7250, },
2298 		{ 8500, 7375, },
2299 		{ 8625, 7500, },
2300 		{ 8750, 7625, },
2301 		{ 8875, 7750, },
2302 		{ 9000, 7875, },
2303 		{ 9125, 8000, },
2304 		{ 9250, 8125, },
2305 		{ 9375, 8250, },
2306 		{ 9500, 8375, },
2307 		{ 9625, 8500, },
2308 		{ 9750, 8625, },
2309 		{ 9875, 8750, },
2310 		{ 10000, 8875, },
2311 		{ 10125, 9000, },
2312 		{ 10250, 9125, },
2313 		{ 10375, 9250, },
2314 		{ 10500, 9375, },
2315 		{ 10625, 9500, },
2316 		{ 10750, 9625, },
2317 		{ 10875, 9750, },
2318 		{ 11000, 9875, },
2319 		{ 11125, 10000, },
2320 		{ 11250, 10125, },
2321 		{ 11375, 10250, },
2322 		{ 11500, 10375, },
2323 		{ 11625, 10500, },
2324 		{ 11750, 10625, },
2325 		{ 11875, 10750, },
2326 		{ 12000, 10875, },
2327 		{ 12125, 11000, },
2328 		{ 12250, 11125, },
2329 		{ 12375, 11250, },
2330 		{ 12500, 11375, },
2331 		{ 12625, 11500, },
2332 		{ 12750, 11625, },
2333 		{ 12875, 11750, },
2334 		{ 13000, 11875, },
2335 		{ 13125, 12000, },
2336 		{ 13250, 12125, },
2337 		{ 13375, 12250, },
2338 		{ 13500, 12375, },
2339 		{ 13625, 12500, },
2340 		{ 13750, 12625, },
2341 		{ 13875, 12750, },
2342 		{ 14000, 12875, },
2343 		{ 14125, 13000, },
2344 		{ 14250, 13125, },
2345 		{ 14375, 13250, },
2346 		{ 14500, 13375, },
2347 		{ 14625, 13500, },
2348 		{ 14750, 13625, },
2349 		{ 14875, 13750, },
2350 		{ 15000, 13875, },
2351 		{ 15125, 14000, },
2352 		{ 15250, 14125, },
2353 		{ 15375, 14250, },
2354 		{ 15500, 14375, },
2355 		{ 15625, 14500, },
2356 		{ 15750, 14625, },
2357 		{ 15875, 14750, },
2358 		{ 16000, 14875, },
2359 		{ 16125, 15000, },
2360 	};
2361 	if (dev_priv->info->is_mobile)
2362 		return v_table[pxvid].vm;
2363 	else
2364 		return v_table[pxvid].vd;
2365 }
2366 
2367 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
2368 {
2369 	struct timespec now, diff1;
2370 	u64 diff;
2371 	unsigned long diffms;
2372 	u32 count;
2373 
2374 	if (dev_priv->info->gen != 5)
2375 		return;
2376 
2377 	nanotime(&now);
2378 	diff1 = now;
2379 	timespecsub(&diff1, &dev_priv->last_time2);
2380 
2381 	/* Don't divide by 0 */
2382 	diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
2383 	if (!diffms)
2384 		return;
2385 
2386 	count = I915_READ(GFXEC);
2387 
2388 	if (count < dev_priv->last_count2) {
2389 		diff = ~0UL - dev_priv->last_count2;
2390 		diff += count;
2391 	} else {
2392 		diff = count - dev_priv->last_count2;
2393 	}
2394 
2395 	dev_priv->last_count2 = count;
2396 	dev_priv->last_time2 = now;
2397 
2398 	/* More magic constants... */
2399 	diff = diff * 1181;
2400 	diff = diff / (diffms * 10);
2401 	dev_priv->gfx_power = diff;
2402 }
2403 
2404 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
2405 {
2406 	unsigned long t, corr, state1, corr2, state2;
2407 	u32 pxvid, ext_v;
2408 
2409 	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->cur_delay * 4));
2410 	pxvid = (pxvid >> 24) & 0x7f;
2411 	ext_v = pvid_to_extvid(dev_priv, pxvid);
2412 
2413 	state1 = ext_v;
2414 
2415 	t = i915_mch_val(dev_priv);
2416 
2417 	/* Revel in the empirically derived constants */
2418 
2419 	/* Correction factor in 1/100000 units */
2420 	if (t > 80)
2421 		corr = ((t * 2349) + 135940);
2422 	else if (t >= 50)
2423 		corr = ((t * 964) + 29317);
2424 	else /* < 50 */
2425 		corr = ((t * 301) + 1004);
2426 
2427 	corr = corr * ((150142 * state1) / 10000 - 78642);
2428 	corr /= 100000;
2429 	corr2 = (corr * dev_priv->corr);
2430 
2431 	state2 = (corr2 * state1) / 10000;
2432 	state2 /= 100; /* convert to mW */
2433 
2434 	i915_update_gfx_val(dev_priv);
2435 
2436 	return dev_priv->gfx_power + state2;
2437 }
2438 
2439 /**
2440  * i915_read_mch_val - return value for IPS use
2441  *
2442  * Calculate and return a value for the IPS driver to use when deciding whether
2443  * we have thermal and power headroom to increase CPU or GPU power budget.
2444  */
2445 unsigned long i915_read_mch_val(void)
2446 {
2447 	struct drm_i915_private *dev_priv;
2448 	unsigned long chipset_val, graphics_val, ret = 0;
2449 
2450 	lockmgr(&mchdev_lock, LK_EXCLUSIVE);
2451 	if (!i915_mch_dev)
2452 		goto out_unlock;
2453 	dev_priv = i915_mch_dev;
2454 
2455 	chipset_val = i915_chipset_val(dev_priv);
2456 	graphics_val = i915_gfx_val(dev_priv);
2457 
2458 	ret = chipset_val + graphics_val;
2459 
2460 out_unlock:
2461 	lockmgr(&mchdev_lock, LK_RELEASE);
2462 
2463 	return ret;
2464 }
2465 
2466 /**
2467  * i915_gpu_raise - raise GPU frequency limit
2468  *
2469  * Raise the limit; IPS indicates we have thermal headroom.
2470  */
2471 bool i915_gpu_raise(void)
2472 {
2473 	struct drm_i915_private *dev_priv;
2474 	bool ret = true;
2475 
2476 	lockmgr(&mchdev_lock, LK_EXCLUSIVE);
2477 	if (!i915_mch_dev) {
2478 		ret = false;
2479 		goto out_unlock;
2480 	}
2481 	dev_priv = i915_mch_dev;
2482 
2483 	if (dev_priv->max_delay > dev_priv->fmax)
2484 		dev_priv->max_delay--;
2485 
2486 out_unlock:
2487 	lockmgr(&mchdev_lock, LK_RELEASE);
2488 
2489 	return ret;
2490 }
2491 
2492 /**
2493  * i915_gpu_lower - lower GPU frequency limit
2494  *
2495  * IPS indicates we're close to a thermal limit, so throttle back the GPU
2496  * frequency maximum.
2497  */
2498 bool i915_gpu_lower(void)
2499 {
2500 	struct drm_i915_private *dev_priv;
2501 	bool ret = true;
2502 
2503 	lockmgr(&mchdev_lock, LK_EXCLUSIVE);
2504 	if (!i915_mch_dev) {
2505 		ret = false;
2506 		goto out_unlock;
2507 	}
2508 	dev_priv = i915_mch_dev;
2509 
2510 	if (dev_priv->max_delay < dev_priv->min_delay)
2511 		dev_priv->max_delay++;
2512 
2513 out_unlock:
2514 	lockmgr(&mchdev_lock, LK_RELEASE);
2515 
2516 	return ret;
2517 }
2518 
2519 /**
2520  * i915_gpu_busy - indicate GPU business to IPS
2521  *
2522  * Tell the IPS driver whether or not the GPU is busy.
2523  */
2524 bool i915_gpu_busy(void)
2525 {
2526 	struct drm_i915_private *dev_priv;
2527 	bool ret = false;
2528 
2529 	lockmgr(&mchdev_lock, LK_EXCLUSIVE);
2530 	if (!i915_mch_dev)
2531 		goto out_unlock;
2532 	dev_priv = i915_mch_dev;
2533 
2534 	ret = dev_priv->busy;
2535 
2536 out_unlock:
2537 	lockmgr(&mchdev_lock, LK_RELEASE);
2538 
2539 	return ret;
2540 }
2541 
2542 /**
2543  * i915_gpu_turbo_disable - disable graphics turbo
2544  *
2545  * Disable graphics turbo by resetting the max frequency and setting the
2546  * current frequency to the default.
2547  */
2548 bool i915_gpu_turbo_disable(void)
2549 {
2550 	struct drm_i915_private *dev_priv;
2551 	bool ret = true;
2552 
2553 	lockmgr(&mchdev_lock, LK_EXCLUSIVE);
2554 	if (!i915_mch_dev) {
2555 		ret = false;
2556 		goto out_unlock;
2557 	}
2558 	dev_priv = i915_mch_dev;
2559 
2560 	dev_priv->max_delay = dev_priv->fstart;
2561 
2562 	if (!ironlake_set_drps(dev_priv->dev, dev_priv->fstart))
2563 		ret = false;
2564 
2565 out_unlock:
2566 	lockmgr(&mchdev_lock, LK_RELEASE);
2567 
2568 	return ret;
2569 }
2570 
2571 void intel_init_emon(struct drm_device *dev)
2572 {
2573 	struct drm_i915_private *dev_priv = dev->dev_private;
2574 	u32 lcfuse;
2575 	u8 pxw[16];
2576 	int i;
2577 
2578 	/* Disable to program */
2579 	I915_WRITE(ECR, 0);
2580 	POSTING_READ(ECR);
2581 
2582 	/* Program energy weights for various events */
2583 	I915_WRITE(SDEW, 0x15040d00);
2584 	I915_WRITE(CSIEW0, 0x007f0000);
2585 	I915_WRITE(CSIEW1, 0x1e220004);
2586 	I915_WRITE(CSIEW2, 0x04000004);
2587 
2588 	for (i = 0; i < 5; i++)
2589 		I915_WRITE(PEW + (i * 4), 0);
2590 	for (i = 0; i < 3; i++)
2591 		I915_WRITE(DEW + (i * 4), 0);
2592 
2593 	/* Program P-state weights to account for frequency power adjustment */
2594 	for (i = 0; i < 16; i++) {
2595 		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
2596 		unsigned long freq = intel_pxfreq(pxvidfreq);
2597 		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
2598 			PXVFREQ_PX_SHIFT;
2599 		unsigned long val;
2600 
2601 		val = vid * vid;
2602 		val *= (freq / 1000);
2603 		val *= 255;
2604 		val /= (127*127*900);
2605 		if (val > 0xff)
2606 			DRM_ERROR("bad pxval: %ld\n", val);
2607 		pxw[i] = val;
2608 	}
2609 	/* Render standby states get 0 weight */
2610 	pxw[14] = 0;
2611 	pxw[15] = 0;
2612 
2613 	for (i = 0; i < 4; i++) {
2614 		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
2615 			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
2616 		I915_WRITE(PXW + (i * 4), val);
2617 	}
2618 
2619 	/* Adjust magic regs to magic values (more experimental results) */
2620 	I915_WRITE(OGW0, 0);
2621 	I915_WRITE(OGW1, 0);
2622 	I915_WRITE(EG0, 0x00007f00);
2623 	I915_WRITE(EG1, 0x0000000e);
2624 	I915_WRITE(EG2, 0x000e0000);
2625 	I915_WRITE(EG3, 0x68000300);
2626 	I915_WRITE(EG4, 0x42000000);
2627 	I915_WRITE(EG5, 0x00140031);
2628 	I915_WRITE(EG6, 0);
2629 	I915_WRITE(EG7, 0);
2630 
2631 	for (i = 0; i < 8; i++)
2632 		I915_WRITE(PXWL + (i * 4), 0);
2633 
2634 	/* Enable PMON + select events */
2635 	I915_WRITE(ECR, 0x80000019);
2636 
2637 	lcfuse = I915_READ(LCFUSE02);
2638 
2639 	dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
2640 }
2641 
2642 static int intel_enable_rc6(struct drm_device *dev)
2643 {
2644 	/*
2645 	 * Respect the kernel parameter if it is set
2646 	 */
2647 	if (i915_enable_rc6 >= 0)
2648 		return i915_enable_rc6;
2649 
2650 	/*
2651 	 * Disable RC6 on Ironlake
2652 	 */
2653 	if (INTEL_INFO(dev)->gen == 5)
2654 		return 0;
2655 
2656 	/*
2657 	 * Enable rc6 on Sandybridge if DMA remapping is disabled
2658 	 */
2659 	if (INTEL_INFO(dev)->gen == 6) {
2660 		DRM_DEBUG_DRIVER(
2661 		    "Sandybridge: intel_iommu_enabled %s -- RC6 %sabled\n",
2662 		     intel_iommu_enabled ? "true" : "false",
2663 		     !intel_iommu_enabled ? "en" : "dis");
2664 		return (intel_iommu_enabled ? 0 : INTEL_RC6_ENABLE);
2665 	}
2666 	DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
2667 	return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
2668 }
2669 
2670 void gen6_enable_rps(struct drm_i915_private *dev_priv)
2671 {
2672 	struct drm_device *dev = dev_priv->dev;
2673 	u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
2674 	u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
2675 	u32 pcu_mbox, rc6_mask = 0;
2676 	u32 gtfifodbg;
2677 	int cur_freq, min_freq, max_freq;
2678 	int rc6_mode;
2679 	int i;
2680 
2681 	/* Here begins a magic sequence of register writes to enable
2682 	 * auto-downclocking.
2683 	 *
2684 	 * Perhaps there might be some value in exposing these to
2685 	 * userspace...
2686 	 */
2687 	I915_WRITE(GEN6_RC_STATE, 0);
2688 	DRM_LOCK(dev);
2689 
2690 	/* Clear the DBG now so we don't confuse earlier errors */
2691 	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
2692 		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
2693 		I915_WRITE(GTFIFODBG, gtfifodbg);
2694 	}
2695 
2696 	gen6_gt_force_wake_get(dev_priv);
2697 
2698 	/* disable the counters and set deterministic thresholds */
2699 	I915_WRITE(GEN6_RC_CONTROL, 0);
2700 
2701 	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
2702 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
2703 	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
2704 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
2705 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
2706 
2707 	for (i = 0; i < I915_NUM_RINGS; i++)
2708 		I915_WRITE(RING_MAX_IDLE(dev_priv->rings[i].mmio_base), 10);
2709 
2710 	I915_WRITE(GEN6_RC_SLEEP, 0);
2711 	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
2712 	I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
2713 	I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
2714 	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
2715 
2716 	rc6_mode = intel_enable_rc6(dev_priv->dev);
2717 	if (rc6_mode & INTEL_RC6_ENABLE)
2718 		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
2719 
2720 	if (rc6_mode & INTEL_RC6p_ENABLE)
2721 		rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
2722 
2723 	if (rc6_mode & INTEL_RC6pp_ENABLE)
2724 		rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
2725 
2726 	DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
2727 			(rc6_mode & INTEL_RC6_ENABLE) ? "on" : "off",
2728 			(rc6_mode & INTEL_RC6p_ENABLE) ? "on" : "off",
2729 			(rc6_mode & INTEL_RC6pp_ENABLE) ? "on" : "off");
2730 
2731 	I915_WRITE(GEN6_RC_CONTROL,
2732 		   rc6_mask |
2733 		   GEN6_RC_CTL_EI_MODE(1) |
2734 		   GEN6_RC_CTL_HW_ENABLE);
2735 
2736 	I915_WRITE(GEN6_RPNSWREQ,
2737 		   GEN6_FREQUENCY(10) |
2738 		   GEN6_OFFSET(0) |
2739 		   GEN6_AGGRESSIVE_TURBO);
2740 	I915_WRITE(GEN6_RC_VIDEO_FREQ,
2741 		   GEN6_FREQUENCY(12));
2742 
2743 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
2744 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
2745 		   18 << 24 |
2746 		   6 << 16);
2747 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
2748 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
2749 	I915_WRITE(GEN6_RP_UP_EI, 100000);
2750 	I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
2751 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
2752 	I915_WRITE(GEN6_RP_CONTROL,
2753 		   GEN6_RP_MEDIA_TURBO |
2754 		   GEN6_RP_MEDIA_HW_MODE |
2755 		   GEN6_RP_MEDIA_IS_GFX |
2756 		   GEN6_RP_ENABLE |
2757 		   GEN6_RP_UP_BUSY_AVG |
2758 		   GEN6_RP_DOWN_IDLE_CONT);
2759 
2760 	if (_intel_wait_for(dev,
2761 	    (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0, 500,
2762 	    1, "915pr1"))
2763 		DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
2764 
2765 	I915_WRITE(GEN6_PCODE_DATA, 0);
2766 	I915_WRITE(GEN6_PCODE_MAILBOX,
2767 		   GEN6_PCODE_READY |
2768 		   GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
2769 	if (_intel_wait_for(dev,
2770 	    (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0, 500,
2771 	    1, "915pr2"))
2772 		DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
2773 
2774 	min_freq = (rp_state_cap & 0xff0000) >> 16;
2775 	max_freq = rp_state_cap & 0xff;
2776 	cur_freq = (gt_perf_status & 0xff00) >> 8;
2777 
2778 	/* Check for overclock support */
2779 	if (_intel_wait_for(dev,
2780 	    (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0, 500,
2781 	    1, "915pr3"))
2782 		DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
2783 	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
2784 	pcu_mbox = I915_READ(GEN6_PCODE_DATA);
2785 	if (_intel_wait_for(dev,
2786 	    (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0, 500,
2787 	    1, "915pr4"))
2788 		DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
2789 	if (pcu_mbox & (1<<31)) { /* OC supported */
2790 		max_freq = pcu_mbox & 0xff;
2791 		DRM_DEBUG("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
2792 	}
2793 
2794 	/* In units of 100MHz */
2795 	dev_priv->max_delay = max_freq;
2796 	dev_priv->min_delay = min_freq;
2797 	dev_priv->cur_delay = cur_freq;
2798 
2799 	/* requires MSI enabled */
2800 	I915_WRITE(GEN6_PMIER,
2801 		   GEN6_PM_MBOX_EVENT |
2802 		   GEN6_PM_THERMAL_EVENT |
2803 		   GEN6_PM_RP_DOWN_TIMEOUT |
2804 		   GEN6_PM_RP_UP_THRESHOLD |
2805 		   GEN6_PM_RP_DOWN_THRESHOLD |
2806 		   GEN6_PM_RP_UP_EI_EXPIRED |
2807 		   GEN6_PM_RP_DOWN_EI_EXPIRED);
2808 	lockmgr(&dev_priv->rps_lock, LK_EXCLUSIVE);
2809 	if (dev_priv->pm_iir != 0)
2810 		kprintf("pm_iir %x\n", dev_priv->pm_iir);
2811 	I915_WRITE(GEN6_PMIMR, 0);
2812 	lockmgr(&dev_priv->rps_lock, LK_RELEASE);
2813 	/* enable all PM interrupts */
2814 	I915_WRITE(GEN6_PMINTRMSK, 0);
2815 
2816 	gen6_gt_force_wake_put(dev_priv);
2817 	DRM_UNLOCK(dev);
2818 }
2819 
2820 void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
2821 {
2822 	struct drm_device *dev;
2823 	int min_freq = 15;
2824 	int gpu_freq, ia_freq, max_ia_freq;
2825 	int scaling_factor = 180;
2826 	uint64_t tsc_freq;
2827 
2828 	dev = dev_priv->dev;
2829 #if 0
2830 	max_ia_freq = cpufreq_quick_get_max(0);
2831 	/*
2832 	 * Default to measured freq if none found, PCU will ensure we don't go
2833 	 * over
2834 	 */
2835 	if (!max_ia_freq)
2836 		max_ia_freq = tsc_freq;
2837 
2838 	/* Convert from Hz to MHz */
2839 	max_ia_freq /= 1000;
2840 #else
2841 	tsc_freq = atomic_load_acq_64(&tsc_freq);
2842 	max_ia_freq = tsc_freq / 1000 / 1000;
2843 #endif
2844 
2845 	DRM_LOCK(dev);
2846 
2847 	/*
2848 	 * For each potential GPU frequency, load a ring frequency we'd like
2849 	 * to use for memory access.  We do this by specifying the IA frequency
2850 	 * the PCU should use as a reference to determine the ring frequency.
2851 	 */
2852 	for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
2853 	     gpu_freq--) {
2854 		int diff = dev_priv->max_delay - gpu_freq;
2855 		int d;
2856 
2857 		/*
2858 		 * For GPU frequencies less than 750MHz, just use the lowest
2859 		 * ring freq.
2860 		 */
2861 		if (gpu_freq < min_freq)
2862 			ia_freq = 800;
2863 		else
2864 			ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
2865 		d = 100;
2866 		ia_freq = (ia_freq + d / 2) / d;
2867 
2868 		I915_WRITE(GEN6_PCODE_DATA,
2869 			   (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
2870 			   gpu_freq);
2871 		I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
2872 			   GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
2873 		if (_intel_wait_for(dev,
2874 		    (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
2875 		    10, 1, "915frq")) {
2876 			DRM_ERROR("pcode write of freq table timed out\n");
2877 			continue;
2878 		}
2879 	}
2880 
2881 	DRM_UNLOCK(dev);
2882 }
2883 
2884 void ironlake_init_clock_gating(struct drm_device *dev)
2885 {
2886 	struct drm_i915_private *dev_priv = dev->dev_private;
2887 	uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
2888 
2889 	/* Required for FBC */
2890 	dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
2891 		DPFCRUNIT_CLOCK_GATE_DISABLE |
2892 		DPFDUNIT_CLOCK_GATE_DISABLE;
2893 	/* Required for CxSR */
2894 	dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
2895 
2896 	I915_WRITE(PCH_3DCGDIS0,
2897 		   MARIUNIT_CLOCK_GATE_DISABLE |
2898 		   SVSMUNIT_CLOCK_GATE_DISABLE);
2899 	I915_WRITE(PCH_3DCGDIS1,
2900 		   VFMUNIT_CLOCK_GATE_DISABLE);
2901 
2902 	I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
2903 
2904 	/*
2905 	 * According to the spec the following bits should be set in
2906 	 * order to enable memory self-refresh
2907 	 * The bit 22/21 of 0x42004
2908 	 * The bit 5 of 0x42020
2909 	 * The bit 15 of 0x45000
2910 	 */
2911 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
2912 		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
2913 		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
2914 	I915_WRITE(ILK_DSPCLK_GATE,
2915 		   (I915_READ(ILK_DSPCLK_GATE) |
2916 		    ILK_DPARB_CLK_GATE));
2917 	I915_WRITE(DISP_ARB_CTL,
2918 		   (I915_READ(DISP_ARB_CTL) |
2919 		    DISP_FBC_WM_DIS));
2920 	I915_WRITE(WM3_LP_ILK, 0);
2921 	I915_WRITE(WM2_LP_ILK, 0);
2922 	I915_WRITE(WM1_LP_ILK, 0);
2923 
2924 	/*
2925 	 * Based on the document from hardware guys the following bits
2926 	 * should be set unconditionally in order to enable FBC.
2927 	 * The bit 22 of 0x42000
2928 	 * The bit 22 of 0x42004
2929 	 * The bit 7,8,9 of 0x42020.
2930 	 */
2931 	if (IS_IRONLAKE_M(dev)) {
2932 		I915_WRITE(ILK_DISPLAY_CHICKEN1,
2933 			   I915_READ(ILK_DISPLAY_CHICKEN1) |
2934 			   ILK_FBCQ_DIS);
2935 		I915_WRITE(ILK_DISPLAY_CHICKEN2,
2936 			   I915_READ(ILK_DISPLAY_CHICKEN2) |
2937 			   ILK_DPARB_GATE);
2938 		I915_WRITE(ILK_DSPCLK_GATE,
2939 			   I915_READ(ILK_DSPCLK_GATE) |
2940 			   ILK_DPFC_DIS1 |
2941 			   ILK_DPFC_DIS2 |
2942 			   ILK_CLK_FBC);
2943 	}
2944 
2945 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
2946 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
2947 		   ILK_ELPIN_409_SELECT);
2948 	I915_WRITE(_3D_CHICKEN2,
2949 		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
2950 		   _3D_CHICKEN2_WM_READ_PIPELINED);
2951 }
2952 
2953 void gen6_init_clock_gating(struct drm_device *dev)
2954 {
2955 	struct drm_i915_private *dev_priv = dev->dev_private;
2956 	int pipe;
2957 	uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
2958 
2959 	I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
2960 
2961 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
2962 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
2963 		   ILK_ELPIN_409_SELECT);
2964 
2965 	I915_WRITE(WM3_LP_ILK, 0);
2966 	I915_WRITE(WM2_LP_ILK, 0);
2967 	I915_WRITE(WM1_LP_ILK, 0);
2968 
2969 	I915_WRITE(GEN6_UCGCTL1,
2970 		   I915_READ(GEN6_UCGCTL1) |
2971 		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE);
2972 
2973 	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
2974 	 * gating disable must be set.  Failure to set it results in
2975 	 * flickering pixels due to Z write ordering failures after
2976 	 * some amount of runtime in the Mesa "fire" demo, and Unigine
2977 	 * Sanctuary and Tropics, and apparently anything else with
2978 	 * alpha test or pixel discard.
2979 	 *
2980 	 * According to the spec, bit 11 (RCCUNIT) must also be set,
2981 	 * but we didn't debug actual testcases to find it out.
2982 	 */
2983 	I915_WRITE(GEN6_UCGCTL2,
2984 		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
2985 		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
2986 
2987 	/*
2988 	 * According to the spec the following bits should be
2989 	 * set in order to enable memory self-refresh and fbc:
2990 	 * The bit21 and bit22 of 0x42000
2991 	 * The bit21 and bit22 of 0x42004
2992 	 * The bit5 and bit7 of 0x42020
2993 	 * The bit14 of 0x70180
2994 	 * The bit14 of 0x71180
2995 	 */
2996 	I915_WRITE(ILK_DISPLAY_CHICKEN1,
2997 		   I915_READ(ILK_DISPLAY_CHICKEN1) |
2998 		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
2999 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
3000 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
3001 		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
3002 	I915_WRITE(ILK_DSPCLK_GATE,
3003 		   I915_READ(ILK_DSPCLK_GATE) |
3004 		   ILK_DPARB_CLK_GATE  |
3005 		   ILK_DPFD_CLK_GATE);
3006 
3007 	for_each_pipe(pipe) {
3008 		I915_WRITE(DSPCNTR(pipe),
3009 			   I915_READ(DSPCNTR(pipe)) |
3010 			   DISPPLANE_TRICKLE_FEED_DISABLE);
3011 		intel_flush_display_plane(dev_priv, pipe);
3012 	}
3013 }
3014 
3015 void ivybridge_init_clock_gating(struct drm_device *dev)
3016 {
3017 	struct drm_i915_private *dev_priv = dev->dev_private;
3018 	int pipe;
3019 	uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
3020 
3021 	I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
3022 
3023 	I915_WRITE(WM3_LP_ILK, 0);
3024 	I915_WRITE(WM2_LP_ILK, 0);
3025 	I915_WRITE(WM1_LP_ILK, 0);
3026 
3027 	/* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3028 	 * This implements the WaDisableRCZUnitClockGating workaround.
3029 	 */
3030 	I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
3031 
3032 	I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
3033 
3034 	I915_WRITE(IVB_CHICKEN3,
3035 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3036 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
3037 
3038 	/* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3039 	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3040 		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3041 
3042 	/* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3043 	I915_WRITE(GEN7_L3CNTLREG1,
3044 			GEN7_WA_FOR_GEN7_L3_CONTROL);
3045 	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3046 			GEN7_WA_L3_CHICKEN_MODE);
3047 
3048 	/* This is required by WaCatErrorRejectionIssue */
3049 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3050 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3051 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3052 
3053 	for_each_pipe(pipe) {
3054 		I915_WRITE(DSPCNTR(pipe),
3055 			   I915_READ(DSPCNTR(pipe)) |
3056 			   DISPPLANE_TRICKLE_FEED_DISABLE);
3057 		intel_flush_display_plane(dev_priv, pipe);
3058 	}
3059 }
3060 
3061 void g4x_init_clock_gating(struct drm_device *dev)
3062 {
3063 	struct drm_i915_private *dev_priv = dev->dev_private;
3064 	uint32_t dspclk_gate;
3065 
3066 	I915_WRITE(RENCLK_GATE_D1, 0);
3067 	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
3068 		   GS_UNIT_CLOCK_GATE_DISABLE |
3069 		   CL_UNIT_CLOCK_GATE_DISABLE);
3070 	I915_WRITE(RAMCLK_GATE_D, 0);
3071 	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
3072 		OVRUNIT_CLOCK_GATE_DISABLE |
3073 		OVCUNIT_CLOCK_GATE_DISABLE;
3074 	if (IS_GM45(dev))
3075 		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
3076 	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
3077 }
3078 
3079 void crestline_init_clock_gating(struct drm_device *dev)
3080 {
3081 	struct drm_i915_private *dev_priv = dev->dev_private;
3082 
3083 	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
3084 	I915_WRITE(RENCLK_GATE_D2, 0);
3085 	I915_WRITE(DSPCLK_GATE_D, 0);
3086 	I915_WRITE(RAMCLK_GATE_D, 0);
3087 	I915_WRITE16(DEUC, 0);
3088 }
3089 
3090 void broadwater_init_clock_gating(struct drm_device *dev)
3091 {
3092 	struct drm_i915_private *dev_priv = dev->dev_private;
3093 
3094 	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
3095 		   I965_RCC_CLOCK_GATE_DISABLE |
3096 		   I965_RCPB_CLOCK_GATE_DISABLE |
3097 		   I965_ISC_CLOCK_GATE_DISABLE |
3098 		   I965_FBC_CLOCK_GATE_DISABLE);
3099 	I915_WRITE(RENCLK_GATE_D2, 0);
3100 }
3101 
3102 void gen3_init_clock_gating(struct drm_device *dev)
3103 {
3104 	struct drm_i915_private *dev_priv = dev->dev_private;
3105 	u32 dstate = I915_READ(D_STATE);
3106 
3107 	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
3108 		DSTATE_DOT_CLOCK_GATING;
3109 	I915_WRITE(D_STATE, dstate);
3110 }
3111 
3112 void i85x_init_clock_gating(struct drm_device *dev)
3113 {
3114 	struct drm_i915_private *dev_priv = dev->dev_private;
3115 
3116 	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
3117 }
3118 
3119 void i830_init_clock_gating(struct drm_device *dev)
3120 {
3121 	struct drm_i915_private *dev_priv = dev->dev_private;
3122 
3123 	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
3124 }
3125 
3126 void ibx_init_clock_gating(struct drm_device *dev)
3127 {
3128 	struct drm_i915_private *dev_priv = dev->dev_private;
3129 
3130 	/*
3131 	 * On Ibex Peak and Cougar Point, we need to disable clock
3132 	 * gating for the panel power sequencer or it will fail to
3133 	 * start up when no ports are active.
3134 	 */
3135 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3136 }
3137 
3138 void cpt_init_clock_gating(struct drm_device *dev)
3139 {
3140 	struct drm_i915_private *dev_priv = dev->dev_private;
3141 	int pipe;
3142 
3143 	/*
3144 	 * On Ibex Peak and Cougar Point, we need to disable clock
3145 	 * gating for the panel power sequencer or it will fail to
3146 	 * start up when no ports are active.
3147 	 */
3148 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3149 	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
3150 		   DPLS_EDP_PPS_FIX_DIS);
3151 	/* Without this, mode sets may fail silently on FDI */
3152 	for_each_pipe(pipe)
3153 		I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
3154 }
3155 
3156 static void ironlake_teardown_rc6(struct drm_device *dev)
3157 {
3158 	struct drm_i915_private *dev_priv = dev->dev_private;
3159 
3160 	if (dev_priv->renderctx) {
3161 		i915_gem_object_unpin(dev_priv->renderctx);
3162 		drm_gem_object_unreference(&dev_priv->renderctx->base);
3163 		dev_priv->renderctx = NULL;
3164 	}
3165 
3166 	if (dev_priv->pwrctx) {
3167 		i915_gem_object_unpin(dev_priv->pwrctx);
3168 		drm_gem_object_unreference(&dev_priv->pwrctx->base);
3169 		dev_priv->pwrctx = NULL;
3170 	}
3171 }
3172 
3173 void ironlake_disable_rc6(struct drm_device *dev)
3174 {
3175 	struct drm_i915_private *dev_priv = dev->dev_private;
3176 
3177 	if (I915_READ(PWRCTXA)) {
3178 		/* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
3179 		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
3180 		(void)_intel_wait_for(dev,
3181 		    ((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
3182 		    50, 1, "915pro");
3183 
3184 		I915_WRITE(PWRCTXA, 0);
3185 		POSTING_READ(PWRCTXA);
3186 
3187 		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3188 		POSTING_READ(RSTDBYCTL);
3189 	}
3190 
3191 	ironlake_teardown_rc6(dev);
3192 }
3193 
3194 static int ironlake_setup_rc6(struct drm_device *dev)
3195 {
3196 	struct drm_i915_private *dev_priv = dev->dev_private;
3197 
3198 	if (dev_priv->renderctx == NULL)
3199 		dev_priv->renderctx = intel_alloc_context_page(dev);
3200 	if (!dev_priv->renderctx)
3201 		return -ENOMEM;
3202 
3203 	if (dev_priv->pwrctx == NULL)
3204 		dev_priv->pwrctx = intel_alloc_context_page(dev);
3205 	if (!dev_priv->pwrctx) {
3206 		ironlake_teardown_rc6(dev);
3207 		return -ENOMEM;
3208 	}
3209 
3210 	return 0;
3211 }
3212 
3213 void ironlake_enable_rc6(struct drm_device *dev)
3214 {
3215 	struct drm_i915_private *dev_priv = dev->dev_private;
3216 	int ret;
3217 
3218 	/* rc6 disabled by default due to repeated reports of hanging during
3219 	 * boot and resume.
3220 	 */
3221 	if (!intel_enable_rc6(dev))
3222 		return;
3223 
3224 	DRM_LOCK(dev);
3225 	ret = ironlake_setup_rc6(dev);
3226 	if (ret) {
3227 		DRM_UNLOCK(dev);
3228 		return;
3229 	}
3230 
3231 	/*
3232 	 * GPU can automatically power down the render unit if given a page
3233 	 * to save state.
3234 	 */
3235 	ret = BEGIN_LP_RING(6);
3236 	if (ret) {
3237 		ironlake_teardown_rc6(dev);
3238 		DRM_UNLOCK(dev);
3239 		return;
3240 	}
3241 
3242 	OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
3243 	OUT_RING(MI_SET_CONTEXT);
3244 	OUT_RING(dev_priv->renderctx->gtt_offset |
3245 		 MI_MM_SPACE_GTT |
3246 		 MI_SAVE_EXT_STATE_EN |
3247 		 MI_RESTORE_EXT_STATE_EN |
3248 		 MI_RESTORE_INHIBIT);
3249 	OUT_RING(MI_SUSPEND_FLUSH);
3250 	OUT_RING(MI_NOOP);
3251 	OUT_RING(MI_FLUSH);
3252 	ADVANCE_LP_RING();
3253 
3254 	/*
3255 	 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
3256 	 * does an implicit flush, combined with MI_FLUSH above, it should be
3257 	 * safe to assume that renderctx is valid
3258 	 */
3259 	ret = intel_wait_ring_idle(LP_RING(dev_priv));
3260 	if (ret) {
3261 		DRM_ERROR("failed to enable ironlake power savings\n");
3262 		ironlake_teardown_rc6(dev);
3263 		DRM_UNLOCK(dev);
3264 		return;
3265 	}
3266 
3267 	I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
3268 	I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3269 	DRM_UNLOCK(dev);
3270 }
3271 
3272 void intel_init_clock_gating(struct drm_device *dev)
3273 {
3274 	struct drm_i915_private *dev_priv = dev->dev_private;
3275 
3276 	dev_priv->display.init_clock_gating(dev);
3277 
3278 	if (dev_priv->display.init_pch_clock_gating)
3279 		dev_priv->display.init_pch_clock_gating(dev);
3280 }
3281