1 /* 2 * Copyright 2006 Dave Airlie <airlied@linux.ie> 3 * Copyright © 2006-2009 Intel Corporation 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 22 * DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: 25 * Eric Anholt <eric@anholt.net> 26 * Jesse Barnes <jesse.barnes@intel.com> 27 */ 28 29 #include <linux/i2c.h> 30 #include <linux/delay.h> 31 #include <linux/hdmi.h> 32 #include <drm/drmP.h> 33 #include <drm/drm_crtc.h> 34 #include <drm/drm_edid.h> 35 #include "intel_drv.h" 36 #include <drm/i915_drm.h> 37 #include "i915_drv.h" 38 39 static struct drm_device *intel_hdmi_to_dev(struct intel_hdmi *intel_hdmi) 40 { 41 return hdmi_to_dig_port(intel_hdmi)->base.base.dev; 42 } 43 44 static void 45 assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi) 46 { 47 struct drm_device *dev = intel_hdmi_to_dev(intel_hdmi); 48 struct drm_i915_private *dev_priv = dev->dev_private; 49 uint32_t enabled_bits; 50 51 enabled_bits = HAS_DDI(dev) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE; 52 53 WARN(I915_READ(intel_hdmi->hdmi_reg) & enabled_bits, 54 "HDMI port enabled, expecting disabled\n"); 55 } 56 57 struct intel_hdmi *enc_to_intel_hdmi(struct drm_encoder *encoder) 58 { 59 struct intel_digital_port *intel_dig_port = 60 container_of(encoder, struct intel_digital_port, base.base); 61 return &intel_dig_port->hdmi; 62 } 63 64 static struct intel_hdmi *intel_attached_hdmi(struct drm_connector *connector) 65 { 66 return enc_to_intel_hdmi(&intel_attached_encoder(connector)->base); 67 } 68 69 static u32 g4x_infoframe_index(enum hdmi_infoframe_type type) 70 { 71 switch (type) { 72 case HDMI_INFOFRAME_TYPE_AVI: 73 return VIDEO_DIP_SELECT_AVI; 74 case HDMI_INFOFRAME_TYPE_SPD: 75 return VIDEO_DIP_SELECT_SPD; 76 case HDMI_INFOFRAME_TYPE_VENDOR: 77 return VIDEO_DIP_SELECT_VENDOR; 78 default: 79 DRM_DEBUG_DRIVER("unknown info frame type %d\n", type); 80 return 0; 81 } 82 } 83 84 static u32 g4x_infoframe_enable(enum hdmi_infoframe_type type) 85 { 86 switch (type) { 87 case HDMI_INFOFRAME_TYPE_AVI: 88 return VIDEO_DIP_ENABLE_AVI; 89 case HDMI_INFOFRAME_TYPE_SPD: 90 return VIDEO_DIP_ENABLE_SPD; 91 case HDMI_INFOFRAME_TYPE_VENDOR: 92 return VIDEO_DIP_ENABLE_VENDOR; 93 default: 94 DRM_DEBUG_DRIVER("unknown info frame type %d\n", type); 95 return 0; 96 } 97 } 98 99 static u32 hsw_infoframe_enable(enum hdmi_infoframe_type type) 100 { 101 switch (type) { 102 case HDMI_INFOFRAME_TYPE_AVI: 103 return VIDEO_DIP_ENABLE_AVI_HSW; 104 case HDMI_INFOFRAME_TYPE_SPD: 105 return VIDEO_DIP_ENABLE_SPD_HSW; 106 case HDMI_INFOFRAME_TYPE_VENDOR: 107 return VIDEO_DIP_ENABLE_VS_HSW; 108 default: 109 DRM_DEBUG_DRIVER("unknown info frame type %d\n", type); 110 return 0; 111 } 112 } 113 114 static u32 hsw_infoframe_data_reg(enum hdmi_infoframe_type type, 115 enum transcoder cpu_transcoder) 116 { 117 switch (type) { 118 case HDMI_INFOFRAME_TYPE_AVI: 119 return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder); 120 case HDMI_INFOFRAME_TYPE_SPD: 121 return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder); 122 case HDMI_INFOFRAME_TYPE_VENDOR: 123 return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder); 124 default: 125 DRM_DEBUG_DRIVER("unknown info frame type %d\n", type); 126 return 0; 127 } 128 } 129 130 static void g4x_write_infoframe(struct drm_encoder *encoder, 131 enum hdmi_infoframe_type type, 132 const void *frame, ssize_t len) 133 { 134 const uint32_t *data = frame; 135 struct drm_device *dev = encoder->dev; 136 struct drm_i915_private *dev_priv = dev->dev_private; 137 u32 val = I915_READ(VIDEO_DIP_CTL); 138 int i; 139 140 WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n"); 141 142 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ 143 val |= g4x_infoframe_index(type); 144 145 val &= ~g4x_infoframe_enable(type); 146 147 I915_WRITE(VIDEO_DIP_CTL, val); 148 149 mmiowb(); 150 for (i = 0; i < len; i += 4) { 151 I915_WRITE(VIDEO_DIP_DATA, *data); 152 data++; 153 } 154 /* Write every possible data byte to force correct ECC calculation. */ 155 for (; i < VIDEO_DIP_DATA_SIZE; i += 4) 156 I915_WRITE(VIDEO_DIP_DATA, 0); 157 mmiowb(); 158 159 val |= g4x_infoframe_enable(type); 160 val &= ~VIDEO_DIP_FREQ_MASK; 161 val |= VIDEO_DIP_FREQ_VSYNC; 162 163 I915_WRITE(VIDEO_DIP_CTL, val); 164 POSTING_READ(VIDEO_DIP_CTL); 165 } 166 167 static void ibx_write_infoframe(struct drm_encoder *encoder, 168 enum hdmi_infoframe_type type, 169 const void *frame, ssize_t len) 170 { 171 const uint32_t *data = frame; 172 struct drm_device *dev = encoder->dev; 173 struct drm_i915_private *dev_priv = dev->dev_private; 174 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc); 175 int i, reg = TVIDEO_DIP_CTL(intel_crtc->pipe); 176 u32 val = I915_READ(reg); 177 178 WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n"); 179 180 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ 181 val |= g4x_infoframe_index(type); 182 183 val &= ~g4x_infoframe_enable(type); 184 185 I915_WRITE(reg, val); 186 187 mmiowb(); 188 for (i = 0; i < len; i += 4) { 189 I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data); 190 data++; 191 } 192 /* Write every possible data byte to force correct ECC calculation. */ 193 for (; i < VIDEO_DIP_DATA_SIZE; i += 4) 194 I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0); 195 mmiowb(); 196 197 val |= g4x_infoframe_enable(type); 198 val &= ~VIDEO_DIP_FREQ_MASK; 199 val |= VIDEO_DIP_FREQ_VSYNC; 200 201 I915_WRITE(reg, val); 202 POSTING_READ(reg); 203 } 204 205 static void cpt_write_infoframe(struct drm_encoder *encoder, 206 enum hdmi_infoframe_type type, 207 const void *frame, ssize_t len) 208 { 209 const uint32_t *data = frame; 210 struct drm_device *dev = encoder->dev; 211 struct drm_i915_private *dev_priv = dev->dev_private; 212 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc); 213 int i, reg = TVIDEO_DIP_CTL(intel_crtc->pipe); 214 u32 val = I915_READ(reg); 215 216 WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n"); 217 218 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ 219 val |= g4x_infoframe_index(type); 220 221 /* The DIP control register spec says that we need to update the AVI 222 * infoframe without clearing its enable bit */ 223 if (type != HDMI_INFOFRAME_TYPE_AVI) 224 val &= ~g4x_infoframe_enable(type); 225 226 I915_WRITE(reg, val); 227 228 mmiowb(); 229 for (i = 0; i < len; i += 4) { 230 I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data); 231 data++; 232 } 233 /* Write every possible data byte to force correct ECC calculation. */ 234 for (; i < VIDEO_DIP_DATA_SIZE; i += 4) 235 I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0); 236 mmiowb(); 237 238 val |= g4x_infoframe_enable(type); 239 val &= ~VIDEO_DIP_FREQ_MASK; 240 val |= VIDEO_DIP_FREQ_VSYNC; 241 242 I915_WRITE(reg, val); 243 POSTING_READ(reg); 244 } 245 246 static void vlv_write_infoframe(struct drm_encoder *encoder, 247 enum hdmi_infoframe_type type, 248 const void *frame, ssize_t len) 249 { 250 const uint32_t *data = frame; 251 struct drm_device *dev = encoder->dev; 252 struct drm_i915_private *dev_priv = dev->dev_private; 253 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc); 254 int i, reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe); 255 u32 val = I915_READ(reg); 256 257 WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n"); 258 259 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ 260 val |= g4x_infoframe_index(type); 261 262 val &= ~g4x_infoframe_enable(type); 263 264 I915_WRITE(reg, val); 265 266 mmiowb(); 267 for (i = 0; i < len; i += 4) { 268 I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), *data); 269 data++; 270 } 271 /* Write every possible data byte to force correct ECC calculation. */ 272 for (; i < VIDEO_DIP_DATA_SIZE; i += 4) 273 I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), 0); 274 mmiowb(); 275 276 val |= g4x_infoframe_enable(type); 277 val &= ~VIDEO_DIP_FREQ_MASK; 278 val |= VIDEO_DIP_FREQ_VSYNC; 279 280 I915_WRITE(reg, val); 281 POSTING_READ(reg); 282 } 283 284 static void hsw_write_infoframe(struct drm_encoder *encoder, 285 enum hdmi_infoframe_type type, 286 const void *frame, ssize_t len) 287 { 288 const uint32_t *data = frame; 289 struct drm_device *dev = encoder->dev; 290 struct drm_i915_private *dev_priv = dev->dev_private; 291 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc); 292 u32 ctl_reg = HSW_TVIDEO_DIP_CTL(intel_crtc->config.cpu_transcoder); 293 u32 data_reg; 294 int i; 295 u32 val = I915_READ(ctl_reg); 296 297 data_reg = hsw_infoframe_data_reg(type, 298 intel_crtc->config.cpu_transcoder); 299 if (data_reg == 0) 300 return; 301 302 val &= ~hsw_infoframe_enable(type); 303 I915_WRITE(ctl_reg, val); 304 305 mmiowb(); 306 for (i = 0; i < len; i += 4) { 307 I915_WRITE(data_reg + i, *data); 308 data++; 309 } 310 /* Write every possible data byte to force correct ECC calculation. */ 311 for (; i < VIDEO_DIP_DATA_SIZE; i += 4) 312 I915_WRITE(data_reg + i, 0); 313 mmiowb(); 314 315 val |= hsw_infoframe_enable(type); 316 I915_WRITE(ctl_reg, val); 317 POSTING_READ(ctl_reg); 318 } 319 320 /* 321 * The data we write to the DIP data buffer registers is 1 byte bigger than the 322 * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting 323 * at 0). It's also a byte used by DisplayPort so the same DIP registers can be 324 * used for both technologies. 325 * 326 * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0 327 * DW1: DB3 | DB2 | DB1 | DB0 328 * DW2: DB7 | DB6 | DB5 | DB4 329 * DW3: ... 330 * 331 * (HB is Header Byte, DB is Data Byte) 332 * 333 * The hdmi pack() functions don't know about that hardware specific hole so we 334 * trick them by giving an offset into the buffer and moving back the header 335 * bytes by one. 336 */ 337 static void intel_write_infoframe(struct drm_encoder *encoder, 338 union hdmi_infoframe *frame) 339 { 340 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); 341 uint8_t buffer[VIDEO_DIP_DATA_SIZE]; 342 ssize_t len; 343 344 /* see comment above for the reason for this offset */ 345 len = hdmi_infoframe_pack(frame, buffer + 1, sizeof(buffer) - 1); 346 if (len < 0) 347 return; 348 349 /* Insert the 'hole' (see big comment above) at position 3 */ 350 buffer[0] = buffer[1]; 351 buffer[1] = buffer[2]; 352 buffer[2] = buffer[3]; 353 buffer[3] = 0; 354 len++; 355 356 intel_hdmi->write_infoframe(encoder, frame->any.type, buffer, len); 357 } 358 359 static void intel_hdmi_set_avi_infoframe(struct drm_encoder *encoder, 360 struct drm_display_mode *adjusted_mode) 361 { 362 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); 363 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc); 364 union hdmi_infoframe frame; 365 int ret; 366 367 ret = drm_hdmi_avi_infoframe_from_display_mode(&frame.avi, 368 adjusted_mode); 369 if (ret < 0) { 370 DRM_ERROR("couldn't fill AVI infoframe\n"); 371 return; 372 } 373 374 if (intel_hdmi->rgb_quant_range_selectable) { 375 if (intel_crtc->config.limited_color_range) 376 frame.avi.quantization_range = 377 HDMI_QUANTIZATION_RANGE_LIMITED; 378 else 379 frame.avi.quantization_range = 380 HDMI_QUANTIZATION_RANGE_FULL; 381 } 382 383 intel_write_infoframe(encoder, &frame); 384 } 385 386 static void intel_hdmi_set_spd_infoframe(struct drm_encoder *encoder) 387 { 388 union hdmi_infoframe frame; 389 int ret; 390 391 ret = hdmi_spd_infoframe_init(&frame.spd, "Intel", "Integrated gfx"); 392 if (ret < 0) { 393 DRM_ERROR("couldn't fill SPD infoframe\n"); 394 return; 395 } 396 397 frame.spd.sdi = HDMI_SPD_SDI_PC; 398 399 intel_write_infoframe(encoder, &frame); 400 } 401 402 static void 403 intel_hdmi_set_hdmi_infoframe(struct drm_encoder *encoder, 404 struct drm_display_mode *adjusted_mode) 405 { 406 union hdmi_infoframe frame; 407 int ret; 408 409 ret = drm_hdmi_vendor_infoframe_from_display_mode(&frame.vendor.hdmi, 410 adjusted_mode); 411 if (ret < 0) 412 return; 413 414 intel_write_infoframe(encoder, &frame); 415 } 416 417 static void g4x_set_infoframes(struct drm_encoder *encoder, 418 struct drm_display_mode *adjusted_mode) 419 { 420 struct drm_i915_private *dev_priv = encoder->dev->dev_private; 421 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder); 422 struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi; 423 u32 reg = VIDEO_DIP_CTL; 424 u32 val = I915_READ(reg); 425 u32 port; 426 427 assert_hdmi_port_disabled(intel_hdmi); 428 429 /* If the registers were not initialized yet, they might be zeroes, 430 * which means we're selecting the AVI DIP and we're setting its 431 * frequency to once. This seems to really confuse the HW and make 432 * things stop working (the register spec says the AVI always needs to 433 * be sent every VSync). So here we avoid writing to the register more 434 * than we need and also explicitly select the AVI DIP and explicitly 435 * set its frequency to every VSync. Avoiding to write it twice seems to 436 * be enough to solve the problem, but being defensive shouldn't hurt us 437 * either. */ 438 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC; 439 440 if (!intel_hdmi->has_hdmi_sink) { 441 if (!(val & VIDEO_DIP_ENABLE)) 442 return; 443 val &= ~VIDEO_DIP_ENABLE; 444 I915_WRITE(reg, val); 445 POSTING_READ(reg); 446 return; 447 } 448 449 switch (intel_dig_port->port) { 450 case PORT_B: 451 port = VIDEO_DIP_PORT_B; 452 break; 453 case PORT_C: 454 port = VIDEO_DIP_PORT_C; 455 break; 456 default: 457 BUG(); 458 return; 459 } 460 461 if (port != (val & VIDEO_DIP_PORT_MASK)) { 462 if (val & VIDEO_DIP_ENABLE) { 463 val &= ~VIDEO_DIP_ENABLE; 464 I915_WRITE(reg, val); 465 POSTING_READ(reg); 466 } 467 val &= ~VIDEO_DIP_PORT_MASK; 468 val |= port; 469 } 470 471 val |= VIDEO_DIP_ENABLE; 472 val &= ~VIDEO_DIP_ENABLE_VENDOR; 473 474 I915_WRITE(reg, val); 475 POSTING_READ(reg); 476 477 intel_hdmi_set_avi_infoframe(encoder, adjusted_mode); 478 intel_hdmi_set_spd_infoframe(encoder); 479 intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode); 480 } 481 482 static void ibx_set_infoframes(struct drm_encoder *encoder, 483 struct drm_display_mode *adjusted_mode) 484 { 485 struct drm_i915_private *dev_priv = encoder->dev->dev_private; 486 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc); 487 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder); 488 struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi; 489 u32 reg = TVIDEO_DIP_CTL(intel_crtc->pipe); 490 u32 val = I915_READ(reg); 491 u32 port; 492 493 assert_hdmi_port_disabled(intel_hdmi); 494 495 /* See the big comment in g4x_set_infoframes() */ 496 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC; 497 498 if (!intel_hdmi->has_hdmi_sink) { 499 if (!(val & VIDEO_DIP_ENABLE)) 500 return; 501 val &= ~VIDEO_DIP_ENABLE; 502 I915_WRITE(reg, val); 503 POSTING_READ(reg); 504 return; 505 } 506 507 switch (intel_dig_port->port) { 508 case PORT_B: 509 port = VIDEO_DIP_PORT_B; 510 break; 511 case PORT_C: 512 port = VIDEO_DIP_PORT_C; 513 break; 514 case PORT_D: 515 port = VIDEO_DIP_PORT_D; 516 break; 517 default: 518 BUG(); 519 return; 520 } 521 522 if (port != (val & VIDEO_DIP_PORT_MASK)) { 523 if (val & VIDEO_DIP_ENABLE) { 524 val &= ~VIDEO_DIP_ENABLE; 525 I915_WRITE(reg, val); 526 POSTING_READ(reg); 527 } 528 val &= ~VIDEO_DIP_PORT_MASK; 529 val |= port; 530 } 531 532 val |= VIDEO_DIP_ENABLE; 533 val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | 534 VIDEO_DIP_ENABLE_GCP); 535 536 I915_WRITE(reg, val); 537 POSTING_READ(reg); 538 539 intel_hdmi_set_avi_infoframe(encoder, adjusted_mode); 540 intel_hdmi_set_spd_infoframe(encoder); 541 intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode); 542 } 543 544 static void cpt_set_infoframes(struct drm_encoder *encoder, 545 struct drm_display_mode *adjusted_mode) 546 { 547 struct drm_i915_private *dev_priv = encoder->dev->dev_private; 548 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc); 549 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); 550 u32 reg = TVIDEO_DIP_CTL(intel_crtc->pipe); 551 u32 val = I915_READ(reg); 552 553 assert_hdmi_port_disabled(intel_hdmi); 554 555 /* See the big comment in g4x_set_infoframes() */ 556 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC; 557 558 if (!intel_hdmi->has_hdmi_sink) { 559 if (!(val & VIDEO_DIP_ENABLE)) 560 return; 561 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI); 562 I915_WRITE(reg, val); 563 POSTING_READ(reg); 564 return; 565 } 566 567 /* Set both together, unset both together: see the spec. */ 568 val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI; 569 val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | 570 VIDEO_DIP_ENABLE_GCP); 571 572 I915_WRITE(reg, val); 573 POSTING_READ(reg); 574 575 intel_hdmi_set_avi_infoframe(encoder, adjusted_mode); 576 intel_hdmi_set_spd_infoframe(encoder); 577 intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode); 578 } 579 580 static void vlv_set_infoframes(struct drm_encoder *encoder, 581 struct drm_display_mode *adjusted_mode) 582 { 583 struct drm_i915_private *dev_priv = encoder->dev->dev_private; 584 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc); 585 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); 586 u32 reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe); 587 u32 val = I915_READ(reg); 588 589 assert_hdmi_port_disabled(intel_hdmi); 590 591 /* See the big comment in g4x_set_infoframes() */ 592 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC; 593 594 if (!intel_hdmi->has_hdmi_sink) { 595 if (!(val & VIDEO_DIP_ENABLE)) 596 return; 597 val &= ~VIDEO_DIP_ENABLE; 598 I915_WRITE(reg, val); 599 POSTING_READ(reg); 600 return; 601 } 602 603 val |= VIDEO_DIP_ENABLE; 604 val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | 605 VIDEO_DIP_ENABLE_GCP); 606 607 I915_WRITE(reg, val); 608 POSTING_READ(reg); 609 610 intel_hdmi_set_avi_infoframe(encoder, adjusted_mode); 611 intel_hdmi_set_spd_infoframe(encoder); 612 intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode); 613 } 614 615 static void hsw_set_infoframes(struct drm_encoder *encoder, 616 struct drm_display_mode *adjusted_mode) 617 { 618 struct drm_i915_private *dev_priv = encoder->dev->dev_private; 619 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc); 620 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); 621 u32 reg = HSW_TVIDEO_DIP_CTL(intel_crtc->config.cpu_transcoder); 622 u32 val = I915_READ(reg); 623 624 assert_hdmi_port_disabled(intel_hdmi); 625 626 if (!intel_hdmi->has_hdmi_sink) { 627 I915_WRITE(reg, 0); 628 POSTING_READ(reg); 629 return; 630 } 631 632 val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_GCP_HSW | 633 VIDEO_DIP_ENABLE_VS_HSW | VIDEO_DIP_ENABLE_GMP_HSW); 634 635 I915_WRITE(reg, val); 636 POSTING_READ(reg); 637 638 intel_hdmi_set_avi_infoframe(encoder, adjusted_mode); 639 intel_hdmi_set_spd_infoframe(encoder); 640 intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode); 641 } 642 643 static void intel_hdmi_mode_set(struct intel_encoder *encoder) 644 { 645 struct drm_device *dev = encoder->base.dev; 646 struct drm_i915_private *dev_priv = dev->dev_private; 647 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc); 648 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base); 649 struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode; 650 u32 hdmi_val; 651 652 hdmi_val = SDVO_ENCODING_HDMI; 653 if (!HAS_PCH_SPLIT(dev)) 654 hdmi_val |= intel_hdmi->color_range; 655 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 656 hdmi_val |= SDVO_VSYNC_ACTIVE_HIGH; 657 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 658 hdmi_val |= SDVO_HSYNC_ACTIVE_HIGH; 659 660 if (crtc->config.pipe_bpp > 24) 661 hdmi_val |= HDMI_COLOR_FORMAT_12bpc; 662 else 663 hdmi_val |= SDVO_COLOR_FORMAT_8bpc; 664 665 /* Required on CPT */ 666 if (intel_hdmi->has_hdmi_sink && HAS_PCH_CPT(dev)) 667 hdmi_val |= HDMI_MODE_SELECT_HDMI; 668 669 if (intel_hdmi->has_audio) { 670 DRM_DEBUG_DRIVER("Enabling HDMI audio on pipe %c\n", 671 pipe_name(crtc->pipe)); 672 hdmi_val |= SDVO_AUDIO_ENABLE; 673 hdmi_val |= HDMI_MODE_SELECT_HDMI; 674 intel_write_eld(&encoder->base, adjusted_mode); 675 } 676 677 if (HAS_PCH_CPT(dev)) 678 hdmi_val |= SDVO_PIPE_SEL_CPT(crtc->pipe); 679 else 680 hdmi_val |= SDVO_PIPE_SEL(crtc->pipe); 681 682 I915_WRITE(intel_hdmi->hdmi_reg, hdmi_val); 683 POSTING_READ(intel_hdmi->hdmi_reg); 684 685 intel_hdmi->set_infoframes(&encoder->base, adjusted_mode); 686 } 687 688 static bool intel_hdmi_get_hw_state(struct intel_encoder *encoder, 689 enum i915_pipe *pipe) 690 { 691 struct drm_device *dev = encoder->base.dev; 692 struct drm_i915_private *dev_priv = dev->dev_private; 693 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base); 694 u32 tmp; 695 696 tmp = I915_READ(intel_hdmi->hdmi_reg); 697 698 if (!(tmp & SDVO_ENABLE)) 699 return false; 700 701 if (HAS_PCH_CPT(dev)) 702 *pipe = PORT_TO_PIPE_CPT(tmp); 703 else 704 *pipe = PORT_TO_PIPE(tmp); 705 706 return true; 707 } 708 709 static void intel_hdmi_get_config(struct intel_encoder *encoder, 710 struct intel_crtc_config *pipe_config) 711 { 712 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base); 713 struct drm_i915_private *dev_priv = encoder->base.dev->dev_private; 714 u32 tmp, flags = 0; 715 int dotclock; 716 717 tmp = I915_READ(intel_hdmi->hdmi_reg); 718 719 if (tmp & SDVO_HSYNC_ACTIVE_HIGH) 720 flags |= DRM_MODE_FLAG_PHSYNC; 721 else 722 flags |= DRM_MODE_FLAG_NHSYNC; 723 724 if (tmp & SDVO_VSYNC_ACTIVE_HIGH) 725 flags |= DRM_MODE_FLAG_PVSYNC; 726 else 727 flags |= DRM_MODE_FLAG_NVSYNC; 728 729 pipe_config->adjusted_mode.flags |= flags; 730 731 if ((tmp & SDVO_COLOR_FORMAT_MASK) == HDMI_COLOR_FORMAT_12bpc) 732 dotclock = pipe_config->port_clock * 2 / 3; 733 else 734 dotclock = pipe_config->port_clock; 735 736 if (HAS_PCH_SPLIT(dev_priv->dev)) 737 ironlake_check_encoder_dotclock(pipe_config, dotclock); 738 739 pipe_config->adjusted_mode.crtc_clock = dotclock; 740 } 741 742 static void intel_enable_hdmi(struct intel_encoder *encoder) 743 { 744 struct drm_device *dev = encoder->base.dev; 745 struct drm_i915_private *dev_priv = dev->dev_private; 746 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc); 747 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base); 748 u32 temp; 749 u32 enable_bits = SDVO_ENABLE; 750 751 if (intel_hdmi->has_audio) 752 enable_bits |= SDVO_AUDIO_ENABLE; 753 754 temp = I915_READ(intel_hdmi->hdmi_reg); 755 756 /* HW workaround for IBX, we need to move the port to transcoder A 757 * before disabling it, so restore the transcoder select bit here. */ 758 if (HAS_PCH_IBX(dev)) 759 enable_bits |= SDVO_PIPE_SEL(intel_crtc->pipe); 760 761 /* HW workaround, need to toggle enable bit off and on for 12bpc, but 762 * we do this anyway which shows more stable in testing. 763 */ 764 if (HAS_PCH_SPLIT(dev)) { 765 I915_WRITE(intel_hdmi->hdmi_reg, temp & ~SDVO_ENABLE); 766 POSTING_READ(intel_hdmi->hdmi_reg); 767 } 768 769 temp |= enable_bits; 770 771 I915_WRITE(intel_hdmi->hdmi_reg, temp); 772 POSTING_READ(intel_hdmi->hdmi_reg); 773 774 /* HW workaround, need to write this twice for issue that may result 775 * in first write getting masked. 776 */ 777 if (HAS_PCH_SPLIT(dev)) { 778 I915_WRITE(intel_hdmi->hdmi_reg, temp); 779 POSTING_READ(intel_hdmi->hdmi_reg); 780 } 781 } 782 783 static void vlv_enable_hdmi(struct intel_encoder *encoder) 784 { 785 } 786 787 static void intel_disable_hdmi(struct intel_encoder *encoder) 788 { 789 struct drm_device *dev = encoder->base.dev; 790 struct drm_i915_private *dev_priv = dev->dev_private; 791 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base); 792 u32 temp; 793 u32 enable_bits = SDVO_ENABLE | SDVO_AUDIO_ENABLE; 794 795 temp = I915_READ(intel_hdmi->hdmi_reg); 796 797 /* HW workaround for IBX, we need to move the port to transcoder A 798 * before disabling it. */ 799 if (HAS_PCH_IBX(dev)) { 800 struct drm_crtc *crtc = encoder->base.crtc; 801 int pipe = crtc ? to_intel_crtc(crtc)->pipe : -1; 802 803 if (temp & SDVO_PIPE_B_SELECT) { 804 temp &= ~SDVO_PIPE_B_SELECT; 805 I915_WRITE(intel_hdmi->hdmi_reg, temp); 806 POSTING_READ(intel_hdmi->hdmi_reg); 807 808 /* Again we need to write this twice. */ 809 I915_WRITE(intel_hdmi->hdmi_reg, temp); 810 POSTING_READ(intel_hdmi->hdmi_reg); 811 812 /* Transcoder selection bits only update 813 * effectively on vblank. */ 814 if (crtc) 815 intel_wait_for_vblank(dev, pipe); 816 else 817 msleep(50); 818 } 819 } 820 821 /* HW workaround, need to toggle enable bit off and on for 12bpc, but 822 * we do this anyway which shows more stable in testing. 823 */ 824 if (HAS_PCH_SPLIT(dev)) { 825 I915_WRITE(intel_hdmi->hdmi_reg, temp & ~SDVO_ENABLE); 826 POSTING_READ(intel_hdmi->hdmi_reg); 827 } 828 829 temp &= ~enable_bits; 830 831 I915_WRITE(intel_hdmi->hdmi_reg, temp); 832 POSTING_READ(intel_hdmi->hdmi_reg); 833 834 /* HW workaround, need to write this twice for issue that may result 835 * in first write getting masked. 836 */ 837 if (HAS_PCH_SPLIT(dev)) { 838 I915_WRITE(intel_hdmi->hdmi_reg, temp); 839 POSTING_READ(intel_hdmi->hdmi_reg); 840 } 841 } 842 843 static int hdmi_portclock_limit(struct intel_hdmi *hdmi) 844 { 845 struct drm_device *dev = intel_hdmi_to_dev(hdmi); 846 847 if (!hdmi->has_hdmi_sink || IS_G4X(dev)) 848 return 165000; 849 else if (IS_HASWELL(dev) || INTEL_INFO(dev)->gen >= 8) 850 return 300000; 851 else 852 return 225000; 853 } 854 855 static enum drm_mode_status 856 intel_hdmi_mode_valid(struct drm_connector *connector, 857 struct drm_display_mode *mode) 858 { 859 if (mode->clock > hdmi_portclock_limit(intel_attached_hdmi(connector))) 860 return MODE_CLOCK_HIGH; 861 if (mode->clock < 20000) 862 return MODE_CLOCK_LOW; 863 864 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) 865 return MODE_NO_DBLESCAN; 866 867 return MODE_OK; 868 } 869 870 bool intel_hdmi_compute_config(struct intel_encoder *encoder, 871 struct intel_crtc_config *pipe_config) 872 { 873 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base); 874 struct drm_device *dev = encoder->base.dev; 875 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode; 876 int clock_12bpc = pipe_config->adjusted_mode.crtc_clock * 3 / 2; 877 int portclock_limit = hdmi_portclock_limit(intel_hdmi); 878 int desired_bpp; 879 880 if (intel_hdmi->color_range_auto) { 881 /* See CEA-861-E - 5.1 Default Encoding Parameters */ 882 if (intel_hdmi->has_hdmi_sink && 883 drm_match_cea_mode(adjusted_mode) > 1) 884 intel_hdmi->color_range = HDMI_COLOR_RANGE_16_235; 885 else 886 intel_hdmi->color_range = 0; 887 } 888 889 if (intel_hdmi->color_range) 890 pipe_config->limited_color_range = true; 891 892 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev)) 893 pipe_config->has_pch_encoder = true; 894 895 /* 896 * HDMI is either 12 or 8, so if the display lets 10bpc sneak 897 * through, clamp it down. Note that g4x/vlv don't support 12bpc hdmi 898 * outputs. We also need to check that the higher clock still fits 899 * within limits. 900 */ 901 if (pipe_config->pipe_bpp > 8*3 && intel_hdmi->has_hdmi_sink && 902 clock_12bpc <= portclock_limit && HAS_PCH_SPLIT(dev)) { 903 DRM_DEBUG_KMS("picking bpc to 12 for HDMI output\n"); 904 desired_bpp = 12*3; 905 906 /* Need to adjust the port link by 1.5x for 12bpc. */ 907 pipe_config->port_clock = clock_12bpc; 908 } else { 909 DRM_DEBUG_KMS("picking bpc to 8 for HDMI output\n"); 910 desired_bpp = 8*3; 911 } 912 913 if (!pipe_config->bw_constrained) { 914 DRM_DEBUG_KMS("forcing pipe bpc to %i for HDMI\n", desired_bpp); 915 pipe_config->pipe_bpp = desired_bpp; 916 } 917 918 if (adjusted_mode->crtc_clock > portclock_limit) { 919 DRM_DEBUG_KMS("too high HDMI clock, rejecting mode\n"); 920 return false; 921 } 922 923 return true; 924 } 925 926 static enum drm_connector_status 927 intel_hdmi_detect(struct drm_connector *connector, bool force) 928 { 929 struct drm_device *dev = connector->dev; 930 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector); 931 struct intel_digital_port *intel_dig_port = 932 hdmi_to_dig_port(intel_hdmi); 933 struct intel_encoder *intel_encoder = &intel_dig_port->base; 934 struct drm_i915_private *dev_priv = dev->dev_private; 935 struct edid *edid; 936 enum drm_connector_status status = connector_status_disconnected; 937 938 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", 939 connector->base.id, drm_get_connector_name(connector)); 940 941 intel_hdmi->has_hdmi_sink = false; 942 intel_hdmi->has_audio = false; 943 intel_hdmi->rgb_quant_range_selectable = false; 944 edid = drm_get_edid(connector, 945 intel_gmbus_get_adapter(dev_priv, 946 intel_hdmi->ddc_bus)); 947 948 if (edid) { 949 if (edid->input & DRM_EDID_INPUT_DIGITAL) { 950 status = connector_status_connected; 951 if (intel_hdmi->force_audio != HDMI_AUDIO_OFF_DVI) 952 intel_hdmi->has_hdmi_sink = 953 drm_detect_hdmi_monitor(edid); 954 intel_hdmi->has_audio = drm_detect_monitor_audio(edid); 955 intel_hdmi->rgb_quant_range_selectable = 956 drm_rgb_quant_range_selectable(edid); 957 } 958 kfree(edid); 959 } 960 961 if (status == connector_status_connected) { 962 if (intel_hdmi->force_audio != HDMI_AUDIO_AUTO) 963 intel_hdmi->has_audio = 964 (intel_hdmi->force_audio == HDMI_AUDIO_ON); 965 intel_encoder->type = INTEL_OUTPUT_HDMI; 966 } 967 968 return status; 969 } 970 971 static int intel_hdmi_get_modes(struct drm_connector *connector) 972 { 973 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector); 974 struct drm_i915_private *dev_priv = connector->dev->dev_private; 975 976 /* We should parse the EDID data and find out if it's an HDMI sink so 977 * we can send audio to it. 978 */ 979 980 return intel_ddc_get_modes(connector, 981 intel_gmbus_get_adapter(dev_priv, 982 intel_hdmi->ddc_bus)); 983 } 984 985 static bool 986 intel_hdmi_detect_audio(struct drm_connector *connector) 987 { 988 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector); 989 struct drm_i915_private *dev_priv = connector->dev->dev_private; 990 struct edid *edid; 991 bool has_audio = false; 992 993 edid = drm_get_edid(connector, 994 intel_gmbus_get_adapter(dev_priv, 995 intel_hdmi->ddc_bus)); 996 if (edid) { 997 if (edid->input & DRM_EDID_INPUT_DIGITAL) 998 has_audio = drm_detect_monitor_audio(edid); 999 kfree(edid); 1000 } 1001 1002 return has_audio; 1003 } 1004 1005 static int 1006 intel_hdmi_set_property(struct drm_connector *connector, 1007 struct drm_property *property, 1008 uint64_t val) 1009 { 1010 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector); 1011 struct intel_digital_port *intel_dig_port = 1012 hdmi_to_dig_port(intel_hdmi); 1013 struct drm_i915_private *dev_priv = connector->dev->dev_private; 1014 int ret; 1015 1016 ret = drm_object_property_set_value(&connector->base, property, val); 1017 if (ret) 1018 return ret; 1019 1020 if (property == dev_priv->force_audio_property) { 1021 enum hdmi_force_audio i = val; 1022 bool has_audio; 1023 1024 if (i == intel_hdmi->force_audio) 1025 return 0; 1026 1027 intel_hdmi->force_audio = i; 1028 1029 if (i == HDMI_AUDIO_AUTO) 1030 has_audio = intel_hdmi_detect_audio(connector); 1031 else 1032 has_audio = (i == HDMI_AUDIO_ON); 1033 1034 if (i == HDMI_AUDIO_OFF_DVI) 1035 intel_hdmi->has_hdmi_sink = 0; 1036 1037 intel_hdmi->has_audio = has_audio; 1038 goto done; 1039 } 1040 1041 if (property == dev_priv->broadcast_rgb_property) { 1042 bool old_auto = intel_hdmi->color_range_auto; 1043 uint32_t old_range = intel_hdmi->color_range; 1044 1045 switch (val) { 1046 case INTEL_BROADCAST_RGB_AUTO: 1047 intel_hdmi->color_range_auto = true; 1048 break; 1049 case INTEL_BROADCAST_RGB_FULL: 1050 intel_hdmi->color_range_auto = false; 1051 intel_hdmi->color_range = 0; 1052 break; 1053 case INTEL_BROADCAST_RGB_LIMITED: 1054 intel_hdmi->color_range_auto = false; 1055 intel_hdmi->color_range = HDMI_COLOR_RANGE_16_235; 1056 break; 1057 default: 1058 return -EINVAL; 1059 } 1060 1061 if (old_auto == intel_hdmi->color_range_auto && 1062 old_range == intel_hdmi->color_range) 1063 return 0; 1064 1065 goto done; 1066 } 1067 1068 return -EINVAL; 1069 1070 done: 1071 if (intel_dig_port->base.base.crtc) 1072 intel_crtc_restore_mode(intel_dig_port->base.base.crtc); 1073 1074 return 0; 1075 } 1076 1077 static void vlv_hdmi_pre_enable(struct intel_encoder *encoder) 1078 { 1079 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base); 1080 struct drm_device *dev = encoder->base.dev; 1081 struct drm_i915_private *dev_priv = dev->dev_private; 1082 struct intel_crtc *intel_crtc = 1083 to_intel_crtc(encoder->base.crtc); 1084 enum dpio_channel port = vlv_dport_to_channel(dport); 1085 int pipe = intel_crtc->pipe; 1086 u32 val; 1087 1088 if (!IS_VALLEYVIEW(dev)) 1089 return; 1090 1091 /* Enable clock channels for this port */ 1092 mutex_lock(&dev_priv->dpio_lock); 1093 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port)); 1094 val = 0; 1095 if (pipe) 1096 val |= (1<<21); 1097 else 1098 val &= ~(1<<21); 1099 val |= 0x001000c4; 1100 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val); 1101 1102 /* HDMI 1.0V-2dB */ 1103 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0); 1104 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), 0x2b245f5f); 1105 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port), 0x5578b83a); 1106 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0c782040); 1107 vlv_dpio_write(dev_priv, pipe, VLV_TX3_DW4(port), 0x2b247878); 1108 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000); 1109 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), 0x00002000); 1110 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN); 1111 1112 /* Program lane clock */ 1113 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018); 1114 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888); 1115 mutex_unlock(&dev_priv->dpio_lock); 1116 1117 intel_enable_hdmi(encoder); 1118 1119 vlv_wait_port_ready(dev_priv, dport); 1120 } 1121 1122 static void vlv_hdmi_pre_pll_enable(struct intel_encoder *encoder) 1123 { 1124 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base); 1125 struct drm_device *dev = encoder->base.dev; 1126 struct drm_i915_private *dev_priv = dev->dev_private; 1127 struct intel_crtc *intel_crtc = 1128 to_intel_crtc(encoder->base.crtc); 1129 enum dpio_channel port = vlv_dport_to_channel(dport); 1130 int pipe = intel_crtc->pipe; 1131 1132 if (!IS_VALLEYVIEW(dev)) 1133 return; 1134 1135 /* Program Tx lane resets to default */ 1136 mutex_lock(&dev_priv->dpio_lock); 1137 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 1138 DPIO_PCS_TX_LANE2_RESET | 1139 DPIO_PCS_TX_LANE1_RESET); 1140 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 1141 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN | 1142 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN | 1143 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) | 1144 DPIO_PCS_CLK_SOFT_RESET); 1145 1146 /* Fix up inter-pair skew failure */ 1147 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00); 1148 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500); 1149 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000); 1150 1151 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), 0x00002000); 1152 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN); 1153 mutex_unlock(&dev_priv->dpio_lock); 1154 } 1155 1156 static void vlv_hdmi_post_disable(struct intel_encoder *encoder) 1157 { 1158 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base); 1159 struct drm_i915_private *dev_priv = encoder->base.dev->dev_private; 1160 struct intel_crtc *intel_crtc = 1161 to_intel_crtc(encoder->base.crtc); 1162 enum dpio_channel port = vlv_dport_to_channel(dport); 1163 int pipe = intel_crtc->pipe; 1164 1165 /* Reset lanes to avoid HDMI flicker (VLV w/a) */ 1166 mutex_lock(&dev_priv->dpio_lock); 1167 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 0x00000000); 1168 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 0x00e00060); 1169 mutex_unlock(&dev_priv->dpio_lock); 1170 } 1171 1172 static void intel_hdmi_destroy(struct drm_connector *connector) 1173 { 1174 drm_connector_cleanup(connector); 1175 kfree(connector); 1176 } 1177 1178 static const struct drm_connector_funcs intel_hdmi_connector_funcs = { 1179 .dpms = intel_connector_dpms, 1180 .detect = intel_hdmi_detect, 1181 .fill_modes = drm_helper_probe_single_connector_modes, 1182 .set_property = intel_hdmi_set_property, 1183 .destroy = intel_hdmi_destroy, 1184 }; 1185 1186 static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = { 1187 .get_modes = intel_hdmi_get_modes, 1188 .mode_valid = intel_hdmi_mode_valid, 1189 .best_encoder = intel_best_encoder, 1190 }; 1191 1192 static const struct drm_encoder_funcs intel_hdmi_enc_funcs = { 1193 .destroy = intel_encoder_destroy, 1194 }; 1195 1196 static void 1197 intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector) 1198 { 1199 intel_attach_force_audio_property(connector); 1200 intel_attach_broadcast_rgb_property(connector); 1201 intel_hdmi->color_range_auto = true; 1202 } 1203 1204 void intel_hdmi_init_connector(struct intel_digital_port *intel_dig_port, 1205 struct intel_connector *intel_connector) 1206 { 1207 struct drm_connector *connector = &intel_connector->base; 1208 struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi; 1209 struct intel_encoder *intel_encoder = &intel_dig_port->base; 1210 struct drm_device *dev = intel_encoder->base.dev; 1211 struct drm_i915_private *dev_priv = dev->dev_private; 1212 enum port port = intel_dig_port->port; 1213 1214 drm_connector_init(dev, connector, &intel_hdmi_connector_funcs, 1215 DRM_MODE_CONNECTOR_HDMIA); 1216 drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs); 1217 1218 connector->interlace_allowed = 1; 1219 connector->doublescan_allowed = 0; 1220 connector->stereo_allowed = 1; 1221 1222 switch (port) { 1223 case PORT_B: 1224 intel_hdmi->ddc_bus = GMBUS_PORT_DPB; 1225 intel_encoder->hpd_pin = HPD_PORT_B; 1226 break; 1227 case PORT_C: 1228 intel_hdmi->ddc_bus = GMBUS_PORT_DPC; 1229 intel_encoder->hpd_pin = HPD_PORT_C; 1230 break; 1231 case PORT_D: 1232 intel_hdmi->ddc_bus = GMBUS_PORT_DPD; 1233 intel_encoder->hpd_pin = HPD_PORT_D; 1234 break; 1235 case PORT_A: 1236 intel_encoder->hpd_pin = HPD_PORT_A; 1237 /* Internal port only for eDP. */ 1238 default: 1239 BUG(); 1240 } 1241 1242 if (IS_VALLEYVIEW(dev)) { 1243 intel_hdmi->write_infoframe = vlv_write_infoframe; 1244 intel_hdmi->set_infoframes = vlv_set_infoframes; 1245 } else if (!HAS_PCH_SPLIT(dev)) { 1246 intel_hdmi->write_infoframe = g4x_write_infoframe; 1247 intel_hdmi->set_infoframes = g4x_set_infoframes; 1248 } else if (HAS_DDI(dev)) { 1249 intel_hdmi->write_infoframe = hsw_write_infoframe; 1250 intel_hdmi->set_infoframes = hsw_set_infoframes; 1251 } else if (HAS_PCH_IBX(dev)) { 1252 intel_hdmi->write_infoframe = ibx_write_infoframe; 1253 intel_hdmi->set_infoframes = ibx_set_infoframes; 1254 } else { 1255 intel_hdmi->write_infoframe = cpt_write_infoframe; 1256 intel_hdmi->set_infoframes = cpt_set_infoframes; 1257 } 1258 1259 if (HAS_DDI(dev)) 1260 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state; 1261 else 1262 intel_connector->get_hw_state = intel_connector_get_hw_state; 1263 1264 intel_hdmi_add_properties(intel_hdmi, connector); 1265 1266 intel_connector_attach_encoder(intel_connector, intel_encoder); 1267 drm_sysfs_connector_add(connector); 1268 1269 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written 1270 * 0xd. Failure to do so will result in spurious interrupts being 1271 * generated on the port when a cable is not attached. 1272 */ 1273 if (IS_G4X(dev) && !IS_GM45(dev)) { 1274 u32 temp = I915_READ(PEG_BAND_GAP_DATA); 1275 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd); 1276 } 1277 } 1278 1279 void intel_hdmi_init(struct drm_device *dev, int hdmi_reg, enum port port) 1280 { 1281 struct intel_digital_port *intel_dig_port; 1282 struct intel_encoder *intel_encoder; 1283 struct intel_connector *intel_connector; 1284 1285 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL); 1286 if (!intel_dig_port) 1287 return; 1288 1289 intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL); 1290 if (!intel_connector) { 1291 kfree(intel_dig_port); 1292 return; 1293 } 1294 1295 intel_encoder = &intel_dig_port->base; 1296 1297 drm_encoder_init(dev, &intel_encoder->base, &intel_hdmi_enc_funcs, 1298 DRM_MODE_ENCODER_TMDS); 1299 1300 intel_encoder->compute_config = intel_hdmi_compute_config; 1301 intel_encoder->mode_set = intel_hdmi_mode_set; 1302 intel_encoder->disable = intel_disable_hdmi; 1303 intel_encoder->get_hw_state = intel_hdmi_get_hw_state; 1304 intel_encoder->get_config = intel_hdmi_get_config; 1305 if (IS_VALLEYVIEW(dev)) { 1306 intel_encoder->pre_pll_enable = vlv_hdmi_pre_pll_enable; 1307 intel_encoder->pre_enable = vlv_hdmi_pre_enable; 1308 intel_encoder->enable = vlv_enable_hdmi; 1309 intel_encoder->post_disable = vlv_hdmi_post_disable; 1310 } else { 1311 intel_encoder->enable = intel_enable_hdmi; 1312 } 1313 1314 intel_encoder->type = INTEL_OUTPUT_HDMI; 1315 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2); 1316 intel_encoder->cloneable = false; 1317 1318 intel_dig_port->port = port; 1319 intel_dig_port->hdmi.hdmi_reg = hdmi_reg; 1320 intel_dig_port->dp.output_reg = 0; 1321 1322 intel_hdmi_init_connector(intel_dig_port, intel_connector); 1323 } 1324