xref: /dflybsd-src/sys/dev/drm/i915/intel_dp.c (revision 085476612a07754b8438b2c12f80a7ee1e2a4cc7)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27 
28 #include <linux/i2c.h>
29 #include <linux/export.h>
30 #include <drm/drmP.h>
31 #include <linux/slab.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include "intel_drv.h"
36 #include <drm/i915_drm.h>
37 #include "i915_drv.h"
38 
39 #define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
40 
41 struct dp_link_dpll {
42 	int link_bw;
43 	struct dpll dpll;
44 };
45 
46 static const struct dp_link_dpll gen4_dpll[] = {
47 	{ DP_LINK_BW_1_62,
48 		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
49 	{ DP_LINK_BW_2_7,
50 		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
51 };
52 
53 static const struct dp_link_dpll pch_dpll[] = {
54 	{ DP_LINK_BW_1_62,
55 		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
56 	{ DP_LINK_BW_2_7,
57 		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
58 };
59 
60 static const struct dp_link_dpll vlv_dpll[] = {
61 	{ DP_LINK_BW_1_62,
62 		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
63 	{ DP_LINK_BW_2_7,
64 		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
65 };
66 
67 /*
68  * CHV supports eDP 1.4 that have  more link rates.
69  * Below only provides the fixed rate but exclude variable rate.
70  */
71 static const struct dp_link_dpll chv_dpll[] = {
72 	/*
73 	 * CHV requires to program fractional division for m2.
74 	 * m2 is stored in fixed point format using formula below
75 	 * (m2_int << 22) | m2_fraction
76 	 */
77 	{ DP_LINK_BW_1_62,	/* m2_int = 32, m2_fraction = 1677722 */
78 		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
79 	{ DP_LINK_BW_2_7,	/* m2_int = 27, m2_fraction = 0 */
80 		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
81 	{ DP_LINK_BW_5_4,	/* m2_int = 27, m2_fraction = 0 */
82 		{ .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
83 };
84 
85 /**
86  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
87  * @intel_dp: DP struct
88  *
89  * If a CPU or PCH DP output is attached to an eDP panel, this function
90  * will return true, and false otherwise.
91  */
92 static bool is_edp(struct intel_dp *intel_dp)
93 {
94 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
95 
96 	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
97 }
98 
99 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
100 {
101 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
102 
103 	return intel_dig_port->base.base.dev;
104 }
105 
106 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
107 {
108 	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
109 }
110 
111 static void intel_dp_link_down(struct intel_dp *intel_dp);
112 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
113 
114 static int
115 intel_dp_max_link_bw(struct intel_dp *intel_dp)
116 {
117 	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
118 	struct drm_device *dev = intel_dp->attached_connector->base.dev;
119 
120 	switch (max_link_bw) {
121 	case DP_LINK_BW_1_62:
122 	case DP_LINK_BW_2_7:
123 		break;
124 	case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
125 		if (((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) ||
126 		     INTEL_INFO(dev)->gen >= 8) &&
127 		    intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
128 			max_link_bw = DP_LINK_BW_5_4;
129 		else
130 			max_link_bw = DP_LINK_BW_2_7;
131 		break;
132 	default:
133 		WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
134 		     max_link_bw);
135 		max_link_bw = DP_LINK_BW_1_62;
136 		break;
137 	}
138 	return max_link_bw;
139 }
140 
141 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
142 {
143 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
144 	struct drm_device *dev = intel_dig_port->base.base.dev;
145 	u8 source_max, sink_max;
146 
147 	source_max = 4;
148 	if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
149 	    (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
150 		source_max = 2;
151 
152 	sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
153 
154 	return min(source_max, sink_max);
155 }
156 
157 /*
158  * The units on the numbers in the next two are... bizarre.  Examples will
159  * make it clearer; this one parallels an example in the eDP spec.
160  *
161  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
162  *
163  *     270000 * 1 * 8 / 10 == 216000
164  *
165  * The actual data capacity of that configuration is 2.16Gbit/s, so the
166  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
167  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
168  * 119000.  At 18bpp that's 2142000 kilobits per second.
169  *
170  * Thus the strange-looking division by 10 in intel_dp_link_required, to
171  * get the result in decakilobits instead of kilobits.
172  */
173 
174 static int
175 intel_dp_link_required(int pixel_clock, int bpp)
176 {
177 	return (pixel_clock * bpp + 9) / 10;
178 }
179 
180 static int
181 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
182 {
183 	return (max_link_clock * max_lanes * 8) / 10;
184 }
185 
186 static enum drm_mode_status
187 intel_dp_mode_valid(struct drm_connector *connector,
188 		    struct drm_display_mode *mode)
189 {
190 	struct intel_dp *intel_dp = intel_attached_dp(connector);
191 	struct intel_connector *intel_connector = to_intel_connector(connector);
192 	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
193 	int target_clock = mode->clock;
194 	int max_rate, mode_rate, max_lanes, max_link_clock;
195 
196 	if (is_edp(intel_dp) && fixed_mode) {
197 		if (mode->hdisplay > fixed_mode->hdisplay)
198 			return MODE_PANEL;
199 
200 		if (mode->vdisplay > fixed_mode->vdisplay)
201 			return MODE_PANEL;
202 
203 		target_clock = fixed_mode->clock;
204 	}
205 
206 	max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
207 	max_lanes = intel_dp_max_lane_count(intel_dp);
208 
209 	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
210 	mode_rate = intel_dp_link_required(target_clock, 18);
211 
212 	if (mode_rate > max_rate)
213 		return MODE_CLOCK_HIGH;
214 
215 	if (mode->clock < 10000)
216 		return MODE_CLOCK_LOW;
217 
218 	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
219 		return MODE_H_ILLEGAL;
220 
221 	return MODE_OK;
222 }
223 
224 static uint32_t
225 pack_aux(uint8_t *src, int src_bytes)
226 {
227 	int	i;
228 	uint32_t v = 0;
229 
230 	if (src_bytes > 4)
231 		src_bytes = 4;
232 	for (i = 0; i < src_bytes; i++)
233 		v |= ((uint32_t) src[i]) << ((3-i) * 8);
234 	return v;
235 }
236 
237 static void
238 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
239 {
240 	int i;
241 	if (dst_bytes > 4)
242 		dst_bytes = 4;
243 	for (i = 0; i < dst_bytes; i++)
244 		dst[i] = src >> ((3-i) * 8);
245 }
246 
247 /* hrawclock is 1/4 the FSB frequency */
248 static int
249 intel_hrawclk(struct drm_device *dev)
250 {
251 	struct drm_i915_private *dev_priv = dev->dev_private;
252 	uint32_t clkcfg;
253 
254 	/* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
255 	if (IS_VALLEYVIEW(dev))
256 		return 200;
257 
258 	clkcfg = I915_READ(CLKCFG);
259 	switch (clkcfg & CLKCFG_FSB_MASK) {
260 	case CLKCFG_FSB_400:
261 		return 100;
262 	case CLKCFG_FSB_533:
263 		return 133;
264 	case CLKCFG_FSB_667:
265 		return 166;
266 	case CLKCFG_FSB_800:
267 		return 200;
268 	case CLKCFG_FSB_1067:
269 		return 266;
270 	case CLKCFG_FSB_1333:
271 		return 333;
272 	/* these two are just a guess; one of them might be right */
273 	case CLKCFG_FSB_1600:
274 	case CLKCFG_FSB_1600_ALT:
275 		return 400;
276 	default:
277 		return 133;
278 	}
279 }
280 
281 static void
282 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
283 				    struct intel_dp *intel_dp,
284 				    struct edp_power_seq *out);
285 static void
286 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
287 					      struct intel_dp *intel_dp,
288 					      struct edp_power_seq *out);
289 
290 static enum i915_pipe
291 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
292 {
293 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
294 	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
295 	struct drm_device *dev = intel_dig_port->base.base.dev;
296 	struct drm_i915_private *dev_priv = dev->dev_private;
297 	enum port port = intel_dig_port->port;
298 	enum i915_pipe pipe;
299 
300 	/* modeset should have pipe */
301 	if (crtc)
302 		return to_intel_crtc(crtc)->pipe;
303 
304 	/* init time, try to find a pipe with this port selected */
305 	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
306 		u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
307 			PANEL_PORT_SELECT_MASK;
308 		if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B)
309 			return pipe;
310 		if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C)
311 			return pipe;
312 	}
313 
314 	/* shrug */
315 	return PIPE_A;
316 }
317 
318 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
319 {
320 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
321 
322 	if (HAS_PCH_SPLIT(dev))
323 		return PCH_PP_CONTROL;
324 	else
325 		return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
326 }
327 
328 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
329 {
330 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
331 
332 	if (HAS_PCH_SPLIT(dev))
333 		return PCH_PP_STATUS;
334 	else
335 		return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
336 }
337 
338 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
339    This function only applicable when panel PM state is not to be tracked */
340 #if 0
341 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
342 			      void *unused)
343 {
344 	struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
345 						 edp_notifier);
346 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
347 	struct drm_i915_private *dev_priv = dev->dev_private;
348 	u32 pp_div;
349 	u32 pp_ctrl_reg, pp_div_reg;
350 	enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
351 
352 	if (!is_edp(intel_dp) || code != SYS_RESTART)
353 		return 0;
354 
355 	if (IS_VALLEYVIEW(dev)) {
356 		pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
357 		pp_div_reg  = VLV_PIPE_PP_DIVISOR(pipe);
358 		pp_div = I915_READ(pp_div_reg);
359 		pp_div &= PP_REFERENCE_DIVIDER_MASK;
360 
361 		/* 0x1F write to PP_DIV_REG sets max cycle delay */
362 		I915_WRITE(pp_div_reg, pp_div | 0x1F);
363 		I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
364 		msleep(intel_dp->panel_power_cycle_delay);
365 	}
366 
367 	return 0;
368 }
369 #endif
370 
371 static bool edp_have_panel_power(struct intel_dp *intel_dp)
372 {
373 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
374 	struct drm_i915_private *dev_priv = dev->dev_private;
375 
376 	return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
377 }
378 
379 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
380 {
381 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
382 	struct drm_i915_private *dev_priv = dev->dev_private;
383 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
384 	struct intel_encoder *intel_encoder = &intel_dig_port->base;
385 	enum intel_display_power_domain power_domain;
386 
387 	power_domain = intel_display_port_power_domain(intel_encoder);
388 	return intel_display_power_enabled(dev_priv, power_domain) &&
389 	       (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
390 }
391 
392 static void
393 intel_dp_check_edp(struct intel_dp *intel_dp)
394 {
395 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
396 	struct drm_i915_private *dev_priv = dev->dev_private;
397 
398 	if (!is_edp(intel_dp))
399 		return;
400 
401 	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
402 		WARN(1, "eDP powered off while attempting aux channel communication.\n");
403 		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
404 			      I915_READ(_pp_stat_reg(intel_dp)),
405 			      I915_READ(_pp_ctrl_reg(intel_dp)));
406 	}
407 }
408 
409 static uint32_t
410 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
411 {
412 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
413 	struct drm_device *dev = intel_dig_port->base.base.dev;
414 	struct drm_i915_private *dev_priv = dev->dev_private;
415 	uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
416 	uint32_t status;
417 	bool done;
418 
419 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
420 	if (has_aux_irq)
421 		done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
422 					  msecs_to_jiffies_timeout(10));
423 	else
424 		done = wait_for_atomic(C, 10) == 0;
425 	if (!done)
426 		DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
427 			  has_aux_irq);
428 #undef C
429 
430 	return status;
431 }
432 
433 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
434 {
435 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
436 	struct drm_device *dev = intel_dig_port->base.base.dev;
437 
438 	/*
439 	 * The clock divider is based off the hrawclk, and would like to run at
440 	 * 2MHz.  So, take the hrawclk value and divide by 2 and use that
441 	 */
442 	return index ? 0 : intel_hrawclk(dev) / 2;
443 }
444 
445 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
446 {
447 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
448 	struct drm_device *dev = intel_dig_port->base.base.dev;
449 
450 	if (index)
451 		return 0;
452 
453 	if (intel_dig_port->port == PORT_A) {
454 		if (IS_GEN6(dev) || IS_GEN7(dev))
455 			return 200; /* SNB & IVB eDP input clock at 400Mhz */
456 		else
457 			return 225; /* eDP input clock at 450Mhz */
458 	} else {
459 		return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
460 	}
461 }
462 
463 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
464 {
465 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
466 	struct drm_device *dev = intel_dig_port->base.base.dev;
467 	struct drm_i915_private *dev_priv = dev->dev_private;
468 
469 	if (intel_dig_port->port == PORT_A) {
470 		if (index)
471 			return 0;
472 		return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
473 	} else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
474 		/* Workaround for non-ULT HSW */
475 		switch (index) {
476 		case 0: return 63;
477 		case 1: return 72;
478 		default: return 0;
479 		}
480 	} else  {
481 		return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
482 	}
483 }
484 
485 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
486 {
487 	return index ? 0 : 100;
488 }
489 
490 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
491 				      bool has_aux_irq,
492 				      int send_bytes,
493 				      uint32_t aux_clock_divider)
494 {
495 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
496 	struct drm_device *dev = intel_dig_port->base.base.dev;
497 	uint32_t precharge, timeout;
498 
499 	if (IS_GEN6(dev))
500 		precharge = 3;
501 	else
502 		precharge = 5;
503 
504 	if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
505 		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
506 	else
507 		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
508 
509 	return DP_AUX_CH_CTL_SEND_BUSY |
510 	       DP_AUX_CH_CTL_DONE |
511 	       (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
512 	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
513 	       timeout |
514 	       DP_AUX_CH_CTL_RECEIVE_ERROR |
515 	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
516 	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
517 	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
518 }
519 
520 static int
521 intel_dp_aux_ch(struct intel_dp *intel_dp,
522 		uint8_t *send, int send_bytes,
523 		uint8_t *recv, int recv_size)
524 {
525 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
526 	struct drm_device *dev = intel_dig_port->base.base.dev;
527 	struct drm_i915_private *dev_priv = dev->dev_private;
528 	uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
529 	uint32_t ch_data = ch_ctl + 4;
530 	uint32_t aux_clock_divider;
531 	int i, ret, recv_bytes;
532 	uint32_t status;
533 	int try, clock = 0;
534 	bool has_aux_irq = HAS_AUX_IRQ(dev);
535 
536 	/* dp aux is extremely sensitive to irq latency, hence request the
537 	 * lowest possible wakeup latency and so prevent the cpu from going into
538 	 * deep sleep states.
539 	 */
540 	pm_qos_update_request(&dev_priv->pm_qos, 0);
541 
542 	intel_dp_check_edp(intel_dp);
543 
544 	intel_aux_display_runtime_get(dev_priv);
545 
546 	/* Try to wait for any previous AUX channel activity */
547 	for (try = 0; try < 3; try++) {
548 		status = I915_READ_NOTRACE(ch_ctl);
549 		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
550 			break;
551 		msleep(1);
552 	}
553 
554 	if (try == 3) {
555 		WARN(1, "dp_aux_ch not started status 0x%08x\n",
556 		     I915_READ(ch_ctl));
557 		ret = -EBUSY;
558 		goto out;
559 	}
560 
561 	/* Only 5 data registers! */
562 	if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
563 		ret = -E2BIG;
564 		goto out;
565 	}
566 
567 	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
568 		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
569 							  has_aux_irq,
570 							  send_bytes,
571 							  aux_clock_divider);
572 
573 		/* Must try at least 3 times according to DP spec */
574 		for (try = 0; try < 5; try++) {
575 			/* Load the send data into the aux channel data registers */
576 			for (i = 0; i < send_bytes; i += 4)
577 				I915_WRITE(ch_data + i,
578 					   pack_aux(send + i, send_bytes - i));
579 
580 			/* Send the command and wait for it to complete */
581 			I915_WRITE(ch_ctl, send_ctl);
582 
583 			status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
584 
585 			/* Clear done status and any errors */
586 			I915_WRITE(ch_ctl,
587 				   status |
588 				   DP_AUX_CH_CTL_DONE |
589 				   DP_AUX_CH_CTL_TIME_OUT_ERROR |
590 				   DP_AUX_CH_CTL_RECEIVE_ERROR);
591 
592 			if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
593 				      DP_AUX_CH_CTL_RECEIVE_ERROR))
594 				continue;
595 			if (status & DP_AUX_CH_CTL_DONE)
596 				break;
597 		}
598 		if (status & DP_AUX_CH_CTL_DONE)
599 			break;
600 	}
601 
602 	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
603 		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
604 		ret = -EBUSY;
605 		goto out;
606 	}
607 
608 	/* Check for timeout or receive error.
609 	 * Timeouts occur when the sink is not connected
610 	 */
611 	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
612 		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
613 		ret = -EIO;
614 		goto out;
615 	}
616 
617 	/* Timeouts occur when the device isn't connected, so they're
618 	 * "normal" -- don't fill the kernel log with these */
619 	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
620 		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
621 		ret = -ETIMEDOUT;
622 		goto out;
623 	}
624 
625 	/* Unload any bytes sent back from the other side */
626 	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
627 		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
628 	if (recv_bytes > recv_size)
629 		recv_bytes = recv_size;
630 
631 	for (i = 0; i < recv_bytes; i += 4)
632 		unpack_aux(I915_READ(ch_data + i),
633 			   recv + i, recv_bytes - i);
634 
635 	ret = recv_bytes;
636 out:
637 	pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
638 	intel_aux_display_runtime_put(dev_priv);
639 
640 	return ret;
641 }
642 
643 /* Write data to the aux channel in native mode */
644 static int
645 intel_dp_aux_native_write(struct intel_dp *intel_dp,
646 			  uint16_t address, uint8_t *send, int send_bytes)
647 {
648 	int ret;
649 	uint8_t	msg[20];
650 	int msg_bytes;
651 	uint8_t	ack;
652 	int retry;
653 
654 	if (WARN_ON(send_bytes > 16))
655 		return -E2BIG;
656 
657 	intel_dp_check_edp(intel_dp);
658 	msg[0] = DP_AUX_NATIVE_WRITE << 4;
659 	msg[1] = address >> 8;
660 	msg[2] = address & 0xff;
661 	msg[3] = send_bytes - 1;
662 	memcpy(&msg[4], send, send_bytes);
663 	msg_bytes = send_bytes + 4;
664 	for (retry = 0; retry < 7; retry++) {
665 		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
666 		if (ret < 0)
667 			return ret;
668 		ack >>= 4;
669 		if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK)
670 			return send_bytes;
671 		else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
672 			usleep_range(400, 500);
673 		else
674 			return -EIO;
675 	}
676 
677 	DRM_ERROR("too many retries, giving up\n");
678 	return -EIO;
679 }
680 
681 /* Write a single byte to the aux channel in native mode */
682 static int
683 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
684 			    uint16_t address, uint8_t byte)
685 {
686 	return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
687 }
688 
689 /* read bytes from a native aux channel */
690 static int
691 intel_dp_aux_native_read(struct intel_dp *intel_dp,
692 			 uint16_t address, uint8_t *recv, int recv_bytes)
693 {
694 	uint8_t msg[4];
695 	int msg_bytes;
696 	uint8_t reply[20];
697 	int reply_bytes;
698 	uint8_t ack;
699 	int ret;
700 	int retry;
701 
702 	if (WARN_ON(recv_bytes > 19))
703 		return -E2BIG;
704 
705 	intel_dp_check_edp(intel_dp);
706 	msg[0] = DP_AUX_NATIVE_READ << 4;
707 	msg[1] = address >> 8;
708 	msg[2] = address & 0xff;
709 	msg[3] = recv_bytes - 1;
710 
711 	msg_bytes = 4;
712 	reply_bytes = recv_bytes + 1;
713 
714 	for (retry = 0; retry < 7; retry++) {
715 		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
716 				      reply, reply_bytes);
717 		if (ret == 0)
718 			return -EPROTO;
719 		if (ret < 0)
720 			return ret;
721 		ack = reply[0] >> 4;
722 		if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK) {
723 			memcpy(recv, reply + 1, ret - 1);
724 			return ret - 1;
725 		}
726 		else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
727 			usleep_range(400, 500);
728 		else
729 			return -EIO;
730 	}
731 
732 	DRM_ERROR("too many retries, giving up\n");
733 	return -EIO;
734 }
735 
736 static int
737 intel_dp_i2c_aux_ch(struct device *adapter, int mode,
738 		    uint8_t write_byte, uint8_t *read_byte)
739 {
740 	struct i2c_algo_dp_aux_data *data = device_get_softc(adapter);
741 	struct intel_dp *intel_dp = data->priv;
742 	uint16_t address = data->address;
743 	uint8_t msg[5];
744 	uint8_t reply[2];
745 	unsigned retry;
746 	int msg_bytes;
747 	int reply_bytes;
748 	int ret;
749 
750 	intel_edp_panel_vdd_on(intel_dp);
751 	intel_dp_check_edp(intel_dp);
752 	/* Set up the command byte */
753 	if (mode & MODE_I2C_READ)
754 		msg[0] = DP_AUX_I2C_READ << 4;
755 	else
756 		msg[0] = DP_AUX_I2C_WRITE << 4;
757 
758 	if (!(mode & MODE_I2C_STOP))
759 		msg[0] |= DP_AUX_I2C_MOT << 4;
760 
761 	msg[1] = address >> 8;
762 	msg[2] = address;
763 
764 	switch (mode) {
765 	case MODE_I2C_WRITE:
766 		msg[3] = 0;
767 		msg[4] = write_byte;
768 		msg_bytes = 5;
769 		reply_bytes = 1;
770 		break;
771 	case MODE_I2C_READ:
772 		msg[3] = 0;
773 		msg_bytes = 4;
774 		reply_bytes = 2;
775 		break;
776 	default:
777 		msg_bytes = 3;
778 		reply_bytes = 1;
779 		break;
780 	}
781 
782 	/*
783 	 * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device is
784 	 * required to retry at least seven times upon receiving AUX_DEFER
785 	 * before giving up the AUX transaction.
786 	 */
787 	for (retry = 0; retry < 7; retry++) {
788 		ret = intel_dp_aux_ch(intel_dp,
789 				      msg, msg_bytes,
790 				      reply, reply_bytes);
791 		if (ret < 0) {
792 			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
793 			goto out;
794 		}
795 
796 		switch ((reply[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK) {
797 		case DP_AUX_NATIVE_REPLY_ACK:
798 			/* I2C-over-AUX Reply field is only valid
799 			 * when paired with AUX ACK.
800 			 */
801 			break;
802 		case DP_AUX_NATIVE_REPLY_NACK:
803 			DRM_DEBUG_KMS("aux_ch native nack\n");
804 			ret = -EREMOTEIO;
805 			goto out;
806 		case DP_AUX_NATIVE_REPLY_DEFER:
807 			/*
808 			 * For now, just give more slack to branch devices. We
809 			 * could check the DPCD for I2C bit rate capabilities,
810 			 * and if available, adjust the interval. We could also
811 			 * be more careful with DP-to-Legacy adapters where a
812 			 * long legacy cable may force very low I2C bit rates.
813 			 */
814 			if (intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
815 			    DP_DWN_STRM_PORT_PRESENT)
816 				usleep_range(500, 600);
817 			else
818 				usleep_range(300, 400);
819 			continue;
820 		default:
821 			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
822 				  reply[0]);
823 			ret = -EREMOTEIO;
824 			goto out;
825 		}
826 
827 		switch ((reply[0] >> 4) & DP_AUX_I2C_REPLY_MASK) {
828 		case DP_AUX_I2C_REPLY_ACK:
829 			if (mode == MODE_I2C_READ) {
830 				*read_byte = reply[1];
831 			}
832 			ret = 0;	/* reply_bytes - 1 */
833 			goto out;
834 		case DP_AUX_I2C_REPLY_NACK:
835 			DRM_DEBUG_KMS("aux_i2c nack\n");
836 			ret = -EREMOTEIO;
837 			goto out;
838 		case DP_AUX_I2C_REPLY_DEFER:
839 			DRM_DEBUG_KMS("aux_i2c defer\n");
840 			udelay(100);
841 			break;
842 		default:
843 			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
844 			ret = -EREMOTEIO;
845 			goto out;
846 		}
847 	}
848 
849 	DRM_ERROR("too many retries, giving up\n");
850 	ret = -EREMOTEIO;
851 
852 out:
853 	return ret;
854 }
855 
856 static void
857 intel_dp_connector_unregister(struct intel_connector *intel_connector)
858 {
859 	intel_connector_unregister(intel_connector);
860 }
861 
862 static int
863 intel_dp_i2c_init(struct intel_dp *intel_dp,
864 		  struct intel_connector *intel_connector, const char *name)
865 {
866 	int	ret;
867 
868 	DRM_DEBUG_KMS("i2c_init %s\n", name);
869 #if 0
870 	memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
871 	intel_dp->adapter.owner = THIS_MODULE;
872 	intel_dp->adapter.class = I2C_CLASS_DDC;
873 	strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
874 	intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
875 	intel_dp->adapter.algo_data = &intel_dp->algo;
876 	intel_dp->adapter.dev.parent = intel_connector->base.dev->dev;
877 
878 	ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
879 	if (ret < 0)
880 		return ret;
881 
882 	ret = sysfs_create_link(&intel_connector->base.kdev->kobj,
883 				&intel_dp->adapter.dev.kobj,
884 				intel_dp->adapter.dev.kobj.name);
885 #endif
886 	ret = iic_dp_aux_add_bus(intel_connector->base.dev->dev, name,
887 	    intel_dp_i2c_aux_ch, intel_dp, &intel_dp->dp_iic_bus,
888 	    &intel_dp->adapter);
889 
890 	return ret;
891 }
892 
893 static void
894 intel_dp_set_clock(struct intel_encoder *encoder,
895 		   struct intel_crtc_config *pipe_config, int link_bw)
896 {
897 	struct drm_device *dev = encoder->base.dev;
898 	const struct dp_link_dpll *divisor = NULL;
899 	int i, count = 0;
900 
901 	if (IS_G4X(dev)) {
902 		divisor = gen4_dpll;
903 		count = ARRAY_SIZE(gen4_dpll);
904 	} else if (IS_HASWELL(dev)) {
905 		/* Haswell has special-purpose DP DDI clocks. */
906 	} else if (HAS_PCH_SPLIT(dev)) {
907 		divisor = pch_dpll;
908 		count = ARRAY_SIZE(pch_dpll);
909 	} else if (IS_CHERRYVIEW(dev)) {
910 		divisor = chv_dpll;
911 		count = ARRAY_SIZE(chv_dpll);
912 	} else if (IS_VALLEYVIEW(dev)) {
913 		divisor = vlv_dpll;
914 		count = ARRAY_SIZE(vlv_dpll);
915 	}
916 
917 	if (divisor && count) {
918 		for (i = 0; i < count; i++) {
919 			if (link_bw == divisor[i].link_bw) {
920 				pipe_config->dpll = divisor[i].dpll;
921 				pipe_config->clock_set = true;
922 				break;
923 			}
924 		}
925 	}
926 }
927 
928 static void
929 intel_dp_set_m2_n2(struct intel_crtc *crtc, struct intel_link_m_n *m_n)
930 {
931 	struct drm_device *dev = crtc->base.dev;
932 	struct drm_i915_private *dev_priv = dev->dev_private;
933 	enum transcoder transcoder = crtc->config.cpu_transcoder;
934 
935 	I915_WRITE(PIPE_DATA_M2(transcoder),
936 		TU_SIZE(m_n->tu) | m_n->gmch_m);
937 	I915_WRITE(PIPE_DATA_N2(transcoder), m_n->gmch_n);
938 	I915_WRITE(PIPE_LINK_M2(transcoder), m_n->link_m);
939 	I915_WRITE(PIPE_LINK_N2(transcoder), m_n->link_n);
940 }
941 
942 bool
943 intel_dp_compute_config(struct intel_encoder *encoder,
944 			struct intel_crtc_config *pipe_config)
945 {
946 	struct drm_device *dev = encoder->base.dev;
947 	struct drm_i915_private *dev_priv = dev->dev_private;
948 	struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
949 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
950 	enum port port = dp_to_dig_port(intel_dp)->port;
951 	struct intel_crtc *intel_crtc = encoder->new_crtc;
952 	struct intel_connector *intel_connector = intel_dp->attached_connector;
953 	int lane_count, clock;
954 	int min_lane_count = 1;
955 	int max_lane_count = intel_dp_max_lane_count(intel_dp);
956 	/* Conveniently, the link BW constants become indices with a shift...*/
957 	int min_clock = 0;
958 	int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
959 	int bpp, mode_rate;
960 	static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
961 	int link_avail, link_clock;
962 
963 	if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
964 		pipe_config->has_pch_encoder = true;
965 
966 	pipe_config->has_dp_encoder = true;
967 	pipe_config->has_audio = intel_dp->has_audio;
968 
969 	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
970 		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
971 				       adjusted_mode);
972 		if (!HAS_PCH_SPLIT(dev))
973 			intel_gmch_panel_fitting(intel_crtc, pipe_config,
974 						 intel_connector->panel.fitting_mode);
975 		else
976 			intel_pch_panel_fitting(intel_crtc, pipe_config,
977 						intel_connector->panel.fitting_mode);
978 	}
979 
980 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
981 		return false;
982 
983 	DRM_DEBUG_KMS("DP link computation with max lane count %i "
984 		      "max bw %02x pixel clock %iKHz\n",
985 		      max_lane_count, bws[max_clock],
986 		      adjusted_mode->crtc_clock);
987 
988 	/* Walk through all bpp values. Luckily they're all nicely spaced with 2
989 	 * bpc in between. */
990 	bpp = pipe_config->pipe_bpp;
991 	if (is_edp(intel_dp)) {
992 		if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
993 			DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
994 				      dev_priv->vbt.edp_bpp);
995 			bpp = dev_priv->vbt.edp_bpp;
996 		}
997 
998 		if (IS_BROADWELL(dev)) {
999 			/* Yes, it's an ugly hack. */
1000 			min_lane_count = max_lane_count;
1001 			DRM_DEBUG_KMS("forcing lane count to max (%u) on BDW\n",
1002 				      min_lane_count);
1003 		} else if (dev_priv->vbt.edp_lanes) {
1004 			min_lane_count = min(dev_priv->vbt.edp_lanes,
1005 					     max_lane_count);
1006 			DRM_DEBUG_KMS("using min %u lanes per VBT\n",
1007 				      min_lane_count);
1008 		}
1009 
1010 		if (dev_priv->vbt.edp_rate) {
1011 			min_clock = min(dev_priv->vbt.edp_rate >> 3, max_clock);
1012 			DRM_DEBUG_KMS("using min %02x link bw per VBT\n",
1013 				      bws[min_clock]);
1014 		}
1015 	}
1016 
1017 	for (; bpp >= 6*3; bpp -= 2*3) {
1018 		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1019 						   bpp);
1020 
1021 		for (clock = min_clock; clock <= max_clock; clock++) {
1022 			for (lane_count = min_lane_count; lane_count <= max_lane_count; lane_count <<= 1) {
1023 				link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
1024 				link_avail = intel_dp_max_data_rate(link_clock,
1025 								    lane_count);
1026 
1027 				if (mode_rate <= link_avail) {
1028 					goto found;
1029 				}
1030 			}
1031 		}
1032 	}
1033 
1034 	return false;
1035 
1036 found:
1037 	if (intel_dp->color_range_auto) {
1038 		/*
1039 		 * See:
1040 		 * CEA-861-E - 5.1 Default Encoding Parameters
1041 		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1042 		 */
1043 		if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
1044 			intel_dp->color_range = DP_COLOR_RANGE_16_235;
1045 		else
1046 			intel_dp->color_range = 0;
1047 	}
1048 
1049 	if (intel_dp->color_range)
1050 		pipe_config->limited_color_range = true;
1051 
1052 	intel_dp->link_bw = bws[clock];
1053 	intel_dp->lane_count = lane_count;
1054 	pipe_config->pipe_bpp = bpp;
1055 	pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
1056 
1057 	DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
1058 		      intel_dp->link_bw, intel_dp->lane_count,
1059 		      pipe_config->port_clock, bpp);
1060 	DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1061 		      mode_rate, link_avail);
1062 
1063 	intel_link_compute_m_n(bpp, lane_count,
1064 			       adjusted_mode->crtc_clock,
1065 			       pipe_config->port_clock,
1066 			       &pipe_config->dp_m_n);
1067 
1068 	if (intel_connector->panel.downclock_mode != NULL &&
1069 		intel_dp->drrs_state.type == SEAMLESS_DRRS_SUPPORT) {
1070 			intel_link_compute_m_n(bpp, lane_count,
1071 				intel_connector->panel.downclock_mode->clock,
1072 				pipe_config->port_clock,
1073 				&pipe_config->dp_m2_n2);
1074 	}
1075 
1076 	intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
1077 
1078 	return true;
1079 }
1080 
1081 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
1082 {
1083 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1084 	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1085 	struct drm_device *dev = crtc->base.dev;
1086 	struct drm_i915_private *dev_priv = dev->dev_private;
1087 	u32 dpa_ctl;
1088 
1089 	DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
1090 	dpa_ctl = I915_READ(DP_A);
1091 	dpa_ctl &= ~DP_PLL_FREQ_MASK;
1092 
1093 	if (crtc->config.port_clock == 162000) {
1094 		/* For a long time we've carried around a ILK-DevA w/a for the
1095 		 * 160MHz clock. If we're really unlucky, it's still required.
1096 		 */
1097 		DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
1098 		dpa_ctl |= DP_PLL_FREQ_160MHZ;
1099 		intel_dp->DP |= DP_PLL_FREQ_160MHZ;
1100 	} else {
1101 		dpa_ctl |= DP_PLL_FREQ_270MHZ;
1102 		intel_dp->DP |= DP_PLL_FREQ_270MHZ;
1103 	}
1104 
1105 	I915_WRITE(DP_A, dpa_ctl);
1106 
1107 	POSTING_READ(DP_A);
1108 	udelay(500);
1109 }
1110 
1111 static void intel_dp_prepare(struct intel_encoder *encoder)
1112 {
1113 	struct drm_device *dev = encoder->base.dev;
1114 	struct drm_i915_private *dev_priv = dev->dev_private;
1115 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1116 	enum port port = dp_to_dig_port(intel_dp)->port;
1117 	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1118 	struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
1119 
1120 	/*
1121 	 * There are four kinds of DP registers:
1122 	 *
1123 	 * 	IBX PCH
1124 	 * 	SNB CPU
1125 	 *	IVB CPU
1126 	 * 	CPT PCH
1127 	 *
1128 	 * IBX PCH and CPU are the same for almost everything,
1129 	 * except that the CPU DP PLL is configured in this
1130 	 * register
1131 	 *
1132 	 * CPT PCH is quite different, having many bits moved
1133 	 * to the TRANS_DP_CTL register instead. That
1134 	 * configuration happens (oddly) in ironlake_pch_enable
1135 	 */
1136 
1137 	/* Preserve the BIOS-computed detected bit. This is
1138 	 * supposed to be read-only.
1139 	 */
1140 	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1141 
1142 	/* Handle DP bits in common between all three register formats */
1143 	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1144 	intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
1145 
1146 	if (crtc->config.has_audio) {
1147 		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
1148 				 pipe_name(crtc->pipe));
1149 		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1150 		intel_write_eld(&encoder->base, adjusted_mode);
1151 	}
1152 
1153 	/* Split out the IBX/CPU vs CPT settings */
1154 
1155 	if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1156 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1157 			intel_dp->DP |= DP_SYNC_HS_HIGH;
1158 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1159 			intel_dp->DP |= DP_SYNC_VS_HIGH;
1160 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1161 
1162 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1163 			intel_dp->DP |= DP_ENHANCED_FRAMING;
1164 
1165 		intel_dp->DP |= crtc->pipe << 29;
1166 	} else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1167 		if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
1168 			intel_dp->DP |= intel_dp->color_range;
1169 
1170 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1171 			intel_dp->DP |= DP_SYNC_HS_HIGH;
1172 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1173 			intel_dp->DP |= DP_SYNC_VS_HIGH;
1174 		intel_dp->DP |= DP_LINK_TRAIN_OFF;
1175 
1176 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1177 			intel_dp->DP |= DP_ENHANCED_FRAMING;
1178 
1179 		if (!IS_CHERRYVIEW(dev)) {
1180 			if (crtc->pipe == 1)
1181 				intel_dp->DP |= DP_PIPEB_SELECT;
1182 		} else {
1183 			intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1184 		}
1185 	} else {
1186 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1187 	}
1188 }
1189 
1190 #define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1191 #define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1192 
1193 #define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
1194 #define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
1195 
1196 #define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1197 #define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1198 
1199 static void wait_panel_status(struct intel_dp *intel_dp,
1200 				       u32 mask,
1201 				       u32 value)
1202 {
1203 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1204 	struct drm_i915_private *dev_priv = dev->dev_private;
1205 	u32 pp_stat_reg, pp_ctrl_reg;
1206 
1207 	pp_stat_reg = _pp_stat_reg(intel_dp);
1208 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1209 
1210 	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1211 			mask, value,
1212 			I915_READ(pp_stat_reg),
1213 			I915_READ(pp_ctrl_reg));
1214 
1215 	if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1216 		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1217 				I915_READ(pp_stat_reg),
1218 				I915_READ(pp_ctrl_reg));
1219 	}
1220 
1221 	DRM_DEBUG_KMS("Wait complete\n");
1222 }
1223 
1224 static void wait_panel_on(struct intel_dp *intel_dp)
1225 {
1226 	DRM_DEBUG_KMS("Wait for panel power on\n");
1227 	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1228 }
1229 
1230 static void wait_panel_off(struct intel_dp *intel_dp)
1231 {
1232 	DRM_DEBUG_KMS("Wait for panel power off time\n");
1233 	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1234 }
1235 
1236 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1237 {
1238 	DRM_DEBUG_KMS("Wait for panel power cycle\n");
1239 
1240 	/* When we disable the VDD override bit last we have to do the manual
1241 	 * wait. */
1242 	wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1243 				       intel_dp->panel_power_cycle_delay);
1244 
1245 	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1246 }
1247 
1248 static void wait_backlight_on(struct intel_dp *intel_dp)
1249 {
1250 	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1251 				       intel_dp->backlight_on_delay);
1252 }
1253 
1254 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1255 {
1256 	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1257 				       intel_dp->backlight_off_delay);
1258 }
1259 
1260 /* Read the current pp_control value, unlocking the register if it
1261  * is locked
1262  */
1263 
1264 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1265 {
1266 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1267 	struct drm_i915_private *dev_priv = dev->dev_private;
1268 	u32 control;
1269 
1270 	control = I915_READ(_pp_ctrl_reg(intel_dp));
1271 	control &= ~PANEL_UNLOCK_MASK;
1272 	control |= PANEL_UNLOCK_REGS;
1273 	return control;
1274 }
1275 
1276 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1277 {
1278 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1279 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1280 	struct intel_encoder *intel_encoder = &intel_dig_port->base;
1281 	struct drm_i915_private *dev_priv = dev->dev_private;
1282 	enum intel_display_power_domain power_domain;
1283 	u32 pp;
1284 	u32 pp_stat_reg, pp_ctrl_reg;
1285 
1286 	if (!is_edp(intel_dp))
1287 		return;
1288 
1289 	WARN(intel_dp->want_panel_vdd,
1290 	     "eDP VDD already requested on\n");
1291 
1292 	intel_dp->want_panel_vdd = true;
1293 
1294 	if (edp_have_panel_vdd(intel_dp))
1295 		return;
1296 
1297 	power_domain = intel_display_port_power_domain(intel_encoder);
1298 	intel_display_power_get(dev_priv, power_domain);
1299 
1300 	DRM_DEBUG_KMS("Turning eDP VDD on\n");
1301 
1302 	if (!edp_have_panel_power(intel_dp))
1303 		wait_panel_power_cycle(intel_dp);
1304 
1305 	pp = ironlake_get_pp_control(intel_dp);
1306 	pp |= EDP_FORCE_VDD;
1307 
1308 	pp_stat_reg = _pp_stat_reg(intel_dp);
1309 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1310 
1311 	I915_WRITE(pp_ctrl_reg, pp);
1312 	POSTING_READ(pp_ctrl_reg);
1313 	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1314 			I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1315 	/*
1316 	 * If the panel wasn't on, delay before accessing aux channel
1317 	 */
1318 	if (!edp_have_panel_power(intel_dp)) {
1319 		DRM_DEBUG_KMS("eDP was not running\n");
1320 		msleep(intel_dp->panel_power_up_delay);
1321 	}
1322 }
1323 
1324 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1325 {
1326 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1327 	struct drm_i915_private *dev_priv = dev->dev_private;
1328 	u32 pp;
1329 	u32 pp_stat_reg, pp_ctrl_reg;
1330 
1331 	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
1332 
1333 	if (!intel_dp->want_panel_vdd && edp_have_panel_vdd(intel_dp)) {
1334 		struct intel_digital_port *intel_dig_port =
1335 						dp_to_dig_port(intel_dp);
1336 		struct intel_encoder *intel_encoder = &intel_dig_port->base;
1337 		enum intel_display_power_domain power_domain;
1338 
1339 		DRM_DEBUG_KMS("Turning eDP VDD off\n");
1340 
1341 		pp = ironlake_get_pp_control(intel_dp);
1342 		pp &= ~EDP_FORCE_VDD;
1343 
1344 		pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1345 		pp_stat_reg = _pp_stat_reg(intel_dp);
1346 
1347 		I915_WRITE(pp_ctrl_reg, pp);
1348 		POSTING_READ(pp_ctrl_reg);
1349 
1350 		/* Make sure sequencer is idle before allowing subsequent activity */
1351 		DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1352 		I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1353 
1354 		if ((pp & POWER_TARGET_ON) == 0)
1355 			intel_dp->last_power_cycle = jiffies;
1356 
1357 		power_domain = intel_display_port_power_domain(intel_encoder);
1358 		intel_display_power_put(dev_priv, power_domain);
1359 	}
1360 }
1361 
1362 static void edp_panel_vdd_work(struct work_struct *__work)
1363 {
1364 	struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1365 						 struct intel_dp, panel_vdd_work);
1366 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1367 
1368 	drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
1369 	edp_panel_vdd_off_sync(intel_dp);
1370 	drm_modeset_unlock(&dev->mode_config.connection_mutex);
1371 }
1372 
1373 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1374 {
1375 	if (!is_edp(intel_dp))
1376 		return;
1377 
1378 	WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1379 
1380 	intel_dp->want_panel_vdd = false;
1381 
1382 	if (sync) {
1383 		edp_panel_vdd_off_sync(intel_dp);
1384 	} else {
1385 		/*
1386 		 * Queue the timer to fire a long
1387 		 * time from now (relative to the power down delay)
1388 		 * to keep the panel power up across a sequence of operations
1389 		 */
1390 		schedule_delayed_work(&intel_dp->panel_vdd_work,
1391 				      msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1392 	}
1393 }
1394 
1395 void intel_edp_panel_on(struct intel_dp *intel_dp)
1396 {
1397 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1398 	struct drm_i915_private *dev_priv = dev->dev_private;
1399 	u32 pp;
1400 	u32 pp_ctrl_reg;
1401 
1402 	if (!is_edp(intel_dp))
1403 		return;
1404 
1405 	DRM_DEBUG_KMS("Turn eDP power on\n");
1406 
1407 	if (edp_have_panel_power(intel_dp)) {
1408 		DRM_DEBUG_KMS("eDP power already on\n");
1409 		return;
1410 	}
1411 
1412 	wait_panel_power_cycle(intel_dp);
1413 
1414 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1415 	pp = ironlake_get_pp_control(intel_dp);
1416 	if (IS_GEN5(dev)) {
1417 		/* ILK workaround: disable reset around power sequence */
1418 		pp &= ~PANEL_POWER_RESET;
1419 		I915_WRITE(pp_ctrl_reg, pp);
1420 		POSTING_READ(pp_ctrl_reg);
1421 	}
1422 
1423 	pp |= POWER_TARGET_ON;
1424 	if (!IS_GEN5(dev))
1425 		pp |= PANEL_POWER_RESET;
1426 
1427 	I915_WRITE(pp_ctrl_reg, pp);
1428 	POSTING_READ(pp_ctrl_reg);
1429 
1430 	wait_panel_on(intel_dp);
1431 	intel_dp->last_power_on = jiffies;
1432 
1433 	if (IS_GEN5(dev)) {
1434 		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1435 		I915_WRITE(pp_ctrl_reg, pp);
1436 		POSTING_READ(pp_ctrl_reg);
1437 	}
1438 }
1439 
1440 void intel_edp_panel_off(struct intel_dp *intel_dp)
1441 {
1442 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1443 	struct intel_encoder *intel_encoder = &intel_dig_port->base;
1444 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1445 	struct drm_i915_private *dev_priv = dev->dev_private;
1446 	enum intel_display_power_domain power_domain;
1447 	u32 pp;
1448 	u32 pp_ctrl_reg;
1449 
1450 	if (!is_edp(intel_dp))
1451 		return;
1452 
1453 	DRM_DEBUG_KMS("Turn eDP power off\n");
1454 
1455 	edp_wait_backlight_off(intel_dp);
1456 
1457 	WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1458 
1459 	pp = ironlake_get_pp_control(intel_dp);
1460 	/* We need to switch off panel power _and_ force vdd, for otherwise some
1461 	 * panels get very unhappy and cease to work. */
1462 	pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1463 		EDP_BLC_ENABLE);
1464 
1465 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1466 
1467 	intel_dp->want_panel_vdd = false;
1468 
1469 	I915_WRITE(pp_ctrl_reg, pp);
1470 	POSTING_READ(pp_ctrl_reg);
1471 
1472 	intel_dp->last_power_cycle = jiffies;
1473 	wait_panel_off(intel_dp);
1474 
1475 	/* We got a reference when we enabled the VDD. */
1476 	power_domain = intel_display_port_power_domain(intel_encoder);
1477 	intel_display_power_put(dev_priv, power_domain);
1478 }
1479 
1480 void intel_edp_backlight_on(struct intel_dp *intel_dp)
1481 {
1482 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1483 	struct drm_device *dev = intel_dig_port->base.base.dev;
1484 	struct drm_i915_private *dev_priv = dev->dev_private;
1485 	u32 pp;
1486 	u32 pp_ctrl_reg;
1487 
1488 	if (!is_edp(intel_dp))
1489 		return;
1490 
1491 	DRM_DEBUG_KMS("\n");
1492 	/*
1493 	 * If we enable the backlight right away following a panel power
1494 	 * on, we may see slight flicker as the panel syncs with the eDP
1495 	 * link.  So delay a bit to make sure the image is solid before
1496 	 * allowing it to appear.
1497 	 */
1498 	wait_backlight_on(intel_dp);
1499 	pp = ironlake_get_pp_control(intel_dp);
1500 	pp |= EDP_BLC_ENABLE;
1501 
1502 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1503 
1504 	I915_WRITE(pp_ctrl_reg, pp);
1505 	POSTING_READ(pp_ctrl_reg);
1506 
1507 	intel_panel_enable_backlight(intel_dp->attached_connector);
1508 }
1509 
1510 void intel_edp_backlight_off(struct intel_dp *intel_dp)
1511 {
1512 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1513 	struct drm_i915_private *dev_priv = dev->dev_private;
1514 	u32 pp;
1515 	u32 pp_ctrl_reg;
1516 
1517 	if (!is_edp(intel_dp))
1518 		return;
1519 
1520 	intel_panel_disable_backlight(intel_dp->attached_connector);
1521 
1522 	DRM_DEBUG_KMS("\n");
1523 	pp = ironlake_get_pp_control(intel_dp);
1524 	pp &= ~EDP_BLC_ENABLE;
1525 
1526 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1527 
1528 	I915_WRITE(pp_ctrl_reg, pp);
1529 	POSTING_READ(pp_ctrl_reg);
1530 	intel_dp->last_backlight_off = jiffies;
1531 }
1532 
1533 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1534 {
1535 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1536 	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1537 	struct drm_device *dev = crtc->dev;
1538 	struct drm_i915_private *dev_priv = dev->dev_private;
1539 	u32 dpa_ctl;
1540 
1541 	assert_pipe_disabled(dev_priv,
1542 			     to_intel_crtc(crtc)->pipe);
1543 
1544 	DRM_DEBUG_KMS("\n");
1545 	dpa_ctl = I915_READ(DP_A);
1546 	WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1547 	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1548 
1549 	/* We don't adjust intel_dp->DP while tearing down the link, to
1550 	 * facilitate link retraining (e.g. after hotplug). Hence clear all
1551 	 * enable bits here to ensure that we don't enable too much. */
1552 	intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1553 	intel_dp->DP |= DP_PLL_ENABLE;
1554 	I915_WRITE(DP_A, intel_dp->DP);
1555 	POSTING_READ(DP_A);
1556 	udelay(200);
1557 }
1558 
1559 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1560 {
1561 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1562 	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1563 	struct drm_device *dev = crtc->dev;
1564 	struct drm_i915_private *dev_priv = dev->dev_private;
1565 	u32 dpa_ctl;
1566 
1567 	assert_pipe_disabled(dev_priv,
1568 			     to_intel_crtc(crtc)->pipe);
1569 
1570 	dpa_ctl = I915_READ(DP_A);
1571 	WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1572 	     "dp pll off, should be on\n");
1573 	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1574 
1575 	/* We can't rely on the value tracked for the DP register in
1576 	 * intel_dp->DP because link_down must not change that (otherwise link
1577 	 * re-training will fail. */
1578 	dpa_ctl &= ~DP_PLL_ENABLE;
1579 	I915_WRITE(DP_A, dpa_ctl);
1580 	POSTING_READ(DP_A);
1581 	udelay(200);
1582 }
1583 
1584 /* If the sink supports it, try to set the power state appropriately */
1585 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1586 {
1587 	int ret, i;
1588 
1589 	/* Should have a valid DPCD by this point */
1590 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1591 		return;
1592 
1593 	if (mode != DRM_MODE_DPMS_ON) {
1594 		ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1595 						  DP_SET_POWER_D3);
1596 		if (ret != 1)
1597 			DRM_DEBUG_DRIVER("failed to write sink power state\n");
1598 	} else {
1599 		/*
1600 		 * When turning on, we need to retry for 1ms to give the sink
1601 		 * time to wake up.
1602 		 */
1603 		for (i = 0; i < 3; i++) {
1604 			ret = intel_dp_aux_native_write_1(intel_dp,
1605 							  DP_SET_POWER,
1606 							  DP_SET_POWER_D0);
1607 			if (ret == 1)
1608 				break;
1609 			msleep(1);
1610 		}
1611 	}
1612 }
1613 
1614 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1615 				  enum i915_pipe *pipe)
1616 {
1617 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1618 	enum port port = dp_to_dig_port(intel_dp)->port;
1619 	struct drm_device *dev = encoder->base.dev;
1620 	struct drm_i915_private *dev_priv = dev->dev_private;
1621 	enum intel_display_power_domain power_domain;
1622 	u32 tmp;
1623 
1624 	power_domain = intel_display_port_power_domain(encoder);
1625 	if (!intel_display_power_enabled(dev_priv, power_domain))
1626 		return false;
1627 
1628 	tmp = I915_READ(intel_dp->output_reg);
1629 
1630 	if (!(tmp & DP_PORT_EN))
1631 		return false;
1632 
1633 	if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1634 		*pipe = PORT_TO_PIPE_CPT(tmp);
1635 	} else if (IS_CHERRYVIEW(dev)) {
1636 		*pipe = DP_PORT_TO_PIPE_CHV(tmp);
1637 	} else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1638 		*pipe = PORT_TO_PIPE(tmp);
1639 	} else {
1640 		u32 trans_sel;
1641 		u32 trans_dp;
1642 		int i;
1643 
1644 		switch (intel_dp->output_reg) {
1645 		case PCH_DP_B:
1646 			trans_sel = TRANS_DP_PORT_SEL_B;
1647 			break;
1648 		case PCH_DP_C:
1649 			trans_sel = TRANS_DP_PORT_SEL_C;
1650 			break;
1651 		case PCH_DP_D:
1652 			trans_sel = TRANS_DP_PORT_SEL_D;
1653 			break;
1654 		default:
1655 			return true;
1656 		}
1657 
1658 		for_each_pipe(i) {
1659 			trans_dp = I915_READ(TRANS_DP_CTL(i));
1660 			if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1661 				*pipe = i;
1662 				return true;
1663 			}
1664 		}
1665 
1666 		DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1667 			      intel_dp->output_reg);
1668 	}
1669 
1670 	return true;
1671 }
1672 
1673 static void intel_dp_get_config(struct intel_encoder *encoder,
1674 				struct intel_crtc_config *pipe_config)
1675 {
1676 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1677 	u32 tmp, flags = 0;
1678 	struct drm_device *dev = encoder->base.dev;
1679 	struct drm_i915_private *dev_priv = dev->dev_private;
1680 	enum port port = dp_to_dig_port(intel_dp)->port;
1681 	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1682 	int dotclock;
1683 
1684 	tmp = I915_READ(intel_dp->output_reg);
1685 	if (tmp & DP_AUDIO_OUTPUT_ENABLE)
1686 		pipe_config->has_audio = true;
1687 
1688 	if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1689 		if (tmp & DP_SYNC_HS_HIGH)
1690 			flags |= DRM_MODE_FLAG_PHSYNC;
1691 		else
1692 			flags |= DRM_MODE_FLAG_NHSYNC;
1693 
1694 		if (tmp & DP_SYNC_VS_HIGH)
1695 			flags |= DRM_MODE_FLAG_PVSYNC;
1696 		else
1697 			flags |= DRM_MODE_FLAG_NVSYNC;
1698 	} else {
1699 		tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1700 		if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1701 			flags |= DRM_MODE_FLAG_PHSYNC;
1702 		else
1703 			flags |= DRM_MODE_FLAG_NHSYNC;
1704 
1705 		if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1706 			flags |= DRM_MODE_FLAG_PVSYNC;
1707 		else
1708 			flags |= DRM_MODE_FLAG_NVSYNC;
1709 	}
1710 
1711 	pipe_config->adjusted_mode.flags |= flags;
1712 
1713 	pipe_config->has_dp_encoder = true;
1714 
1715 	intel_dp_get_m_n(crtc, pipe_config);
1716 
1717 	if (port == PORT_A) {
1718 		if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1719 			pipe_config->port_clock = 162000;
1720 		else
1721 			pipe_config->port_clock = 270000;
1722 	}
1723 
1724 	dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1725 					    &pipe_config->dp_m_n);
1726 
1727 	if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1728 		ironlake_check_encoder_dotclock(pipe_config, dotclock);
1729 
1730 	pipe_config->adjusted_mode.crtc_clock = dotclock;
1731 
1732 	if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1733 	    pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1734 		/*
1735 		 * This is a big fat ugly hack.
1736 		 *
1737 		 * Some machines in UEFI boot mode provide us a VBT that has 18
1738 		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1739 		 * unknown we fail to light up. Yet the same BIOS boots up with
1740 		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1741 		 * max, not what it tells us to use.
1742 		 *
1743 		 * Note: This will still be broken if the eDP panel is not lit
1744 		 * up by the BIOS, and thus we can't get the mode at module
1745 		 * load.
1746 		 */
1747 		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1748 			      pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1749 		dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1750 	}
1751 }
1752 
1753 static bool is_edp_psr(struct drm_device *dev)
1754 {
1755 	struct drm_i915_private *dev_priv = dev->dev_private;
1756 
1757 	return dev_priv->psr.sink_support;
1758 }
1759 
1760 static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1761 {
1762 	struct drm_i915_private *dev_priv = dev->dev_private;
1763 
1764 	if (!HAS_PSR(dev))
1765 		return false;
1766 
1767 	return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1768 }
1769 
1770 static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1771 				    struct edp_vsc_psr *vsc_psr)
1772 {
1773 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1774 	struct drm_device *dev = dig_port->base.base.dev;
1775 	struct drm_i915_private *dev_priv = dev->dev_private;
1776 	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1777 	u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1778 	u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1779 	uint32_t *data = (uint32_t *) vsc_psr;
1780 	unsigned int i;
1781 
1782 	/* As per BSPec (Pipe Video Data Island Packet), we need to disable
1783 	   the video DIP being updated before program video DIP data buffer
1784 	   registers for DIP being updated. */
1785 	I915_WRITE(ctl_reg, 0);
1786 	POSTING_READ(ctl_reg);
1787 
1788 	for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1789 		if (i < sizeof(struct edp_vsc_psr))
1790 			I915_WRITE(data_reg + i, *data++);
1791 		else
1792 			I915_WRITE(data_reg + i, 0);
1793 	}
1794 
1795 	I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1796 	POSTING_READ(ctl_reg);
1797 }
1798 
1799 static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1800 {
1801 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1802 	struct drm_i915_private *dev_priv = dev->dev_private;
1803 	struct edp_vsc_psr psr_vsc;
1804 
1805 	if (intel_dp->psr_setup_done)
1806 		return;
1807 
1808 	/* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1809 	memset(&psr_vsc, 0, sizeof(psr_vsc));
1810 	psr_vsc.sdp_header.HB0 = 0;
1811 	psr_vsc.sdp_header.HB1 = 0x7;
1812 	psr_vsc.sdp_header.HB2 = 0x2;
1813 	psr_vsc.sdp_header.HB3 = 0x8;
1814 	intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1815 
1816 	/* Avoid continuous PSR exit by masking memup and hpd */
1817 	I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
1818 		   EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
1819 
1820 	intel_dp->psr_setup_done = true;
1821 }
1822 
1823 static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1824 {
1825 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1826 	struct drm_i915_private *dev_priv = dev->dev_private;
1827 	uint32_t aux_clock_divider;
1828 	int precharge = 0x3;
1829 	int msg_size = 5;       /* Header(4) + Message(1) */
1830 
1831 	aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
1832 
1833 	/* Enable PSR in sink */
1834 	if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT)
1835 		intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
1836 					    DP_PSR_ENABLE &
1837 					    ~DP_PSR_MAIN_LINK_ACTIVE);
1838 	else
1839 		intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
1840 					    DP_PSR_ENABLE |
1841 					    DP_PSR_MAIN_LINK_ACTIVE);
1842 
1843 	/* Setup AUX registers */
1844 	I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
1845 	I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
1846 	I915_WRITE(EDP_PSR_AUX_CTL(dev),
1847 		   DP_AUX_CH_CTL_TIME_OUT_400us |
1848 		   (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1849 		   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1850 		   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1851 }
1852 
1853 static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1854 {
1855 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1856 	struct drm_i915_private *dev_priv = dev->dev_private;
1857 	uint32_t max_sleep_time = 0x1f;
1858 	uint32_t idle_frames = 1;
1859 	uint32_t val = 0x0;
1860 	const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
1861 
1862 	if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
1863 		val |= EDP_PSR_LINK_STANDBY;
1864 		val |= EDP_PSR_TP2_TP3_TIME_0us;
1865 		val |= EDP_PSR_TP1_TIME_0us;
1866 		val |= EDP_PSR_SKIP_AUX_EXIT;
1867 	} else
1868 		val |= EDP_PSR_LINK_DISABLE;
1869 
1870 	I915_WRITE(EDP_PSR_CTL(dev), val |
1871 		   IS_BROADWELL(dev) ? 0 : link_entry_time |
1872 		   max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1873 		   idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1874 		   EDP_PSR_ENABLE);
1875 }
1876 
1877 static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1878 {
1879 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1880 	struct drm_device *dev = dig_port->base.base.dev;
1881 	struct drm_i915_private *dev_priv = dev->dev_private;
1882 	struct drm_crtc *crtc = dig_port->base.base.crtc;
1883 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1884 	struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->primary->fb)->obj;
1885 	struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
1886 
1887 	dev_priv->psr.source_ok = false;
1888 
1889 	if (!HAS_PSR(dev)) {
1890 		DRM_DEBUG_KMS("PSR not supported on this platform\n");
1891 		return false;
1892 	}
1893 
1894 	if ((intel_encoder->type != INTEL_OUTPUT_EDP) ||
1895 	    (dig_port->port != PORT_A)) {
1896 		DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1897 		return false;
1898 	}
1899 
1900 	if (!i915.enable_psr) {
1901 		DRM_DEBUG_KMS("PSR disable by flag\n");
1902 		return false;
1903 	}
1904 
1905 	crtc = dig_port->base.base.crtc;
1906 	if (crtc == NULL) {
1907 		DRM_DEBUG_KMS("crtc not active for PSR\n");
1908 		return false;
1909 	}
1910 
1911 	intel_crtc = to_intel_crtc(crtc);
1912 	if (!intel_crtc_active(crtc)) {
1913 		DRM_DEBUG_KMS("crtc not active for PSR\n");
1914 		return false;
1915 	}
1916 
1917 	obj = to_intel_framebuffer(crtc->primary->fb)->obj;
1918 	if (obj->tiling_mode != I915_TILING_X ||
1919 	    obj->fence_reg == I915_FENCE_REG_NONE) {
1920 		DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
1921 		return false;
1922 	}
1923 
1924 	if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
1925 		DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
1926 		return false;
1927 	}
1928 
1929 	if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1930 	    S3D_ENABLE) {
1931 		DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1932 		return false;
1933 	}
1934 
1935 	if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
1936 		DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1937 		return false;
1938 	}
1939 
1940 	dev_priv->psr.source_ok = true;
1941 	return true;
1942 }
1943 
1944 static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1945 {
1946 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1947 
1948 	if (!intel_edp_psr_match_conditions(intel_dp) ||
1949 	    intel_edp_is_psr_enabled(dev))
1950 		return;
1951 
1952 	/* Setup PSR once */
1953 	intel_edp_psr_setup(intel_dp);
1954 
1955 	/* Enable PSR on the panel */
1956 	intel_edp_psr_enable_sink(intel_dp);
1957 
1958 	/* Enable PSR on the host */
1959 	intel_edp_psr_enable_source(intel_dp);
1960 }
1961 
1962 void intel_edp_psr_enable(struct intel_dp *intel_dp)
1963 {
1964 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1965 
1966 	if (intel_edp_psr_match_conditions(intel_dp) &&
1967 	    !intel_edp_is_psr_enabled(dev))
1968 		intel_edp_psr_do_enable(intel_dp);
1969 }
1970 
1971 void intel_edp_psr_disable(struct intel_dp *intel_dp)
1972 {
1973 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1974 	struct drm_i915_private *dev_priv = dev->dev_private;
1975 
1976 	if (!intel_edp_is_psr_enabled(dev))
1977 		return;
1978 
1979 	I915_WRITE(EDP_PSR_CTL(dev),
1980 		   I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
1981 
1982 	/* Wait till PSR is idle */
1983 	if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
1984 		       EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1985 		DRM_ERROR("Timed out waiting for PSR Idle State\n");
1986 }
1987 
1988 void intel_edp_psr_update(struct drm_device *dev)
1989 {
1990 	struct intel_encoder *encoder;
1991 	struct intel_dp *intel_dp = NULL;
1992 
1993 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
1994 		if (encoder->type == INTEL_OUTPUT_EDP) {
1995 			intel_dp = enc_to_intel_dp(&encoder->base);
1996 
1997 			if (!is_edp_psr(dev))
1998 				return;
1999 
2000 			if (!intel_edp_psr_match_conditions(intel_dp))
2001 				intel_edp_psr_disable(intel_dp);
2002 			else
2003 				if (!intel_edp_is_psr_enabled(dev))
2004 					intel_edp_psr_do_enable(intel_dp);
2005 		}
2006 }
2007 
2008 static void intel_disable_dp(struct intel_encoder *encoder)
2009 {
2010 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2011 	enum port port = dp_to_dig_port(intel_dp)->port;
2012 	struct drm_device *dev = encoder->base.dev;
2013 
2014 	/* Make sure the panel is off before trying to change the mode. But also
2015 	 * ensure that we have vdd while we switch off the panel. */
2016 	intel_edp_panel_vdd_on(intel_dp);
2017 	intel_edp_backlight_off(intel_dp);
2018 	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2019 	intel_edp_panel_off(intel_dp);
2020 
2021 	/* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
2022 	if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
2023 		intel_dp_link_down(intel_dp);
2024 }
2025 
2026 static void g4x_post_disable_dp(struct intel_encoder *encoder)
2027 {
2028 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2029 	enum port port = dp_to_dig_port(intel_dp)->port;
2030 
2031 	if (port != PORT_A)
2032 		return;
2033 
2034 	intel_dp_link_down(intel_dp);
2035 	ironlake_edp_pll_off(intel_dp);
2036 }
2037 
2038 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2039 {
2040 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2041 
2042 	intel_dp_link_down(intel_dp);
2043 }
2044 
2045 static void chv_post_disable_dp(struct intel_encoder *encoder)
2046 {
2047 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2048 	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2049 	struct drm_device *dev = encoder->base.dev;
2050 	struct drm_i915_private *dev_priv = dev->dev_private;
2051 	struct intel_crtc *intel_crtc =
2052 		to_intel_crtc(encoder->base.crtc);
2053 	enum dpio_channel ch = vlv_dport_to_channel(dport);
2054 	enum i915_pipe pipe = intel_crtc->pipe;
2055 	u32 val;
2056 
2057 	intel_dp_link_down(intel_dp);
2058 
2059 	mutex_lock(&dev_priv->dpio_lock);
2060 
2061 	/* Propagate soft reset to data lane reset */
2062 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2063 	val |= CHV_PCS_REQ_SOFTRESET_EN;
2064 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2065 
2066 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2067 	val |= CHV_PCS_REQ_SOFTRESET_EN;
2068 	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2069 
2070 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2071 	val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2072 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2073 
2074 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2075 	val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2076 	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2077 
2078 	mutex_unlock(&dev_priv->dpio_lock);
2079 }
2080 
2081 static void intel_enable_dp(struct intel_encoder *encoder)
2082 {
2083 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2084 	struct drm_device *dev = encoder->base.dev;
2085 	struct drm_i915_private *dev_priv = dev->dev_private;
2086 	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2087 
2088 	if (WARN_ON(dp_reg & DP_PORT_EN))
2089 		return;
2090 
2091 	intel_edp_panel_vdd_on(intel_dp);
2092 	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2093 	intel_dp_start_link_train(intel_dp);
2094 	intel_edp_panel_on(intel_dp);
2095 	edp_panel_vdd_off(intel_dp, true);
2096 	intel_dp_complete_link_train(intel_dp);
2097 	intel_dp_stop_link_train(intel_dp);
2098 }
2099 
2100 static void g4x_enable_dp(struct intel_encoder *encoder)
2101 {
2102 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2103 
2104 	intel_enable_dp(encoder);
2105 	intel_edp_backlight_on(intel_dp);
2106 }
2107 
2108 static void vlv_enable_dp(struct intel_encoder *encoder)
2109 {
2110 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2111 
2112 	intel_edp_backlight_on(intel_dp);
2113 }
2114 
2115 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2116 {
2117 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2118 	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2119 
2120 	intel_dp_prepare(encoder);
2121 
2122 	/* Only ilk+ has port A */
2123 	if (dport->port == PORT_A) {
2124 		ironlake_set_pll_cpu_edp(intel_dp);
2125 		ironlake_edp_pll_on(intel_dp);
2126 	}
2127 }
2128 
2129 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2130 {
2131 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2132 	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2133 	struct drm_device *dev = encoder->base.dev;
2134 	struct drm_i915_private *dev_priv = dev->dev_private;
2135 	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2136 	enum dpio_channel port = vlv_dport_to_channel(dport);
2137 	int pipe = intel_crtc->pipe;
2138 	struct edp_power_seq power_seq;
2139 	u32 val;
2140 
2141 	mutex_lock(&dev_priv->dpio_lock);
2142 
2143 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2144 	val = 0;
2145 	if (pipe)
2146 		val |= (1<<21);
2147 	else
2148 		val &= ~(1<<21);
2149 	val |= 0x001000c4;
2150 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2151 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2152 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2153 
2154 	mutex_unlock(&dev_priv->dpio_lock);
2155 
2156 	if (is_edp(intel_dp)) {
2157 		/* init power sequencer on this pipe and port */
2158 		intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2159 		intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2160 							      &power_seq);
2161 	}
2162 
2163 	intel_enable_dp(encoder);
2164 
2165 	vlv_wait_port_ready(dev_priv, dport);
2166 }
2167 
2168 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2169 {
2170 	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2171 	struct drm_device *dev = encoder->base.dev;
2172 	struct drm_i915_private *dev_priv = dev->dev_private;
2173 	struct intel_crtc *intel_crtc =
2174 		to_intel_crtc(encoder->base.crtc);
2175 	enum dpio_channel port = vlv_dport_to_channel(dport);
2176 	int pipe = intel_crtc->pipe;
2177 
2178 	intel_dp_prepare(encoder);
2179 
2180 	/* Program Tx lane resets to default */
2181 	mutex_lock(&dev_priv->dpio_lock);
2182 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2183 			 DPIO_PCS_TX_LANE2_RESET |
2184 			 DPIO_PCS_TX_LANE1_RESET);
2185 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2186 			 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2187 			 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2188 			 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2189 				 DPIO_PCS_CLK_SOFT_RESET);
2190 
2191 	/* Fix up inter-pair skew failure */
2192 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2193 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2194 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2195 	mutex_unlock(&dev_priv->dpio_lock);
2196 }
2197 
2198 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2199 {
2200 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2201 	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2202 	struct drm_device *dev = encoder->base.dev;
2203 	struct drm_i915_private *dev_priv = dev->dev_private;
2204 	struct edp_power_seq power_seq;
2205 	struct intel_crtc *intel_crtc =
2206 		to_intel_crtc(encoder->base.crtc);
2207 	enum dpio_channel ch = vlv_dport_to_channel(dport);
2208 	int pipe = intel_crtc->pipe;
2209 	int data, i;
2210 	u32 val;
2211 
2212 	mutex_lock(&dev_priv->dpio_lock);
2213 
2214 	/* Deassert soft data lane reset*/
2215 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2216 	val |= CHV_PCS_REQ_SOFTRESET_EN;
2217 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2218 
2219 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2220 	val |= CHV_PCS_REQ_SOFTRESET_EN;
2221 	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2222 
2223 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2224 	val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2225 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2226 
2227 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2228 	val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2229 	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2230 
2231 	/* Program Tx lane latency optimal setting*/
2232 	for (i = 0; i < 4; i++) {
2233 		/* Set the latency optimal bit */
2234 		data = (i == 1) ? 0x0 : 0x6;
2235 		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
2236 				data << DPIO_FRC_LATENCY_SHFIT);
2237 
2238 		/* Set the upar bit */
2239 		data = (i == 1) ? 0x0 : 0x1;
2240 		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2241 				data << DPIO_UPAR_SHIFT);
2242 	}
2243 
2244 	/* Data lane stagger programming */
2245 	/* FIXME: Fix up value only after power analysis */
2246 
2247 	mutex_unlock(&dev_priv->dpio_lock);
2248 
2249 	if (is_edp(intel_dp)) {
2250 		/* init power sequencer on this pipe and port */
2251 		intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2252 		intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2253 							      &power_seq);
2254 	}
2255 
2256 	intel_enable_dp(encoder);
2257 
2258 	vlv_wait_port_ready(dev_priv, dport);
2259 }
2260 
2261 /*
2262  * Native read with retry for link status and receiver capability reads for
2263  * cases where the sink may still be asleep.
2264  */
2265 static bool
2266 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
2267 			       uint8_t *recv, int recv_bytes)
2268 {
2269 	int ret, i;
2270 
2271 	/*
2272 	 * Sinks are *supposed* to come up within 1ms from an off state,
2273 	 * but we're also supposed to retry 3 times per the spec.
2274 	 */
2275 	for (i = 0; i < 3; i++) {
2276 		ret = intel_dp_aux_native_read(intel_dp, address, recv,
2277 					       recv_bytes);
2278 		if (ret == recv_bytes)
2279 			return true;
2280 		msleep(1);
2281 	}
2282 
2283 	return false;
2284 }
2285 
2286 /*
2287  * Fetch AUX CH registers 0x202 - 0x207 which contain
2288  * link status information
2289  */
2290 static bool
2291 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2292 {
2293 	return intel_dp_aux_native_read_retry(intel_dp,
2294 					      DP_LANE0_1_STATUS,
2295 					      link_status,
2296 					      DP_LINK_STATUS_SIZE);
2297 }
2298 
2299 /*
2300  * These are source-specific values; current Intel hardware supports
2301  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
2302  */
2303 
2304 static uint8_t
2305 intel_dp_voltage_max(struct intel_dp *intel_dp)
2306 {
2307 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2308 	enum port port = dp_to_dig_port(intel_dp)->port;
2309 
2310 	if (IS_VALLEYVIEW(dev) || IS_BROADWELL(dev))
2311 		return DP_TRAIN_VOLTAGE_SWING_1200;
2312 	else if (IS_GEN7(dev) && port == PORT_A)
2313 		return DP_TRAIN_VOLTAGE_SWING_800;
2314 	else if (HAS_PCH_CPT(dev) && port != PORT_A)
2315 		return DP_TRAIN_VOLTAGE_SWING_1200;
2316 	else
2317 		return DP_TRAIN_VOLTAGE_SWING_800;
2318 }
2319 
2320 static uint8_t
2321 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2322 {
2323 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2324 	enum port port = dp_to_dig_port(intel_dp)->port;
2325 
2326 	if (IS_BROADWELL(dev)) {
2327 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2328 		case DP_TRAIN_VOLTAGE_SWING_400:
2329 		case DP_TRAIN_VOLTAGE_SWING_600:
2330 			return DP_TRAIN_PRE_EMPHASIS_6;
2331 		case DP_TRAIN_VOLTAGE_SWING_800:
2332 			return DP_TRAIN_PRE_EMPHASIS_3_5;
2333 		case DP_TRAIN_VOLTAGE_SWING_1200:
2334 		default:
2335 			return DP_TRAIN_PRE_EMPHASIS_0;
2336 		}
2337 	} else if (IS_HASWELL(dev)) {
2338 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2339 		case DP_TRAIN_VOLTAGE_SWING_400:
2340 			return DP_TRAIN_PRE_EMPHASIS_9_5;
2341 		case DP_TRAIN_VOLTAGE_SWING_600:
2342 			return DP_TRAIN_PRE_EMPHASIS_6;
2343 		case DP_TRAIN_VOLTAGE_SWING_800:
2344 			return DP_TRAIN_PRE_EMPHASIS_3_5;
2345 		case DP_TRAIN_VOLTAGE_SWING_1200:
2346 		default:
2347 			return DP_TRAIN_PRE_EMPHASIS_0;
2348 		}
2349 	} else if (IS_VALLEYVIEW(dev)) {
2350 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2351 		case DP_TRAIN_VOLTAGE_SWING_400:
2352 			return DP_TRAIN_PRE_EMPHASIS_9_5;
2353 		case DP_TRAIN_VOLTAGE_SWING_600:
2354 			return DP_TRAIN_PRE_EMPHASIS_6;
2355 		case DP_TRAIN_VOLTAGE_SWING_800:
2356 			return DP_TRAIN_PRE_EMPHASIS_3_5;
2357 		case DP_TRAIN_VOLTAGE_SWING_1200:
2358 		default:
2359 			return DP_TRAIN_PRE_EMPHASIS_0;
2360 		}
2361 	} else if (IS_GEN7(dev) && port == PORT_A) {
2362 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2363 		case DP_TRAIN_VOLTAGE_SWING_400:
2364 			return DP_TRAIN_PRE_EMPHASIS_6;
2365 		case DP_TRAIN_VOLTAGE_SWING_600:
2366 		case DP_TRAIN_VOLTAGE_SWING_800:
2367 			return DP_TRAIN_PRE_EMPHASIS_3_5;
2368 		default:
2369 			return DP_TRAIN_PRE_EMPHASIS_0;
2370 		}
2371 	} else {
2372 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2373 		case DP_TRAIN_VOLTAGE_SWING_400:
2374 			return DP_TRAIN_PRE_EMPHASIS_6;
2375 		case DP_TRAIN_VOLTAGE_SWING_600:
2376 			return DP_TRAIN_PRE_EMPHASIS_6;
2377 		case DP_TRAIN_VOLTAGE_SWING_800:
2378 			return DP_TRAIN_PRE_EMPHASIS_3_5;
2379 		case DP_TRAIN_VOLTAGE_SWING_1200:
2380 		default:
2381 			return DP_TRAIN_PRE_EMPHASIS_0;
2382 		}
2383 	}
2384 }
2385 
2386 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2387 {
2388 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2389 	struct drm_i915_private *dev_priv = dev->dev_private;
2390 	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2391 	struct intel_crtc *intel_crtc =
2392 		to_intel_crtc(dport->base.base.crtc);
2393 	unsigned long demph_reg_value, preemph_reg_value,
2394 		uniqtranscale_reg_value;
2395 	uint8_t train_set = intel_dp->train_set[0];
2396 	enum dpio_channel port = vlv_dport_to_channel(dport);
2397 	int pipe = intel_crtc->pipe;
2398 
2399 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2400 	case DP_TRAIN_PRE_EMPHASIS_0:
2401 		preemph_reg_value = 0x0004000;
2402 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2403 		case DP_TRAIN_VOLTAGE_SWING_400:
2404 			demph_reg_value = 0x2B405555;
2405 			uniqtranscale_reg_value = 0x552AB83A;
2406 			break;
2407 		case DP_TRAIN_VOLTAGE_SWING_600:
2408 			demph_reg_value = 0x2B404040;
2409 			uniqtranscale_reg_value = 0x5548B83A;
2410 			break;
2411 		case DP_TRAIN_VOLTAGE_SWING_800:
2412 			demph_reg_value = 0x2B245555;
2413 			uniqtranscale_reg_value = 0x5560B83A;
2414 			break;
2415 		case DP_TRAIN_VOLTAGE_SWING_1200:
2416 			demph_reg_value = 0x2B405555;
2417 			uniqtranscale_reg_value = 0x5598DA3A;
2418 			break;
2419 		default:
2420 			return 0;
2421 		}
2422 		break;
2423 	case DP_TRAIN_PRE_EMPHASIS_3_5:
2424 		preemph_reg_value = 0x0002000;
2425 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2426 		case DP_TRAIN_VOLTAGE_SWING_400:
2427 			demph_reg_value = 0x2B404040;
2428 			uniqtranscale_reg_value = 0x5552B83A;
2429 			break;
2430 		case DP_TRAIN_VOLTAGE_SWING_600:
2431 			demph_reg_value = 0x2B404848;
2432 			uniqtranscale_reg_value = 0x5580B83A;
2433 			break;
2434 		case DP_TRAIN_VOLTAGE_SWING_800:
2435 			demph_reg_value = 0x2B404040;
2436 			uniqtranscale_reg_value = 0x55ADDA3A;
2437 			break;
2438 		default:
2439 			return 0;
2440 		}
2441 		break;
2442 	case DP_TRAIN_PRE_EMPHASIS_6:
2443 		preemph_reg_value = 0x0000000;
2444 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2445 		case DP_TRAIN_VOLTAGE_SWING_400:
2446 			demph_reg_value = 0x2B305555;
2447 			uniqtranscale_reg_value = 0x5570B83A;
2448 			break;
2449 		case DP_TRAIN_VOLTAGE_SWING_600:
2450 			demph_reg_value = 0x2B2B4040;
2451 			uniqtranscale_reg_value = 0x55ADDA3A;
2452 			break;
2453 		default:
2454 			return 0;
2455 		}
2456 		break;
2457 	case DP_TRAIN_PRE_EMPHASIS_9_5:
2458 		preemph_reg_value = 0x0006000;
2459 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2460 		case DP_TRAIN_VOLTAGE_SWING_400:
2461 			demph_reg_value = 0x1B405555;
2462 			uniqtranscale_reg_value = 0x55ADDA3A;
2463 			break;
2464 		default:
2465 			return 0;
2466 		}
2467 		break;
2468 	default:
2469 		return 0;
2470 	}
2471 
2472 	mutex_lock(&dev_priv->dpio_lock);
2473 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2474 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2475 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
2476 			 uniqtranscale_reg_value);
2477 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2478 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2479 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2480 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
2481 	mutex_unlock(&dev_priv->dpio_lock);
2482 
2483 	return 0;
2484 }
2485 
2486 static uint32_t intel_chv_signal_levels(struct intel_dp *intel_dp)
2487 {
2488 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2489 	struct drm_i915_private *dev_priv = dev->dev_private;
2490 	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2491 	struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
2492 	u32 deemph_reg_value, margin_reg_value, val;
2493 	uint8_t train_set = intel_dp->train_set[0];
2494 	enum dpio_channel ch = vlv_dport_to_channel(dport);
2495 	enum i915_pipe pipe = intel_crtc->pipe;
2496 	int i;
2497 
2498 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2499 	case DP_TRAIN_PRE_EMPHASIS_0:
2500 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2501 		case DP_TRAIN_VOLTAGE_SWING_400:
2502 			deemph_reg_value = 128;
2503 			margin_reg_value = 52;
2504 			break;
2505 		case DP_TRAIN_VOLTAGE_SWING_600:
2506 			deemph_reg_value = 128;
2507 			margin_reg_value = 77;
2508 			break;
2509 		case DP_TRAIN_VOLTAGE_SWING_800:
2510 			deemph_reg_value = 128;
2511 			margin_reg_value = 102;
2512 			break;
2513 		case DP_TRAIN_VOLTAGE_SWING_1200:
2514 			deemph_reg_value = 128;
2515 			margin_reg_value = 154;
2516 			/* FIXME extra to set for 1200 */
2517 			break;
2518 		default:
2519 			return 0;
2520 		}
2521 		break;
2522 	case DP_TRAIN_PRE_EMPHASIS_3_5:
2523 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2524 		case DP_TRAIN_VOLTAGE_SWING_400:
2525 			deemph_reg_value = 85;
2526 			margin_reg_value = 78;
2527 			break;
2528 		case DP_TRAIN_VOLTAGE_SWING_600:
2529 			deemph_reg_value = 85;
2530 			margin_reg_value = 116;
2531 			break;
2532 		case DP_TRAIN_VOLTAGE_SWING_800:
2533 			deemph_reg_value = 85;
2534 			margin_reg_value = 154;
2535 			break;
2536 		default:
2537 			return 0;
2538 		}
2539 		break;
2540 	case DP_TRAIN_PRE_EMPHASIS_6:
2541 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2542 		case DP_TRAIN_VOLTAGE_SWING_400:
2543 			deemph_reg_value = 64;
2544 			margin_reg_value = 104;
2545 			break;
2546 		case DP_TRAIN_VOLTAGE_SWING_600:
2547 			deemph_reg_value = 64;
2548 			margin_reg_value = 154;
2549 			break;
2550 		default:
2551 			return 0;
2552 		}
2553 		break;
2554 	case DP_TRAIN_PRE_EMPHASIS_9_5:
2555 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2556 		case DP_TRAIN_VOLTAGE_SWING_400:
2557 			deemph_reg_value = 43;
2558 			margin_reg_value = 154;
2559 			break;
2560 		default:
2561 			return 0;
2562 		}
2563 		break;
2564 	default:
2565 		return 0;
2566 	}
2567 
2568 	mutex_lock(&dev_priv->dpio_lock);
2569 
2570 	/* Clear calc init */
2571 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
2572 	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2573 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
2574 
2575 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
2576 	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2577 	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2578 
2579 	/* Program swing deemph */
2580 	for (i = 0; i < 4; i++) {
2581 		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
2582 		val &= ~DPIO_SWING_DEEMPH9P5_MASK;
2583 		val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
2584 		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
2585 	}
2586 
2587 	/* Program swing margin */
2588 	for (i = 0; i < 4; i++) {
2589 		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
2590 		val &= ~DPIO_SWING_MARGIN_MASK;
2591 		val |= margin_reg_value << DPIO_SWING_MARGIN_SHIFT;
2592 		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
2593 	}
2594 
2595 	/* Disable unique transition scale */
2596 	for (i = 0; i < 4; i++) {
2597 		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
2598 		val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
2599 		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
2600 	}
2601 
2602 	if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
2603 			== DP_TRAIN_PRE_EMPHASIS_0) &&
2604 		((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
2605 			== DP_TRAIN_VOLTAGE_SWING_1200)) {
2606 
2607 		/*
2608 		 * The document said it needs to set bit 27 for ch0 and bit 26
2609 		 * for ch1. Might be a typo in the doc.
2610 		 * For now, for this unique transition scale selection, set bit
2611 		 * 27 for ch0 and ch1.
2612 		 */
2613 		for (i = 0; i < 4; i++) {
2614 			val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
2615 			val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
2616 			vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
2617 		}
2618 
2619 		for (i = 0; i < 4; i++) {
2620 			val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
2621 			val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
2622 			val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
2623 			vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
2624 		}
2625 	}
2626 
2627 	/* Start swing calculation */
2628 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
2629 	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
2630 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
2631 
2632 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
2633 	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
2634 	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2635 
2636 	/* LRC Bypass */
2637 	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
2638 	val |= DPIO_LRC_BYPASS;
2639 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
2640 
2641 	mutex_unlock(&dev_priv->dpio_lock);
2642 
2643 	return 0;
2644 }
2645 
2646 static void
2647 intel_get_adjust_train(struct intel_dp *intel_dp,
2648 		       const uint8_t link_status[DP_LINK_STATUS_SIZE])
2649 {
2650 	uint8_t v = 0;
2651 	uint8_t p = 0;
2652 	int lane;
2653 	uint8_t voltage_max;
2654 	uint8_t preemph_max;
2655 
2656 	for (lane = 0; lane < intel_dp->lane_count; lane++) {
2657 		uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2658 		uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2659 
2660 		if (this_v > v)
2661 			v = this_v;
2662 		if (this_p > p)
2663 			p = this_p;
2664 	}
2665 
2666 	voltage_max = intel_dp_voltage_max(intel_dp);
2667 	if (v >= voltage_max)
2668 		v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2669 
2670 	preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2671 	if (p >= preemph_max)
2672 		p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2673 
2674 	for (lane = 0; lane < 4; lane++)
2675 		intel_dp->train_set[lane] = v | p;
2676 }
2677 
2678 static uint32_t
2679 intel_gen4_signal_levels(uint8_t train_set)
2680 {
2681 	uint32_t	signal_levels = 0;
2682 
2683 	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2684 	case DP_TRAIN_VOLTAGE_SWING_400:
2685 	default:
2686 		signal_levels |= DP_VOLTAGE_0_4;
2687 		break;
2688 	case DP_TRAIN_VOLTAGE_SWING_600:
2689 		signal_levels |= DP_VOLTAGE_0_6;
2690 		break;
2691 	case DP_TRAIN_VOLTAGE_SWING_800:
2692 		signal_levels |= DP_VOLTAGE_0_8;
2693 		break;
2694 	case DP_TRAIN_VOLTAGE_SWING_1200:
2695 		signal_levels |= DP_VOLTAGE_1_2;
2696 		break;
2697 	}
2698 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2699 	case DP_TRAIN_PRE_EMPHASIS_0:
2700 	default:
2701 		signal_levels |= DP_PRE_EMPHASIS_0;
2702 		break;
2703 	case DP_TRAIN_PRE_EMPHASIS_3_5:
2704 		signal_levels |= DP_PRE_EMPHASIS_3_5;
2705 		break;
2706 	case DP_TRAIN_PRE_EMPHASIS_6:
2707 		signal_levels |= DP_PRE_EMPHASIS_6;
2708 		break;
2709 	case DP_TRAIN_PRE_EMPHASIS_9_5:
2710 		signal_levels |= DP_PRE_EMPHASIS_9_5;
2711 		break;
2712 	}
2713 	return signal_levels;
2714 }
2715 
2716 /* Gen6's DP voltage swing and pre-emphasis control */
2717 static uint32_t
2718 intel_gen6_edp_signal_levels(uint8_t train_set)
2719 {
2720 	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2721 					 DP_TRAIN_PRE_EMPHASIS_MASK);
2722 	switch (signal_levels) {
2723 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2724 	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2725 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2726 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2727 		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2728 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2729 	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2730 		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2731 	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2732 	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2733 		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2734 	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2735 	case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2736 		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2737 	default:
2738 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2739 			      "0x%x\n", signal_levels);
2740 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2741 	}
2742 }
2743 
2744 /* Gen7's DP voltage swing and pre-emphasis control */
2745 static uint32_t
2746 intel_gen7_edp_signal_levels(uint8_t train_set)
2747 {
2748 	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2749 					 DP_TRAIN_PRE_EMPHASIS_MASK);
2750 	switch (signal_levels) {
2751 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2752 		return EDP_LINK_TRAIN_400MV_0DB_IVB;
2753 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2754 		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2755 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2756 		return EDP_LINK_TRAIN_400MV_6DB_IVB;
2757 
2758 	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2759 		return EDP_LINK_TRAIN_600MV_0DB_IVB;
2760 	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2761 		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2762 
2763 	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2764 		return EDP_LINK_TRAIN_800MV_0DB_IVB;
2765 	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2766 		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2767 
2768 	default:
2769 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2770 			      "0x%x\n", signal_levels);
2771 		return EDP_LINK_TRAIN_500MV_0DB_IVB;
2772 	}
2773 }
2774 
2775 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2776 static uint32_t
2777 intel_hsw_signal_levels(uint8_t train_set)
2778 {
2779 	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2780 					 DP_TRAIN_PRE_EMPHASIS_MASK);
2781 	switch (signal_levels) {
2782 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2783 		return DDI_BUF_EMP_400MV_0DB_HSW;
2784 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2785 		return DDI_BUF_EMP_400MV_3_5DB_HSW;
2786 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2787 		return DDI_BUF_EMP_400MV_6DB_HSW;
2788 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2789 		return DDI_BUF_EMP_400MV_9_5DB_HSW;
2790 
2791 	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2792 		return DDI_BUF_EMP_600MV_0DB_HSW;
2793 	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2794 		return DDI_BUF_EMP_600MV_3_5DB_HSW;
2795 	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2796 		return DDI_BUF_EMP_600MV_6DB_HSW;
2797 
2798 	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2799 		return DDI_BUF_EMP_800MV_0DB_HSW;
2800 	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2801 		return DDI_BUF_EMP_800MV_3_5DB_HSW;
2802 	default:
2803 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2804 			      "0x%x\n", signal_levels);
2805 		return DDI_BUF_EMP_400MV_0DB_HSW;
2806 	}
2807 }
2808 
2809 static uint32_t
2810 intel_bdw_signal_levels(uint8_t train_set)
2811 {
2812 	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2813 					 DP_TRAIN_PRE_EMPHASIS_MASK);
2814 	switch (signal_levels) {
2815 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2816 		return DDI_BUF_EMP_400MV_0DB_BDW;	/* Sel0 */
2817 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2818 		return DDI_BUF_EMP_400MV_3_5DB_BDW;	/* Sel1 */
2819 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2820 		return DDI_BUF_EMP_400MV_6DB_BDW;	/* Sel2 */
2821 
2822 	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2823 		return DDI_BUF_EMP_600MV_0DB_BDW;	/* Sel3 */
2824 	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2825 		return DDI_BUF_EMP_600MV_3_5DB_BDW;	/* Sel4 */
2826 	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2827 		return DDI_BUF_EMP_600MV_6DB_BDW;	/* Sel5 */
2828 
2829 	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2830 		return DDI_BUF_EMP_800MV_0DB_BDW;	/* Sel6 */
2831 	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2832 		return DDI_BUF_EMP_800MV_3_5DB_BDW;	/* Sel7 */
2833 
2834 	case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2835 		return DDI_BUF_EMP_1200MV_0DB_BDW;	/* Sel8 */
2836 
2837 	default:
2838 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2839 			      "0x%x\n", signal_levels);
2840 		return DDI_BUF_EMP_400MV_0DB_BDW;	/* Sel0 */
2841 	}
2842 }
2843 
2844 /* Properly updates "DP" with the correct signal levels. */
2845 static void
2846 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2847 {
2848 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2849 	enum port port = intel_dig_port->port;
2850 	struct drm_device *dev = intel_dig_port->base.base.dev;
2851 	uint32_t signal_levels, mask;
2852 	uint8_t train_set = intel_dp->train_set[0];
2853 
2854 	if (IS_BROADWELL(dev)) {
2855 		signal_levels = intel_bdw_signal_levels(train_set);
2856 		mask = DDI_BUF_EMP_MASK;
2857 	} else if (IS_HASWELL(dev)) {
2858 		signal_levels = intel_hsw_signal_levels(train_set);
2859 		mask = DDI_BUF_EMP_MASK;
2860 	} else if (IS_CHERRYVIEW(dev)) {
2861 		signal_levels = intel_chv_signal_levels(intel_dp);
2862 		mask = 0;
2863 	} else if (IS_VALLEYVIEW(dev)) {
2864 		signal_levels = intel_vlv_signal_levels(intel_dp);
2865 		mask = 0;
2866 	} else if (IS_GEN7(dev) && port == PORT_A) {
2867 		signal_levels = intel_gen7_edp_signal_levels(train_set);
2868 		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2869 	} else if (IS_GEN6(dev) && port == PORT_A) {
2870 		signal_levels = intel_gen6_edp_signal_levels(train_set);
2871 		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2872 	} else {
2873 		signal_levels = intel_gen4_signal_levels(train_set);
2874 		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2875 	}
2876 
2877 	DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2878 
2879 	*DP = (*DP & ~mask) | signal_levels;
2880 }
2881 
2882 static bool
2883 intel_dp_set_link_train(struct intel_dp *intel_dp,
2884 			uint32_t *DP,
2885 			uint8_t dp_train_pat)
2886 {
2887 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2888 	struct drm_device *dev = intel_dig_port->base.base.dev;
2889 	struct drm_i915_private *dev_priv = dev->dev_private;
2890 	enum port port = intel_dig_port->port;
2891 	uint8_t buf[sizeof(intel_dp->train_set) + 1];
2892 	int ret, len;
2893 
2894 	if (HAS_DDI(dev)) {
2895 		uint32_t temp = I915_READ(DP_TP_CTL(port));
2896 
2897 		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2898 			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2899 		else
2900 			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2901 
2902 		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2903 		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2904 		case DP_TRAINING_PATTERN_DISABLE:
2905 			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2906 
2907 			break;
2908 		case DP_TRAINING_PATTERN_1:
2909 			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2910 			break;
2911 		case DP_TRAINING_PATTERN_2:
2912 			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2913 			break;
2914 		case DP_TRAINING_PATTERN_3:
2915 			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2916 			break;
2917 		}
2918 		I915_WRITE(DP_TP_CTL(port), temp);
2919 
2920 	} else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2921 		*DP &= ~DP_LINK_TRAIN_MASK_CPT;
2922 
2923 		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2924 		case DP_TRAINING_PATTERN_DISABLE:
2925 			*DP |= DP_LINK_TRAIN_OFF_CPT;
2926 			break;
2927 		case DP_TRAINING_PATTERN_1:
2928 			*DP |= DP_LINK_TRAIN_PAT_1_CPT;
2929 			break;
2930 		case DP_TRAINING_PATTERN_2:
2931 			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
2932 			break;
2933 		case DP_TRAINING_PATTERN_3:
2934 			DRM_ERROR("DP training pattern 3 not supported\n");
2935 			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
2936 			break;
2937 		}
2938 
2939 	} else {
2940 		*DP &= ~DP_LINK_TRAIN_MASK;
2941 
2942 		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2943 		case DP_TRAINING_PATTERN_DISABLE:
2944 			*DP |= DP_LINK_TRAIN_OFF;
2945 			break;
2946 		case DP_TRAINING_PATTERN_1:
2947 			*DP |= DP_LINK_TRAIN_PAT_1;
2948 			break;
2949 		case DP_TRAINING_PATTERN_2:
2950 			*DP |= DP_LINK_TRAIN_PAT_2;
2951 			break;
2952 		case DP_TRAINING_PATTERN_3:
2953 			DRM_ERROR("DP training pattern 3 not supported\n");
2954 			*DP |= DP_LINK_TRAIN_PAT_2;
2955 			break;
2956 		}
2957 	}
2958 
2959 	I915_WRITE(intel_dp->output_reg, *DP);
2960 	POSTING_READ(intel_dp->output_reg);
2961 
2962 	buf[0] = dp_train_pat;
2963 	if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
2964 	    DP_TRAINING_PATTERN_DISABLE) {
2965 		/* don't write DP_TRAINING_LANEx_SET on disable */
2966 		len = 1;
2967 	} else {
2968 		/* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
2969 		memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
2970 		len = intel_dp->lane_count + 1;
2971 	}
2972 
2973 	ret = intel_dp_aux_native_write(intel_dp, DP_TRAINING_PATTERN_SET,
2974 					buf, len);
2975 
2976 	return ret == len;
2977 }
2978 
2979 static bool
2980 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2981 			uint8_t dp_train_pat)
2982 {
2983 	memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
2984 	intel_dp_set_signal_levels(intel_dp, DP);
2985 	return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
2986 }
2987 
2988 static bool
2989 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2990 			   const uint8_t link_status[DP_LINK_STATUS_SIZE])
2991 {
2992 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2993 	struct drm_device *dev = intel_dig_port->base.base.dev;
2994 	struct drm_i915_private *dev_priv = dev->dev_private;
2995 	int ret;
2996 
2997 	intel_get_adjust_train(intel_dp, link_status);
2998 	intel_dp_set_signal_levels(intel_dp, DP);
2999 
3000 	I915_WRITE(intel_dp->output_reg, *DP);
3001 	POSTING_READ(intel_dp->output_reg);
3002 
3003 	ret = intel_dp_aux_native_write(intel_dp, DP_TRAINING_LANE0_SET,
3004 					intel_dp->train_set,
3005 					intel_dp->lane_count);
3006 
3007 	return ret == intel_dp->lane_count;
3008 }
3009 
3010 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3011 {
3012 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3013 	struct drm_device *dev = intel_dig_port->base.base.dev;
3014 	struct drm_i915_private *dev_priv = dev->dev_private;
3015 	enum port port = intel_dig_port->port;
3016 	uint32_t val;
3017 
3018 	if (!HAS_DDI(dev))
3019 		return;
3020 
3021 	val = I915_READ(DP_TP_CTL(port));
3022 	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3023 	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3024 	I915_WRITE(DP_TP_CTL(port), val);
3025 
3026 	/*
3027 	 * On PORT_A we can have only eDP in SST mode. There the only reason
3028 	 * we need to set idle transmission mode is to work around a HW issue
3029 	 * where we enable the pipe while not in idle link-training mode.
3030 	 * In this case there is requirement to wait for a minimum number of
3031 	 * idle patterns to be sent.
3032 	 */
3033 	if (port == PORT_A)
3034 		return;
3035 
3036 	if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3037 		     1))
3038 		DRM_ERROR("Timed out waiting for DP idle patterns\n");
3039 }
3040 
3041 /* Enable corresponding port and start training pattern 1 */
3042 void
3043 intel_dp_start_link_train(struct intel_dp *intel_dp)
3044 {
3045 	struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
3046 	struct drm_device *dev = encoder->dev;
3047 	int i;
3048 	uint8_t voltage;
3049 	int voltage_tries, loop_tries;
3050 	uint32_t DP = intel_dp->DP;
3051 	uint8_t link_config[2];
3052 
3053 	if (HAS_DDI(dev))
3054 		intel_ddi_prepare_link_retrain(encoder);
3055 
3056 	/* Write the link configuration data */
3057 	link_config[0] = intel_dp->link_bw;
3058 	link_config[1] = intel_dp->lane_count;
3059 	if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3060 		link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
3061 	intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET, link_config, 2);
3062 
3063 	link_config[0] = 0;
3064 	link_config[1] = DP_SET_ANSI_8B10B;
3065 	intel_dp_aux_native_write(intel_dp, DP_DOWNSPREAD_CTRL, link_config, 2);
3066 
3067 	DP |= DP_PORT_EN;
3068 
3069 	/* clock recovery */
3070 	if (!intel_dp_reset_link_train(intel_dp, &DP,
3071 				       DP_TRAINING_PATTERN_1 |
3072 				       DP_LINK_SCRAMBLING_DISABLE)) {
3073 		DRM_ERROR("failed to enable link training\n");
3074 		return;
3075 	}
3076 
3077 	voltage = 0xff;
3078 	voltage_tries = 0;
3079 	loop_tries = 0;
3080 	for (;;) {
3081 		uint8_t link_status[DP_LINK_STATUS_SIZE];
3082 
3083 		drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
3084 		if (!intel_dp_get_link_status(intel_dp, link_status)) {
3085 			DRM_ERROR("failed to get link status\n");
3086 			break;
3087 		}
3088 
3089 		if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3090 			DRM_DEBUG_KMS("clock recovery OK\n");
3091 			break;
3092 		}
3093 
3094 		/* Check to see if we've tried the max voltage */
3095 		for (i = 0; i < intel_dp->lane_count; i++)
3096 			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
3097 				break;
3098 		if (i == intel_dp->lane_count) {
3099 			++loop_tries;
3100 			if (loop_tries == 5) {
3101 				DRM_ERROR("too many full retries, give up\n");
3102 				break;
3103 			}
3104 			intel_dp_reset_link_train(intel_dp, &DP,
3105 						  DP_TRAINING_PATTERN_1 |
3106 						  DP_LINK_SCRAMBLING_DISABLE);
3107 			voltage_tries = 0;
3108 			continue;
3109 		}
3110 
3111 		/* Check to see if we've tried the same voltage 5 times */
3112 		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
3113 			++voltage_tries;
3114 			if (voltage_tries == 5) {
3115 				DRM_ERROR("too many voltage retries, give up\n");
3116 				break;
3117 			}
3118 		} else
3119 			voltage_tries = 0;
3120 		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3121 
3122 		/* Update training set as requested by target */
3123 		if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3124 			DRM_ERROR("failed to update link training\n");
3125 			break;
3126 		}
3127 	}
3128 
3129 	intel_dp->DP = DP;
3130 }
3131 
3132 void
3133 intel_dp_complete_link_train(struct intel_dp *intel_dp)
3134 {
3135 	bool channel_eq = false;
3136 	int tries, cr_tries;
3137 	uint32_t DP = intel_dp->DP;
3138 	uint32_t training_pattern = DP_TRAINING_PATTERN_2;
3139 
3140 	/* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
3141 	if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
3142 		training_pattern = DP_TRAINING_PATTERN_3;
3143 
3144 	/* channel equalization */
3145 	if (!intel_dp_set_link_train(intel_dp, &DP,
3146 				     training_pattern |
3147 				     DP_LINK_SCRAMBLING_DISABLE)) {
3148 		DRM_ERROR("failed to start channel equalization\n");
3149 		return;
3150 	}
3151 
3152 	tries = 0;
3153 	cr_tries = 0;
3154 	channel_eq = false;
3155 	for (;;) {
3156 		uint8_t link_status[DP_LINK_STATUS_SIZE];
3157 
3158 		if (cr_tries > 5) {
3159 			DRM_ERROR("failed to train DP, aborting\n");
3160 			break;
3161 		}
3162 
3163 		drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
3164 		if (!intel_dp_get_link_status(intel_dp, link_status)) {
3165 			DRM_ERROR("failed to get link status\n");
3166 			break;
3167 		}
3168 
3169 		/* Make sure clock is still ok */
3170 		if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3171 			intel_dp_start_link_train(intel_dp);
3172 			intel_dp_set_link_train(intel_dp, &DP,
3173 						training_pattern |
3174 						DP_LINK_SCRAMBLING_DISABLE);
3175 			cr_tries++;
3176 			continue;
3177 		}
3178 
3179 		if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3180 			channel_eq = true;
3181 			break;
3182 		}
3183 
3184 		/* Try 5 times, then try clock recovery if that fails */
3185 		if (tries > 5) {
3186 			intel_dp_link_down(intel_dp);
3187 			intel_dp_start_link_train(intel_dp);
3188 			intel_dp_set_link_train(intel_dp, &DP,
3189 						training_pattern |
3190 						DP_LINK_SCRAMBLING_DISABLE);
3191 			tries = 0;
3192 			cr_tries++;
3193 			continue;
3194 		}
3195 
3196 		/* Update training set as requested by target */
3197 		if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3198 			DRM_ERROR("failed to update link training\n");
3199 			break;
3200 		}
3201 		++tries;
3202 	}
3203 
3204 	intel_dp_set_idle_link_train(intel_dp);
3205 
3206 	intel_dp->DP = DP;
3207 
3208 	if (channel_eq)
3209 		DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3210 
3211 }
3212 
3213 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3214 {
3215 	intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3216 				DP_TRAINING_PATTERN_DISABLE);
3217 }
3218 
3219 static void
3220 intel_dp_link_down(struct intel_dp *intel_dp)
3221 {
3222 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3223 	enum port port = intel_dig_port->port;
3224 	struct drm_device *dev = intel_dig_port->base.base.dev;
3225 	struct drm_i915_private *dev_priv = dev->dev_private;
3226 	struct intel_crtc *intel_crtc =
3227 		to_intel_crtc(intel_dig_port->base.base.crtc);
3228 	uint32_t DP = intel_dp->DP;
3229 
3230 	if (WARN_ON(HAS_DDI(dev)))
3231 		return;
3232 
3233 	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3234 		return;
3235 
3236 	DRM_DEBUG_KMS("\n");
3237 
3238 	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
3239 		DP &= ~DP_LINK_TRAIN_MASK_CPT;
3240 		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
3241 	} else {
3242 		DP &= ~DP_LINK_TRAIN_MASK;
3243 		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
3244 	}
3245 	POSTING_READ(intel_dp->output_reg);
3246 
3247 	if (HAS_PCH_IBX(dev) &&
3248 	    I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
3249 		struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
3250 
3251 		/* Hardware workaround: leaving our transcoder select
3252 		 * set to transcoder B while it's off will prevent the
3253 		 * corresponding HDMI output on transcoder A.
3254 		 *
3255 		 * Combine this with another hardware workaround:
3256 		 * transcoder select bit can only be cleared while the
3257 		 * port is enabled.
3258 		 */
3259 		DP &= ~DP_PIPEB_SELECT;
3260 		I915_WRITE(intel_dp->output_reg, DP);
3261 
3262 		/* Changes to enable or select take place the vblank
3263 		 * after being written.
3264 		 */
3265 		if (WARN_ON(crtc == NULL)) {
3266 			/* We should never try to disable a port without a crtc
3267 			 * attached. For paranoia keep the code around for a
3268 			 * bit. */
3269 			POSTING_READ(intel_dp->output_reg);
3270 			msleep(50);
3271 		} else
3272 			intel_wait_for_vblank(dev, intel_crtc->pipe);
3273 	}
3274 
3275 	DP &= ~DP_AUDIO_OUTPUT_ENABLE;
3276 	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
3277 	POSTING_READ(intel_dp->output_reg);
3278 	msleep(intel_dp->panel_power_down_delay);
3279 }
3280 
3281 static bool
3282 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3283 {
3284 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3285 	struct drm_device *dev = dig_port->base.base.dev;
3286 	struct drm_i915_private *dev_priv = dev->dev_private;
3287 
3288 	char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
3289 
3290 	if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
3291 					   sizeof(intel_dp->dpcd)) == 0)
3292 		return false; /* aux transfer failed */
3293 
3294 	ksnprintf(dpcd_hex_dump,
3295 		  sizeof(dpcd_hex_dump),
3296 		  "%02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
3297 		  intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
3298 		  intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
3299 		  intel_dp->dpcd[6], intel_dp->dpcd[7]);
3300 	DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
3301 
3302 	if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3303 		return false; /* DPCD not present */
3304 
3305 	/* Check if the panel supports PSR */
3306 	memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3307 	if (is_edp(intel_dp)) {
3308 		intel_dp_aux_native_read_retry(intel_dp, DP_PSR_SUPPORT,
3309 					       intel_dp->psr_dpcd,
3310 					       sizeof(intel_dp->psr_dpcd));
3311 		if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3312 			dev_priv->psr.sink_support = true;
3313 			DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3314 		}
3315 	}
3316 
3317 	/* Training Pattern 3 support */
3318 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3319 	    intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) {
3320 		intel_dp->use_tps3 = true;
3321 		DRM_DEBUG_KMS("Displayport TPS3 supported");
3322 	} else
3323 		intel_dp->use_tps3 = false;
3324 
3325 	if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3326 	      DP_DWN_STRM_PORT_PRESENT))
3327 		return true; /* native DP sink */
3328 
3329 	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3330 		return true; /* no per-port downstream info */
3331 
3332 	if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
3333 					   intel_dp->downstream_ports,
3334 					   DP_MAX_DOWNSTREAM_PORTS) == 0)
3335 		return false; /* downstream port status fetch failed */
3336 
3337 	return true;
3338 }
3339 
3340 static void
3341 intel_dp_probe_oui(struct intel_dp *intel_dp)
3342 {
3343 	u8 buf[3];
3344 
3345 	if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3346 		return;
3347 
3348 	intel_edp_panel_vdd_on(intel_dp);
3349 
3350 	if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
3351 		DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3352 			      buf[0], buf[1], buf[2]);
3353 
3354 	if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
3355 		DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3356 			      buf[0], buf[1], buf[2]);
3357 
3358 	edp_panel_vdd_off(intel_dp, false);
3359 }
3360 
3361 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3362 {
3363 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3364 	struct drm_device *dev = intel_dig_port->base.base.dev;
3365 	struct intel_crtc *intel_crtc =
3366 		to_intel_crtc(intel_dig_port->base.base.crtc);
3367 	u8 buf[1];
3368 
3369 	if (!intel_dp_aux_native_read(intel_dp, DP_TEST_SINK_MISC, buf, 1))
3370 		return -EAGAIN;
3371 
3372 	if (!(buf[0] & DP_TEST_CRC_SUPPORTED))
3373 		return -ENOTTY;
3374 
3375 	if (!intel_dp_aux_native_write_1(intel_dp, DP_TEST_SINK,
3376 					 DP_TEST_SINK_START))
3377 		return -EAGAIN;
3378 
3379 	/* Wait 2 vblanks to be sure we will have the correct CRC value */
3380 	intel_wait_for_vblank(dev, intel_crtc->pipe);
3381 	intel_wait_for_vblank(dev, intel_crtc->pipe);
3382 
3383 	if (!intel_dp_aux_native_read(intel_dp, DP_TEST_CRC_R_CR, crc, 6))
3384 		return -EAGAIN;
3385 
3386 	intel_dp_aux_native_write_1(intel_dp, DP_TEST_SINK, 0);
3387 	return 0;
3388 }
3389 
3390 static bool
3391 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3392 {
3393 	int ret;
3394 
3395 	ret = intel_dp_aux_native_read_retry(intel_dp,
3396 					     DP_DEVICE_SERVICE_IRQ_VECTOR,
3397 					     sink_irq_vector, 1);
3398 	if (!ret)
3399 		return false;
3400 
3401 	return true;
3402 }
3403 
3404 static void
3405 intel_dp_handle_test_request(struct intel_dp *intel_dp)
3406 {
3407 	/* NAK by default */
3408 	intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
3409 }
3410 
3411 /*
3412  * According to DP spec
3413  * 5.1.2:
3414  *  1. Read DPCD
3415  *  2. Configure link according to Receiver Capabilities
3416  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
3417  *  4. Check link status on receipt of hot-plug interrupt
3418  */
3419 
3420 void
3421 intel_dp_check_link_status(struct intel_dp *intel_dp)
3422 {
3423 	struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3424 	u8 sink_irq_vector;
3425 	u8 link_status[DP_LINK_STATUS_SIZE];
3426 
3427 	/* FIXME: This access isn't protected by any locks. */
3428 	if (!intel_encoder->connectors_active)
3429 		return;
3430 
3431 	if (WARN_ON(!intel_encoder->base.crtc))
3432 		return;
3433 
3434 	/* Try to read receiver status if the link appears to be up */
3435 	if (!intel_dp_get_link_status(intel_dp, link_status)) {
3436 		return;
3437 	}
3438 
3439 	/* Now read the DPCD to see if it's actually running */
3440 	if (!intel_dp_get_dpcd(intel_dp)) {
3441 		return;
3442 	}
3443 
3444 	/* Try to read the source of the interrupt */
3445 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3446 	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
3447 		/* Clear interrupt source */
3448 		intel_dp_aux_native_write_1(intel_dp,
3449 					    DP_DEVICE_SERVICE_IRQ_VECTOR,
3450 					    sink_irq_vector);
3451 
3452 		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
3453 			intel_dp_handle_test_request(intel_dp);
3454 		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
3455 			DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
3456 	}
3457 
3458 	if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3459 		DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
3460 			      intel_encoder->base.name);
3461 		intel_dp_start_link_train(intel_dp);
3462 		intel_dp_complete_link_train(intel_dp);
3463 		intel_dp_stop_link_train(intel_dp);
3464 	}
3465 }
3466 
3467 /* XXX this is probably wrong for multiple downstream ports */
3468 static enum drm_connector_status
3469 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
3470 {
3471 	uint8_t *dpcd = intel_dp->dpcd;
3472 	uint8_t type;
3473 
3474 	if (!intel_dp_get_dpcd(intel_dp))
3475 		return connector_status_disconnected;
3476 
3477 	/* if there's no downstream port, we're done */
3478 	if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
3479 		return connector_status_connected;
3480 
3481 	/* If we're HPD-aware, SINK_COUNT changes dynamically */
3482 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3483 	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
3484 		uint8_t reg;
3485 		if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
3486 						    &reg, 1))
3487 			return connector_status_unknown;
3488 		return DP_GET_SINK_COUNT(reg) ? connector_status_connected
3489 					      : connector_status_disconnected;
3490 	}
3491 
3492 	/* If no HPD, poke DDC gently */
3493 	if (drm_probe_ddc(intel_dp->adapter))
3494 		return connector_status_connected;
3495 
3496 	/* Well we tried, say unknown for unreliable port types */
3497 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
3498 		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
3499 		if (type == DP_DS_PORT_TYPE_VGA ||
3500 		    type == DP_DS_PORT_TYPE_NON_EDID)
3501 			return connector_status_unknown;
3502 	} else {
3503 		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3504 			DP_DWN_STRM_PORT_TYPE_MASK;
3505 		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
3506 		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
3507 			return connector_status_unknown;
3508 	}
3509 
3510 	/* Anything else is out of spec, warn and ignore */
3511 	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
3512 	return connector_status_disconnected;
3513 }
3514 
3515 static enum drm_connector_status
3516 ironlake_dp_detect(struct intel_dp *intel_dp)
3517 {
3518 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3519 	struct drm_i915_private *dev_priv = dev->dev_private;
3520 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3521 	enum drm_connector_status status;
3522 
3523 	/* Can't disconnect eDP, but you can close the lid... */
3524 	if (is_edp(intel_dp)) {
3525 		status = intel_panel_detect(dev);
3526 		if (status == connector_status_unknown)
3527 			status = connector_status_connected;
3528 		return status;
3529 	}
3530 
3531 	if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
3532 		return connector_status_disconnected;
3533 
3534 	return intel_dp_detect_dpcd(intel_dp);
3535 }
3536 
3537 static enum drm_connector_status
3538 g4x_dp_detect(struct intel_dp *intel_dp)
3539 {
3540 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3541 	struct drm_i915_private *dev_priv = dev->dev_private;
3542 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3543 	uint32_t bit;
3544 
3545 	/* Can't disconnect eDP, but you can close the lid... */
3546 	if (is_edp(intel_dp)) {
3547 		enum drm_connector_status status;
3548 
3549 		status = intel_panel_detect(dev);
3550 		if (status == connector_status_unknown)
3551 			status = connector_status_connected;
3552 		return status;
3553 	}
3554 
3555 	if (IS_VALLEYVIEW(dev)) {
3556 		switch (intel_dig_port->port) {
3557 		case PORT_B:
3558 			bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
3559 			break;
3560 		case PORT_C:
3561 			bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
3562 			break;
3563 		case PORT_D:
3564 			bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
3565 			break;
3566 		default:
3567 			return connector_status_unknown;
3568 		}
3569 	} else {
3570 		switch (intel_dig_port->port) {
3571 		case PORT_B:
3572 			bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
3573 			break;
3574 		case PORT_C:
3575 			bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
3576 			break;
3577 		case PORT_D:
3578 			bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
3579 			break;
3580 		default:
3581 			return connector_status_unknown;
3582 		}
3583 	}
3584 
3585 	if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
3586 		return connector_status_disconnected;
3587 
3588 	return intel_dp_detect_dpcd(intel_dp);
3589 }
3590 
3591 static struct edid *
3592 intel_dp_get_edid(struct drm_connector *connector, struct device *adapter)
3593 {
3594 	struct intel_connector *intel_connector = to_intel_connector(connector);
3595 
3596 	/* use cached edid if we have one */
3597 	if (intel_connector->edid) {
3598 		/* invalid edid */
3599 		if (IS_ERR(intel_connector->edid))
3600 			return NULL;
3601 
3602 		return drm_edid_duplicate(intel_connector->edid);
3603 	}
3604 
3605 	return drm_get_edid(connector, adapter);
3606 }
3607 
3608 static int
3609 intel_dp_get_edid_modes(struct drm_connector *connector, struct device *adapter)
3610 {
3611 	struct intel_connector *intel_connector = to_intel_connector(connector);
3612 
3613 	/* use cached edid if we have one */
3614 	if (intel_connector->edid) {
3615 		/* invalid edid */
3616 		if (IS_ERR(intel_connector->edid))
3617 			return 0;
3618 
3619 		return intel_connector_update_modes(connector,
3620 						    intel_connector->edid);
3621 	}
3622 
3623 	return intel_ddc_get_modes(connector, adapter);
3624 }
3625 
3626 static enum drm_connector_status
3627 intel_dp_detect(struct drm_connector *connector, bool force)
3628 {
3629 	struct intel_dp *intel_dp = intel_attached_dp(connector);
3630 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3631 	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3632 	struct drm_device *dev = connector->dev;
3633 	struct drm_i915_private *dev_priv = dev->dev_private;
3634 	enum drm_connector_status status;
3635 	enum intel_display_power_domain power_domain;
3636 	struct edid *edid = NULL;
3637 
3638 	intel_runtime_pm_get(dev_priv);
3639 
3640 	power_domain = intel_display_port_power_domain(intel_encoder);
3641 	intel_display_power_get(dev_priv, power_domain);
3642 
3643 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3644 		      connector->base.id, connector->name);
3645 
3646 	intel_dp->has_audio = false;
3647 
3648 	if (HAS_PCH_SPLIT(dev))
3649 		status = ironlake_dp_detect(intel_dp);
3650 	else
3651 		status = g4x_dp_detect(intel_dp);
3652 
3653 	if (status != connector_status_connected)
3654 		goto out;
3655 
3656 	intel_dp_probe_oui(intel_dp);
3657 
3658 	if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
3659 		intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
3660 	} else {
3661 		edid = intel_dp_get_edid(connector, intel_dp->adapter);
3662 		if (edid) {
3663 			intel_dp->has_audio = drm_detect_monitor_audio(edid);
3664 			kfree(edid);
3665 		}
3666 	}
3667 
3668 	if (intel_encoder->type != INTEL_OUTPUT_EDP)
3669 		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3670 	status = connector_status_connected;
3671 
3672 out:
3673 	intel_display_power_put(dev_priv, power_domain);
3674 
3675 	intel_runtime_pm_put(dev_priv);
3676 
3677 	return status;
3678 }
3679 
3680 static int intel_dp_get_modes(struct drm_connector *connector)
3681 {
3682 	struct intel_dp *intel_dp = intel_attached_dp(connector);
3683 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3684 	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3685 	struct intel_connector *intel_connector = to_intel_connector(connector);
3686 	struct drm_device *dev = connector->dev;
3687 	struct drm_i915_private *dev_priv = dev->dev_private;
3688 	enum intel_display_power_domain power_domain;
3689 	int ret;
3690 
3691 	/* We should parse the EDID data and find out if it has an audio sink
3692 	 */
3693 
3694 	power_domain = intel_display_port_power_domain(intel_encoder);
3695 	intel_display_power_get(dev_priv, power_domain);
3696 
3697 	ret = intel_dp_get_edid_modes(connector, intel_dp->adapter);
3698 	intel_display_power_put(dev_priv, power_domain);
3699 	if (ret)
3700 		return ret;
3701 
3702 	/* if eDP has no EDID, fall back to fixed mode */
3703 	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
3704 		struct drm_display_mode *mode;
3705 		mode = drm_mode_duplicate(dev,
3706 					  intel_connector->panel.fixed_mode);
3707 		if (mode) {
3708 			drm_mode_probed_add(connector, mode);
3709 			return 1;
3710 		}
3711 	}
3712 	return 0;
3713 }
3714 
3715 static bool
3716 intel_dp_detect_audio(struct drm_connector *connector)
3717 {
3718 	struct intel_dp *intel_dp = intel_attached_dp(connector);
3719 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3720 	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3721 	struct drm_device *dev = connector->dev;
3722 	struct drm_i915_private *dev_priv = dev->dev_private;
3723 	enum intel_display_power_domain power_domain;
3724 	struct edid *edid;
3725 	bool has_audio = false;
3726 
3727 	power_domain = intel_display_port_power_domain(intel_encoder);
3728 	intel_display_power_get(dev_priv, power_domain);
3729 
3730 	edid = intel_dp_get_edid(connector, intel_dp->adapter);
3731 	if (edid) {
3732 		has_audio = drm_detect_monitor_audio(edid);
3733 		kfree(edid);
3734 	}
3735 
3736 	intel_display_power_put(dev_priv, power_domain);
3737 
3738 	return has_audio;
3739 }
3740 
3741 static int
3742 intel_dp_set_property(struct drm_connector *connector,
3743 		      struct drm_property *property,
3744 		      uint64_t val)
3745 {
3746 	struct drm_i915_private *dev_priv = connector->dev->dev_private;
3747 	struct intel_connector *intel_connector = to_intel_connector(connector);
3748 	struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
3749 	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3750 	int ret;
3751 
3752 	ret = drm_object_property_set_value(&connector->base, property, val);
3753 	if (ret)
3754 		return ret;
3755 
3756 	if (property == dev_priv->force_audio_property) {
3757 		int i = val;
3758 		bool has_audio;
3759 
3760 		if (i == intel_dp->force_audio)
3761 			return 0;
3762 
3763 		intel_dp->force_audio = i;
3764 
3765 		if (i == HDMI_AUDIO_AUTO)
3766 			has_audio = intel_dp_detect_audio(connector);
3767 		else
3768 			has_audio = (i == HDMI_AUDIO_ON);
3769 
3770 		if (has_audio == intel_dp->has_audio)
3771 			return 0;
3772 
3773 		intel_dp->has_audio = has_audio;
3774 		goto done;
3775 	}
3776 
3777 	if (property == dev_priv->broadcast_rgb_property) {
3778 		bool old_auto = intel_dp->color_range_auto;
3779 		uint32_t old_range = intel_dp->color_range;
3780 
3781 		switch (val) {
3782 		case INTEL_BROADCAST_RGB_AUTO:
3783 			intel_dp->color_range_auto = true;
3784 			break;
3785 		case INTEL_BROADCAST_RGB_FULL:
3786 			intel_dp->color_range_auto = false;
3787 			intel_dp->color_range = 0;
3788 			break;
3789 		case INTEL_BROADCAST_RGB_LIMITED:
3790 			intel_dp->color_range_auto = false;
3791 			intel_dp->color_range = DP_COLOR_RANGE_16_235;
3792 			break;
3793 		default:
3794 			return -EINVAL;
3795 		}
3796 
3797 		if (old_auto == intel_dp->color_range_auto &&
3798 		    old_range == intel_dp->color_range)
3799 			return 0;
3800 
3801 		goto done;
3802 	}
3803 
3804 	if (is_edp(intel_dp) &&
3805 	    property == connector->dev->mode_config.scaling_mode_property) {
3806 		if (val == DRM_MODE_SCALE_NONE) {
3807 			DRM_DEBUG_KMS("no scaling not supported\n");
3808 			return -EINVAL;
3809 		}
3810 
3811 		if (intel_connector->panel.fitting_mode == val) {
3812 			/* the eDP scaling property is not changed */
3813 			return 0;
3814 		}
3815 		intel_connector->panel.fitting_mode = val;
3816 
3817 		goto done;
3818 	}
3819 
3820 	return -EINVAL;
3821 
3822 done:
3823 	if (intel_encoder->base.crtc)
3824 		intel_crtc_restore_mode(intel_encoder->base.crtc);
3825 
3826 	return 0;
3827 }
3828 
3829 static void
3830 intel_dp_connector_destroy(struct drm_connector *connector)
3831 {
3832 	struct intel_connector *intel_connector = to_intel_connector(connector);
3833 
3834 	if (!IS_ERR_OR_NULL(intel_connector->edid))
3835 		kfree(intel_connector->edid);
3836 
3837 	/* Can't call is_edp() since the encoder may have been destroyed
3838 	 * already. */
3839 	if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3840 		intel_panel_fini(&intel_connector->panel);
3841 
3842 	drm_connector_cleanup(connector);
3843 	kfree(connector);
3844 }
3845 
3846 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
3847 {
3848 	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
3849 	struct intel_dp *intel_dp = &intel_dig_port->dp;
3850 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3851 
3852 	if (intel_dp->dp_iic_bus != NULL) {
3853 		if (intel_dp->adapter != NULL) {
3854 			device_delete_child(intel_dp->dp_iic_bus,
3855 			intel_dp->adapter);
3856 		}
3857 		device_delete_child(dev->dev, intel_dp->dp_iic_bus);
3858 	}
3859 
3860 	drm_encoder_cleanup(encoder);
3861 	if (is_edp(intel_dp)) {
3862 		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3863 		drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
3864 		edp_panel_vdd_off_sync(intel_dp);
3865 		drm_modeset_unlock(&dev->mode_config.connection_mutex);
3866 #if 0
3867 		if (intel_dp->edp_notifier.notifier_call) {
3868 			unregister_reboot_notifier(&intel_dp->edp_notifier);
3869 			intel_dp->edp_notifier.notifier_call = NULL;
3870 		}
3871 #endif
3872 	}
3873 	kfree(intel_dig_port);
3874 }
3875 
3876 static const struct drm_connector_funcs intel_dp_connector_funcs = {
3877 	.dpms = intel_connector_dpms,
3878 	.detect = intel_dp_detect,
3879 	.fill_modes = drm_helper_probe_single_connector_modes,
3880 	.set_property = intel_dp_set_property,
3881 	.destroy = intel_dp_connector_destroy,
3882 };
3883 
3884 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
3885 	.get_modes = intel_dp_get_modes,
3886 	.mode_valid = intel_dp_mode_valid,
3887 	.best_encoder = intel_best_encoder,
3888 };
3889 
3890 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
3891 	.destroy = intel_dp_encoder_destroy,
3892 };
3893 
3894 static void
3895 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
3896 {
3897 	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3898 
3899 	intel_dp_check_link_status(intel_dp);
3900 }
3901 
3902 /* Return which DP Port should be selected for Transcoder DP control */
3903 int
3904 intel_trans_dp_port_sel(struct drm_crtc *crtc)
3905 {
3906 	struct drm_device *dev = crtc->dev;
3907 	struct intel_encoder *intel_encoder;
3908 	struct intel_dp *intel_dp;
3909 
3910 	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3911 		intel_dp = enc_to_intel_dp(&intel_encoder->base);
3912 
3913 		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
3914 		    intel_encoder->type == INTEL_OUTPUT_EDP)
3915 			return intel_dp->output_reg;
3916 	}
3917 
3918 	return -1;
3919 }
3920 
3921 /* check the VBT to see whether the eDP is on DP-D port */
3922 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
3923 {
3924 	struct drm_i915_private *dev_priv = dev->dev_private;
3925 	union child_device_config *p_child;
3926 	int i;
3927 	static const short port_mapping[] = {
3928 		[PORT_B] = PORT_IDPB,
3929 		[PORT_C] = PORT_IDPC,
3930 		[PORT_D] = PORT_IDPD,
3931 	};
3932 
3933 	if (port == PORT_A)
3934 		return true;
3935 
3936 	if (!dev_priv->vbt.child_dev_num)
3937 		return false;
3938 
3939 	for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
3940 		p_child = dev_priv->vbt.child_dev + i;
3941 
3942 		if (p_child->common.dvo_port == port_mapping[port] &&
3943 		    (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
3944 		    (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
3945 			return true;
3946 	}
3947 	return false;
3948 }
3949 
3950 static void
3951 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
3952 {
3953 	struct intel_connector *intel_connector = to_intel_connector(connector);
3954 
3955 	intel_attach_force_audio_property(connector);
3956 	intel_attach_broadcast_rgb_property(connector);
3957 	intel_dp->color_range_auto = true;
3958 
3959 	if (is_edp(intel_dp)) {
3960 		drm_mode_create_scaling_mode_property(connector->dev);
3961 		drm_object_attach_property(
3962 			&connector->base,
3963 			connector->dev->mode_config.scaling_mode_property,
3964 			DRM_MODE_SCALE_ASPECT);
3965 		intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
3966 	}
3967 }
3968 
3969 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
3970 {
3971 	intel_dp->last_power_cycle = jiffies;
3972 	intel_dp->last_power_on = jiffies;
3973 	intel_dp->last_backlight_off = jiffies;
3974 }
3975 
3976 static void
3977 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
3978 				    struct intel_dp *intel_dp,
3979 				    struct edp_power_seq *out)
3980 {
3981 	struct drm_i915_private *dev_priv = dev->dev_private;
3982 	struct edp_power_seq cur, vbt, spec, final;
3983 	u32 pp_on, pp_off, pp_div, pp;
3984 	int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
3985 
3986 	if (HAS_PCH_SPLIT(dev)) {
3987 		pp_ctrl_reg = PCH_PP_CONTROL;
3988 		pp_on_reg = PCH_PP_ON_DELAYS;
3989 		pp_off_reg = PCH_PP_OFF_DELAYS;
3990 		pp_div_reg = PCH_PP_DIVISOR;
3991 	} else {
3992 		enum i915_pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3993 
3994 		pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
3995 		pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3996 		pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3997 		pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3998 	}
3999 
4000 	/* Workaround: Need to write PP_CONTROL with the unlock key as
4001 	 * the very first thing. */
4002 	pp = ironlake_get_pp_control(intel_dp);
4003 	I915_WRITE(pp_ctrl_reg, pp);
4004 
4005 	pp_on = I915_READ(pp_on_reg);
4006 	pp_off = I915_READ(pp_off_reg);
4007 	pp_div = I915_READ(pp_div_reg);
4008 
4009 	/* Pull timing values out of registers */
4010 	cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4011 		PANEL_POWER_UP_DELAY_SHIFT;
4012 
4013 	cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4014 		PANEL_LIGHT_ON_DELAY_SHIFT;
4015 
4016 	cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4017 		PANEL_LIGHT_OFF_DELAY_SHIFT;
4018 
4019 	cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4020 		PANEL_POWER_DOWN_DELAY_SHIFT;
4021 
4022 	cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4023 		       PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4024 
4025 	DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4026 		      cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
4027 
4028 	vbt = dev_priv->vbt.edp_pps;
4029 
4030 	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
4031 	 * our hw here, which are all in 100usec. */
4032 	spec.t1_t3 = 210 * 10;
4033 	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
4034 	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
4035 	spec.t10 = 500 * 10;
4036 	/* This one is special and actually in units of 100ms, but zero
4037 	 * based in the hw (so we need to add 100 ms). But the sw vbt
4038 	 * table multiplies it with 1000 to make it in units of 100usec,
4039 	 * too. */
4040 	spec.t11_t12 = (510 + 100) * 10;
4041 
4042 	DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4043 		      vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
4044 
4045 	/* Use the max of the register settings and vbt. If both are
4046 	 * unset, fall back to the spec limits. */
4047 #define assign_final(field)	final.field = (max(cur.field, vbt.field) == 0 ? \
4048 				       spec.field : \
4049 				       max(cur.field, vbt.field))
4050 	assign_final(t1_t3);
4051 	assign_final(t8);
4052 	assign_final(t9);
4053 	assign_final(t10);
4054 	assign_final(t11_t12);
4055 #undef assign_final
4056 
4057 #define get_delay(field)	(DIV_ROUND_UP(final.field, 10))
4058 	intel_dp->panel_power_up_delay = get_delay(t1_t3);
4059 	intel_dp->backlight_on_delay = get_delay(t8);
4060 	intel_dp->backlight_off_delay = get_delay(t9);
4061 	intel_dp->panel_power_down_delay = get_delay(t10);
4062 	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
4063 #undef get_delay
4064 
4065 	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
4066 		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
4067 		      intel_dp->panel_power_cycle_delay);
4068 
4069 	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
4070 		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
4071 
4072 	if (out)
4073 		*out = final;
4074 }
4075 
4076 static void
4077 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
4078 					      struct intel_dp *intel_dp,
4079 					      struct edp_power_seq *seq)
4080 {
4081 	struct drm_i915_private *dev_priv = dev->dev_private;
4082 	u32 pp_on, pp_off, pp_div, port_sel = 0;
4083 	int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
4084 	int pp_on_reg, pp_off_reg, pp_div_reg;
4085 
4086 	if (HAS_PCH_SPLIT(dev)) {
4087 		pp_on_reg = PCH_PP_ON_DELAYS;
4088 		pp_off_reg = PCH_PP_OFF_DELAYS;
4089 		pp_div_reg = PCH_PP_DIVISOR;
4090 	} else {
4091 		enum i915_pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4092 
4093 		pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4094 		pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4095 		pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4096 	}
4097 
4098 	/*
4099 	 * And finally store the new values in the power sequencer. The
4100 	 * backlight delays are set to 1 because we do manual waits on them. For
4101 	 * T8, even BSpec recommends doing it. For T9, if we don't do this,
4102 	 * we'll end up waiting for the backlight off delay twice: once when we
4103 	 * do the manual sleep, and once when we disable the panel and wait for
4104 	 * the PP_STATUS bit to become zero.
4105 	 */
4106 	pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
4107 		(1 << PANEL_LIGHT_ON_DELAY_SHIFT);
4108 	pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
4109 		 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
4110 	/* Compute the divisor for the pp clock, simply match the Bspec
4111 	 * formula. */
4112 	pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
4113 	pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
4114 			<< PANEL_POWER_CYCLE_DELAY_SHIFT);
4115 
4116 	/* Haswell doesn't have any port selection bits for the panel
4117 	 * power sequencer any more. */
4118 	if (IS_VALLEYVIEW(dev)) {
4119 		if (dp_to_dig_port(intel_dp)->port == PORT_B)
4120 			port_sel = PANEL_PORT_SELECT_DPB_VLV;
4121 		else
4122 			port_sel = PANEL_PORT_SELECT_DPC_VLV;
4123 	} else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
4124 		if (dp_to_dig_port(intel_dp)->port == PORT_A)
4125 			port_sel = PANEL_PORT_SELECT_DPA;
4126 		else
4127 			port_sel = PANEL_PORT_SELECT_DPD;
4128 	}
4129 
4130 	pp_on |= port_sel;
4131 
4132 	I915_WRITE(pp_on_reg, pp_on);
4133 	I915_WRITE(pp_off_reg, pp_off);
4134 	I915_WRITE(pp_div_reg, pp_div);
4135 
4136 	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
4137 		      I915_READ(pp_on_reg),
4138 		      I915_READ(pp_off_reg),
4139 		      I915_READ(pp_div_reg));
4140 }
4141 
4142 void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
4143 {
4144 	struct drm_i915_private *dev_priv = dev->dev_private;
4145 	struct intel_encoder *encoder;
4146 	struct intel_dp *intel_dp = NULL;
4147 	struct intel_crtc_config *config = NULL;
4148 	struct intel_crtc *intel_crtc = NULL;
4149 	struct intel_connector *intel_connector = dev_priv->drrs.connector;
4150 	u32 reg, val;
4151 	enum edp_drrs_refresh_rate_type index = DRRS_HIGH_RR;
4152 
4153 	if (refresh_rate <= 0) {
4154 		DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
4155 		return;
4156 	}
4157 
4158 	if (intel_connector == NULL) {
4159 		DRM_DEBUG_KMS("DRRS supported for eDP only.\n");
4160 		return;
4161 	}
4162 
4163 	if (INTEL_INFO(dev)->gen < 8 && intel_edp_is_psr_enabled(dev)) {
4164 		DRM_DEBUG_KMS("DRRS is disabled as PSR is enabled\n");
4165 		return;
4166 	}
4167 
4168 	encoder = intel_attached_encoder(&intel_connector->base);
4169 	intel_dp = enc_to_intel_dp(&encoder->base);
4170 	intel_crtc = encoder->new_crtc;
4171 
4172 	if (!intel_crtc) {
4173 		DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
4174 		return;
4175 	}
4176 
4177 	config = &intel_crtc->config;
4178 
4179 	if (intel_dp->drrs_state.type < SEAMLESS_DRRS_SUPPORT) {
4180 		DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
4181 		return;
4182 	}
4183 
4184 	if (intel_connector->panel.downclock_mode->vrefresh == refresh_rate)
4185 		index = DRRS_LOW_RR;
4186 
4187 	if (index == intel_dp->drrs_state.refresh_rate_type) {
4188 		DRM_DEBUG_KMS(
4189 			"DRRS requested for previously set RR...ignoring\n");
4190 		return;
4191 	}
4192 
4193 	if (!intel_crtc->active) {
4194 		DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
4195 		return;
4196 	}
4197 
4198 	if (INTEL_INFO(dev)->gen > 6 && INTEL_INFO(dev)->gen < 8) {
4199 		reg = PIPECONF(intel_crtc->config.cpu_transcoder);
4200 		val = I915_READ(reg);
4201 		if (index > DRRS_HIGH_RR) {
4202 			val |= PIPECONF_EDP_RR_MODE_SWITCH;
4203 			intel_dp_set_m2_n2(intel_crtc, &config->dp_m2_n2);
4204 		} else {
4205 			val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
4206 		}
4207 		I915_WRITE(reg, val);
4208 	}
4209 
4210 	/*
4211 	 * mutex taken to ensure that there is no race between differnt
4212 	 * drrs calls trying to update refresh rate. This scenario may occur
4213 	 * in future when idleness detection based DRRS in kernel and
4214 	 * possible calls from user space to set differnt RR are made.
4215 	 */
4216 
4217 	mutex_lock(&intel_dp->drrs_state.mutex);
4218 
4219 	intel_dp->drrs_state.refresh_rate_type = index;
4220 
4221 	mutex_unlock(&intel_dp->drrs_state.mutex);
4222 
4223 	DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
4224 }
4225 
4226 static struct drm_display_mode *
4227 intel_dp_drrs_init(struct intel_digital_port *intel_dig_port,
4228 			struct intel_connector *intel_connector,
4229 			struct drm_display_mode *fixed_mode)
4230 {
4231 	struct drm_connector *connector = &intel_connector->base;
4232 	struct intel_dp *intel_dp = &intel_dig_port->dp;
4233 	struct drm_device *dev = intel_dig_port->base.base.dev;
4234 	struct drm_i915_private *dev_priv = dev->dev_private;
4235 	struct drm_display_mode *downclock_mode = NULL;
4236 
4237 	if (INTEL_INFO(dev)->gen <= 6) {
4238 		DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
4239 		return NULL;
4240 	}
4241 
4242 	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
4243 		DRM_INFO("VBT doesn't support DRRS\n");
4244 		return NULL;
4245 	}
4246 
4247 	downclock_mode = intel_find_panel_downclock
4248 					(dev, fixed_mode, connector);
4249 
4250 	if (!downclock_mode) {
4251 		DRM_INFO("DRRS not supported\n");
4252 		return NULL;
4253 	}
4254 
4255 	dev_priv->drrs.connector = intel_connector;
4256 
4257 	lockinit(&intel_dp->drrs_state.mutex, "i915dsm", 0, LK_CANRECURSE);
4258 
4259 	intel_dp->drrs_state.type = dev_priv->vbt.drrs_type;
4260 
4261 	intel_dp->drrs_state.refresh_rate_type = DRRS_HIGH_RR;
4262 	DRM_INFO("seamless DRRS supported for eDP panel.\n");
4263 	return downclock_mode;
4264 }
4265 
4266 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
4267 				     struct intel_connector *intel_connector,
4268 				     struct edp_power_seq *power_seq)
4269 {
4270 	struct drm_connector *connector = &intel_connector->base;
4271 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4272 	struct intel_encoder *intel_encoder = &intel_dig_port->base;
4273 	struct drm_device *dev = intel_encoder->base.dev;
4274 	struct drm_i915_private *dev_priv = dev->dev_private;
4275 	struct drm_display_mode *fixed_mode = NULL;
4276 	struct drm_display_mode *downclock_mode = NULL;
4277 	bool has_dpcd;
4278 	struct drm_display_mode *scan;
4279 	struct edid *edid;
4280 
4281 	intel_dp->drrs_state.type = DRRS_NOT_SUPPORTED;
4282 
4283 	if (!is_edp(intel_dp))
4284 		return true;
4285 
4286 	/* The VDD bit needs a power domain reference, so if the bit is already
4287 	 * enabled when we boot, grab this reference. */
4288 	if (edp_have_panel_vdd(intel_dp)) {
4289 		enum intel_display_power_domain power_domain;
4290 		power_domain = intel_display_port_power_domain(intel_encoder);
4291 		intel_display_power_get(dev_priv, power_domain);
4292 	}
4293 
4294 	/* Cache DPCD and EDID for edp. */
4295 	intel_edp_panel_vdd_on(intel_dp);
4296 	has_dpcd = intel_dp_get_dpcd(intel_dp);
4297 	edp_panel_vdd_off(intel_dp, false);
4298 
4299 	if (has_dpcd) {
4300 		if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
4301 			dev_priv->no_aux_handshake =
4302 				intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
4303 				DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
4304 	} else {
4305 		/* if this fails, presume the device is a ghost */
4306 		DRM_INFO("failed to retrieve link info, disabling eDP\n");
4307 		return false;
4308 	}
4309 
4310 	/* We now know it's not a ghost, init power sequence regs. */
4311 	intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq);
4312 
4313 	mutex_lock(&dev->mode_config.mutex);
4314 	edid = drm_get_edid(connector, intel_dp->adapter);
4315 	if (edid) {
4316 		if (drm_add_edid_modes(connector, edid)) {
4317 			drm_mode_connector_update_edid_property(connector,
4318 								edid);
4319 			drm_edid_to_eld(connector, edid);
4320 		} else {
4321 			kfree(edid);
4322 			edid = ERR_PTR(-EINVAL);
4323 		}
4324 	} else {
4325 		edid = ERR_PTR(-ENOENT);
4326 	}
4327 	intel_connector->edid = edid;
4328 
4329 	/* prefer fixed mode from EDID if available */
4330 	list_for_each_entry(scan, &connector->probed_modes, head) {
4331 		if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
4332 			fixed_mode = drm_mode_duplicate(dev, scan);
4333 			downclock_mode = intel_dp_drrs_init(
4334 						intel_dig_port,
4335 						intel_connector, fixed_mode);
4336 			break;
4337 		}
4338 	}
4339 
4340 	/* fallback to VBT if available for eDP */
4341 	if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
4342 		fixed_mode = drm_mode_duplicate(dev,
4343 					dev_priv->vbt.lfp_lvds_vbt_mode);
4344 		if (fixed_mode)
4345 			fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
4346 	}
4347 	mutex_unlock(&dev->mode_config.mutex);
4348 
4349 #if 0
4350 	if (IS_VALLEYVIEW(dev)) {
4351 		intel_dp->edp_notifier.notifier_call = edp_notify_handler;
4352 		register_reboot_notifier(&intel_dp->edp_notifier);
4353 	}
4354 #endif
4355 
4356 	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
4357 	intel_panel_setup_backlight(connector);
4358 
4359 	return true;
4360 }
4361 
4362 bool
4363 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
4364 			struct intel_connector *intel_connector)
4365 {
4366 	struct drm_connector *connector = &intel_connector->base;
4367 	struct intel_dp *intel_dp = &intel_dig_port->dp;
4368 	struct intel_encoder *intel_encoder = &intel_dig_port->base;
4369 	struct drm_device *dev = intel_encoder->base.dev;
4370 	struct drm_i915_private *dev_priv = dev->dev_private;
4371 	enum port port = intel_dig_port->port;
4372 	struct edp_power_seq power_seq = { 0 };
4373 	const char *name = NULL;
4374 	int type, error;
4375 
4376 	/* intel_dp vfuncs */
4377 	if (IS_VALLEYVIEW(dev))
4378 		intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
4379 	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4380 		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
4381 	else if (HAS_PCH_SPLIT(dev))
4382 		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
4383 	else
4384 		intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
4385 
4386 	intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
4387 
4388 	/* Preserve the current hw state. */
4389 	intel_dp->DP = I915_READ(intel_dp->output_reg);
4390 	intel_dp->attached_connector = intel_connector;
4391 
4392 	if (intel_dp_is_edp(dev, port))
4393 		type = DRM_MODE_CONNECTOR_eDP;
4394 	else
4395 		type = DRM_MODE_CONNECTOR_DisplayPort;
4396 
4397 	/*
4398 	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
4399 	 * for DP the encoder type can be set by the caller to
4400 	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
4401 	 */
4402 	if (type == DRM_MODE_CONNECTOR_eDP)
4403 		intel_encoder->type = INTEL_OUTPUT_EDP;
4404 
4405 	DRM_DEBUG_KMS("Adding %s connector on port %c\n",
4406 			type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
4407 			port_name(port));
4408 
4409 	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
4410 	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
4411 
4412 	connector->interlace_allowed = true;
4413 	connector->doublescan_allowed = 0;
4414 
4415 	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
4416 			  edp_panel_vdd_work);
4417 
4418 	intel_connector_attach_encoder(intel_connector, intel_encoder);
4419 	drm_sysfs_connector_add(connector);
4420 
4421 	if (HAS_DDI(dev))
4422 		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
4423 	else
4424 		intel_connector->get_hw_state = intel_connector_get_hw_state;
4425 	intel_connector->unregister = intel_dp_connector_unregister;
4426 
4427 	intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
4428 	if (HAS_DDI(dev)) {
4429 		switch (intel_dig_port->port) {
4430 		case PORT_A:
4431 			intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
4432 			break;
4433 		case PORT_B:
4434 			intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
4435 			break;
4436 		case PORT_C:
4437 			intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
4438 			break;
4439 		case PORT_D:
4440 			intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
4441 			break;
4442 		default:
4443 			BUG();
4444 		}
4445 	}
4446 
4447 	/* Set up the DDC bus. */
4448 	switch (port) {
4449 	case PORT_A:
4450 		intel_encoder->hpd_pin = HPD_PORT_A;
4451 		name = "DPDDC-A";
4452 		break;
4453 	case PORT_B:
4454 		intel_encoder->hpd_pin = HPD_PORT_B;
4455 		name = "DPDDC-B";
4456 		break;
4457 	case PORT_C:
4458 		intel_encoder->hpd_pin = HPD_PORT_C;
4459 		name = "DPDDC-C";
4460 		break;
4461 	case PORT_D:
4462 		intel_encoder->hpd_pin = HPD_PORT_D;
4463 		name = "DPDDC-D";
4464 		break;
4465 	default:
4466 		BUG();
4467 	}
4468 
4469 	if (is_edp(intel_dp)) {
4470 		intel_dp_init_panel_power_timestamps(intel_dp);
4471 		intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
4472 	}
4473 
4474 	error = intel_dp_i2c_init(intel_dp, intel_connector, name);
4475 	WARN(error, "intel_dp_i2c_init failed with error %d for port %c\n",
4476 	     error, port_name(port));
4477 
4478 	intel_dp->psr_setup_done = false;
4479 
4480 	if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) {
4481 #if 0
4482 		i2c_del_adapter(&intel_dp->adapter);
4483 #endif
4484 		if (is_edp(intel_dp)) {
4485 			cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4486 			drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4487 			edp_panel_vdd_off_sync(intel_dp);
4488 			drm_modeset_unlock(&dev->mode_config.connection_mutex);
4489 		}
4490 		drm_sysfs_connector_remove(connector);
4491 		drm_connector_cleanup(connector);
4492 		return false;
4493 	}
4494 
4495 	intel_dp_add_properties(intel_dp, connector);
4496 
4497 	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
4498 	 * 0xd.  Failure to do so will result in spurious interrupts being
4499 	 * generated on the port when a cable is not attached.
4500 	 */
4501 	if (IS_G4X(dev) && !IS_GM45(dev)) {
4502 		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
4503 		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
4504 	}
4505 
4506 	return true;
4507 }
4508 
4509 void
4510 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
4511 {
4512 	struct intel_digital_port *intel_dig_port;
4513 	struct intel_encoder *intel_encoder;
4514 	struct drm_encoder *encoder;
4515 	struct intel_connector *intel_connector;
4516 
4517 	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
4518 	if (!intel_dig_port)
4519 		return;
4520 
4521 	intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
4522 	if (!intel_connector) {
4523 		kfree(intel_dig_port);
4524 		return;
4525 	}
4526 
4527 	intel_encoder = &intel_dig_port->base;
4528 	encoder = &intel_encoder->base;
4529 
4530 	drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
4531 			 DRM_MODE_ENCODER_TMDS);
4532 
4533 	intel_encoder->compute_config = intel_dp_compute_config;
4534 	intel_encoder->disable = intel_disable_dp;
4535 	intel_encoder->get_hw_state = intel_dp_get_hw_state;
4536 	intel_encoder->get_config = intel_dp_get_config;
4537 	if (IS_CHERRYVIEW(dev)) {
4538 		intel_encoder->pre_enable = chv_pre_enable_dp;
4539 		intel_encoder->enable = vlv_enable_dp;
4540 		intel_encoder->post_disable = chv_post_disable_dp;
4541 	} else if (IS_VALLEYVIEW(dev)) {
4542 		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
4543 		intel_encoder->pre_enable = vlv_pre_enable_dp;
4544 		intel_encoder->enable = vlv_enable_dp;
4545 		intel_encoder->post_disable = vlv_post_disable_dp;
4546 	} else {
4547 		intel_encoder->pre_enable = g4x_pre_enable_dp;
4548 		intel_encoder->enable = g4x_enable_dp;
4549 		intel_encoder->post_disable = g4x_post_disable_dp;
4550 	}
4551 
4552 	intel_dig_port->port = port;
4553 	intel_dig_port->dp.output_reg = output_reg;
4554 
4555 	intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4556 	if (IS_CHERRYVIEW(dev)) {
4557 		if (port == PORT_D)
4558 			intel_encoder->crtc_mask = 1 << 2;
4559 		else
4560 			intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
4561 	} else {
4562 		intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
4563 	}
4564 	intel_encoder->cloneable = 0;
4565 	intel_encoder->hot_plug = intel_dp_hot_plug;
4566 
4567 	if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
4568 		drm_encoder_cleanup(encoder);
4569 		kfree(intel_dig_port);
4570 		kfree(intel_connector);
4571 	}
4572 }
4573