xref: /dflybsd-src/sys/dev/drm/i915/intel_pm.c (revision 0c1d7dca433e727c476aff53acb839b357a28ef6)
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27 
28 #include "i915_drv.h"
29 #include "intel_drv.h"
30 #include <linux/module.h>
31 #include <machine/clock.h>
32 
33 /**
34  * RC6 is a special power stage which allows the GPU to enter an very
35  * low-voltage mode when idle, using down to 0V while at this stage.  This
36  * stage is entered automatically when the GPU is idle when RC6 support is
37  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
38  *
39  * There are different RC6 modes available in Intel GPU, which differentiate
40  * among each other with the latency required to enter and leave RC6 and
41  * voltage consumed by the GPU in different states.
42  *
43  * The combination of the following flags define which states GPU is allowed
44  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
45  * RC6pp is deepest RC6. Their support by hardware varies according to the
46  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
47  * which brings the most power savings; deeper states save more power, but
48  * require higher latency to switch to and wake up.
49  */
50 #define INTEL_RC6_ENABLE			(1<<0)
51 #define INTEL_RC6p_ENABLE			(1<<1)
52 #define INTEL_RC6pp_ENABLE			(1<<2)
53 
54 static void gen9_init_clock_gating(struct drm_device *dev)
55 {
56 	struct drm_i915_private *dev_priv = dev->dev_private;
57 
58 	/* WaEnableLbsSlaRetryTimerDecrement:skl */
59 	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
60 		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
61 
62 	/* WaDisableKillLogic:bxt,skl */
63 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
64 		   ECOCHK_DIS_TLB);
65 }
66 
67 static void skl_init_clock_gating(struct drm_device *dev)
68 {
69 	struct drm_i915_private *dev_priv = dev->dev_private;
70 
71 	gen9_init_clock_gating(dev);
72 
73 	if (INTEL_REVID(dev) <= SKL_REVID_B0) {
74 		/*
75 		 * WaDisableSDEUnitClockGating:skl
76 		 * WaSetGAPSunitClckGateDisable:skl
77 		 */
78 		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
79 			   GEN8_GAPSUNIT_CLOCK_GATE_DISABLE |
80 			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
81 
82 		/* WaDisableVFUnitClockGating:skl */
83 		I915_WRITE(GEN6_UCGCTL2, I915_READ(GEN6_UCGCTL2) |
84 			   GEN6_VFUNIT_CLOCK_GATE_DISABLE);
85 	}
86 
87 	if (INTEL_REVID(dev) <= SKL_REVID_D0) {
88 		/* WaDisableHDCInvalidation:skl */
89 		I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
90 			   BDW_DISABLE_HDC_INVALIDATION);
91 
92 		/* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
93 		I915_WRITE(FF_SLICE_CS_CHICKEN2,
94 			   _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
95 	}
96 
97 	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
98 	 * involving this register should also be added to WA batch as required.
99 	 */
100 	if (INTEL_REVID(dev) <= SKL_REVID_E0)
101 		/* WaDisableLSQCROPERFforOCL:skl */
102 		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
103 			   GEN8_LQSC_RO_PERF_DIS);
104 
105 	/* WaEnableGapsTsvCreditFix:skl */
106 	if (IS_SKYLAKE(dev) && (INTEL_REVID(dev) >= SKL_REVID_C0)) {
107 		I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
108 					   GEN9_GAPS_TSV_CREDIT_DISABLE));
109 	}
110 }
111 
112 static void bxt_init_clock_gating(struct drm_device *dev)
113 {
114 	struct drm_i915_private *dev_priv = dev->dev_private;
115 
116 	gen9_init_clock_gating(dev);
117 
118 	/*
119 	 * FIXME:
120 	 * GEN8_SDEUNIT_CLOCK_GATE_DISABLE applies on A0 only.
121 	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
122 	 */
123 	 /* WaDisableSDEUnitClockGating:bxt */
124 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
125 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE |
126 		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
127 
128 	/* FIXME: apply on A0 only */
129 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
130 }
131 
132 static void i915_pineview_get_mem_freq(struct drm_device *dev)
133 {
134 	struct drm_i915_private *dev_priv = dev->dev_private;
135 	u32 tmp;
136 
137 	tmp = I915_READ(CLKCFG);
138 
139 	switch (tmp & CLKCFG_FSB_MASK) {
140 	case CLKCFG_FSB_533:
141 		dev_priv->fsb_freq = 533; /* 133*4 */
142 		break;
143 	case CLKCFG_FSB_800:
144 		dev_priv->fsb_freq = 800; /* 200*4 */
145 		break;
146 	case CLKCFG_FSB_667:
147 		dev_priv->fsb_freq =  667; /* 167*4 */
148 		break;
149 	case CLKCFG_FSB_400:
150 		dev_priv->fsb_freq = 400; /* 100*4 */
151 		break;
152 	}
153 
154 	switch (tmp & CLKCFG_MEM_MASK) {
155 	case CLKCFG_MEM_533:
156 		dev_priv->mem_freq = 533;
157 		break;
158 	case CLKCFG_MEM_667:
159 		dev_priv->mem_freq = 667;
160 		break;
161 	case CLKCFG_MEM_800:
162 		dev_priv->mem_freq = 800;
163 		break;
164 	}
165 
166 	/* detect pineview DDR3 setting */
167 	tmp = I915_READ(CSHRDDR3CTL);
168 	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
169 }
170 
171 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
172 {
173 	struct drm_i915_private *dev_priv = dev->dev_private;
174 	u16 ddrpll, csipll;
175 
176 	ddrpll = I915_READ16(DDRMPLL1);
177 	csipll = I915_READ16(CSIPLL0);
178 
179 	switch (ddrpll & 0xff) {
180 	case 0xc:
181 		dev_priv->mem_freq = 800;
182 		break;
183 	case 0x10:
184 		dev_priv->mem_freq = 1066;
185 		break;
186 	case 0x14:
187 		dev_priv->mem_freq = 1333;
188 		break;
189 	case 0x18:
190 		dev_priv->mem_freq = 1600;
191 		break;
192 	default:
193 		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
194 				 ddrpll & 0xff);
195 		dev_priv->mem_freq = 0;
196 		break;
197 	}
198 
199 	dev_priv->ips.r_t = dev_priv->mem_freq;
200 
201 	switch (csipll & 0x3ff) {
202 	case 0x00c:
203 		dev_priv->fsb_freq = 3200;
204 		break;
205 	case 0x00e:
206 		dev_priv->fsb_freq = 3733;
207 		break;
208 	case 0x010:
209 		dev_priv->fsb_freq = 4266;
210 		break;
211 	case 0x012:
212 		dev_priv->fsb_freq = 4800;
213 		break;
214 	case 0x014:
215 		dev_priv->fsb_freq = 5333;
216 		break;
217 	case 0x016:
218 		dev_priv->fsb_freq = 5866;
219 		break;
220 	case 0x018:
221 		dev_priv->fsb_freq = 6400;
222 		break;
223 	default:
224 		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
225 				 csipll & 0x3ff);
226 		dev_priv->fsb_freq = 0;
227 		break;
228 	}
229 
230 	if (dev_priv->fsb_freq == 3200) {
231 		dev_priv->ips.c_m = 0;
232 	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
233 		dev_priv->ips.c_m = 1;
234 	} else {
235 		dev_priv->ips.c_m = 2;
236 	}
237 }
238 
239 static const struct cxsr_latency cxsr_latency_table[] = {
240 	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
241 	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
242 	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
243 	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
244 	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
245 
246 	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
247 	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
248 	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
249 	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
250 	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
251 
252 	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
253 	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
254 	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
255 	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
256 	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
257 
258 	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
259 	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
260 	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
261 	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
262 	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
263 
264 	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
265 	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
266 	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
267 	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
268 	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
269 
270 	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
271 	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
272 	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
273 	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
274 	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
275 };
276 
277 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
278 							 int is_ddr3,
279 							 int fsb,
280 							 int mem)
281 {
282 	const struct cxsr_latency *latency;
283 	int i;
284 
285 	if (fsb == 0 || mem == 0)
286 		return NULL;
287 
288 	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
289 		latency = &cxsr_latency_table[i];
290 		if (is_desktop == latency->is_desktop &&
291 		    is_ddr3 == latency->is_ddr3 &&
292 		    fsb == latency->fsb_freq && mem == latency->mem_freq)
293 			return latency;
294 	}
295 
296 	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
297 
298 	return NULL;
299 }
300 
301 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
302 {
303 	u32 val;
304 
305 	mutex_lock(&dev_priv->rps.hw_lock);
306 
307 	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
308 	if (enable)
309 		val &= ~FORCE_DDR_HIGH_FREQ;
310 	else
311 		val |= FORCE_DDR_HIGH_FREQ;
312 	val &= ~FORCE_DDR_LOW_FREQ;
313 	val |= FORCE_DDR_FREQ_REQ_ACK;
314 	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
315 
316 	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
317 		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
318 		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
319 
320 	mutex_unlock(&dev_priv->rps.hw_lock);
321 }
322 
323 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
324 {
325 	u32 val;
326 
327 	mutex_lock(&dev_priv->rps.hw_lock);
328 
329 	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
330 	if (enable)
331 		val |= DSP_MAXFIFO_PM5_ENABLE;
332 	else
333 		val &= ~DSP_MAXFIFO_PM5_ENABLE;
334 	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
335 
336 	mutex_unlock(&dev_priv->rps.hw_lock);
337 }
338 
339 #define FW_WM(value, plane) \
340 	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
341 
342 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
343 {
344 	struct drm_device *dev = dev_priv->dev;
345 	u32 val;
346 
347 	if (IS_VALLEYVIEW(dev)) {
348 		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
349 		POSTING_READ(FW_BLC_SELF_VLV);
350 		dev_priv->wm.vlv.cxsr = enable;
351 	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
352 		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
353 		POSTING_READ(FW_BLC_SELF);
354 	} else if (IS_PINEVIEW(dev)) {
355 		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
356 		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
357 		I915_WRITE(DSPFW3, val);
358 		POSTING_READ(DSPFW3);
359 	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
360 		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
361 			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
362 		I915_WRITE(FW_BLC_SELF, val);
363 		POSTING_READ(FW_BLC_SELF);
364 	} else if (IS_I915GM(dev)) {
365 		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
366 			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
367 		I915_WRITE(INSTPM, val);
368 		POSTING_READ(INSTPM);
369 	} else {
370 		return;
371 	}
372 
373 	DRM_DEBUG_KMS("memory self-refresh is %s\n",
374 		      enable ? "enabled" : "disabled");
375 }
376 
377 
378 /*
379  * Latency for FIFO fetches is dependent on several factors:
380  *   - memory configuration (speed, channels)
381  *   - chipset
382  *   - current MCH state
383  * It can be fairly high in some situations, so here we assume a fairly
384  * pessimal value.  It's a tradeoff between extra memory fetches (if we
385  * set this value too high, the FIFO will fetch frequently to stay full)
386  * and power consumption (set it too low to save power and we might see
387  * FIFO underruns and display "flicker").
388  *
389  * A value of 5us seems to be a good balance; safe for very low end
390  * platforms but not overly aggressive on lower latency configs.
391  */
392 static const int pessimal_latency_ns = 5000;
393 
394 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
395 	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
396 
397 static int vlv_get_fifo_size(struct drm_device *dev,
398 			      enum i915_pipe pipe, int plane)
399 {
400 	struct drm_i915_private *dev_priv = dev->dev_private;
401 	int sprite0_start, sprite1_start, size;
402 
403 	switch (pipe) {
404 		uint32_t dsparb, dsparb2, dsparb3;
405 	case PIPE_A:
406 		dsparb = I915_READ(DSPARB);
407 		dsparb2 = I915_READ(DSPARB2);
408 		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
409 		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
410 		break;
411 	case PIPE_B:
412 		dsparb = I915_READ(DSPARB);
413 		dsparb2 = I915_READ(DSPARB2);
414 		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
415 		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
416 		break;
417 	case PIPE_C:
418 		dsparb2 = I915_READ(DSPARB2);
419 		dsparb3 = I915_READ(DSPARB3);
420 		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
421 		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
422 		break;
423 	default:
424 		return 0;
425 	}
426 
427 	switch (plane) {
428 	case 0:
429 		size = sprite0_start;
430 		break;
431 	case 1:
432 		size = sprite1_start - sprite0_start;
433 		break;
434 	case 2:
435 		size = 512 - 1 - sprite1_start;
436 		break;
437 	default:
438 		return 0;
439 	}
440 
441 	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
442 		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
443 		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
444 		      size);
445 
446 	return size;
447 }
448 
449 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
450 {
451 	struct drm_i915_private *dev_priv = dev->dev_private;
452 	uint32_t dsparb = I915_READ(DSPARB);
453 	int size;
454 
455 	size = dsparb & 0x7f;
456 	if (plane)
457 		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
458 
459 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
460 		      plane ? "B" : "A", size);
461 
462 	return size;
463 }
464 
465 static int i830_get_fifo_size(struct drm_device *dev, int plane)
466 {
467 	struct drm_i915_private *dev_priv = dev->dev_private;
468 	uint32_t dsparb = I915_READ(DSPARB);
469 	int size;
470 
471 	size = dsparb & 0x1ff;
472 	if (plane)
473 		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
474 	size >>= 1; /* Convert to cachelines */
475 
476 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
477 		      plane ? "B" : "A", size);
478 
479 	return size;
480 }
481 
482 static int i845_get_fifo_size(struct drm_device *dev, int plane)
483 {
484 	struct drm_i915_private *dev_priv = dev->dev_private;
485 	uint32_t dsparb = I915_READ(DSPARB);
486 	int size;
487 
488 	size = dsparb & 0x7f;
489 	size >>= 2; /* Convert to cachelines */
490 
491 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
492 		      plane ? "B" : "A",
493 		      size);
494 
495 	return size;
496 }
497 
498 /* Pineview has different values for various configs */
499 static const struct intel_watermark_params pineview_display_wm = {
500 	.fifo_size = PINEVIEW_DISPLAY_FIFO,
501 	.max_wm = PINEVIEW_MAX_WM,
502 	.default_wm = PINEVIEW_DFT_WM,
503 	.guard_size = PINEVIEW_GUARD_WM,
504 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
505 };
506 static const struct intel_watermark_params pineview_display_hplloff_wm = {
507 	.fifo_size = PINEVIEW_DISPLAY_FIFO,
508 	.max_wm = PINEVIEW_MAX_WM,
509 	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
510 	.guard_size = PINEVIEW_GUARD_WM,
511 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
512 };
513 static const struct intel_watermark_params pineview_cursor_wm = {
514 	.fifo_size = PINEVIEW_CURSOR_FIFO,
515 	.max_wm = PINEVIEW_CURSOR_MAX_WM,
516 	.default_wm = PINEVIEW_CURSOR_DFT_WM,
517 	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
518 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
519 };
520 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
521 	.fifo_size = PINEVIEW_CURSOR_FIFO,
522 	.max_wm = PINEVIEW_CURSOR_MAX_WM,
523 	.default_wm = PINEVIEW_CURSOR_DFT_WM,
524 	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
525 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
526 };
527 static const struct intel_watermark_params g4x_wm_info = {
528 	.fifo_size = G4X_FIFO_SIZE,
529 	.max_wm = G4X_MAX_WM,
530 	.default_wm = G4X_MAX_WM,
531 	.guard_size = 2,
532 	.cacheline_size = G4X_FIFO_LINE_SIZE,
533 };
534 static const struct intel_watermark_params g4x_cursor_wm_info = {
535 	.fifo_size = I965_CURSOR_FIFO,
536 	.max_wm = I965_CURSOR_MAX_WM,
537 	.default_wm = I965_CURSOR_DFT_WM,
538 	.guard_size = 2,
539 	.cacheline_size = G4X_FIFO_LINE_SIZE,
540 };
541 static const struct intel_watermark_params valleyview_wm_info = {
542 	.fifo_size = VALLEYVIEW_FIFO_SIZE,
543 	.max_wm = VALLEYVIEW_MAX_WM,
544 	.default_wm = VALLEYVIEW_MAX_WM,
545 	.guard_size = 2,
546 	.cacheline_size = G4X_FIFO_LINE_SIZE,
547 };
548 static const struct intel_watermark_params valleyview_cursor_wm_info = {
549 	.fifo_size = I965_CURSOR_FIFO,
550 	.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
551 	.default_wm = I965_CURSOR_DFT_WM,
552 	.guard_size = 2,
553 	.cacheline_size = G4X_FIFO_LINE_SIZE,
554 };
555 static const struct intel_watermark_params i965_cursor_wm_info = {
556 	.fifo_size = I965_CURSOR_FIFO,
557 	.max_wm = I965_CURSOR_MAX_WM,
558 	.default_wm = I965_CURSOR_DFT_WM,
559 	.guard_size = 2,
560 	.cacheline_size = I915_FIFO_LINE_SIZE,
561 };
562 static const struct intel_watermark_params i945_wm_info = {
563 	.fifo_size = I945_FIFO_SIZE,
564 	.max_wm = I915_MAX_WM,
565 	.default_wm = 1,
566 	.guard_size = 2,
567 	.cacheline_size = I915_FIFO_LINE_SIZE,
568 };
569 static const struct intel_watermark_params i915_wm_info = {
570 	.fifo_size = I915_FIFO_SIZE,
571 	.max_wm = I915_MAX_WM,
572 	.default_wm = 1,
573 	.guard_size = 2,
574 	.cacheline_size = I915_FIFO_LINE_SIZE,
575 };
576 static const struct intel_watermark_params i830_a_wm_info = {
577 	.fifo_size = I855GM_FIFO_SIZE,
578 	.max_wm = I915_MAX_WM,
579 	.default_wm = 1,
580 	.guard_size = 2,
581 	.cacheline_size = I830_FIFO_LINE_SIZE,
582 };
583 static const struct intel_watermark_params i830_bc_wm_info = {
584 	.fifo_size = I855GM_FIFO_SIZE,
585 	.max_wm = I915_MAX_WM/2,
586 	.default_wm = 1,
587 	.guard_size = 2,
588 	.cacheline_size = I830_FIFO_LINE_SIZE,
589 };
590 static const struct intel_watermark_params i845_wm_info = {
591 	.fifo_size = I830_FIFO_SIZE,
592 	.max_wm = I915_MAX_WM,
593 	.default_wm = 1,
594 	.guard_size = 2,
595 	.cacheline_size = I830_FIFO_LINE_SIZE,
596 };
597 
598 /**
599  * intel_calculate_wm - calculate watermark level
600  * @clock_in_khz: pixel clock
601  * @wm: chip FIFO params
602  * @pixel_size: display pixel size
603  * @latency_ns: memory latency for the platform
604  *
605  * Calculate the watermark level (the level at which the display plane will
606  * start fetching from memory again).  Each chip has a different display
607  * FIFO size and allocation, so the caller needs to figure that out and pass
608  * in the correct intel_watermark_params structure.
609  *
610  * As the pixel clock runs, the FIFO will be drained at a rate that depends
611  * on the pixel size.  When it reaches the watermark level, it'll start
612  * fetching FIFO line sized based chunks from memory until the FIFO fills
613  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
614  * will occur, and a display engine hang could result.
615  */
616 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
617 					const struct intel_watermark_params *wm,
618 					int fifo_size,
619 					int pixel_size,
620 					unsigned long latency_ns)
621 {
622 	long entries_required, wm_size;
623 
624 	/*
625 	 * Note: we need to make sure we don't overflow for various clock &
626 	 * latency values.
627 	 * clocks go from a few thousand to several hundred thousand.
628 	 * latency is usually a few thousand
629 	 */
630 	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
631 		1000;
632 	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
633 
634 	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
635 
636 	wm_size = fifo_size - (entries_required + wm->guard_size);
637 
638 	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
639 
640 	/* Don't promote wm_size to unsigned... */
641 	if (wm_size > (long)wm->max_wm)
642 		wm_size = wm->max_wm;
643 	if (wm_size <= 0)
644 		wm_size = wm->default_wm;
645 
646 	/*
647 	 * Bspec seems to indicate that the value shouldn't be lower than
648 	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
649 	 * Lets go for 8 which is the burst size since certain platforms
650 	 * already use a hardcoded 8 (which is what the spec says should be
651 	 * done).
652 	 */
653 	if (wm_size <= 8)
654 		wm_size = 8;
655 
656 	return wm_size;
657 }
658 
659 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
660 {
661 	struct drm_crtc *crtc, *enabled = NULL;
662 
663 	for_each_crtc(dev, crtc) {
664 		if (intel_crtc_active(crtc)) {
665 			if (enabled)
666 				return NULL;
667 			enabled = crtc;
668 		}
669 	}
670 
671 	return enabled;
672 }
673 
674 static void pineview_update_wm(struct drm_crtc *unused_crtc)
675 {
676 	struct drm_device *dev = unused_crtc->dev;
677 	struct drm_i915_private *dev_priv = dev->dev_private;
678 	struct drm_crtc *crtc;
679 	const struct cxsr_latency *latency;
680 	u32 reg;
681 	unsigned long wm;
682 
683 	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
684 					 dev_priv->fsb_freq, dev_priv->mem_freq);
685 	if (!latency) {
686 		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
687 		intel_set_memory_cxsr(dev_priv, false);
688 		return;
689 	}
690 
691 	crtc = single_enabled_crtc(dev);
692 	if (crtc) {
693 		const struct drm_display_mode *adjusted_mode;
694 		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
695 		int clock;
696 
697 		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
698 		clock = adjusted_mode->crtc_clock;
699 
700 		/* Display SR */
701 		wm = intel_calculate_wm(clock, &pineview_display_wm,
702 					pineview_display_wm.fifo_size,
703 					pixel_size, latency->display_sr);
704 		reg = I915_READ(DSPFW1);
705 		reg &= ~DSPFW_SR_MASK;
706 		reg |= FW_WM(wm, SR);
707 		I915_WRITE(DSPFW1, reg);
708 		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
709 
710 		/* cursor SR */
711 		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
712 					pineview_display_wm.fifo_size,
713 					pixel_size, latency->cursor_sr);
714 		reg = I915_READ(DSPFW3);
715 		reg &= ~DSPFW_CURSOR_SR_MASK;
716 		reg |= FW_WM(wm, CURSOR_SR);
717 		I915_WRITE(DSPFW3, reg);
718 
719 		/* Display HPLL off SR */
720 		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
721 					pineview_display_hplloff_wm.fifo_size,
722 					pixel_size, latency->display_hpll_disable);
723 		reg = I915_READ(DSPFW3);
724 		reg &= ~DSPFW_HPLL_SR_MASK;
725 		reg |= FW_WM(wm, HPLL_SR);
726 		I915_WRITE(DSPFW3, reg);
727 
728 		/* cursor HPLL off SR */
729 		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
730 					pineview_display_hplloff_wm.fifo_size,
731 					pixel_size, latency->cursor_hpll_disable);
732 		reg = I915_READ(DSPFW3);
733 		reg &= ~DSPFW_HPLL_CURSOR_MASK;
734 		reg |= FW_WM(wm, HPLL_CURSOR);
735 		I915_WRITE(DSPFW3, reg);
736 		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
737 
738 		intel_set_memory_cxsr(dev_priv, true);
739 	} else {
740 		intel_set_memory_cxsr(dev_priv, false);
741 	}
742 }
743 
744 static bool g4x_compute_wm0(struct drm_device *dev,
745 			    int plane,
746 			    const struct intel_watermark_params *display,
747 			    int display_latency_ns,
748 			    const struct intel_watermark_params *cursor,
749 			    int cursor_latency_ns,
750 			    int *plane_wm,
751 			    int *cursor_wm)
752 {
753 	struct drm_crtc *crtc;
754 	const struct drm_display_mode *adjusted_mode;
755 	int htotal, hdisplay, clock, pixel_size;
756 	int line_time_us, line_count;
757 	int entries, tlb_miss;
758 
759 	crtc = intel_get_crtc_for_plane(dev, plane);
760 	if (!intel_crtc_active(crtc)) {
761 		*cursor_wm = cursor->guard_size;
762 		*plane_wm = display->guard_size;
763 		return false;
764 	}
765 
766 	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
767 	clock = adjusted_mode->crtc_clock;
768 	htotal = adjusted_mode->crtc_htotal;
769 	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
770 	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
771 
772 	/* Use the small buffer method to calculate plane watermark */
773 	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
774 	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
775 	if (tlb_miss > 0)
776 		entries += tlb_miss;
777 	entries = DIV_ROUND_UP(entries, display->cacheline_size);
778 	*plane_wm = entries + display->guard_size;
779 	if (*plane_wm > (int)display->max_wm)
780 		*plane_wm = display->max_wm;
781 
782 	/* Use the large buffer method to calculate cursor watermark */
783 	line_time_us = max(htotal * 1000 / clock, 1);
784 	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
785 	entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
786 	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
787 	if (tlb_miss > 0)
788 		entries += tlb_miss;
789 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
790 	*cursor_wm = entries + cursor->guard_size;
791 	if (*cursor_wm > (int)cursor->max_wm)
792 		*cursor_wm = (int)cursor->max_wm;
793 
794 	return true;
795 }
796 
797 /*
798  * Check the wm result.
799  *
800  * If any calculated watermark values is larger than the maximum value that
801  * can be programmed into the associated watermark register, that watermark
802  * must be disabled.
803  */
804 static bool g4x_check_srwm(struct drm_device *dev,
805 			   int display_wm, int cursor_wm,
806 			   const struct intel_watermark_params *display,
807 			   const struct intel_watermark_params *cursor)
808 {
809 	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
810 		      display_wm, cursor_wm);
811 
812 	if (display_wm > display->max_wm) {
813 		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
814 			      display_wm, display->max_wm);
815 		return false;
816 	}
817 
818 	if (cursor_wm > cursor->max_wm) {
819 		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
820 			      cursor_wm, cursor->max_wm);
821 		return false;
822 	}
823 
824 	if (!(display_wm || cursor_wm)) {
825 		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
826 		return false;
827 	}
828 
829 	return true;
830 }
831 
832 static bool g4x_compute_srwm(struct drm_device *dev,
833 			     int plane,
834 			     int latency_ns,
835 			     const struct intel_watermark_params *display,
836 			     const struct intel_watermark_params *cursor,
837 			     int *display_wm, int *cursor_wm)
838 {
839 	struct drm_crtc *crtc;
840 	const struct drm_display_mode *adjusted_mode;
841 	int hdisplay, htotal, pixel_size, clock;
842 	unsigned long line_time_us;
843 	int line_count, line_size;
844 	int small, large;
845 	int entries;
846 
847 	if (!latency_ns) {
848 		*display_wm = *cursor_wm = 0;
849 		return false;
850 	}
851 
852 	crtc = intel_get_crtc_for_plane(dev, plane);
853 	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
854 	clock = adjusted_mode->crtc_clock;
855 	htotal = adjusted_mode->crtc_htotal;
856 	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
857 	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
858 
859 	line_time_us = max(htotal * 1000 / clock, 1);
860 	line_count = (latency_ns / line_time_us + 1000) / 1000;
861 	line_size = hdisplay * pixel_size;
862 
863 	/* Use the minimum of the small and large buffer method for primary */
864 	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
865 	large = line_count * line_size;
866 
867 	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
868 	*display_wm = entries + display->guard_size;
869 
870 	/* calculate the self-refresh watermark for display cursor */
871 	entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
872 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
873 	*cursor_wm = entries + cursor->guard_size;
874 
875 	return g4x_check_srwm(dev,
876 			      *display_wm, *cursor_wm,
877 			      display, cursor);
878 }
879 
880 #define FW_WM_VLV(value, plane) \
881 	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
882 
883 static void vlv_write_wm_values(struct intel_crtc *crtc,
884 				const struct vlv_wm_values *wm)
885 {
886 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
887 	enum i915_pipe pipe = crtc->pipe;
888 
889 	I915_WRITE(VLV_DDL(pipe),
890 		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
891 		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
892 		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
893 		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
894 
895 	I915_WRITE(DSPFW1,
896 		   FW_WM(wm->sr.plane, SR) |
897 		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
898 		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
899 		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
900 	I915_WRITE(DSPFW2,
901 		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
902 		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
903 		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
904 	I915_WRITE(DSPFW3,
905 		   FW_WM(wm->sr.cursor, CURSOR_SR));
906 
907 	if (IS_CHERRYVIEW(dev_priv)) {
908 		I915_WRITE(DSPFW7_CHV,
909 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
910 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
911 		I915_WRITE(DSPFW8_CHV,
912 			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
913 			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
914 		I915_WRITE(DSPFW9_CHV,
915 			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
916 			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
917 		I915_WRITE(DSPHOWM,
918 			   FW_WM(wm->sr.plane >> 9, SR_HI) |
919 			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
920 			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
921 			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
922 			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
923 			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
924 			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
925 			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
926 			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
927 			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
928 	} else {
929 		I915_WRITE(DSPFW7,
930 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
931 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
932 		I915_WRITE(DSPHOWM,
933 			   FW_WM(wm->sr.plane >> 9, SR_HI) |
934 			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
935 			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
936 			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
937 			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
938 			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
939 			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
940 	}
941 
942 	/* zero (unused) WM1 watermarks */
943 	I915_WRITE(DSPFW4, 0);
944 	I915_WRITE(DSPFW5, 0);
945 	I915_WRITE(DSPFW6, 0);
946 	I915_WRITE(DSPHOWM1, 0);
947 
948 	POSTING_READ(DSPFW1);
949 }
950 
951 #undef FW_WM_VLV
952 
953 enum vlv_wm_level {
954 	VLV_WM_LEVEL_PM2,
955 	VLV_WM_LEVEL_PM5,
956 	VLV_WM_LEVEL_DDR_DVFS,
957 };
958 
959 /* latency must be in 0.1us units. */
960 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
961 				   unsigned int pipe_htotal,
962 				   unsigned int horiz_pixels,
963 				   unsigned int bytes_per_pixel,
964 				   unsigned int latency)
965 {
966 	unsigned int ret;
967 
968 	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
969 	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
970 	ret = DIV_ROUND_UP(ret, 64);
971 
972 	return ret;
973 }
974 
975 static void vlv_setup_wm_latency(struct drm_device *dev)
976 {
977 	struct drm_i915_private *dev_priv = dev->dev_private;
978 
979 	/* all latencies in usec */
980 	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
981 
982 	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
983 
984 	if (IS_CHERRYVIEW(dev_priv)) {
985 		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
986 		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
987 
988 		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
989 	}
990 }
991 
992 static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
993 				     struct intel_crtc *crtc,
994 				     const struct intel_plane_state *state,
995 				     int level)
996 {
997 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
998 	int clock, htotal, pixel_size, width, wm;
999 
1000 	if (dev_priv->wm.pri_latency[level] == 0)
1001 		return USHRT_MAX;
1002 
1003 	if (!state->visible)
1004 		return 0;
1005 
1006 	pixel_size = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1007 	clock = crtc->config->base.adjusted_mode.crtc_clock;
1008 	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
1009 	width = crtc->config->pipe_src_w;
1010 	if (WARN_ON(htotal == 0))
1011 		htotal = 1;
1012 
1013 	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1014 		/*
1015 		 * FIXME the formula gives values that are
1016 		 * too big for the cursor FIFO, and hence we
1017 		 * would never be able to use cursors. For
1018 		 * now just hardcode the watermark.
1019 		 */
1020 		wm = 63;
1021 	} else {
1022 		wm = vlv_wm_method2(clock, htotal, width, pixel_size,
1023 				    dev_priv->wm.pri_latency[level] * 10);
1024 	}
1025 
1026 	return min_t(int, wm, USHRT_MAX);
1027 }
1028 
1029 static void vlv_compute_fifo(struct intel_crtc *crtc)
1030 {
1031 	struct drm_device *dev = crtc->base.dev;
1032 	struct vlv_wm_state *wm_state = &crtc->wm_state;
1033 	struct intel_plane *plane;
1034 	unsigned int total_rate = 0;
1035 	const int fifo_size = 512 - 1;
1036 	int fifo_extra, fifo_left = fifo_size;
1037 
1038 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1039 		struct intel_plane_state *state =
1040 			to_intel_plane_state(plane->base.state);
1041 
1042 		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1043 			continue;
1044 
1045 		if (state->visible) {
1046 			wm_state->num_active_planes++;
1047 			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1048 		}
1049 	}
1050 
1051 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1052 		struct intel_plane_state *state =
1053 			to_intel_plane_state(plane->base.state);
1054 		unsigned int rate;
1055 
1056 		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1057 			plane->wm.fifo_size = 63;
1058 			continue;
1059 		}
1060 
1061 		if (!state->visible) {
1062 			plane->wm.fifo_size = 0;
1063 			continue;
1064 		}
1065 
1066 		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1067 		plane->wm.fifo_size = fifo_size * rate / total_rate;
1068 		fifo_left -= plane->wm.fifo_size;
1069 	}
1070 
1071 	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1072 
1073 	/* spread the remainder evenly */
1074 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1075 		int plane_extra;
1076 
1077 		if (fifo_left == 0)
1078 			break;
1079 
1080 		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1081 			continue;
1082 
1083 		/* give it all to the first plane if none are active */
1084 		if (plane->wm.fifo_size == 0 &&
1085 		    wm_state->num_active_planes)
1086 			continue;
1087 
1088 		plane_extra = min(fifo_extra, fifo_left);
1089 		plane->wm.fifo_size += plane_extra;
1090 		fifo_left -= plane_extra;
1091 	}
1092 
1093 	WARN_ON(fifo_left != 0);
1094 }
1095 
1096 static void vlv_invert_wms(struct intel_crtc *crtc)
1097 {
1098 	struct vlv_wm_state *wm_state = &crtc->wm_state;
1099 	int level;
1100 
1101 	for (level = 0; level < wm_state->num_levels; level++) {
1102 		struct drm_device *dev = crtc->base.dev;
1103 		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1104 		struct intel_plane *plane;
1105 
1106 		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1107 		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1108 
1109 		for_each_intel_plane_on_crtc(dev, crtc, plane) {
1110 			switch (plane->base.type) {
1111 				int sprite;
1112 			case DRM_PLANE_TYPE_CURSOR:
1113 				wm_state->wm[level].cursor = plane->wm.fifo_size -
1114 					wm_state->wm[level].cursor;
1115 				break;
1116 			case DRM_PLANE_TYPE_PRIMARY:
1117 				wm_state->wm[level].primary = plane->wm.fifo_size -
1118 					wm_state->wm[level].primary;
1119 				break;
1120 			case DRM_PLANE_TYPE_OVERLAY:
1121 				sprite = plane->plane;
1122 				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1123 					wm_state->wm[level].sprite[sprite];
1124 				break;
1125 			}
1126 		}
1127 	}
1128 }
1129 
1130 static void vlv_compute_wm(struct intel_crtc *crtc)
1131 {
1132 	struct drm_device *dev = crtc->base.dev;
1133 	struct vlv_wm_state *wm_state = &crtc->wm_state;
1134 	struct intel_plane *plane;
1135 	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1136 	int level;
1137 
1138 	memset(wm_state, 0, sizeof(*wm_state));
1139 
1140 	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1141 	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1142 
1143 	wm_state->num_active_planes = 0;
1144 
1145 	vlv_compute_fifo(crtc);
1146 
1147 	if (wm_state->num_active_planes != 1)
1148 		wm_state->cxsr = false;
1149 
1150 	if (wm_state->cxsr) {
1151 		for (level = 0; level < wm_state->num_levels; level++) {
1152 			wm_state->sr[level].plane = sr_fifo_size;
1153 			wm_state->sr[level].cursor = 63;
1154 		}
1155 	}
1156 
1157 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1158 		struct intel_plane_state *state =
1159 			to_intel_plane_state(plane->base.state);
1160 
1161 		if (!state->visible)
1162 			continue;
1163 
1164 		/* normal watermarks */
1165 		for (level = 0; level < wm_state->num_levels; level++) {
1166 			int wm = vlv_compute_wm_level(plane, crtc, state, level);
1167 			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1168 
1169 			/* hack */
1170 			if (WARN_ON(level == 0 && wm > max_wm))
1171 				wm = max_wm;
1172 
1173 			if (wm > plane->wm.fifo_size)
1174 				break;
1175 
1176 			switch (plane->base.type) {
1177 				int sprite;
1178 			case DRM_PLANE_TYPE_CURSOR:
1179 				wm_state->wm[level].cursor = wm;
1180 				break;
1181 			case DRM_PLANE_TYPE_PRIMARY:
1182 				wm_state->wm[level].primary = wm;
1183 				break;
1184 			case DRM_PLANE_TYPE_OVERLAY:
1185 				sprite = plane->plane;
1186 				wm_state->wm[level].sprite[sprite] = wm;
1187 				break;
1188 			}
1189 		}
1190 
1191 		wm_state->num_levels = level;
1192 
1193 		if (!wm_state->cxsr)
1194 			continue;
1195 
1196 		/* maxfifo watermarks */
1197 		switch (plane->base.type) {
1198 			int sprite, level;
1199 		case DRM_PLANE_TYPE_CURSOR:
1200 			for (level = 0; level < wm_state->num_levels; level++)
1201 				wm_state->sr[level].cursor =
1202 					wm_state->sr[level].cursor;
1203 			break;
1204 		case DRM_PLANE_TYPE_PRIMARY:
1205 			for (level = 0; level < wm_state->num_levels; level++)
1206 				wm_state->sr[level].plane =
1207 					min(wm_state->sr[level].plane,
1208 					    wm_state->wm[level].primary);
1209 			break;
1210 		case DRM_PLANE_TYPE_OVERLAY:
1211 			sprite = plane->plane;
1212 			for (level = 0; level < wm_state->num_levels; level++)
1213 				wm_state->sr[level].plane =
1214 					min(wm_state->sr[level].plane,
1215 					    wm_state->wm[level].sprite[sprite]);
1216 			break;
1217 		}
1218 	}
1219 
1220 	/* clear any (partially) filled invalid levels */
1221 	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1222 		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1223 		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1224 	}
1225 
1226 	vlv_invert_wms(crtc);
1227 }
1228 
1229 #define VLV_FIFO(plane, value) \
1230 	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1231 
1232 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1233 {
1234 	struct drm_device *dev = crtc->base.dev;
1235 	struct drm_i915_private *dev_priv = to_i915(dev);
1236 	struct intel_plane *plane;
1237 	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1238 
1239 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1240 		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1241 			WARN_ON(plane->wm.fifo_size != 63);
1242 			continue;
1243 		}
1244 
1245 		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1246 			sprite0_start = plane->wm.fifo_size;
1247 		else if (plane->plane == 0)
1248 			sprite1_start = sprite0_start + plane->wm.fifo_size;
1249 		else
1250 			fifo_size = sprite1_start + plane->wm.fifo_size;
1251 	}
1252 
1253 	WARN_ON(fifo_size != 512 - 1);
1254 
1255 	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1256 		      pipe_name(crtc->pipe), sprite0_start,
1257 		      sprite1_start, fifo_size);
1258 
1259 	switch (crtc->pipe) {
1260 		uint32_t dsparb, dsparb2, dsparb3;
1261 	case PIPE_A:
1262 		dsparb = I915_READ(DSPARB);
1263 		dsparb2 = I915_READ(DSPARB2);
1264 
1265 		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1266 			    VLV_FIFO(SPRITEB, 0xff));
1267 		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1268 			   VLV_FIFO(SPRITEB, sprite1_start));
1269 
1270 		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1271 			     VLV_FIFO(SPRITEB_HI, 0x1));
1272 		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1273 			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1274 
1275 		I915_WRITE(DSPARB, dsparb);
1276 		I915_WRITE(DSPARB2, dsparb2);
1277 		break;
1278 	case PIPE_B:
1279 		dsparb = I915_READ(DSPARB);
1280 		dsparb2 = I915_READ(DSPARB2);
1281 
1282 		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1283 			    VLV_FIFO(SPRITED, 0xff));
1284 		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1285 			   VLV_FIFO(SPRITED, sprite1_start));
1286 
1287 		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1288 			     VLV_FIFO(SPRITED_HI, 0xff));
1289 		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1290 			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1291 
1292 		I915_WRITE(DSPARB, dsparb);
1293 		I915_WRITE(DSPARB2, dsparb2);
1294 		break;
1295 	case PIPE_C:
1296 		dsparb3 = I915_READ(DSPARB3);
1297 		dsparb2 = I915_READ(DSPARB2);
1298 
1299 		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1300 			     VLV_FIFO(SPRITEF, 0xff));
1301 		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1302 			    VLV_FIFO(SPRITEF, sprite1_start));
1303 
1304 		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1305 			     VLV_FIFO(SPRITEF_HI, 0xff));
1306 		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1307 			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1308 
1309 		I915_WRITE(DSPARB3, dsparb3);
1310 		I915_WRITE(DSPARB2, dsparb2);
1311 		break;
1312 	default:
1313 		break;
1314 	}
1315 }
1316 
1317 #undef VLV_FIFO
1318 
1319 static void vlv_merge_wm(struct drm_device *dev,
1320 			 struct vlv_wm_values *wm)
1321 {
1322 	struct intel_crtc *crtc;
1323 	int num_active_crtcs = 0;
1324 
1325 	wm->level = to_i915(dev)->wm.max_level;
1326 	wm->cxsr = true;
1327 
1328 	for_each_intel_crtc(dev, crtc) {
1329 		const struct vlv_wm_state *wm_state = &crtc->wm_state;
1330 
1331 		if (!crtc->active)
1332 			continue;
1333 
1334 		if (!wm_state->cxsr)
1335 			wm->cxsr = false;
1336 
1337 		num_active_crtcs++;
1338 		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1339 	}
1340 
1341 	if (num_active_crtcs != 1)
1342 		wm->cxsr = false;
1343 
1344 	if (num_active_crtcs > 1)
1345 		wm->level = VLV_WM_LEVEL_PM2;
1346 
1347 	for_each_intel_crtc(dev, crtc) {
1348 		struct vlv_wm_state *wm_state = &crtc->wm_state;
1349 		enum i915_pipe pipe = crtc->pipe;
1350 
1351 		if (!crtc->active)
1352 			continue;
1353 
1354 		wm->pipe[pipe] = wm_state->wm[wm->level];
1355 		if (wm->cxsr)
1356 			wm->sr = wm_state->sr[wm->level];
1357 
1358 		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1359 		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1360 		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1361 		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1362 	}
1363 }
1364 
1365 static void vlv_update_wm(struct drm_crtc *crtc)
1366 {
1367 	struct drm_device *dev = crtc->dev;
1368 	struct drm_i915_private *dev_priv = dev->dev_private;
1369 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1370 	enum i915_pipe pipe = intel_crtc->pipe;
1371 	struct vlv_wm_values wm = {};
1372 
1373 	vlv_compute_wm(intel_crtc);
1374 	vlv_merge_wm(dev, &wm);
1375 
1376 	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1377 		/* FIXME should be part of crtc atomic commit */
1378 		vlv_pipe_set_fifo_size(intel_crtc);
1379 		return;
1380 	}
1381 
1382 	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1383 	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1384 		chv_set_memory_dvfs(dev_priv, false);
1385 
1386 	if (wm.level < VLV_WM_LEVEL_PM5 &&
1387 	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1388 		chv_set_memory_pm5(dev_priv, false);
1389 
1390 	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1391 		intel_set_memory_cxsr(dev_priv, false);
1392 
1393 	/* FIXME should be part of crtc atomic commit */
1394 	vlv_pipe_set_fifo_size(intel_crtc);
1395 
1396 	vlv_write_wm_values(intel_crtc, &wm);
1397 
1398 	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1399 		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1400 		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1401 		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1402 		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1403 
1404 	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1405 		intel_set_memory_cxsr(dev_priv, true);
1406 
1407 	if (wm.level >= VLV_WM_LEVEL_PM5 &&
1408 	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1409 		chv_set_memory_pm5(dev_priv, true);
1410 
1411 	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1412 	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1413 		chv_set_memory_dvfs(dev_priv, true);
1414 
1415 	dev_priv->wm.vlv = wm;
1416 }
1417 
1418 #define single_plane_enabled(mask) is_power_of_2(mask)
1419 
1420 static void g4x_update_wm(struct drm_crtc *crtc)
1421 {
1422 	struct drm_device *dev = crtc->dev;
1423 	static const int sr_latency_ns = 12000;
1424 	struct drm_i915_private *dev_priv = dev->dev_private;
1425 	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1426 	int plane_sr, cursor_sr;
1427 	unsigned int enabled = 0;
1428 	bool cxsr_enabled;
1429 
1430 	if (g4x_compute_wm0(dev, PIPE_A,
1431 			    &g4x_wm_info, pessimal_latency_ns,
1432 			    &g4x_cursor_wm_info, pessimal_latency_ns,
1433 			    &planea_wm, &cursora_wm))
1434 		enabled |= 1 << PIPE_A;
1435 
1436 	if (g4x_compute_wm0(dev, PIPE_B,
1437 			    &g4x_wm_info, pessimal_latency_ns,
1438 			    &g4x_cursor_wm_info, pessimal_latency_ns,
1439 			    &planeb_wm, &cursorb_wm))
1440 		enabled |= 1 << PIPE_B;
1441 
1442 	if (single_plane_enabled(enabled) &&
1443 	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1444 			     sr_latency_ns,
1445 			     &g4x_wm_info,
1446 			     &g4x_cursor_wm_info,
1447 			     &plane_sr, &cursor_sr)) {
1448 		cxsr_enabled = true;
1449 	} else {
1450 		cxsr_enabled = false;
1451 		intel_set_memory_cxsr(dev_priv, false);
1452 		plane_sr = cursor_sr = 0;
1453 	}
1454 
1455 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1456 		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1457 		      planea_wm, cursora_wm,
1458 		      planeb_wm, cursorb_wm,
1459 		      plane_sr, cursor_sr);
1460 
1461 	I915_WRITE(DSPFW1,
1462 		   FW_WM(plane_sr, SR) |
1463 		   FW_WM(cursorb_wm, CURSORB) |
1464 		   FW_WM(planeb_wm, PLANEB) |
1465 		   FW_WM(planea_wm, PLANEA));
1466 	I915_WRITE(DSPFW2,
1467 		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1468 		   FW_WM(cursora_wm, CURSORA));
1469 	/* HPLL off in SR has some issues on G4x... disable it */
1470 	I915_WRITE(DSPFW3,
1471 		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1472 		   FW_WM(cursor_sr, CURSOR_SR));
1473 
1474 	if (cxsr_enabled)
1475 		intel_set_memory_cxsr(dev_priv, true);
1476 }
1477 
1478 static void i965_update_wm(struct drm_crtc *unused_crtc)
1479 {
1480 	struct drm_device *dev = unused_crtc->dev;
1481 	struct drm_i915_private *dev_priv = dev->dev_private;
1482 	struct drm_crtc *crtc;
1483 	int srwm = 1;
1484 	int cursor_sr = 16;
1485 	bool cxsr_enabled;
1486 
1487 	/* Calc sr entries for one plane configs */
1488 	crtc = single_enabled_crtc(dev);
1489 	if (crtc) {
1490 		/* self-refresh has much higher latency */
1491 		static const int sr_latency_ns = 12000;
1492 		const struct drm_display_mode *adjusted_mode =
1493 			&to_intel_crtc(crtc)->config->base.adjusted_mode;
1494 		int clock = adjusted_mode->crtc_clock;
1495 		int htotal = adjusted_mode->crtc_htotal;
1496 		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1497 		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
1498 		unsigned long line_time_us;
1499 		int entries;
1500 
1501 		line_time_us = max(htotal * 1000 / clock, 1);
1502 
1503 		/* Use ns/us then divide to preserve precision */
1504 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1505 			pixel_size * hdisplay;
1506 		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1507 		srwm = I965_FIFO_SIZE - entries;
1508 		if (srwm < 0)
1509 			srwm = 1;
1510 		srwm &= 0x1ff;
1511 		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1512 			      entries, srwm);
1513 
1514 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1515 			pixel_size * crtc->cursor->state->crtc_w;
1516 		entries = DIV_ROUND_UP(entries,
1517 					  i965_cursor_wm_info.cacheline_size);
1518 		cursor_sr = i965_cursor_wm_info.fifo_size -
1519 			(entries + i965_cursor_wm_info.guard_size);
1520 
1521 		if (cursor_sr > i965_cursor_wm_info.max_wm)
1522 			cursor_sr = i965_cursor_wm_info.max_wm;
1523 
1524 		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1525 			      "cursor %d\n", srwm, cursor_sr);
1526 
1527 		cxsr_enabled = true;
1528 	} else {
1529 		cxsr_enabled = false;
1530 		/* Turn off self refresh if both pipes are enabled */
1531 		intel_set_memory_cxsr(dev_priv, false);
1532 	}
1533 
1534 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1535 		      srwm);
1536 
1537 	/* 965 has limitations... */
1538 	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1539 		   FW_WM(8, CURSORB) |
1540 		   FW_WM(8, PLANEB) |
1541 		   FW_WM(8, PLANEA));
1542 	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1543 		   FW_WM(8, PLANEC_OLD));
1544 	/* update cursor SR watermark */
1545 	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1546 
1547 	if (cxsr_enabled)
1548 		intel_set_memory_cxsr(dev_priv, true);
1549 }
1550 
1551 #undef FW_WM
1552 
1553 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1554 {
1555 	struct drm_device *dev = unused_crtc->dev;
1556 	struct drm_i915_private *dev_priv = dev->dev_private;
1557 	const struct intel_watermark_params *wm_info;
1558 	uint32_t fwater_lo;
1559 	uint32_t fwater_hi;
1560 	int cwm, srwm = 1;
1561 	int fifo_size;
1562 	int planea_wm, planeb_wm;
1563 	struct drm_crtc *crtc, *enabled = NULL;
1564 
1565 	if (IS_I945GM(dev))
1566 		wm_info = &i945_wm_info;
1567 	else if (!IS_GEN2(dev))
1568 		wm_info = &i915_wm_info;
1569 	else
1570 		wm_info = &i830_a_wm_info;
1571 
1572 	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1573 	crtc = intel_get_crtc_for_plane(dev, 0);
1574 	if (intel_crtc_active(crtc)) {
1575 		const struct drm_display_mode *adjusted_mode;
1576 		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1577 		if (IS_GEN2(dev))
1578 			cpp = 4;
1579 
1580 		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1581 		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1582 					       wm_info, fifo_size, cpp,
1583 					       pessimal_latency_ns);
1584 		enabled = crtc;
1585 	} else {
1586 		planea_wm = fifo_size - wm_info->guard_size;
1587 		if (planea_wm > (long)wm_info->max_wm)
1588 			planea_wm = wm_info->max_wm;
1589 	}
1590 
1591 	if (IS_GEN2(dev))
1592 		wm_info = &i830_bc_wm_info;
1593 
1594 	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1595 	crtc = intel_get_crtc_for_plane(dev, 1);
1596 	if (intel_crtc_active(crtc)) {
1597 		const struct drm_display_mode *adjusted_mode;
1598 		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1599 		if (IS_GEN2(dev))
1600 			cpp = 4;
1601 
1602 		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1603 		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1604 					       wm_info, fifo_size, cpp,
1605 					       pessimal_latency_ns);
1606 		if (enabled == NULL)
1607 			enabled = crtc;
1608 		else
1609 			enabled = NULL;
1610 	} else {
1611 		planeb_wm = fifo_size - wm_info->guard_size;
1612 		if (planeb_wm > (long)wm_info->max_wm)
1613 			planeb_wm = wm_info->max_wm;
1614 	}
1615 
1616 	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1617 
1618 	if (IS_I915GM(dev) && enabled) {
1619 		struct drm_i915_gem_object *obj;
1620 
1621 		obj = intel_fb_obj(enabled->primary->state->fb);
1622 
1623 		/* self-refresh seems busted with untiled */
1624 		if (obj->tiling_mode == I915_TILING_NONE)
1625 			enabled = NULL;
1626 	}
1627 
1628 	/*
1629 	 * Overlay gets an aggressive default since video jitter is bad.
1630 	 */
1631 	cwm = 2;
1632 
1633 	/* Play safe and disable self-refresh before adjusting watermarks. */
1634 	intel_set_memory_cxsr(dev_priv, false);
1635 
1636 	/* Calc sr entries for one plane configs */
1637 	if (HAS_FW_BLC(dev) && enabled) {
1638 		/* self-refresh has much higher latency */
1639 		static const int sr_latency_ns = 6000;
1640 		const struct drm_display_mode *adjusted_mode =
1641 			&to_intel_crtc(enabled)->config->base.adjusted_mode;
1642 		int clock = adjusted_mode->crtc_clock;
1643 		int htotal = adjusted_mode->crtc_htotal;
1644 		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1645 		int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
1646 		unsigned long line_time_us;
1647 		int entries;
1648 
1649 		line_time_us = max(htotal * 1000 / clock, 1);
1650 
1651 		/* Use ns/us then divide to preserve precision */
1652 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1653 			pixel_size * hdisplay;
1654 		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1655 		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1656 		srwm = wm_info->fifo_size - entries;
1657 		if (srwm < 0)
1658 			srwm = 1;
1659 
1660 		if (IS_I945G(dev) || IS_I945GM(dev))
1661 			I915_WRITE(FW_BLC_SELF,
1662 				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1663 		else if (IS_I915GM(dev))
1664 			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1665 	}
1666 
1667 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1668 		      planea_wm, planeb_wm, cwm, srwm);
1669 
1670 	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1671 	fwater_hi = (cwm & 0x1f);
1672 
1673 	/* Set request length to 8 cachelines per fetch */
1674 	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1675 	fwater_hi = fwater_hi | (1 << 8);
1676 
1677 	I915_WRITE(FW_BLC, fwater_lo);
1678 	I915_WRITE(FW_BLC2, fwater_hi);
1679 
1680 	if (enabled)
1681 		intel_set_memory_cxsr(dev_priv, true);
1682 }
1683 
1684 static void i845_update_wm(struct drm_crtc *unused_crtc)
1685 {
1686 	struct drm_device *dev = unused_crtc->dev;
1687 	struct drm_i915_private *dev_priv = dev->dev_private;
1688 	struct drm_crtc *crtc;
1689 	const struct drm_display_mode *adjusted_mode;
1690 	uint32_t fwater_lo;
1691 	int planea_wm;
1692 
1693 	crtc = single_enabled_crtc(dev);
1694 	if (crtc == NULL)
1695 		return;
1696 
1697 	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1698 	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1699 				       &i845_wm_info,
1700 				       dev_priv->display.get_fifo_size(dev, 0),
1701 				       4, pessimal_latency_ns);
1702 	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1703 	fwater_lo |= (3<<8) | planea_wm;
1704 
1705 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1706 
1707 	I915_WRITE(FW_BLC, fwater_lo);
1708 }
1709 
1710 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1711 {
1712 	uint32_t pixel_rate;
1713 
1714 	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1715 
1716 	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1717 	 * adjust the pixel_rate here. */
1718 
1719 	if (pipe_config->pch_pfit.enabled) {
1720 		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1721 		uint32_t pfit_size = pipe_config->pch_pfit.size;
1722 
1723 		pipe_w = pipe_config->pipe_src_w;
1724 		pipe_h = pipe_config->pipe_src_h;
1725 
1726 		pfit_w = (pfit_size >> 16) & 0xFFFF;
1727 		pfit_h = pfit_size & 0xFFFF;
1728 		if (pipe_w < pfit_w)
1729 			pipe_w = pfit_w;
1730 		if (pipe_h < pfit_h)
1731 			pipe_h = pfit_h;
1732 
1733 		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1734 				     pfit_w * pfit_h);
1735 	}
1736 
1737 	return pixel_rate;
1738 }
1739 
1740 /* latency must be in 0.1us units. */
1741 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1742 			       uint32_t latency)
1743 {
1744 	uint64_t ret;
1745 
1746 	if (WARN(latency == 0, "Latency value missing\n"))
1747 		return UINT_MAX;
1748 
1749 	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1750 	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1751 
1752 	return ret;
1753 }
1754 
1755 /* latency must be in 0.1us units. */
1756 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1757 			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1758 			       uint32_t latency)
1759 {
1760 	uint32_t ret;
1761 
1762 	if (WARN(latency == 0, "Latency value missing\n"))
1763 		return UINT_MAX;
1764 
1765 	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1766 	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1767 	ret = DIV_ROUND_UP(ret, 64) + 2;
1768 	return ret;
1769 }
1770 
1771 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1772 			   uint8_t bytes_per_pixel)
1773 {
1774 	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1775 }
1776 
1777 struct skl_pipe_wm_parameters {
1778 	bool active;
1779 	uint32_t pipe_htotal;
1780 	uint32_t pixel_rate; /* in KHz */
1781 	struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
1782 	struct intel_plane_wm_parameters cursor;
1783 };
1784 
1785 struct ilk_pipe_wm_parameters {
1786 	bool active;
1787 	uint32_t pipe_htotal;
1788 	uint32_t pixel_rate;
1789 	struct intel_plane_wm_parameters pri;
1790 	struct intel_plane_wm_parameters spr;
1791 	struct intel_plane_wm_parameters cur;
1792 };
1793 
1794 struct ilk_wm_maximums {
1795 	uint16_t pri;
1796 	uint16_t spr;
1797 	uint16_t cur;
1798 	uint16_t fbc;
1799 };
1800 
1801 /* used in computing the new watermarks state */
1802 struct intel_wm_config {
1803 	unsigned int num_pipes_active;
1804 	bool sprites_enabled;
1805 	bool sprites_scaled;
1806 };
1807 
1808 /*
1809  * For both WM_PIPE and WM_LP.
1810  * mem_value must be in 0.1us units.
1811  */
1812 static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1813 				   uint32_t mem_value,
1814 				   bool is_lp)
1815 {
1816 	uint32_t method1, method2;
1817 
1818 	if (!params->active || !params->pri.enabled)
1819 		return 0;
1820 
1821 	method1 = ilk_wm_method1(params->pixel_rate,
1822 				 params->pri.bytes_per_pixel,
1823 				 mem_value);
1824 
1825 	if (!is_lp)
1826 		return method1;
1827 
1828 	method2 = ilk_wm_method2(params->pixel_rate,
1829 				 params->pipe_htotal,
1830 				 params->pri.horiz_pixels,
1831 				 params->pri.bytes_per_pixel,
1832 				 mem_value);
1833 
1834 	return min(method1, method2);
1835 }
1836 
1837 /*
1838  * For both WM_PIPE and WM_LP.
1839  * mem_value must be in 0.1us units.
1840  */
1841 static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1842 				   uint32_t mem_value)
1843 {
1844 	uint32_t method1, method2;
1845 
1846 	if (!params->active || !params->spr.enabled)
1847 		return 0;
1848 
1849 	method1 = ilk_wm_method1(params->pixel_rate,
1850 				 params->spr.bytes_per_pixel,
1851 				 mem_value);
1852 	method2 = ilk_wm_method2(params->pixel_rate,
1853 				 params->pipe_htotal,
1854 				 params->spr.horiz_pixels,
1855 				 params->spr.bytes_per_pixel,
1856 				 mem_value);
1857 	return min(method1, method2);
1858 }
1859 
1860 /*
1861  * For both WM_PIPE and WM_LP.
1862  * mem_value must be in 0.1us units.
1863  */
1864 static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1865 				   uint32_t mem_value)
1866 {
1867 	if (!params->active || !params->cur.enabled)
1868 		return 0;
1869 
1870 	return ilk_wm_method2(params->pixel_rate,
1871 			      params->pipe_htotal,
1872 			      params->cur.horiz_pixels,
1873 			      params->cur.bytes_per_pixel,
1874 			      mem_value);
1875 }
1876 
1877 /* Only for WM_LP. */
1878 static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1879 				   uint32_t pri_val)
1880 {
1881 	if (!params->active || !params->pri.enabled)
1882 		return 0;
1883 
1884 	return ilk_wm_fbc(pri_val,
1885 			  params->pri.horiz_pixels,
1886 			  params->pri.bytes_per_pixel);
1887 }
1888 
1889 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1890 {
1891 	if (INTEL_INFO(dev)->gen >= 8)
1892 		return 3072;
1893 	else if (INTEL_INFO(dev)->gen >= 7)
1894 		return 768;
1895 	else
1896 		return 512;
1897 }
1898 
1899 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1900 					 int level, bool is_sprite)
1901 {
1902 	if (INTEL_INFO(dev)->gen >= 8)
1903 		/* BDW primary/sprite plane watermarks */
1904 		return level == 0 ? 255 : 2047;
1905 	else if (INTEL_INFO(dev)->gen >= 7)
1906 		/* IVB/HSW primary/sprite plane watermarks */
1907 		return level == 0 ? 127 : 1023;
1908 	else if (!is_sprite)
1909 		/* ILK/SNB primary plane watermarks */
1910 		return level == 0 ? 127 : 511;
1911 	else
1912 		/* ILK/SNB sprite plane watermarks */
1913 		return level == 0 ? 63 : 255;
1914 }
1915 
1916 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1917 					  int level)
1918 {
1919 	if (INTEL_INFO(dev)->gen >= 7)
1920 		return level == 0 ? 63 : 255;
1921 	else
1922 		return level == 0 ? 31 : 63;
1923 }
1924 
1925 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1926 {
1927 	if (INTEL_INFO(dev)->gen >= 8)
1928 		return 31;
1929 	else
1930 		return 15;
1931 }
1932 
1933 /* Calculate the maximum primary/sprite plane watermark */
1934 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1935 				     int level,
1936 				     const struct intel_wm_config *config,
1937 				     enum intel_ddb_partitioning ddb_partitioning,
1938 				     bool is_sprite)
1939 {
1940 	unsigned int fifo_size = ilk_display_fifo_size(dev);
1941 
1942 	/* if sprites aren't enabled, sprites get nothing */
1943 	if (is_sprite && !config->sprites_enabled)
1944 		return 0;
1945 
1946 	/* HSW allows LP1+ watermarks even with multiple pipes */
1947 	if (level == 0 || config->num_pipes_active > 1) {
1948 		fifo_size /= INTEL_INFO(dev)->num_pipes;
1949 
1950 		/*
1951 		 * For some reason the non self refresh
1952 		 * FIFO size is only half of the self
1953 		 * refresh FIFO size on ILK/SNB.
1954 		 */
1955 		if (INTEL_INFO(dev)->gen <= 6)
1956 			fifo_size /= 2;
1957 	}
1958 
1959 	if (config->sprites_enabled) {
1960 		/* level 0 is always calculated with 1:1 split */
1961 		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1962 			if (is_sprite)
1963 				fifo_size *= 5;
1964 			fifo_size /= 6;
1965 		} else {
1966 			fifo_size /= 2;
1967 		}
1968 	}
1969 
1970 	/* clamp to max that the registers can hold */
1971 	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1972 }
1973 
1974 /* Calculate the maximum cursor plane watermark */
1975 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1976 				      int level,
1977 				      const struct intel_wm_config *config)
1978 {
1979 	/* HSW LP1+ watermarks w/ multiple pipes */
1980 	if (level > 0 && config->num_pipes_active > 1)
1981 		return 64;
1982 
1983 	/* otherwise just report max that registers can hold */
1984 	return ilk_cursor_wm_reg_max(dev, level);
1985 }
1986 
1987 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1988 				    int level,
1989 				    const struct intel_wm_config *config,
1990 				    enum intel_ddb_partitioning ddb_partitioning,
1991 				    struct ilk_wm_maximums *max)
1992 {
1993 	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1994 	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1995 	max->cur = ilk_cursor_wm_max(dev, level, config);
1996 	max->fbc = ilk_fbc_wm_reg_max(dev);
1997 }
1998 
1999 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
2000 					int level,
2001 					struct ilk_wm_maximums *max)
2002 {
2003 	max->pri = ilk_plane_wm_reg_max(dev, level, false);
2004 	max->spr = ilk_plane_wm_reg_max(dev, level, true);
2005 	max->cur = ilk_cursor_wm_reg_max(dev, level);
2006 	max->fbc = ilk_fbc_wm_reg_max(dev);
2007 }
2008 
2009 static bool ilk_validate_wm_level(int level,
2010 				  const struct ilk_wm_maximums *max,
2011 				  struct intel_wm_level *result)
2012 {
2013 	bool ret;
2014 
2015 	/* already determined to be invalid? */
2016 	if (!result->enable)
2017 		return false;
2018 
2019 	result->enable = result->pri_val <= max->pri &&
2020 			 result->spr_val <= max->spr &&
2021 			 result->cur_val <= max->cur;
2022 
2023 	ret = result->enable;
2024 
2025 	/*
2026 	 * HACK until we can pre-compute everything,
2027 	 * and thus fail gracefully if LP0 watermarks
2028 	 * are exceeded...
2029 	 */
2030 	if (level == 0 && !result->enable) {
2031 		if (result->pri_val > max->pri)
2032 			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2033 				      level, result->pri_val, max->pri);
2034 		if (result->spr_val > max->spr)
2035 			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2036 				      level, result->spr_val, max->spr);
2037 		if (result->cur_val > max->cur)
2038 			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2039 				      level, result->cur_val, max->cur);
2040 
2041 		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2042 		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2043 		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2044 		result->enable = true;
2045 	}
2046 
2047 	return ret;
2048 }
2049 
2050 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2051 				 int level,
2052 				 const struct ilk_pipe_wm_parameters *p,
2053 				 struct intel_wm_level *result)
2054 {
2055 	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2056 	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2057 	uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2058 
2059 	/* WM1+ latency values stored in 0.5us units */
2060 	if (level > 0) {
2061 		pri_latency *= 5;
2062 		spr_latency *= 5;
2063 		cur_latency *= 5;
2064 	}
2065 
2066 	result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
2067 	result->spr_val = ilk_compute_spr_wm(p, spr_latency);
2068 	result->cur_val = ilk_compute_cur_wm(p, cur_latency);
2069 	result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
2070 	result->enable = true;
2071 }
2072 
2073 static uint32_t
2074 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2075 {
2076 	struct drm_i915_private *dev_priv = dev->dev_private;
2077 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2078 	struct drm_display_mode *mode = &intel_crtc->config->base.adjusted_mode;
2079 	u32 linetime, ips_linetime;
2080 
2081 	if (!intel_crtc->active)
2082 		return 0;
2083 
2084 	/* The WM are computed with base on how long it takes to fill a single
2085 	 * row at the given clock rate, multiplied by 8.
2086 	 * */
2087 	linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2088 				     mode->crtc_clock);
2089 	ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2090 					 dev_priv->cdclk_freq);
2091 
2092 	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2093 	       PIPE_WM_LINETIME_TIME(linetime);
2094 }
2095 
2096 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2097 {
2098 	struct drm_i915_private *dev_priv = dev->dev_private;
2099 
2100 	if (IS_GEN9(dev)) {
2101 		uint32_t val;
2102 		int ret, i;
2103 		int level, max_level = ilk_wm_max_level(dev);
2104 
2105 		/* read the first set of memory latencies[0:3] */
2106 		val = 0; /* data0 to be programmed to 0 for first set */
2107 		mutex_lock(&dev_priv->rps.hw_lock);
2108 		ret = sandybridge_pcode_read(dev_priv,
2109 					     GEN9_PCODE_READ_MEM_LATENCY,
2110 					     &val);
2111 		mutex_unlock(&dev_priv->rps.hw_lock);
2112 
2113 		if (ret) {
2114 			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2115 			return;
2116 		}
2117 
2118 		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2119 		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2120 				GEN9_MEM_LATENCY_LEVEL_MASK;
2121 		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2122 				GEN9_MEM_LATENCY_LEVEL_MASK;
2123 		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2124 				GEN9_MEM_LATENCY_LEVEL_MASK;
2125 
2126 		/* read the second set of memory latencies[4:7] */
2127 		val = 1; /* data0 to be programmed to 1 for second set */
2128 		mutex_lock(&dev_priv->rps.hw_lock);
2129 		ret = sandybridge_pcode_read(dev_priv,
2130 					     GEN9_PCODE_READ_MEM_LATENCY,
2131 					     &val);
2132 		mutex_unlock(&dev_priv->rps.hw_lock);
2133 		if (ret) {
2134 			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2135 			return;
2136 		}
2137 
2138 		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2139 		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2140 				GEN9_MEM_LATENCY_LEVEL_MASK;
2141 		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2142 				GEN9_MEM_LATENCY_LEVEL_MASK;
2143 		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2144 				GEN9_MEM_LATENCY_LEVEL_MASK;
2145 
2146 		/*
2147 		 * WaWmMemoryReadLatency:skl
2148 		 *
2149 		 * punit doesn't take into account the read latency so we need
2150 		 * to add 2us to the various latency levels we retrieve from
2151 		 * the punit.
2152 		 *   - W0 is a bit special in that it's the only level that
2153 		 *   can't be disabled if we want to have display working, so
2154 		 *   we always add 2us there.
2155 		 *   - For levels >=1, punit returns 0us latency when they are
2156 		 *   disabled, so we respect that and don't add 2us then
2157 		 *
2158 		 * Additionally, if a level n (n > 1) has a 0us latency, all
2159 		 * levels m (m >= n) need to be disabled. We make sure to
2160 		 * sanitize the values out of the punit to satisfy this
2161 		 * requirement.
2162 		 */
2163 		wm[0] += 2;
2164 		for (level = 1; level <= max_level; level++)
2165 			if (wm[level] != 0)
2166 				wm[level] += 2;
2167 			else {
2168 				for (i = level + 1; i <= max_level; i++)
2169 					wm[i] = 0;
2170 
2171 				break;
2172 			}
2173 	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2174 		uint64_t sskpd = I915_READ64(MCH_SSKPD);
2175 
2176 		wm[0] = (sskpd >> 56) & 0xFF;
2177 		if (wm[0] == 0)
2178 			wm[0] = sskpd & 0xF;
2179 		wm[1] = (sskpd >> 4) & 0xFF;
2180 		wm[2] = (sskpd >> 12) & 0xFF;
2181 		wm[3] = (sskpd >> 20) & 0x1FF;
2182 		wm[4] = (sskpd >> 32) & 0x1FF;
2183 	} else if (INTEL_INFO(dev)->gen >= 6) {
2184 		uint32_t sskpd = I915_READ(MCH_SSKPD);
2185 
2186 		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2187 		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2188 		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2189 		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2190 	} else if (INTEL_INFO(dev)->gen >= 5) {
2191 		uint32_t mltr = I915_READ(MLTR_ILK);
2192 
2193 		/* ILK primary LP0 latency is 700 ns */
2194 		wm[0] = 7;
2195 		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2196 		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2197 	}
2198 }
2199 
2200 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2201 {
2202 	/* ILK sprite LP0 latency is 1300 ns */
2203 	if (INTEL_INFO(dev)->gen == 5)
2204 		wm[0] = 13;
2205 }
2206 
2207 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2208 {
2209 	/* ILK cursor LP0 latency is 1300 ns */
2210 	if (INTEL_INFO(dev)->gen == 5)
2211 		wm[0] = 13;
2212 
2213 	/* WaDoubleCursorLP3Latency:ivb */
2214 	if (IS_IVYBRIDGE(dev))
2215 		wm[3] *= 2;
2216 }
2217 
2218 int ilk_wm_max_level(const struct drm_device *dev)
2219 {
2220 	/* how many WM levels are we expecting */
2221 	if (INTEL_INFO(dev)->gen >= 9)
2222 		return 7;
2223 	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2224 		return 4;
2225 	else if (INTEL_INFO(dev)->gen >= 6)
2226 		return 3;
2227 	else
2228 		return 2;
2229 }
2230 
2231 static void intel_print_wm_latency(struct drm_device *dev,
2232 				   const char *name,
2233 				   const uint16_t wm[8])
2234 {
2235 	int level, max_level = ilk_wm_max_level(dev);
2236 
2237 	for (level = 0; level <= max_level; level++) {
2238 		unsigned int latency = wm[level];
2239 
2240 		if (latency == 0) {
2241 			DRM_ERROR("%s WM%d latency not provided\n",
2242 				  name, level);
2243 			continue;
2244 		}
2245 
2246 		/*
2247 		 * - latencies are in us on gen9.
2248 		 * - before then, WM1+ latency values are in 0.5us units
2249 		 */
2250 		if (IS_GEN9(dev))
2251 			latency *= 10;
2252 		else if (level > 0)
2253 			latency *= 5;
2254 
2255 		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2256 			      name, level, wm[level],
2257 			      latency / 10, latency % 10);
2258 	}
2259 }
2260 
2261 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2262 				    uint16_t wm[5], uint16_t min)
2263 {
2264 	int level, max_level = ilk_wm_max_level(dev_priv->dev);
2265 
2266 	if (wm[0] >= min)
2267 		return false;
2268 
2269 	wm[0] = max(wm[0], min);
2270 	for (level = 1; level <= max_level; level++)
2271 		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2272 
2273 	return true;
2274 }
2275 
2276 static void snb_wm_latency_quirk(struct drm_device *dev)
2277 {
2278 	struct drm_i915_private *dev_priv = dev->dev_private;
2279 	bool changed;
2280 
2281 	/*
2282 	 * The BIOS provided WM memory latency values are often
2283 	 * inadequate for high resolution displays. Adjust them.
2284 	 */
2285 	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2286 		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2287 		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2288 
2289 	if (!changed)
2290 		return;
2291 
2292 	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2293 	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2294 	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2295 	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2296 }
2297 
2298 static void ilk_setup_wm_latency(struct drm_device *dev)
2299 {
2300 	struct drm_i915_private *dev_priv = dev->dev_private;
2301 
2302 	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2303 
2304 	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2305 	       sizeof(dev_priv->wm.pri_latency));
2306 	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2307 	       sizeof(dev_priv->wm.pri_latency));
2308 
2309 	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2310 	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2311 
2312 	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2313 	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2314 	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2315 
2316 	if (IS_GEN6(dev))
2317 		snb_wm_latency_quirk(dev);
2318 }
2319 
2320 static void skl_setup_wm_latency(struct drm_device *dev)
2321 {
2322 	struct drm_i915_private *dev_priv = dev->dev_private;
2323 
2324 	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2325 	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2326 }
2327 
2328 static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2329 				      struct ilk_pipe_wm_parameters *p)
2330 {
2331 	struct drm_device *dev = crtc->dev;
2332 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2333 	enum i915_pipe pipe = intel_crtc->pipe;
2334 	struct drm_plane *plane;
2335 
2336 	if (!intel_crtc->active)
2337 		return;
2338 
2339 	p->active = true;
2340 	p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
2341 	p->pixel_rate = ilk_pipe_pixel_rate(intel_crtc->config);
2342 
2343 	if (crtc->primary->state->fb)
2344 		p->pri.bytes_per_pixel =
2345 			crtc->primary->state->fb->bits_per_pixel / 8;
2346 	else
2347 		p->pri.bytes_per_pixel = 4;
2348 
2349 	p->cur.bytes_per_pixel = 4;
2350 	/*
2351 	 * TODO: for now, assume primary and cursor planes are always enabled.
2352 	 * Setting them to false makes the screen flicker.
2353 	 */
2354 	p->pri.enabled = true;
2355 	p->cur.enabled = true;
2356 
2357 	p->pri.horiz_pixels = intel_crtc->config->pipe_src_w;
2358 	p->cur.horiz_pixels = intel_crtc->base.cursor->state->crtc_w;
2359 
2360 	drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
2361 		struct intel_plane *intel_plane = to_intel_plane(plane);
2362 
2363 		if (intel_plane->pipe == pipe) {
2364 			p->spr = intel_plane->wm;
2365 			break;
2366 		}
2367 	}
2368 }
2369 
2370 static void ilk_compute_wm_config(struct drm_device *dev,
2371 				  struct intel_wm_config *config)
2372 {
2373 	struct intel_crtc *intel_crtc;
2374 
2375 	/* Compute the currently _active_ config */
2376 	for_each_intel_crtc(dev, intel_crtc) {
2377 		const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2378 
2379 		if (!wm->pipe_enabled)
2380 			continue;
2381 
2382 		config->sprites_enabled |= wm->sprites_enabled;
2383 		config->sprites_scaled |= wm->sprites_scaled;
2384 		config->num_pipes_active++;
2385 	}
2386 }
2387 
2388 /* Compute new watermarks for the pipe */
2389 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2390 				  const struct ilk_pipe_wm_parameters *params,
2391 				  struct intel_pipe_wm *pipe_wm)
2392 {
2393 	struct drm_device *dev = crtc->dev;
2394 	const struct drm_i915_private *dev_priv = dev->dev_private;
2395 	int level, max_level = ilk_wm_max_level(dev);
2396 	/* LP0 watermark maximums depend on this pipe alone */
2397 	struct intel_wm_config config = {
2398 		.num_pipes_active = 1,
2399 		.sprites_enabled = params->spr.enabled,
2400 		.sprites_scaled = params->spr.scaled,
2401 	};
2402 	struct ilk_wm_maximums max;
2403 
2404 	pipe_wm->pipe_enabled = params->active;
2405 	pipe_wm->sprites_enabled = params->spr.enabled;
2406 	pipe_wm->sprites_scaled = params->spr.scaled;
2407 
2408 	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2409 	if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
2410 		max_level = 1;
2411 
2412 	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2413 	if (params->spr.scaled)
2414 		max_level = 0;
2415 
2416 	ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
2417 
2418 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2419 		pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2420 
2421 	/* LP0 watermarks always use 1/2 DDB partitioning */
2422 	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2423 
2424 	/* At least LP0 must be valid */
2425 	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2426 		return false;
2427 
2428 	ilk_compute_wm_reg_maximums(dev, 1, &max);
2429 
2430 	for (level = 1; level <= max_level; level++) {
2431 		struct intel_wm_level wm = {};
2432 
2433 		ilk_compute_wm_level(dev_priv, level, params, &wm);
2434 
2435 		/*
2436 		 * Disable any watermark level that exceeds the
2437 		 * register maximums since such watermarks are
2438 		 * always invalid.
2439 		 */
2440 		if (!ilk_validate_wm_level(level, &max, &wm))
2441 			break;
2442 
2443 		pipe_wm->wm[level] = wm;
2444 	}
2445 
2446 	return true;
2447 }
2448 
2449 /*
2450  * Merge the watermarks from all active pipes for a specific level.
2451  */
2452 static void ilk_merge_wm_level(struct drm_device *dev,
2453 			       int level,
2454 			       struct intel_wm_level *ret_wm)
2455 {
2456 	struct intel_crtc *intel_crtc;
2457 
2458 	ret_wm->enable = true;
2459 
2460 	for_each_intel_crtc(dev, intel_crtc) {
2461 		const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2462 		const struct intel_wm_level *wm = &active->wm[level];
2463 
2464 		if (!active->pipe_enabled)
2465 			continue;
2466 
2467 		/*
2468 		 * The watermark values may have been used in the past,
2469 		 * so we must maintain them in the registers for some
2470 		 * time even if the level is now disabled.
2471 		 */
2472 		if (!wm->enable)
2473 			ret_wm->enable = false;
2474 
2475 		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2476 		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2477 		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2478 		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2479 	}
2480 }
2481 
2482 /*
2483  * Merge all low power watermarks for all active pipes.
2484  */
2485 static void ilk_wm_merge(struct drm_device *dev,
2486 			 const struct intel_wm_config *config,
2487 			 const struct ilk_wm_maximums *max,
2488 			 struct intel_pipe_wm *merged)
2489 {
2490 	struct drm_i915_private *dev_priv = dev->dev_private;
2491 	int level, max_level = ilk_wm_max_level(dev);
2492 	int last_enabled_level = max_level;
2493 
2494 	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2495 	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2496 	    config->num_pipes_active > 1)
2497 		return;
2498 
2499 	/* ILK: FBC WM must be disabled always */
2500 	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2501 
2502 	/* merge each WM1+ level */
2503 	for (level = 1; level <= max_level; level++) {
2504 		struct intel_wm_level *wm = &merged->wm[level];
2505 
2506 		ilk_merge_wm_level(dev, level, wm);
2507 
2508 		if (level > last_enabled_level)
2509 			wm->enable = false;
2510 		else if (!ilk_validate_wm_level(level, max, wm))
2511 			/* make sure all following levels get disabled */
2512 			last_enabled_level = level - 1;
2513 
2514 		/*
2515 		 * The spec says it is preferred to disable
2516 		 * FBC WMs instead of disabling a WM level.
2517 		 */
2518 		if (wm->fbc_val > max->fbc) {
2519 			if (wm->enable)
2520 				merged->fbc_wm_enabled = false;
2521 			wm->fbc_val = 0;
2522 		}
2523 	}
2524 
2525 	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2526 	/*
2527 	 * FIXME this is racy. FBC might get enabled later.
2528 	 * What we should check here is whether FBC can be
2529 	 * enabled sometime later.
2530 	 */
2531 	if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2532 	    intel_fbc_enabled(dev_priv)) {
2533 		for (level = 2; level <= max_level; level++) {
2534 			struct intel_wm_level *wm = &merged->wm[level];
2535 
2536 			wm->enable = false;
2537 		}
2538 	}
2539 }
2540 
2541 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2542 {
2543 	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2544 	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2545 }
2546 
2547 /* The value we need to program into the WM_LPx latency field */
2548 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2549 {
2550 	struct drm_i915_private *dev_priv = dev->dev_private;
2551 
2552 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2553 		return 2 * level;
2554 	else
2555 		return dev_priv->wm.pri_latency[level];
2556 }
2557 
2558 static void ilk_compute_wm_results(struct drm_device *dev,
2559 				   const struct intel_pipe_wm *merged,
2560 				   enum intel_ddb_partitioning partitioning,
2561 				   struct ilk_wm_values *results)
2562 {
2563 	struct intel_crtc *intel_crtc;
2564 	int level, wm_lp;
2565 
2566 	results->enable_fbc_wm = merged->fbc_wm_enabled;
2567 	results->partitioning = partitioning;
2568 
2569 	/* LP1+ register values */
2570 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2571 		const struct intel_wm_level *r;
2572 
2573 		level = ilk_wm_lp_to_level(wm_lp, merged);
2574 
2575 		r = &merged->wm[level];
2576 
2577 		/*
2578 		 * Maintain the watermark values even if the level is
2579 		 * disabled. Doing otherwise could cause underruns.
2580 		 */
2581 		results->wm_lp[wm_lp - 1] =
2582 			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2583 			(r->pri_val << WM1_LP_SR_SHIFT) |
2584 			r->cur_val;
2585 
2586 		if (r->enable)
2587 			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2588 
2589 		if (INTEL_INFO(dev)->gen >= 8)
2590 			results->wm_lp[wm_lp - 1] |=
2591 				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2592 		else
2593 			results->wm_lp[wm_lp - 1] |=
2594 				r->fbc_val << WM1_LP_FBC_SHIFT;
2595 
2596 		/*
2597 		 * Always set WM1S_LP_EN when spr_val != 0, even if the
2598 		 * level is disabled. Doing otherwise could cause underruns.
2599 		 */
2600 		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2601 			WARN_ON(wm_lp != 1);
2602 			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2603 		} else
2604 			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2605 	}
2606 
2607 	/* LP0 register values */
2608 	for_each_intel_crtc(dev, intel_crtc) {
2609 		enum i915_pipe pipe = intel_crtc->pipe;
2610 		const struct intel_wm_level *r =
2611 			&intel_crtc->wm.active.wm[0];
2612 
2613 		if (WARN_ON(!r->enable))
2614 			continue;
2615 
2616 		results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2617 
2618 		results->wm_pipe[pipe] =
2619 			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2620 			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2621 			r->cur_val;
2622 	}
2623 }
2624 
2625 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2626  * case both are at the same level. Prefer r1 in case they're the same. */
2627 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2628 						  struct intel_pipe_wm *r1,
2629 						  struct intel_pipe_wm *r2)
2630 {
2631 	int level, max_level = ilk_wm_max_level(dev);
2632 	int level1 = 0, level2 = 0;
2633 
2634 	for (level = 1; level <= max_level; level++) {
2635 		if (r1->wm[level].enable)
2636 			level1 = level;
2637 		if (r2->wm[level].enable)
2638 			level2 = level;
2639 	}
2640 
2641 	if (level1 == level2) {
2642 		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2643 			return r2;
2644 		else
2645 			return r1;
2646 	} else if (level1 > level2) {
2647 		return r1;
2648 	} else {
2649 		return r2;
2650 	}
2651 }
2652 
2653 /* dirty bits used to track which watermarks need changes */
2654 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2655 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2656 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2657 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2658 #define WM_DIRTY_FBC (1 << 24)
2659 #define WM_DIRTY_DDB (1 << 25)
2660 
2661 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2662 					 const struct ilk_wm_values *old,
2663 					 const struct ilk_wm_values *new)
2664 {
2665 	unsigned int dirty = 0;
2666 	enum i915_pipe pipe;
2667 	int wm_lp;
2668 
2669 	for_each_pipe(dev_priv, pipe) {
2670 		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2671 			dirty |= WM_DIRTY_LINETIME(pipe);
2672 			/* Must disable LP1+ watermarks too */
2673 			dirty |= WM_DIRTY_LP_ALL;
2674 		}
2675 
2676 		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2677 			dirty |= WM_DIRTY_PIPE(pipe);
2678 			/* Must disable LP1+ watermarks too */
2679 			dirty |= WM_DIRTY_LP_ALL;
2680 		}
2681 	}
2682 
2683 	if (old->enable_fbc_wm != new->enable_fbc_wm) {
2684 		dirty |= WM_DIRTY_FBC;
2685 		/* Must disable LP1+ watermarks too */
2686 		dirty |= WM_DIRTY_LP_ALL;
2687 	}
2688 
2689 	if (old->partitioning != new->partitioning) {
2690 		dirty |= WM_DIRTY_DDB;
2691 		/* Must disable LP1+ watermarks too */
2692 		dirty |= WM_DIRTY_LP_ALL;
2693 	}
2694 
2695 	/* LP1+ watermarks already deemed dirty, no need to continue */
2696 	if (dirty & WM_DIRTY_LP_ALL)
2697 		return dirty;
2698 
2699 	/* Find the lowest numbered LP1+ watermark in need of an update... */
2700 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2701 		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2702 		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2703 			break;
2704 	}
2705 
2706 	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2707 	for (; wm_lp <= 3; wm_lp++)
2708 		dirty |= WM_DIRTY_LP(wm_lp);
2709 
2710 	return dirty;
2711 }
2712 
2713 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2714 			       unsigned int dirty)
2715 {
2716 	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2717 	bool changed = false;
2718 
2719 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2720 		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2721 		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2722 		changed = true;
2723 	}
2724 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2725 		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2726 		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2727 		changed = true;
2728 	}
2729 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2730 		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2731 		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2732 		changed = true;
2733 	}
2734 
2735 	/*
2736 	 * Don't touch WM1S_LP_EN here.
2737 	 * Doing so could cause underruns.
2738 	 */
2739 
2740 	return changed;
2741 }
2742 
2743 /*
2744  * The spec says we shouldn't write when we don't need, because every write
2745  * causes WMs to be re-evaluated, expending some power.
2746  */
2747 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2748 				struct ilk_wm_values *results)
2749 {
2750 	struct drm_device *dev = dev_priv->dev;
2751 	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2752 	unsigned int dirty;
2753 	uint32_t val;
2754 
2755 	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2756 	if (!dirty)
2757 		return;
2758 
2759 	_ilk_disable_lp_wm(dev_priv, dirty);
2760 
2761 	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2762 		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2763 	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2764 		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2765 	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2766 		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2767 
2768 	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2769 		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2770 	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2771 		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2772 	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2773 		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2774 
2775 	if (dirty & WM_DIRTY_DDB) {
2776 		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2777 			val = I915_READ(WM_MISC);
2778 			if (results->partitioning == INTEL_DDB_PART_1_2)
2779 				val &= ~WM_MISC_DATA_PARTITION_5_6;
2780 			else
2781 				val |= WM_MISC_DATA_PARTITION_5_6;
2782 			I915_WRITE(WM_MISC, val);
2783 		} else {
2784 			val = I915_READ(DISP_ARB_CTL2);
2785 			if (results->partitioning == INTEL_DDB_PART_1_2)
2786 				val &= ~DISP_DATA_PARTITION_5_6;
2787 			else
2788 				val |= DISP_DATA_PARTITION_5_6;
2789 			I915_WRITE(DISP_ARB_CTL2, val);
2790 		}
2791 	}
2792 
2793 	if (dirty & WM_DIRTY_FBC) {
2794 		val = I915_READ(DISP_ARB_CTL);
2795 		if (results->enable_fbc_wm)
2796 			val &= ~DISP_FBC_WM_DIS;
2797 		else
2798 			val |= DISP_FBC_WM_DIS;
2799 		I915_WRITE(DISP_ARB_CTL, val);
2800 	}
2801 
2802 	if (dirty & WM_DIRTY_LP(1) &&
2803 	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2804 		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2805 
2806 	if (INTEL_INFO(dev)->gen >= 7) {
2807 		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2808 			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2809 		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2810 			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2811 	}
2812 
2813 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2814 		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2815 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2816 		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2817 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2818 		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2819 
2820 	dev_priv->wm.hw = *results;
2821 }
2822 
2823 static bool ilk_disable_lp_wm(struct drm_device *dev)
2824 {
2825 	struct drm_i915_private *dev_priv = dev->dev_private;
2826 
2827 	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2828 }
2829 
2830 /*
2831  * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2832  * different active planes.
2833  */
2834 
2835 #define SKL_DDB_SIZE		896	/* in blocks */
2836 #define BXT_DDB_SIZE		512
2837 
2838 static void
2839 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2840 				   struct drm_crtc *for_crtc,
2841 				   const struct intel_wm_config *config,
2842 				   const struct skl_pipe_wm_parameters *params,
2843 				   struct skl_ddb_entry *alloc /* out */)
2844 {
2845 	struct drm_crtc *crtc;
2846 	unsigned int pipe_size, ddb_size;
2847 	int nth_active_pipe;
2848 
2849 	if (!params->active) {
2850 		alloc->start = 0;
2851 		alloc->end = 0;
2852 		return;
2853 	}
2854 
2855 	if (IS_BROXTON(dev))
2856 		ddb_size = BXT_DDB_SIZE;
2857 	else
2858 		ddb_size = SKL_DDB_SIZE;
2859 
2860 	ddb_size -= 4; /* 4 blocks for bypass path allocation */
2861 
2862 	nth_active_pipe = 0;
2863 	for_each_crtc(dev, crtc) {
2864 		if (!to_intel_crtc(crtc)->active)
2865 			continue;
2866 
2867 		if (crtc == for_crtc)
2868 			break;
2869 
2870 		nth_active_pipe++;
2871 	}
2872 
2873 	pipe_size = ddb_size / config->num_pipes_active;
2874 	alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2875 	alloc->end = alloc->start + pipe_size;
2876 }
2877 
2878 static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
2879 {
2880 	if (config->num_pipes_active == 1)
2881 		return 32;
2882 
2883 	return 8;
2884 }
2885 
2886 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2887 {
2888 	entry->start = reg & 0x3ff;
2889 	entry->end = (reg >> 16) & 0x3ff;
2890 	if (entry->end)
2891 		entry->end += 1;
2892 }
2893 
2894 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2895 			  struct skl_ddb_allocation *ddb /* out */)
2896 {
2897 	enum i915_pipe pipe;
2898 	int plane;
2899 	u32 val;
2900 
2901 	for_each_pipe(dev_priv, pipe) {
2902 		for_each_plane(dev_priv, pipe, plane) {
2903 			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2904 			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2905 						   val);
2906 		}
2907 
2908 		val = I915_READ(CUR_BUF_CFG(pipe));
2909 		skl_ddb_entry_init_from_hw(&ddb->cursor[pipe], val);
2910 	}
2911 }
2912 
2913 static unsigned int
2914 skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p, int y)
2915 {
2916 
2917 	/* for planar format */
2918 	if (p->y_bytes_per_pixel) {
2919 		if (y)  /* y-plane data rate */
2920 			return p->horiz_pixels * p->vert_pixels * p->y_bytes_per_pixel;
2921 		else    /* uv-plane data rate */
2922 			return (p->horiz_pixels/2) * (p->vert_pixels/2) * p->bytes_per_pixel;
2923 	}
2924 
2925 	/* for packed formats */
2926 	return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
2927 }
2928 
2929 /*
2930  * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2931  * a 8192x4096@32bpp framebuffer:
2932  *   3 * 4096 * 8192  * 4 < 2^32
2933  */
2934 static unsigned int
2935 skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
2936 				 const struct skl_pipe_wm_parameters *params)
2937 {
2938 	unsigned int total_data_rate = 0;
2939 	int plane;
2940 
2941 	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2942 		const struct intel_plane_wm_parameters *p;
2943 
2944 		p = &params->plane[plane];
2945 		if (!p->enabled)
2946 			continue;
2947 
2948 		total_data_rate += skl_plane_relative_data_rate(p, 0); /* packed/uv */
2949 		if (p->y_bytes_per_pixel) {
2950 			total_data_rate += skl_plane_relative_data_rate(p, 1); /* y-plane */
2951 		}
2952 	}
2953 
2954 	return total_data_rate;
2955 }
2956 
2957 static void
2958 skl_allocate_pipe_ddb(struct drm_crtc *crtc,
2959 		      const struct intel_wm_config *config,
2960 		      const struct skl_pipe_wm_parameters *params,
2961 		      struct skl_ddb_allocation *ddb /* out */)
2962 {
2963 	struct drm_device *dev = crtc->dev;
2964 	struct drm_i915_private *dev_priv = dev->dev_private;
2965 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2966 	enum i915_pipe pipe = intel_crtc->pipe;
2967 	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2968 	uint16_t alloc_size, start, cursor_blocks;
2969 	uint16_t minimum[I915_MAX_PLANES];
2970 	uint16_t y_minimum[I915_MAX_PLANES];
2971 	unsigned int total_data_rate;
2972 	int plane;
2973 
2974 	skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
2975 	alloc_size = skl_ddb_entry_size(alloc);
2976 	if (alloc_size == 0) {
2977 		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2978 		memset(&ddb->cursor[pipe], 0, sizeof(ddb->cursor[pipe]));
2979 		return;
2980 	}
2981 
2982 	cursor_blocks = skl_cursor_allocation(config);
2983 	ddb->cursor[pipe].start = alloc->end - cursor_blocks;
2984 	ddb->cursor[pipe].end = alloc->end;
2985 
2986 	alloc_size -= cursor_blocks;
2987 	alloc->end -= cursor_blocks;
2988 
2989 	/* 1. Allocate the mininum required blocks for each active plane */
2990 	for_each_plane(dev_priv, pipe, plane) {
2991 		const struct intel_plane_wm_parameters *p;
2992 
2993 		p = &params->plane[plane];
2994 		if (!p->enabled)
2995 			continue;
2996 
2997 		minimum[plane] = 8;
2998 		alloc_size -= minimum[plane];
2999 		y_minimum[plane] = p->y_bytes_per_pixel ? 8 : 0;
3000 		alloc_size -= y_minimum[plane];
3001 	}
3002 
3003 	/*
3004 	 * 2. Distribute the remaining space in proportion to the amount of
3005 	 * data each plane needs to fetch from memory.
3006 	 *
3007 	 * FIXME: we may not allocate every single block here.
3008 	 */
3009 	total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);
3010 
3011 	start = alloc->start;
3012 	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
3013 		const struct intel_plane_wm_parameters *p;
3014 		unsigned int data_rate, y_data_rate;
3015 		uint16_t plane_blocks, y_plane_blocks = 0;
3016 
3017 		p = &params->plane[plane];
3018 		if (!p->enabled)
3019 			continue;
3020 
3021 		data_rate = skl_plane_relative_data_rate(p, 0);
3022 
3023 		/*
3024 		 * allocation for (packed formats) or (uv-plane part of planar format):
3025 		 * promote the expression to 64 bits to avoid overflowing, the
3026 		 * result is < available as data_rate / total_data_rate < 1
3027 		 */
3028 		plane_blocks = minimum[plane];
3029 		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
3030 					total_data_rate);
3031 
3032 		ddb->plane[pipe][plane].start = start;
3033 		ddb->plane[pipe][plane].end = start + plane_blocks;
3034 
3035 		start += plane_blocks;
3036 
3037 		/*
3038 		 * allocation for y_plane part of planar format:
3039 		 */
3040 		if (p->y_bytes_per_pixel) {
3041 			y_data_rate = skl_plane_relative_data_rate(p, 1);
3042 			y_plane_blocks = y_minimum[plane];
3043 			y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
3044 						total_data_rate);
3045 
3046 			ddb->y_plane[pipe][plane].start = start;
3047 			ddb->y_plane[pipe][plane].end = start + y_plane_blocks;
3048 
3049 			start += y_plane_blocks;
3050 		}
3051 
3052 	}
3053 
3054 }
3055 
3056 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3057 {
3058 	/* TODO: Take into account the scalers once we support them */
3059 	return config->base.adjusted_mode.crtc_clock;
3060 }
3061 
3062 /*
3063  * The max latency should be 257 (max the punit can code is 255 and we add 2us
3064  * for the read latency) and bytes_per_pixel should always be <= 8, so that
3065  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3066  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3067 */
3068 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
3069 			       uint32_t latency)
3070 {
3071 	uint32_t wm_intermediate_val, ret;
3072 
3073 	if (latency == 0)
3074 		return UINT_MAX;
3075 
3076 	wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
3077 	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3078 
3079 	return ret;
3080 }
3081 
3082 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3083 			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
3084 			       uint64_t tiling, uint32_t latency)
3085 {
3086 	uint32_t ret;
3087 	uint32_t plane_bytes_per_line, plane_blocks_per_line;
3088 	uint32_t wm_intermediate_val;
3089 
3090 	if (latency == 0)
3091 		return UINT_MAX;
3092 
3093 	plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
3094 
3095 	if (tiling == I915_FORMAT_MOD_Y_TILED ||
3096 	    tiling == I915_FORMAT_MOD_Yf_TILED) {
3097 		plane_bytes_per_line *= 4;
3098 		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3099 		plane_blocks_per_line /= 4;
3100 	} else {
3101 		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3102 	}
3103 
3104 	wm_intermediate_val = latency * pixel_rate;
3105 	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3106 				plane_blocks_per_line;
3107 
3108 	return ret;
3109 }
3110 
3111 static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
3112 				       const struct intel_crtc *intel_crtc)
3113 {
3114 	struct drm_device *dev = intel_crtc->base.dev;
3115 	struct drm_i915_private *dev_priv = dev->dev_private;
3116 	const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
3117 	enum i915_pipe pipe = intel_crtc->pipe;
3118 
3119 	if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
3120 		   sizeof(new_ddb->plane[pipe])))
3121 		return true;
3122 
3123 	if (memcmp(&new_ddb->cursor[pipe], &cur_ddb->cursor[pipe],
3124 		    sizeof(new_ddb->cursor[pipe])))
3125 		return true;
3126 
3127 	return false;
3128 }
3129 
3130 static void skl_compute_wm_global_parameters(struct drm_device *dev,
3131 					     struct intel_wm_config *config)
3132 {
3133 	struct drm_crtc *crtc;
3134 	struct drm_plane *plane;
3135 
3136 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3137 		config->num_pipes_active += to_intel_crtc(crtc)->active;
3138 
3139 	/* FIXME: I don't think we need those two global parameters on SKL */
3140 	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
3141 		struct intel_plane *intel_plane = to_intel_plane(plane);
3142 
3143 		config->sprites_enabled |= intel_plane->wm.enabled;
3144 		config->sprites_scaled |= intel_plane->wm.scaled;
3145 	}
3146 }
3147 
3148 static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
3149 					   struct skl_pipe_wm_parameters *p)
3150 {
3151 	struct drm_device *dev = crtc->dev;
3152 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3153 	enum i915_pipe pipe = intel_crtc->pipe;
3154 	struct drm_plane *plane;
3155 	struct drm_framebuffer *fb;
3156 	int i = 1; /* Index for sprite planes start */
3157 
3158 	p->active = intel_crtc->active;
3159 	if (p->active) {
3160 		p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
3161 		p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);
3162 
3163 		fb = crtc->primary->state->fb;
3164 		/* For planar: Bpp is for uv plane, y_Bpp is for y plane */
3165 		if (fb) {
3166 			p->plane[0].enabled = true;
3167 			p->plane[0].bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
3168 				drm_format_plane_cpp(fb->pixel_format, 1) : fb->bits_per_pixel / 8;
3169 			p->plane[0].y_bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
3170 				drm_format_plane_cpp(fb->pixel_format, 0) : 0;
3171 			p->plane[0].tiling = fb->modifier[0];
3172 		} else {
3173 			p->plane[0].enabled = false;
3174 			p->plane[0].bytes_per_pixel = 0;
3175 			p->plane[0].y_bytes_per_pixel = 0;
3176 			p->plane[0].tiling = DRM_FORMAT_MOD_NONE;
3177 		}
3178 		p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
3179 		p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
3180 		p->plane[0].rotation = crtc->primary->state->rotation;
3181 
3182 		fb = crtc->cursor->state->fb;
3183 		p->cursor.y_bytes_per_pixel = 0;
3184 		if (fb) {
3185 			p->cursor.enabled = true;
3186 			p->cursor.bytes_per_pixel = fb->bits_per_pixel / 8;
3187 			p->cursor.horiz_pixels = crtc->cursor->state->crtc_w;
3188 			p->cursor.vert_pixels = crtc->cursor->state->crtc_h;
3189 		} else {
3190 			p->cursor.enabled = false;
3191 			p->cursor.bytes_per_pixel = 0;
3192 			p->cursor.horiz_pixels = 64;
3193 			p->cursor.vert_pixels = 64;
3194 		}
3195 	}
3196 
3197 	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
3198 		struct intel_plane *intel_plane = to_intel_plane(plane);
3199 
3200 		if (intel_plane->pipe == pipe &&
3201 			plane->type == DRM_PLANE_TYPE_OVERLAY)
3202 			p->plane[i++] = intel_plane->wm;
3203 	}
3204 }
3205 
3206 static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3207 				 struct skl_pipe_wm_parameters *p,
3208 				 struct intel_plane_wm_parameters *p_params,
3209 				 uint16_t ddb_allocation,
3210 				 int level,
3211 				 uint16_t *out_blocks, /* out */
3212 				 uint8_t *out_lines /* out */)
3213 {
3214 	uint32_t latency = dev_priv->wm.skl_latency[level];
3215 	uint32_t method1, method2;
3216 	uint32_t plane_bytes_per_line, plane_blocks_per_line;
3217 	uint32_t res_blocks, res_lines;
3218 	uint32_t selected_result;
3219 	uint8_t bytes_per_pixel;
3220 
3221 	if (latency == 0 || !p->active || !p_params->enabled)
3222 		return false;
3223 
3224 	bytes_per_pixel = p_params->y_bytes_per_pixel ?
3225 		p_params->y_bytes_per_pixel :
3226 		p_params->bytes_per_pixel;
3227 	method1 = skl_wm_method1(p->pixel_rate,
3228 				 bytes_per_pixel,
3229 				 latency);
3230 	method2 = skl_wm_method2(p->pixel_rate,
3231 				 p->pipe_htotal,
3232 				 p_params->horiz_pixels,
3233 				 bytes_per_pixel,
3234 				 p_params->tiling,
3235 				 latency);
3236 
3237 	plane_bytes_per_line = p_params->horiz_pixels * bytes_per_pixel;
3238 	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3239 
3240 	if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
3241 	    p_params->tiling == I915_FORMAT_MOD_Yf_TILED) {
3242 		uint32_t min_scanlines = 4;
3243 		uint32_t y_tile_minimum;
3244 		if (intel_rotation_90_or_270(p_params->rotation)) {
3245 			switch (p_params->bytes_per_pixel) {
3246 			case 1:
3247 				min_scanlines = 16;
3248 				break;
3249 			case 2:
3250 				min_scanlines = 8;
3251 				break;
3252 			case 8:
3253 				WARN(1, "Unsupported pixel depth for rotation");
3254 			}
3255 		}
3256 		y_tile_minimum = plane_blocks_per_line * min_scanlines;
3257 		selected_result = max(method2, y_tile_minimum);
3258 	} else {
3259 		if ((ddb_allocation / plane_blocks_per_line) >= 1)
3260 			selected_result = min(method1, method2);
3261 		else
3262 			selected_result = method1;
3263 	}
3264 
3265 	res_blocks = selected_result + 1;
3266 	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3267 
3268 	if (level >= 1 && level <= 7) {
3269 		if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
3270 		    p_params->tiling == I915_FORMAT_MOD_Yf_TILED)
3271 			res_lines += 4;
3272 		else
3273 			res_blocks++;
3274 	}
3275 
3276 	if (res_blocks >= ddb_allocation || res_lines > 31)
3277 		return false;
3278 
3279 	*out_blocks = res_blocks;
3280 	*out_lines = res_lines;
3281 
3282 	return true;
3283 }
3284 
3285 static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3286 				 struct skl_ddb_allocation *ddb,
3287 				 struct skl_pipe_wm_parameters *p,
3288 				 enum i915_pipe pipe,
3289 				 int level,
3290 				 int num_planes,
3291 				 struct skl_wm_level *result)
3292 {
3293 	uint16_t ddb_blocks;
3294 	int i;
3295 
3296 	for (i = 0; i < num_planes; i++) {
3297 		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3298 
3299 		result->plane_en[i] = skl_compute_plane_wm(dev_priv,
3300 						p, &p->plane[i],
3301 						ddb_blocks,
3302 						level,
3303 						&result->plane_res_b[i],
3304 						&result->plane_res_l[i]);
3305 	}
3306 
3307 	ddb_blocks = skl_ddb_entry_size(&ddb->cursor[pipe]);
3308 	result->cursor_en = skl_compute_plane_wm(dev_priv, p, &p->cursor,
3309 						 ddb_blocks, level,
3310 						 &result->cursor_res_b,
3311 						 &result->cursor_res_l);
3312 }
3313 
3314 static uint32_t
3315 skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
3316 {
3317 	if (!to_intel_crtc(crtc)->active)
3318 		return 0;
3319 
3320 	if (WARN_ON(p->pixel_rate == 0))
3321 		return 0;
3322 
3323 	return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);
3324 }
3325 
3326 static void skl_compute_transition_wm(struct drm_crtc *crtc,
3327 				      struct skl_pipe_wm_parameters *params,
3328 				      struct skl_wm_level *trans_wm /* out */)
3329 {
3330 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3331 	int i;
3332 
3333 	if (!params->active)
3334 		return;
3335 
3336 	/* Until we know more, just disable transition WMs */
3337 	for (i = 0; i < intel_num_planes(intel_crtc); i++)
3338 		trans_wm->plane_en[i] = false;
3339 	trans_wm->cursor_en = false;
3340 }
3341 
3342 static void skl_compute_pipe_wm(struct drm_crtc *crtc,
3343 				struct skl_ddb_allocation *ddb,
3344 				struct skl_pipe_wm_parameters *params,
3345 				struct skl_pipe_wm *pipe_wm)
3346 {
3347 	struct drm_device *dev = crtc->dev;
3348 	const struct drm_i915_private *dev_priv = dev->dev_private;
3349 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3350 	int level, max_level = ilk_wm_max_level(dev);
3351 
3352 	for (level = 0; level <= max_level; level++) {
3353 		skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
3354 				     level, intel_num_planes(intel_crtc),
3355 				     &pipe_wm->wm[level]);
3356 	}
3357 	pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);
3358 
3359 	skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
3360 }
3361 
3362 static void skl_compute_wm_results(struct drm_device *dev,
3363 				   struct skl_pipe_wm_parameters *p,
3364 				   struct skl_pipe_wm *p_wm,
3365 				   struct skl_wm_values *r,
3366 				   struct intel_crtc *intel_crtc)
3367 {
3368 	int level, max_level = ilk_wm_max_level(dev);
3369 	enum i915_pipe pipe = intel_crtc->pipe;
3370 	uint32_t temp;
3371 	int i;
3372 
3373 	for (level = 0; level <= max_level; level++) {
3374 		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3375 			temp = 0;
3376 
3377 			temp |= p_wm->wm[level].plane_res_l[i] <<
3378 					PLANE_WM_LINES_SHIFT;
3379 			temp |= p_wm->wm[level].plane_res_b[i];
3380 			if (p_wm->wm[level].plane_en[i])
3381 				temp |= PLANE_WM_EN;
3382 
3383 			r->plane[pipe][i][level] = temp;
3384 		}
3385 
3386 		temp = 0;
3387 
3388 		temp |= p_wm->wm[level].cursor_res_l << PLANE_WM_LINES_SHIFT;
3389 		temp |= p_wm->wm[level].cursor_res_b;
3390 
3391 		if (p_wm->wm[level].cursor_en)
3392 			temp |= PLANE_WM_EN;
3393 
3394 		r->cursor[pipe][level] = temp;
3395 
3396 	}
3397 
3398 	/* transition WMs */
3399 	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3400 		temp = 0;
3401 		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3402 		temp |= p_wm->trans_wm.plane_res_b[i];
3403 		if (p_wm->trans_wm.plane_en[i])
3404 			temp |= PLANE_WM_EN;
3405 
3406 		r->plane_trans[pipe][i] = temp;
3407 	}
3408 
3409 	temp = 0;
3410 	temp |= p_wm->trans_wm.cursor_res_l << PLANE_WM_LINES_SHIFT;
3411 	temp |= p_wm->trans_wm.cursor_res_b;
3412 	if (p_wm->trans_wm.cursor_en)
3413 		temp |= PLANE_WM_EN;
3414 
3415 	r->cursor_trans[pipe] = temp;
3416 
3417 	r->wm_linetime[pipe] = p_wm->linetime;
3418 }
3419 
3420 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
3421 				const struct skl_ddb_entry *entry)
3422 {
3423 	if (entry->end)
3424 		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3425 	else
3426 		I915_WRITE(reg, 0);
3427 }
3428 
3429 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3430 				const struct skl_wm_values *new)
3431 {
3432 	struct drm_device *dev = dev_priv->dev;
3433 	struct intel_crtc *crtc;
3434 
3435 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
3436 		int i, level, max_level = ilk_wm_max_level(dev);
3437 		enum i915_pipe pipe = crtc->pipe;
3438 
3439 		if (!new->dirty[pipe])
3440 			continue;
3441 
3442 		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3443 
3444 		for (level = 0; level <= max_level; level++) {
3445 			for (i = 0; i < intel_num_planes(crtc); i++)
3446 				I915_WRITE(PLANE_WM(pipe, i, level),
3447 					   new->plane[pipe][i][level]);
3448 			I915_WRITE(CUR_WM(pipe, level),
3449 				   new->cursor[pipe][level]);
3450 		}
3451 		for (i = 0; i < intel_num_planes(crtc); i++)
3452 			I915_WRITE(PLANE_WM_TRANS(pipe, i),
3453 				   new->plane_trans[pipe][i]);
3454 		I915_WRITE(CUR_WM_TRANS(pipe), new->cursor_trans[pipe]);
3455 
3456 		for (i = 0; i < intel_num_planes(crtc); i++) {
3457 			skl_ddb_entry_write(dev_priv,
3458 					    PLANE_BUF_CFG(pipe, i),
3459 					    &new->ddb.plane[pipe][i]);
3460 			skl_ddb_entry_write(dev_priv,
3461 					    PLANE_NV12_BUF_CFG(pipe, i),
3462 					    &new->ddb.y_plane[pipe][i]);
3463 		}
3464 
3465 		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3466 				    &new->ddb.cursor[pipe]);
3467 	}
3468 }
3469 
3470 /*
3471  * When setting up a new DDB allocation arrangement, we need to correctly
3472  * sequence the times at which the new allocations for the pipes are taken into
3473  * account or we'll have pipes fetching from space previously allocated to
3474  * another pipe.
3475  *
3476  * Roughly the sequence looks like:
3477  *  1. re-allocate the pipe(s) with the allocation being reduced and not
3478  *     overlapping with a previous light-up pipe (another way to put it is:
3479  *     pipes with their new allocation strickly included into their old ones).
3480  *  2. re-allocate the other pipes that get their allocation reduced
3481  *  3. allocate the pipes having their allocation increased
3482  *
3483  * Steps 1. and 2. are here to take care of the following case:
3484  * - Initially DDB looks like this:
3485  *     |   B    |   C    |
3486  * - enable pipe A.
3487  * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3488  *   allocation
3489  *     |  A  |  B  |  C  |
3490  *
3491  * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3492  */
3493 
3494 static void
3495 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum i915_pipe pipe, int pass)
3496 {
3497 	int plane;
3498 
3499 	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3500 
3501 	for_each_plane(dev_priv, pipe, plane) {
3502 		I915_WRITE(PLANE_SURF(pipe, plane),
3503 			   I915_READ(PLANE_SURF(pipe, plane)));
3504 	}
3505 	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3506 }
3507 
3508 static bool
3509 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3510 			    const struct skl_ddb_allocation *new,
3511 			    enum i915_pipe pipe)
3512 {
3513 	uint16_t old_size, new_size;
3514 
3515 	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3516 	new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3517 
3518 	return old_size != new_size &&
3519 	       new->pipe[pipe].start >= old->pipe[pipe].start &&
3520 	       new->pipe[pipe].end <= old->pipe[pipe].end;
3521 }
3522 
3523 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3524 				struct skl_wm_values *new_values)
3525 {
3526 	struct drm_device *dev = dev_priv->dev;
3527 	struct skl_ddb_allocation *cur_ddb, *new_ddb;
3528 	bool reallocated[I915_MAX_PIPES] = {};
3529 	struct intel_crtc *crtc;
3530 	enum i915_pipe pipe;
3531 
3532 	new_ddb = &new_values->ddb;
3533 	cur_ddb = &dev_priv->wm.skl_hw.ddb;
3534 
3535 	/*
3536 	 * First pass: flush the pipes with the new allocation contained into
3537 	 * the old space.
3538 	 *
3539 	 * We'll wait for the vblank on those pipes to ensure we can safely
3540 	 * re-allocate the freed space without this pipe fetching from it.
3541 	 */
3542 	for_each_intel_crtc(dev, crtc) {
3543 		if (!crtc->active)
3544 			continue;
3545 
3546 		pipe = crtc->pipe;
3547 
3548 		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3549 			continue;
3550 
3551 		skl_wm_flush_pipe(dev_priv, pipe, 1);
3552 		intel_wait_for_vblank(dev, pipe);
3553 
3554 		reallocated[pipe] = true;
3555 	}
3556 
3557 
3558 	/*
3559 	 * Second pass: flush the pipes that are having their allocation
3560 	 * reduced, but overlapping with a previous allocation.
3561 	 *
3562 	 * Here as well we need to wait for the vblank to make sure the freed
3563 	 * space is not used anymore.
3564 	 */
3565 	for_each_intel_crtc(dev, crtc) {
3566 		if (!crtc->active)
3567 			continue;
3568 
3569 		pipe = crtc->pipe;
3570 
3571 		if (reallocated[pipe])
3572 			continue;
3573 
3574 		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3575 		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3576 			skl_wm_flush_pipe(dev_priv, pipe, 2);
3577 			intel_wait_for_vblank(dev, pipe);
3578 			reallocated[pipe] = true;
3579 		}
3580 	}
3581 
3582 	/*
3583 	 * Third pass: flush the pipes that got more space allocated.
3584 	 *
3585 	 * We don't need to actively wait for the update here, next vblank
3586 	 * will just get more DDB space with the correct WM values.
3587 	 */
3588 	for_each_intel_crtc(dev, crtc) {
3589 		if (!crtc->active)
3590 			continue;
3591 
3592 		pipe = crtc->pipe;
3593 
3594 		/*
3595 		 * At this point, only the pipes more space than before are
3596 		 * left to re-allocate.
3597 		 */
3598 		if (reallocated[pipe])
3599 			continue;
3600 
3601 		skl_wm_flush_pipe(dev_priv, pipe, 3);
3602 	}
3603 }
3604 
3605 static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3606 			       struct skl_pipe_wm_parameters *params,
3607 			       struct intel_wm_config *config,
3608 			       struct skl_ddb_allocation *ddb, /* out */
3609 			       struct skl_pipe_wm *pipe_wm /* out */)
3610 {
3611 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3612 
3613 	skl_compute_wm_pipe_parameters(crtc, params);
3614 	skl_allocate_pipe_ddb(crtc, config, params, ddb);
3615 	skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);
3616 
3617 	if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
3618 		return false;
3619 
3620 	intel_crtc->wm.skl_active = *pipe_wm;
3621 
3622 	return true;
3623 }
3624 
3625 static void skl_update_other_pipe_wm(struct drm_device *dev,
3626 				     struct drm_crtc *crtc,
3627 				     struct intel_wm_config *config,
3628 				     struct skl_wm_values *r)
3629 {
3630 	struct intel_crtc *intel_crtc;
3631 	struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3632 
3633 	/*
3634 	 * If the WM update hasn't changed the allocation for this_crtc (the
3635 	 * crtc we are currently computing the new WM values for), other
3636 	 * enabled crtcs will keep the same allocation and we don't need to
3637 	 * recompute anything for them.
3638 	 */
3639 	if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3640 		return;
3641 
3642 	/*
3643 	 * Otherwise, because of this_crtc being freshly enabled/disabled, the
3644 	 * other active pipes need new DDB allocation and WM values.
3645 	 */
3646 	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
3647 				base.head) {
3648 		struct skl_pipe_wm_parameters params = {};
3649 		struct skl_pipe_wm pipe_wm = {};
3650 		bool wm_changed;
3651 
3652 		if (this_crtc->pipe == intel_crtc->pipe)
3653 			continue;
3654 
3655 		if (!intel_crtc->active)
3656 			continue;
3657 
3658 		wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3659 						&params, config,
3660 						&r->ddb, &pipe_wm);
3661 
3662 		/*
3663 		 * If we end up re-computing the other pipe WM values, it's
3664 		 * because it was really needed, so we expect the WM values to
3665 		 * be different.
3666 		 */
3667 		WARN_ON(!wm_changed);
3668 
3669 		skl_compute_wm_results(dev, &params, &pipe_wm, r, intel_crtc);
3670 		r->dirty[intel_crtc->pipe] = true;
3671 	}
3672 }
3673 
3674 static void skl_update_wm(struct drm_crtc *crtc)
3675 {
3676 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3677 	struct drm_device *dev = crtc->dev;
3678 	struct drm_i915_private *dev_priv = dev->dev_private;
3679 	struct skl_pipe_wm_parameters params = {};
3680 	struct skl_wm_values *results = &dev_priv->wm.skl_results;
3681 	struct skl_pipe_wm pipe_wm = {};
3682 	struct intel_wm_config config = {};
3683 
3684 	memset(results, 0, sizeof(*results));
3685 
3686 	skl_compute_wm_global_parameters(dev, &config);
3687 
3688 	if (!skl_update_pipe_wm(crtc, &params, &config,
3689 				&results->ddb, &pipe_wm))
3690 		return;
3691 
3692 	skl_compute_wm_results(dev, &params, &pipe_wm, results, intel_crtc);
3693 	results->dirty[intel_crtc->pipe] = true;
3694 
3695 	skl_update_other_pipe_wm(dev, crtc, &config, results);
3696 	skl_write_wm_values(dev_priv, results);
3697 	skl_flush_wm_values(dev_priv, results);
3698 
3699 	/* store the new configuration */
3700 	dev_priv->wm.skl_hw = *results;
3701 }
3702 
3703 static void
3704 skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
3705 		     uint32_t sprite_width, uint32_t sprite_height,
3706 		     int pixel_size, bool enabled, bool scaled)
3707 {
3708 	struct intel_plane *intel_plane = to_intel_plane(plane);
3709 	struct drm_framebuffer *fb = plane->state->fb;
3710 
3711 	intel_plane->wm.enabled = enabled;
3712 	intel_plane->wm.scaled = scaled;
3713 	intel_plane->wm.horiz_pixels = sprite_width;
3714 	intel_plane->wm.vert_pixels = sprite_height;
3715 	intel_plane->wm.tiling = DRM_FORMAT_MOD_NONE;
3716 
3717 	/* For planar: Bpp is for UV plane, y_Bpp is for Y plane */
3718 	intel_plane->wm.bytes_per_pixel =
3719 		(fb && fb->pixel_format == DRM_FORMAT_NV12) ?
3720 		drm_format_plane_cpp(plane->state->fb->pixel_format, 1) : pixel_size;
3721 	intel_plane->wm.y_bytes_per_pixel =
3722 		(fb && fb->pixel_format == DRM_FORMAT_NV12) ?
3723 		drm_format_plane_cpp(plane->state->fb->pixel_format, 0) : 0;
3724 
3725 	/*
3726 	 * Framebuffer can be NULL on plane disable, but it does not
3727 	 * matter for watermarks if we assume no tiling in that case.
3728 	 */
3729 	if (fb)
3730 		intel_plane->wm.tiling = fb->modifier[0];
3731 	intel_plane->wm.rotation = plane->state->rotation;
3732 
3733 	skl_update_wm(crtc);
3734 }
3735 
3736 static void ilk_update_wm(struct drm_crtc *crtc)
3737 {
3738 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3739 	struct drm_device *dev = crtc->dev;
3740 	struct drm_i915_private *dev_priv = dev->dev_private;
3741 	struct ilk_wm_maximums max;
3742 	struct ilk_pipe_wm_parameters params = {};
3743 	struct ilk_wm_values results = {};
3744 	enum intel_ddb_partitioning partitioning;
3745 	struct intel_pipe_wm pipe_wm = {};
3746 	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3747 	struct intel_wm_config config = {};
3748 
3749 	ilk_compute_wm_parameters(crtc, &params);
3750 
3751 	intel_compute_pipe_wm(crtc, &params, &pipe_wm);
3752 
3753 	if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
3754 		return;
3755 
3756 	intel_crtc->wm.active = pipe_wm;
3757 
3758 	ilk_compute_wm_config(dev, &config);
3759 
3760 	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3761 	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3762 
3763 	/* 5/6 split only in single pipe config on IVB+ */
3764 	if (INTEL_INFO(dev)->gen >= 7 &&
3765 	    config.num_pipes_active == 1 && config.sprites_enabled) {
3766 		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3767 		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3768 
3769 		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3770 	} else {
3771 		best_lp_wm = &lp_wm_1_2;
3772 	}
3773 
3774 	partitioning = (best_lp_wm == &lp_wm_1_2) ?
3775 		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3776 
3777 	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3778 
3779 	ilk_write_wm_values(dev_priv, &results);
3780 }
3781 
3782 static void
3783 ilk_update_sprite_wm(struct drm_plane *plane,
3784 		     struct drm_crtc *crtc,
3785 		     uint32_t sprite_width, uint32_t sprite_height,
3786 		     int pixel_size, bool enabled, bool scaled)
3787 {
3788 	struct drm_device *dev = plane->dev;
3789 	struct intel_plane *intel_plane = to_intel_plane(plane);
3790 
3791 	intel_plane->wm.enabled = enabled;
3792 	intel_plane->wm.scaled = scaled;
3793 	intel_plane->wm.horiz_pixels = sprite_width;
3794 	intel_plane->wm.vert_pixels = sprite_width;
3795 	intel_plane->wm.bytes_per_pixel = pixel_size;
3796 
3797 	/*
3798 	 * IVB workaround: must disable low power watermarks for at least
3799 	 * one frame before enabling scaling.  LP watermarks can be re-enabled
3800 	 * when scaling is disabled.
3801 	 *
3802 	 * WaCxSRDisabledForSpriteScaling:ivb
3803 	 */
3804 	if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
3805 		intel_wait_for_vblank(dev, intel_plane->pipe);
3806 
3807 	ilk_update_wm(crtc);
3808 }
3809 
3810 static void skl_pipe_wm_active_state(uint32_t val,
3811 				     struct skl_pipe_wm *active,
3812 				     bool is_transwm,
3813 				     bool is_cursor,
3814 				     int i,
3815 				     int level)
3816 {
3817 	bool is_enabled = (val & PLANE_WM_EN) != 0;
3818 
3819 	if (!is_transwm) {
3820 		if (!is_cursor) {
3821 			active->wm[level].plane_en[i] = is_enabled;
3822 			active->wm[level].plane_res_b[i] =
3823 					val & PLANE_WM_BLOCKS_MASK;
3824 			active->wm[level].plane_res_l[i] =
3825 					(val >> PLANE_WM_LINES_SHIFT) &
3826 						PLANE_WM_LINES_MASK;
3827 		} else {
3828 			active->wm[level].cursor_en = is_enabled;
3829 			active->wm[level].cursor_res_b =
3830 					val & PLANE_WM_BLOCKS_MASK;
3831 			active->wm[level].cursor_res_l =
3832 					(val >> PLANE_WM_LINES_SHIFT) &
3833 						PLANE_WM_LINES_MASK;
3834 		}
3835 	} else {
3836 		if (!is_cursor) {
3837 			active->trans_wm.plane_en[i] = is_enabled;
3838 			active->trans_wm.plane_res_b[i] =
3839 					val & PLANE_WM_BLOCKS_MASK;
3840 			active->trans_wm.plane_res_l[i] =
3841 					(val >> PLANE_WM_LINES_SHIFT) &
3842 						PLANE_WM_LINES_MASK;
3843 		} else {
3844 			active->trans_wm.cursor_en = is_enabled;
3845 			active->trans_wm.cursor_res_b =
3846 					val & PLANE_WM_BLOCKS_MASK;
3847 			active->trans_wm.cursor_res_l =
3848 					(val >> PLANE_WM_LINES_SHIFT) &
3849 						PLANE_WM_LINES_MASK;
3850 		}
3851 	}
3852 }
3853 
3854 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3855 {
3856 	struct drm_device *dev = crtc->dev;
3857 	struct drm_i915_private *dev_priv = dev->dev_private;
3858 	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3859 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3860 	struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
3861 	enum i915_pipe pipe = intel_crtc->pipe;
3862 	int level, i, max_level;
3863 	uint32_t temp;
3864 
3865 	max_level = ilk_wm_max_level(dev);
3866 
3867 	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3868 
3869 	for (level = 0; level <= max_level; level++) {
3870 		for (i = 0; i < intel_num_planes(intel_crtc); i++)
3871 			hw->plane[pipe][i][level] =
3872 					I915_READ(PLANE_WM(pipe, i, level));
3873 		hw->cursor[pipe][level] = I915_READ(CUR_WM(pipe, level));
3874 	}
3875 
3876 	for (i = 0; i < intel_num_planes(intel_crtc); i++)
3877 		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3878 	hw->cursor_trans[pipe] = I915_READ(CUR_WM_TRANS(pipe));
3879 
3880 	if (!intel_crtc->active)
3881 		return;
3882 
3883 	hw->dirty[pipe] = true;
3884 
3885 	active->linetime = hw->wm_linetime[pipe];
3886 
3887 	for (level = 0; level <= max_level; level++) {
3888 		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3889 			temp = hw->plane[pipe][i][level];
3890 			skl_pipe_wm_active_state(temp, active, false,
3891 						false, i, level);
3892 		}
3893 		temp = hw->cursor[pipe][level];
3894 		skl_pipe_wm_active_state(temp, active, false, true, i, level);
3895 	}
3896 
3897 	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3898 		temp = hw->plane_trans[pipe][i];
3899 		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3900 	}
3901 
3902 	temp = hw->cursor_trans[pipe];
3903 	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3904 }
3905 
3906 void skl_wm_get_hw_state(struct drm_device *dev)
3907 {
3908 	struct drm_i915_private *dev_priv = dev->dev_private;
3909 	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3910 	struct drm_crtc *crtc;
3911 
3912 	skl_ddb_get_hw_state(dev_priv, ddb);
3913 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3914 		skl_pipe_wm_get_hw_state(crtc);
3915 }
3916 
3917 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3918 {
3919 	struct drm_device *dev = crtc->dev;
3920 	struct drm_i915_private *dev_priv = dev->dev_private;
3921 	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3922 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3923 	struct intel_pipe_wm *active = &intel_crtc->wm.active;
3924 	enum i915_pipe pipe = intel_crtc->pipe;
3925 	static const unsigned int wm0_pipe_reg[] = {
3926 		[PIPE_A] = WM0_PIPEA_ILK,
3927 		[PIPE_B] = WM0_PIPEB_ILK,
3928 		[PIPE_C] = WM0_PIPEC_IVB,
3929 	};
3930 
3931 	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3932 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3933 		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3934 
3935 	active->pipe_enabled = intel_crtc->active;
3936 
3937 	if (active->pipe_enabled) {
3938 		u32 tmp = hw->wm_pipe[pipe];
3939 
3940 		/*
3941 		 * For active pipes LP0 watermark is marked as
3942 		 * enabled, and LP1+ watermaks as disabled since
3943 		 * we can't really reverse compute them in case
3944 		 * multiple pipes are active.
3945 		 */
3946 		active->wm[0].enable = true;
3947 		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3948 		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3949 		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3950 		active->linetime = hw->wm_linetime[pipe];
3951 	} else {
3952 		int level, max_level = ilk_wm_max_level(dev);
3953 
3954 		/*
3955 		 * For inactive pipes, all watermark levels
3956 		 * should be marked as enabled but zeroed,
3957 		 * which is what we'd compute them to.
3958 		 */
3959 		for (level = 0; level <= max_level; level++)
3960 			active->wm[level].enable = true;
3961 	}
3962 }
3963 
3964 #define _FW_WM(value, plane) \
3965 	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
3966 #define _FW_WM_VLV(value, plane) \
3967 	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
3968 
3969 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
3970 			       struct vlv_wm_values *wm)
3971 {
3972 	enum i915_pipe pipe;
3973 	uint32_t tmp;
3974 
3975 	for_each_pipe(dev_priv, pipe) {
3976 		tmp = I915_READ(VLV_DDL(pipe));
3977 
3978 		wm->ddl[pipe].primary =
3979 			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3980 		wm->ddl[pipe].cursor =
3981 			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3982 		wm->ddl[pipe].sprite[0] =
3983 			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3984 		wm->ddl[pipe].sprite[1] =
3985 			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3986 	}
3987 
3988 	tmp = I915_READ(DSPFW1);
3989 	wm->sr.plane = _FW_WM(tmp, SR);
3990 	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
3991 	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
3992 	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
3993 
3994 	tmp = I915_READ(DSPFW2);
3995 	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
3996 	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
3997 	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
3998 
3999 	tmp = I915_READ(DSPFW3);
4000 	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
4001 
4002 	if (IS_CHERRYVIEW(dev_priv)) {
4003 		tmp = I915_READ(DSPFW7_CHV);
4004 		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4005 		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4006 
4007 		tmp = I915_READ(DSPFW8_CHV);
4008 		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
4009 		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
4010 
4011 		tmp = I915_READ(DSPFW9_CHV);
4012 		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
4013 		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
4014 
4015 		tmp = I915_READ(DSPHOWM);
4016 		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4017 		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
4018 		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
4019 		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
4020 		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4021 		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4022 		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4023 		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4024 		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4025 		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4026 	} else {
4027 		tmp = I915_READ(DSPFW7);
4028 		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4029 		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4030 
4031 		tmp = I915_READ(DSPHOWM);
4032 		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4033 		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4034 		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4035 		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4036 		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4037 		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4038 		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4039 	}
4040 }
4041 
4042 #undef _FW_WM
4043 #undef _FW_WM_VLV
4044 
4045 void vlv_wm_get_hw_state(struct drm_device *dev)
4046 {
4047 	struct drm_i915_private *dev_priv = to_i915(dev);
4048 	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
4049 	struct intel_plane *plane;
4050 	enum i915_pipe pipe;
4051 	u32 val;
4052 
4053 	vlv_read_wm_values(dev_priv, wm);
4054 
4055 	for_each_intel_plane(dev, plane) {
4056 		switch (plane->base.type) {
4057 			int sprite;
4058 		case DRM_PLANE_TYPE_CURSOR:
4059 			plane->wm.fifo_size = 63;
4060 			break;
4061 		case DRM_PLANE_TYPE_PRIMARY:
4062 			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
4063 			break;
4064 		case DRM_PLANE_TYPE_OVERLAY:
4065 			sprite = plane->plane;
4066 			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
4067 			break;
4068 		}
4069 	}
4070 
4071 	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
4072 	wm->level = VLV_WM_LEVEL_PM2;
4073 
4074 	if (IS_CHERRYVIEW(dev_priv)) {
4075 		mutex_lock(&dev_priv->rps.hw_lock);
4076 
4077 		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4078 		if (val & DSP_MAXFIFO_PM5_ENABLE)
4079 			wm->level = VLV_WM_LEVEL_PM5;
4080 
4081 		/*
4082 		 * If DDR DVFS is disabled in the BIOS, Punit
4083 		 * will never ack the request. So if that happens
4084 		 * assume we don't have to enable/disable DDR DVFS
4085 		 * dynamically. To test that just set the REQ_ACK
4086 		 * bit to poke the Punit, but don't change the
4087 		 * HIGH/LOW bits so that we don't actually change
4088 		 * the current state.
4089 		 */
4090 		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4091 		val |= FORCE_DDR_FREQ_REQ_ACK;
4092 		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4093 
4094 		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4095 			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4096 			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4097 				      "assuming DDR DVFS is disabled\n");
4098 			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4099 		} else {
4100 			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4101 			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4102 				wm->level = VLV_WM_LEVEL_DDR_DVFS;
4103 		}
4104 
4105 		mutex_unlock(&dev_priv->rps.hw_lock);
4106 	}
4107 
4108 	for_each_pipe(dev_priv, pipe)
4109 		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4110 			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4111 			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4112 
4113 	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4114 		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4115 }
4116 
4117 void ilk_wm_get_hw_state(struct drm_device *dev)
4118 {
4119 	struct drm_i915_private *dev_priv = dev->dev_private;
4120 	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4121 	struct drm_crtc *crtc;
4122 
4123 	for_each_crtc(dev, crtc)
4124 		ilk_pipe_wm_get_hw_state(crtc);
4125 
4126 	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4127 	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4128 	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4129 
4130 	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4131 	if (INTEL_INFO(dev)->gen >= 7) {
4132 		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4133 		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4134 	}
4135 
4136 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4137 		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4138 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4139 	else if (IS_IVYBRIDGE(dev))
4140 		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4141 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4142 
4143 	hw->enable_fbc_wm =
4144 		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4145 }
4146 
4147 /**
4148  * intel_update_watermarks - update FIFO watermark values based on current modes
4149  *
4150  * Calculate watermark values for the various WM regs based on current mode
4151  * and plane configuration.
4152  *
4153  * There are several cases to deal with here:
4154  *   - normal (i.e. non-self-refresh)
4155  *   - self-refresh (SR) mode
4156  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4157  *   - lines are small relative to FIFO size (buffer can hold more than 2
4158  *     lines), so need to account for TLB latency
4159  *
4160  *   The normal calculation is:
4161  *     watermark = dotclock * bytes per pixel * latency
4162  *   where latency is platform & configuration dependent (we assume pessimal
4163  *   values here).
4164  *
4165  *   The SR calculation is:
4166  *     watermark = (trunc(latency/line time)+1) * surface width *
4167  *       bytes per pixel
4168  *   where
4169  *     line time = htotal / dotclock
4170  *     surface width = hdisplay for normal plane and 64 for cursor
4171  *   and latency is assumed to be high, as above.
4172  *
4173  * The final value programmed to the register should always be rounded up,
4174  * and include an extra 2 entries to account for clock crossings.
4175  *
4176  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4177  * to set the non-SR watermarks to 8.
4178  */
4179 void intel_update_watermarks(struct drm_crtc *crtc)
4180 {
4181 	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4182 
4183 	if (dev_priv->display.update_wm)
4184 		dev_priv->display.update_wm(crtc);
4185 }
4186 
4187 void intel_update_sprite_watermarks(struct drm_plane *plane,
4188 				    struct drm_crtc *crtc,
4189 				    uint32_t sprite_width,
4190 				    uint32_t sprite_height,
4191 				    int pixel_size,
4192 				    bool enabled, bool scaled)
4193 {
4194 	struct drm_i915_private *dev_priv = plane->dev->dev_private;
4195 
4196 	if (dev_priv->display.update_sprite_wm)
4197 		dev_priv->display.update_sprite_wm(plane, crtc,
4198 						   sprite_width, sprite_height,
4199 						   pixel_size, enabled, scaled);
4200 }
4201 
4202 /**
4203  * Lock protecting IPS related data structures
4204  */
4205 struct lock mchdev_lock;
4206 LOCK_SYSINIT(mchdev, &mchdev_lock, "mchdev", LK_CANRECURSE);
4207 
4208 /* Global for IPS driver to get at the current i915 device. Protected by
4209  * mchdev_lock. */
4210 static struct drm_i915_private *i915_mch_dev;
4211 
4212 bool ironlake_set_drps(struct drm_device *dev, u8 val)
4213 {
4214 	struct drm_i915_private *dev_priv = dev->dev_private;
4215 	u16 rgvswctl;
4216 
4217 	assert_spin_locked(&mchdev_lock);
4218 
4219 	rgvswctl = I915_READ16(MEMSWCTL);
4220 	if (rgvswctl & MEMCTL_CMD_STS) {
4221 		DRM_DEBUG("gpu busy, RCS change rejected\n");
4222 		return false; /* still busy with another command */
4223 	}
4224 
4225 	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4226 		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4227 	I915_WRITE16(MEMSWCTL, rgvswctl);
4228 	POSTING_READ16(MEMSWCTL);
4229 
4230 	rgvswctl |= MEMCTL_CMD_STS;
4231 	I915_WRITE16(MEMSWCTL, rgvswctl);
4232 
4233 	return true;
4234 }
4235 
4236 static void ironlake_enable_drps(struct drm_device *dev)
4237 {
4238 	struct drm_i915_private *dev_priv = dev->dev_private;
4239 	u32 rgvmodectl = I915_READ(MEMMODECTL);
4240 	u8 fmax, fmin, fstart, vstart;
4241 
4242 	spin_lock_irq(&mchdev_lock);
4243 
4244 	/* Enable temp reporting */
4245 	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4246 	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4247 
4248 	/* 100ms RC evaluation intervals */
4249 	I915_WRITE(RCUPEI, 100000);
4250 	I915_WRITE(RCDNEI, 100000);
4251 
4252 	/* Set max/min thresholds to 90ms and 80ms respectively */
4253 	I915_WRITE(RCBMAXAVG, 90000);
4254 	I915_WRITE(RCBMINAVG, 80000);
4255 
4256 	I915_WRITE(MEMIHYST, 1);
4257 
4258 	/* Set up min, max, and cur for interrupt handling */
4259 	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4260 	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4261 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4262 		MEMMODE_FSTART_SHIFT;
4263 
4264 	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
4265 		PXVFREQ_PX_SHIFT;
4266 
4267 	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4268 	dev_priv->ips.fstart = fstart;
4269 
4270 	dev_priv->ips.max_delay = fstart;
4271 	dev_priv->ips.min_delay = fmin;
4272 	dev_priv->ips.cur_delay = fstart;
4273 
4274 	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4275 			 fmax, fmin, fstart);
4276 
4277 	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4278 
4279 	/*
4280 	 * Interrupts will be enabled in ironlake_irq_postinstall
4281 	 */
4282 
4283 	I915_WRITE(VIDSTART, vstart);
4284 	POSTING_READ(VIDSTART);
4285 
4286 	rgvmodectl |= MEMMODE_SWMODE_EN;
4287 	I915_WRITE(MEMMODECTL, rgvmodectl);
4288 
4289 	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4290 		DRM_ERROR("stuck trying to change perf mode\n");
4291 	mdelay(1);
4292 
4293 	ironlake_set_drps(dev, fstart);
4294 
4295 	dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
4296 		I915_READ(0x112e0);
4297 	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4298 	dev_priv->ips.last_count2 = I915_READ(0x112f4);
4299 	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4300 
4301 	spin_unlock_irq(&mchdev_lock);
4302 }
4303 
4304 static void ironlake_disable_drps(struct drm_device *dev)
4305 {
4306 	struct drm_i915_private *dev_priv = dev->dev_private;
4307 	u16 rgvswctl;
4308 
4309 	spin_lock_irq(&mchdev_lock);
4310 
4311 	rgvswctl = I915_READ16(MEMSWCTL);
4312 
4313 	/* Ack interrupts, disable EFC interrupt */
4314 	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4315 	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4316 	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4317 	I915_WRITE(DEIIR, DE_PCU_EVENT);
4318 	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4319 
4320 	/* Go back to the starting frequency */
4321 	ironlake_set_drps(dev, dev_priv->ips.fstart);
4322 	mdelay(1);
4323 	rgvswctl |= MEMCTL_CMD_STS;
4324 	I915_WRITE(MEMSWCTL, rgvswctl);
4325 	mdelay(1);
4326 
4327 	spin_unlock_irq(&mchdev_lock);
4328 }
4329 
4330 /* There's a funny hw issue where the hw returns all 0 when reading from
4331  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4332  * ourselves, instead of doing a rmw cycle (which might result in us clearing
4333  * all limits and the gpu stuck at whatever frequency it is at atm).
4334  */
4335 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4336 {
4337 	u32 limits;
4338 
4339 	/* Only set the down limit when we've reached the lowest level to avoid
4340 	 * getting more interrupts, otherwise leave this clear. This prevents a
4341 	 * race in the hw when coming out of rc6: There's a tiny window where
4342 	 * the hw runs at the minimal clock before selecting the desired
4343 	 * frequency, if the down threshold expires in that window we will not
4344 	 * receive a down interrupt. */
4345 	if (IS_GEN9(dev_priv->dev)) {
4346 		limits = (dev_priv->rps.max_freq_softlimit) << 23;
4347 		if (val <= dev_priv->rps.min_freq_softlimit)
4348 			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4349 	} else {
4350 		limits = dev_priv->rps.max_freq_softlimit << 24;
4351 		if (val <= dev_priv->rps.min_freq_softlimit)
4352 			limits |= dev_priv->rps.min_freq_softlimit << 16;
4353 	}
4354 
4355 	return limits;
4356 }
4357 
4358 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4359 {
4360 	int new_power;
4361 	u32 threshold_up = 0, threshold_down = 0; /* in % */
4362 	u32 ei_up = 0, ei_down = 0;
4363 
4364 	new_power = dev_priv->rps.power;
4365 	switch (dev_priv->rps.power) {
4366 	case LOW_POWER:
4367 		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4368 			new_power = BETWEEN;
4369 		break;
4370 
4371 	case BETWEEN:
4372 		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4373 			new_power = LOW_POWER;
4374 		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4375 			new_power = HIGH_POWER;
4376 		break;
4377 
4378 	case HIGH_POWER:
4379 		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4380 			new_power = BETWEEN;
4381 		break;
4382 	}
4383 	/* Max/min bins are special */
4384 	if (val <= dev_priv->rps.min_freq_softlimit)
4385 		new_power = LOW_POWER;
4386 	if (val >= dev_priv->rps.max_freq_softlimit)
4387 		new_power = HIGH_POWER;
4388 	if (new_power == dev_priv->rps.power)
4389 		return;
4390 
4391 	/* Note the units here are not exactly 1us, but 1280ns. */
4392 	switch (new_power) {
4393 	case LOW_POWER:
4394 		/* Upclock if more than 95% busy over 16ms */
4395 		ei_up = 16000;
4396 		threshold_up = 95;
4397 
4398 		/* Downclock if less than 85% busy over 32ms */
4399 		ei_down = 32000;
4400 		threshold_down = 85;
4401 		break;
4402 
4403 	case BETWEEN:
4404 		/* Upclock if more than 90% busy over 13ms */
4405 		ei_up = 13000;
4406 		threshold_up = 90;
4407 
4408 		/* Downclock if less than 75% busy over 32ms */
4409 		ei_down = 32000;
4410 		threshold_down = 75;
4411 		break;
4412 
4413 	case HIGH_POWER:
4414 		/* Upclock if more than 85% busy over 10ms */
4415 		ei_up = 10000;
4416 		threshold_up = 85;
4417 
4418 		/* Downclock if less than 60% busy over 32ms */
4419 		ei_down = 32000;
4420 		threshold_down = 60;
4421 		break;
4422 	}
4423 
4424 	I915_WRITE(GEN6_RP_UP_EI,
4425 		GT_INTERVAL_FROM_US(dev_priv, ei_up));
4426 	I915_WRITE(GEN6_RP_UP_THRESHOLD,
4427 		GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
4428 
4429 	I915_WRITE(GEN6_RP_DOWN_EI,
4430 		GT_INTERVAL_FROM_US(dev_priv, ei_down));
4431 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4432 		GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
4433 
4434 	 I915_WRITE(GEN6_RP_CONTROL,
4435 		    GEN6_RP_MEDIA_TURBO |
4436 		    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4437 		    GEN6_RP_MEDIA_IS_GFX |
4438 		    GEN6_RP_ENABLE |
4439 		    GEN6_RP_UP_BUSY_AVG |
4440 		    GEN6_RP_DOWN_IDLE_AVG);
4441 
4442 	dev_priv->rps.power = new_power;
4443 	dev_priv->rps.up_threshold = threshold_up;
4444 	dev_priv->rps.down_threshold = threshold_down;
4445 	dev_priv->rps.last_adj = 0;
4446 }
4447 
4448 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4449 {
4450 	u32 mask = 0;
4451 
4452 	if (val > dev_priv->rps.min_freq_softlimit)
4453 		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4454 	if (val < dev_priv->rps.max_freq_softlimit)
4455 		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4456 
4457 	mask &= dev_priv->pm_rps_events;
4458 
4459 	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4460 }
4461 
4462 /* gen6_set_rps is called to update the frequency request, but should also be
4463  * called when the range (min_delay and max_delay) is modified so that we can
4464  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4465 static void gen6_set_rps(struct drm_device *dev, u8 val)
4466 {
4467 	struct drm_i915_private *dev_priv = dev->dev_private;
4468 
4469 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4470 	WARN_ON(val > dev_priv->rps.max_freq);
4471 	WARN_ON(val < dev_priv->rps.min_freq);
4472 
4473 	/* min/max delay may still have been modified so be sure to
4474 	 * write the limits value.
4475 	 */
4476 	if (val != dev_priv->rps.cur_freq) {
4477 		gen6_set_rps_thresholds(dev_priv, val);
4478 
4479 		if (IS_GEN9(dev))
4480 			I915_WRITE(GEN6_RPNSWREQ,
4481 				   GEN9_FREQUENCY(val));
4482 		else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4483 			I915_WRITE(GEN6_RPNSWREQ,
4484 				   HSW_FREQUENCY(val));
4485 		else
4486 			I915_WRITE(GEN6_RPNSWREQ,
4487 				   GEN6_FREQUENCY(val) |
4488 				   GEN6_OFFSET(0) |
4489 				   GEN6_AGGRESSIVE_TURBO);
4490 	}
4491 
4492 	/* Make sure we continue to get interrupts
4493 	 * until we hit the minimum or maximum frequencies.
4494 	 */
4495 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4496 	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4497 
4498 	POSTING_READ(GEN6_RPNSWREQ);
4499 
4500 	dev_priv->rps.cur_freq = val;
4501 	trace_intel_gpu_freq_change(val * 50);
4502 }
4503 
4504 static void valleyview_set_rps(struct drm_device *dev, u8 val)
4505 {
4506 	struct drm_i915_private *dev_priv = dev->dev_private;
4507 
4508 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4509 	WARN_ON(val > dev_priv->rps.max_freq);
4510 	WARN_ON(val < dev_priv->rps.min_freq);
4511 
4512 	if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
4513 		      "Odd GPU freq value\n"))
4514 		val &= ~1;
4515 
4516 	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4517 
4518 	if (val != dev_priv->rps.cur_freq) {
4519 		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4520 		if (!IS_CHERRYVIEW(dev_priv))
4521 			gen6_set_rps_thresholds(dev_priv, val);
4522 	}
4523 
4524 	dev_priv->rps.cur_freq = val;
4525 	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4526 }
4527 
4528 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4529  *
4530  * * If Gfx is Idle, then
4531  * 1. Forcewake Media well.
4532  * 2. Request idle freq.
4533  * 3. Release Forcewake of Media well.
4534 */
4535 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4536 {
4537 	u32 val = dev_priv->rps.idle_freq;
4538 
4539 	if (dev_priv->rps.cur_freq <= val)
4540 		return;
4541 
4542 	/* Wake up the media well, as that takes a lot less
4543 	 * power than the Render well. */
4544 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4545 	valleyview_set_rps(dev_priv->dev, val);
4546 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4547 }
4548 
4549 void gen6_rps_busy(struct drm_i915_private *dev_priv)
4550 {
4551 	mutex_lock(&dev_priv->rps.hw_lock);
4552 	if (dev_priv->rps.enabled) {
4553 		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
4554 			gen6_rps_reset_ei(dev_priv);
4555 		I915_WRITE(GEN6_PMINTRMSK,
4556 			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4557 	}
4558 	mutex_unlock(&dev_priv->rps.hw_lock);
4559 }
4560 
4561 void gen6_rps_idle(struct drm_i915_private *dev_priv)
4562 {
4563 	struct drm_device *dev = dev_priv->dev;
4564 
4565 	mutex_lock(&dev_priv->rps.hw_lock);
4566 	if (dev_priv->rps.enabled) {
4567 		if (IS_VALLEYVIEW(dev))
4568 			vlv_set_rps_idle(dev_priv);
4569 		else
4570 			gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4571 		dev_priv->rps.last_adj = 0;
4572 		I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4573 	}
4574 	mutex_unlock(&dev_priv->rps.hw_lock);
4575 
4576 	lockmgr(&dev_priv->rps.client_lock, LK_EXCLUSIVE);
4577 	while (!list_empty(&dev_priv->rps.clients))
4578 		list_del_init(dev_priv->rps.clients.next);
4579 	lockmgr(&dev_priv->rps.client_lock, LK_RELEASE);
4580 }
4581 
4582 void gen6_rps_boost(struct drm_i915_private *dev_priv,
4583 		    struct intel_rps_client *rps,
4584 		    unsigned long submitted)
4585 {
4586 	/* This is intentionally racy! We peek at the state here, then
4587 	 * validate inside the RPS worker.
4588 	 */
4589 	if (!(dev_priv->mm.busy &&
4590 	      dev_priv->rps.enabled &&
4591 	      dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
4592 		return;
4593 
4594 	/* Force a RPS boost (and don't count it against the client) if
4595 	 * the GPU is severely congested.
4596 	 */
4597 	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4598 		rps = NULL;
4599 
4600 	lockmgr(&dev_priv->rps.client_lock, LK_EXCLUSIVE);
4601 	if (rps == NULL || list_empty(&rps->link)) {
4602 		spin_lock_irq(&dev_priv->irq_lock);
4603 		if (dev_priv->rps.interrupts_enabled) {
4604 			dev_priv->rps.client_boost = true;
4605 			queue_work(dev_priv->wq, &dev_priv->rps.work);
4606 		}
4607 		spin_unlock_irq(&dev_priv->irq_lock);
4608 
4609 		if (rps != NULL) {
4610 			list_add(&rps->link, &dev_priv->rps.clients);
4611 			rps->boosts++;
4612 		} else
4613 			dev_priv->rps.boosts++;
4614 	}
4615 	lockmgr(&dev_priv->rps.client_lock, LK_RELEASE);
4616 }
4617 
4618 void intel_set_rps(struct drm_device *dev, u8 val)
4619 {
4620 	if (IS_VALLEYVIEW(dev))
4621 		valleyview_set_rps(dev, val);
4622 	else
4623 		gen6_set_rps(dev, val);
4624 }
4625 
4626 static void gen9_disable_rps(struct drm_device *dev)
4627 {
4628 	struct drm_i915_private *dev_priv = dev->dev_private;
4629 
4630 	I915_WRITE(GEN6_RC_CONTROL, 0);
4631 	I915_WRITE(GEN9_PG_ENABLE, 0);
4632 }
4633 
4634 static void gen6_disable_rps(struct drm_device *dev)
4635 {
4636 	struct drm_i915_private *dev_priv = dev->dev_private;
4637 
4638 	I915_WRITE(GEN6_RC_CONTROL, 0);
4639 	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4640 }
4641 
4642 static void cherryview_disable_rps(struct drm_device *dev)
4643 {
4644 	struct drm_i915_private *dev_priv = dev->dev_private;
4645 
4646 	I915_WRITE(GEN6_RC_CONTROL, 0);
4647 }
4648 
4649 static void valleyview_disable_rps(struct drm_device *dev)
4650 {
4651 	struct drm_i915_private *dev_priv = dev->dev_private;
4652 
4653 	/* we're doing forcewake before Disabling RC6,
4654 	 * This what the BIOS expects when going into suspend */
4655 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4656 
4657 	I915_WRITE(GEN6_RC_CONTROL, 0);
4658 
4659 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4660 }
4661 
4662 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
4663 {
4664 	if (IS_VALLEYVIEW(dev)) {
4665 		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4666 			mode = GEN6_RC_CTL_RC6_ENABLE;
4667 		else
4668 			mode = 0;
4669 	}
4670 	if (HAS_RC6p(dev))
4671 		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4672 			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
4673 			      (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
4674 			      (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
4675 
4676 	else
4677 		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4678 			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
4679 }
4680 
4681 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4682 {
4683 	/* No RC6 before Ironlake and code is gone for ilk. */
4684 	if (INTEL_INFO(dev)->gen < 6)
4685 		return 0;
4686 
4687 	/* Respect the kernel parameter if it is set */
4688 	if (enable_rc6 >= 0) {
4689 		int mask;
4690 
4691 		if (HAS_RC6p(dev))
4692 			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
4693 			       INTEL_RC6pp_ENABLE;
4694 		else
4695 			mask = INTEL_RC6_ENABLE;
4696 
4697 		if ((enable_rc6 & mask) != enable_rc6)
4698 			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
4699 				      enable_rc6 & mask, enable_rc6, mask);
4700 
4701 		return enable_rc6 & mask;
4702 	}
4703 
4704 	if (IS_IVYBRIDGE(dev))
4705 		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4706 
4707 	return INTEL_RC6_ENABLE;
4708 }
4709 
4710 int intel_enable_rc6(const struct drm_device *dev)
4711 {
4712 	return i915.enable_rc6;
4713 }
4714 
4715 static void gen6_init_rps_frequencies(struct drm_device *dev)
4716 {
4717 	struct drm_i915_private *dev_priv = dev->dev_private;
4718 	uint32_t rp_state_cap;
4719 	u32 ddcc_status = 0;
4720 	int ret;
4721 
4722 	/* All of these values are in units of 50MHz */
4723 	dev_priv->rps.cur_freq		= 0;
4724 	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
4725 	if (IS_BROXTON(dev)) {
4726 		rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
4727 		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
4728 		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4729 		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
4730 	} else {
4731 		rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4732 		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
4733 		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4734 		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
4735 	}
4736 
4737 	/* hw_max = RP0 until we check for overclocking */
4738 	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;
4739 
4740 	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4741 	if (IS_HASWELL(dev) || IS_BROADWELL(dev) || IS_SKYLAKE(dev)) {
4742 		ret = sandybridge_pcode_read(dev_priv,
4743 					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4744 					&ddcc_status);
4745 		if (0 == ret)
4746 			dev_priv->rps.efficient_freq =
4747 				clamp_t(u8,
4748 					((ddcc_status >> 8) & 0xff),
4749 					dev_priv->rps.min_freq,
4750 					dev_priv->rps.max_freq);
4751 	}
4752 
4753 	if (IS_SKYLAKE(dev)) {
4754 		/* Store the frequency values in 16.66 MHZ units, which is
4755 		   the natural hardware unit for SKL */
4756 		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
4757 		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
4758 		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
4759 		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
4760 		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
4761 	}
4762 
4763 	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4764 
4765 	/* Preserve min/max settings in case of re-init */
4766 	if (dev_priv->rps.max_freq_softlimit == 0)
4767 		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4768 
4769 	if (dev_priv->rps.min_freq_softlimit == 0) {
4770 		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4771 			dev_priv->rps.min_freq_softlimit =
4772 				max_t(int, dev_priv->rps.efficient_freq,
4773 				      intel_freq_opcode(dev_priv, 450));
4774 		else
4775 			dev_priv->rps.min_freq_softlimit =
4776 				dev_priv->rps.min_freq;
4777 	}
4778 }
4779 
4780 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
4781 static void gen9_enable_rps(struct drm_device *dev)
4782 {
4783 	struct drm_i915_private *dev_priv = dev->dev_private;
4784 
4785 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4786 
4787 	gen6_init_rps_frequencies(dev);
4788 
4789 	/* Program defaults and thresholds for RPS*/
4790 	I915_WRITE(GEN6_RC_VIDEO_FREQ,
4791 		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
4792 
4793 	/* 1 second timeout*/
4794 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
4795 		GT_INTERVAL_FROM_US(dev_priv, 1000000));
4796 
4797 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
4798 
4799 	/* Leaning on the below call to gen6_set_rps to program/setup the
4800 	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
4801 	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
4802 	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4803 	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4804 
4805 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4806 }
4807 
4808 static void gen9_enable_rc6(struct drm_device *dev)
4809 {
4810 	struct drm_i915_private *dev_priv = dev->dev_private;
4811 	struct intel_engine_cs *ring;
4812 	uint32_t rc6_mask = 0;
4813 	int unused;
4814 
4815 	/* 1a: Software RC state - RC0 */
4816 	I915_WRITE(GEN6_RC_STATE, 0);
4817 
4818 	/* 1b: Get forcewake during program sequence. Although the driver
4819 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4820 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4821 
4822 	/* 2a: Disable RC states. */
4823 	I915_WRITE(GEN6_RC_CONTROL, 0);
4824 
4825 	/* 2b: Program RC6 thresholds.*/
4826 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
4827 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4828 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4829 	for_each_ring(ring, dev_priv, unused)
4830 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4831 	I915_WRITE(GEN6_RC_SLEEP, 0);
4832 	I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4833 
4834 	/* 2c: Program Coarse Power Gating Policies. */
4835 	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
4836 	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
4837 
4838 	/* 3a: Enable RC6 */
4839 	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4840 		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4841 	DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4842 			"on" : "off");
4843 	I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4844 				   GEN6_RC_CTL_EI_MODE(1) |
4845 				   rc6_mask);
4846 
4847 	/*
4848 	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4849 	 * WaDisableRenderPowerGating:skl,bxt - Render PG need to be disabled with RC6.
4850 	 */
4851 	I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4852 			GEN9_MEDIA_PG_ENABLE : 0);
4853 
4854 
4855 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4856 
4857 }
4858 
4859 static void gen8_enable_rps(struct drm_device *dev)
4860 {
4861 	struct drm_i915_private *dev_priv = dev->dev_private;
4862 	struct intel_engine_cs *ring;
4863 	uint32_t rc6_mask = 0;
4864 	int unused;
4865 
4866 	/* 1a: Software RC state - RC0 */
4867 	I915_WRITE(GEN6_RC_STATE, 0);
4868 
4869 	/* 1c & 1d: Get forcewake during program sequence. Although the driver
4870 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4871 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4872 
4873 	/* 2a: Disable RC states. */
4874 	I915_WRITE(GEN6_RC_CONTROL, 0);
4875 
4876 	/* Initialize rps frequencies */
4877 	gen6_init_rps_frequencies(dev);
4878 
4879 	/* 2b: Program RC6 thresholds.*/
4880 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4881 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4882 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4883 	for_each_ring(ring, dev_priv, unused)
4884 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4885 	I915_WRITE(GEN6_RC_SLEEP, 0);
4886 	if (IS_BROADWELL(dev))
4887 		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4888 	else
4889 		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4890 
4891 	/* 3: Enable RC6 */
4892 	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4893 		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4894 	intel_print_rc6_info(dev, rc6_mask);
4895 	if (IS_BROADWELL(dev))
4896 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4897 				GEN7_RC_CTL_TO_MODE |
4898 				rc6_mask);
4899 	else
4900 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4901 				GEN6_RC_CTL_EI_MODE(1) |
4902 				rc6_mask);
4903 
4904 	/* 4 Program defaults and thresholds for RPS*/
4905 	I915_WRITE(GEN6_RPNSWREQ,
4906 		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4907 	I915_WRITE(GEN6_RC_VIDEO_FREQ,
4908 		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4909 	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4910 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4911 
4912 	/* Docs recommend 900MHz, and 300 MHz respectively */
4913 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
4914 		   dev_priv->rps.max_freq_softlimit << 24 |
4915 		   dev_priv->rps.min_freq_softlimit << 16);
4916 
4917 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4918 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4919 	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4920 	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4921 
4922 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4923 
4924 	/* 5: Enable RPS */
4925 	I915_WRITE(GEN6_RP_CONTROL,
4926 		   GEN6_RP_MEDIA_TURBO |
4927 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
4928 		   GEN6_RP_MEDIA_IS_GFX |
4929 		   GEN6_RP_ENABLE |
4930 		   GEN6_RP_UP_BUSY_AVG |
4931 		   GEN6_RP_DOWN_IDLE_AVG);
4932 
4933 	/* 6: Ring frequency + overclocking (our driver does this later */
4934 
4935 	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4936 	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4937 
4938 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4939 }
4940 
4941 static void gen6_enable_rps(struct drm_device *dev)
4942 {
4943 	struct drm_i915_private *dev_priv = dev->dev_private;
4944 	struct intel_engine_cs *ring;
4945 	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4946 	u32 gtfifodbg;
4947 	int rc6_mode;
4948 	int i, ret;
4949 
4950 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4951 
4952 	/* Here begins a magic sequence of register writes to enable
4953 	 * auto-downclocking.
4954 	 *
4955 	 * Perhaps there might be some value in exposing these to
4956 	 * userspace...
4957 	 */
4958 	I915_WRITE(GEN6_RC_STATE, 0);
4959 
4960 	/* Clear the DBG now so we don't confuse earlier errors */
4961 	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4962 		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
4963 		I915_WRITE(GTFIFODBG, gtfifodbg);
4964 	}
4965 
4966 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4967 
4968 	/* Initialize rps frequencies */
4969 	gen6_init_rps_frequencies(dev);
4970 
4971 	/* disable the counters and set deterministic thresholds */
4972 	I915_WRITE(GEN6_RC_CONTROL, 0);
4973 
4974 	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
4975 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
4976 	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
4977 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4978 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4979 
4980 	for_each_ring(ring, dev_priv, i)
4981 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4982 
4983 	I915_WRITE(GEN6_RC_SLEEP, 0);
4984 	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4985 	if (IS_IVYBRIDGE(dev))
4986 		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
4987 	else
4988 		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4989 	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4990 	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
4991 
4992 	/* Check if we are enabling RC6 */
4993 	rc6_mode = intel_enable_rc6(dev_priv->dev);
4994 	if (rc6_mode & INTEL_RC6_ENABLE)
4995 		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
4996 
4997 	/* We don't use those on Haswell */
4998 	if (!IS_HASWELL(dev)) {
4999 		if (rc6_mode & INTEL_RC6p_ENABLE)
5000 			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5001 
5002 		if (rc6_mode & INTEL_RC6pp_ENABLE)
5003 			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
5004 	}
5005 
5006 	intel_print_rc6_info(dev, rc6_mask);
5007 
5008 	I915_WRITE(GEN6_RC_CONTROL,
5009 		   rc6_mask |
5010 		   GEN6_RC_CTL_EI_MODE(1) |
5011 		   GEN6_RC_CTL_HW_ENABLE);
5012 
5013 	/* Power down if completely idle for over 50ms */
5014 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5015 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5016 
5017 	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5018 	if (ret)
5019 		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5020 
5021 	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
5022 	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
5023 		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5024 				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
5025 				 (pcu_mbox & 0xff) * 50);
5026 		dev_priv->rps.max_freq = pcu_mbox & 0xff;
5027 	}
5028 
5029 	dev_priv->rps.power = HIGH_POWER; /* force a reset */
5030 	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
5031 
5032 	rc6vids = 0;
5033 	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5034 	if (IS_GEN6(dev) && ret) {
5035 		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5036 	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5037 		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5038 			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5039 		rc6vids &= 0xffff00;
5040 		rc6vids |= GEN6_ENCODE_RC6_VID(450);
5041 		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5042 		if (ret)
5043 			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5044 	}
5045 
5046 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5047 }
5048 
5049 static void __gen6_update_ring_freq(struct drm_device *dev)
5050 {
5051 	struct drm_i915_private *dev_priv = dev->dev_private;
5052 	int min_freq = 15;
5053 	unsigned int gpu_freq;
5054 	unsigned int max_ia_freq, min_ring_freq;
5055 	unsigned int max_gpu_freq, min_gpu_freq;
5056 	int scaling_factor = 180;
5057 
5058 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5059 
5060 #if 0
5061 	policy = cpufreq_cpu_get(0);
5062 	if (policy) {
5063 		max_ia_freq = policy->cpuinfo.max_freq;
5064 		cpufreq_cpu_put(policy);
5065 	} else {
5066 		/*
5067 		 * Default to measured freq if none found, PCU will ensure we
5068 		 * don't go over
5069 		 */
5070 		max_ia_freq = tsc_khz;
5071 	}
5072 #else
5073 	max_ia_freq = tsc_frequency / 1000;
5074 #endif
5075 
5076 	/* Convert from kHz to MHz */
5077 	max_ia_freq /= 1000;
5078 
5079 	min_ring_freq = I915_READ(DCLK) & 0xf;
5080 	/* convert DDR frequency from units of 266.6MHz to bandwidth */
5081 	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5082 
5083 	if (IS_SKYLAKE(dev)) {
5084 		/* Convert GT frequency to 50 HZ units */
5085 		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5086 		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5087 	} else {
5088 		min_gpu_freq = dev_priv->rps.min_freq;
5089 		max_gpu_freq = dev_priv->rps.max_freq;
5090 	}
5091 
5092 	/*
5093 	 * For each potential GPU frequency, load a ring frequency we'd like
5094 	 * to use for memory access.  We do this by specifying the IA frequency
5095 	 * the PCU should use as a reference to determine the ring frequency.
5096 	 */
5097 	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5098 		int diff = max_gpu_freq - gpu_freq;
5099 		unsigned int ia_freq = 0, ring_freq = 0;
5100 
5101 		if (IS_SKYLAKE(dev)) {
5102 			/*
5103 			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
5104 			 * No floor required for ring frequency on SKL.
5105 			 */
5106 			ring_freq = gpu_freq;
5107 		} else if (INTEL_INFO(dev)->gen >= 8) {
5108 			/* max(2 * GT, DDR). NB: GT is 50MHz units */
5109 			ring_freq = max(min_ring_freq, gpu_freq);
5110 		} else if (IS_HASWELL(dev)) {
5111 			ring_freq = mult_frac(gpu_freq, 5, 4);
5112 			ring_freq = max(min_ring_freq, ring_freq);
5113 			/* leave ia_freq as the default, chosen by cpufreq */
5114 		} else {
5115 			/* On older processors, there is no separate ring
5116 			 * clock domain, so in order to boost the bandwidth
5117 			 * of the ring, we need to upclock the CPU (ia_freq).
5118 			 *
5119 			 * For GPU frequencies less than 750MHz,
5120 			 * just use the lowest ring freq.
5121 			 */
5122 			if (gpu_freq < min_freq)
5123 				ia_freq = 800;
5124 			else
5125 				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5126 			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5127 		}
5128 
5129 		sandybridge_pcode_write(dev_priv,
5130 					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5131 					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5132 					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5133 					gpu_freq);
5134 	}
5135 }
5136 
5137 void gen6_update_ring_freq(struct drm_device *dev)
5138 {
5139 	struct drm_i915_private *dev_priv = dev->dev_private;
5140 
5141 	if (!HAS_CORE_RING_FREQ(dev))
5142 		return;
5143 
5144 	mutex_lock(&dev_priv->rps.hw_lock);
5145 	__gen6_update_ring_freq(dev);
5146 	mutex_unlock(&dev_priv->rps.hw_lock);
5147 }
5148 
5149 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5150 {
5151 	struct drm_device *dev = dev_priv->dev;
5152 	u32 val, rp0;
5153 
5154 	if (dev->pdev->revision >= 0x20) {
5155 		val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5156 
5157 		switch (INTEL_INFO(dev)->eu_total) {
5158 		case 8:
5159 				/* (2 * 4) config */
5160 				rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5161 				break;
5162 		case 12:
5163 				/* (2 * 6) config */
5164 				rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5165 				break;
5166 		case 16:
5167 				/* (2 * 8) config */
5168 		default:
5169 				/* Setting (2 * 8) Min RP0 for any other combination */
5170 				rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5171 				break;
5172 		}
5173 		rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5174 	} else {
5175 		/* For pre-production hardware */
5176 		val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
5177 		rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
5178 		       PUNIT_GPU_STATUS_MAX_FREQ_MASK;
5179 	}
5180 	return rp0;
5181 }
5182 
5183 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5184 {
5185 	u32 val, rpe;
5186 
5187 	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5188 	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5189 
5190 	return rpe;
5191 }
5192 
5193 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5194 {
5195 	struct drm_device *dev = dev_priv->dev;
5196 	u32 val, rp1;
5197 
5198 	if (dev->pdev->revision >= 0x20) {
5199 		val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5200 		rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5201 	} else {
5202 		/* For pre-production hardware */
5203 		val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5204 		rp1 = ((val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
5205 		       PUNIT_GPU_STATUS_MAX_FREQ_MASK);
5206 	}
5207 	return rp1;
5208 }
5209 
5210 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5211 {
5212 	u32 val, rp1;
5213 
5214 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5215 
5216 	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5217 
5218 	return rp1;
5219 }
5220 
5221 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5222 {
5223 	u32 val, rp0;
5224 
5225 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5226 
5227 	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5228 	/* Clamp to max */
5229 	rp0 = min_t(u32, rp0, 0xea);
5230 
5231 	return rp0;
5232 }
5233 
5234 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5235 {
5236 	u32 val, rpe;
5237 
5238 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5239 	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5240 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5241 	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5242 
5243 	return rpe;
5244 }
5245 
5246 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5247 {
5248 	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5249 }
5250 
5251 /* Check that the pctx buffer wasn't move under us. */
5252 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5253 {
5254 	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5255 
5256 	/* DragonFly - if EDID fails vlv_pctx can wind up NULL */
5257 	if (WARN_ON(!dev_priv->vlv_pctx))
5258 		return;
5259 
5260 	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5261 			     dev_priv->vlv_pctx->stolen->start);
5262 }
5263 
5264 
5265 /* Check that the pcbr address is not empty. */
5266 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5267 {
5268 	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5269 
5270 	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5271 }
5272 
5273 static void cherryview_setup_pctx(struct drm_device *dev)
5274 {
5275 	struct drm_i915_private *dev_priv = dev->dev_private;
5276 	unsigned long pctx_paddr, paddr;
5277 	struct i915_gtt *gtt = &dev_priv->gtt;
5278 	u32 pcbr;
5279 	int pctx_size = 32*1024;
5280 
5281 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5282 
5283 	pcbr = I915_READ(VLV_PCBR);
5284 	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5285 		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5286 		paddr = (dev_priv->mm.stolen_base +
5287 			 (gtt->stolen_size - pctx_size));
5288 
5289 		pctx_paddr = (paddr & (~4095));
5290 		I915_WRITE(VLV_PCBR, pctx_paddr);
5291 	}
5292 
5293 	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5294 }
5295 
5296 static void valleyview_setup_pctx(struct drm_device *dev)
5297 {
5298 	struct drm_i915_private *dev_priv = dev->dev_private;
5299 	struct drm_i915_gem_object *pctx;
5300 	unsigned long pctx_paddr;
5301 	u32 pcbr;
5302 	int pctx_size = 24*1024;
5303 
5304 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5305 
5306 	pcbr = I915_READ(VLV_PCBR);
5307 	if (pcbr) {
5308 		/* BIOS set it up already, grab the pre-alloc'd space */
5309 		int pcbr_offset;
5310 
5311 		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5312 		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
5313 								      pcbr_offset,
5314 								      I915_GTT_OFFSET_NONE,
5315 								      pctx_size);
5316 		goto out;
5317 	}
5318 
5319 	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5320 
5321 	/*
5322 	 * From the Gunit register HAS:
5323 	 * The Gfx driver is expected to program this register and ensure
5324 	 * proper allocation within Gfx stolen memory.  For example, this
5325 	 * register should be programmed such than the PCBR range does not
5326 	 * overlap with other ranges, such as the frame buffer, protected
5327 	 * memory, or any other relevant ranges.
5328 	 */
5329 	pctx = i915_gem_object_create_stolen(dev, pctx_size);
5330 	if (!pctx) {
5331 		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5332 		return;
5333 	}
5334 
5335 	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5336 	I915_WRITE(VLV_PCBR, pctx_paddr);
5337 
5338 out:
5339 	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5340 	dev_priv->vlv_pctx = pctx;
5341 }
5342 
5343 static void valleyview_cleanup_pctx(struct drm_device *dev)
5344 {
5345 	struct drm_i915_private *dev_priv = dev->dev_private;
5346 
5347 	if (WARN_ON(!dev_priv->vlv_pctx))
5348 		return;
5349 
5350 	drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
5351 	dev_priv->vlv_pctx = NULL;
5352 }
5353 
5354 static void valleyview_init_gt_powersave(struct drm_device *dev)
5355 {
5356 	struct drm_i915_private *dev_priv = dev->dev_private;
5357 	u32 val;
5358 
5359 	valleyview_setup_pctx(dev);
5360 
5361 	mutex_lock(&dev_priv->rps.hw_lock);
5362 
5363 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5364 	switch ((val >> 6) & 3) {
5365 	case 0:
5366 	case 1:
5367 		dev_priv->mem_freq = 800;
5368 		break;
5369 	case 2:
5370 		dev_priv->mem_freq = 1066;
5371 		break;
5372 	case 3:
5373 		dev_priv->mem_freq = 1333;
5374 		break;
5375 	}
5376 	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5377 
5378 	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5379 	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5380 	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5381 			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5382 			 dev_priv->rps.max_freq);
5383 
5384 	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5385 	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5386 			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5387 			 dev_priv->rps.efficient_freq);
5388 
5389 	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5390 	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5391 			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5392 			 dev_priv->rps.rp1_freq);
5393 
5394 	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5395 	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5396 			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5397 			 dev_priv->rps.min_freq);
5398 
5399 	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5400 
5401 	/* Preserve min/max settings in case of re-init */
5402 	if (dev_priv->rps.max_freq_softlimit == 0)
5403 		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5404 
5405 	if (dev_priv->rps.min_freq_softlimit == 0)
5406 		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5407 
5408 	mutex_unlock(&dev_priv->rps.hw_lock);
5409 }
5410 
5411 static void cherryview_init_gt_powersave(struct drm_device *dev)
5412 {
5413 	struct drm_i915_private *dev_priv = dev->dev_private;
5414 	u32 val;
5415 
5416 	cherryview_setup_pctx(dev);
5417 
5418 	mutex_lock(&dev_priv->rps.hw_lock);
5419 
5420 	mutex_lock(&dev_priv->sb_lock);
5421 	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5422 	mutex_unlock(&dev_priv->sb_lock);
5423 
5424 	switch ((val >> 2) & 0x7) {
5425 	case 0:
5426 	case 1:
5427 		dev_priv->rps.cz_freq = 200;
5428 		dev_priv->mem_freq = 1600;
5429 		break;
5430 	case 2:
5431 		dev_priv->rps.cz_freq = 267;
5432 		dev_priv->mem_freq = 1600;
5433 		break;
5434 	case 3:
5435 		dev_priv->rps.cz_freq = 333;
5436 		dev_priv->mem_freq = 2000;
5437 		break;
5438 	case 4:
5439 		dev_priv->rps.cz_freq = 320;
5440 		dev_priv->mem_freq = 1600;
5441 		break;
5442 	case 5:
5443 		dev_priv->rps.cz_freq = 400;
5444 		dev_priv->mem_freq = 1600;
5445 		break;
5446 	}
5447 	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5448 
5449 	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5450 	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5451 	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5452 			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5453 			 dev_priv->rps.max_freq);
5454 
5455 	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5456 	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5457 			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5458 			 dev_priv->rps.efficient_freq);
5459 
5460 	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5461 	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5462 			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5463 			 dev_priv->rps.rp1_freq);
5464 
5465 	/* PUnit validated range is only [RPe, RP0] */
5466 	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5467 	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5468 			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5469 			 dev_priv->rps.min_freq);
5470 
5471 	WARN_ONCE((dev_priv->rps.max_freq |
5472 		   dev_priv->rps.efficient_freq |
5473 		   dev_priv->rps.rp1_freq |
5474 		   dev_priv->rps.min_freq) & 1,
5475 		  "Odd GPU freq values\n");
5476 
5477 	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5478 
5479 	/* Preserve min/max settings in case of re-init */
5480 	if (dev_priv->rps.max_freq_softlimit == 0)
5481 		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5482 
5483 	if (dev_priv->rps.min_freq_softlimit == 0)
5484 		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5485 
5486 	mutex_unlock(&dev_priv->rps.hw_lock);
5487 }
5488 
5489 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
5490 {
5491 	valleyview_cleanup_pctx(dev);
5492 }
5493 
5494 static void cherryview_enable_rps(struct drm_device *dev)
5495 {
5496 	struct drm_i915_private *dev_priv = dev->dev_private;
5497 	struct intel_engine_cs *ring;
5498 	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5499 	int i;
5500 
5501 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5502 
5503 	gtfifodbg = I915_READ(GTFIFODBG);
5504 	if (gtfifodbg) {
5505 		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5506 				 gtfifodbg);
5507 		I915_WRITE(GTFIFODBG, gtfifodbg);
5508 	}
5509 
5510 	cherryview_check_pctx(dev_priv);
5511 
5512 	/* 1a & 1b: Get forcewake during program sequence. Although the driver
5513 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5514 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5515 
5516 	/*  Disable RC states. */
5517 	I915_WRITE(GEN6_RC_CONTROL, 0);
5518 
5519 	/* 2a: Program RC6 thresholds.*/
5520 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5521 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5522 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5523 
5524 	for_each_ring(ring, dev_priv, i)
5525 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5526 	I915_WRITE(GEN6_RC_SLEEP, 0);
5527 
5528 	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5529 	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5530 
5531 	/* allows RC6 residency counter to work */
5532 	I915_WRITE(VLV_COUNTER_CONTROL,
5533 		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5534 				      VLV_MEDIA_RC6_COUNT_EN |
5535 				      VLV_RENDER_RC6_COUNT_EN));
5536 
5537 	/* For now we assume BIOS is allocating and populating the PCBR  */
5538 	pcbr = I915_READ(VLV_PCBR);
5539 
5540 	/* 3: Enable RC6 */
5541 	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
5542 						(pcbr >> VLV_PCBR_ADDR_SHIFT))
5543 		rc6_mode = GEN7_RC_CTL_TO_MODE;
5544 
5545 	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5546 
5547 	/* 4 Program defaults and thresholds for RPS*/
5548 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5549 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5550 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5551 	I915_WRITE(GEN6_RP_UP_EI, 66000);
5552 	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5553 
5554 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5555 
5556 	/* 5: Enable RPS */
5557 	I915_WRITE(GEN6_RP_CONTROL,
5558 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5559 		   GEN6_RP_MEDIA_IS_GFX |
5560 		   GEN6_RP_ENABLE |
5561 		   GEN6_RP_UP_BUSY_AVG |
5562 		   GEN6_RP_DOWN_IDLE_AVG);
5563 
5564 	/* Setting Fixed Bias */
5565 	val = VLV_OVERRIDE_EN |
5566 		  VLV_SOC_TDP_EN |
5567 		  CHV_BIAS_CPU_50_SOC_50;
5568 	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5569 
5570 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5571 
5572 	/* RPS code assumes GPLL is used */
5573 	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5574 
5575 	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
5576 	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5577 
5578 	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5579 	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5580 			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5581 			 dev_priv->rps.cur_freq);
5582 
5583 	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5584 			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5585 			 dev_priv->rps.efficient_freq);
5586 
5587 	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5588 
5589 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5590 }
5591 
5592 static void valleyview_enable_rps(struct drm_device *dev)
5593 {
5594 	struct drm_i915_private *dev_priv = dev->dev_private;
5595 	struct intel_engine_cs *ring;
5596 	u32 gtfifodbg, val, rc6_mode = 0;
5597 	int i;
5598 
5599 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5600 
5601 	valleyview_check_pctx(dev_priv);
5602 
5603 	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5604 		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5605 				 gtfifodbg);
5606 		I915_WRITE(GTFIFODBG, gtfifodbg);
5607 	}
5608 
5609 	/* If VLV, Forcewake all wells, else re-direct to regular path */
5610 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5611 
5612 	/*  Disable RC states. */
5613 	I915_WRITE(GEN6_RC_CONTROL, 0);
5614 
5615 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5616 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5617 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5618 	I915_WRITE(GEN6_RP_UP_EI, 66000);
5619 	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5620 
5621 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5622 
5623 	I915_WRITE(GEN6_RP_CONTROL,
5624 		   GEN6_RP_MEDIA_TURBO |
5625 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5626 		   GEN6_RP_MEDIA_IS_GFX |
5627 		   GEN6_RP_ENABLE |
5628 		   GEN6_RP_UP_BUSY_AVG |
5629 		   GEN6_RP_DOWN_IDLE_CONT);
5630 
5631 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5632 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5633 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5634 
5635 	for_each_ring(ring, dev_priv, i)
5636 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5637 
5638 	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5639 
5640 	/* allows RC6 residency counter to work */
5641 	I915_WRITE(VLV_COUNTER_CONTROL,
5642 		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5643 				      VLV_RENDER_RC0_COUNT_EN |
5644 				      VLV_MEDIA_RC6_COUNT_EN |
5645 				      VLV_RENDER_RC6_COUNT_EN));
5646 
5647 	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5648 		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
5649 
5650 	intel_print_rc6_info(dev, rc6_mode);
5651 
5652 	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5653 
5654 	/* Setting Fixed Bias */
5655 	val = VLV_OVERRIDE_EN |
5656 		  VLV_SOC_TDP_EN |
5657 		  VLV_BIAS_CPU_125_SOC_875;
5658 	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5659 
5660 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5661 
5662 	/* RPS code assumes GPLL is used */
5663 	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5664 
5665 	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
5666 	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5667 
5668 	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5669 	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5670 			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5671 			 dev_priv->rps.cur_freq);
5672 
5673 	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5674 			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5675 			 dev_priv->rps.efficient_freq);
5676 
5677 	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5678 
5679 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5680 }
5681 
5682 static unsigned long intel_pxfreq(u32 vidfreq)
5683 {
5684 	unsigned long freq;
5685 	int div = (vidfreq & 0x3f0000) >> 16;
5686 	int post = (vidfreq & 0x3000) >> 12;
5687 	int pre = (vidfreq & 0x7);
5688 
5689 	if (!pre)
5690 		return 0;
5691 
5692 	freq = ((div * 133333) / ((1<<post) * pre));
5693 
5694 	return freq;
5695 }
5696 
5697 static const struct cparams {
5698 	u16 i;
5699 	u16 t;
5700 	u16 m;
5701 	u16 c;
5702 } cparams[] = {
5703 	{ 1, 1333, 301, 28664 },
5704 	{ 1, 1066, 294, 24460 },
5705 	{ 1, 800, 294, 25192 },
5706 	{ 0, 1333, 276, 27605 },
5707 	{ 0, 1066, 276, 27605 },
5708 	{ 0, 800, 231, 23784 },
5709 };
5710 
5711 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5712 {
5713 	u64 total_count, diff, ret;
5714 	u32 count1, count2, count3, m = 0, c = 0;
5715 	unsigned long now = jiffies_to_msecs(jiffies), diff1;
5716 	int i;
5717 
5718 	assert_spin_locked(&mchdev_lock);
5719 
5720 	diff1 = now - dev_priv->ips.last_time1;
5721 
5722 	/* Prevent division-by-zero if we are asking too fast.
5723 	 * Also, we don't get interesting results if we are polling
5724 	 * faster than once in 10ms, so just return the saved value
5725 	 * in such cases.
5726 	 */
5727 	if (diff1 <= 10)
5728 		return dev_priv->ips.chipset_power;
5729 
5730 	count1 = I915_READ(DMIEC);
5731 	count2 = I915_READ(DDREC);
5732 	count3 = I915_READ(CSIEC);
5733 
5734 	total_count = count1 + count2 + count3;
5735 
5736 	/* FIXME: handle per-counter overflow */
5737 	if (total_count < dev_priv->ips.last_count1) {
5738 		diff = ~0UL - dev_priv->ips.last_count1;
5739 		diff += total_count;
5740 	} else {
5741 		diff = total_count - dev_priv->ips.last_count1;
5742 	}
5743 
5744 	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5745 		if (cparams[i].i == dev_priv->ips.c_m &&
5746 		    cparams[i].t == dev_priv->ips.r_t) {
5747 			m = cparams[i].m;
5748 			c = cparams[i].c;
5749 			break;
5750 		}
5751 	}
5752 
5753 	diff = div_u64(diff, diff1);
5754 	ret = ((m * diff) + c);
5755 	ret = div_u64(ret, 10);
5756 
5757 	dev_priv->ips.last_count1 = total_count;
5758 	dev_priv->ips.last_time1 = now;
5759 
5760 	dev_priv->ips.chipset_power = ret;
5761 
5762 	return ret;
5763 }
5764 
5765 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5766 {
5767 	struct drm_device *dev = dev_priv->dev;
5768 	unsigned long val;
5769 
5770 	if (INTEL_INFO(dev)->gen != 5)
5771 		return 0;
5772 
5773 	spin_lock_irq(&mchdev_lock);
5774 
5775 	val = __i915_chipset_val(dev_priv);
5776 
5777 	spin_unlock_irq(&mchdev_lock);
5778 
5779 	return val;
5780 }
5781 
5782 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5783 {
5784 	unsigned long m, x, b;
5785 	u32 tsfs;
5786 
5787 	tsfs = I915_READ(TSFS);
5788 
5789 	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5790 	x = I915_READ8(TR1);
5791 
5792 	b = tsfs & TSFS_INTR_MASK;
5793 
5794 	return ((m * x) / 127) - b;
5795 }
5796 
5797 static int _pxvid_to_vd(u8 pxvid)
5798 {
5799 	if (pxvid == 0)
5800 		return 0;
5801 
5802 	if (pxvid >= 8 && pxvid < 31)
5803 		pxvid = 31;
5804 
5805 	return (pxvid + 2) * 125;
5806 }
5807 
5808 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5809 {
5810 	struct drm_device *dev = dev_priv->dev;
5811 	const int vd = _pxvid_to_vd(pxvid);
5812 	const int vm = vd - 1125;
5813 
5814 	if (INTEL_INFO(dev)->is_mobile)
5815 		return vm > 0 ? vm : 0;
5816 
5817 	return vd;
5818 }
5819 
5820 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5821 {
5822 	u64 now, diff, diffms;
5823 	u32 count;
5824 
5825 	assert_spin_locked(&mchdev_lock);
5826 
5827 	now = ktime_get_raw_ns();
5828 	diffms = now - dev_priv->ips.last_time2;
5829 	do_div(diffms, NSEC_PER_MSEC);
5830 
5831 	/* Don't divide by 0 */
5832 	if (!diffms)
5833 		return;
5834 
5835 	count = I915_READ(GFXEC);
5836 
5837 	if (count < dev_priv->ips.last_count2) {
5838 		diff = ~0UL - dev_priv->ips.last_count2;
5839 		diff += count;
5840 	} else {
5841 		diff = count - dev_priv->ips.last_count2;
5842 	}
5843 
5844 	dev_priv->ips.last_count2 = count;
5845 	dev_priv->ips.last_time2 = now;
5846 
5847 	/* More magic constants... */
5848 	diff = diff * 1181;
5849 	diff = div_u64(diff, diffms * 10);
5850 	dev_priv->ips.gfx_power = diff;
5851 }
5852 
5853 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5854 {
5855 	struct drm_device *dev = dev_priv->dev;
5856 
5857 	if (INTEL_INFO(dev)->gen != 5)
5858 		return;
5859 
5860 	spin_lock_irq(&mchdev_lock);
5861 
5862 	__i915_update_gfx_val(dev_priv);
5863 
5864 	spin_unlock_irq(&mchdev_lock);
5865 }
5866 
5867 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5868 {
5869 	unsigned long t, corr, state1, corr2, state2;
5870 	u32 pxvid, ext_v;
5871 
5872 	assert_spin_locked(&mchdev_lock);
5873 
5874 	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
5875 	pxvid = (pxvid >> 24) & 0x7f;
5876 	ext_v = pvid_to_extvid(dev_priv, pxvid);
5877 
5878 	state1 = ext_v;
5879 
5880 	t = i915_mch_val(dev_priv);
5881 
5882 	/* Revel in the empirically derived constants */
5883 
5884 	/* Correction factor in 1/100000 units */
5885 	if (t > 80)
5886 		corr = ((t * 2349) + 135940);
5887 	else if (t >= 50)
5888 		corr = ((t * 964) + 29317);
5889 	else /* < 50 */
5890 		corr = ((t * 301) + 1004);
5891 
5892 	corr = corr * ((150142 * state1) / 10000 - 78642);
5893 	corr /= 100000;
5894 	corr2 = (corr * dev_priv->ips.corr);
5895 
5896 	state2 = (corr2 * state1) / 10000;
5897 	state2 /= 100; /* convert to mW */
5898 
5899 	__i915_update_gfx_val(dev_priv);
5900 
5901 	return dev_priv->ips.gfx_power + state2;
5902 }
5903 
5904 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5905 {
5906 	struct drm_device *dev = dev_priv->dev;
5907 	unsigned long val;
5908 
5909 	if (INTEL_INFO(dev)->gen != 5)
5910 		return 0;
5911 
5912 	spin_lock_irq(&mchdev_lock);
5913 
5914 	val = __i915_gfx_val(dev_priv);
5915 
5916 	spin_unlock_irq(&mchdev_lock);
5917 
5918 	return val;
5919 }
5920 
5921 /**
5922  * i915_read_mch_val - return value for IPS use
5923  *
5924  * Calculate and return a value for the IPS driver to use when deciding whether
5925  * we have thermal and power headroom to increase CPU or GPU power budget.
5926  */
5927 unsigned long i915_read_mch_val(void)
5928 {
5929 	struct drm_i915_private *dev_priv;
5930 	unsigned long chipset_val, graphics_val, ret = 0;
5931 
5932 	spin_lock_irq(&mchdev_lock);
5933 	if (!i915_mch_dev)
5934 		goto out_unlock;
5935 	dev_priv = i915_mch_dev;
5936 
5937 	chipset_val = __i915_chipset_val(dev_priv);
5938 	graphics_val = __i915_gfx_val(dev_priv);
5939 
5940 	ret = chipset_val + graphics_val;
5941 
5942 out_unlock:
5943 	spin_unlock_irq(&mchdev_lock);
5944 
5945 	return ret;
5946 }
5947 
5948 /**
5949  * i915_gpu_raise - raise GPU frequency limit
5950  *
5951  * Raise the limit; IPS indicates we have thermal headroom.
5952  */
5953 bool i915_gpu_raise(void)
5954 {
5955 	struct drm_i915_private *dev_priv;
5956 	bool ret = true;
5957 
5958 	spin_lock_irq(&mchdev_lock);
5959 	if (!i915_mch_dev) {
5960 		ret = false;
5961 		goto out_unlock;
5962 	}
5963 	dev_priv = i915_mch_dev;
5964 
5965 	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5966 		dev_priv->ips.max_delay--;
5967 
5968 out_unlock:
5969 	spin_unlock_irq(&mchdev_lock);
5970 
5971 	return ret;
5972 }
5973 
5974 /**
5975  * i915_gpu_lower - lower GPU frequency limit
5976  *
5977  * IPS indicates we're close to a thermal limit, so throttle back the GPU
5978  * frequency maximum.
5979  */
5980 bool i915_gpu_lower(void)
5981 {
5982 	struct drm_i915_private *dev_priv;
5983 	bool ret = true;
5984 
5985 	spin_lock_irq(&mchdev_lock);
5986 	if (!i915_mch_dev) {
5987 		ret = false;
5988 		goto out_unlock;
5989 	}
5990 	dev_priv = i915_mch_dev;
5991 
5992 	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
5993 		dev_priv->ips.max_delay++;
5994 
5995 out_unlock:
5996 	spin_unlock_irq(&mchdev_lock);
5997 
5998 	return ret;
5999 }
6000 
6001 /**
6002  * i915_gpu_busy - indicate GPU business to IPS
6003  *
6004  * Tell the IPS driver whether or not the GPU is busy.
6005  */
6006 bool i915_gpu_busy(void)
6007 {
6008 	struct drm_i915_private *dev_priv;
6009 	struct intel_engine_cs *ring;
6010 	bool ret = false;
6011 	int i;
6012 
6013 	spin_lock_irq(&mchdev_lock);
6014 	if (!i915_mch_dev)
6015 		goto out_unlock;
6016 	dev_priv = i915_mch_dev;
6017 
6018 	for_each_ring(ring, dev_priv, i)
6019 		ret |= !list_empty(&ring->request_list);
6020 
6021 out_unlock:
6022 	spin_unlock_irq(&mchdev_lock);
6023 
6024 	return ret;
6025 }
6026 
6027 /**
6028  * i915_gpu_turbo_disable - disable graphics turbo
6029  *
6030  * Disable graphics turbo by resetting the max frequency and setting the
6031  * current frequency to the default.
6032  */
6033 bool i915_gpu_turbo_disable(void)
6034 {
6035 	struct drm_i915_private *dev_priv;
6036 	bool ret = true;
6037 
6038 	spin_lock_irq(&mchdev_lock);
6039 	if (!i915_mch_dev) {
6040 		ret = false;
6041 		goto out_unlock;
6042 	}
6043 	dev_priv = i915_mch_dev;
6044 
6045 	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6046 
6047 	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
6048 		ret = false;
6049 
6050 out_unlock:
6051 	spin_unlock_irq(&mchdev_lock);
6052 
6053 	return ret;
6054 }
6055 
6056 #if 0
6057 /**
6058  * Tells the intel_ips driver that the i915 driver is now loaded, if
6059  * IPS got loaded first.
6060  *
6061  * This awkward dance is so that neither module has to depend on the
6062  * other in order for IPS to do the appropriate communication of
6063  * GPU turbo limits to i915.
6064  */
6065 static void
6066 ips_ping_for_i915_load(void)
6067 {
6068 	void (*link)(void);
6069 
6070 	link = symbol_get(ips_link_to_i915_driver);
6071 	if (link) {
6072 		link();
6073 		symbol_put(ips_link_to_i915_driver);
6074 	}
6075 }
6076 #endif
6077 
6078 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6079 {
6080 	/* We only register the i915 ips part with intel-ips once everything is
6081 	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6082 	spin_lock_irq(&mchdev_lock);
6083 	i915_mch_dev = dev_priv;
6084 	spin_unlock_irq(&mchdev_lock);
6085 }
6086 
6087 void intel_gpu_ips_teardown(void)
6088 {
6089 	spin_lock_irq(&mchdev_lock);
6090 	i915_mch_dev = NULL;
6091 	spin_unlock_irq(&mchdev_lock);
6092 }
6093 
6094 static void intel_init_emon(struct drm_device *dev)
6095 {
6096 	struct drm_i915_private *dev_priv = dev->dev_private;
6097 	u32 lcfuse;
6098 	u8 pxw[16];
6099 	int i;
6100 
6101 	/* Disable to program */
6102 	I915_WRITE(ECR, 0);
6103 	POSTING_READ(ECR);
6104 
6105 	/* Program energy weights for various events */
6106 	I915_WRITE(SDEW, 0x15040d00);
6107 	I915_WRITE(CSIEW0, 0x007f0000);
6108 	I915_WRITE(CSIEW1, 0x1e220004);
6109 	I915_WRITE(CSIEW2, 0x04000004);
6110 
6111 	for (i = 0; i < 5; i++)
6112 		I915_WRITE(PEW + (i * 4), 0);
6113 	for (i = 0; i < 3; i++)
6114 		I915_WRITE(DEW + (i * 4), 0);
6115 
6116 	/* Program P-state weights to account for frequency power adjustment */
6117 	for (i = 0; i < 16; i++) {
6118 		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
6119 		unsigned long freq = intel_pxfreq(pxvidfreq);
6120 		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6121 			PXVFREQ_PX_SHIFT;
6122 		unsigned long val;
6123 
6124 		val = vid * vid;
6125 		val *= (freq / 1000);
6126 		val *= 255;
6127 		val /= (127*127*900);
6128 		if (val > 0xff)
6129 			DRM_ERROR("bad pxval: %ld\n", val);
6130 		pxw[i] = val;
6131 	}
6132 	/* Render standby states get 0 weight */
6133 	pxw[14] = 0;
6134 	pxw[15] = 0;
6135 
6136 	for (i = 0; i < 4; i++) {
6137 		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6138 			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6139 		I915_WRITE(PXW + (i * 4), val);
6140 	}
6141 
6142 	/* Adjust magic regs to magic values (more experimental results) */
6143 	I915_WRITE(OGW0, 0);
6144 	I915_WRITE(OGW1, 0);
6145 	I915_WRITE(EG0, 0x00007f00);
6146 	I915_WRITE(EG1, 0x0000000e);
6147 	I915_WRITE(EG2, 0x000e0000);
6148 	I915_WRITE(EG3, 0x68000300);
6149 	I915_WRITE(EG4, 0x42000000);
6150 	I915_WRITE(EG5, 0x00140031);
6151 	I915_WRITE(EG6, 0);
6152 	I915_WRITE(EG7, 0);
6153 
6154 	for (i = 0; i < 8; i++)
6155 		I915_WRITE(PXWL + (i * 4), 0);
6156 
6157 	/* Enable PMON + select events */
6158 	I915_WRITE(ECR, 0x80000019);
6159 
6160 	lcfuse = I915_READ(LCFUSE02);
6161 
6162 	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6163 }
6164 
6165 void intel_init_gt_powersave(struct drm_device *dev)
6166 {
6167 	i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
6168 
6169 	if (IS_CHERRYVIEW(dev))
6170 		cherryview_init_gt_powersave(dev);
6171 	else if (IS_VALLEYVIEW(dev))
6172 		valleyview_init_gt_powersave(dev);
6173 }
6174 
6175 void intel_cleanup_gt_powersave(struct drm_device *dev)
6176 {
6177 	if (IS_CHERRYVIEW(dev))
6178 		return;
6179 	else if (IS_VALLEYVIEW(dev))
6180 		valleyview_cleanup_gt_powersave(dev);
6181 }
6182 
6183 static void gen6_suspend_rps(struct drm_device *dev)
6184 {
6185 #if 0
6186 	struct drm_i915_private *dev_priv = dev->dev_private;
6187 
6188 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
6189 #endif
6190 
6191 	gen6_disable_rps_interrupts(dev);
6192 }
6193 
6194 /**
6195  * intel_suspend_gt_powersave - suspend PM work and helper threads
6196  * @dev: drm device
6197  *
6198  * We don't want to disable RC6 or other features here, we just want
6199  * to make sure any work we've queued has finished and won't bother
6200  * us while we're suspended.
6201  */
6202 void intel_suspend_gt_powersave(struct drm_device *dev)
6203 {
6204 	struct drm_i915_private *dev_priv = dev->dev_private;
6205 
6206 	if (INTEL_INFO(dev)->gen < 6)
6207 		return;
6208 
6209 	gen6_suspend_rps(dev);
6210 
6211 	/* Force GPU to min freq during suspend */
6212 	gen6_rps_idle(dev_priv);
6213 }
6214 
6215 void intel_disable_gt_powersave(struct drm_device *dev)
6216 {
6217 	struct drm_i915_private *dev_priv = dev->dev_private;
6218 
6219 	if (IS_IRONLAKE_M(dev)) {
6220 		ironlake_disable_drps(dev);
6221 	} else if (INTEL_INFO(dev)->gen >= 6) {
6222 		intel_suspend_gt_powersave(dev);
6223 
6224 		mutex_lock(&dev_priv->rps.hw_lock);
6225 		if (INTEL_INFO(dev)->gen >= 9)
6226 			gen9_disable_rps(dev);
6227 		else if (IS_CHERRYVIEW(dev))
6228 			cherryview_disable_rps(dev);
6229 		else if (IS_VALLEYVIEW(dev))
6230 			valleyview_disable_rps(dev);
6231 		else
6232 			gen6_disable_rps(dev);
6233 
6234 		dev_priv->rps.enabled = false;
6235 		mutex_unlock(&dev_priv->rps.hw_lock);
6236 	}
6237 }
6238 
6239 static void intel_gen6_powersave_work(struct work_struct *work)
6240 {
6241 	struct drm_i915_private *dev_priv =
6242 		container_of(work, struct drm_i915_private,
6243 			     rps.delayed_resume_work.work);
6244 	struct drm_device *dev = dev_priv->dev;
6245 
6246 	mutex_lock(&dev_priv->rps.hw_lock);
6247 
6248 	gen6_reset_rps_interrupts(dev);
6249 
6250 	if (IS_CHERRYVIEW(dev)) {
6251 		cherryview_enable_rps(dev);
6252 	} else if (IS_VALLEYVIEW(dev)) {
6253 		valleyview_enable_rps(dev);
6254 	} else if (INTEL_INFO(dev)->gen >= 9) {
6255 		gen9_enable_rc6(dev);
6256 		gen9_enable_rps(dev);
6257 		if (IS_SKYLAKE(dev))
6258 			__gen6_update_ring_freq(dev);
6259 	} else if (IS_BROADWELL(dev)) {
6260 		gen8_enable_rps(dev);
6261 		__gen6_update_ring_freq(dev);
6262 	} else {
6263 		gen6_enable_rps(dev);
6264 		__gen6_update_ring_freq(dev);
6265 	}
6266 
6267 	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6268 	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6269 
6270 	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6271 	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6272 
6273 	dev_priv->rps.enabled = true;
6274 
6275 	gen6_enable_rps_interrupts(dev);
6276 
6277 	mutex_unlock(&dev_priv->rps.hw_lock);
6278 
6279 	intel_runtime_pm_put(dev_priv);
6280 }
6281 
6282 void intel_enable_gt_powersave(struct drm_device *dev)
6283 {
6284 	struct drm_i915_private *dev_priv = dev->dev_private;
6285 
6286 	/* Powersaving is controlled by the host when inside a VM */
6287 	if (intel_vgpu_active(dev))
6288 		return;
6289 
6290 	if (IS_IRONLAKE_M(dev)) {
6291 		mutex_lock(&dev->struct_mutex);
6292 		ironlake_enable_drps(dev);
6293 		intel_init_emon(dev);
6294 		mutex_unlock(&dev->struct_mutex);
6295 	} else if (INTEL_INFO(dev)->gen >= 6) {
6296 		/*
6297 		 * PCU communication is slow and this doesn't need to be
6298 		 * done at any specific time, so do this out of our fast path
6299 		 * to make resume and init faster.
6300 		 *
6301 		 * We depend on the HW RC6 power context save/restore
6302 		 * mechanism when entering D3 through runtime PM suspend. So
6303 		 * disable RPM until RPS/RC6 is properly setup. We can only
6304 		 * get here via the driver load/system resume/runtime resume
6305 		 * paths, so the _noresume version is enough (and in case of
6306 		 * runtime resume it's necessary).
6307 		 */
6308 		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6309 					   round_jiffies_up_relative(HZ)))
6310 			intel_runtime_pm_get_noresume(dev_priv);
6311 	}
6312 }
6313 
6314 void intel_reset_gt_powersave(struct drm_device *dev)
6315 {
6316 	struct drm_i915_private *dev_priv = dev->dev_private;
6317 
6318 	if (INTEL_INFO(dev)->gen < 6)
6319 		return;
6320 
6321 	gen6_suspend_rps(dev);
6322 	dev_priv->rps.enabled = false;
6323 }
6324 
6325 static void ibx_init_clock_gating(struct drm_device *dev)
6326 {
6327 	struct drm_i915_private *dev_priv = dev->dev_private;
6328 
6329 	/*
6330 	 * On Ibex Peak and Cougar Point, we need to disable clock
6331 	 * gating for the panel power sequencer or it will fail to
6332 	 * start up when no ports are active.
6333 	 */
6334 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6335 }
6336 
6337 static void g4x_disable_trickle_feed(struct drm_device *dev)
6338 {
6339 	struct drm_i915_private *dev_priv = dev->dev_private;
6340 	enum i915_pipe pipe;
6341 
6342 	for_each_pipe(dev_priv, pipe) {
6343 		I915_WRITE(DSPCNTR(pipe),
6344 			   I915_READ(DSPCNTR(pipe)) |
6345 			   DISPPLANE_TRICKLE_FEED_DISABLE);
6346 
6347 		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6348 		POSTING_READ(DSPSURF(pipe));
6349 	}
6350 }
6351 
6352 static void ilk_init_lp_watermarks(struct drm_device *dev)
6353 {
6354 	struct drm_i915_private *dev_priv = dev->dev_private;
6355 
6356 	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6357 	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6358 	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6359 
6360 	/*
6361 	 * Don't touch WM1S_LP_EN here.
6362 	 * Doing so could cause underruns.
6363 	 */
6364 }
6365 
6366 static void ironlake_init_clock_gating(struct drm_device *dev)
6367 {
6368 	struct drm_i915_private *dev_priv = dev->dev_private;
6369 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6370 
6371 	/*
6372 	 * Required for FBC
6373 	 * WaFbcDisableDpfcClockGating:ilk
6374 	 */
6375 	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6376 		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6377 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6378 
6379 	I915_WRITE(PCH_3DCGDIS0,
6380 		   MARIUNIT_CLOCK_GATE_DISABLE |
6381 		   SVSMUNIT_CLOCK_GATE_DISABLE);
6382 	I915_WRITE(PCH_3DCGDIS1,
6383 		   VFMUNIT_CLOCK_GATE_DISABLE);
6384 
6385 	/*
6386 	 * According to the spec the following bits should be set in
6387 	 * order to enable memory self-refresh
6388 	 * The bit 22/21 of 0x42004
6389 	 * The bit 5 of 0x42020
6390 	 * The bit 15 of 0x45000
6391 	 */
6392 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6393 		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
6394 		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6395 	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6396 	I915_WRITE(DISP_ARB_CTL,
6397 		   (I915_READ(DISP_ARB_CTL) |
6398 		    DISP_FBC_WM_DIS));
6399 
6400 	ilk_init_lp_watermarks(dev);
6401 
6402 	/*
6403 	 * Based on the document from hardware guys the following bits
6404 	 * should be set unconditionally in order to enable FBC.
6405 	 * The bit 22 of 0x42000
6406 	 * The bit 22 of 0x42004
6407 	 * The bit 7,8,9 of 0x42020.
6408 	 */
6409 	if (IS_IRONLAKE_M(dev)) {
6410 		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6411 		I915_WRITE(ILK_DISPLAY_CHICKEN1,
6412 			   I915_READ(ILK_DISPLAY_CHICKEN1) |
6413 			   ILK_FBCQ_DIS);
6414 		I915_WRITE(ILK_DISPLAY_CHICKEN2,
6415 			   I915_READ(ILK_DISPLAY_CHICKEN2) |
6416 			   ILK_DPARB_GATE);
6417 	}
6418 
6419 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6420 
6421 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6422 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6423 		   ILK_ELPIN_409_SELECT);
6424 	I915_WRITE(_3D_CHICKEN2,
6425 		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6426 		   _3D_CHICKEN2_WM_READ_PIPELINED);
6427 
6428 	/* WaDisableRenderCachePipelinedFlush:ilk */
6429 	I915_WRITE(CACHE_MODE_0,
6430 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6431 
6432 	/* WaDisable_RenderCache_OperationalFlush:ilk */
6433 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6434 
6435 	g4x_disable_trickle_feed(dev);
6436 
6437 	ibx_init_clock_gating(dev);
6438 }
6439 
6440 static void cpt_init_clock_gating(struct drm_device *dev)
6441 {
6442 	struct drm_i915_private *dev_priv = dev->dev_private;
6443 	int pipe;
6444 	uint32_t val;
6445 
6446 	/*
6447 	 * On Ibex Peak and Cougar Point, we need to disable clock
6448 	 * gating for the panel power sequencer or it will fail to
6449 	 * start up when no ports are active.
6450 	 */
6451 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6452 		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6453 		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6454 	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6455 		   DPLS_EDP_PPS_FIX_DIS);
6456 	/* The below fixes the weird display corruption, a few pixels shifted
6457 	 * downward, on (only) LVDS of some HP laptops with IVY.
6458 	 */
6459 	for_each_pipe(dev_priv, pipe) {
6460 		val = I915_READ(TRANS_CHICKEN2(pipe));
6461 		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6462 		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6463 		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6464 			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6465 		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6466 		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6467 		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6468 		I915_WRITE(TRANS_CHICKEN2(pipe), val);
6469 	}
6470 	/* WADP0ClockGatingDisable */
6471 	for_each_pipe(dev_priv, pipe) {
6472 		I915_WRITE(TRANS_CHICKEN1(pipe),
6473 			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6474 	}
6475 }
6476 
6477 static void gen6_check_mch_setup(struct drm_device *dev)
6478 {
6479 	struct drm_i915_private *dev_priv = dev->dev_private;
6480 	uint32_t tmp;
6481 
6482 	tmp = I915_READ(MCH_SSKPD);
6483 	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6484 		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6485 			      tmp);
6486 }
6487 
6488 static void gen6_init_clock_gating(struct drm_device *dev)
6489 {
6490 	struct drm_i915_private *dev_priv = dev->dev_private;
6491 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6492 
6493 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6494 
6495 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6496 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6497 		   ILK_ELPIN_409_SELECT);
6498 
6499 	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6500 	I915_WRITE(_3D_CHICKEN,
6501 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6502 
6503 	/* WaDisable_RenderCache_OperationalFlush:snb */
6504 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6505 
6506 	/*
6507 	 * BSpec recoomends 8x4 when MSAA is used,
6508 	 * however in practice 16x4 seems fastest.
6509 	 *
6510 	 * Note that PS/WM thread counts depend on the WIZ hashing
6511 	 * disable bit, which we don't touch here, but it's good
6512 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6513 	 */
6514 	I915_WRITE(GEN6_GT_MODE,
6515 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6516 
6517 	ilk_init_lp_watermarks(dev);
6518 
6519 	I915_WRITE(CACHE_MODE_0,
6520 		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6521 
6522 	I915_WRITE(GEN6_UCGCTL1,
6523 		   I915_READ(GEN6_UCGCTL1) |
6524 		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6525 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6526 
6527 	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6528 	 * gating disable must be set.  Failure to set it results in
6529 	 * flickering pixels due to Z write ordering failures after
6530 	 * some amount of runtime in the Mesa "fire" demo, and Unigine
6531 	 * Sanctuary and Tropics, and apparently anything else with
6532 	 * alpha test or pixel discard.
6533 	 *
6534 	 * According to the spec, bit 11 (RCCUNIT) must also be set,
6535 	 * but we didn't debug actual testcases to find it out.
6536 	 *
6537 	 * WaDisableRCCUnitClockGating:snb
6538 	 * WaDisableRCPBUnitClockGating:snb
6539 	 */
6540 	I915_WRITE(GEN6_UCGCTL2,
6541 		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6542 		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6543 
6544 	/* WaStripsFansDisableFastClipPerformanceFix:snb */
6545 	I915_WRITE(_3D_CHICKEN3,
6546 		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6547 
6548 	/*
6549 	 * Bspec says:
6550 	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6551 	 * 3DSTATE_SF number of SF output attributes is more than 16."
6552 	 */
6553 	I915_WRITE(_3D_CHICKEN3,
6554 		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6555 
6556 	/*
6557 	 * According to the spec the following bits should be
6558 	 * set in order to enable memory self-refresh and fbc:
6559 	 * The bit21 and bit22 of 0x42000
6560 	 * The bit21 and bit22 of 0x42004
6561 	 * The bit5 and bit7 of 0x42020
6562 	 * The bit14 of 0x70180
6563 	 * The bit14 of 0x71180
6564 	 *
6565 	 * WaFbcAsynchFlipDisableFbcQueue:snb
6566 	 */
6567 	I915_WRITE(ILK_DISPLAY_CHICKEN1,
6568 		   I915_READ(ILK_DISPLAY_CHICKEN1) |
6569 		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6570 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6571 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6572 		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6573 	I915_WRITE(ILK_DSPCLK_GATE_D,
6574 		   I915_READ(ILK_DSPCLK_GATE_D) |
6575 		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
6576 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6577 
6578 	g4x_disable_trickle_feed(dev);
6579 
6580 	cpt_init_clock_gating(dev);
6581 
6582 	gen6_check_mch_setup(dev);
6583 }
6584 
6585 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6586 {
6587 	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6588 
6589 	/*
6590 	 * WaVSThreadDispatchOverride:ivb,vlv
6591 	 *
6592 	 * This actually overrides the dispatch
6593 	 * mode for all thread types.
6594 	 */
6595 	reg &= ~GEN7_FF_SCHED_MASK;
6596 	reg |= GEN7_FF_TS_SCHED_HW;
6597 	reg |= GEN7_FF_VS_SCHED_HW;
6598 	reg |= GEN7_FF_DS_SCHED_HW;
6599 
6600 	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6601 }
6602 
6603 static void lpt_init_clock_gating(struct drm_device *dev)
6604 {
6605 	struct drm_i915_private *dev_priv = dev->dev_private;
6606 
6607 	/*
6608 	 * TODO: this bit should only be enabled when really needed, then
6609 	 * disabled when not needed anymore in order to save power.
6610 	 */
6611 	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
6612 		I915_WRITE(SOUTH_DSPCLK_GATE_D,
6613 			   I915_READ(SOUTH_DSPCLK_GATE_D) |
6614 			   PCH_LP_PARTITION_LEVEL_DISABLE);
6615 
6616 	/* WADPOClockGatingDisable:hsw */
6617 	I915_WRITE(_TRANSA_CHICKEN1,
6618 		   I915_READ(_TRANSA_CHICKEN1) |
6619 		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6620 }
6621 
6622 static void lpt_suspend_hw(struct drm_device *dev)
6623 {
6624 	struct drm_i915_private *dev_priv = dev->dev_private;
6625 
6626 	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6627 		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6628 
6629 		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6630 		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6631 	}
6632 }
6633 
6634 static void broadwell_init_clock_gating(struct drm_device *dev)
6635 {
6636 	struct drm_i915_private *dev_priv = dev->dev_private;
6637 	enum i915_pipe pipe;
6638 	uint32_t misccpctl;
6639 
6640 	ilk_init_lp_watermarks(dev);
6641 
6642 	/* WaSwitchSolVfFArbitrationPriority:bdw */
6643 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6644 
6645 	/* WaPsrDPAMaskVBlankInSRD:bdw */
6646 	I915_WRITE(CHICKEN_PAR1_1,
6647 		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6648 
6649 	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6650 	for_each_pipe(dev_priv, pipe) {
6651 		I915_WRITE(CHICKEN_PIPESL_1(pipe),
6652 			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
6653 			   BDW_DPRS_MASK_VBLANK_SRD);
6654 	}
6655 
6656 	/* WaVSRefCountFullforceMissDisable:bdw */
6657 	/* WaDSRefCountFullforceMissDisable:bdw */
6658 	I915_WRITE(GEN7_FF_THREAD_MODE,
6659 		   I915_READ(GEN7_FF_THREAD_MODE) &
6660 		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6661 
6662 	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6663 		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6664 
6665 	/* WaDisableSDEUnitClockGating:bdw */
6666 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6667 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6668 
6669 	/*
6670 	 * WaProgramL3SqcReg1Default:bdw
6671 	 * WaTempDisableDOPClkGating:bdw
6672 	 */
6673 	misccpctl = I915_READ(GEN7_MISCCPCTL);
6674 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6675 	I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
6676 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6677 
6678 	/*
6679 	 * WaGttCachingOffByDefault:bdw
6680 	 * GTT cache may not work with big pages, so if those
6681 	 * are ever enabled GTT cache may need to be disabled.
6682 	 */
6683 	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6684 
6685 	lpt_init_clock_gating(dev);
6686 }
6687 
6688 static void haswell_init_clock_gating(struct drm_device *dev)
6689 {
6690 	struct drm_i915_private *dev_priv = dev->dev_private;
6691 
6692 	ilk_init_lp_watermarks(dev);
6693 
6694 	/* L3 caching of data atomics doesn't work -- disable it. */
6695 	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6696 	I915_WRITE(HSW_ROW_CHICKEN3,
6697 		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6698 
6699 	/* This is required by WaCatErrorRejectionIssue:hsw */
6700 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6701 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6702 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6703 
6704 	/* WaVSRefCountFullforceMissDisable:hsw */
6705 	I915_WRITE(GEN7_FF_THREAD_MODE,
6706 		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6707 
6708 	/* WaDisable_RenderCache_OperationalFlush:hsw */
6709 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6710 
6711 	/* enable HiZ Raw Stall Optimization */
6712 	I915_WRITE(CACHE_MODE_0_GEN7,
6713 		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6714 
6715 	/* WaDisable4x2SubspanOptimization:hsw */
6716 	I915_WRITE(CACHE_MODE_1,
6717 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6718 
6719 	/*
6720 	 * BSpec recommends 8x4 when MSAA is used,
6721 	 * however in practice 16x4 seems fastest.
6722 	 *
6723 	 * Note that PS/WM thread counts depend on the WIZ hashing
6724 	 * disable bit, which we don't touch here, but it's good
6725 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6726 	 */
6727 	I915_WRITE(GEN7_GT_MODE,
6728 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6729 
6730 	/* WaSampleCChickenBitEnable:hsw */
6731 	I915_WRITE(HALF_SLICE_CHICKEN3,
6732 		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6733 
6734 	/* WaSwitchSolVfFArbitrationPriority:hsw */
6735 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6736 
6737 	/* WaRsPkgCStateDisplayPMReq:hsw */
6738 	I915_WRITE(CHICKEN_PAR1_1,
6739 		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6740 
6741 	lpt_init_clock_gating(dev);
6742 }
6743 
6744 static void ivybridge_init_clock_gating(struct drm_device *dev)
6745 {
6746 	struct drm_i915_private *dev_priv = dev->dev_private;
6747 	uint32_t snpcr;
6748 
6749 	ilk_init_lp_watermarks(dev);
6750 
6751 	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6752 
6753 	/* WaDisableEarlyCull:ivb */
6754 	I915_WRITE(_3D_CHICKEN3,
6755 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6756 
6757 	/* WaDisableBackToBackFlipFix:ivb */
6758 	I915_WRITE(IVB_CHICKEN3,
6759 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6760 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
6761 
6762 	/* WaDisablePSDDualDispatchEnable:ivb */
6763 	if (IS_IVB_GT1(dev))
6764 		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6765 			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6766 
6767 	/* WaDisable_RenderCache_OperationalFlush:ivb */
6768 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6769 
6770 	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6771 	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6772 		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6773 
6774 	/* WaApplyL3ControlAndL3ChickenMode:ivb */
6775 	I915_WRITE(GEN7_L3CNTLREG1,
6776 			GEN7_WA_FOR_GEN7_L3_CONTROL);
6777 	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6778 		   GEN7_WA_L3_CHICKEN_MODE);
6779 	if (IS_IVB_GT1(dev))
6780 		I915_WRITE(GEN7_ROW_CHICKEN2,
6781 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6782 	else {
6783 		/* must write both registers */
6784 		I915_WRITE(GEN7_ROW_CHICKEN2,
6785 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6786 		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6787 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6788 	}
6789 
6790 	/* WaForceL3Serialization:ivb */
6791 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6792 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6793 
6794 	/*
6795 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6796 	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6797 	 */
6798 	I915_WRITE(GEN6_UCGCTL2,
6799 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6800 
6801 	/* This is required by WaCatErrorRejectionIssue:ivb */
6802 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6803 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6804 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6805 
6806 	g4x_disable_trickle_feed(dev);
6807 
6808 	gen7_setup_fixed_func_scheduler(dev_priv);
6809 
6810 	if (0) { /* causes HiZ corruption on ivb:gt1 */
6811 		/* enable HiZ Raw Stall Optimization */
6812 		I915_WRITE(CACHE_MODE_0_GEN7,
6813 			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6814 	}
6815 
6816 	/* WaDisable4x2SubspanOptimization:ivb */
6817 	I915_WRITE(CACHE_MODE_1,
6818 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6819 
6820 	/*
6821 	 * BSpec recommends 8x4 when MSAA is used,
6822 	 * however in practice 16x4 seems fastest.
6823 	 *
6824 	 * Note that PS/WM thread counts depend on the WIZ hashing
6825 	 * disable bit, which we don't touch here, but it's good
6826 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6827 	 */
6828 	I915_WRITE(GEN7_GT_MODE,
6829 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6830 
6831 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6832 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
6833 	snpcr |= GEN6_MBC_SNPCR_MED;
6834 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6835 
6836 	if (!HAS_PCH_NOP(dev))
6837 		cpt_init_clock_gating(dev);
6838 
6839 	gen6_check_mch_setup(dev);
6840 }
6841 
6842 static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
6843 {
6844 	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6845 
6846 	/*
6847 	 * Disable trickle feed and enable pnd deadline calculation
6848 	 */
6849 	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6850 	I915_WRITE(CBR1_VLV, 0);
6851 }
6852 
6853 static void valleyview_init_clock_gating(struct drm_device *dev)
6854 {
6855 	struct drm_i915_private *dev_priv = dev->dev_private;
6856 
6857 	vlv_init_display_clock_gating(dev_priv);
6858 
6859 	/* WaDisableEarlyCull:vlv */
6860 	I915_WRITE(_3D_CHICKEN3,
6861 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6862 
6863 	/* WaDisableBackToBackFlipFix:vlv */
6864 	I915_WRITE(IVB_CHICKEN3,
6865 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6866 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
6867 
6868 	/* WaPsdDispatchEnable:vlv */
6869 	/* WaDisablePSDDualDispatchEnable:vlv */
6870 	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6871 		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6872 				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6873 
6874 	/* WaDisable_RenderCache_OperationalFlush:vlv */
6875 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6876 
6877 	/* WaForceL3Serialization:vlv */
6878 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6879 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6880 
6881 	/* WaDisableDopClockGating:vlv */
6882 	I915_WRITE(GEN7_ROW_CHICKEN2,
6883 		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6884 
6885 	/* This is required by WaCatErrorRejectionIssue:vlv */
6886 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6887 		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6888 		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6889 
6890 	gen7_setup_fixed_func_scheduler(dev_priv);
6891 
6892 	/*
6893 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6894 	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6895 	 */
6896 	I915_WRITE(GEN6_UCGCTL2,
6897 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6898 
6899 	/* WaDisableL3Bank2xClockGate:vlv
6900 	 * Disabling L3 clock gating- MMIO 940c[25] = 1
6901 	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6902 	I915_WRITE(GEN7_UCGCTL4,
6903 		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6904 
6905 	/*
6906 	 * BSpec says this must be set, even though
6907 	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
6908 	 */
6909 	I915_WRITE(CACHE_MODE_1,
6910 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6911 
6912 	/*
6913 	 * BSpec recommends 8x4 when MSAA is used,
6914 	 * however in practice 16x4 seems fastest.
6915 	 *
6916 	 * Note that PS/WM thread counts depend on the WIZ hashing
6917 	 * disable bit, which we don't touch here, but it's good
6918 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6919 	 */
6920 	I915_WRITE(GEN7_GT_MODE,
6921 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6922 
6923 	/*
6924 	 * WaIncreaseL3CreditsForVLVB0:vlv
6925 	 * This is the hardware default actually.
6926 	 */
6927 	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
6928 
6929 	/*
6930 	 * WaDisableVLVClockGating_VBIIssue:vlv
6931 	 * Disable clock gating on th GCFG unit to prevent a delay
6932 	 * in the reporting of vblank events.
6933 	 */
6934 	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6935 }
6936 
6937 static void cherryview_init_clock_gating(struct drm_device *dev)
6938 {
6939 	struct drm_i915_private *dev_priv = dev->dev_private;
6940 
6941 	vlv_init_display_clock_gating(dev_priv);
6942 
6943 	/* WaVSRefCountFullforceMissDisable:chv */
6944 	/* WaDSRefCountFullforceMissDisable:chv */
6945 	I915_WRITE(GEN7_FF_THREAD_MODE,
6946 		   I915_READ(GEN7_FF_THREAD_MODE) &
6947 		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6948 
6949 	/* WaDisableSemaphoreAndSyncFlipWait:chv */
6950 	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6951 		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6952 
6953 	/* WaDisableCSUnitClockGating:chv */
6954 	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6955 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6956 
6957 	/* WaDisableSDEUnitClockGating:chv */
6958 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6959 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6960 
6961 	/*
6962 	 * GTT cache may not work with big pages, so if those
6963 	 * are ever enabled GTT cache may need to be disabled.
6964 	 */
6965 	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6966 }
6967 
6968 static void g4x_init_clock_gating(struct drm_device *dev)
6969 {
6970 	struct drm_i915_private *dev_priv = dev->dev_private;
6971 	uint32_t dspclk_gate;
6972 
6973 	I915_WRITE(RENCLK_GATE_D1, 0);
6974 	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
6975 		   GS_UNIT_CLOCK_GATE_DISABLE |
6976 		   CL_UNIT_CLOCK_GATE_DISABLE);
6977 	I915_WRITE(RAMCLK_GATE_D, 0);
6978 	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
6979 		OVRUNIT_CLOCK_GATE_DISABLE |
6980 		OVCUNIT_CLOCK_GATE_DISABLE;
6981 	if (IS_GM45(dev))
6982 		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
6983 	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6984 
6985 	/* WaDisableRenderCachePipelinedFlush */
6986 	I915_WRITE(CACHE_MODE_0,
6987 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6988 
6989 	/* WaDisable_RenderCache_OperationalFlush:g4x */
6990 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6991 
6992 	g4x_disable_trickle_feed(dev);
6993 }
6994 
6995 static void crestline_init_clock_gating(struct drm_device *dev)
6996 {
6997 	struct drm_i915_private *dev_priv = dev->dev_private;
6998 
6999 	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7000 	I915_WRITE(RENCLK_GATE_D2, 0);
7001 	I915_WRITE(DSPCLK_GATE_D, 0);
7002 	I915_WRITE(RAMCLK_GATE_D, 0);
7003 	I915_WRITE16(DEUC, 0);
7004 	I915_WRITE(MI_ARB_STATE,
7005 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7006 
7007 	/* WaDisable_RenderCache_OperationalFlush:gen4 */
7008 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7009 }
7010 
7011 static void broadwater_init_clock_gating(struct drm_device *dev)
7012 {
7013 	struct drm_i915_private *dev_priv = dev->dev_private;
7014 
7015 	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7016 		   I965_RCC_CLOCK_GATE_DISABLE |
7017 		   I965_RCPB_CLOCK_GATE_DISABLE |
7018 		   I965_ISC_CLOCK_GATE_DISABLE |
7019 		   I965_FBC_CLOCK_GATE_DISABLE);
7020 	I915_WRITE(RENCLK_GATE_D2, 0);
7021 	I915_WRITE(MI_ARB_STATE,
7022 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7023 
7024 	/* WaDisable_RenderCache_OperationalFlush:gen4 */
7025 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7026 }
7027 
7028 static void gen3_init_clock_gating(struct drm_device *dev)
7029 {
7030 	struct drm_i915_private *dev_priv = dev->dev_private;
7031 	u32 dstate = I915_READ(D_STATE);
7032 
7033 	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7034 		DSTATE_DOT_CLOCK_GATING;
7035 	I915_WRITE(D_STATE, dstate);
7036 
7037 	if (IS_PINEVIEW(dev))
7038 		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7039 
7040 	/* IIR "flip pending" means done if this bit is set */
7041 	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7042 
7043 	/* interrupts should cause a wake up from C3 */
7044 	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7045 
7046 	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7047 	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7048 
7049 	I915_WRITE(MI_ARB_STATE,
7050 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7051 }
7052 
7053 static void i85x_init_clock_gating(struct drm_device *dev)
7054 {
7055 	struct drm_i915_private *dev_priv = dev->dev_private;
7056 
7057 	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7058 
7059 	/* interrupts should cause a wake up from C3 */
7060 	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7061 		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7062 
7063 	I915_WRITE(MEM_MODE,
7064 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7065 }
7066 
7067 static void i830_init_clock_gating(struct drm_device *dev)
7068 {
7069 	struct drm_i915_private *dev_priv = dev->dev_private;
7070 
7071 	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7072 
7073 	I915_WRITE(MEM_MODE,
7074 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7075 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7076 }
7077 
7078 void intel_init_clock_gating(struct drm_device *dev)
7079 {
7080 	struct drm_i915_private *dev_priv = dev->dev_private;
7081 
7082 	if (dev_priv->display.init_clock_gating)
7083 		dev_priv->display.init_clock_gating(dev);
7084 }
7085 
7086 void intel_suspend_hw(struct drm_device *dev)
7087 {
7088 	if (HAS_PCH_LPT(dev))
7089 		lpt_suspend_hw(dev);
7090 }
7091 
7092 /* Set up chip specific power management-related functions */
7093 void intel_init_pm(struct drm_device *dev)
7094 {
7095 	struct drm_i915_private *dev_priv = dev->dev_private;
7096 
7097 	intel_fbc_init(dev_priv);
7098 
7099 	/* For cxsr */
7100 	if (IS_PINEVIEW(dev))
7101 		i915_pineview_get_mem_freq(dev);
7102 	else if (IS_GEN5(dev))
7103 		i915_ironlake_get_mem_freq(dev);
7104 
7105 	/* For FIFO watermark updates */
7106 	if (INTEL_INFO(dev)->gen >= 9) {
7107 		skl_setup_wm_latency(dev);
7108 
7109 		if (IS_BROXTON(dev))
7110 			dev_priv->display.init_clock_gating =
7111 				bxt_init_clock_gating;
7112 		else if (IS_SKYLAKE(dev))
7113 			dev_priv->display.init_clock_gating =
7114 				skl_init_clock_gating;
7115 		dev_priv->display.update_wm = skl_update_wm;
7116 		dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
7117 	} else if (HAS_PCH_SPLIT(dev)) {
7118 		ilk_setup_wm_latency(dev);
7119 
7120 		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7121 		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7122 		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7123 		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7124 			dev_priv->display.update_wm = ilk_update_wm;
7125 			dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
7126 		} else {
7127 			DRM_DEBUG_KMS("Failed to read display plane latency. "
7128 				      "Disable CxSR\n");
7129 		}
7130 
7131 		if (IS_GEN5(dev))
7132 			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7133 		else if (IS_GEN6(dev))
7134 			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7135 		else if (IS_IVYBRIDGE(dev))
7136 			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7137 		else if (IS_HASWELL(dev))
7138 			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7139 		else if (INTEL_INFO(dev)->gen == 8)
7140 			dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7141 	} else if (IS_CHERRYVIEW(dev)) {
7142 		vlv_setup_wm_latency(dev);
7143 
7144 		dev_priv->display.update_wm = vlv_update_wm;
7145 		dev_priv->display.init_clock_gating =
7146 			cherryview_init_clock_gating;
7147 	} else if (IS_VALLEYVIEW(dev)) {
7148 		vlv_setup_wm_latency(dev);
7149 
7150 		dev_priv->display.update_wm = vlv_update_wm;
7151 		dev_priv->display.init_clock_gating =
7152 			valleyview_init_clock_gating;
7153 	} else if (IS_PINEVIEW(dev)) {
7154 		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7155 					    dev_priv->is_ddr3,
7156 					    dev_priv->fsb_freq,
7157 					    dev_priv->mem_freq)) {
7158 			DRM_INFO("failed to find known CxSR latency "
7159 				 "(found ddr%s fsb freq %d, mem freq %d), "
7160 				 "disabling CxSR\n",
7161 				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
7162 				 dev_priv->fsb_freq, dev_priv->mem_freq);
7163 			/* Disable CxSR and never update its watermark again */
7164 			intel_set_memory_cxsr(dev_priv, false);
7165 			dev_priv->display.update_wm = NULL;
7166 		} else
7167 			dev_priv->display.update_wm = pineview_update_wm;
7168 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7169 	} else if (IS_G4X(dev)) {
7170 		dev_priv->display.update_wm = g4x_update_wm;
7171 		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7172 	} else if (IS_GEN4(dev)) {
7173 		dev_priv->display.update_wm = i965_update_wm;
7174 		if (IS_CRESTLINE(dev))
7175 			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7176 		else if (IS_BROADWATER(dev))
7177 			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7178 	} else if (IS_GEN3(dev)) {
7179 		dev_priv->display.update_wm = i9xx_update_wm;
7180 		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7181 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7182 	} else if (IS_GEN2(dev)) {
7183 		if (INTEL_INFO(dev)->num_pipes == 1) {
7184 			dev_priv->display.update_wm = i845_update_wm;
7185 			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7186 		} else {
7187 			dev_priv->display.update_wm = i9xx_update_wm;
7188 			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7189 		}
7190 
7191 		if (IS_I85X(dev) || IS_I865G(dev))
7192 			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7193 		else
7194 			dev_priv->display.init_clock_gating = i830_init_clock_gating;
7195 	} else {
7196 		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7197 	}
7198 }
7199 
7200 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7201 {
7202 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7203 
7204 	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7205 		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7206 		return -EAGAIN;
7207 	}
7208 
7209 	I915_WRITE(GEN6_PCODE_DATA, *val);
7210 	I915_WRITE(GEN6_PCODE_DATA1, 0);
7211 	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7212 
7213 	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7214 		     500)) {
7215 		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7216 		return -ETIMEDOUT;
7217 	}
7218 
7219 	*val = I915_READ(GEN6_PCODE_DATA);
7220 	I915_WRITE(GEN6_PCODE_DATA, 0);
7221 
7222 	return 0;
7223 }
7224 
7225 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
7226 {
7227 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7228 
7229 	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7230 		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7231 		return -EAGAIN;
7232 	}
7233 
7234 	I915_WRITE(GEN6_PCODE_DATA, val);
7235 	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7236 
7237 	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7238 		     500)) {
7239 		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7240 		return -ETIMEDOUT;
7241 	}
7242 
7243 	I915_WRITE(GEN6_PCODE_DATA, 0);
7244 
7245 	return 0;
7246 }
7247 
7248 static int vlv_gpu_freq_div(unsigned int czclk_freq)
7249 {
7250 	switch (czclk_freq) {
7251 	case 200:
7252 		return 10;
7253 	case 267:
7254 		return 12;
7255 	case 320:
7256 	case 333:
7257 		return 16;
7258 	case 400:
7259 		return 20;
7260 	default:
7261 		return -1;
7262 	}
7263 }
7264 
7265 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7266 {
7267 	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
7268 
7269 	div = vlv_gpu_freq_div(czclk_freq);
7270 	if (div < 0)
7271 		return div;
7272 
7273 	return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
7274 }
7275 
7276 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7277 {
7278 	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
7279 
7280 	mul = vlv_gpu_freq_div(czclk_freq);
7281 	if (mul < 0)
7282 		return mul;
7283 
7284 	return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
7285 }
7286 
7287 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7288 {
7289 	int div, czclk_freq = dev_priv->rps.cz_freq;
7290 
7291 	div = vlv_gpu_freq_div(czclk_freq) / 2;
7292 	if (div < 0)
7293 		return div;
7294 
7295 	return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
7296 }
7297 
7298 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7299 {
7300 	int mul, czclk_freq = dev_priv->rps.cz_freq;
7301 
7302 	mul = vlv_gpu_freq_div(czclk_freq) / 2;
7303 	if (mul < 0)
7304 		return mul;
7305 
7306 	/* CHV needs even values */
7307 	return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
7308 }
7309 
7310 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7311 {
7312 	if (IS_GEN9(dev_priv->dev))
7313 		return (val * GT_FREQUENCY_MULTIPLIER) / GEN9_FREQ_SCALER;
7314 	else if (IS_CHERRYVIEW(dev_priv->dev))
7315 		return chv_gpu_freq(dev_priv, val);
7316 	else if (IS_VALLEYVIEW(dev_priv->dev))
7317 		return byt_gpu_freq(dev_priv, val);
7318 	else
7319 		return val * GT_FREQUENCY_MULTIPLIER;
7320 }
7321 
7322 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7323 {
7324 	if (IS_GEN9(dev_priv->dev))
7325 		return (val * GEN9_FREQ_SCALER) / GT_FREQUENCY_MULTIPLIER;
7326 	else if (IS_CHERRYVIEW(dev_priv->dev))
7327 		return chv_freq_opcode(dev_priv, val);
7328 	else if (IS_VALLEYVIEW(dev_priv->dev))
7329 		return byt_freq_opcode(dev_priv, val);
7330 	else
7331 		return val / GT_FREQUENCY_MULTIPLIER;
7332 }
7333 
7334 struct request_boost {
7335 	struct work_struct work;
7336 	struct drm_i915_gem_request *req;
7337 };
7338 
7339 static void __intel_rps_boost_work(struct work_struct *work)
7340 {
7341 	struct request_boost *boost = container_of(work, struct request_boost, work);
7342 	struct drm_i915_gem_request *req = boost->req;
7343 
7344 	if (!i915_gem_request_completed(req, true))
7345 		gen6_rps_boost(to_i915(req->ring->dev), NULL,
7346 			       req->emitted_jiffies);
7347 
7348 	i915_gem_request_unreference__unlocked(req);
7349 	kfree(boost);
7350 }
7351 
7352 void intel_queue_rps_boost_for_request(struct drm_device *dev,
7353 				       struct drm_i915_gem_request *req)
7354 {
7355 	struct request_boost *boost;
7356 
7357 	if (req == NULL || INTEL_INFO(dev)->gen < 6)
7358 		return;
7359 
7360 	if (i915_gem_request_completed(req, true))
7361 		return;
7362 
7363 	boost = kmalloc(sizeof(*boost), M_DRM, M_NOWAIT);
7364 	if (boost == NULL)
7365 		return;
7366 
7367 	i915_gem_request_reference(req);
7368 	boost->req = req;
7369 
7370 	INIT_WORK(&boost->work, __intel_rps_boost_work);
7371 	queue_work(to_i915(dev)->wq, &boost->work);
7372 }
7373 
7374 void intel_pm_setup(struct drm_device *dev)
7375 {
7376 	struct drm_i915_private *dev_priv = dev->dev_private;
7377 
7378 	lockinit(&dev_priv->rps.hw_lock, "i915 rps.hw_lock", 0, LK_CANRECURSE);
7379 	lockinit(&dev_priv->rps.client_lock, "i915rcl", 0, LK_CANRECURSE);
7380 
7381 	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7382 			  intel_gen6_powersave_work);
7383 	INIT_LIST_HEAD(&dev_priv->rps.clients);
7384 	INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
7385 	INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7386 
7387 	dev_priv->pm.suspended = false;
7388 }
7389