xref: /dflybsd-src/sys/dev/drm/i915/intel_dp.c (revision 71c738b2adedcfcf5ae73cc1db9d2b6480bf5135)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_crtc.h>
30 #include <drm/drm_crtc_helper.h>
31 #include <drm/drm_edid.h>
32 #include "intel_drv.h"
33 #include <drm/i915_drm.h>
34 #include "i915_drv.h"
35 #include <linux/err.h>
36 
37 #define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
38 
39 /**
40  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
41  * @intel_dp: DP struct
42  *
43  * If a CPU or PCH DP output is attached to an eDP panel, this function
44  * will return true, and false otherwise.
45  */
46 static bool is_edp(struct intel_dp *intel_dp)
47 {
48 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
49 
50 	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
51 }
52 
53 /**
54  * is_pch_edp - is the port on the PCH and attached to an eDP panel?
55  * @intel_dp: DP struct
56  *
57  * Returns true if the given DP struct corresponds to a PCH DP port attached
58  * to an eDP panel, false otherwise.  Helpful for determining whether we
59  * may need FDI resources for a given DP output or not.
60  */
61 static bool is_pch_edp(struct intel_dp *intel_dp)
62 {
63 	return intel_dp->is_pch_edp;
64 }
65 
66 /**
67  * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
68  * @intel_dp: DP struct
69  *
70  * Returns true if the given DP struct corresponds to a CPU eDP port.
71  */
72 static bool is_cpu_edp(struct intel_dp *intel_dp)
73 {
74 	return is_edp(intel_dp) && !is_pch_edp(intel_dp);
75 }
76 
77 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
78 {
79 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
80 
81 	return intel_dig_port->base.base.dev;
82 }
83 
84 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
85 {
86 	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
87 }
88 
89 /**
90  * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
91  * @encoder: DRM encoder
92  *
93  * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
94  * by intel_display.c.
95  */
96 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
97 {
98 	struct intel_dp *intel_dp;
99 
100 	if (!encoder)
101 		return false;
102 
103 	intel_dp = enc_to_intel_dp(encoder);
104 
105 	return is_pch_edp(intel_dp);
106 }
107 
108 static void intel_dp_link_down(struct intel_dp *intel_dp);
109 
110 void
111 intel_edp_link_config(struct intel_encoder *intel_encoder,
112 		       int *lane_num, int *link_bw)
113 {
114 	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
115 
116 	*lane_num = intel_dp->lane_count;
117 	*link_bw = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
118 }
119 
120 int
121 intel_edp_target_clock(struct intel_encoder *intel_encoder,
122 		       struct drm_display_mode *mode)
123 {
124 	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
125 	struct intel_connector *intel_connector = intel_dp->attached_connector;
126 
127 	if (intel_connector->panel.fixed_mode)
128 		return intel_connector->panel.fixed_mode->clock;
129 	else
130 		return mode->clock;
131 }
132 
133 static int
134 intel_dp_max_link_bw(struct intel_dp *intel_dp)
135 {
136 	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
137 
138 	switch (max_link_bw) {
139 	case DP_LINK_BW_1_62:
140 	case DP_LINK_BW_2_7:
141 		break;
142 	default:
143 		max_link_bw = DP_LINK_BW_1_62;
144 		break;
145 	}
146 	return max_link_bw;
147 }
148 
149 static int
150 intel_dp_link_clock(uint8_t link_bw)
151 {
152 	if (link_bw == DP_LINK_BW_2_7)
153 		return 270000;
154 	else
155 		return 162000;
156 }
157 
158 /*
159  * The units on the numbers in the next two are... bizarre.  Examples will
160  * make it clearer; this one parallels an example in the eDP spec.
161  *
162  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
163  *
164  *     270000 * 1 * 8 / 10 == 216000
165  *
166  * The actual data capacity of that configuration is 2.16Gbit/s, so the
167  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
168  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
169  * 119000.  At 18bpp that's 2142000 kilobits per second.
170  *
171  * Thus the strange-looking division by 10 in intel_dp_link_required, to
172  * get the result in decakilobits instead of kilobits.
173  */
174 
175 static int
176 intel_dp_link_required(int pixel_clock, int bpp)
177 {
178 	return (pixel_clock * bpp + 9) / 10;
179 }
180 
181 static int
182 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
183 {
184 	return (max_link_clock * max_lanes * 8) / 10;
185 }
186 
187 static bool
188 intel_dp_adjust_dithering(struct intel_dp *intel_dp,
189 			  struct drm_display_mode *mode,
190 			  bool adjust_mode)
191 {
192 	int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
193 	int max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
194 	int max_rate, mode_rate;
195 
196 	mode_rate = intel_dp_link_required(mode->clock, 24);
197 	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
198 
199 	if (mode_rate > max_rate) {
200 		mode_rate = intel_dp_link_required(mode->clock, 18);
201 		if (mode_rate > max_rate)
202 			return false;
203 
204 		if (adjust_mode)
205 			mode->private_flags
206 				|= INTEL_MODE_DP_FORCE_6BPC;
207 
208 		return true;
209 	}
210 
211 	return true;
212 }
213 
214 static int
215 intel_dp_mode_valid(struct drm_connector *connector,
216 		    struct drm_display_mode *mode)
217 {
218 	struct intel_dp *intel_dp = intel_attached_dp(connector);
219 	struct intel_connector *intel_connector = to_intel_connector(connector);
220 	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
221 
222 	if (is_edp(intel_dp) && fixed_mode) {
223 		if (mode->hdisplay > fixed_mode->hdisplay)
224 			return MODE_PANEL;
225 
226 		if (mode->vdisplay > fixed_mode->vdisplay)
227 			return MODE_PANEL;
228 	}
229 
230 	if (!intel_dp_adjust_dithering(intel_dp, mode, false))
231 		return MODE_CLOCK_HIGH;
232 
233 	if (mode->clock < 10000)
234 		return MODE_CLOCK_LOW;
235 
236 	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
237 		return MODE_H_ILLEGAL;
238 
239 	return MODE_OK;
240 }
241 
242 static uint32_t
243 pack_aux(uint8_t *src, int src_bytes)
244 {
245 	int	i;
246 	uint32_t v = 0;
247 
248 	if (src_bytes > 4)
249 		src_bytes = 4;
250 	for (i = 0; i < src_bytes; i++)
251 		v |= ((uint32_t) src[i]) << ((3-i) * 8);
252 	return v;
253 }
254 
255 static void
256 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
257 {
258 	int i;
259 	if (dst_bytes > 4)
260 		dst_bytes = 4;
261 	for (i = 0; i < dst_bytes; i++)
262 		dst[i] = src >> ((3-i) * 8);
263 }
264 
265 /* hrawclock is 1/4 the FSB frequency */
266 static int
267 intel_hrawclk(struct drm_device *dev)
268 {
269 	struct drm_i915_private *dev_priv = dev->dev_private;
270 	uint32_t clkcfg;
271 
272 	/* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
273 	if (IS_VALLEYVIEW(dev))
274 		return 200;
275 
276 	clkcfg = I915_READ(CLKCFG);
277 	switch (clkcfg & CLKCFG_FSB_MASK) {
278 	case CLKCFG_FSB_400:
279 		return 100;
280 	case CLKCFG_FSB_533:
281 		return 133;
282 	case CLKCFG_FSB_667:
283 		return 166;
284 	case CLKCFG_FSB_800:
285 		return 200;
286 	case CLKCFG_FSB_1067:
287 		return 266;
288 	case CLKCFG_FSB_1333:
289 		return 333;
290 	/* these two are just a guess; one of them might be right */
291 	case CLKCFG_FSB_1600:
292 	case CLKCFG_FSB_1600_ALT:
293 		return 400;
294 	default:
295 		return 133;
296 	}
297 }
298 
299 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
300 {
301 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
302 	struct drm_i915_private *dev_priv = dev->dev_private;
303 
304 	return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
305 }
306 
307 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
308 {
309 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
310 	struct drm_i915_private *dev_priv = dev->dev_private;
311 
312 	return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
313 }
314 
315 static void
316 intel_dp_check_edp(struct intel_dp *intel_dp)
317 {
318 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
319 	struct drm_i915_private *dev_priv = dev->dev_private;
320 
321 	if (!is_edp(intel_dp))
322 		return;
323 	if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
324 		WARN(1, "eDP powered off while attempting aux channel communication.\n");
325 		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
326 			      I915_READ(PCH_PP_STATUS),
327 			      I915_READ(PCH_PP_CONTROL));
328 	}
329 }
330 
331 static int
332 intel_dp_aux_ch(struct intel_dp *intel_dp,
333 		uint8_t *send, int send_bytes,
334 		uint8_t *recv, int recv_size)
335 {
336 	uint32_t output_reg = intel_dp->output_reg;
337 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
338 	struct drm_device *dev = intel_dig_port->base.base.dev;
339 	struct drm_i915_private *dev_priv = dev->dev_private;
340 	uint32_t ch_ctl = output_reg + 0x10;
341 	uint32_t ch_data = ch_ctl + 4;
342 	int i;
343 	int recv_bytes;
344 	uint32_t status;
345 	uint32_t aux_clock_divider;
346 	int try, precharge;
347 
348 	if (IS_HASWELL(dev)) {
349 		switch (intel_dig_port->port) {
350 		case PORT_A:
351 			ch_ctl = DPA_AUX_CH_CTL;
352 			ch_data = DPA_AUX_CH_DATA1;
353 			break;
354 		case PORT_B:
355 			ch_ctl = PCH_DPB_AUX_CH_CTL;
356 			ch_data = PCH_DPB_AUX_CH_DATA1;
357 			break;
358 		case PORT_C:
359 			ch_ctl = PCH_DPC_AUX_CH_CTL;
360 			ch_data = PCH_DPC_AUX_CH_DATA1;
361 			break;
362 		case PORT_D:
363 			ch_ctl = PCH_DPD_AUX_CH_CTL;
364 			ch_data = PCH_DPD_AUX_CH_DATA1;
365 			break;
366 		default:
367 			BUG();
368 		}
369 	}
370 
371 	intel_dp_check_edp(intel_dp);
372 	/* The clock divider is based off the hrawclk,
373 	 * and would like to run at 2MHz. So, take the
374 	 * hrawclk value and divide by 2 and use that
375 	 *
376 	 * Note that PCH attached eDP panels should use a 125MHz input
377 	 * clock divider.
378 	 */
379 	if (is_cpu_edp(intel_dp)) {
380 		if (IS_HASWELL(dev))
381 			aux_clock_divider = intel_ddi_get_cdclk_freq(dev_priv) >> 1;
382 		else if (IS_VALLEYVIEW(dev))
383 			aux_clock_divider = 100;
384 		else if (IS_GEN6(dev) || IS_GEN7(dev))
385 			aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
386 		else
387 			aux_clock_divider = 225; /* eDP input clock at 450Mhz */
388 	} else if (HAS_PCH_SPLIT(dev))
389 		aux_clock_divider = DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
390 	else
391 		aux_clock_divider = intel_hrawclk(dev) / 2;
392 
393 	if (IS_GEN6(dev))
394 		precharge = 3;
395 	else
396 		precharge = 5;
397 
398 	/* Try to wait for any previous AUX channel activity */
399 	for (try = 0; try < 3; try++) {
400 		status = I915_READ(ch_ctl);
401 		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
402 			break;
403 		msleep(1);
404 	}
405 
406 	if (try == 3) {
407 		WARN(1, "dp_aux_ch not started status 0x%08x\n",
408 		     I915_READ(ch_ctl));
409 		return -EBUSY;
410 	}
411 
412 	/* Must try at least 3 times according to DP spec */
413 	for (try = 0; try < 5; try++) {
414 		/* Load the send data into the aux channel data registers */
415 		for (i = 0; i < send_bytes; i += 4)
416 			I915_WRITE(ch_data + i,
417 				   pack_aux(send + i, send_bytes - i));
418 
419 		/* Send the command and wait for it to complete */
420 		I915_WRITE(ch_ctl,
421 			   DP_AUX_CH_CTL_SEND_BUSY |
422 			   DP_AUX_CH_CTL_TIME_OUT_400us |
423 			   (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
424 			   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
425 			   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
426 			   DP_AUX_CH_CTL_DONE |
427 			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
428 			   DP_AUX_CH_CTL_RECEIVE_ERROR);
429 		for (;;) {
430 			status = I915_READ(ch_ctl);
431 			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
432 				break;
433 			udelay(100);
434 		}
435 
436 		/* Clear done status and any errors */
437 		I915_WRITE(ch_ctl,
438 			   status |
439 			   DP_AUX_CH_CTL_DONE |
440 			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
441 			   DP_AUX_CH_CTL_RECEIVE_ERROR);
442 
443 		if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
444 			      DP_AUX_CH_CTL_RECEIVE_ERROR))
445 			continue;
446 		if (status & DP_AUX_CH_CTL_DONE)
447 			break;
448 	}
449 
450 	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
451 		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
452 		return -EBUSY;
453 	}
454 
455 	/* Check for timeout or receive error.
456 	 * Timeouts occur when the sink is not connected
457 	 */
458 	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
459 		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
460 		return -EIO;
461 	}
462 
463 	/* Timeouts occur when the device isn't connected, so they're
464 	 * "normal" -- don't fill the kernel log with these */
465 	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
466 		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
467 		return -ETIMEDOUT;
468 	}
469 
470 	/* Unload any bytes sent back from the other side */
471 	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
472 		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
473 	if (recv_bytes > recv_size)
474 		recv_bytes = recv_size;
475 
476 	for (i = 0; i < recv_bytes; i += 4)
477 		unpack_aux(I915_READ(ch_data + i),
478 			   recv + i, recv_bytes - i);
479 
480 	return recv_bytes;
481 }
482 
483 /* Write data to the aux channel in native mode */
484 static int
485 intel_dp_aux_native_write(struct intel_dp *intel_dp,
486 			  uint16_t address, uint8_t *send, int send_bytes)
487 {
488 	int ret;
489 	uint8_t	msg[20];
490 	int msg_bytes;
491 	uint8_t	ack;
492 
493 	intel_dp_check_edp(intel_dp);
494 	if (send_bytes > 16)
495 		return -1;
496 	msg[0] = AUX_NATIVE_WRITE << 4;
497 	msg[1] = address >> 8;
498 	msg[2] = address & 0xff;
499 	msg[3] = send_bytes - 1;
500 	memcpy(&msg[4], send, send_bytes);
501 	msg_bytes = send_bytes + 4;
502 	for (;;) {
503 		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
504 		if (ret < 0)
505 			return ret;
506 		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
507 			break;
508 		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
509 			udelay(100);
510 		else
511 			return -EIO;
512 	}
513 	return send_bytes;
514 }
515 
516 /* Write a single byte to the aux channel in native mode */
517 static int
518 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
519 			    uint16_t address, uint8_t byte)
520 {
521 	return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
522 }
523 
524 /* read bytes from a native aux channel */
525 static int
526 intel_dp_aux_native_read(struct intel_dp *intel_dp,
527 			 uint16_t address, uint8_t *recv, int recv_bytes)
528 {
529 	uint8_t msg[4];
530 	int msg_bytes;
531 	uint8_t reply[20];
532 	int reply_bytes;
533 	uint8_t ack;
534 	int ret;
535 
536 	intel_dp_check_edp(intel_dp);
537 	msg[0] = AUX_NATIVE_READ << 4;
538 	msg[1] = address >> 8;
539 	msg[2] = address & 0xff;
540 	msg[3] = recv_bytes - 1;
541 
542 	msg_bytes = 4;
543 	reply_bytes = recv_bytes + 1;
544 
545 	for (;;) {
546 		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
547 				      reply, reply_bytes);
548 		if (ret == 0)
549 			return -EPROTO;
550 		if (ret < 0)
551 			return ret;
552 		ack = reply[0];
553 		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
554 			memcpy(recv, reply + 1, ret - 1);
555 			return ret - 1;
556 		}
557 		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
558 			udelay(100);
559 		else
560 			return -EIO;
561 	}
562 }
563 
564 static int
565 intel_dp_i2c_aux_ch(device_t idev, int mode, uint8_t write_byte,
566     uint8_t *read_byte)
567 {
568 	struct iic_dp_aux_data *data;
569 	struct intel_dp *intel_dp;
570 	uint16_t address;
571 	uint8_t msg[5];
572 	uint8_t reply[2];
573 	unsigned retry;
574 	int msg_bytes;
575 	int reply_bytes;
576 	int ret;
577 
578 	data = device_get_softc(idev);
579 	intel_dp = data->priv;
580 	address = data->address;
581 
582 	intel_dp_check_edp(intel_dp);
583 	/* Set up the command byte */
584 	if (mode & MODE_I2C_READ)
585 		msg[0] = AUX_I2C_READ << 4;
586 	else
587 		msg[0] = AUX_I2C_WRITE << 4;
588 
589 	if (!(mode & MODE_I2C_STOP))
590 		msg[0] |= AUX_I2C_MOT << 4;
591 
592 	msg[1] = address >> 8;
593 	msg[2] = address;
594 
595 	switch (mode) {
596 	case MODE_I2C_WRITE:
597 		msg[3] = 0;
598 		msg[4] = write_byte;
599 		msg_bytes = 5;
600 		reply_bytes = 1;
601 		break;
602 	case MODE_I2C_READ:
603 		msg[3] = 0;
604 		msg_bytes = 4;
605 		reply_bytes = 2;
606 		break;
607 	default:
608 		msg_bytes = 3;
609 		reply_bytes = 1;
610 		break;
611 	}
612 
613 	for (retry = 0; retry < 5; retry++) {
614 		ret = intel_dp_aux_ch(intel_dp,
615 				      msg, msg_bytes,
616 				      reply, reply_bytes);
617 		if (ret < 0) {
618 			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
619 			return ret;
620 		}
621 
622 		switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
623 		case AUX_NATIVE_REPLY_ACK:
624 			/* I2C-over-AUX Reply field is only valid
625 			 * when paired with AUX ACK.
626 			 */
627 			break;
628 		case AUX_NATIVE_REPLY_NACK:
629 			DRM_DEBUG_KMS("aux_ch native nack\n");
630 			return -EREMOTEIO;
631 		case AUX_NATIVE_REPLY_DEFER:
632 			udelay(100);
633 			continue;
634 		default:
635 			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
636 				  reply[0]);
637 			return -EREMOTEIO;
638 		}
639 
640 		switch (reply[0] & AUX_I2C_REPLY_MASK) {
641 		case AUX_I2C_REPLY_ACK:
642 			if (mode == MODE_I2C_READ) {
643 				*read_byte = reply[1];
644 			}
645 			return (0/*reply_bytes - 1*/);
646 		case AUX_I2C_REPLY_NACK:
647 			DRM_DEBUG_KMS("aux_i2c nack\n");
648 			return -EREMOTEIO;
649 		case AUX_I2C_REPLY_DEFER:
650 			DRM_DEBUG_KMS("aux_i2c defer\n");
651 			udelay(100);
652 			break;
653 		default:
654 			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
655 			return -EREMOTEIO;
656 		}
657 	}
658 
659 	DRM_ERROR("too many retries, giving up\n");
660 	return -EREMOTEIO;
661 }
662 
663 static int
664 intel_dp_i2c_init(struct intel_dp *intel_dp,
665 		  struct intel_connector *intel_connector, const char *name)
666 {
667 	int ret;
668 
669 	DRM_DEBUG_KMS("i2c_init %s\n", name);
670 
671 	ironlake_edp_panel_vdd_on(intel_dp);
672 	ret = iic_dp_aux_add_bus(intel_connector->base.dev->dev, name,
673 	    intel_dp_i2c_aux_ch, intel_dp, &intel_dp->dp_iic_bus,
674 	    &intel_dp->adapter);
675 	ironlake_edp_panel_vdd_off(intel_dp, false);
676 	return (ret);
677 }
678 
679 bool
680 intel_dp_mode_fixup(struct drm_encoder *encoder,
681 		    const struct drm_display_mode *mode,
682 		    struct drm_display_mode *adjusted_mode)
683 {
684 	struct drm_device *dev = encoder->dev;
685 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
686 	struct intel_connector *intel_connector = intel_dp->attached_connector;
687 	int lane_count, clock;
688 	int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
689 	int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
690 	int bpp, mode_rate;
691 	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
692 
693 	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
694 		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
695 				       adjusted_mode);
696 		intel_pch_panel_fitting(dev,
697 					intel_connector->panel.fitting_mode,
698 					mode, adjusted_mode);
699 	}
700 
701 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
702 		return false;
703 
704 	DRM_DEBUG_KMS("DP link computation with max lane count %i "
705 		      "max bw %02x pixel clock %iKHz\n",
706 		      max_lane_count, bws[max_clock], adjusted_mode->clock);
707 
708 	if (!intel_dp_adjust_dithering(intel_dp, adjusted_mode, true))
709 		return false;
710 
711 	bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
712 	mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
713 
714 	for (clock = 0; clock <= max_clock; clock++) {
715 		for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
716 			int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
717 
718 			if (mode_rate <= link_avail) {
719 				intel_dp->link_bw = bws[clock];
720 				intel_dp->lane_count = lane_count;
721 				adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
722 				DRM_DEBUG_KMS("DP link bw %02x lane "
723 						"count %d clock %d bpp %d\n",
724 				       intel_dp->link_bw, intel_dp->lane_count,
725 				       adjusted_mode->clock, bpp);
726 				DRM_DEBUG_KMS("DP link bw required %i available %i\n",
727 					      mode_rate, link_avail);
728 				return true;
729 			}
730 		}
731 	}
732 
733 	return false;
734 }
735 
736 struct intel_dp_m_n {
737 	uint32_t	tu;
738 	uint32_t	gmch_m;
739 	uint32_t	gmch_n;
740 	uint32_t	link_m;
741 	uint32_t	link_n;
742 };
743 
744 static void
745 intel_reduce_ratio(uint32_t *num, uint32_t *den)
746 {
747 	while (*num > 0xffffff || *den > 0xffffff) {
748 		*num >>= 1;
749 		*den >>= 1;
750 	}
751 }
752 
753 static void
754 intel_dp_compute_m_n(int bpp,
755 		     int nlanes,
756 		     int pixel_clock,
757 		     int link_clock,
758 		     struct intel_dp_m_n *m_n)
759 {
760 	m_n->tu = 64;
761 	m_n->gmch_m = (pixel_clock * bpp) >> 3;
762 	m_n->gmch_n = link_clock * nlanes;
763 	intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
764 	m_n->link_m = pixel_clock;
765 	m_n->link_n = link_clock;
766 	intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
767 }
768 
769 void
770 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
771 		 struct drm_display_mode *adjusted_mode)
772 {
773 	struct drm_device *dev = crtc->dev;
774 	struct intel_encoder *intel_encoder;
775 	struct intel_dp *intel_dp;
776 	struct drm_i915_private *dev_priv = dev->dev_private;
777 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
778 	int lane_count = 4;
779 	struct intel_dp_m_n m_n;
780 	int pipe = intel_crtc->pipe;
781 	enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
782 	int target_clock;
783 
784 	/*
785 	 * Find the lane count in the intel_encoder private
786 	 */
787 	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
788 		intel_dp = enc_to_intel_dp(&intel_encoder->base);
789 
790 		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
791 		    intel_encoder->type == INTEL_OUTPUT_EDP)
792 		{
793 			lane_count = intel_dp->lane_count;
794 			break;
795 		}
796 	}
797 
798 	target_clock = mode->clock;
799 	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
800 		if (intel_encoder->type == INTEL_OUTPUT_EDP) {
801 			target_clock = intel_edp_target_clock(intel_encoder,
802 							      mode);
803 			break;
804 		}
805 	}
806 
807 	/*
808 	 * Compute the GMCH and Link ratios. The '3' here is
809 	 * the number of bytes_per_pixel post-LUT, which we always
810 	 * set up for 8-bits of R/G/B, or 3 bytes total.
811 	 */
812 	intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
813 			     target_clock, adjusted_mode->clock, &m_n);
814 
815 	if (IS_HASWELL(dev)) {
816 		I915_WRITE(PIPE_DATA_M1(cpu_transcoder),
817 			   TU_SIZE(m_n.tu) | m_n.gmch_m);
818 		I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
819 		I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
820 		I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
821 	} else if (HAS_PCH_SPLIT(dev)) {
822 		I915_WRITE(TRANSDATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
823 		I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
824 		I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
825 		I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
826 	} else if (IS_VALLEYVIEW(dev)) {
827 		I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
828 		I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
829 		I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
830 		I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
831 	} else {
832 		I915_WRITE(PIPE_GMCH_DATA_M(pipe),
833 			   TU_SIZE(m_n.tu) | m_n.gmch_m);
834 		I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
835 		I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
836 		I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
837 	}
838 }
839 
840 void intel_dp_init_link_config(struct intel_dp *intel_dp)
841 {
842 	memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
843 	intel_dp->link_configuration[0] = intel_dp->link_bw;
844 	intel_dp->link_configuration[1] = intel_dp->lane_count;
845 	intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
846 	/*
847 	 * Check for DPCD version > 1.1 and enhanced framing support
848 	 */
849 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
850 	    (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
851 		intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
852 	}
853 }
854 
855 static void
856 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
857 		  struct drm_display_mode *adjusted_mode)
858 {
859 	struct drm_device *dev = encoder->dev;
860 	struct drm_i915_private *dev_priv = dev->dev_private;
861 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
862 	struct drm_crtc *crtc = encoder->crtc;
863 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
864 
865 	/*
866 	 * There are four kinds of DP registers:
867 	 *
868 	 * 	IBX PCH
869 	 * 	SNB CPU
870 	 *	IVB CPU
871 	 * 	CPT PCH
872 	 *
873 	 * IBX PCH and CPU are the same for almost everything,
874 	 * except that the CPU DP PLL is configured in this
875 	 * register
876 	 *
877 	 * CPT PCH is quite different, having many bits moved
878 	 * to the TRANS_DP_CTL register instead. That
879 	 * configuration happens (oddly) in ironlake_pch_enable
880 	 */
881 
882 	/* Preserve the BIOS-computed detected bit. This is
883 	 * supposed to be read-only.
884 	 */
885 	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
886 
887 	/* Handle DP bits in common between all three register formats */
888 	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
889 
890 	switch (intel_dp->lane_count) {
891 	case 1:
892 		intel_dp->DP |= DP_PORT_WIDTH_1;
893 		break;
894 	case 2:
895 		intel_dp->DP |= DP_PORT_WIDTH_2;
896 		break;
897 	case 4:
898 		intel_dp->DP |= DP_PORT_WIDTH_4;
899 		break;
900 	}
901 	if (intel_dp->has_audio) {
902 		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
903 				 pipe_name(intel_crtc->pipe));
904 		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
905 		intel_write_eld(encoder, adjusted_mode);
906 	}
907 
908 	intel_dp_init_link_config(intel_dp);
909 
910 	/* Split out the IBX/CPU vs CPT settings */
911 
912 	if (is_cpu_edp(intel_dp) && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
913 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
914 			intel_dp->DP |= DP_SYNC_HS_HIGH;
915 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
916 			intel_dp->DP |= DP_SYNC_VS_HIGH;
917 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
918 
919 		if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
920 			intel_dp->DP |= DP_ENHANCED_FRAMING;
921 
922 		intel_dp->DP |= intel_crtc->pipe << 29;
923 
924 		/* don't miss out required setting for eDP */
925 		if (adjusted_mode->clock < 200000)
926 			intel_dp->DP |= DP_PLL_FREQ_160MHZ;
927 		else
928 			intel_dp->DP |= DP_PLL_FREQ_270MHZ;
929 	} else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
930 		intel_dp->DP |= intel_dp->color_range;
931 
932 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
933 			intel_dp->DP |= DP_SYNC_HS_HIGH;
934 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
935 			intel_dp->DP |= DP_SYNC_VS_HIGH;
936 		intel_dp->DP |= DP_LINK_TRAIN_OFF;
937 
938 		if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
939 			intel_dp->DP |= DP_ENHANCED_FRAMING;
940 
941 		if (intel_crtc->pipe == 1)
942 			intel_dp->DP |= DP_PIPEB_SELECT;
943 
944 		if (is_cpu_edp(intel_dp)) {
945 			/* don't miss out required setting for eDP */
946 			if (adjusted_mode->clock < 200000)
947 				intel_dp->DP |= DP_PLL_FREQ_160MHZ;
948 			else
949 				intel_dp->DP |= DP_PLL_FREQ_270MHZ;
950 		}
951 	} else {
952 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
953 	}
954 }
955 
956 #define IDLE_ON_MASK		(PP_ON | 0 	  | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
957 #define IDLE_ON_VALUE   	(PP_ON | 0 	  | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
958 
959 #define IDLE_OFF_MASK		(PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
960 #define IDLE_OFF_VALUE		(0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
961 
962 #define IDLE_CYCLE_MASK		(PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
963 #define IDLE_CYCLE_VALUE	(0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
964 
965 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
966 				       u32 mask,
967 				       u32 value)
968 {
969 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
970 	struct drm_i915_private *dev_priv = dev->dev_private;
971 
972 	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
973 		      mask, value,
974 		      I915_READ(PCH_PP_STATUS),
975 		      I915_READ(PCH_PP_CONTROL));
976 
977 	if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
978 		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
979 			  I915_READ(PCH_PP_STATUS),
980 			  I915_READ(PCH_PP_CONTROL));
981 	}
982 }
983 
984 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
985 {
986 	DRM_DEBUG_KMS("Wait for panel power on\n");
987 	ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
988 }
989 
990 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
991 {
992 	DRM_DEBUG_KMS("Wait for panel power off time\n");
993 	ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
994 }
995 
996 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
997 {
998 	DRM_DEBUG_KMS("Wait for panel power cycle\n");
999 	ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1000 }
1001 
1002 
1003 /* Read the current pp_control value, unlocking the register if it
1004  * is locked
1005  */
1006 
1007 static  u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
1008 {
1009 	u32	control = I915_READ(PCH_PP_CONTROL);
1010 
1011 	control &= ~PANEL_UNLOCK_MASK;
1012 	control |= PANEL_UNLOCK_REGS;
1013 	return control;
1014 }
1015 
1016 void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
1017 {
1018 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1019 	struct drm_i915_private *dev_priv = dev->dev_private;
1020 	u32 pp;
1021 
1022 	if (!is_edp(intel_dp))
1023 		return;
1024 	DRM_DEBUG_KMS("Turn eDP VDD on\n");
1025 
1026 	WARN(intel_dp->want_panel_vdd,
1027 	     "eDP VDD already requested on\n");
1028 
1029 	intel_dp->want_panel_vdd = true;
1030 
1031 	if (ironlake_edp_have_panel_vdd(intel_dp)) {
1032 		DRM_DEBUG_KMS("eDP VDD already on\n");
1033 		return;
1034 	}
1035 
1036 	if (!ironlake_edp_have_panel_power(intel_dp))
1037 		ironlake_wait_panel_power_cycle(intel_dp);
1038 
1039 	pp = ironlake_get_pp_control(dev_priv);
1040 	pp |= EDP_FORCE_VDD;
1041 	I915_WRITE(PCH_PP_CONTROL, pp);
1042 	POSTING_READ(PCH_PP_CONTROL);
1043 	DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1044 		      I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1045 
1046 	/*
1047 	 * If the panel wasn't on, delay before accessing aux channel
1048 	 */
1049 	if (!ironlake_edp_have_panel_power(intel_dp)) {
1050 		DRM_DEBUG_KMS("eDP was not running\n");
1051 		msleep(intel_dp->panel_power_up_delay);
1052 	}
1053 }
1054 
1055 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1056 {
1057 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1058 	struct drm_i915_private *dev_priv = dev->dev_private;
1059 	u32 pp;
1060 
1061 	if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1062 		pp = ironlake_get_pp_control(dev_priv);
1063 		pp &= ~EDP_FORCE_VDD;
1064 		I915_WRITE(PCH_PP_CONTROL, pp);
1065 		POSTING_READ(PCH_PP_CONTROL);
1066 
1067 		/* Make sure sequencer is idle before allowing subsequent activity */
1068 		DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1069 			      I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1070 
1071 		DELAY(intel_dp->panel_power_down_delay * 1000);
1072 	}
1073 }
1074 
1075 static void ironlake_panel_vdd_work(struct work_struct *__work)
1076 {
1077 	struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1078 						 struct intel_dp, panel_vdd_work);
1079 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1080 
1081 	lockmgr(&dev->mode_config.mutex, LK_EXCLUSIVE);
1082 	ironlake_panel_vdd_off_sync(intel_dp);
1083 	lockmgr(&dev->mode_config.mutex, LK_RELEASE);
1084 }
1085 
1086 void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1087 {
1088 	if (!is_edp(intel_dp))
1089 		return;
1090 
1091 	DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1092 	WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1093 
1094 	intel_dp->want_panel_vdd = false;
1095 
1096 	if (sync) {
1097 		ironlake_panel_vdd_off_sync(intel_dp);
1098 	} else {
1099 		/*
1100 		 * Queue the timer to fire a long
1101 		 * time from now (relative to the power down delay)
1102 		 * to keep the panel power up across a sequence of operations
1103 		 */
1104 		schedule_delayed_work(&intel_dp->panel_vdd_work,
1105 				      msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1106 	}
1107 }
1108 
1109 void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1110 {
1111 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1112 	struct drm_i915_private *dev_priv = dev->dev_private;
1113 	u32 pp;
1114 
1115 	if (!is_edp(intel_dp))
1116 		return;
1117 
1118 	DRM_DEBUG_KMS("Turn eDP power on\n");
1119 
1120 	if (ironlake_edp_have_panel_power(intel_dp)) {
1121 		DRM_DEBUG_KMS("eDP power already on\n");
1122 		return;
1123 	}
1124 
1125 	ironlake_wait_panel_power_cycle(intel_dp);
1126 
1127 	pp = ironlake_get_pp_control(dev_priv);
1128 	if (IS_GEN5(dev)) {
1129 		/* ILK workaround: disable reset around power sequence */
1130 		pp &= ~PANEL_POWER_RESET;
1131 		I915_WRITE(PCH_PP_CONTROL, pp);
1132 		POSTING_READ(PCH_PP_CONTROL);
1133 	}
1134 
1135 	pp |= POWER_TARGET_ON;
1136 	if (!IS_GEN5(dev))
1137 		pp |= PANEL_POWER_RESET;
1138 
1139 	I915_WRITE(PCH_PP_CONTROL, pp);
1140 	POSTING_READ(PCH_PP_CONTROL);
1141 
1142 	ironlake_wait_panel_on(intel_dp);
1143 
1144 	if (IS_GEN5(dev)) {
1145 		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1146 		I915_WRITE(PCH_PP_CONTROL, pp);
1147 		POSTING_READ(PCH_PP_CONTROL);
1148 	}
1149 }
1150 
1151 void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1152 {
1153 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1154 	struct drm_i915_private *dev_priv = dev->dev_private;
1155 	u32 pp;
1156 
1157 	if (!is_edp(intel_dp))
1158 		return;
1159 
1160 	DRM_DEBUG_KMS("Turn eDP power off\n");
1161 
1162 	WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1163 
1164 	pp = ironlake_get_pp_control(dev_priv);
1165 	/* We need to switch off panel power _and_ force vdd, for otherwise some
1166 	 * panels get very unhappy and cease to work. */
1167 	pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1168 	I915_WRITE(PCH_PP_CONTROL, pp);
1169 	POSTING_READ(PCH_PP_CONTROL);
1170 
1171 	intel_dp->want_panel_vdd = false;
1172 
1173 	ironlake_wait_panel_off(intel_dp);
1174 }
1175 
1176 void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1177 {
1178 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1179 	struct drm_device *dev = intel_dig_port->base.base.dev;
1180 	struct drm_i915_private *dev_priv = dev->dev_private;
1181 	int pipe = to_intel_crtc(intel_dig_port->base.base.crtc)->pipe;
1182 	u32 pp;
1183 
1184 	if (!is_edp(intel_dp))
1185 		return;
1186 
1187 	DRM_DEBUG_KMS("\n");
1188 	/*
1189 	 * If we enable the backlight right away following a panel power
1190 	 * on, we may see slight flicker as the panel syncs with the eDP
1191 	 * link.  So delay a bit to make sure the image is solid before
1192 	 * allowing it to appear.
1193 	 */
1194 	DELAY(intel_dp->backlight_on_delay * 1000);
1195 	pp = ironlake_get_pp_control(dev_priv);
1196 	pp |= EDP_BLC_ENABLE;
1197 	I915_WRITE(PCH_PP_CONTROL, pp);
1198 	POSTING_READ(PCH_PP_CONTROL);
1199 
1200 	intel_panel_enable_backlight(dev, pipe);
1201 }
1202 
1203 void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1204 {
1205 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1206 	struct drm_i915_private *dev_priv = dev->dev_private;
1207 	u32 pp;
1208 
1209 	if (!is_edp(intel_dp))
1210 		return;
1211 
1212 	intel_panel_disable_backlight(dev);
1213 
1214 	DRM_DEBUG_KMS("\n");
1215 	pp = ironlake_get_pp_control(dev_priv);
1216 	pp &= ~EDP_BLC_ENABLE;
1217 	I915_WRITE(PCH_PP_CONTROL, pp);
1218 	POSTING_READ(PCH_PP_CONTROL);
1219 	DELAY(intel_dp->backlight_off_delay * 1000);
1220 }
1221 
1222 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1223 {
1224 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1225 	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1226 	struct drm_device *dev = crtc->dev;
1227 	struct drm_i915_private *dev_priv = dev->dev_private;
1228 	u32 dpa_ctl;
1229 
1230 	assert_pipe_disabled(dev_priv,
1231 			     to_intel_crtc(crtc)->pipe);
1232 
1233 	DRM_DEBUG_KMS("\n");
1234 	dpa_ctl = I915_READ(DP_A);
1235 	WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1236 	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1237 
1238 	/* We don't adjust intel_dp->DP while tearing down the link, to
1239 	 * facilitate link retraining (e.g. after hotplug). Hence clear all
1240 	 * enable bits here to ensure that we don't enable too much. */
1241 	intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1242 	intel_dp->DP |= DP_PLL_ENABLE;
1243 	I915_WRITE(DP_A, intel_dp->DP);
1244 	POSTING_READ(DP_A);
1245 	udelay(200);
1246 }
1247 
1248 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1249 {
1250 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1251 	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1252 	struct drm_device *dev = crtc->dev;
1253 	struct drm_i915_private *dev_priv = dev->dev_private;
1254 	u32 dpa_ctl;
1255 
1256 	assert_pipe_disabled(dev_priv,
1257 			     to_intel_crtc(crtc)->pipe);
1258 
1259 	dpa_ctl = I915_READ(DP_A);
1260 	WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1261 	     "dp pll off, should be on\n");
1262 	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1263 
1264 	/* We can't rely on the value tracked for the DP register in
1265 	 * intel_dp->DP because link_down must not change that (otherwise link
1266 	 * re-training will fail. */
1267 	dpa_ctl &= ~DP_PLL_ENABLE;
1268 	I915_WRITE(DP_A, dpa_ctl);
1269 	POSTING_READ(DP_A);
1270 	udelay(200);
1271 }
1272 
1273 /* If the sink supports it, try to set the power state appropriately */
1274 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1275 {
1276 	int ret, i;
1277 
1278 	/* Should have a valid DPCD by this point */
1279 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1280 		return;
1281 
1282 	if (mode != DRM_MODE_DPMS_ON) {
1283 		ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1284 						  DP_SET_POWER_D3);
1285 		if (ret != 1)
1286 			DRM_DEBUG("failed to write sink power state\n");
1287 	} else {
1288 		/*
1289 		 * When turning on, we need to retry for 1ms to give the sink
1290 		 * time to wake up.
1291 		 */
1292 		for (i = 0; i < 3; i++) {
1293 			ret = intel_dp_aux_native_write_1(intel_dp,
1294 							  DP_SET_POWER,
1295 							  DP_SET_POWER_D0);
1296 			if (ret == 1)
1297 				break;
1298 			DELAY(1000);
1299 		}
1300 	}
1301 }
1302 
1303 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1304 				  enum i915_pipe *pipe)
1305 {
1306 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1307 	struct drm_device *dev = encoder->base.dev;
1308 	struct drm_i915_private *dev_priv = dev->dev_private;
1309 	u32 tmp = I915_READ(intel_dp->output_reg);
1310 
1311 	if (!(tmp & DP_PORT_EN))
1312 		return false;
1313 
1314 	if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
1315 		*pipe = PORT_TO_PIPE_CPT(tmp);
1316 	} else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
1317 		*pipe = PORT_TO_PIPE(tmp);
1318 	} else {
1319 		u32 trans_sel;
1320 		u32 trans_dp;
1321 		int i;
1322 
1323 		switch (intel_dp->output_reg) {
1324 		case PCH_DP_B:
1325 			trans_sel = TRANS_DP_PORT_SEL_B;
1326 			break;
1327 		case PCH_DP_C:
1328 			trans_sel = TRANS_DP_PORT_SEL_C;
1329 			break;
1330 		case PCH_DP_D:
1331 			trans_sel = TRANS_DP_PORT_SEL_D;
1332 			break;
1333 		default:
1334 			return true;
1335 		}
1336 
1337 		for_each_pipe(i) {
1338 			trans_dp = I915_READ(TRANS_DP_CTL(i));
1339 			if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1340 				*pipe = i;
1341 				return true;
1342 			}
1343 		}
1344 
1345 		DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1346 			      intel_dp->output_reg);
1347 	}
1348 
1349 	return true;
1350 }
1351 
1352 static void intel_disable_dp(struct intel_encoder *encoder)
1353 {
1354 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1355 
1356 	/* Make sure the panel is off before trying to change the mode. But also
1357 	 * ensure that we have vdd while we switch off the panel. */
1358 	ironlake_edp_panel_vdd_on(intel_dp);
1359 	ironlake_edp_backlight_off(intel_dp);
1360 	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1361 	ironlake_edp_panel_off(intel_dp);
1362 
1363 	/* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1364 	if (!is_cpu_edp(intel_dp))
1365 		intel_dp_link_down(intel_dp);
1366 }
1367 
1368 static void intel_post_disable_dp(struct intel_encoder *encoder)
1369 {
1370 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1371 
1372 	if (is_cpu_edp(intel_dp)) {
1373 		intel_dp_link_down(intel_dp);
1374 		ironlake_edp_pll_off(intel_dp);
1375 	}
1376 }
1377 
1378 static void intel_enable_dp(struct intel_encoder *encoder)
1379 {
1380 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1381 	struct drm_device *dev = encoder->base.dev;
1382 	struct drm_i915_private *dev_priv = dev->dev_private;
1383 	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1384 
1385 	if (WARN_ON(dp_reg & DP_PORT_EN))
1386 		return;
1387 
1388 	ironlake_edp_panel_vdd_on(intel_dp);
1389 	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1390 	intel_dp_start_link_train(intel_dp);
1391 	ironlake_edp_panel_on(intel_dp);
1392 	ironlake_edp_panel_vdd_off(intel_dp, true);
1393 	intel_dp_complete_link_train(intel_dp);
1394 	ironlake_edp_backlight_on(intel_dp);
1395 }
1396 
1397 static void intel_pre_enable_dp(struct intel_encoder *encoder)
1398 {
1399 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1400 
1401 	if (is_cpu_edp(intel_dp))
1402 		ironlake_edp_pll_on(intel_dp);
1403 }
1404 
1405 /*
1406  * Native read with retry for link status and receiver capability reads for
1407  * cases where the sink may still be asleep.
1408  */
1409 static bool
1410 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1411 			       uint8_t *recv, int recv_bytes)
1412 {
1413 	int ret, i;
1414 
1415 	/*
1416 	 * Sinks are *supposed* to come up within 1ms from an off state,
1417 	 * but we're also supposed to retry 3 times per the spec.
1418 	 */
1419 	for (i = 0; i < 3; i++) {
1420 		ret = intel_dp_aux_native_read(intel_dp, address, recv,
1421 					       recv_bytes);
1422 		if (ret == recv_bytes)
1423 			return true;
1424 		DELAY(1000);
1425 	}
1426 
1427 	return false;
1428 }
1429 
1430 /*
1431  * Fetch AUX CH registers 0x202 - 0x207 which contain
1432  * link status information
1433  */
1434 static bool
1435 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1436 {
1437 	return intel_dp_aux_native_read_retry(intel_dp,
1438 					      DP_LANE0_1_STATUS,
1439 					      link_status,
1440 					      DP_LINK_STATUS_SIZE);
1441 }
1442 
1443 #if 0
1444 static char	*voltage_names[] = {
1445 	"0.4V", "0.6V", "0.8V", "1.2V"
1446 };
1447 static char	*pre_emph_names[] = {
1448 	"0dB", "3.5dB", "6dB", "9.5dB"
1449 };
1450 static char	*link_train_names[] = {
1451 	"pattern 1", "pattern 2", "idle", "off"
1452 };
1453 #endif
1454 
1455 /*
1456  * These are source-specific values; current Intel hardware supports
1457  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1458  */
1459 
1460 static uint8_t
1461 intel_dp_voltage_max(struct intel_dp *intel_dp)
1462 {
1463 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1464 
1465 	if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1466 		return DP_TRAIN_VOLTAGE_SWING_800;
1467 	else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1468 		return DP_TRAIN_VOLTAGE_SWING_1200;
1469 	else
1470 		return DP_TRAIN_VOLTAGE_SWING_800;
1471 }
1472 
1473 static uint8_t
1474 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1475 {
1476 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1477 
1478 	if (IS_HASWELL(dev)) {
1479 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1480 		case DP_TRAIN_VOLTAGE_SWING_400:
1481 			return DP_TRAIN_PRE_EMPHASIS_9_5;
1482 		case DP_TRAIN_VOLTAGE_SWING_600:
1483 			return DP_TRAIN_PRE_EMPHASIS_6;
1484 		case DP_TRAIN_VOLTAGE_SWING_800:
1485 			return DP_TRAIN_PRE_EMPHASIS_3_5;
1486 		case DP_TRAIN_VOLTAGE_SWING_1200:
1487 		default:
1488 			return DP_TRAIN_PRE_EMPHASIS_0;
1489 		}
1490 	} else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1491 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1492 		case DP_TRAIN_VOLTAGE_SWING_400:
1493 			return DP_TRAIN_PRE_EMPHASIS_6;
1494 		case DP_TRAIN_VOLTAGE_SWING_600:
1495 		case DP_TRAIN_VOLTAGE_SWING_800:
1496 			return DP_TRAIN_PRE_EMPHASIS_3_5;
1497 		default:
1498 			return DP_TRAIN_PRE_EMPHASIS_0;
1499 		}
1500 	} else {
1501 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1502 		case DP_TRAIN_VOLTAGE_SWING_400:
1503 			return DP_TRAIN_PRE_EMPHASIS_6;
1504 		case DP_TRAIN_VOLTAGE_SWING_600:
1505 			return DP_TRAIN_PRE_EMPHASIS_6;
1506 		case DP_TRAIN_VOLTAGE_SWING_800:
1507 			return DP_TRAIN_PRE_EMPHASIS_3_5;
1508 		case DP_TRAIN_VOLTAGE_SWING_1200:
1509 		default:
1510 			return DP_TRAIN_PRE_EMPHASIS_0;
1511 		}
1512 	}
1513 }
1514 
1515 static void
1516 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1517 {
1518 	uint8_t v = 0;
1519 	uint8_t p = 0;
1520 	int lane;
1521 	uint8_t voltage_max;
1522 	uint8_t preemph_max;
1523 
1524 	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1525 		uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
1526 		uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
1527 
1528 		if (this_v > v)
1529 			v = this_v;
1530 		if (this_p > p)
1531 			p = this_p;
1532 	}
1533 
1534 	voltage_max = intel_dp_voltage_max(intel_dp);
1535 	if (v >= voltage_max)
1536 		v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1537 
1538 	preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1539 	if (p >= preemph_max)
1540 		p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1541 
1542 	for (lane = 0; lane < 4; lane++)
1543 		intel_dp->train_set[lane] = v | p;
1544 }
1545 
1546 static uint32_t
1547 intel_dp_signal_levels(uint8_t train_set)
1548 {
1549 	uint32_t	signal_levels = 0;
1550 
1551 	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1552 	case DP_TRAIN_VOLTAGE_SWING_400:
1553 	default:
1554 		signal_levels |= DP_VOLTAGE_0_4;
1555 		break;
1556 	case DP_TRAIN_VOLTAGE_SWING_600:
1557 		signal_levels |= DP_VOLTAGE_0_6;
1558 		break;
1559 	case DP_TRAIN_VOLTAGE_SWING_800:
1560 		signal_levels |= DP_VOLTAGE_0_8;
1561 		break;
1562 	case DP_TRAIN_VOLTAGE_SWING_1200:
1563 		signal_levels |= DP_VOLTAGE_1_2;
1564 		break;
1565 	}
1566 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1567 	case DP_TRAIN_PRE_EMPHASIS_0:
1568 	default:
1569 		signal_levels |= DP_PRE_EMPHASIS_0;
1570 		break;
1571 	case DP_TRAIN_PRE_EMPHASIS_3_5:
1572 		signal_levels |= DP_PRE_EMPHASIS_3_5;
1573 		break;
1574 	case DP_TRAIN_PRE_EMPHASIS_6:
1575 		signal_levels |= DP_PRE_EMPHASIS_6;
1576 		break;
1577 	case DP_TRAIN_PRE_EMPHASIS_9_5:
1578 		signal_levels |= DP_PRE_EMPHASIS_9_5;
1579 		break;
1580 	}
1581 	return signal_levels;
1582 }
1583 
1584 /* Gen6's DP voltage swing and pre-emphasis control */
1585 static uint32_t
1586 intel_gen6_edp_signal_levels(uint8_t train_set)
1587 {
1588 	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1589 					 DP_TRAIN_PRE_EMPHASIS_MASK);
1590 	switch (signal_levels) {
1591 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1592 	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1593 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1594 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1595 		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1596 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1597 	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1598 		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1599 	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1600 	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1601 		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1602 	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1603 	case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1604 		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1605 	default:
1606 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1607 			      "0x%x\n", signal_levels);
1608 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1609 	}
1610 }
1611 
1612 /* Gen7's DP voltage swing and pre-emphasis control */
1613 static uint32_t
1614 intel_gen7_edp_signal_levels(uint8_t train_set)
1615 {
1616 	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1617 					 DP_TRAIN_PRE_EMPHASIS_MASK);
1618 	switch (signal_levels) {
1619 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1620 		return EDP_LINK_TRAIN_400MV_0DB_IVB;
1621 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1622 		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1623 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1624 		return EDP_LINK_TRAIN_400MV_6DB_IVB;
1625 
1626 	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1627 		return EDP_LINK_TRAIN_600MV_0DB_IVB;
1628 	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1629 		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1630 
1631 	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1632 		return EDP_LINK_TRAIN_800MV_0DB_IVB;
1633 	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1634 		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1635 
1636 	default:
1637 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1638 			      "0x%x\n", signal_levels);
1639 		return EDP_LINK_TRAIN_500MV_0DB_IVB;
1640 	}
1641 }
1642 
1643 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
1644 static uint32_t
1645 intel_dp_signal_levels_hsw(uint8_t train_set)
1646 {
1647 	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1648 					 DP_TRAIN_PRE_EMPHASIS_MASK);
1649 	switch (signal_levels) {
1650 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1651 		return DDI_BUF_EMP_400MV_0DB_HSW;
1652 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1653 		return DDI_BUF_EMP_400MV_3_5DB_HSW;
1654 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1655 		return DDI_BUF_EMP_400MV_6DB_HSW;
1656 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
1657 		return DDI_BUF_EMP_400MV_9_5DB_HSW;
1658 
1659 	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1660 		return DDI_BUF_EMP_600MV_0DB_HSW;
1661 	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1662 		return DDI_BUF_EMP_600MV_3_5DB_HSW;
1663 	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1664 		return DDI_BUF_EMP_600MV_6DB_HSW;
1665 
1666 	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1667 		return DDI_BUF_EMP_800MV_0DB_HSW;
1668 	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1669 		return DDI_BUF_EMP_800MV_3_5DB_HSW;
1670 	default:
1671 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1672 			      "0x%x\n", signal_levels);
1673 		return DDI_BUF_EMP_400MV_0DB_HSW;
1674 	}
1675 }
1676 
1677 static bool
1678 intel_dp_set_link_train(struct intel_dp *intel_dp,
1679 			uint32_t dp_reg_value,
1680 			uint8_t dp_train_pat)
1681 {
1682 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1683 	struct drm_device *dev = intel_dig_port->base.base.dev;
1684 	struct drm_i915_private *dev_priv = dev->dev_private;
1685 	enum port port = intel_dig_port->port;
1686 	int ret;
1687 	uint32_t temp;
1688 
1689 	if (IS_HASWELL(dev)) {
1690 		temp = I915_READ(DP_TP_CTL(port));
1691 
1692 		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
1693 			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
1694 		else
1695 			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
1696 
1697 		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
1698 		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1699 		case DP_TRAINING_PATTERN_DISABLE:
1700 			temp |= DP_TP_CTL_LINK_TRAIN_IDLE;
1701 			I915_WRITE(DP_TP_CTL(port), temp);
1702 
1703 			if (wait_for((I915_READ(DP_TP_STATUS(port)) &
1704 				      DP_TP_STATUS_IDLE_DONE), 1))
1705 				DRM_ERROR("Timed out waiting for DP idle patterns\n");
1706 
1707 			temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
1708 			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
1709 
1710 			break;
1711 		case DP_TRAINING_PATTERN_1:
1712 			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
1713 			break;
1714 		case DP_TRAINING_PATTERN_2:
1715 			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
1716 			break;
1717 		case DP_TRAINING_PATTERN_3:
1718 			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
1719 			break;
1720 		}
1721 		I915_WRITE(DP_TP_CTL(port), temp);
1722 
1723 	} else if (HAS_PCH_CPT(dev) &&
1724 		   (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1725 		dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
1726 
1727 		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1728 		case DP_TRAINING_PATTERN_DISABLE:
1729 			dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
1730 			break;
1731 		case DP_TRAINING_PATTERN_1:
1732 			dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
1733 			break;
1734 		case DP_TRAINING_PATTERN_2:
1735 			dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1736 			break;
1737 		case DP_TRAINING_PATTERN_3:
1738 			DRM_ERROR("DP training pattern 3 not supported\n");
1739 			dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1740 			break;
1741 		}
1742 
1743 	} else {
1744 		dp_reg_value &= ~DP_LINK_TRAIN_MASK;
1745 
1746 		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1747 		case DP_TRAINING_PATTERN_DISABLE:
1748 			dp_reg_value |= DP_LINK_TRAIN_OFF;
1749 			break;
1750 		case DP_TRAINING_PATTERN_1:
1751 			dp_reg_value |= DP_LINK_TRAIN_PAT_1;
1752 			break;
1753 		case DP_TRAINING_PATTERN_2:
1754 			dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1755 			break;
1756 		case DP_TRAINING_PATTERN_3:
1757 			DRM_ERROR("DP training pattern 3 not supported\n");
1758 			dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1759 			break;
1760 		}
1761 	}
1762 
1763 	I915_WRITE(intel_dp->output_reg, dp_reg_value);
1764 	POSTING_READ(intel_dp->output_reg);
1765 
1766 	intel_dp_aux_native_write_1(intel_dp,
1767 				    DP_TRAINING_PATTERN_SET,
1768 				    dp_train_pat);
1769 
1770 	if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
1771 	    DP_TRAINING_PATTERN_DISABLE) {
1772 		ret = intel_dp_aux_native_write(intel_dp,
1773 						DP_TRAINING_LANE0_SET,
1774 						intel_dp->train_set,
1775 						intel_dp->lane_count);
1776 		if (ret != intel_dp->lane_count)
1777 			return false;
1778 	}
1779 
1780 	return true;
1781 }
1782 
1783 /* Enable corresponding port and start training pattern 1 */
1784 void
1785 intel_dp_start_link_train(struct intel_dp *intel_dp)
1786 {
1787 	struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
1788 	struct drm_device *dev = encoder->dev;
1789 	int i;
1790 	uint8_t voltage;
1791 	bool clock_recovery = false;
1792 	int voltage_tries, loop_tries;
1793 	uint32_t DP = intel_dp->DP;
1794 
1795 	if (IS_HASWELL(dev))
1796 		intel_ddi_prepare_link_retrain(encoder);
1797 
1798 	/* Write the link configuration data */
1799 	intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1800 				  intel_dp->link_configuration,
1801 				  DP_LINK_CONFIGURATION_SIZE);
1802 
1803 	DP |= DP_PORT_EN;
1804 
1805 	memset(intel_dp->train_set, 0, 4);
1806 	voltage = 0xff;
1807 	voltage_tries = 0;
1808 	loop_tries = 0;
1809 	clock_recovery = false;
1810 	for (;;) {
1811 		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1812 		uint8_t	    link_status[DP_LINK_STATUS_SIZE];
1813 		uint32_t    signal_levels;
1814 
1815 		if (IS_HASWELL(dev)) {
1816 			signal_levels = intel_dp_signal_levels_hsw(
1817 							intel_dp->train_set[0]);
1818 			DP = (DP & ~DDI_BUF_EMP_MASK) | signal_levels;
1819 		} else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1820 			signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1821 			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1822 		} else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1823 			signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1824 			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1825 		} else {
1826 			signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1827 			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1828 		}
1829 		DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n",
1830 			      signal_levels);
1831 
1832 		/* Set training pattern 1 */
1833 		if (!intel_dp_set_link_train(intel_dp, DP,
1834 					     DP_TRAINING_PATTERN_1 |
1835 					     DP_LINK_SCRAMBLING_DISABLE))
1836 			break;
1837 
1838 		drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
1839 		if (!intel_dp_get_link_status(intel_dp, link_status)) {
1840 			DRM_ERROR("failed to get link status\n");
1841 			break;
1842 		}
1843 
1844 		if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1845 			DRM_DEBUG_KMS("clock recovery OK\n");
1846 			clock_recovery = true;
1847 			break;
1848 		}
1849 
1850 		/* Check to see if we've tried the max voltage */
1851 		for (i = 0; i < intel_dp->lane_count; i++)
1852 			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1853 				break;
1854 		if (i == intel_dp->lane_count) {
1855 			if (++loop_tries == 5) {
1856 				DRM_DEBUG_KMS("too many full retries, give up\n");
1857 				break;
1858 			}
1859 			memset(intel_dp->train_set, 0, 4);
1860 			voltage_tries = 0;
1861 			continue;
1862 		}
1863 
1864 		/* Check to see if we've tried the same voltage 5 times */
1865 		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) != voltage) {
1866 			voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1867 			voltage_tries = 0;
1868 		} else
1869 			++voltage_tries;
1870 
1871 		/* Compute new intel_dp->train_set as requested by target */
1872 		intel_get_adjust_train(intel_dp, link_status);
1873 	}
1874 
1875 	intel_dp->DP = DP;
1876 }
1877 
1878 void
1879 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1880 {
1881 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1882 	bool channel_eq = false;
1883 	int tries, cr_tries;
1884 	uint32_t DP = intel_dp->DP;
1885 
1886 	/* channel equalization */
1887 	tries = 0;
1888 	cr_tries = 0;
1889 	channel_eq = false;
1890 	for (;;) {
1891 		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1892 		uint32_t    signal_levels;
1893 		uint8_t	    link_status[DP_LINK_STATUS_SIZE];
1894 
1895 		if (cr_tries > 5) {
1896 			DRM_ERROR("failed to train DP, aborting\n");
1897 			intel_dp_link_down(intel_dp);
1898 			break;
1899 		}
1900 
1901 		if (IS_HASWELL(dev)) {
1902 			signal_levels = intel_dp_signal_levels_hsw(intel_dp->train_set[0]);
1903 			DP = (DP & ~DDI_BUF_EMP_MASK) | signal_levels;
1904 		} else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1905 			signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1906 			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1907 		} else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1908 			signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1909 			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1910 		} else {
1911 			signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1912 			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1913 		}
1914 
1915 		/* channel eq pattern */
1916 		if (!intel_dp_set_link_train(intel_dp, DP,
1917 					     DP_TRAINING_PATTERN_2 |
1918 					     DP_LINK_SCRAMBLING_DISABLE))
1919 			break;
1920 
1921 		drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
1922 		if (!intel_dp_get_link_status(intel_dp, link_status))
1923 			break;
1924 
1925 		/* Make sure clock is still ok */
1926 		if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1927 			intel_dp_start_link_train(intel_dp);
1928 			cr_tries++;
1929 			continue;
1930 		}
1931 
1932 		if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
1933 			channel_eq = true;
1934 			break;
1935 		}
1936 
1937 		/* Try 5 times, then try clock recovery if that fails */
1938 		if (tries > 5) {
1939 			intel_dp_link_down(intel_dp);
1940 			intel_dp_start_link_train(intel_dp);
1941 			tries = 0;
1942 			cr_tries++;
1943 			continue;
1944 		}
1945 
1946 		/* Compute new intel_dp->train_set as requested by target */
1947 		intel_get_adjust_train(intel_dp, link_status);
1948 		++tries;
1949 	}
1950 
1951 	if (channel_eq)
1952 		DRM_DEBUG_KMS("Channel EQ done. DP Training successfull\n");
1953 
1954 	intel_dp_set_link_train(intel_dp, DP, DP_TRAINING_PATTERN_DISABLE);
1955 }
1956 
1957 static void
1958 intel_dp_link_down(struct intel_dp *intel_dp)
1959 {
1960 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1961 	struct drm_device *dev = intel_dig_port->base.base.dev;
1962 	struct drm_i915_private *dev_priv = dev->dev_private;
1963 	uint32_t DP = intel_dp->DP;
1964 
1965 	/*
1966 	 * DDI code has a strict mode set sequence and we should try to respect
1967 	 * it, otherwise we might hang the machine in many different ways. So we
1968 	 * really should be disabling the port only on a complete crtc_disable
1969 	 * sequence. This function is just called under two conditions on DDI
1970 	 * code:
1971 	 * - Link train failed while doing crtc_enable, and on this case we
1972 	 *   really should respect the mode set sequence and wait for a
1973 	 *   crtc_disable.
1974 	 * - Someone turned the monitor off and intel_dp_check_link_status
1975 	 *   called us. We don't need to disable the whole port on this case, so
1976 	 *   when someone turns the monitor on again,
1977 	 *   intel_ddi_prepare_link_retrain will take care of redoing the link
1978 	 *   train.
1979 	 */
1980 	if (IS_HASWELL(dev))
1981 		return;
1982 
1983 	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
1984 		return;
1985 
1986 	DRM_DEBUG_KMS("\n");
1987 
1988 	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1989 		DP &= ~DP_LINK_TRAIN_MASK_CPT;
1990 		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1991 	} else {
1992 		DP &= ~DP_LINK_TRAIN_MASK;
1993 		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1994 	}
1995 	POSTING_READ(intel_dp->output_reg);
1996 
1997 	msleep(17);
1998 
1999 	if (HAS_PCH_IBX(dev) &&
2000 	    I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
2001 		struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2002 
2003 		/* Hardware workaround: leaving our transcoder select
2004 		 * set to transcoder B while it's off will prevent the
2005 		 * corresponding HDMI output on transcoder A.
2006 		 *
2007 		 * Combine this with another hardware workaround:
2008 		 * transcoder select bit can only be cleared while the
2009 		 * port is enabled.
2010 		 */
2011 		DP &= ~DP_PIPEB_SELECT;
2012 		I915_WRITE(intel_dp->output_reg, DP);
2013 
2014 		/* Changes to enable or select take place the vblank
2015 		 * after being written.
2016 		 */
2017 		if (crtc == NULL) {
2018 			/* We can arrive here never having been attached
2019 			 * to a CRTC, for instance, due to inheriting
2020 			 * random state from the BIOS.
2021 			 *
2022 			 * If the pipe is not running, play safe and
2023 			 * wait for the clocks to stabilise before
2024 			 * continuing.
2025 			 */
2026 			POSTING_READ(intel_dp->output_reg);
2027 			msleep(50);
2028 		} else
2029 			intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
2030 	}
2031 
2032 	DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2033 	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2034 	POSTING_READ(intel_dp->output_reg);
2035 	msleep(intel_dp->panel_power_down_delay);
2036 }
2037 
2038 static bool
2039 intel_dp_get_dpcd(struct intel_dp *intel_dp)
2040 {
2041 	if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
2042 					   sizeof(intel_dp->dpcd)) == 0)
2043 		return false; /* aux transfer failed */
2044 
2045 	if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2046 		return false; /* DPCD not present */
2047 
2048 	if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2049 	      DP_DWN_STRM_PORT_PRESENT))
2050 		return true; /* native DP sink */
2051 
2052 	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2053 		return true; /* no per-port downstream info */
2054 
2055 	if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
2056 					   intel_dp->downstream_ports,
2057 					   DP_MAX_DOWNSTREAM_PORTS) == 0)
2058 		return false; /* downstream port status fetch failed */
2059 
2060 	return true;
2061 }
2062 
2063 static void
2064 intel_dp_probe_oui(struct intel_dp *intel_dp)
2065 {
2066 	u8 buf[3];
2067 
2068 	if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2069 		return;
2070 
2071 	ironlake_edp_panel_vdd_on(intel_dp);
2072 
2073 	if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2074 		DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2075 			      buf[0], buf[1], buf[2]);
2076 
2077 	if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2078 		DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2079 			      buf[0], buf[1], buf[2]);
2080 
2081 	ironlake_edp_panel_vdd_off(intel_dp, false);
2082 }
2083 
2084 static bool
2085 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2086 {
2087 	int ret;
2088 
2089 	ret = intel_dp_aux_native_read_retry(intel_dp,
2090 					     DP_DEVICE_SERVICE_IRQ_VECTOR,
2091 					     sink_irq_vector, 1);
2092 	if (!ret)
2093 		return false;
2094 
2095 	return true;
2096 }
2097 
2098 static void
2099 intel_dp_handle_test_request(struct intel_dp *intel_dp)
2100 {
2101 	/* NAK by default */
2102 	intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
2103 }
2104 
2105 /*
2106  * According to DP spec
2107  * 5.1.2:
2108  *  1. Read DPCD
2109  *  2. Configure link according to Receiver Capabilities
2110  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
2111  *  4. Check link status on receipt of hot-plug interrupt
2112  */
2113 
2114 void
2115 intel_dp_check_link_status(struct intel_dp *intel_dp)
2116 {
2117 	struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
2118 	u8 sink_irq_vector;
2119 	u8 link_status[DP_LINK_STATUS_SIZE];
2120 
2121 	if (!intel_encoder->connectors_active)
2122 		return;
2123 
2124 	if (WARN_ON(!intel_encoder->base.crtc))
2125 		return;
2126 
2127 	/* Try to read receiver status if the link appears to be up */
2128 	if (!intel_dp_get_link_status(intel_dp, link_status)) {
2129 		intel_dp_link_down(intel_dp);
2130 		return;
2131 	}
2132 
2133 	/* Now read the DPCD to see if it's actually running */
2134 	if (!intel_dp_get_dpcd(intel_dp)) {
2135 		intel_dp_link_down(intel_dp);
2136 		return;
2137 	}
2138 
2139 	/* Try to read the source of the interrupt */
2140 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2141 	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2142 		/* Clear interrupt source */
2143 		intel_dp_aux_native_write_1(intel_dp,
2144 					    DP_DEVICE_SERVICE_IRQ_VECTOR,
2145 					    sink_irq_vector);
2146 
2147 		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2148 			intel_dp_handle_test_request(intel_dp);
2149 		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2150 			DRM_DEBUG_KMS("CP or sink specific irq unhandled\n");
2151 	}
2152 
2153 	if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2154 		DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2155 			      drm_get_encoder_name(&intel_encoder->base));
2156 		intel_dp_start_link_train(intel_dp);
2157 		intel_dp_complete_link_train(intel_dp);
2158 	}
2159 }
2160 
2161 /* XXX this is probably wrong for multiple downstream ports */
2162 static enum drm_connector_status
2163 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2164 {
2165 	uint8_t *dpcd = intel_dp->dpcd;
2166 	bool hpd;
2167 	uint8_t type;
2168 
2169 	if (!intel_dp_get_dpcd(intel_dp))
2170 		return connector_status_disconnected;
2171 
2172 	/* if there's no downstream port, we're done */
2173 	if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2174 		return connector_status_connected;
2175 
2176 	/* If we're HPD-aware, SINK_COUNT changes dynamically */
2177 	hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
2178 	if (hpd) {
2179 		uint8_t reg;
2180 		if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
2181 						    &reg, 1))
2182 			return connector_status_unknown;
2183 		return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2184 					      : connector_status_disconnected;
2185 	}
2186 
2187 	/* If no HPD, poke DDC gently */
2188 	if (drm_probe_ddc(intel_dp->adapter))
2189 		return connector_status_connected;
2190 
2191 	/* Well we tried, say unknown for unreliable port types */
2192 	type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2193 	if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
2194 		return connector_status_unknown;
2195 
2196 	/* Anything else is out of spec, warn and ignore */
2197 	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2198 	return connector_status_disconnected;
2199 }
2200 
2201 static enum drm_connector_status
2202 ironlake_dp_detect(struct intel_dp *intel_dp)
2203 {
2204 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2205 	enum drm_connector_status status;
2206 
2207 	/* Can't disconnect eDP, but you can close the lid... */
2208 	if (is_edp(intel_dp)) {
2209 		status = intel_panel_detect(dev);
2210 		if (status == connector_status_unknown)
2211 			status = connector_status_connected;
2212 		return status;
2213 	}
2214 
2215 	return intel_dp_detect_dpcd(intel_dp);
2216 }
2217 
2218 static enum drm_connector_status
2219 g4x_dp_detect(struct intel_dp *intel_dp)
2220 {
2221 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2222 	struct drm_i915_private *dev_priv = dev->dev_private;
2223 	uint32_t bit;
2224 
2225 	switch (intel_dp->output_reg) {
2226 	case DP_B:
2227 		bit = DPB_HOTPLUG_LIVE_STATUS;
2228 		break;
2229 	case DP_C:
2230 		bit = DPC_HOTPLUG_LIVE_STATUS;
2231 		break;
2232 	case DP_D:
2233 		bit = DPD_HOTPLUG_LIVE_STATUS;
2234 		break;
2235 	default:
2236 		return connector_status_unknown;
2237 	}
2238 
2239 	if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2240 		return connector_status_disconnected;
2241 
2242 	return intel_dp_detect_dpcd(intel_dp);
2243 }
2244 
2245 static struct edid *
2246 intel_dp_get_edid(struct drm_connector *connector, struct device *adapter)
2247 {
2248 	struct intel_connector *intel_connector = to_intel_connector(connector);
2249 
2250 	/* use cached edid if we have one */
2251 	if (intel_connector->edid) {
2252 		struct edid *edid;
2253 		int size;
2254 
2255 		/* invalid edid */
2256 		if (IS_ERR(intel_connector->edid))
2257 			return NULL;
2258 
2259 		size = (intel_connector->edid->extensions + 1) * EDID_LENGTH;
2260 		edid = kmalloc(size, DRM_MEM_KMS, M_WAITOK);
2261 		if (!edid)
2262 			return NULL;
2263 
2264 		memcpy(edid, intel_connector->edid, size);
2265 		return edid;
2266 	}
2267 
2268 	return drm_get_edid(connector, adapter);
2269 }
2270 
2271 static int
2272 intel_dp_get_edid_modes(struct drm_connector *connector, struct device *adapter)
2273 {
2274 	struct intel_connector *intel_connector = to_intel_connector(connector);
2275 
2276 	/* use cached edid if we have one */
2277 	if (intel_connector->edid) {
2278 		/* invalid edid */
2279 		if (IS_ERR(intel_connector->edid))
2280 			return 0;
2281 
2282 		return intel_connector_update_modes(connector,
2283 						    intel_connector->edid);
2284 	}
2285 
2286 	return intel_ddc_get_modes(connector, adapter);
2287 }
2288 
2289 /**
2290  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
2291  *
2292  * \return true if DP port is connected.
2293  * \return false if DP port is disconnected.
2294  */
2295 static enum drm_connector_status
2296 intel_dp_detect(struct drm_connector *connector, bool force)
2297 {
2298 	struct intel_dp *intel_dp = intel_attached_dp(connector);
2299 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2300 	struct intel_encoder *intel_encoder = &intel_dig_port->base;
2301 	struct drm_device *dev = connector->dev;
2302 	enum drm_connector_status status;
2303 	struct edid *edid = NULL;
2304 
2305 	intel_dp->has_audio = false;
2306 
2307 	if (HAS_PCH_SPLIT(dev))
2308 		status = ironlake_dp_detect(intel_dp);
2309 	else
2310 		status = g4x_dp_detect(intel_dp);
2311 
2312 	DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
2313 		      intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
2314 		      intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
2315 		      intel_dp->dpcd[6], intel_dp->dpcd[7]);
2316 
2317 	if (status != connector_status_connected)
2318 		return status;
2319 
2320 	intel_dp_probe_oui(intel_dp);
2321 
2322 	if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2323 		intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2324 	} else {
2325 		edid = intel_dp_get_edid(connector, intel_dp->adapter);
2326 		if (edid) {
2327 			intel_dp->has_audio = drm_detect_monitor_audio(edid);
2328 			kfree(edid, DRM_MEM_KMS);
2329 		}
2330 	}
2331 
2332 	if (intel_encoder->type != INTEL_OUTPUT_EDP)
2333 		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2334 	return connector_status_connected;
2335 }
2336 
2337 static int intel_dp_get_modes(struct drm_connector *connector)
2338 {
2339 	struct intel_dp *intel_dp = intel_attached_dp(connector);
2340 	struct intel_connector *intel_connector = to_intel_connector(connector);
2341 	struct drm_device *dev = connector->dev;
2342 	int ret;
2343 
2344 	/* We should parse the EDID data and find out if it has an audio sink
2345 	 */
2346 
2347 	ret = intel_dp_get_edid_modes(connector, intel_dp->adapter);
2348 	if (ret)
2349 		return ret;
2350 
2351 	/* if eDP has no EDID, fall back to fixed mode */
2352 	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2353 		struct drm_display_mode *mode;
2354 		mode = drm_mode_duplicate(dev,
2355 					  intel_connector->panel.fixed_mode);
2356 		if (mode) {
2357 			drm_mode_probed_add(connector, mode);
2358 			return 1;
2359 		}
2360 	}
2361 	return 0;
2362 }
2363 
2364 static bool
2365 intel_dp_detect_audio(struct drm_connector *connector)
2366 {
2367 	struct intel_dp *intel_dp = intel_attached_dp(connector);
2368 	struct edid *edid;
2369 	bool has_audio = false;
2370 
2371 	edid = intel_dp_get_edid(connector, intel_dp->adapter);
2372 	if (edid) {
2373 		has_audio = drm_detect_monitor_audio(edid);
2374 
2375 		drm_free(edid, DRM_MEM_KMS);
2376 	}
2377 
2378 	return has_audio;
2379 }
2380 
2381 static int
2382 intel_dp_set_property(struct drm_connector *connector,
2383 		      struct drm_property *property,
2384 		      uint64_t val)
2385 {
2386 	struct drm_i915_private *dev_priv = connector->dev->dev_private;
2387 	struct intel_connector *intel_connector = to_intel_connector(connector);
2388 	struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
2389 	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2390 	int ret;
2391 
2392 	ret = drm_object_property_set_value(&connector->base, property, val);
2393 	if (ret)
2394 		return ret;
2395 
2396 	if (property == dev_priv->force_audio_property) {
2397 		int i = val;
2398 		bool has_audio;
2399 
2400 		if (i == intel_dp->force_audio)
2401 			return 0;
2402 
2403 		intel_dp->force_audio = i;
2404 
2405 		if (i == HDMI_AUDIO_AUTO)
2406 			has_audio = intel_dp_detect_audio(connector);
2407 		else
2408 			has_audio = (i == HDMI_AUDIO_ON);
2409 
2410 		if (has_audio == intel_dp->has_audio)
2411 			return 0;
2412 
2413 		intel_dp->has_audio = has_audio;
2414 		goto done;
2415 	}
2416 
2417 	if (property == dev_priv->broadcast_rgb_property) {
2418 		if (val == !!intel_dp->color_range)
2419 			return 0;
2420 
2421 		intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2422 		goto done;
2423 	}
2424 
2425 	if (is_edp(intel_dp) &&
2426 	    property == connector->dev->mode_config.scaling_mode_property) {
2427 		if (val == DRM_MODE_SCALE_NONE) {
2428 			DRM_DEBUG_KMS("no scaling not supported\n");
2429 			return -EINVAL;
2430 		}
2431 
2432 		if (intel_connector->panel.fitting_mode == val) {
2433 			/* the eDP scaling property is not changed */
2434 			return 0;
2435 		}
2436 		intel_connector->panel.fitting_mode = val;
2437 
2438 		goto done;
2439 	}
2440 
2441 	return -EINVAL;
2442 
2443 done:
2444 	if (intel_encoder->base.crtc) {
2445 		struct drm_crtc *crtc = intel_encoder->base.crtc;
2446 		intel_set_mode(crtc, &crtc->mode,
2447 			       crtc->x, crtc->y, crtc->fb);
2448 	}
2449 
2450 	return 0;
2451 }
2452 
2453 static void
2454 intel_dp_destroy(struct drm_connector *connector)
2455 {
2456 	struct intel_dp *intel_dp = intel_attached_dp(connector);
2457 	struct intel_connector *intel_connector = to_intel_connector(connector);
2458 
2459 	if (!IS_ERR_OR_NULL(intel_connector->edid))
2460 		kfree(intel_connector->edid, DRM_MEM_KMS);
2461 
2462 	if (is_edp(intel_dp))
2463 		intel_panel_fini(&intel_connector->panel);
2464 
2465 #if 0
2466 	drm_sysfs_connector_remove(connector);
2467 #endif
2468 	drm_connector_cleanup(connector);
2469 	drm_free(connector, DRM_MEM_KMS);
2470 }
2471 
2472 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2473 {
2474 	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
2475 	struct intel_dp *intel_dp = &intel_dig_port->dp;
2476 	struct drm_device *dev = encoder->dev;
2477 
2478 	if (intel_dp->dp_iic_bus != NULL) {
2479 		if (intel_dp->adapter != NULL) {
2480 			device_delete_child(intel_dp->dp_iic_bus,
2481 			    intel_dp->adapter);
2482 		}
2483 		device_delete_child(dev->dev, intel_dp->dp_iic_bus);
2484 	}
2485 	drm_encoder_cleanup(encoder);
2486 	if (is_edp(intel_dp)) {
2487 		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2488 		ironlake_panel_vdd_off_sync(intel_dp);
2489 	}
2490 	drm_free(intel_dp, DRM_MEM_KMS);
2491 }
2492 
2493 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2494 	.mode_fixup = intel_dp_mode_fixup,
2495 	.mode_set = intel_dp_mode_set,
2496 	.disable = intel_encoder_noop,
2497 };
2498 
2499 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2500 	.dpms = intel_connector_dpms,
2501 	.detect = intel_dp_detect,
2502 	.fill_modes = drm_helper_probe_single_connector_modes,
2503 	.set_property = intel_dp_set_property,
2504 	.destroy = intel_dp_destroy,
2505 };
2506 
2507 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2508 	.get_modes = intel_dp_get_modes,
2509 	.mode_valid = intel_dp_mode_valid,
2510 	.best_encoder = intel_best_encoder,
2511 };
2512 
2513 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2514 	.destroy = intel_dp_encoder_destroy,
2515 };
2516 
2517 static void
2518 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2519 {
2520 	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2521 
2522 	intel_dp_check_link_status(intel_dp);
2523 }
2524 
2525 /* Return which DP Port should be selected for Transcoder DP control */
2526 int
2527 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2528 {
2529 	struct drm_device *dev = crtc->dev;
2530 	struct intel_encoder *intel_encoder;
2531 	struct intel_dp *intel_dp;
2532 
2533 	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2534 		intel_dp = enc_to_intel_dp(&intel_encoder->base);
2535 
2536 		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2537 		    intel_encoder->type == INTEL_OUTPUT_EDP)
2538 			return intel_dp->output_reg;
2539 	}
2540 
2541 	return -1;
2542 }
2543 
2544 /* check the VBT to see whether the eDP is on DP-D port */
2545 bool intel_dpd_is_edp(struct drm_device *dev)
2546 {
2547 	struct drm_i915_private *dev_priv = dev->dev_private;
2548 	struct child_device_config *p_child;
2549 	int i;
2550 
2551 	if (!dev_priv->child_dev_num)
2552 		return false;
2553 
2554 	for (i = 0; i < dev_priv->child_dev_num; i++) {
2555 		p_child = dev_priv->child_dev + i;
2556 
2557 		if (p_child->dvo_port == PORT_IDPD &&
2558 		    p_child->device_type == DEVICE_TYPE_eDP)
2559 			return true;
2560 	}
2561 	return false;
2562 }
2563 
2564 static void
2565 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2566 {
2567 	struct intel_connector *intel_connector = to_intel_connector(connector);
2568 
2569 	intel_attach_force_audio_property(connector);
2570 	intel_attach_broadcast_rgb_property(connector);
2571 
2572 	if (is_edp(intel_dp)) {
2573 		drm_mode_create_scaling_mode_property(connector->dev);
2574 		drm_object_attach_property(
2575 			&connector->base,
2576 			connector->dev->mode_config.scaling_mode_property,
2577 			DRM_MODE_SCALE_ASPECT);
2578 		intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
2579 	}
2580 }
2581 
2582 static void
2583 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
2584 				    struct intel_dp *intel_dp,
2585 				    struct edp_power_seq *out)
2586 {
2587 	struct drm_i915_private *dev_priv = dev->dev_private;
2588 	struct edp_power_seq cur, vbt, spec, final;
2589 	u32 pp_on, pp_off, pp_div, pp;
2590 
2591 	/* Workaround: Need to write PP_CONTROL with the unlock key as
2592 	 * the very first thing. */
2593 	pp = ironlake_get_pp_control(dev_priv);
2594 	I915_WRITE(PCH_PP_CONTROL, pp);
2595 
2596 	pp_on = I915_READ(PCH_PP_ON_DELAYS);
2597 	pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2598 	pp_div = I915_READ(PCH_PP_DIVISOR);
2599 
2600 	/* Pull timing values out of registers */
2601 	cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2602 		PANEL_POWER_UP_DELAY_SHIFT;
2603 
2604 	cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2605 		PANEL_LIGHT_ON_DELAY_SHIFT;
2606 
2607 	cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2608 		PANEL_LIGHT_OFF_DELAY_SHIFT;
2609 
2610 	cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2611 		PANEL_POWER_DOWN_DELAY_SHIFT;
2612 
2613 	cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2614 		       PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2615 
2616 	DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2617 		      cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2618 
2619 	vbt = dev_priv->edp.pps;
2620 
2621 	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
2622 	 * our hw here, which are all in 100usec. */
2623 	spec.t1_t3 = 210 * 10;
2624 	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
2625 	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
2626 	spec.t10 = 500 * 10;
2627 	/* This one is special and actually in units of 100ms, but zero
2628 	 * based in the hw (so we need to add 100 ms). But the sw vbt
2629 	 * table multiplies it with 1000 to make it in units of 100usec,
2630 	 * too. */
2631 	spec.t11_t12 = (510 + 100) * 10;
2632 
2633 	DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2634 		      vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2635 
2636 	/* Use the max of the register settings and vbt. If both are
2637 	 * unset, fall back to the spec limits. */
2638 #define assign_final(field)	final.field = (max(cur.field, vbt.field) == 0 ? \
2639 				       spec.field : \
2640 				       max(cur.field, vbt.field))
2641 	assign_final(t1_t3);
2642 	assign_final(t8);
2643 	assign_final(t9);
2644 	assign_final(t10);
2645 	assign_final(t11_t12);
2646 #undef assign_final
2647 
2648 #define get_delay(field)	(DIV_ROUND_UP(final.field, 10))
2649 	intel_dp->panel_power_up_delay = get_delay(t1_t3);
2650 	intel_dp->backlight_on_delay = get_delay(t8);
2651 	intel_dp->backlight_off_delay = get_delay(t9);
2652 	intel_dp->panel_power_down_delay = get_delay(t10);
2653 	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2654 #undef get_delay
2655 
2656 	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2657 		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2658 		      intel_dp->panel_power_cycle_delay);
2659 
2660 	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2661 		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2662 
2663 	if (out)
2664 		*out = final;
2665 }
2666 
2667 static void
2668 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
2669 					      struct intel_dp *intel_dp,
2670 					      struct edp_power_seq *seq)
2671 {
2672 	struct drm_i915_private *dev_priv = dev->dev_private;
2673 	u32 pp_on, pp_off, pp_div;
2674 
2675 	/* And finally store the new values in the power sequencer. */
2676 	pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
2677 		(seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
2678 	pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
2679 		 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
2680 	/* Compute the divisor for the pp clock, simply match the Bspec
2681 	 * formula. */
2682 	pp_div = ((100 * intel_pch_rawclk(dev))/2 - 1)
2683 			<< PP_REFERENCE_DIVIDER_SHIFT;
2684 	pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
2685 			<< PANEL_POWER_CYCLE_DELAY_SHIFT);
2686 
2687 	/* Haswell doesn't have any port selection bits for the panel
2688 	 * power sequencer any more. */
2689 	if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
2690 		if (is_cpu_edp(intel_dp))
2691 			pp_on |= PANEL_POWER_PORT_DP_A;
2692 		else
2693 			pp_on |= PANEL_POWER_PORT_DP_D;
2694 	}
2695 
2696 	I915_WRITE(PCH_PP_ON_DELAYS, pp_on);
2697 	I915_WRITE(PCH_PP_OFF_DELAYS, pp_off);
2698 	I915_WRITE(PCH_PP_DIVISOR, pp_div);
2699 
2700 	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
2701 		      I915_READ(PCH_PP_ON_DELAYS),
2702 		      I915_READ(PCH_PP_OFF_DELAYS),
2703 		      I915_READ(PCH_PP_DIVISOR));
2704 }
2705 
2706 void
2707 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
2708 			struct intel_connector *intel_connector)
2709 {
2710 	struct drm_connector *connector = &intel_connector->base;
2711 	struct intel_dp *intel_dp = &intel_dig_port->dp;
2712 	struct intel_encoder *intel_encoder = &intel_dig_port->base;
2713 	struct drm_device *dev = intel_encoder->base.dev;
2714 	struct drm_i915_private *dev_priv = dev->dev_private;
2715 	struct drm_display_mode *fixed_mode = NULL;
2716 	struct edp_power_seq power_seq = { 0 };
2717 	enum port port = intel_dig_port->port;
2718 	const char *name = NULL;
2719 	int type;
2720 
2721 	/* Preserve the current hw state. */
2722 	intel_dp->DP = I915_READ(intel_dp->output_reg);
2723 	intel_dp->attached_connector = intel_connector;
2724 
2725 	if (HAS_PCH_SPLIT(dev) && port == PORT_D)
2726 		if (intel_dpd_is_edp(dev))
2727 			intel_dp->is_pch_edp = true;
2728 
2729 	/*
2730 	 * FIXME : We need to initialize built-in panels before external panels.
2731 	 * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
2732 	 */
2733 	if (IS_VALLEYVIEW(dev) && port == PORT_C) {
2734 		type = DRM_MODE_CONNECTOR_eDP;
2735 		intel_encoder->type = INTEL_OUTPUT_EDP;
2736 	} else if (port == PORT_A || is_pch_edp(intel_dp)) {
2737 		type = DRM_MODE_CONNECTOR_eDP;
2738 		intel_encoder->type = INTEL_OUTPUT_EDP;
2739 	} else {
2740 		/* The intel_encoder->type value may be INTEL_OUTPUT_UNKNOWN for
2741 		 * DDI or INTEL_OUTPUT_DISPLAYPORT for the older gens, so don't
2742 		 * rewrite it.
2743 		 */
2744 		type = DRM_MODE_CONNECTOR_DisplayPort;
2745 	}
2746 
2747 	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2748 	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2749 
2750 	connector->polled = DRM_CONNECTOR_POLL_HPD;
2751 	connector->interlace_allowed = true;
2752 	connector->doublescan_allowed = 0;
2753 
2754 	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2755 			  ironlake_panel_vdd_work);
2756 
2757 	intel_connector_attach_encoder(intel_connector, intel_encoder);
2758 #if 0
2759 	drm_sysfs_connector_add(connector);
2760 #endif
2761 
2762 	if (IS_HASWELL(dev))
2763 		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
2764 	else
2765 		intel_connector->get_hw_state = intel_connector_get_hw_state;
2766 
2767 	/* Set up the DDC bus. */
2768 	switch (port) {
2769 	case PORT_A:
2770 		name = "DPDDC-A";
2771 		break;
2772 	case PORT_B:
2773 		dev_priv->hotplug_supported_mask |= DPB_HOTPLUG_INT_STATUS;
2774 		name = "DPDDC-B";
2775 		break;
2776 	case PORT_C:
2777 		dev_priv->hotplug_supported_mask |= DPC_HOTPLUG_INT_STATUS;
2778 		name = "DPDDC-C";
2779 		break;
2780 	case PORT_D:
2781 		dev_priv->hotplug_supported_mask |= DPD_HOTPLUG_INT_STATUS;
2782 		name = "DPDDC-D";
2783 		break;
2784 	default:
2785 		WARN(1, "Invalid port %c\n", port_name(port));
2786 		break;
2787 	}
2788 
2789 	if (is_edp(intel_dp))
2790 		intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2791 
2792 	intel_dp_i2c_init(intel_dp, intel_connector, name);
2793 
2794 	/* Cache DPCD and EDID for edp. */
2795 	if (is_edp(intel_dp)) {
2796 		bool ret;
2797 		struct drm_display_mode *scan;
2798 		struct edid *edid;
2799 
2800 		ironlake_edp_panel_vdd_on(intel_dp);
2801 		ret = intel_dp_get_dpcd(intel_dp);
2802 		ironlake_edp_panel_vdd_off(intel_dp, false);
2803 
2804 		if (ret) {
2805 			if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2806 				dev_priv->no_aux_handshake =
2807 					intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2808 					DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2809 		} else {
2810 			/* if this fails, presume the device is a ghost */
2811 			DRM_INFO("failed to retrieve link info, disabling eDP\n");
2812 			intel_dp_encoder_destroy(&intel_encoder->base);
2813 			intel_dp_destroy(connector);
2814 			return;
2815 		}
2816 
2817 		/* We now know it's not a ghost, init power sequence regs. */
2818 		intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2819 							      &power_seq);
2820 
2821 		ironlake_edp_panel_vdd_on(intel_dp);
2822 		edid = drm_get_edid(connector, intel_dp->adapter);
2823 		if (edid) {
2824 			if (drm_add_edid_modes(connector, edid)) {
2825 				drm_mode_connector_update_edid_property(connector, edid);
2826 				drm_edid_to_eld(connector, edid);
2827 			} else {
2828 				kfree(edid, DRM_MEM_KMS);
2829 				edid = ERR_PTR(-EINVAL);
2830 			}
2831 		} else {
2832 			edid = ERR_PTR(-ENOENT);
2833 		}
2834 		intel_connector->edid = edid;
2835 
2836 		/* prefer fixed mode from EDID if available */
2837 		list_for_each_entry(scan, &connector->probed_modes, head) {
2838 			if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
2839 				fixed_mode = drm_mode_duplicate(dev, scan);
2840 				break;
2841 			}
2842 		}
2843 
2844 		/* fallback to VBT if available for eDP */
2845 		if (!fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
2846 			fixed_mode = drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2847 			if (fixed_mode)
2848 				fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
2849 		}
2850 
2851 		ironlake_edp_panel_vdd_off(intel_dp, false);
2852 	}
2853 
2854 	if (is_edp(intel_dp)) {
2855 		intel_panel_init(&intel_connector->panel, fixed_mode);
2856 		intel_panel_setup_backlight(connector);
2857 	}
2858 
2859 	intel_dp_add_properties(intel_dp, connector);
2860 
2861 	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2862 	 * 0xd.  Failure to do so will result in spurious interrupts being
2863 	 * generated on the port when a cable is not attached.
2864 	 */
2865 	if (IS_G4X(dev) && !IS_GM45(dev)) {
2866 		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2867 		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2868 	}
2869 }
2870 
2871 void
2872 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
2873 {
2874 	struct intel_digital_port *intel_dig_port;
2875 	struct intel_encoder *intel_encoder;
2876 	struct drm_encoder *encoder;
2877 	struct intel_connector *intel_connector;
2878 
2879 	intel_dig_port = kmalloc(sizeof(struct intel_digital_port), DRM_MEM_KMS,
2880 	    M_WAITOK | M_ZERO);
2881 	if (!intel_dig_port)
2882 		return;
2883 
2884 	intel_connector = kmalloc(sizeof(struct intel_connector), DRM_MEM_KMS,
2885 	    M_WAITOK | M_ZERO);
2886 	if (!intel_connector) {
2887 		kfree(intel_dig_port, DRM_MEM_KMS);
2888 		return;
2889 	}
2890 
2891 	intel_encoder = &intel_dig_port->base;
2892 	encoder = &intel_encoder->base;
2893 
2894 	drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2895 			 DRM_MODE_ENCODER_TMDS);
2896 	drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2897 
2898 	intel_encoder->enable = intel_enable_dp;
2899 	intel_encoder->pre_enable = intel_pre_enable_dp;
2900 	intel_encoder->disable = intel_disable_dp;
2901 	intel_encoder->post_disable = intel_post_disable_dp;
2902 	intel_encoder->get_hw_state = intel_dp_get_hw_state;
2903 
2904 	intel_dig_port->port = port;
2905 	intel_dig_port->dp.output_reg = output_reg;
2906 
2907 	intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2908 	intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2909 	intel_encoder->cloneable = false;
2910 	intel_encoder->hot_plug = intel_dp_hot_plug;
2911 
2912 	intel_dp_init_connector(intel_dig_port, intel_connector);
2913 }
2914