xref: /dflybsd-src/sys/dev/drm/i915/intel_display.c (revision 872a09d51adf63b4bdae6adb1d96a53f76e161e2)
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *	Eric Anholt <eric@anholt.net>
25  */
26 
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include "intel_frontbuffer.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40 #include "i915_gem_dmabuf.h"
41 #include "intel_dsi.h"
42 #include "i915_trace.h"
43 #include <drm/drm_atomic.h>
44 #include <drm/drm_atomic_helper.h>
45 #include <drm/drm_dp_helper.h>
46 #include <drm/drm_crtc_helper.h>
47 #include <drm/drm_plane_helper.h>
48 #include <drm/drm_rect.h>
49 #include <linux/dma_remapping.h>
50 #include <linux/reservation.h>
51 
52 static bool is_mmio_work(struct intel_flip_work *work)
53 {
54 	return work->mmio_work.func;
55 }
56 
57 /* Primary plane formats for gen <= 3 */
58 static const uint32_t i8xx_primary_formats[] = {
59 	DRM_FORMAT_C8,
60 	DRM_FORMAT_RGB565,
61 	DRM_FORMAT_XRGB1555,
62 	DRM_FORMAT_XRGB8888,
63 };
64 
65 /* Primary plane formats for gen >= 4 */
66 static const uint32_t i965_primary_formats[] = {
67 	DRM_FORMAT_C8,
68 	DRM_FORMAT_RGB565,
69 	DRM_FORMAT_XRGB8888,
70 	DRM_FORMAT_XBGR8888,
71 	DRM_FORMAT_XRGB2101010,
72 	DRM_FORMAT_XBGR2101010,
73 };
74 
75 static const uint32_t skl_primary_formats[] = {
76 	DRM_FORMAT_C8,
77 	DRM_FORMAT_RGB565,
78 	DRM_FORMAT_XRGB8888,
79 	DRM_FORMAT_XBGR8888,
80 	DRM_FORMAT_ARGB8888,
81 	DRM_FORMAT_ABGR8888,
82 	DRM_FORMAT_XRGB2101010,
83 	DRM_FORMAT_XBGR2101010,
84 	DRM_FORMAT_YUYV,
85 	DRM_FORMAT_YVYU,
86 	DRM_FORMAT_UYVY,
87 	DRM_FORMAT_VYUY,
88 };
89 
90 /* Cursor formats */
91 static const uint32_t intel_cursor_formats[] = {
92 	DRM_FORMAT_ARGB8888,
93 };
94 
95 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
96 				struct intel_crtc_state *pipe_config);
97 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
98 				   struct intel_crtc_state *pipe_config);
99 
100 static int intel_framebuffer_init(struct drm_device *dev,
101 				  struct intel_framebuffer *ifb,
102 				  struct drm_mode_fb_cmd2 *mode_cmd,
103 				  struct drm_i915_gem_object *obj);
104 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
105 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
106 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
107 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
108 					 struct intel_link_m_n *m_n,
109 					 struct intel_link_m_n *m2_n2);
110 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
111 static void haswell_set_pipeconf(struct drm_crtc *crtc);
112 static void haswell_set_pipemisc(struct drm_crtc *crtc);
113 static void vlv_prepare_pll(struct intel_crtc *crtc,
114 			    const struct intel_crtc_state *pipe_config);
115 static void chv_prepare_pll(struct intel_crtc *crtc,
116 			    const struct intel_crtc_state *pipe_config);
117 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
118 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
119 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
120 	struct intel_crtc_state *crtc_state);
121 static void skylake_pfit_enable(struct intel_crtc *crtc);
122 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
123 static void ironlake_pfit_enable(struct intel_crtc *crtc);
124 static void intel_modeset_setup_hw_state(struct drm_device *dev);
125 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
126 static int ilk_max_pixel_rate(struct drm_atomic_state *state);
127 static int bxt_calc_cdclk(int max_pixclk);
128 
129 struct intel_limit {
130 	struct {
131 		int min, max;
132 	} dot, vco, n, m, m1, m2, p, p1;
133 
134 	struct {
135 		int dot_limit;
136 		int p2_slow, p2_fast;
137 	} p2;
138 };
139 
140 /* returns HPLL frequency in kHz */
141 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
142 {
143 	int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
144 
145 	/* Obtain SKU information */
146 	mutex_lock(&dev_priv->sb_lock);
147 	hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
148 		CCK_FUSE_HPLL_FREQ_MASK;
149 	mutex_unlock(&dev_priv->sb_lock);
150 
151 	return vco_freq[hpll_freq] * 1000;
152 }
153 
154 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
155 		      const char *name, u32 reg, int ref_freq)
156 {
157 	u32 val;
158 	int divider;
159 
160 	mutex_lock(&dev_priv->sb_lock);
161 	val = vlv_cck_read(dev_priv, reg);
162 	mutex_unlock(&dev_priv->sb_lock);
163 
164 	divider = val & CCK_FREQUENCY_VALUES;
165 
166 	WARN((val & CCK_FREQUENCY_STATUS) !=
167 	     (divider << CCK_FREQUENCY_STATUS_SHIFT),
168 	     "%s change in progress\n", name);
169 
170 	return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
171 }
172 
173 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
174 				  const char *name, u32 reg)
175 {
176 	if (dev_priv->hpll_freq == 0)
177 		dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
178 
179 	return vlv_get_cck_clock(dev_priv, name, reg,
180 				 dev_priv->hpll_freq);
181 }
182 
183 static int
184 intel_pch_rawclk(struct drm_i915_private *dev_priv)
185 {
186 	return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
187 }
188 
189 static int
190 intel_vlv_hrawclk(struct drm_i915_private *dev_priv)
191 {
192 	/* RAWCLK_FREQ_VLV register updated from power well code */
193 	return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
194 				      CCK_DISPLAY_REF_CLOCK_CONTROL);
195 }
196 
197 static int
198 intel_g4x_hrawclk(struct drm_i915_private *dev_priv)
199 {
200 	uint32_t clkcfg;
201 
202 	/* hrawclock is 1/4 the FSB frequency */
203 	clkcfg = I915_READ(CLKCFG);
204 	switch (clkcfg & CLKCFG_FSB_MASK) {
205 	case CLKCFG_FSB_400:
206 		return 100000;
207 	case CLKCFG_FSB_533:
208 		return 133333;
209 	case CLKCFG_FSB_667:
210 		return 166667;
211 	case CLKCFG_FSB_800:
212 		return 200000;
213 	case CLKCFG_FSB_1067:
214 		return 266667;
215 	case CLKCFG_FSB_1333:
216 		return 333333;
217 	/* these two are just a guess; one of them might be right */
218 	case CLKCFG_FSB_1600:
219 	case CLKCFG_FSB_1600_ALT:
220 		return 400000;
221 	default:
222 		return 133333;
223 	}
224 }
225 
226 void intel_update_rawclk(struct drm_i915_private *dev_priv)
227 {
228 	if (HAS_PCH_SPLIT(dev_priv))
229 		dev_priv->rawclk_freq = intel_pch_rawclk(dev_priv);
230 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
231 		dev_priv->rawclk_freq = intel_vlv_hrawclk(dev_priv);
232 	else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv))
233 		dev_priv->rawclk_freq = intel_g4x_hrawclk(dev_priv);
234 	else
235 		return; /* no rawclk on other platforms, or no need to know it */
236 
237 	DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq);
238 }
239 
240 static void intel_update_czclk(struct drm_i915_private *dev_priv)
241 {
242 	if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
243 		return;
244 
245 	dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
246 						      CCK_CZ_CLOCK_CONTROL);
247 
248 	DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
249 }
250 
251 static inline u32 /* units of 100MHz */
252 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
253 		    const struct intel_crtc_state *pipe_config)
254 {
255 	if (HAS_DDI(dev_priv))
256 		return pipe_config->port_clock; /* SPLL */
257 	else if (IS_GEN5(dev_priv))
258 		return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
259 	else
260 		return 270000;
261 }
262 
263 static const struct intel_limit intel_limits_i8xx_dac = {
264 	.dot = { .min = 25000, .max = 350000 },
265 	.vco = { .min = 908000, .max = 1512000 },
266 	.n = { .min = 2, .max = 16 },
267 	.m = { .min = 96, .max = 140 },
268 	.m1 = { .min = 18, .max = 26 },
269 	.m2 = { .min = 6, .max = 16 },
270 	.p = { .min = 4, .max = 128 },
271 	.p1 = { .min = 2, .max = 33 },
272 	.p2 = { .dot_limit = 165000,
273 		.p2_slow = 4, .p2_fast = 2 },
274 };
275 
276 static const struct intel_limit intel_limits_i8xx_dvo = {
277 	.dot = { .min = 25000, .max = 350000 },
278 	.vco = { .min = 908000, .max = 1512000 },
279 	.n = { .min = 2, .max = 16 },
280 	.m = { .min = 96, .max = 140 },
281 	.m1 = { .min = 18, .max = 26 },
282 	.m2 = { .min = 6, .max = 16 },
283 	.p = { .min = 4, .max = 128 },
284 	.p1 = { .min = 2, .max = 33 },
285 	.p2 = { .dot_limit = 165000,
286 		.p2_slow = 4, .p2_fast = 4 },
287 };
288 
289 static const struct intel_limit intel_limits_i8xx_lvds = {
290 	.dot = { .min = 25000, .max = 350000 },
291 	.vco = { .min = 908000, .max = 1512000 },
292 	.n = { .min = 2, .max = 16 },
293 	.m = { .min = 96, .max = 140 },
294 	.m1 = { .min = 18, .max = 26 },
295 	.m2 = { .min = 6, .max = 16 },
296 	.p = { .min = 4, .max = 128 },
297 	.p1 = { .min = 1, .max = 6 },
298 	.p2 = { .dot_limit = 165000,
299 		.p2_slow = 14, .p2_fast = 7 },
300 };
301 
302 static const struct intel_limit intel_limits_i9xx_sdvo = {
303 	.dot = { .min = 20000, .max = 400000 },
304 	.vco = { .min = 1400000, .max = 2800000 },
305 	.n = { .min = 1, .max = 6 },
306 	.m = { .min = 70, .max = 120 },
307 	.m1 = { .min = 8, .max = 18 },
308 	.m2 = { .min = 3, .max = 7 },
309 	.p = { .min = 5, .max = 80 },
310 	.p1 = { .min = 1, .max = 8 },
311 	.p2 = { .dot_limit = 200000,
312 		.p2_slow = 10, .p2_fast = 5 },
313 };
314 
315 static const struct intel_limit intel_limits_i9xx_lvds = {
316 	.dot = { .min = 20000, .max = 400000 },
317 	.vco = { .min = 1400000, .max = 2800000 },
318 	.n = { .min = 1, .max = 6 },
319 	.m = { .min = 70, .max = 120 },
320 	.m1 = { .min = 8, .max = 18 },
321 	.m2 = { .min = 3, .max = 7 },
322 	.p = { .min = 7, .max = 98 },
323 	.p1 = { .min = 1, .max = 8 },
324 	.p2 = { .dot_limit = 112000,
325 		.p2_slow = 14, .p2_fast = 7 },
326 };
327 
328 
329 static const struct intel_limit intel_limits_g4x_sdvo = {
330 	.dot = { .min = 25000, .max = 270000 },
331 	.vco = { .min = 1750000, .max = 3500000},
332 	.n = { .min = 1, .max = 4 },
333 	.m = { .min = 104, .max = 138 },
334 	.m1 = { .min = 17, .max = 23 },
335 	.m2 = { .min = 5, .max = 11 },
336 	.p = { .min = 10, .max = 30 },
337 	.p1 = { .min = 1, .max = 3},
338 	.p2 = { .dot_limit = 270000,
339 		.p2_slow = 10,
340 		.p2_fast = 10
341 	},
342 };
343 
344 static const struct intel_limit intel_limits_g4x_hdmi = {
345 	.dot = { .min = 22000, .max = 400000 },
346 	.vco = { .min = 1750000, .max = 3500000},
347 	.n = { .min = 1, .max = 4 },
348 	.m = { .min = 104, .max = 138 },
349 	.m1 = { .min = 16, .max = 23 },
350 	.m2 = { .min = 5, .max = 11 },
351 	.p = { .min = 5, .max = 80 },
352 	.p1 = { .min = 1, .max = 8},
353 	.p2 = { .dot_limit = 165000,
354 		.p2_slow = 10, .p2_fast = 5 },
355 };
356 
357 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
358 	.dot = { .min = 20000, .max = 115000 },
359 	.vco = { .min = 1750000, .max = 3500000 },
360 	.n = { .min = 1, .max = 3 },
361 	.m = { .min = 104, .max = 138 },
362 	.m1 = { .min = 17, .max = 23 },
363 	.m2 = { .min = 5, .max = 11 },
364 	.p = { .min = 28, .max = 112 },
365 	.p1 = { .min = 2, .max = 8 },
366 	.p2 = { .dot_limit = 0,
367 		.p2_slow = 14, .p2_fast = 14
368 	},
369 };
370 
371 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
372 	.dot = { .min = 80000, .max = 224000 },
373 	.vco = { .min = 1750000, .max = 3500000 },
374 	.n = { .min = 1, .max = 3 },
375 	.m = { .min = 104, .max = 138 },
376 	.m1 = { .min = 17, .max = 23 },
377 	.m2 = { .min = 5, .max = 11 },
378 	.p = { .min = 14, .max = 42 },
379 	.p1 = { .min = 2, .max = 6 },
380 	.p2 = { .dot_limit = 0,
381 		.p2_slow = 7, .p2_fast = 7
382 	},
383 };
384 
385 static const struct intel_limit intel_limits_pineview_sdvo = {
386 	.dot = { .min = 20000, .max = 400000},
387 	.vco = { .min = 1700000, .max = 3500000 },
388 	/* Pineview's Ncounter is a ring counter */
389 	.n = { .min = 3, .max = 6 },
390 	.m = { .min = 2, .max = 256 },
391 	/* Pineview only has one combined m divider, which we treat as m2. */
392 	.m1 = { .min = 0, .max = 0 },
393 	.m2 = { .min = 0, .max = 254 },
394 	.p = { .min = 5, .max = 80 },
395 	.p1 = { .min = 1, .max = 8 },
396 	.p2 = { .dot_limit = 200000,
397 		.p2_slow = 10, .p2_fast = 5 },
398 };
399 
400 static const struct intel_limit intel_limits_pineview_lvds = {
401 	.dot = { .min = 20000, .max = 400000 },
402 	.vco = { .min = 1700000, .max = 3500000 },
403 	.n = { .min = 3, .max = 6 },
404 	.m = { .min = 2, .max = 256 },
405 	.m1 = { .min = 0, .max = 0 },
406 	.m2 = { .min = 0, .max = 254 },
407 	.p = { .min = 7, .max = 112 },
408 	.p1 = { .min = 1, .max = 8 },
409 	.p2 = { .dot_limit = 112000,
410 		.p2_slow = 14, .p2_fast = 14 },
411 };
412 
413 /* Ironlake / Sandybridge
414  *
415  * We calculate clock using (register_value + 2) for N/M1/M2, so here
416  * the range value for them is (actual_value - 2).
417  */
418 static const struct intel_limit intel_limits_ironlake_dac = {
419 	.dot = { .min = 25000, .max = 350000 },
420 	.vco = { .min = 1760000, .max = 3510000 },
421 	.n = { .min = 1, .max = 5 },
422 	.m = { .min = 79, .max = 127 },
423 	.m1 = { .min = 12, .max = 22 },
424 	.m2 = { .min = 5, .max = 9 },
425 	.p = { .min = 5, .max = 80 },
426 	.p1 = { .min = 1, .max = 8 },
427 	.p2 = { .dot_limit = 225000,
428 		.p2_slow = 10, .p2_fast = 5 },
429 };
430 
431 static const struct intel_limit intel_limits_ironlake_single_lvds = {
432 	.dot = { .min = 25000, .max = 350000 },
433 	.vco = { .min = 1760000, .max = 3510000 },
434 	.n = { .min = 1, .max = 3 },
435 	.m = { .min = 79, .max = 118 },
436 	.m1 = { .min = 12, .max = 22 },
437 	.m2 = { .min = 5, .max = 9 },
438 	.p = { .min = 28, .max = 112 },
439 	.p1 = { .min = 2, .max = 8 },
440 	.p2 = { .dot_limit = 225000,
441 		.p2_slow = 14, .p2_fast = 14 },
442 };
443 
444 static const struct intel_limit intel_limits_ironlake_dual_lvds = {
445 	.dot = { .min = 25000, .max = 350000 },
446 	.vco = { .min = 1760000, .max = 3510000 },
447 	.n = { .min = 1, .max = 3 },
448 	.m = { .min = 79, .max = 127 },
449 	.m1 = { .min = 12, .max = 22 },
450 	.m2 = { .min = 5, .max = 9 },
451 	.p = { .min = 14, .max = 56 },
452 	.p1 = { .min = 2, .max = 8 },
453 	.p2 = { .dot_limit = 225000,
454 		.p2_slow = 7, .p2_fast = 7 },
455 };
456 
457 /* LVDS 100mhz refclk limits. */
458 static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
459 	.dot = { .min = 25000, .max = 350000 },
460 	.vco = { .min = 1760000, .max = 3510000 },
461 	.n = { .min = 1, .max = 2 },
462 	.m = { .min = 79, .max = 126 },
463 	.m1 = { .min = 12, .max = 22 },
464 	.m2 = { .min = 5, .max = 9 },
465 	.p = { .min = 28, .max = 112 },
466 	.p1 = { .min = 2, .max = 8 },
467 	.p2 = { .dot_limit = 225000,
468 		.p2_slow = 14, .p2_fast = 14 },
469 };
470 
471 static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
472 	.dot = { .min = 25000, .max = 350000 },
473 	.vco = { .min = 1760000, .max = 3510000 },
474 	.n = { .min = 1, .max = 3 },
475 	.m = { .min = 79, .max = 126 },
476 	.m1 = { .min = 12, .max = 22 },
477 	.m2 = { .min = 5, .max = 9 },
478 	.p = { .min = 14, .max = 42 },
479 	.p1 = { .min = 2, .max = 6 },
480 	.p2 = { .dot_limit = 225000,
481 		.p2_slow = 7, .p2_fast = 7 },
482 };
483 
484 static const struct intel_limit intel_limits_vlv = {
485 	 /*
486 	  * These are the data rate limits (measured in fast clocks)
487 	  * since those are the strictest limits we have. The fast
488 	  * clock and actual rate limits are more relaxed, so checking
489 	  * them would make no difference.
490 	  */
491 	.dot = { .min = 25000 * 5, .max = 270000 * 5 },
492 	.vco = { .min = 4000000, .max = 6000000 },
493 	.n = { .min = 1, .max = 7 },
494 	.m1 = { .min = 2, .max = 3 },
495 	.m2 = { .min = 11, .max = 156 },
496 	.p1 = { .min = 2, .max = 3 },
497 	.p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
498 };
499 
500 static const struct intel_limit intel_limits_chv = {
501 	/*
502 	 * These are the data rate limits (measured in fast clocks)
503 	 * since those are the strictest limits we have.  The fast
504 	 * clock and actual rate limits are more relaxed, so checking
505 	 * them would make no difference.
506 	 */
507 	.dot = { .min = 25000 * 5, .max = 540000 * 5},
508 	.vco = { .min = 4800000, .max = 6480000 },
509 	.n = { .min = 1, .max = 1 },
510 	.m1 = { .min = 2, .max = 2 },
511 	.m2 = { .min = 24 << 22, .max = 175 << 22 },
512 	.p1 = { .min = 2, .max = 4 },
513 	.p2 = {	.p2_slow = 1, .p2_fast = 14 },
514 };
515 
516 static const struct intel_limit intel_limits_bxt = {
517 	/* FIXME: find real dot limits */
518 	.dot = { .min = 0, .max = INT_MAX },
519 	.vco = { .min = 4800000, .max = 6700000 },
520 	.n = { .min = 1, .max = 1 },
521 	.m1 = { .min = 2, .max = 2 },
522 	/* FIXME: find real m2 limits */
523 	.m2 = { .min = 2 << 22, .max = 255 << 22 },
524 	.p1 = { .min = 2, .max = 4 },
525 	.p2 = { .p2_slow = 1, .p2_fast = 20 },
526 };
527 
528 static bool
529 needs_modeset(struct drm_crtc_state *state)
530 {
531 	return drm_atomic_crtc_needs_modeset(state);
532 }
533 
534 /*
535  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
536  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
537  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
538  * The helpers' return value is the rate of the clock that is fed to the
539  * display engine's pipe which can be the above fast dot clock rate or a
540  * divided-down version of it.
541  */
542 /* m1 is reserved as 0 in Pineview, n is a ring counter */
543 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
544 {
545 	clock->m = clock->m2 + 2;
546 	clock->p = clock->p1 * clock->p2;
547 	if (WARN_ON(clock->n == 0 || clock->p == 0))
548 		return 0;
549 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
550 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
551 
552 	return clock->dot;
553 }
554 
555 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
556 {
557 	return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
558 }
559 
560 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
561 {
562 	clock->m = i9xx_dpll_compute_m(clock);
563 	clock->p = clock->p1 * clock->p2;
564 	if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
565 		return 0;
566 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
567 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
568 
569 	return clock->dot;
570 }
571 
572 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
573 {
574 	clock->m = clock->m1 * clock->m2;
575 	clock->p = clock->p1 * clock->p2;
576 	if (WARN_ON(clock->n == 0 || clock->p == 0))
577 		return 0;
578 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
579 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
580 
581 	return clock->dot / 5;
582 }
583 
584 int chv_calc_dpll_params(int refclk, struct dpll *clock)
585 {
586 	clock->m = clock->m1 * clock->m2;
587 	clock->p = clock->p1 * clock->p2;
588 	if (WARN_ON(clock->n == 0 || clock->p == 0))
589 		return 0;
590 	clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
591 			clock->n << 22);
592 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
593 
594 	return clock->dot / 5;
595 }
596 
597 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
598 /**
599  * Returns whether the given set of divisors are valid for a given refclk with
600  * the given connectors.
601  */
602 
603 static bool intel_PLL_is_valid(struct drm_device *dev,
604 			       const struct intel_limit *limit,
605 			       const struct dpll *clock)
606 {
607 	if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
608 		INTELPllInvalid("n out of range\n");
609 	if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
610 		INTELPllInvalid("p1 out of range\n");
611 	if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
612 		INTELPllInvalid("m2 out of range\n");
613 	if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
614 		INTELPllInvalid("m1 out of range\n");
615 
616 	if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) &&
617 	    !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev))
618 		if (clock->m1 <= clock->m2)
619 			INTELPllInvalid("m1 <= m2\n");
620 
621 	if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev)) {
622 		if (clock->p < limit->p.min || limit->p.max < clock->p)
623 			INTELPllInvalid("p out of range\n");
624 		if (clock->m < limit->m.min || limit->m.max < clock->m)
625 			INTELPllInvalid("m out of range\n");
626 	}
627 
628 	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
629 		INTELPllInvalid("vco out of range\n");
630 	/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
631 	 * connector, etc., rather than just a single range.
632 	 */
633 	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
634 		INTELPllInvalid("dot out of range\n");
635 
636 	return true;
637 }
638 
639 static int
640 i9xx_select_p2_div(const struct intel_limit *limit,
641 		   const struct intel_crtc_state *crtc_state,
642 		   int target)
643 {
644 	struct drm_device *dev = crtc_state->base.crtc->dev;
645 
646 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
647 		/*
648 		 * For LVDS just rely on its current settings for dual-channel.
649 		 * We haven't figured out how to reliably set up different
650 		 * single/dual channel state, if we even can.
651 		 */
652 		if (intel_is_dual_link_lvds(dev))
653 			return limit->p2.p2_fast;
654 		else
655 			return limit->p2.p2_slow;
656 	} else {
657 		if (target < limit->p2.dot_limit)
658 			return limit->p2.p2_slow;
659 		else
660 			return limit->p2.p2_fast;
661 	}
662 }
663 
664 /*
665  * Returns a set of divisors for the desired target clock with the given
666  * refclk, or FALSE.  The returned values represent the clock equation:
667  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
668  *
669  * Target and reference clocks are specified in kHz.
670  *
671  * If match_clock is provided, then best_clock P divider must match the P
672  * divider from @match_clock used for LVDS downclocking.
673  */
674 static bool
675 i9xx_find_best_dpll(const struct intel_limit *limit,
676 		    struct intel_crtc_state *crtc_state,
677 		    int target, int refclk, struct dpll *match_clock,
678 		    struct dpll *best_clock)
679 {
680 	struct drm_device *dev = crtc_state->base.crtc->dev;
681 	struct dpll clock;
682 	int err = target;
683 
684 	memset(best_clock, 0, sizeof(*best_clock));
685 
686 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
687 
688 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
689 	     clock.m1++) {
690 		for (clock.m2 = limit->m2.min;
691 		     clock.m2 <= limit->m2.max; clock.m2++) {
692 			if (clock.m2 >= clock.m1)
693 				break;
694 			for (clock.n = limit->n.min;
695 			     clock.n <= limit->n.max; clock.n++) {
696 				for (clock.p1 = limit->p1.min;
697 					clock.p1 <= limit->p1.max; clock.p1++) {
698 					int this_err;
699 
700 					i9xx_calc_dpll_params(refclk, &clock);
701 					if (!intel_PLL_is_valid(dev, limit,
702 								&clock))
703 						continue;
704 					if (match_clock &&
705 					    clock.p != match_clock->p)
706 						continue;
707 
708 					this_err = abs(clock.dot - target);
709 					if (this_err < err) {
710 						*best_clock = clock;
711 						err = this_err;
712 					}
713 				}
714 			}
715 		}
716 	}
717 
718 	return (err != target);
719 }
720 
721 /*
722  * Returns a set of divisors for the desired target clock with the given
723  * refclk, or FALSE.  The returned values represent the clock equation:
724  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
725  *
726  * Target and reference clocks are specified in kHz.
727  *
728  * If match_clock is provided, then best_clock P divider must match the P
729  * divider from @match_clock used for LVDS downclocking.
730  */
731 static bool
732 pnv_find_best_dpll(const struct intel_limit *limit,
733 		   struct intel_crtc_state *crtc_state,
734 		   int target, int refclk, struct dpll *match_clock,
735 		   struct dpll *best_clock)
736 {
737 	struct drm_device *dev = crtc_state->base.crtc->dev;
738 	struct dpll clock;
739 	int err = target;
740 
741 	memset(best_clock, 0, sizeof(*best_clock));
742 
743 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
744 
745 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
746 	     clock.m1++) {
747 		for (clock.m2 = limit->m2.min;
748 		     clock.m2 <= limit->m2.max; clock.m2++) {
749 			for (clock.n = limit->n.min;
750 			     clock.n <= limit->n.max; clock.n++) {
751 				for (clock.p1 = limit->p1.min;
752 					clock.p1 <= limit->p1.max; clock.p1++) {
753 					int this_err;
754 
755 					pnv_calc_dpll_params(refclk, &clock);
756 					if (!intel_PLL_is_valid(dev, limit,
757 								&clock))
758 						continue;
759 					if (match_clock &&
760 					    clock.p != match_clock->p)
761 						continue;
762 
763 					this_err = abs(clock.dot - target);
764 					if (this_err < err) {
765 						*best_clock = clock;
766 						err = this_err;
767 					}
768 				}
769 			}
770 		}
771 	}
772 
773 	return (err != target);
774 }
775 
776 /*
777  * Returns a set of divisors for the desired target clock with the given
778  * refclk, or FALSE.  The returned values represent the clock equation:
779  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
780  *
781  * Target and reference clocks are specified in kHz.
782  *
783  * If match_clock is provided, then best_clock P divider must match the P
784  * divider from @match_clock used for LVDS downclocking.
785  */
786 static bool
787 g4x_find_best_dpll(const struct intel_limit *limit,
788 		   struct intel_crtc_state *crtc_state,
789 		   int target, int refclk, struct dpll *match_clock,
790 		   struct dpll *best_clock)
791 {
792 	struct drm_device *dev = crtc_state->base.crtc->dev;
793 	struct dpll clock;
794 	int max_n;
795 	bool found = false;
796 	/* approximately equals target * 0.00585 */
797 	int err_most = (target >> 8) + (target >> 9);
798 
799 	memset(best_clock, 0, sizeof(*best_clock));
800 
801 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
802 
803 	max_n = limit->n.max;
804 	/* based on hardware requirement, prefer smaller n to precision */
805 	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
806 		/* based on hardware requirement, prefere larger m1,m2 */
807 		for (clock.m1 = limit->m1.max;
808 		     clock.m1 >= limit->m1.min; clock.m1--) {
809 			for (clock.m2 = limit->m2.max;
810 			     clock.m2 >= limit->m2.min; clock.m2--) {
811 				for (clock.p1 = limit->p1.max;
812 				     clock.p1 >= limit->p1.min; clock.p1--) {
813 					int this_err;
814 
815 					i9xx_calc_dpll_params(refclk, &clock);
816 					if (!intel_PLL_is_valid(dev, limit,
817 								&clock))
818 						continue;
819 
820 					this_err = abs(clock.dot - target);
821 					if (this_err < err_most) {
822 						*best_clock = clock;
823 						err_most = this_err;
824 						max_n = clock.n;
825 						found = true;
826 					}
827 				}
828 			}
829 		}
830 	}
831 	return found;
832 }
833 
834 /*
835  * Check if the calculated PLL configuration is more optimal compared to the
836  * best configuration and error found so far. Return the calculated error.
837  */
838 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
839 			       const struct dpll *calculated_clock,
840 			       const struct dpll *best_clock,
841 			       unsigned int best_error_ppm,
842 			       unsigned int *error_ppm)
843 {
844 	/*
845 	 * For CHV ignore the error and consider only the P value.
846 	 * Prefer a bigger P value based on HW requirements.
847 	 */
848 	if (IS_CHERRYVIEW(dev)) {
849 		*error_ppm = 0;
850 
851 		return calculated_clock->p > best_clock->p;
852 	}
853 
854 	if (WARN_ON_ONCE(!target_freq))
855 		return false;
856 
857 	*error_ppm = div_u64(1000000ULL *
858 				abs(target_freq - calculated_clock->dot),
859 			     target_freq);
860 	/*
861 	 * Prefer a better P value over a better (smaller) error if the error
862 	 * is small. Ensure this preference for future configurations too by
863 	 * setting the error to 0.
864 	 */
865 	if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
866 		*error_ppm = 0;
867 
868 		return true;
869 	}
870 
871 	return *error_ppm + 10 < best_error_ppm;
872 }
873 
874 /*
875  * Returns a set of divisors for the desired target clock with the given
876  * refclk, or FALSE.  The returned values represent the clock equation:
877  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
878  */
879 static bool
880 vlv_find_best_dpll(const struct intel_limit *limit,
881 		   struct intel_crtc_state *crtc_state,
882 		   int target, int refclk, struct dpll *match_clock,
883 		   struct dpll *best_clock)
884 {
885 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
886 	struct drm_device *dev = crtc->base.dev;
887 	struct dpll clock;
888 	unsigned int bestppm = 1000000;
889 	/* min update 19.2 MHz */
890 	int max_n = min(limit->n.max, refclk / 19200);
891 	bool found = false;
892 
893 	target *= 5; /* fast clock */
894 
895 	memset(best_clock, 0, sizeof(*best_clock));
896 
897 	/* based on hardware requirement, prefer smaller n to precision */
898 	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
899 		for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
900 			for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
901 			     clock.p2 -= clock.p2 > 10 ? 2 : 1) {
902 				clock.p = clock.p1 * clock.p2;
903 				/* based on hardware requirement, prefer bigger m1,m2 values */
904 				for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
905 					unsigned int ppm;
906 
907 					clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
908 								     refclk * clock.m1);
909 
910 					vlv_calc_dpll_params(refclk, &clock);
911 
912 					if (!intel_PLL_is_valid(dev, limit,
913 								&clock))
914 						continue;
915 
916 					if (!vlv_PLL_is_optimal(dev, target,
917 								&clock,
918 								best_clock,
919 								bestppm, &ppm))
920 						continue;
921 
922 					*best_clock = clock;
923 					bestppm = ppm;
924 					found = true;
925 				}
926 			}
927 		}
928 	}
929 
930 	return found;
931 }
932 
933 /*
934  * Returns a set of divisors for the desired target clock with the given
935  * refclk, or FALSE.  The returned values represent the clock equation:
936  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
937  */
938 static bool
939 chv_find_best_dpll(const struct intel_limit *limit,
940 		   struct intel_crtc_state *crtc_state,
941 		   int target, int refclk, struct dpll *match_clock,
942 		   struct dpll *best_clock)
943 {
944 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
945 	struct drm_device *dev = crtc->base.dev;
946 	unsigned int best_error_ppm;
947 	struct dpll clock;
948 	uint64_t m2;
949 	int found = false;
950 
951 	memset(best_clock, 0, sizeof(*best_clock));
952 	best_error_ppm = 1000000;
953 
954 	/*
955 	 * Based on hardware doc, the n always set to 1, and m1 always
956 	 * set to 2.  If requires to support 200Mhz refclk, we need to
957 	 * revisit this because n may not 1 anymore.
958 	 */
959 	clock.n = 1, clock.m1 = 2;
960 	target *= 5;	/* fast clock */
961 
962 	for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
963 		for (clock.p2 = limit->p2.p2_fast;
964 				clock.p2 >= limit->p2.p2_slow;
965 				clock.p2 -= clock.p2 > 10 ? 2 : 1) {
966 			unsigned int error_ppm;
967 
968 			clock.p = clock.p1 * clock.p2;
969 
970 			m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
971 					clock.n) << 22, refclk * clock.m1);
972 
973 			if (m2 > INT_MAX/clock.m1)
974 				continue;
975 
976 			clock.m2 = m2;
977 
978 			chv_calc_dpll_params(refclk, &clock);
979 
980 			if (!intel_PLL_is_valid(dev, limit, &clock))
981 				continue;
982 
983 			if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
984 						best_error_ppm, &error_ppm))
985 				continue;
986 
987 			*best_clock = clock;
988 			best_error_ppm = error_ppm;
989 			found = true;
990 		}
991 	}
992 
993 	return found;
994 }
995 
996 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
997 			struct dpll *best_clock)
998 {
999 	int refclk = 100000;
1000 	const struct intel_limit *limit = &intel_limits_bxt;
1001 
1002 	return chv_find_best_dpll(limit, crtc_state,
1003 				  target_clock, refclk, NULL, best_clock);
1004 }
1005 
1006 bool intel_crtc_active(struct drm_crtc *crtc)
1007 {
1008 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1009 
1010 	/* Be paranoid as we can arrive here with only partial
1011 	 * state retrieved from the hardware during setup.
1012 	 *
1013 	 * We can ditch the adjusted_mode.crtc_clock check as soon
1014 	 * as Haswell has gained clock readout/fastboot support.
1015 	 *
1016 	 * We can ditch the crtc->primary->fb check as soon as we can
1017 	 * properly reconstruct framebuffers.
1018 	 *
1019 	 * FIXME: The intel_crtc->active here should be switched to
1020 	 * crtc->state->active once we have proper CRTC states wired up
1021 	 * for atomic.
1022 	 */
1023 	return intel_crtc->active && crtc->primary->state->fb &&
1024 		intel_crtc->config->base.adjusted_mode.crtc_clock;
1025 }
1026 
1027 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1028 					     enum i915_pipe pipe)
1029 {
1030 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1031 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1032 
1033 	return intel_crtc->config->cpu_transcoder;
1034 }
1035 
1036 static bool pipe_dsl_stopped(struct drm_device *dev, enum i915_pipe pipe)
1037 {
1038 	struct drm_i915_private *dev_priv = to_i915(dev);
1039 	i915_reg_t reg = PIPEDSL(pipe);
1040 	u32 line1, line2;
1041 	u32 line_mask;
1042 
1043 	if (IS_GEN2(dev))
1044 		line_mask = DSL_LINEMASK_GEN2;
1045 	else
1046 		line_mask = DSL_LINEMASK_GEN3;
1047 
1048 	line1 = I915_READ(reg) & line_mask;
1049 	msleep(5);
1050 	line2 = I915_READ(reg) & line_mask;
1051 
1052 	return line1 == line2;
1053 }
1054 
1055 /*
1056  * intel_wait_for_pipe_off - wait for pipe to turn off
1057  * @crtc: crtc whose pipe to wait for
1058  *
1059  * After disabling a pipe, we can't wait for vblank in the usual way,
1060  * spinning on the vblank interrupt status bit, since we won't actually
1061  * see an interrupt when the pipe is disabled.
1062  *
1063  * On Gen4 and above:
1064  *   wait for the pipe register state bit to turn off
1065  *
1066  * Otherwise:
1067  *   wait for the display line value to settle (it usually
1068  *   ends up stopping at the start of the next frame).
1069  *
1070  */
1071 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1072 {
1073 	struct drm_device *dev = crtc->base.dev;
1074 	struct drm_i915_private *dev_priv = to_i915(dev);
1075 	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1076 	enum i915_pipe pipe = crtc->pipe;
1077 
1078 	if (INTEL_INFO(dev)->gen >= 4) {
1079 		i915_reg_t reg = PIPECONF(cpu_transcoder);
1080 
1081 		/* Wait for the Pipe State to go off */
1082 		if (intel_wait_for_register(dev_priv,
1083 					    reg, I965_PIPECONF_ACTIVE, 0,
1084 					    100))
1085 			WARN(1, "pipe_off wait timed out\n");
1086 	} else {
1087 		/* Wait for the display line to settle */
1088 		if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1089 			WARN(1, "pipe_off wait timed out\n");
1090 	}
1091 }
1092 
1093 /* Only for pre-ILK configs */
1094 void assert_pll(struct drm_i915_private *dev_priv,
1095 		enum i915_pipe pipe, bool state)
1096 {
1097 	u32 val;
1098 	bool cur_state;
1099 
1100 	val = I915_READ(DPLL(pipe));
1101 	cur_state = !!(val & DPLL_VCO_ENABLE);
1102 	I915_STATE_WARN(cur_state != state,
1103 	     "PLL state assertion failure (expected %s, current %s)\n",
1104 			onoff(state), onoff(cur_state));
1105 }
1106 
1107 /* XXX: the dsi pll is shared between MIPI DSI ports */
1108 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1109 {
1110 	u32 val;
1111 	bool cur_state;
1112 
1113 	mutex_lock(&dev_priv->sb_lock);
1114 	val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1115 	mutex_unlock(&dev_priv->sb_lock);
1116 
1117 	cur_state = val & DSI_PLL_VCO_EN;
1118 	I915_STATE_WARN(cur_state != state,
1119 	     "DSI PLL state assertion failure (expected %s, current %s)\n",
1120 			onoff(state), onoff(cur_state));
1121 }
1122 
1123 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1124 			  enum i915_pipe pipe, bool state)
1125 {
1126 	bool cur_state;
1127 	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1128 								      pipe);
1129 
1130 	if (HAS_DDI(dev_priv)) {
1131 		/* DDI does not have a specific FDI_TX register */
1132 		u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1133 		cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1134 	} else {
1135 		u32 val = I915_READ(FDI_TX_CTL(pipe));
1136 		cur_state = !!(val & FDI_TX_ENABLE);
1137 	}
1138 	I915_STATE_WARN(cur_state != state,
1139 	     "FDI TX state assertion failure (expected %s, current %s)\n",
1140 			onoff(state), onoff(cur_state));
1141 }
1142 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1143 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1144 
1145 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1146 			  enum i915_pipe pipe, bool state)
1147 {
1148 	u32 val;
1149 	bool cur_state;
1150 
1151 	val = I915_READ(FDI_RX_CTL(pipe));
1152 	cur_state = !!(val & FDI_RX_ENABLE);
1153 	I915_STATE_WARN(cur_state != state,
1154 	     "FDI RX state assertion failure (expected %s, current %s)\n",
1155 			onoff(state), onoff(cur_state));
1156 }
1157 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1158 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1159 
1160 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1161 				      enum i915_pipe pipe)
1162 {
1163 	u32 val;
1164 
1165 	/* ILK FDI PLL is always enabled */
1166 	if (IS_GEN5(dev_priv))
1167 		return;
1168 
1169 	/* On Haswell, DDI ports are responsible for the FDI PLL setup */
1170 	if (HAS_DDI(dev_priv))
1171 		return;
1172 
1173 	val = I915_READ(FDI_TX_CTL(pipe));
1174 	I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1175 }
1176 
1177 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1178 		       enum i915_pipe pipe, bool state)
1179 {
1180 	u32 val;
1181 	bool cur_state;
1182 
1183 	val = I915_READ(FDI_RX_CTL(pipe));
1184 	cur_state = !!(val & FDI_RX_PLL_ENABLE);
1185 	I915_STATE_WARN(cur_state != state,
1186 	     "FDI RX PLL assertion failure (expected %s, current %s)\n",
1187 			onoff(state), onoff(cur_state));
1188 }
1189 
1190 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1191 			   enum i915_pipe pipe)
1192 {
1193 	struct drm_device *dev = &dev_priv->drm;
1194 	i915_reg_t pp_reg;
1195 	u32 val;
1196 	enum i915_pipe panel_pipe = PIPE_A;
1197 	bool locked = true;
1198 
1199 	if (WARN_ON(HAS_DDI(dev)))
1200 		return;
1201 
1202 	if (HAS_PCH_SPLIT(dev)) {
1203 		u32 port_sel;
1204 
1205 		pp_reg = PCH_PP_CONTROL;
1206 		port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1207 
1208 		if (port_sel == PANEL_PORT_SELECT_LVDS &&
1209 		    I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1210 			panel_pipe = PIPE_B;
1211 		/* XXX: else fix for eDP */
1212 	} else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1213 		/* presumably write lock depends on pipe, not port select */
1214 		pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1215 		panel_pipe = pipe;
1216 	} else {
1217 		pp_reg = PP_CONTROL;
1218 		if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1219 			panel_pipe = PIPE_B;
1220 	}
1221 
1222 	val = I915_READ(pp_reg);
1223 	if (!(val & PANEL_POWER_ON) ||
1224 	    ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1225 		locked = false;
1226 
1227 	I915_STATE_WARN(panel_pipe == pipe && locked,
1228 	     "panel assertion failure, pipe %c regs locked\n",
1229 	     pipe_name(pipe));
1230 }
1231 
1232 static void assert_cursor(struct drm_i915_private *dev_priv,
1233 			  enum i915_pipe pipe, bool state)
1234 {
1235 	struct drm_device *dev = &dev_priv->drm;
1236 	bool cur_state;
1237 
1238 	if (IS_845G(dev) || IS_I865G(dev))
1239 		cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1240 	else
1241 		cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1242 
1243 	I915_STATE_WARN(cur_state != state,
1244 	     "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1245 			pipe_name(pipe), onoff(state), onoff(cur_state));
1246 }
1247 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1248 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1249 
1250 void assert_pipe(struct drm_i915_private *dev_priv,
1251 		 enum i915_pipe pipe, bool state)
1252 {
1253 	bool cur_state;
1254 	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1255 								      pipe);
1256 	enum intel_display_power_domain power_domain;
1257 
1258 	/* if we need the pipe quirk it must be always on */
1259 	if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1260 	    (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1261 		state = true;
1262 
1263 	power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1264 	if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1265 		u32 val = I915_READ(PIPECONF(cpu_transcoder));
1266 		cur_state = !!(val & PIPECONF_ENABLE);
1267 
1268 		intel_display_power_put(dev_priv, power_domain);
1269 	} else {
1270 		cur_state = false;
1271 	}
1272 
1273 	I915_STATE_WARN(cur_state != state,
1274 	     "pipe %c assertion failure (expected %s, current %s)\n",
1275 			pipe_name(pipe), onoff(state), onoff(cur_state));
1276 }
1277 
1278 static void assert_plane(struct drm_i915_private *dev_priv,
1279 			 enum plane plane, bool state)
1280 {
1281 	u32 val;
1282 	bool cur_state;
1283 
1284 	val = I915_READ(DSPCNTR(plane));
1285 	cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1286 	I915_STATE_WARN(cur_state != state,
1287 	     "plane %c assertion failure (expected %s, current %s)\n",
1288 			plane_name(plane), onoff(state), onoff(cur_state));
1289 }
1290 
1291 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1292 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1293 
1294 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1295 				   enum i915_pipe pipe)
1296 {
1297 	struct drm_device *dev = &dev_priv->drm;
1298 	int i;
1299 
1300 	/* Primary planes are fixed to pipes on gen4+ */
1301 	if (INTEL_INFO(dev)->gen >= 4) {
1302 		u32 val = I915_READ(DSPCNTR(pipe));
1303 		I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1304 		     "plane %c assertion failure, should be disabled but not\n",
1305 		     plane_name(pipe));
1306 		return;
1307 	}
1308 
1309 	/* Need to check both planes against the pipe */
1310 	for_each_pipe(dev_priv, i) {
1311 		u32 val = I915_READ(DSPCNTR(i));
1312 		enum i915_pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1313 			DISPPLANE_SEL_PIPE_SHIFT;
1314 		I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1315 		     "plane %c assertion failure, should be off on pipe %c but is still active\n",
1316 		     plane_name(i), pipe_name(pipe));
1317 	}
1318 }
1319 
1320 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1321 				    enum i915_pipe pipe)
1322 {
1323 	struct drm_device *dev = &dev_priv->drm;
1324 	int sprite;
1325 
1326 	if (INTEL_INFO(dev)->gen >= 9) {
1327 		for_each_sprite(dev_priv, pipe, sprite) {
1328 			u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1329 			I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1330 			     "plane %d assertion failure, should be off on pipe %c but is still active\n",
1331 			     sprite, pipe_name(pipe));
1332 		}
1333 	} else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1334 		for_each_sprite(dev_priv, pipe, sprite) {
1335 			u32 val = I915_READ(SPCNTR(pipe, sprite));
1336 			I915_STATE_WARN(val & SP_ENABLE,
1337 			     "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1338 			     sprite_name(pipe, sprite), pipe_name(pipe));
1339 		}
1340 	} else if (INTEL_INFO(dev)->gen >= 7) {
1341 		u32 val = I915_READ(SPRCTL(pipe));
1342 		I915_STATE_WARN(val & SPRITE_ENABLE,
1343 		     "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1344 		     plane_name(pipe), pipe_name(pipe));
1345 	} else if (INTEL_INFO(dev)->gen >= 5) {
1346 		u32 val = I915_READ(DVSCNTR(pipe));
1347 		I915_STATE_WARN(val & DVS_ENABLE,
1348 		     "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1349 		     plane_name(pipe), pipe_name(pipe));
1350 	}
1351 }
1352 
1353 static void assert_vblank_disabled(struct drm_crtc *crtc)
1354 {
1355 	if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1356 		drm_crtc_vblank_put(crtc);
1357 }
1358 
1359 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1360 				    enum i915_pipe pipe)
1361 {
1362 	u32 val;
1363 	bool enabled;
1364 
1365 	val = I915_READ(PCH_TRANSCONF(pipe));
1366 	enabled = !!(val & TRANS_ENABLE);
1367 	I915_STATE_WARN(enabled,
1368 	     "transcoder assertion failed, should be off on pipe %c but is still active\n",
1369 	     pipe_name(pipe));
1370 }
1371 
1372 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1373 			    enum i915_pipe pipe, u32 port_sel, u32 val)
1374 {
1375 	if ((val & DP_PORT_EN) == 0)
1376 		return false;
1377 
1378 	if (HAS_PCH_CPT(dev_priv)) {
1379 		u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1380 		if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1381 			return false;
1382 	} else if (IS_CHERRYVIEW(dev_priv)) {
1383 		if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1384 			return false;
1385 	} else {
1386 		if ((val & DP_PIPE_MASK) != (pipe << 30))
1387 			return false;
1388 	}
1389 	return true;
1390 }
1391 
1392 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1393 			      enum i915_pipe pipe, u32 val)
1394 {
1395 	if ((val & SDVO_ENABLE) == 0)
1396 		return false;
1397 
1398 	if (HAS_PCH_CPT(dev_priv)) {
1399 		if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1400 			return false;
1401 	} else if (IS_CHERRYVIEW(dev_priv)) {
1402 		if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1403 			return false;
1404 	} else {
1405 		if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1406 			return false;
1407 	}
1408 	return true;
1409 }
1410 
1411 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1412 			      enum i915_pipe pipe, u32 val)
1413 {
1414 	if ((val & LVDS_PORT_EN) == 0)
1415 		return false;
1416 
1417 	if (HAS_PCH_CPT(dev_priv)) {
1418 		if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1419 			return false;
1420 	} else {
1421 		if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1422 			return false;
1423 	}
1424 	return true;
1425 }
1426 
1427 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1428 			      enum i915_pipe pipe, u32 val)
1429 {
1430 	if ((val & ADPA_DAC_ENABLE) == 0)
1431 		return false;
1432 	if (HAS_PCH_CPT(dev_priv)) {
1433 		if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1434 			return false;
1435 	} else {
1436 		if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1437 			return false;
1438 	}
1439 	return true;
1440 }
1441 
1442 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1443 				   enum i915_pipe pipe, i915_reg_t reg,
1444 				   u32 port_sel)
1445 {
1446 	u32 val = I915_READ(reg);
1447 	I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1448 	     "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1449 	     i915_mmio_reg_offset(reg), pipe_name(pipe));
1450 
1451 	I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
1452 	     && (val & DP_PIPEB_SELECT),
1453 	     "IBX PCH dp port still using transcoder B\n");
1454 }
1455 
1456 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1457 				     enum i915_pipe pipe, i915_reg_t reg)
1458 {
1459 	u32 val = I915_READ(reg);
1460 	I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1461 	     "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1462 	     i915_mmio_reg_offset(reg), pipe_name(pipe));
1463 
1464 	I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
1465 	     && (val & SDVO_PIPE_B_SELECT),
1466 	     "IBX PCH hdmi port still using transcoder B\n");
1467 }
1468 
1469 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1470 				      enum i915_pipe pipe)
1471 {
1472 	u32 val;
1473 
1474 	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1475 	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1476 	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1477 
1478 	val = I915_READ(PCH_ADPA);
1479 	I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1480 	     "PCH VGA enabled on transcoder %c, should be disabled\n",
1481 	     pipe_name(pipe));
1482 
1483 	val = I915_READ(PCH_LVDS);
1484 	I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1485 	     "PCH LVDS enabled on transcoder %c, should be disabled\n",
1486 	     pipe_name(pipe));
1487 
1488 	assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1489 	assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1490 	assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1491 }
1492 
1493 static void _vlv_enable_pll(struct intel_crtc *crtc,
1494 			    const struct intel_crtc_state *pipe_config)
1495 {
1496 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1497 	enum i915_pipe pipe = crtc->pipe;
1498 
1499 	I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1500 	POSTING_READ(DPLL(pipe));
1501 	udelay(150);
1502 
1503 	if (intel_wait_for_register(dev_priv,
1504 				    DPLL(pipe),
1505 				    DPLL_LOCK_VLV,
1506 				    DPLL_LOCK_VLV,
1507 				    1))
1508 		DRM_ERROR("DPLL %d failed to lock\n", pipe);
1509 }
1510 
1511 static void vlv_enable_pll(struct intel_crtc *crtc,
1512 			   const struct intel_crtc_state *pipe_config)
1513 {
1514 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1515 	enum i915_pipe pipe = crtc->pipe;
1516 
1517 	assert_pipe_disabled(dev_priv, pipe);
1518 
1519 	/* PLL is protected by panel, make sure we can write it */
1520 	assert_panel_unlocked(dev_priv, pipe);
1521 
1522 	if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1523 		_vlv_enable_pll(crtc, pipe_config);
1524 
1525 	I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1526 	POSTING_READ(DPLL_MD(pipe));
1527 }
1528 
1529 
1530 static void _chv_enable_pll(struct intel_crtc *crtc,
1531 			    const struct intel_crtc_state *pipe_config)
1532 {
1533 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1534 	enum i915_pipe pipe = crtc->pipe;
1535 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1536 	u32 tmp;
1537 
1538 	mutex_lock(&dev_priv->sb_lock);
1539 
1540 	/* Enable back the 10bit clock to display controller */
1541 	tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1542 	tmp |= DPIO_DCLKP_EN;
1543 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1544 
1545 	mutex_unlock(&dev_priv->sb_lock);
1546 
1547 	/*
1548 	 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1549 	 */
1550 	udelay(1);
1551 
1552 	/* Enable PLL */
1553 	I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1554 
1555 	/* Check PLL is locked */
1556 	if (intel_wait_for_register(dev_priv,
1557 				    DPLL(pipe), DPLL_LOCK_VLV, DPLL_LOCK_VLV,
1558 				    1))
1559 		DRM_ERROR("PLL %d failed to lock\n", pipe);
1560 }
1561 
1562 static void chv_enable_pll(struct intel_crtc *crtc,
1563 			   const struct intel_crtc_state *pipe_config)
1564 {
1565 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1566 	enum i915_pipe pipe = crtc->pipe;
1567 
1568 	assert_pipe_disabled(dev_priv, pipe);
1569 
1570 	/* PLL is protected by panel, make sure we can write it */
1571 	assert_panel_unlocked(dev_priv, pipe);
1572 
1573 	if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1574 		_chv_enable_pll(crtc, pipe_config);
1575 
1576 	if (pipe != PIPE_A) {
1577 		/*
1578 		 * WaPixelRepeatModeFixForC0:chv
1579 		 *
1580 		 * DPLLCMD is AWOL. Use chicken bits to propagate
1581 		 * the value from DPLLBMD to either pipe B or C.
1582 		 */
1583 		I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1584 		I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1585 		I915_WRITE(CBR4_VLV, 0);
1586 		dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1587 
1588 		/*
1589 		 * DPLLB VGA mode also seems to cause problems.
1590 		 * We should always have it disabled.
1591 		 */
1592 		WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1593 	} else {
1594 		I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1595 		POSTING_READ(DPLL_MD(pipe));
1596 	}
1597 }
1598 
1599 static int intel_num_dvo_pipes(struct drm_device *dev)
1600 {
1601 	struct intel_crtc *crtc;
1602 	int count = 0;
1603 
1604 	for_each_intel_crtc(dev, crtc) {
1605 		count += crtc->base.state->active &&
1606 			intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO);
1607 	}
1608 
1609 	return count;
1610 }
1611 
1612 static void i9xx_enable_pll(struct intel_crtc *crtc)
1613 {
1614 	struct drm_device *dev = crtc->base.dev;
1615 	struct drm_i915_private *dev_priv = to_i915(dev);
1616 	i915_reg_t reg = DPLL(crtc->pipe);
1617 	u32 dpll = crtc->config->dpll_hw_state.dpll;
1618 
1619 	assert_pipe_disabled(dev_priv, crtc->pipe);
1620 
1621 	/* PLL is protected by panel, make sure we can write it */
1622 	if (IS_MOBILE(dev) && !IS_I830(dev))
1623 		assert_panel_unlocked(dev_priv, crtc->pipe);
1624 
1625 	/* Enable DVO 2x clock on both PLLs if necessary */
1626 	if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1627 		/*
1628 		 * It appears to be important that we don't enable this
1629 		 * for the current pipe before otherwise configuring the
1630 		 * PLL. No idea how this should be handled if multiple
1631 		 * DVO outputs are enabled simultaneosly.
1632 		 */
1633 		dpll |= DPLL_DVO_2X_MODE;
1634 		I915_WRITE(DPLL(!crtc->pipe),
1635 			   I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1636 	}
1637 
1638 	/*
1639 	 * Apparently we need to have VGA mode enabled prior to changing
1640 	 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1641 	 * dividers, even though the register value does change.
1642 	 */
1643 	I915_WRITE(reg, 0);
1644 
1645 	I915_WRITE(reg, dpll);
1646 
1647 	/* Wait for the clocks to stabilize. */
1648 	POSTING_READ(reg);
1649 	udelay(150);
1650 
1651 	if (INTEL_INFO(dev)->gen >= 4) {
1652 		I915_WRITE(DPLL_MD(crtc->pipe),
1653 			   crtc->config->dpll_hw_state.dpll_md);
1654 	} else {
1655 		/* The pixel multiplier can only be updated once the
1656 		 * DPLL is enabled and the clocks are stable.
1657 		 *
1658 		 * So write it again.
1659 		 */
1660 		I915_WRITE(reg, dpll);
1661 	}
1662 
1663 	/* We do this three times for luck */
1664 	I915_WRITE(reg, dpll);
1665 	POSTING_READ(reg);
1666 	udelay(150); /* wait for warmup */
1667 	I915_WRITE(reg, dpll);
1668 	POSTING_READ(reg);
1669 	udelay(150); /* wait for warmup */
1670 	I915_WRITE(reg, dpll);
1671 	POSTING_READ(reg);
1672 	udelay(150); /* wait for warmup */
1673 }
1674 
1675 /**
1676  * i9xx_disable_pll - disable a PLL
1677  * @dev_priv: i915 private structure
1678  * @pipe: pipe PLL to disable
1679  *
1680  * Disable the PLL for @pipe, making sure the pipe is off first.
1681  *
1682  * Note!  This is for pre-ILK only.
1683  */
1684 static void i9xx_disable_pll(struct intel_crtc *crtc)
1685 {
1686 	struct drm_device *dev = crtc->base.dev;
1687 	struct drm_i915_private *dev_priv = to_i915(dev);
1688 	enum i915_pipe pipe = crtc->pipe;
1689 
1690 	/* Disable DVO 2x clock on both PLLs if necessary */
1691 	if (IS_I830(dev) &&
1692 	    intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO) &&
1693 	    !intel_num_dvo_pipes(dev)) {
1694 		I915_WRITE(DPLL(PIPE_B),
1695 			   I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1696 		I915_WRITE(DPLL(PIPE_A),
1697 			   I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1698 	}
1699 
1700 	/* Don't disable pipe or pipe PLLs if needed */
1701 	if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1702 	    (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1703 		return;
1704 
1705 	/* Make sure the pipe isn't still relying on us */
1706 	assert_pipe_disabled(dev_priv, pipe);
1707 
1708 	I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1709 	POSTING_READ(DPLL(pipe));
1710 }
1711 
1712 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum i915_pipe pipe)
1713 {
1714 	u32 val;
1715 
1716 	/* Make sure the pipe isn't still relying on us */
1717 	assert_pipe_disabled(dev_priv, pipe);
1718 
1719 	val = DPLL_INTEGRATED_REF_CLK_VLV |
1720 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1721 	if (pipe != PIPE_A)
1722 		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1723 
1724 	I915_WRITE(DPLL(pipe), val);
1725 	POSTING_READ(DPLL(pipe));
1726 }
1727 
1728 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum i915_pipe pipe)
1729 {
1730 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1731 	u32 val;
1732 
1733 	/* Make sure the pipe isn't still relying on us */
1734 	assert_pipe_disabled(dev_priv, pipe);
1735 
1736 	val = DPLL_SSC_REF_CLK_CHV |
1737 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1738 	if (pipe != PIPE_A)
1739 		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1740 
1741 	I915_WRITE(DPLL(pipe), val);
1742 	POSTING_READ(DPLL(pipe));
1743 
1744 	mutex_lock(&dev_priv->sb_lock);
1745 
1746 	/* Disable 10bit clock to display controller */
1747 	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1748 	val &= ~DPIO_DCLKP_EN;
1749 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1750 
1751 	mutex_unlock(&dev_priv->sb_lock);
1752 }
1753 
1754 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1755 			 struct intel_digital_port *dport,
1756 			 unsigned int expected_mask)
1757 {
1758 	u32 port_mask;
1759 	i915_reg_t dpll_reg;
1760 
1761 	switch (dport->port) {
1762 	case PORT_B:
1763 		port_mask = DPLL_PORTB_READY_MASK;
1764 		dpll_reg = DPLL(0);
1765 		break;
1766 	case PORT_C:
1767 		port_mask = DPLL_PORTC_READY_MASK;
1768 		dpll_reg = DPLL(0);
1769 		expected_mask <<= 4;
1770 		break;
1771 	case PORT_D:
1772 		port_mask = DPLL_PORTD_READY_MASK;
1773 		dpll_reg = DPIO_PHY_STATUS;
1774 		break;
1775 	default:
1776 		BUG();
1777 	}
1778 
1779 	if (intel_wait_for_register(dev_priv,
1780 				    dpll_reg, port_mask, expected_mask,
1781 				    1000))
1782 		WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1783 		     port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1784 }
1785 
1786 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1787 					   enum i915_pipe pipe)
1788 {
1789 	struct drm_device *dev = &dev_priv->drm;
1790 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1791 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1792 	i915_reg_t reg;
1793 	uint32_t val, pipeconf_val;
1794 
1795 	/* Make sure PCH DPLL is enabled */
1796 	assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1797 
1798 	/* FDI must be feeding us bits for PCH ports */
1799 	assert_fdi_tx_enabled(dev_priv, pipe);
1800 	assert_fdi_rx_enabled(dev_priv, pipe);
1801 
1802 	if (HAS_PCH_CPT(dev)) {
1803 		/* Workaround: Set the timing override bit before enabling the
1804 		 * pch transcoder. */
1805 		reg = TRANS_CHICKEN2(pipe);
1806 		val = I915_READ(reg);
1807 		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1808 		I915_WRITE(reg, val);
1809 	}
1810 
1811 	reg = PCH_TRANSCONF(pipe);
1812 	val = I915_READ(reg);
1813 	pipeconf_val = I915_READ(PIPECONF(pipe));
1814 
1815 	if (HAS_PCH_IBX(dev_priv)) {
1816 		/*
1817 		 * Make the BPC in transcoder be consistent with
1818 		 * that in pipeconf reg. For HDMI we must use 8bpc
1819 		 * here for both 8bpc and 12bpc.
1820 		 */
1821 		val &= ~PIPECONF_BPC_MASK;
1822 		if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_HDMI))
1823 			val |= PIPECONF_8BPC;
1824 		else
1825 			val |= pipeconf_val & PIPECONF_BPC_MASK;
1826 	}
1827 
1828 	val &= ~TRANS_INTERLACE_MASK;
1829 	if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1830 		if (HAS_PCH_IBX(dev_priv) &&
1831 		    intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
1832 			val |= TRANS_LEGACY_INTERLACED_ILK;
1833 		else
1834 			val |= TRANS_INTERLACED;
1835 	else
1836 		val |= TRANS_PROGRESSIVE;
1837 
1838 	I915_WRITE(reg, val | TRANS_ENABLE);
1839 	if (intel_wait_for_register(dev_priv,
1840 				    reg, TRANS_STATE_ENABLE, TRANS_STATE_ENABLE,
1841 				    100))
1842 		DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1843 }
1844 
1845 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1846 				      enum transcoder cpu_transcoder)
1847 {
1848 	u32 val, pipeconf_val;
1849 
1850 	/* FDI must be feeding us bits for PCH ports */
1851 	assert_fdi_tx_enabled(dev_priv, (enum i915_pipe) cpu_transcoder);
1852 	assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1853 
1854 	/* Workaround: set timing override bit. */
1855 	val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1856 	val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1857 	I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1858 
1859 	val = TRANS_ENABLE;
1860 	pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1861 
1862 	if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1863 	    PIPECONF_INTERLACED_ILK)
1864 		val |= TRANS_INTERLACED;
1865 	else
1866 		val |= TRANS_PROGRESSIVE;
1867 
1868 	I915_WRITE(LPT_TRANSCONF, val);
1869 	if (intel_wait_for_register(dev_priv,
1870 				    LPT_TRANSCONF,
1871 				    TRANS_STATE_ENABLE,
1872 				    TRANS_STATE_ENABLE,
1873 				    100))
1874 		DRM_ERROR("Failed to enable PCH transcoder\n");
1875 }
1876 
1877 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1878 					    enum i915_pipe pipe)
1879 {
1880 	struct drm_device *dev = &dev_priv->drm;
1881 	i915_reg_t reg;
1882 	uint32_t val;
1883 
1884 	/* FDI relies on the transcoder */
1885 	assert_fdi_tx_disabled(dev_priv, pipe);
1886 	assert_fdi_rx_disabled(dev_priv, pipe);
1887 
1888 	/* Ports must be off as well */
1889 	assert_pch_ports_disabled(dev_priv, pipe);
1890 
1891 	reg = PCH_TRANSCONF(pipe);
1892 	val = I915_READ(reg);
1893 	val &= ~TRANS_ENABLE;
1894 	I915_WRITE(reg, val);
1895 	/* wait for PCH transcoder off, transcoder state */
1896 	if (intel_wait_for_register(dev_priv,
1897 				    reg, TRANS_STATE_ENABLE, 0,
1898 				    50))
1899 		DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1900 
1901 	if (HAS_PCH_CPT(dev)) {
1902 		/* Workaround: Clear the timing override chicken bit again. */
1903 		reg = TRANS_CHICKEN2(pipe);
1904 		val = I915_READ(reg);
1905 		val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1906 		I915_WRITE(reg, val);
1907 	}
1908 }
1909 
1910 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1911 {
1912 	u32 val;
1913 
1914 	val = I915_READ(LPT_TRANSCONF);
1915 	val &= ~TRANS_ENABLE;
1916 	I915_WRITE(LPT_TRANSCONF, val);
1917 	/* wait for PCH transcoder off, transcoder state */
1918 	if (intel_wait_for_register(dev_priv,
1919 				    LPT_TRANSCONF, TRANS_STATE_ENABLE, 0,
1920 				    50))
1921 		DRM_ERROR("Failed to disable PCH transcoder\n");
1922 
1923 	/* Workaround: clear timing override bit. */
1924 	val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1925 	val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1926 	I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1927 }
1928 
1929 /**
1930  * intel_enable_pipe - enable a pipe, asserting requirements
1931  * @crtc: crtc responsible for the pipe
1932  *
1933  * Enable @crtc's pipe, making sure that various hardware specific requirements
1934  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1935  */
1936 static void intel_enable_pipe(struct intel_crtc *crtc)
1937 {
1938 	struct drm_device *dev = crtc->base.dev;
1939 	struct drm_i915_private *dev_priv = to_i915(dev);
1940 	enum i915_pipe pipe = crtc->pipe;
1941 	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1942 	enum i915_pipe pch_transcoder;
1943 	i915_reg_t reg;
1944 	u32 val;
1945 
1946 	DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1947 
1948 	assert_planes_disabled(dev_priv, pipe);
1949 	assert_cursor_disabled(dev_priv, pipe);
1950 	assert_sprites_disabled(dev_priv, pipe);
1951 
1952 	if (HAS_PCH_LPT(dev_priv))
1953 		pch_transcoder = TRANSCODER_A;
1954 	else
1955 		pch_transcoder = pipe;
1956 
1957 	/*
1958 	 * A pipe without a PLL won't actually be able to drive bits from
1959 	 * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1960 	 * need the check.
1961 	 */
1962 	if (HAS_GMCH_DISPLAY(dev_priv)) {
1963 		if (intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DSI))
1964 			assert_dsi_pll_enabled(dev_priv);
1965 		else
1966 			assert_pll_enabled(dev_priv, pipe);
1967 	} else {
1968 		if (crtc->config->has_pch_encoder) {
1969 			/* if driving the PCH, we need FDI enabled */
1970 			assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1971 			assert_fdi_tx_pll_enabled(dev_priv,
1972 						  (enum i915_pipe) cpu_transcoder);
1973 		}
1974 		/* FIXME: assert CPU port conditions for SNB+ */
1975 	}
1976 
1977 	reg = PIPECONF(cpu_transcoder);
1978 	val = I915_READ(reg);
1979 	if (val & PIPECONF_ENABLE) {
1980 		WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1981 			  (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
1982 		return;
1983 	}
1984 
1985 	I915_WRITE(reg, val | PIPECONF_ENABLE);
1986 	POSTING_READ(reg);
1987 
1988 	/*
1989 	 * Until the pipe starts DSL will read as 0, which would cause
1990 	 * an apparent vblank timestamp jump, which messes up also the
1991 	 * frame count when it's derived from the timestamps. So let's
1992 	 * wait for the pipe to start properly before we call
1993 	 * drm_crtc_vblank_on()
1994 	 */
1995 	if (dev->max_vblank_count == 0 &&
1996 	    wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
1997 		DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
1998 }
1999 
2000 /**
2001  * intel_disable_pipe - disable a pipe, asserting requirements
2002  * @crtc: crtc whose pipes is to be disabled
2003  *
2004  * Disable the pipe of @crtc, making sure that various hardware
2005  * specific requirements are met, if applicable, e.g. plane
2006  * disabled, panel fitter off, etc.
2007  *
2008  * Will wait until the pipe has shut down before returning.
2009  */
2010 static void intel_disable_pipe(struct intel_crtc *crtc)
2011 {
2012 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2013 	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2014 	enum i915_pipe pipe = crtc->pipe;
2015 	i915_reg_t reg;
2016 	u32 val;
2017 
2018 	DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2019 
2020 	/*
2021 	 * Make sure planes won't keep trying to pump pixels to us,
2022 	 * or we might hang the display.
2023 	 */
2024 	assert_planes_disabled(dev_priv, pipe);
2025 	assert_cursor_disabled(dev_priv, pipe);
2026 	assert_sprites_disabled(dev_priv, pipe);
2027 
2028 	reg = PIPECONF(cpu_transcoder);
2029 	val = I915_READ(reg);
2030 	if ((val & PIPECONF_ENABLE) == 0)
2031 		return;
2032 
2033 	/*
2034 	 * Double wide has implications for planes
2035 	 * so best keep it disabled when not needed.
2036 	 */
2037 	if (crtc->config->double_wide)
2038 		val &= ~PIPECONF_DOUBLE_WIDE;
2039 
2040 	/* Don't disable pipe or pipe PLLs if needed */
2041 	if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2042 	    !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2043 		val &= ~PIPECONF_ENABLE;
2044 
2045 	I915_WRITE(reg, val);
2046 	if ((val & PIPECONF_ENABLE) == 0)
2047 		intel_wait_for_pipe_off(crtc);
2048 }
2049 
2050 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2051 {
2052 	return IS_GEN2(dev_priv) ? 2048 : 4096;
2053 }
2054 
2055 static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv,
2056 					   uint64_t fb_modifier, unsigned int cpp)
2057 {
2058 	switch (fb_modifier) {
2059 	case DRM_FORMAT_MOD_NONE:
2060 		return cpp;
2061 	case I915_FORMAT_MOD_X_TILED:
2062 		if (IS_GEN2(dev_priv))
2063 			return 128;
2064 		else
2065 			return 512;
2066 	case I915_FORMAT_MOD_Y_TILED:
2067 		if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2068 			return 128;
2069 		else
2070 			return 512;
2071 	case I915_FORMAT_MOD_Yf_TILED:
2072 		switch (cpp) {
2073 		case 1:
2074 			return 64;
2075 		case 2:
2076 		case 4:
2077 			return 128;
2078 		case 8:
2079 		case 16:
2080 			return 256;
2081 		default:
2082 			MISSING_CASE(cpp);
2083 			return cpp;
2084 		}
2085 		break;
2086 	default:
2087 		MISSING_CASE(fb_modifier);
2088 		return cpp;
2089 	}
2090 }
2091 
2092 unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2093 			       uint64_t fb_modifier, unsigned int cpp)
2094 {
2095 	if (fb_modifier == DRM_FORMAT_MOD_NONE)
2096 		return 1;
2097 	else
2098 		return intel_tile_size(dev_priv) /
2099 			intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2100 }
2101 
2102 /* Return the tile dimensions in pixel units */
2103 static void intel_tile_dims(const struct drm_i915_private *dev_priv,
2104 			    unsigned int *tile_width,
2105 			    unsigned int *tile_height,
2106 			    uint64_t fb_modifier,
2107 			    unsigned int cpp)
2108 {
2109 	unsigned int tile_width_bytes =
2110 		intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2111 
2112 	*tile_width = tile_width_bytes / cpp;
2113 	*tile_height = intel_tile_size(dev_priv) / tile_width_bytes;
2114 }
2115 
2116 unsigned int
2117 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2118 		      uint32_t pixel_format, uint64_t fb_modifier)
2119 {
2120 	unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2121 	unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2122 
2123 	return ALIGN(height, tile_height);
2124 }
2125 
2126 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2127 {
2128 	unsigned int size = 0;
2129 	int i;
2130 
2131 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2132 		size += rot_info->plane[i].width * rot_info->plane[i].height;
2133 
2134 	return size;
2135 }
2136 
2137 static void
2138 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2139 			struct drm_framebuffer *fb,
2140 			unsigned int rotation)
2141 {
2142 	if (intel_rotation_90_or_270(rotation)) {
2143 		*view = i915_ggtt_view_rotated;
2144 		view->params.rotated = to_intel_framebuffer(fb)->rot_info;
2145 	} else {
2146 		*view = i915_ggtt_view_normal;
2147 	}
2148 }
2149 
2150 static void
2151 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2152 		   struct drm_framebuffer *fb)
2153 {
2154 	struct intel_rotation_info *info = &to_intel_framebuffer(fb)->rot_info;
2155 	unsigned int tile_size, tile_width, tile_height, cpp;
2156 
2157 	tile_size = intel_tile_size(dev_priv);
2158 
2159 	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2160 	intel_tile_dims(dev_priv, &tile_width, &tile_height,
2161 			fb->modifier[0], cpp);
2162 
2163 	info->plane[0].width = DIV_ROUND_UP(fb->pitches[0], tile_width * cpp);
2164 	info->plane[0].height = DIV_ROUND_UP(fb->height, tile_height);
2165 
2166 	if (info->pixel_format == DRM_FORMAT_NV12) {
2167 		cpp = drm_format_plane_cpp(fb->pixel_format, 1);
2168 		intel_tile_dims(dev_priv, &tile_width, &tile_height,
2169 				fb->modifier[1], cpp);
2170 
2171 		info->uv_offset = fb->offsets[1];
2172 		info->plane[1].width = DIV_ROUND_UP(fb->pitches[1], tile_width * cpp);
2173 		info->plane[1].height = DIV_ROUND_UP(fb->height / 2, tile_height);
2174 	}
2175 }
2176 
2177 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2178 {
2179 	if (INTEL_INFO(dev_priv)->gen >= 9)
2180 		return 256 * 1024;
2181 	else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2182 		 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2183 		return 128 * 1024;
2184 	else if (INTEL_INFO(dev_priv)->gen >= 4)
2185 		return 4 * 1024;
2186 	else
2187 		return 0;
2188 }
2189 
2190 static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2191 					 uint64_t fb_modifier)
2192 {
2193 	switch (fb_modifier) {
2194 	case DRM_FORMAT_MOD_NONE:
2195 		return intel_linear_alignment(dev_priv);
2196 	case I915_FORMAT_MOD_X_TILED:
2197 		if (INTEL_INFO(dev_priv)->gen >= 9)
2198 			return 256 * 1024;
2199 		return 0;
2200 	case I915_FORMAT_MOD_Y_TILED:
2201 	case I915_FORMAT_MOD_Yf_TILED:
2202 		return 1 * 1024 * 1024;
2203 	default:
2204 		MISSING_CASE(fb_modifier);
2205 		return 0;
2206 	}
2207 }
2208 
2209 int
2210 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb,
2211 			   unsigned int rotation)
2212 {
2213 	struct drm_device *dev = fb->dev;
2214 	struct drm_i915_private *dev_priv = to_i915(dev);
2215 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2216 	struct i915_ggtt_view view;
2217 	u32 alignment;
2218 	int ret;
2219 
2220 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2221 
2222 	alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
2223 
2224 	intel_fill_fb_ggtt_view(&view, fb, rotation);
2225 
2226 	/* Note that the w/a also requires 64 PTE of padding following the
2227 	 * bo. We currently fill all unused PTE with the shadow page and so
2228 	 * we should always have valid PTE following the scanout preventing
2229 	 * the VT-d warning.
2230 	 */
2231 	if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2232 		alignment = 256 * 1024;
2233 
2234 	/*
2235 	 * Global gtt pte registers are special registers which actually forward
2236 	 * writes to a chunk of system memory. Which means that there is no risk
2237 	 * that the register values disappear as soon as we call
2238 	 * intel_runtime_pm_put(), so it is correct to wrap only the
2239 	 * pin/unpin/fence and not more.
2240 	 */
2241 	intel_runtime_pm_get(dev_priv);
2242 
2243 	ret = i915_gem_object_pin_to_display_plane(obj, alignment,
2244 						   &view);
2245 	if (ret)
2246 		goto err_pm;
2247 
2248 	/* Install a fence for tiled scan-out. Pre-i965 always needs a
2249 	 * fence, whereas 965+ only requires a fence if using
2250 	 * framebuffer compression.  For simplicity, we always install
2251 	 * a fence as the cost is not that onerous.
2252 	 */
2253 	if (view.type == I915_GGTT_VIEW_NORMAL) {
2254 		ret = i915_gem_object_get_fence(obj);
2255 		if (ret == -EDEADLK) {
2256 			/*
2257 			 * -EDEADLK means there are no free fences
2258 			 * no pending flips.
2259 			 *
2260 			 * This is propagated to atomic, but it uses
2261 			 * -EDEADLK to force a locking recovery, so
2262 			 * change the returned error to -EBUSY.
2263 			 */
2264 			ret = -EBUSY;
2265 			goto err_unpin;
2266 		} else if (ret)
2267 			goto err_unpin;
2268 
2269 		i915_gem_object_pin_fence(obj);
2270 	}
2271 
2272 	intel_runtime_pm_put(dev_priv);
2273 	return 0;
2274 
2275 err_unpin:
2276 	i915_gem_object_unpin_from_display_plane(obj, &view);
2277 err_pm:
2278 	intel_runtime_pm_put(dev_priv);
2279 	return ret;
2280 }
2281 
2282 void intel_unpin_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2283 {
2284 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2285 	struct i915_ggtt_view view;
2286 
2287 	WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2288 
2289 	intel_fill_fb_ggtt_view(&view, fb, rotation);
2290 
2291 	if (view.type == I915_GGTT_VIEW_NORMAL)
2292 		i915_gem_object_unpin_fence(obj);
2293 
2294 	i915_gem_object_unpin_from_display_plane(obj, &view);
2295 }
2296 
2297 /*
2298  * Adjust the tile offset by moving the difference into
2299  * the x/y offsets.
2300  *
2301  * Input tile dimensions and pitch must already be
2302  * rotated to match x and y, and in pixel units.
2303  */
2304 static u32 intel_adjust_tile_offset(int *x, int *y,
2305 				    unsigned int tile_width,
2306 				    unsigned int tile_height,
2307 				    unsigned int tile_size,
2308 				    unsigned int pitch_tiles,
2309 				    u32 old_offset,
2310 				    u32 new_offset)
2311 {
2312 	unsigned int tiles;
2313 
2314 	WARN_ON(old_offset & (tile_size - 1));
2315 	WARN_ON(new_offset & (tile_size - 1));
2316 	WARN_ON(new_offset > old_offset);
2317 
2318 	tiles = (old_offset - new_offset) / tile_size;
2319 
2320 	*y += tiles / pitch_tiles * tile_height;
2321 	*x += tiles % pitch_tiles * tile_width;
2322 
2323 	return new_offset;
2324 }
2325 
2326 /*
2327  * Computes the linear offset to the base tile and adjusts
2328  * x, y. bytes per pixel is assumed to be a power-of-two.
2329  *
2330  * In the 90/270 rotated case, x and y are assumed
2331  * to be already rotated to match the rotated GTT view, and
2332  * pitch is the tile_height aligned framebuffer height.
2333  */
2334 u32 intel_compute_tile_offset(int *x, int *y,
2335 			      const struct drm_framebuffer *fb, int plane,
2336 			      unsigned int pitch,
2337 			      unsigned int rotation)
2338 {
2339 	const struct drm_i915_private *dev_priv = to_i915(fb->dev);
2340 	uint64_t fb_modifier = fb->modifier[plane];
2341 	unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2342 	u32 offset, offset_aligned, alignment;
2343 
2344 	alignment = intel_surf_alignment(dev_priv, fb_modifier);
2345 	if (alignment)
2346 		alignment--;
2347 
2348 	if (fb_modifier != DRM_FORMAT_MOD_NONE) {
2349 		unsigned int tile_size, tile_width, tile_height;
2350 		unsigned int tile_rows, tiles, pitch_tiles;
2351 
2352 		tile_size = intel_tile_size(dev_priv);
2353 		intel_tile_dims(dev_priv, &tile_width, &tile_height,
2354 				fb_modifier, cpp);
2355 
2356 		if (intel_rotation_90_or_270(rotation)) {
2357 			pitch_tiles = pitch / tile_height;
2358 			swap(tile_width, tile_height);
2359 		} else {
2360 			pitch_tiles = pitch / (tile_width * cpp);
2361 		}
2362 
2363 		tile_rows = *y / tile_height;
2364 		*y %= tile_height;
2365 
2366 		tiles = *x / tile_width;
2367 		*x %= tile_width;
2368 
2369 		offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2370 		offset_aligned = offset & ~alignment;
2371 
2372 		intel_adjust_tile_offset(x, y, tile_width, tile_height,
2373 					 tile_size, pitch_tiles,
2374 					 offset, offset_aligned);
2375 	} else {
2376 		offset = *y * pitch + *x * cpp;
2377 		offset_aligned = offset & ~alignment;
2378 
2379 		*y = (offset & alignment) / pitch;
2380 		*x = ((offset & alignment) - *y * pitch) / cpp;
2381 	}
2382 
2383 	return offset_aligned;
2384 }
2385 
2386 static int i9xx_format_to_fourcc(int format)
2387 {
2388 	switch (format) {
2389 	case DISPPLANE_8BPP:
2390 		return DRM_FORMAT_C8;
2391 	case DISPPLANE_BGRX555:
2392 		return DRM_FORMAT_XRGB1555;
2393 	case DISPPLANE_BGRX565:
2394 		return DRM_FORMAT_RGB565;
2395 	default:
2396 	case DISPPLANE_BGRX888:
2397 		return DRM_FORMAT_XRGB8888;
2398 	case DISPPLANE_RGBX888:
2399 		return DRM_FORMAT_XBGR8888;
2400 	case DISPPLANE_BGRX101010:
2401 		return DRM_FORMAT_XRGB2101010;
2402 	case DISPPLANE_RGBX101010:
2403 		return DRM_FORMAT_XBGR2101010;
2404 	}
2405 }
2406 
2407 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2408 {
2409 	switch (format) {
2410 	case PLANE_CTL_FORMAT_RGB_565:
2411 		return DRM_FORMAT_RGB565;
2412 	default:
2413 	case PLANE_CTL_FORMAT_XRGB_8888:
2414 		if (rgb_order) {
2415 			if (alpha)
2416 				return DRM_FORMAT_ABGR8888;
2417 			else
2418 				return DRM_FORMAT_XBGR8888;
2419 		} else {
2420 			if (alpha)
2421 				return DRM_FORMAT_ARGB8888;
2422 			else
2423 				return DRM_FORMAT_XRGB8888;
2424 		}
2425 	case PLANE_CTL_FORMAT_XRGB_2101010:
2426 		if (rgb_order)
2427 			return DRM_FORMAT_XBGR2101010;
2428 		else
2429 			return DRM_FORMAT_XRGB2101010;
2430 	}
2431 }
2432 
2433 static bool
2434 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2435 			      struct intel_initial_plane_config *plane_config)
2436 {
2437 	struct drm_device *dev = crtc->base.dev;
2438 	struct drm_i915_private *dev_priv = to_i915(dev);
2439 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2440 	struct drm_i915_gem_object *obj = NULL;
2441 	struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2442 	struct drm_framebuffer *fb = &plane_config->fb->base;
2443 	u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2444 	u32 size_aligned = round_up(plane_config->base + plane_config->size,
2445 				    PAGE_SIZE);
2446 
2447 	size_aligned -= base_aligned;
2448 
2449 	if (plane_config->size == 0)
2450 		return false;
2451 
2452 	/* If the FB is too big, just don't use it since fbdev is not very
2453 	 * important and we should probably use that space with FBC or other
2454 	 * features. */
2455 	if (size_aligned * 2 > ggtt->stolen_usable_size)
2456 		return false;
2457 
2458 	mutex_lock(&dev->struct_mutex);
2459 
2460 	obj = i915_gem_object_create_stolen_for_preallocated(dev,
2461 							     base_aligned,
2462 							     base_aligned,
2463 							     size_aligned);
2464 	if (!obj) {
2465 		mutex_unlock(&dev->struct_mutex);
2466 		return false;
2467 	}
2468 
2469 	if (plane_config->tiling == I915_TILING_X)
2470 		obj->tiling_and_stride = fb->pitches[0] | I915_TILING_X;
2471 
2472 	mode_cmd.pixel_format = fb->pixel_format;
2473 	mode_cmd.width = fb->width;
2474 	mode_cmd.height = fb->height;
2475 	mode_cmd.pitches[0] = fb->pitches[0];
2476 	mode_cmd.modifier[0] = fb->modifier[0];
2477 	mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2478 
2479 	if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2480 				   &mode_cmd, obj)) {
2481 		DRM_DEBUG_KMS("intel fb init failed\n");
2482 		goto out_unref_obj;
2483 	}
2484 
2485 	mutex_unlock(&dev->struct_mutex);
2486 
2487 	DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2488 	return true;
2489 
2490 out_unref_obj:
2491 	i915_gem_object_put(obj);
2492 	mutex_unlock(&dev->struct_mutex);
2493 	return false;
2494 }
2495 
2496 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2497 static void
2498 update_state_fb(struct drm_plane *plane)
2499 {
2500 	if (plane->fb == plane->state->fb)
2501 		return;
2502 
2503 	if (plane->state->fb)
2504 		drm_framebuffer_unreference(plane->state->fb);
2505 	plane->state->fb = plane->fb;
2506 	if (plane->state->fb)
2507 		drm_framebuffer_reference(plane->state->fb);
2508 }
2509 
2510 static void
2511 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2512 			     struct intel_initial_plane_config *plane_config)
2513 {
2514 	struct drm_device *dev = intel_crtc->base.dev;
2515 	struct drm_i915_private *dev_priv = to_i915(dev);
2516 	struct drm_crtc *c;
2517 	struct intel_crtc *i;
2518 	struct drm_i915_gem_object *obj;
2519 	struct drm_plane *primary = intel_crtc->base.primary;
2520 	struct drm_plane_state *plane_state = primary->state;
2521 	struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2522 	struct intel_plane *intel_plane = to_intel_plane(primary);
2523 	struct intel_plane_state *intel_state =
2524 		to_intel_plane_state(plane_state);
2525 	struct drm_framebuffer *fb;
2526 
2527 	if (!plane_config->fb)
2528 		return;
2529 
2530 	if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2531 		fb = &plane_config->fb->base;
2532 		goto valid_fb;
2533 	}
2534 
2535 	kfree(plane_config->fb);
2536 
2537 	/*
2538 	 * Failed to alloc the obj, check to see if we should share
2539 	 * an fb with another CRTC instead
2540 	 */
2541 	for_each_crtc(dev, c) {
2542 		i = to_intel_crtc(c);
2543 
2544 		if (c == &intel_crtc->base)
2545 			continue;
2546 
2547 		if (!i->active)
2548 			continue;
2549 
2550 		fb = c->primary->fb;
2551 		if (!fb)
2552 			continue;
2553 
2554 		obj = intel_fb_obj(fb);
2555 		if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2556 			drm_framebuffer_reference(fb);
2557 			goto valid_fb;
2558 		}
2559 	}
2560 
2561 	/*
2562 	 * We've failed to reconstruct the BIOS FB.  Current display state
2563 	 * indicates that the primary plane is visible, but has a NULL FB,
2564 	 * which will lead to problems later if we don't fix it up.  The
2565 	 * simplest solution is to just disable the primary plane now and
2566 	 * pretend the BIOS never had it enabled.
2567 	 */
2568 	to_intel_plane_state(plane_state)->visible = false;
2569 	crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2570 	intel_pre_disable_primary_noatomic(&intel_crtc->base);
2571 	intel_plane->disable_plane(primary, &intel_crtc->base);
2572 
2573 	return;
2574 
2575 valid_fb:
2576 	plane_state->src_x = 0;
2577 	plane_state->src_y = 0;
2578 	plane_state->src_w = fb->width << 16;
2579 	plane_state->src_h = fb->height << 16;
2580 
2581 	plane_state->crtc_x = 0;
2582 	plane_state->crtc_y = 0;
2583 	plane_state->crtc_w = fb->width;
2584 	plane_state->crtc_h = fb->height;
2585 
2586 	intel_state->src.x1 = plane_state->src_x;
2587 	intel_state->src.y1 = plane_state->src_y;
2588 	intel_state->src.x2 = plane_state->src_x + plane_state->src_w;
2589 	intel_state->src.y2 = plane_state->src_y + plane_state->src_h;
2590 	intel_state->dst.x1 = plane_state->crtc_x;
2591 	intel_state->dst.y1 = plane_state->crtc_y;
2592 	intel_state->dst.x2 = plane_state->crtc_x + plane_state->crtc_w;
2593 	intel_state->dst.y2 = plane_state->crtc_y + plane_state->crtc_h;
2594 
2595 	obj = intel_fb_obj(fb);
2596 	if (i915_gem_object_is_tiled(obj))
2597 		dev_priv->preserve_bios_swizzle = true;
2598 
2599 	drm_framebuffer_reference(fb);
2600 	primary->fb = primary->state->fb = fb;
2601 	primary->crtc = primary->state->crtc = &intel_crtc->base;
2602 	intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2603 	atomic_or(to_intel_plane(primary)->frontbuffer_bit,
2604 		  &obj->frontbuffer_bits);
2605 }
2606 
2607 static void i9xx_update_primary_plane(struct drm_plane *primary,
2608 				      const struct intel_crtc_state *crtc_state,
2609 				      const struct intel_plane_state *plane_state)
2610 {
2611 	struct drm_device *dev = primary->dev;
2612 	struct drm_i915_private *dev_priv = to_i915(dev);
2613 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2614 	struct drm_framebuffer *fb = plane_state->base.fb;
2615 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2616 	int plane = intel_crtc->plane;
2617 	u32 linear_offset;
2618 	u32 dspcntr;
2619 	i915_reg_t reg = DSPCNTR(plane);
2620 	unsigned int rotation = plane_state->base.rotation;
2621 	int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2622 	int x = plane_state->src.x1 >> 16;
2623 	int y = plane_state->src.y1 >> 16;
2624 
2625 	dspcntr = DISPPLANE_GAMMA_ENABLE;
2626 
2627 	dspcntr |= DISPLAY_PLANE_ENABLE;
2628 
2629 	if (INTEL_INFO(dev)->gen < 4) {
2630 		if (intel_crtc->pipe == PIPE_B)
2631 			dspcntr |= DISPPLANE_SEL_PIPE_B;
2632 
2633 		/* pipesrc and dspsize control the size that is scaled from,
2634 		 * which should always be the user's requested size.
2635 		 */
2636 		I915_WRITE(DSPSIZE(plane),
2637 			   ((crtc_state->pipe_src_h - 1) << 16) |
2638 			   (crtc_state->pipe_src_w - 1));
2639 		I915_WRITE(DSPPOS(plane), 0);
2640 	} else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2641 		I915_WRITE(PRIMSIZE(plane),
2642 			   ((crtc_state->pipe_src_h - 1) << 16) |
2643 			   (crtc_state->pipe_src_w - 1));
2644 		I915_WRITE(PRIMPOS(plane), 0);
2645 		I915_WRITE(PRIMCNSTALPHA(plane), 0);
2646 	}
2647 
2648 	switch (fb->pixel_format) {
2649 	case DRM_FORMAT_C8:
2650 		dspcntr |= DISPPLANE_8BPP;
2651 		break;
2652 	case DRM_FORMAT_XRGB1555:
2653 		dspcntr |= DISPPLANE_BGRX555;
2654 		break;
2655 	case DRM_FORMAT_RGB565:
2656 		dspcntr |= DISPPLANE_BGRX565;
2657 		break;
2658 	case DRM_FORMAT_XRGB8888:
2659 		dspcntr |= DISPPLANE_BGRX888;
2660 		break;
2661 	case DRM_FORMAT_XBGR8888:
2662 		dspcntr |= DISPPLANE_RGBX888;
2663 		break;
2664 	case DRM_FORMAT_XRGB2101010:
2665 		dspcntr |= DISPPLANE_BGRX101010;
2666 		break;
2667 	case DRM_FORMAT_XBGR2101010:
2668 		dspcntr |= DISPPLANE_RGBX101010;
2669 		break;
2670 	default:
2671 		BUG();
2672 	}
2673 
2674 	if (INTEL_INFO(dev)->gen >= 4 && i915_gem_object_is_tiled(obj))
2675 		dspcntr |= DISPPLANE_TILED;
2676 
2677 	if (IS_G4X(dev))
2678 		dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2679 
2680 	linear_offset = y * fb->pitches[0] + x * cpp;
2681 
2682 	if (INTEL_INFO(dev)->gen >= 4) {
2683 		intel_crtc->dspaddr_offset =
2684 			intel_compute_tile_offset(&x, &y, fb, 0,
2685 						  fb->pitches[0], rotation);
2686 		linear_offset -= intel_crtc->dspaddr_offset;
2687 	} else {
2688 		intel_crtc->dspaddr_offset = linear_offset;
2689 	}
2690 
2691 	if (rotation == DRM_ROTATE_180) {
2692 		dspcntr |= DISPPLANE_ROTATE_180;
2693 
2694 		x += (crtc_state->pipe_src_w - 1);
2695 		y += (crtc_state->pipe_src_h - 1);
2696 
2697 		/* Finding the last pixel of the last line of the display
2698 		data and adding to linear_offset*/
2699 		linear_offset +=
2700 			(crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2701 			(crtc_state->pipe_src_w - 1) * cpp;
2702 	}
2703 
2704 	intel_crtc->adjusted_x = x;
2705 	intel_crtc->adjusted_y = y;
2706 
2707 	I915_WRITE(reg, dspcntr);
2708 
2709 	I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2710 	if (INTEL_INFO(dev)->gen >= 4) {
2711 		I915_WRITE(DSPSURF(plane),
2712 			   i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2713 		I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2714 		I915_WRITE(DSPLINOFF(plane), linear_offset);
2715 	} else
2716 		I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2717 	POSTING_READ(reg);
2718 }
2719 
2720 static void i9xx_disable_primary_plane(struct drm_plane *primary,
2721 				       struct drm_crtc *crtc)
2722 {
2723 	struct drm_device *dev = crtc->dev;
2724 	struct drm_i915_private *dev_priv = to_i915(dev);
2725 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2726 	int plane = intel_crtc->plane;
2727 
2728 	I915_WRITE(DSPCNTR(plane), 0);
2729 	if (INTEL_INFO(dev_priv)->gen >= 4)
2730 		I915_WRITE(DSPSURF(plane), 0);
2731 	else
2732 		I915_WRITE(DSPADDR(plane), 0);
2733 	POSTING_READ(DSPCNTR(plane));
2734 }
2735 
2736 static void ironlake_update_primary_plane(struct drm_plane *primary,
2737 					  const struct intel_crtc_state *crtc_state,
2738 					  const struct intel_plane_state *plane_state)
2739 {
2740 	struct drm_device *dev = primary->dev;
2741 	struct drm_i915_private *dev_priv = to_i915(dev);
2742 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2743 	struct drm_framebuffer *fb = plane_state->base.fb;
2744 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2745 	int plane = intel_crtc->plane;
2746 	u32 linear_offset;
2747 	u32 dspcntr;
2748 	i915_reg_t reg = DSPCNTR(plane);
2749 	unsigned int rotation = plane_state->base.rotation;
2750 	int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2751 	int x = plane_state->src.x1 >> 16;
2752 	int y = plane_state->src.y1 >> 16;
2753 
2754 	dspcntr = DISPPLANE_GAMMA_ENABLE;
2755 	dspcntr |= DISPLAY_PLANE_ENABLE;
2756 
2757 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2758 		dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2759 
2760 	switch (fb->pixel_format) {
2761 	case DRM_FORMAT_C8:
2762 		dspcntr |= DISPPLANE_8BPP;
2763 		break;
2764 	case DRM_FORMAT_RGB565:
2765 		dspcntr |= DISPPLANE_BGRX565;
2766 		break;
2767 	case DRM_FORMAT_XRGB8888:
2768 		dspcntr |= DISPPLANE_BGRX888;
2769 		break;
2770 	case DRM_FORMAT_XBGR8888:
2771 		dspcntr |= DISPPLANE_RGBX888;
2772 		break;
2773 	case DRM_FORMAT_XRGB2101010:
2774 		dspcntr |= DISPPLANE_BGRX101010;
2775 		break;
2776 	case DRM_FORMAT_XBGR2101010:
2777 		dspcntr |= DISPPLANE_RGBX101010;
2778 		break;
2779 	default:
2780 		BUG();
2781 	}
2782 
2783 	if (i915_gem_object_is_tiled(obj))
2784 		dspcntr |= DISPPLANE_TILED;
2785 
2786 	if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2787 		dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2788 
2789 	linear_offset = y * fb->pitches[0] + x * cpp;
2790 	intel_crtc->dspaddr_offset =
2791 		intel_compute_tile_offset(&x, &y, fb, 0,
2792 					  fb->pitches[0], rotation);
2793 	linear_offset -= intel_crtc->dspaddr_offset;
2794 	if (rotation == DRM_ROTATE_180) {
2795 		dspcntr |= DISPPLANE_ROTATE_180;
2796 
2797 		if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2798 			x += (crtc_state->pipe_src_w - 1);
2799 			y += (crtc_state->pipe_src_h - 1);
2800 
2801 			/* Finding the last pixel of the last line of the display
2802 			data and adding to linear_offset*/
2803 			linear_offset +=
2804 				(crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2805 				(crtc_state->pipe_src_w - 1) * cpp;
2806 		}
2807 	}
2808 
2809 	intel_crtc->adjusted_x = x;
2810 	intel_crtc->adjusted_y = y;
2811 
2812 	I915_WRITE(reg, dspcntr);
2813 
2814 	I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2815 	I915_WRITE(DSPSURF(plane),
2816 		   i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2817 	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2818 		I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2819 	} else {
2820 		I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2821 		I915_WRITE(DSPLINOFF(plane), linear_offset);
2822 	}
2823 	POSTING_READ(reg);
2824 }
2825 
2826 u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
2827 			      uint64_t fb_modifier, uint32_t pixel_format)
2828 {
2829 	if (fb_modifier == DRM_FORMAT_MOD_NONE) {
2830 		return 64;
2831 	} else {
2832 		int cpp = drm_format_plane_cpp(pixel_format, 0);
2833 
2834 		return intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2835 	}
2836 }
2837 
2838 u32 intel_plane_obj_offset(struct intel_plane *intel_plane,
2839 			   struct drm_i915_gem_object *obj,
2840 			   unsigned int plane)
2841 {
2842 	struct i915_ggtt_view view;
2843 	struct i915_vma *vma;
2844 	u64 offset;
2845 
2846 	intel_fill_fb_ggtt_view(&view, intel_plane->base.state->fb,
2847 				intel_plane->base.state->rotation);
2848 
2849 	vma = i915_gem_obj_to_ggtt_view(obj, &view);
2850 	if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
2851 		view.type))
2852 		return -1;
2853 
2854 	offset = vma->node.start;
2855 
2856 	if (plane == 1) {
2857 		offset += vma->ggtt_view.params.rotated.uv_start_page *
2858 			  PAGE_SIZE;
2859 	}
2860 
2861 	WARN_ON(upper_32_bits(offset));
2862 
2863 	return lower_32_bits(offset);
2864 }
2865 
2866 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2867 {
2868 	struct drm_device *dev = intel_crtc->base.dev;
2869 	struct drm_i915_private *dev_priv = to_i915(dev);
2870 
2871 	I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2872 	I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2873 	I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2874 }
2875 
2876 /*
2877  * This function detaches (aka. unbinds) unused scalers in hardware
2878  */
2879 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2880 {
2881 	struct intel_crtc_scaler_state *scaler_state;
2882 	int i;
2883 
2884 	scaler_state = &intel_crtc->config->scaler_state;
2885 
2886 	/* loop through and disable scalers that aren't in use */
2887 	for (i = 0; i < intel_crtc->num_scalers; i++) {
2888 		if (!scaler_state->scalers[i].in_use)
2889 			skl_detach_scaler(intel_crtc, i);
2890 	}
2891 }
2892 
2893 u32 skl_plane_ctl_format(uint32_t pixel_format)
2894 {
2895 	switch (pixel_format) {
2896 	case DRM_FORMAT_C8:
2897 		return PLANE_CTL_FORMAT_INDEXED;
2898 	case DRM_FORMAT_RGB565:
2899 		return PLANE_CTL_FORMAT_RGB_565;
2900 	case DRM_FORMAT_XBGR8888:
2901 		return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2902 	case DRM_FORMAT_XRGB8888:
2903 		return PLANE_CTL_FORMAT_XRGB_8888;
2904 	/*
2905 	 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2906 	 * to be already pre-multiplied. We need to add a knob (or a different
2907 	 * DRM_FORMAT) for user-space to configure that.
2908 	 */
2909 	case DRM_FORMAT_ABGR8888:
2910 		return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
2911 			PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2912 	case DRM_FORMAT_ARGB8888:
2913 		return PLANE_CTL_FORMAT_XRGB_8888 |
2914 			PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2915 	case DRM_FORMAT_XRGB2101010:
2916 		return PLANE_CTL_FORMAT_XRGB_2101010;
2917 	case DRM_FORMAT_XBGR2101010:
2918 		return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
2919 	case DRM_FORMAT_YUYV:
2920 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
2921 	case DRM_FORMAT_YVYU:
2922 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
2923 	case DRM_FORMAT_UYVY:
2924 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
2925 	case DRM_FORMAT_VYUY:
2926 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
2927 	default:
2928 		MISSING_CASE(pixel_format);
2929 	}
2930 
2931 	return 0;
2932 }
2933 
2934 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
2935 {
2936 	switch (fb_modifier) {
2937 	case DRM_FORMAT_MOD_NONE:
2938 		break;
2939 	case I915_FORMAT_MOD_X_TILED:
2940 		return PLANE_CTL_TILED_X;
2941 	case I915_FORMAT_MOD_Y_TILED:
2942 		return PLANE_CTL_TILED_Y;
2943 	case I915_FORMAT_MOD_Yf_TILED:
2944 		return PLANE_CTL_TILED_YF;
2945 	default:
2946 		MISSING_CASE(fb_modifier);
2947 	}
2948 
2949 	return 0;
2950 }
2951 
2952 u32 skl_plane_ctl_rotation(unsigned int rotation)
2953 {
2954 	switch (rotation) {
2955 	case DRM_ROTATE_0:
2956 		break;
2957 	/*
2958 	 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
2959 	 * while i915 HW rotation is clockwise, thats why this swapping.
2960 	 */
2961 	case DRM_ROTATE_90:
2962 		return PLANE_CTL_ROTATE_270;
2963 	case DRM_ROTATE_180:
2964 		return PLANE_CTL_ROTATE_180;
2965 	case DRM_ROTATE_270:
2966 		return PLANE_CTL_ROTATE_90;
2967 	default:
2968 		MISSING_CASE(rotation);
2969 	}
2970 
2971 	return 0;
2972 }
2973 
2974 static void skylake_update_primary_plane(struct drm_plane *plane,
2975 					 const struct intel_crtc_state *crtc_state,
2976 					 const struct intel_plane_state *plane_state)
2977 {
2978 	struct drm_device *dev = plane->dev;
2979 	struct drm_i915_private *dev_priv = to_i915(dev);
2980 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2981 	struct drm_framebuffer *fb = plane_state->base.fb;
2982 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2983 	int pipe = intel_crtc->pipe;
2984 	u32 plane_ctl, stride_div, stride;
2985 	u32 tile_height, plane_offset, plane_size;
2986 	unsigned int rotation = plane_state->base.rotation;
2987 	int x_offset, y_offset;
2988 	u32 surf_addr;
2989 	int scaler_id = plane_state->scaler_id;
2990 	int src_x = plane_state->src.x1 >> 16;
2991 	int src_y = plane_state->src.y1 >> 16;
2992 	int src_w = drm_rect_width(&plane_state->src) >> 16;
2993 	int src_h = drm_rect_height(&plane_state->src) >> 16;
2994 	int dst_x = plane_state->dst.x1;
2995 	int dst_y = plane_state->dst.y1;
2996 	int dst_w = drm_rect_width(&plane_state->dst);
2997 	int dst_h = drm_rect_height(&plane_state->dst);
2998 
2999 	plane_ctl = PLANE_CTL_ENABLE |
3000 		    PLANE_CTL_PIPE_GAMMA_ENABLE |
3001 		    PLANE_CTL_PIPE_CSC_ENABLE;
3002 
3003 	plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3004 	plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3005 	plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3006 	plane_ctl |= skl_plane_ctl_rotation(rotation);
3007 
3008 	stride_div = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
3009 					       fb->pixel_format);
3010 	surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3011 
3012 	WARN_ON(drm_rect_width(&plane_state->src) == 0);
3013 
3014 	if (intel_rotation_90_or_270(rotation)) {
3015 		int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3016 
3017 		/* stride = Surface height in tiles */
3018 		tile_height = intel_tile_height(dev_priv, fb->modifier[0], cpp);
3019 		stride = DIV_ROUND_UP(fb->height, tile_height);
3020 		x_offset = stride * tile_height - src_y - src_h;
3021 		y_offset = src_x;
3022 		plane_size = (src_w - 1) << 16 | (src_h - 1);
3023 	} else {
3024 		stride = fb->pitches[0] / stride_div;
3025 		x_offset = src_x;
3026 		y_offset = src_y;
3027 		plane_size = (src_h - 1) << 16 | (src_w - 1);
3028 	}
3029 	plane_offset = y_offset << 16 | x_offset;
3030 
3031 	intel_crtc->adjusted_x = x_offset;
3032 	intel_crtc->adjusted_y = y_offset;
3033 
3034 	I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3035 	I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3036 	I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3037 	I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3038 
3039 	if (scaler_id >= 0) {
3040 		uint32_t ps_ctrl = 0;
3041 
3042 		WARN_ON(!dst_w || !dst_h);
3043 		ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3044 			crtc_state->scaler_state.scalers[scaler_id].mode;
3045 		I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3046 		I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3047 		I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3048 		I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3049 		I915_WRITE(PLANE_POS(pipe, 0), 0);
3050 	} else {
3051 		I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3052 	}
3053 
3054 	I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3055 
3056 	POSTING_READ(PLANE_SURF(pipe, 0));
3057 }
3058 
3059 static void skylake_disable_primary_plane(struct drm_plane *primary,
3060 					  struct drm_crtc *crtc)
3061 {
3062 	struct drm_device *dev = crtc->dev;
3063 	struct drm_i915_private *dev_priv = to_i915(dev);
3064 	int pipe = to_intel_crtc(crtc)->pipe;
3065 
3066 	I915_WRITE(PLANE_CTL(pipe, 0), 0);
3067 	I915_WRITE(PLANE_SURF(pipe, 0), 0);
3068 	POSTING_READ(PLANE_SURF(pipe, 0));
3069 }
3070 
3071 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3072 static int
3073 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3074 			   int x, int y, enum mode_set_atomic state)
3075 {
3076 	/* Support for kgdboc is disabled, this needs a major rework. */
3077 	DRM_ERROR("legacy panic handler not supported any more.\n");
3078 
3079 	return -ENODEV;
3080 }
3081 
3082 static void intel_complete_page_flips(struct drm_i915_private *dev_priv)
3083 {
3084 	struct intel_crtc *crtc;
3085 
3086 	for_each_intel_crtc(&dev_priv->drm, crtc)
3087 		intel_finish_page_flip_cs(dev_priv, crtc->pipe);
3088 }
3089 
3090 static void intel_update_primary_planes(struct drm_device *dev)
3091 {
3092 	struct drm_crtc *crtc;
3093 
3094 	for_each_crtc(dev, crtc) {
3095 		struct intel_plane *plane = to_intel_plane(crtc->primary);
3096 		struct intel_plane_state *plane_state =
3097 			to_intel_plane_state(plane->base.state);
3098 
3099 		if (plane_state->visible)
3100 			plane->update_plane(&plane->base,
3101 					    to_intel_crtc_state(crtc->state),
3102 					    plane_state);
3103 	}
3104 }
3105 
3106 static int
3107 __intel_display_resume(struct drm_device *dev,
3108 		       struct drm_atomic_state *state)
3109 {
3110 	struct drm_crtc_state *crtc_state;
3111 	struct drm_crtc *crtc;
3112 	int i, ret;
3113 
3114 	intel_modeset_setup_hw_state(dev);
3115 	i915_redisable_vga(dev);
3116 
3117 	if (!state)
3118 		return 0;
3119 
3120 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
3121 		/*
3122 		 * Force recalculation even if we restore
3123 		 * current state. With fast modeset this may not result
3124 		 * in a modeset when the state is compatible.
3125 		 */
3126 		crtc_state->mode_changed = true;
3127 	}
3128 
3129 	/* ignore any reset values/BIOS leftovers in the WM registers */
3130 	to_intel_atomic_state(state)->skip_intermediate_wm = true;
3131 
3132 	ret = drm_atomic_commit(state);
3133 
3134 	WARN_ON(ret == -EDEADLK);
3135 	return ret;
3136 }
3137 
3138 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
3139 {
3140 	return intel_has_gpu_reset(dev_priv) &&
3141 		INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv);
3142 }
3143 
3144 void intel_prepare_reset(struct drm_i915_private *dev_priv)
3145 {
3146 	struct drm_device *dev = &dev_priv->drm;
3147 	struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3148 	struct drm_atomic_state *state;
3149 	int ret;
3150 
3151 	/*
3152 	 * Need mode_config.mutex so that we don't
3153 	 * trample ongoing ->detect() and whatnot.
3154 	 */
3155 	mutex_lock(&dev->mode_config.mutex);
3156 	drm_modeset_acquire_init(ctx, 0);
3157 	while (1) {
3158 		ret = drm_modeset_lock_all_ctx(dev, ctx);
3159 		if (ret != -EDEADLK)
3160 			break;
3161 
3162 		drm_modeset_backoff(ctx);
3163 	}
3164 
3165 	/* reset doesn't touch the display, but flips might get nuked anyway, */
3166 	if (!i915.force_reset_modeset_test &&
3167 	    !gpu_reset_clobbers_display(dev_priv))
3168 		return;
3169 
3170 	/*
3171 	 * Disabling the crtcs gracefully seems nicer. Also the
3172 	 * g33 docs say we should at least disable all the planes.
3173 	 */
3174 	state = drm_atomic_helper_duplicate_state(dev, ctx);
3175 	if (IS_ERR(state)) {
3176 		ret = PTR_ERR(state);
3177 		state = NULL;
3178 		DRM_ERROR("Duplicating state failed with %i\n", ret);
3179 		goto err;
3180 	}
3181 
3182 	ret = drm_atomic_helper_disable_all(dev, ctx);
3183 	if (ret) {
3184 		DRM_ERROR("Suspending crtc's failed with %i\n", ret);
3185 		goto err;
3186 	}
3187 
3188 	dev_priv->modeset_restore_state = state;
3189 	state->acquire_ctx = ctx;
3190 	return;
3191 
3192 err:
3193 	drm_atomic_state_free(state);
3194 }
3195 
3196 void intel_finish_reset(struct drm_i915_private *dev_priv)
3197 {
3198 	struct drm_device *dev = &dev_priv->drm;
3199 	struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3200 	struct drm_atomic_state *state = dev_priv->modeset_restore_state;
3201 	int ret;
3202 
3203 	/*
3204 	 * Flips in the rings will be nuked by the reset,
3205 	 * so complete all pending flips so that user space
3206 	 * will get its events and not get stuck.
3207 	 */
3208 	intel_complete_page_flips(dev_priv);
3209 
3210 	dev_priv->modeset_restore_state = NULL;
3211 
3212 	/* reset doesn't touch the display */
3213 	if (!gpu_reset_clobbers_display(dev_priv)) {
3214 		if (!state) {
3215 			/*
3216 			 * Flips in the rings have been nuked by the reset,
3217 			 * so update the base address of all primary
3218 			 * planes to the the last fb to make sure we're
3219 			 * showing the correct fb after a reset.
3220 			 *
3221 			 * FIXME: Atomic will make this obsolete since we won't schedule
3222 			 * CS-based flips (which might get lost in gpu resets) any more.
3223 			 */
3224 			intel_update_primary_planes(dev);
3225 		} else {
3226 			ret = __intel_display_resume(dev, state);
3227 			if (ret)
3228 				DRM_ERROR("Restoring old state failed with %i\n", ret);
3229 		}
3230 	} else {
3231 		/*
3232 		 * The display has been reset as well,
3233 		 * so need a full re-initialization.
3234 		 */
3235 		intel_runtime_pm_disable_interrupts(dev_priv);
3236 		intel_runtime_pm_enable_interrupts(dev_priv);
3237 
3238 		intel_modeset_init_hw(dev);
3239 
3240 		spin_lock_irq(&dev_priv->irq_lock);
3241 		if (dev_priv->display.hpd_irq_setup)
3242 			dev_priv->display.hpd_irq_setup(dev_priv);
3243 		spin_unlock_irq(&dev_priv->irq_lock);
3244 
3245 		ret = __intel_display_resume(dev, state);
3246 		if (ret)
3247 			DRM_ERROR("Restoring old state failed with %i\n", ret);
3248 
3249 		intel_hpd_init(dev_priv);
3250 	}
3251 
3252 	drm_modeset_drop_locks(ctx);
3253 	drm_modeset_acquire_fini(ctx);
3254 	mutex_unlock(&dev->mode_config.mutex);
3255 }
3256 
3257 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3258 {
3259 	struct drm_device *dev = crtc->dev;
3260 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3261 	unsigned reset_counter;
3262 	bool pending;
3263 
3264 	reset_counter = i915_reset_counter(&to_i915(dev)->gpu_error);
3265 	if (intel_crtc->reset_counter != reset_counter)
3266 		return false;
3267 
3268 	spin_lock_irq(&dev->event_lock);
3269 	pending = to_intel_crtc(crtc)->flip_work != NULL;
3270 	spin_unlock_irq(&dev->event_lock);
3271 
3272 	return pending;
3273 }
3274 
3275 static void intel_update_pipe_config(struct intel_crtc *crtc,
3276 				     struct intel_crtc_state *old_crtc_state)
3277 {
3278 	struct drm_device *dev = crtc->base.dev;
3279 	struct drm_i915_private *dev_priv = to_i915(dev);
3280 	struct intel_crtc_state *pipe_config =
3281 		to_intel_crtc_state(crtc->base.state);
3282 
3283 	/* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3284 	crtc->base.mode = crtc->base.state->mode;
3285 
3286 	DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3287 		      old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3288 		      pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3289 
3290 	/*
3291 	 * Update pipe size and adjust fitter if needed: the reason for this is
3292 	 * that in compute_mode_changes we check the native mode (not the pfit
3293 	 * mode) to see if we can flip rather than do a full mode set. In the
3294 	 * fastboot case, we'll flip, but if we don't update the pipesrc and
3295 	 * pfit state, we'll end up with a big fb scanned out into the wrong
3296 	 * sized surface.
3297 	 */
3298 
3299 	I915_WRITE(PIPESRC(crtc->pipe),
3300 		   ((pipe_config->pipe_src_w - 1) << 16) |
3301 		   (pipe_config->pipe_src_h - 1));
3302 
3303 	/* on skylake this is done by detaching scalers */
3304 	if (INTEL_INFO(dev)->gen >= 9) {
3305 		skl_detach_scalers(crtc);
3306 
3307 		if (pipe_config->pch_pfit.enabled)
3308 			skylake_pfit_enable(crtc);
3309 	} else if (HAS_PCH_SPLIT(dev)) {
3310 		if (pipe_config->pch_pfit.enabled)
3311 			ironlake_pfit_enable(crtc);
3312 		else if (old_crtc_state->pch_pfit.enabled)
3313 			ironlake_pfit_disable(crtc, true);
3314 	}
3315 }
3316 
3317 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3318 {
3319 	struct drm_device *dev = crtc->dev;
3320 	struct drm_i915_private *dev_priv = to_i915(dev);
3321 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3322 	int pipe = intel_crtc->pipe;
3323 	i915_reg_t reg;
3324 	u32 temp;
3325 
3326 	/* enable normal train */
3327 	reg = FDI_TX_CTL(pipe);
3328 	temp = I915_READ(reg);
3329 	if (IS_IVYBRIDGE(dev)) {
3330 		temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3331 		temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3332 	} else {
3333 		temp &= ~FDI_LINK_TRAIN_NONE;
3334 		temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3335 	}
3336 	I915_WRITE(reg, temp);
3337 
3338 	reg = FDI_RX_CTL(pipe);
3339 	temp = I915_READ(reg);
3340 	if (HAS_PCH_CPT(dev)) {
3341 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3342 		temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3343 	} else {
3344 		temp &= ~FDI_LINK_TRAIN_NONE;
3345 		temp |= FDI_LINK_TRAIN_NONE;
3346 	}
3347 	I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3348 
3349 	/* wait one idle pattern time */
3350 	POSTING_READ(reg);
3351 	udelay(1000);
3352 
3353 	/* IVB wants error correction enabled */
3354 	if (IS_IVYBRIDGE(dev))
3355 		I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3356 			   FDI_FE_ERRC_ENABLE);
3357 }
3358 
3359 /* The FDI link training functions for ILK/Ibexpeak. */
3360 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3361 {
3362 	struct drm_device *dev = crtc->dev;
3363 	struct drm_i915_private *dev_priv = to_i915(dev);
3364 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3365 	int pipe = intel_crtc->pipe;
3366 	i915_reg_t reg;
3367 	u32 temp, tries;
3368 
3369 	/* FDI needs bits from pipe first */
3370 	assert_pipe_enabled(dev_priv, pipe);
3371 
3372 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3373 	   for train result */
3374 	reg = FDI_RX_IMR(pipe);
3375 	temp = I915_READ(reg);
3376 	temp &= ~FDI_RX_SYMBOL_LOCK;
3377 	temp &= ~FDI_RX_BIT_LOCK;
3378 	I915_WRITE(reg, temp);
3379 	I915_READ(reg);
3380 	udelay(150);
3381 
3382 	/* enable CPU FDI TX and PCH FDI RX */
3383 	reg = FDI_TX_CTL(pipe);
3384 	temp = I915_READ(reg);
3385 	temp &= ~FDI_DP_PORT_WIDTH_MASK;
3386 	temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3387 	temp &= ~FDI_LINK_TRAIN_NONE;
3388 	temp |= FDI_LINK_TRAIN_PATTERN_1;
3389 	I915_WRITE(reg, temp | FDI_TX_ENABLE);
3390 
3391 	reg = FDI_RX_CTL(pipe);
3392 	temp = I915_READ(reg);
3393 	temp &= ~FDI_LINK_TRAIN_NONE;
3394 	temp |= FDI_LINK_TRAIN_PATTERN_1;
3395 	I915_WRITE(reg, temp | FDI_RX_ENABLE);
3396 
3397 	POSTING_READ(reg);
3398 	udelay(150);
3399 
3400 	/* Ironlake workaround, enable clock pointer after FDI enable*/
3401 	I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3402 	I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3403 		   FDI_RX_PHASE_SYNC_POINTER_EN);
3404 
3405 	reg = FDI_RX_IIR(pipe);
3406 	for (tries = 0; tries < 5; tries++) {
3407 		temp = I915_READ(reg);
3408 		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3409 
3410 		if ((temp & FDI_RX_BIT_LOCK)) {
3411 			DRM_DEBUG_KMS("FDI train 1 done.\n");
3412 			I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3413 			break;
3414 		}
3415 	}
3416 	if (tries == 5)
3417 		DRM_ERROR("FDI train 1 fail!\n");
3418 
3419 	/* Train 2 */
3420 	reg = FDI_TX_CTL(pipe);
3421 	temp = I915_READ(reg);
3422 	temp &= ~FDI_LINK_TRAIN_NONE;
3423 	temp |= FDI_LINK_TRAIN_PATTERN_2;
3424 	I915_WRITE(reg, temp);
3425 
3426 	reg = FDI_RX_CTL(pipe);
3427 	temp = I915_READ(reg);
3428 	temp &= ~FDI_LINK_TRAIN_NONE;
3429 	temp |= FDI_LINK_TRAIN_PATTERN_2;
3430 	I915_WRITE(reg, temp);
3431 
3432 	POSTING_READ(reg);
3433 	udelay(150);
3434 
3435 	reg = FDI_RX_IIR(pipe);
3436 	for (tries = 0; tries < 5; tries++) {
3437 		temp = I915_READ(reg);
3438 		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3439 
3440 		if (temp & FDI_RX_SYMBOL_LOCK) {
3441 			I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3442 			DRM_DEBUG_KMS("FDI train 2 done.\n");
3443 			break;
3444 		}
3445 	}
3446 	if (tries == 5)
3447 		DRM_ERROR("FDI train 2 fail!\n");
3448 
3449 	DRM_DEBUG_KMS("FDI train done\n");
3450 
3451 }
3452 
3453 static const int snb_b_fdi_train_param[] = {
3454 	FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3455 	FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3456 	FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3457 	FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3458 };
3459 
3460 /* The FDI link training functions for SNB/Cougarpoint. */
3461 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3462 {
3463 	struct drm_device *dev = crtc->dev;
3464 	struct drm_i915_private *dev_priv = to_i915(dev);
3465 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3466 	int pipe = intel_crtc->pipe;
3467 	i915_reg_t reg;
3468 	u32 temp, i, retry;
3469 
3470 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3471 	   for train result */
3472 	reg = FDI_RX_IMR(pipe);
3473 	temp = I915_READ(reg);
3474 	temp &= ~FDI_RX_SYMBOL_LOCK;
3475 	temp &= ~FDI_RX_BIT_LOCK;
3476 	I915_WRITE(reg, temp);
3477 
3478 	POSTING_READ(reg);
3479 	udelay(150);
3480 
3481 	/* enable CPU FDI TX and PCH FDI RX */
3482 	reg = FDI_TX_CTL(pipe);
3483 	temp = I915_READ(reg);
3484 	temp &= ~FDI_DP_PORT_WIDTH_MASK;
3485 	temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3486 	temp &= ~FDI_LINK_TRAIN_NONE;
3487 	temp |= FDI_LINK_TRAIN_PATTERN_1;
3488 	temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3489 	/* SNB-B */
3490 	temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3491 	I915_WRITE(reg, temp | FDI_TX_ENABLE);
3492 
3493 	I915_WRITE(FDI_RX_MISC(pipe),
3494 		   FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3495 
3496 	reg = FDI_RX_CTL(pipe);
3497 	temp = I915_READ(reg);
3498 	if (HAS_PCH_CPT(dev)) {
3499 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3500 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3501 	} else {
3502 		temp &= ~FDI_LINK_TRAIN_NONE;
3503 		temp |= FDI_LINK_TRAIN_PATTERN_1;
3504 	}
3505 	I915_WRITE(reg, temp | FDI_RX_ENABLE);
3506 
3507 	POSTING_READ(reg);
3508 	udelay(150);
3509 
3510 	for (i = 0; i < 4; i++) {
3511 		reg = FDI_TX_CTL(pipe);
3512 		temp = I915_READ(reg);
3513 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3514 		temp |= snb_b_fdi_train_param[i];
3515 		I915_WRITE(reg, temp);
3516 
3517 		POSTING_READ(reg);
3518 		udelay(500);
3519 
3520 		for (retry = 0; retry < 5; retry++) {
3521 			reg = FDI_RX_IIR(pipe);
3522 			temp = I915_READ(reg);
3523 			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3524 			if (temp & FDI_RX_BIT_LOCK) {
3525 				I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3526 				DRM_DEBUG_KMS("FDI train 1 done.\n");
3527 				break;
3528 			}
3529 			udelay(50);
3530 		}
3531 		if (retry < 5)
3532 			break;
3533 	}
3534 	if (i == 4)
3535 		DRM_ERROR("FDI train 1 fail!\n");
3536 
3537 	/* Train 2 */
3538 	reg = FDI_TX_CTL(pipe);
3539 	temp = I915_READ(reg);
3540 	temp &= ~FDI_LINK_TRAIN_NONE;
3541 	temp |= FDI_LINK_TRAIN_PATTERN_2;
3542 	if (IS_GEN6(dev)) {
3543 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3544 		/* SNB-B */
3545 		temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3546 	}
3547 	I915_WRITE(reg, temp);
3548 
3549 	reg = FDI_RX_CTL(pipe);
3550 	temp = I915_READ(reg);
3551 	if (HAS_PCH_CPT(dev)) {
3552 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3553 		temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3554 	} else {
3555 		temp &= ~FDI_LINK_TRAIN_NONE;
3556 		temp |= FDI_LINK_TRAIN_PATTERN_2;
3557 	}
3558 	I915_WRITE(reg, temp);
3559 
3560 	POSTING_READ(reg);
3561 	udelay(150);
3562 
3563 	for (i = 0; i < 4; i++) {
3564 		reg = FDI_TX_CTL(pipe);
3565 		temp = I915_READ(reg);
3566 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3567 		temp |= snb_b_fdi_train_param[i];
3568 		I915_WRITE(reg, temp);
3569 
3570 		POSTING_READ(reg);
3571 		udelay(500);
3572 
3573 		for (retry = 0; retry < 5; retry++) {
3574 			reg = FDI_RX_IIR(pipe);
3575 			temp = I915_READ(reg);
3576 			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3577 			if (temp & FDI_RX_SYMBOL_LOCK) {
3578 				I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3579 				DRM_DEBUG_KMS("FDI train 2 done.\n");
3580 				break;
3581 			}
3582 			udelay(50);
3583 		}
3584 		if (retry < 5)
3585 			break;
3586 	}
3587 	if (i == 4)
3588 		DRM_ERROR("FDI train 2 fail!\n");
3589 
3590 	DRM_DEBUG_KMS("FDI train done.\n");
3591 }
3592 
3593 /* Manual link training for Ivy Bridge A0 parts */
3594 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3595 {
3596 	struct drm_device *dev = crtc->dev;
3597 	struct drm_i915_private *dev_priv = to_i915(dev);
3598 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3599 	int pipe = intel_crtc->pipe;
3600 	i915_reg_t reg;
3601 	u32 temp, i, j;
3602 
3603 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3604 	   for train result */
3605 	reg = FDI_RX_IMR(pipe);
3606 	temp = I915_READ(reg);
3607 	temp &= ~FDI_RX_SYMBOL_LOCK;
3608 	temp &= ~FDI_RX_BIT_LOCK;
3609 	I915_WRITE(reg, temp);
3610 
3611 	POSTING_READ(reg);
3612 	udelay(150);
3613 
3614 	DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3615 		      I915_READ(FDI_RX_IIR(pipe)));
3616 
3617 	/* Try each vswing and preemphasis setting twice before moving on */
3618 	for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3619 		/* disable first in case we need to retry */
3620 		reg = FDI_TX_CTL(pipe);
3621 		temp = I915_READ(reg);
3622 		temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3623 		temp &= ~FDI_TX_ENABLE;
3624 		I915_WRITE(reg, temp);
3625 
3626 		reg = FDI_RX_CTL(pipe);
3627 		temp = I915_READ(reg);
3628 		temp &= ~FDI_LINK_TRAIN_AUTO;
3629 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3630 		temp &= ~FDI_RX_ENABLE;
3631 		I915_WRITE(reg, temp);
3632 
3633 		/* enable CPU FDI TX and PCH FDI RX */
3634 		reg = FDI_TX_CTL(pipe);
3635 		temp = I915_READ(reg);
3636 		temp &= ~FDI_DP_PORT_WIDTH_MASK;
3637 		temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3638 		temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3639 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3640 		temp |= snb_b_fdi_train_param[j/2];
3641 		temp |= FDI_COMPOSITE_SYNC;
3642 		I915_WRITE(reg, temp | FDI_TX_ENABLE);
3643 
3644 		I915_WRITE(FDI_RX_MISC(pipe),
3645 			   FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3646 
3647 		reg = FDI_RX_CTL(pipe);
3648 		temp = I915_READ(reg);
3649 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3650 		temp |= FDI_COMPOSITE_SYNC;
3651 		I915_WRITE(reg, temp | FDI_RX_ENABLE);
3652 
3653 		POSTING_READ(reg);
3654 		udelay(1); /* should be 0.5us */
3655 
3656 		for (i = 0; i < 4; i++) {
3657 			reg = FDI_RX_IIR(pipe);
3658 			temp = I915_READ(reg);
3659 			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3660 
3661 			if (temp & FDI_RX_BIT_LOCK ||
3662 			    (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3663 				I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3664 				DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3665 					      i);
3666 				break;
3667 			}
3668 			udelay(1); /* should be 0.5us */
3669 		}
3670 		if (i == 4) {
3671 			DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3672 			continue;
3673 		}
3674 
3675 		/* Train 2 */
3676 		reg = FDI_TX_CTL(pipe);
3677 		temp = I915_READ(reg);
3678 		temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3679 		temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3680 		I915_WRITE(reg, temp);
3681 
3682 		reg = FDI_RX_CTL(pipe);
3683 		temp = I915_READ(reg);
3684 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3685 		temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3686 		I915_WRITE(reg, temp);
3687 
3688 		POSTING_READ(reg);
3689 		udelay(2); /* should be 1.5us */
3690 
3691 		for (i = 0; i < 4; i++) {
3692 			reg = FDI_RX_IIR(pipe);
3693 			temp = I915_READ(reg);
3694 			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3695 
3696 			if (temp & FDI_RX_SYMBOL_LOCK ||
3697 			    (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3698 				I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3699 				DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3700 					      i);
3701 				goto train_done;
3702 			}
3703 			udelay(2); /* should be 1.5us */
3704 		}
3705 		if (i == 4)
3706 			DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3707 	}
3708 
3709 train_done:
3710 	DRM_DEBUG_KMS("FDI train done.\n");
3711 }
3712 
3713 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3714 {
3715 	struct drm_device *dev = intel_crtc->base.dev;
3716 	struct drm_i915_private *dev_priv = to_i915(dev);
3717 	int pipe = intel_crtc->pipe;
3718 	i915_reg_t reg;
3719 	u32 temp;
3720 
3721 	/* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3722 	reg = FDI_RX_CTL(pipe);
3723 	temp = I915_READ(reg);
3724 	temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3725 	temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3726 	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3727 	I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3728 
3729 	POSTING_READ(reg);
3730 	udelay(200);
3731 
3732 	/* Switch from Rawclk to PCDclk */
3733 	temp = I915_READ(reg);
3734 	I915_WRITE(reg, temp | FDI_PCDCLK);
3735 
3736 	POSTING_READ(reg);
3737 	udelay(200);
3738 
3739 	/* Enable CPU FDI TX PLL, always on for Ironlake */
3740 	reg = FDI_TX_CTL(pipe);
3741 	temp = I915_READ(reg);
3742 	if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3743 		I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3744 
3745 		POSTING_READ(reg);
3746 		udelay(100);
3747 	}
3748 }
3749 
3750 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3751 {
3752 	struct drm_device *dev = intel_crtc->base.dev;
3753 	struct drm_i915_private *dev_priv = to_i915(dev);
3754 	int pipe = intel_crtc->pipe;
3755 	i915_reg_t reg;
3756 	u32 temp;
3757 
3758 	/* Switch from PCDclk to Rawclk */
3759 	reg = FDI_RX_CTL(pipe);
3760 	temp = I915_READ(reg);
3761 	I915_WRITE(reg, temp & ~FDI_PCDCLK);
3762 
3763 	/* Disable CPU FDI TX PLL */
3764 	reg = FDI_TX_CTL(pipe);
3765 	temp = I915_READ(reg);
3766 	I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3767 
3768 	POSTING_READ(reg);
3769 	udelay(100);
3770 
3771 	reg = FDI_RX_CTL(pipe);
3772 	temp = I915_READ(reg);
3773 	I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3774 
3775 	/* Wait for the clocks to turn off. */
3776 	POSTING_READ(reg);
3777 	udelay(100);
3778 }
3779 
3780 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3781 {
3782 	struct drm_device *dev = crtc->dev;
3783 	struct drm_i915_private *dev_priv = to_i915(dev);
3784 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3785 	int pipe = intel_crtc->pipe;
3786 	i915_reg_t reg;
3787 	u32 temp;
3788 
3789 	/* disable CPU FDI tx and PCH FDI rx */
3790 	reg = FDI_TX_CTL(pipe);
3791 	temp = I915_READ(reg);
3792 	I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3793 	POSTING_READ(reg);
3794 
3795 	reg = FDI_RX_CTL(pipe);
3796 	temp = I915_READ(reg);
3797 	temp &= ~(0x7 << 16);
3798 	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3799 	I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3800 
3801 	POSTING_READ(reg);
3802 	udelay(100);
3803 
3804 	/* Ironlake workaround, disable clock pointer after downing FDI */
3805 	if (HAS_PCH_IBX(dev))
3806 		I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3807 
3808 	/* still set train pattern 1 */
3809 	reg = FDI_TX_CTL(pipe);
3810 	temp = I915_READ(reg);
3811 	temp &= ~FDI_LINK_TRAIN_NONE;
3812 	temp |= FDI_LINK_TRAIN_PATTERN_1;
3813 	I915_WRITE(reg, temp);
3814 
3815 	reg = FDI_RX_CTL(pipe);
3816 	temp = I915_READ(reg);
3817 	if (HAS_PCH_CPT(dev)) {
3818 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3819 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3820 	} else {
3821 		temp &= ~FDI_LINK_TRAIN_NONE;
3822 		temp |= FDI_LINK_TRAIN_PATTERN_1;
3823 	}
3824 	/* BPC in FDI rx is consistent with that in PIPECONF */
3825 	temp &= ~(0x07 << 16);
3826 	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3827 	I915_WRITE(reg, temp);
3828 
3829 	POSTING_READ(reg);
3830 	udelay(100);
3831 }
3832 
3833 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3834 {
3835 	struct intel_crtc *crtc;
3836 
3837 	/* Note that we don't need to be called with mode_config.lock here
3838 	 * as our list of CRTC objects is static for the lifetime of the
3839 	 * device and so cannot disappear as we iterate. Similarly, we can
3840 	 * happily treat the predicates as racy, atomic checks as userspace
3841 	 * cannot claim and pin a new fb without at least acquring the
3842 	 * struct_mutex and so serialising with us.
3843 	 */
3844 	for_each_intel_crtc(dev, crtc) {
3845 		if (atomic_read(&crtc->unpin_work_count) == 0)
3846 			continue;
3847 
3848 		if (crtc->flip_work)
3849 			intel_wait_for_vblank(dev, crtc->pipe);
3850 
3851 		return true;
3852 	}
3853 
3854 	return false;
3855 }
3856 
3857 static void page_flip_completed(struct intel_crtc *intel_crtc)
3858 {
3859 	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3860 	struct intel_flip_work *work = intel_crtc->flip_work;
3861 
3862 	intel_crtc->flip_work = NULL;
3863 
3864 	if (work->event)
3865 		drm_crtc_send_vblank_event(&intel_crtc->base, work->event);
3866 
3867 	drm_crtc_vblank_put(&intel_crtc->base);
3868 
3869 	wake_up_all(&dev_priv->pending_flip_queue);
3870 	queue_work(dev_priv->wq, &work->unpin_work);
3871 
3872 	trace_i915_flip_complete(intel_crtc->plane,
3873 				 work->pending_flip_obj);
3874 }
3875 
3876 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3877 {
3878 	struct drm_device *dev = crtc->dev;
3879 	struct drm_i915_private *dev_priv = to_i915(dev);
3880 	long ret;
3881 
3882 	WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3883 
3884 	ret = wait_event_interruptible_timeout(
3885 					dev_priv->pending_flip_queue,
3886 					!intel_crtc_has_pending_flip(crtc),
3887 					60*HZ);
3888 
3889 	if (ret < 0)
3890 		return ret;
3891 
3892 	if (ret == 0) {
3893 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3894 		struct intel_flip_work *work;
3895 
3896 		spin_lock_irq(&dev->event_lock);
3897 		work = intel_crtc->flip_work;
3898 		if (work && !is_mmio_work(work)) {
3899 			WARN_ONCE(1, "Removing stuck page flip\n");
3900 			page_flip_completed(intel_crtc);
3901 		}
3902 		spin_unlock_irq(&dev->event_lock);
3903 	}
3904 
3905 	return 0;
3906 }
3907 
3908 static void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
3909 {
3910 	u32 temp;
3911 
3912 	I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3913 
3914 	mutex_lock(&dev_priv->sb_lock);
3915 
3916 	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3917 	temp |= SBI_SSCCTL_DISABLE;
3918 	intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3919 
3920 	mutex_unlock(&dev_priv->sb_lock);
3921 }
3922 
3923 /* Program iCLKIP clock to the desired frequency */
3924 static void lpt_program_iclkip(struct drm_crtc *crtc)
3925 {
3926 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3927 	int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3928 	u32 divsel, phaseinc, auxdiv, phasedir = 0;
3929 	u32 temp;
3930 
3931 	lpt_disable_iclkip(dev_priv);
3932 
3933 	/* The iCLK virtual clock root frequency is in MHz,
3934 	 * but the adjusted_mode->crtc_clock in in KHz. To get the
3935 	 * divisors, it is necessary to divide one by another, so we
3936 	 * convert the virtual clock precision to KHz here for higher
3937 	 * precision.
3938 	 */
3939 	for (auxdiv = 0; auxdiv < 2; auxdiv++) {
3940 		u32 iclk_virtual_root_freq = 172800 * 1000;
3941 		u32 iclk_pi_range = 64;
3942 		u32 desired_divisor;
3943 
3944 		desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
3945 						    clock << auxdiv);
3946 		divsel = (desired_divisor / iclk_pi_range) - 2;
3947 		phaseinc = desired_divisor % iclk_pi_range;
3948 
3949 		/*
3950 		 * Near 20MHz is a corner case which is
3951 		 * out of range for the 7-bit divisor
3952 		 */
3953 		if (divsel <= 0x7f)
3954 			break;
3955 	}
3956 
3957 	/* This should not happen with any sane values */
3958 	WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3959 		~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3960 	WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3961 		~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3962 
3963 	DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3964 			clock,
3965 			auxdiv,
3966 			divsel,
3967 			phasedir,
3968 			phaseinc);
3969 
3970 	mutex_lock(&dev_priv->sb_lock);
3971 
3972 	/* Program SSCDIVINTPHASE6 */
3973 	temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3974 	temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3975 	temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3976 	temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3977 	temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3978 	temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3979 	temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3980 	intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3981 
3982 	/* Program SSCAUXDIV */
3983 	temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3984 	temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3985 	temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3986 	intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3987 
3988 	/* Enable modulator and associated divider */
3989 	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3990 	temp &= ~SBI_SSCCTL_DISABLE;
3991 	intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3992 
3993 	mutex_unlock(&dev_priv->sb_lock);
3994 
3995 	/* Wait for initialization time */
3996 	udelay(24);
3997 
3998 	I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3999 }
4000 
4001 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
4002 {
4003 	u32 divsel, phaseinc, auxdiv;
4004 	u32 iclk_virtual_root_freq = 172800 * 1000;
4005 	u32 iclk_pi_range = 64;
4006 	u32 desired_divisor;
4007 	u32 temp;
4008 
4009 	if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
4010 		return 0;
4011 
4012 	mutex_lock(&dev_priv->sb_lock);
4013 
4014 	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4015 	if (temp & SBI_SSCCTL_DISABLE) {
4016 		mutex_unlock(&dev_priv->sb_lock);
4017 		return 0;
4018 	}
4019 
4020 	temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4021 	divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
4022 		SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
4023 	phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
4024 		SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
4025 
4026 	temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4027 	auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
4028 		SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
4029 
4030 	mutex_unlock(&dev_priv->sb_lock);
4031 
4032 	desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
4033 
4034 	return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4035 				 desired_divisor << auxdiv);
4036 }
4037 
4038 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4039 						enum i915_pipe pch_transcoder)
4040 {
4041 	struct drm_device *dev = crtc->base.dev;
4042 	struct drm_i915_private *dev_priv = to_i915(dev);
4043 	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4044 
4045 	I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4046 		   I915_READ(HTOTAL(cpu_transcoder)));
4047 	I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4048 		   I915_READ(HBLANK(cpu_transcoder)));
4049 	I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4050 		   I915_READ(HSYNC(cpu_transcoder)));
4051 
4052 	I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4053 		   I915_READ(VTOTAL(cpu_transcoder)));
4054 	I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4055 		   I915_READ(VBLANK(cpu_transcoder)));
4056 	I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4057 		   I915_READ(VSYNC(cpu_transcoder)));
4058 	I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4059 		   I915_READ(VSYNCSHIFT(cpu_transcoder)));
4060 }
4061 
4062 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4063 {
4064 	struct drm_i915_private *dev_priv = to_i915(dev);
4065 	uint32_t temp;
4066 
4067 	temp = I915_READ(SOUTH_CHICKEN1);
4068 	if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4069 		return;
4070 
4071 	WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4072 	WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4073 
4074 	temp &= ~FDI_BC_BIFURCATION_SELECT;
4075 	if (enable)
4076 		temp |= FDI_BC_BIFURCATION_SELECT;
4077 
4078 	DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4079 	I915_WRITE(SOUTH_CHICKEN1, temp);
4080 	POSTING_READ(SOUTH_CHICKEN1);
4081 }
4082 
4083 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4084 {
4085 	struct drm_device *dev = intel_crtc->base.dev;
4086 
4087 	switch (intel_crtc->pipe) {
4088 	case PIPE_A:
4089 		break;
4090 	case PIPE_B:
4091 		if (intel_crtc->config->fdi_lanes > 2)
4092 			cpt_set_fdi_bc_bifurcation(dev, false);
4093 		else
4094 			cpt_set_fdi_bc_bifurcation(dev, true);
4095 
4096 		break;
4097 	case PIPE_C:
4098 		cpt_set_fdi_bc_bifurcation(dev, true);
4099 
4100 		break;
4101 	default:
4102 		BUG();
4103 	}
4104 }
4105 
4106 /* Return which DP Port should be selected for Transcoder DP control */
4107 static enum port
4108 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4109 {
4110 	struct drm_device *dev = crtc->dev;
4111 	struct intel_encoder *encoder;
4112 
4113 	for_each_encoder_on_crtc(dev, crtc, encoder) {
4114 		if (encoder->type == INTEL_OUTPUT_DP ||
4115 		    encoder->type == INTEL_OUTPUT_EDP)
4116 			return enc_to_dig_port(&encoder->base)->port;
4117 	}
4118 
4119 	return -1;
4120 }
4121 
4122 /*
4123  * Enable PCH resources required for PCH ports:
4124  *   - PCH PLLs
4125  *   - FDI training & RX/TX
4126  *   - update transcoder timings
4127  *   - DP transcoding bits
4128  *   - transcoder
4129  */
4130 static void ironlake_pch_enable(struct drm_crtc *crtc)
4131 {
4132 	struct drm_device *dev = crtc->dev;
4133 	struct drm_i915_private *dev_priv = to_i915(dev);
4134 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4135 	int pipe = intel_crtc->pipe;
4136 	u32 temp;
4137 
4138 	assert_pch_transcoder_disabled(dev_priv, pipe);
4139 
4140 	if (IS_IVYBRIDGE(dev))
4141 		ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4142 
4143 	/* Write the TU size bits before fdi link training, so that error
4144 	 * detection works. */
4145 	I915_WRITE(FDI_RX_TUSIZE1(pipe),
4146 		   I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4147 
4148 	/* For PCH output, training FDI link */
4149 	dev_priv->display.fdi_link_train(crtc);
4150 
4151 	/* We need to program the right clock selection before writing the pixel
4152 	 * mutliplier into the DPLL. */
4153 	if (HAS_PCH_CPT(dev)) {
4154 		u32 sel;
4155 
4156 		temp = I915_READ(PCH_DPLL_SEL);
4157 		temp |= TRANS_DPLL_ENABLE(pipe);
4158 		sel = TRANS_DPLLB_SEL(pipe);
4159 		if (intel_crtc->config->shared_dpll ==
4160 		    intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4161 			temp |= sel;
4162 		else
4163 			temp &= ~sel;
4164 		I915_WRITE(PCH_DPLL_SEL, temp);
4165 	}
4166 
4167 	/* XXX: pch pll's can be enabled any time before we enable the PCH
4168 	 * transcoder, and we actually should do this to not upset any PCH
4169 	 * transcoder that already use the clock when we share it.
4170 	 *
4171 	 * Note that enable_shared_dpll tries to do the right thing, but
4172 	 * get_shared_dpll unconditionally resets the pll - we need that to have
4173 	 * the right LVDS enable sequence. */
4174 	intel_enable_shared_dpll(intel_crtc);
4175 
4176 	/* set transcoder timing, panel must allow it */
4177 	assert_panel_unlocked(dev_priv, pipe);
4178 	ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4179 
4180 	intel_fdi_normal_train(crtc);
4181 
4182 	/* For PCH DP, enable TRANS_DP_CTL */
4183 	if (HAS_PCH_CPT(dev) && intel_crtc_has_dp_encoder(intel_crtc->config)) {
4184 		const struct drm_display_mode *adjusted_mode =
4185 			&intel_crtc->config->base.adjusted_mode;
4186 		u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4187 		i915_reg_t reg = TRANS_DP_CTL(pipe);
4188 		temp = I915_READ(reg);
4189 		temp &= ~(TRANS_DP_PORT_SEL_MASK |
4190 			  TRANS_DP_SYNC_MASK |
4191 			  TRANS_DP_BPC_MASK);
4192 		temp |= TRANS_DP_OUTPUT_ENABLE;
4193 		temp |= bpc << 9; /* same format but at 11:9 */
4194 
4195 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4196 			temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4197 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4198 			temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4199 
4200 		switch (intel_trans_dp_port_sel(crtc)) {
4201 		case PORT_B:
4202 			temp |= TRANS_DP_PORT_SEL_B;
4203 			break;
4204 		case PORT_C:
4205 			temp |= TRANS_DP_PORT_SEL_C;
4206 			break;
4207 		case PORT_D:
4208 			temp |= TRANS_DP_PORT_SEL_D;
4209 			break;
4210 		default:
4211 			BUG();
4212 		}
4213 
4214 		I915_WRITE(reg, temp);
4215 	}
4216 
4217 	ironlake_enable_pch_transcoder(dev_priv, pipe);
4218 }
4219 
4220 static void lpt_pch_enable(struct drm_crtc *crtc)
4221 {
4222 	struct drm_device *dev = crtc->dev;
4223 	struct drm_i915_private *dev_priv = to_i915(dev);
4224 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4225 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4226 
4227 	assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4228 
4229 	lpt_program_iclkip(crtc);
4230 
4231 	/* Set transcoder timing. */
4232 	ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4233 
4234 	lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4235 }
4236 
4237 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4238 {
4239 	struct drm_i915_private *dev_priv = to_i915(dev);
4240 	i915_reg_t dslreg = PIPEDSL(pipe);
4241 	u32 temp;
4242 
4243 	temp = I915_READ(dslreg);
4244 	udelay(500);
4245 	if (wait_for(I915_READ(dslreg) != temp, 5)) {
4246 		if (wait_for(I915_READ(dslreg) != temp, 5))
4247 			DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4248 	}
4249 }
4250 
4251 static int
4252 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4253 		  unsigned scaler_user, int *scaler_id, unsigned int rotation,
4254 		  int src_w, int src_h, int dst_w, int dst_h)
4255 {
4256 	struct intel_crtc_scaler_state *scaler_state =
4257 		&crtc_state->scaler_state;
4258 	struct intel_crtc *intel_crtc =
4259 		to_intel_crtc(crtc_state->base.crtc);
4260 	int need_scaling;
4261 
4262 	need_scaling = intel_rotation_90_or_270(rotation) ?
4263 		(src_h != dst_w || src_w != dst_h):
4264 		(src_w != dst_w || src_h != dst_h);
4265 
4266 	/*
4267 	 * if plane is being disabled or scaler is no more required or force detach
4268 	 *  - free scaler binded to this plane/crtc
4269 	 *  - in order to do this, update crtc->scaler_usage
4270 	 *
4271 	 * Here scaler state in crtc_state is set free so that
4272 	 * scaler can be assigned to other user. Actual register
4273 	 * update to free the scaler is done in plane/panel-fit programming.
4274 	 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4275 	 */
4276 	if (force_detach || !need_scaling) {
4277 		if (*scaler_id >= 0) {
4278 			scaler_state->scaler_users &= ~(1 << scaler_user);
4279 			scaler_state->scalers[*scaler_id].in_use = 0;
4280 
4281 			DRM_DEBUG_KMS("scaler_user index %u.%u: "
4282 				"Staged freeing scaler id %d scaler_users = 0x%x\n",
4283 				intel_crtc->pipe, scaler_user, *scaler_id,
4284 				scaler_state->scaler_users);
4285 			*scaler_id = -1;
4286 		}
4287 		return 0;
4288 	}
4289 
4290 	/* range checks */
4291 	if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4292 		dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4293 
4294 		src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4295 		dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4296 		DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4297 			"size is out of scaler range\n",
4298 			intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4299 		return -EINVAL;
4300 	}
4301 
4302 	/* mark this plane as a scaler user in crtc_state */
4303 	scaler_state->scaler_users |= (1 << scaler_user);
4304 	DRM_DEBUG_KMS("scaler_user index %u.%u: "
4305 		"staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4306 		intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4307 		scaler_state->scaler_users);
4308 
4309 	return 0;
4310 }
4311 
4312 /**
4313  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4314  *
4315  * @state: crtc's scaler state
4316  *
4317  * Return
4318  *     0 - scaler_usage updated successfully
4319  *    error - requested scaling cannot be supported or other error condition
4320  */
4321 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4322 {
4323 	struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4324 	const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4325 
4326 	DRM_DEBUG_KMS("Updating scaler for [CRTC:%d:%s] scaler_user index %u.%u\n",
4327 		      intel_crtc->base.base.id, intel_crtc->base.name,
4328 		      intel_crtc->pipe, SKL_CRTC_INDEX);
4329 
4330 	return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4331 		&state->scaler_state.scaler_id, DRM_ROTATE_0,
4332 		state->pipe_src_w, state->pipe_src_h,
4333 		adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4334 }
4335 
4336 /**
4337  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4338  *
4339  * @state: crtc's scaler state
4340  * @plane_state: atomic plane state to update
4341  *
4342  * Return
4343  *     0 - scaler_usage updated successfully
4344  *    error - requested scaling cannot be supported or other error condition
4345  */
4346 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4347 				   struct intel_plane_state *plane_state)
4348 {
4349 
4350 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4351 	struct intel_plane *intel_plane =
4352 		to_intel_plane(plane_state->base.plane);
4353 	struct drm_framebuffer *fb = plane_state->base.fb;
4354 	int ret;
4355 
4356 	bool force_detach = !fb || !plane_state->visible;
4357 
4358 	DRM_DEBUG_KMS("Updating scaler for [PLANE:%d:%s] scaler_user index %u.%u\n",
4359 		      intel_plane->base.base.id, intel_plane->base.name,
4360 		      intel_crtc->pipe, drm_plane_index(&intel_plane->base));
4361 
4362 	ret = skl_update_scaler(crtc_state, force_detach,
4363 				drm_plane_index(&intel_plane->base),
4364 				&plane_state->scaler_id,
4365 				plane_state->base.rotation,
4366 				drm_rect_width(&plane_state->src) >> 16,
4367 				drm_rect_height(&plane_state->src) >> 16,
4368 				drm_rect_width(&plane_state->dst),
4369 				drm_rect_height(&plane_state->dst));
4370 
4371 	if (ret || plane_state->scaler_id < 0)
4372 		return ret;
4373 
4374 	/* check colorkey */
4375 	if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4376 		DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
4377 			      intel_plane->base.base.id,
4378 			      intel_plane->base.name);
4379 		return -EINVAL;
4380 	}
4381 
4382 	/* Check src format */
4383 	switch (fb->pixel_format) {
4384 	case DRM_FORMAT_RGB565:
4385 	case DRM_FORMAT_XBGR8888:
4386 	case DRM_FORMAT_XRGB8888:
4387 	case DRM_FORMAT_ABGR8888:
4388 	case DRM_FORMAT_ARGB8888:
4389 	case DRM_FORMAT_XRGB2101010:
4390 	case DRM_FORMAT_XBGR2101010:
4391 	case DRM_FORMAT_YUYV:
4392 	case DRM_FORMAT_YVYU:
4393 	case DRM_FORMAT_UYVY:
4394 	case DRM_FORMAT_VYUY:
4395 		break;
4396 	default:
4397 		DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
4398 			      intel_plane->base.base.id, intel_plane->base.name,
4399 			      fb->base.id, fb->pixel_format);
4400 		return -EINVAL;
4401 	}
4402 
4403 	return 0;
4404 }
4405 
4406 static void skylake_scaler_disable(struct intel_crtc *crtc)
4407 {
4408 	int i;
4409 
4410 	for (i = 0; i < crtc->num_scalers; i++)
4411 		skl_detach_scaler(crtc, i);
4412 }
4413 
4414 static void skylake_pfit_enable(struct intel_crtc *crtc)
4415 {
4416 	struct drm_device *dev = crtc->base.dev;
4417 	struct drm_i915_private *dev_priv = to_i915(dev);
4418 	int pipe = crtc->pipe;
4419 	struct intel_crtc_scaler_state *scaler_state =
4420 		&crtc->config->scaler_state;
4421 
4422 	DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4423 
4424 	if (crtc->config->pch_pfit.enabled) {
4425 		int id;
4426 
4427 		if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4428 			DRM_ERROR("Requesting pfit without getting a scaler first\n");
4429 			return;
4430 		}
4431 
4432 		id = scaler_state->scaler_id;
4433 		I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4434 			PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4435 		I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4436 		I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4437 
4438 		DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4439 	}
4440 }
4441 
4442 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4443 {
4444 	struct drm_device *dev = crtc->base.dev;
4445 	struct drm_i915_private *dev_priv = to_i915(dev);
4446 	int pipe = crtc->pipe;
4447 
4448 	if (crtc->config->pch_pfit.enabled) {
4449 		/* Force use of hard-coded filter coefficients
4450 		 * as some pre-programmed values are broken,
4451 		 * e.g. x201.
4452 		 */
4453 		if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4454 			I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4455 						 PF_PIPE_SEL_IVB(pipe));
4456 		else
4457 			I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4458 		I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4459 		I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4460 	}
4461 }
4462 
4463 void hsw_enable_ips(struct intel_crtc *crtc)
4464 {
4465 	struct drm_device *dev = crtc->base.dev;
4466 	struct drm_i915_private *dev_priv = to_i915(dev);
4467 
4468 	if (!crtc->config->ips_enabled)
4469 		return;
4470 
4471 	/*
4472 	 * We can only enable IPS after we enable a plane and wait for a vblank
4473 	 * This function is called from post_plane_update, which is run after
4474 	 * a vblank wait.
4475 	 */
4476 
4477 	assert_plane_enabled(dev_priv, crtc->plane);
4478 	if (IS_BROADWELL(dev)) {
4479 		mutex_lock(&dev_priv->rps.hw_lock);
4480 		WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4481 		mutex_unlock(&dev_priv->rps.hw_lock);
4482 		/* Quoting Art Runyan: "its not safe to expect any particular
4483 		 * value in IPS_CTL bit 31 after enabling IPS through the
4484 		 * mailbox." Moreover, the mailbox may return a bogus state,
4485 		 * so we need to just enable it and continue on.
4486 		 */
4487 	} else {
4488 		I915_WRITE(IPS_CTL, IPS_ENABLE);
4489 		/* The bit only becomes 1 in the next vblank, so this wait here
4490 		 * is essentially intel_wait_for_vblank. If we don't have this
4491 		 * and don't wait for vblanks until the end of crtc_enable, then
4492 		 * the HW state readout code will complain that the expected
4493 		 * IPS_CTL value is not the one we read. */
4494 		if (intel_wait_for_register(dev_priv,
4495 					    IPS_CTL, IPS_ENABLE, IPS_ENABLE,
4496 					    50))
4497 			DRM_ERROR("Timed out waiting for IPS enable\n");
4498 	}
4499 }
4500 
4501 void hsw_disable_ips(struct intel_crtc *crtc)
4502 {
4503 	struct drm_device *dev = crtc->base.dev;
4504 	struct drm_i915_private *dev_priv = to_i915(dev);
4505 
4506 	if (!crtc->config->ips_enabled)
4507 		return;
4508 
4509 	assert_plane_enabled(dev_priv, crtc->plane);
4510 	if (IS_BROADWELL(dev)) {
4511 		mutex_lock(&dev_priv->rps.hw_lock);
4512 		WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4513 		mutex_unlock(&dev_priv->rps.hw_lock);
4514 		/* wait for pcode to finish disabling IPS, which may take up to 42ms */
4515 		if (intel_wait_for_register(dev_priv,
4516 					    IPS_CTL, IPS_ENABLE, 0,
4517 					    42))
4518 			DRM_ERROR("Timed out waiting for IPS disable\n");
4519 	} else {
4520 		I915_WRITE(IPS_CTL, 0);
4521 		POSTING_READ(IPS_CTL);
4522 	}
4523 
4524 	/* We need to wait for a vblank before we can disable the plane. */
4525 	intel_wait_for_vblank(dev, crtc->pipe);
4526 }
4527 
4528 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4529 {
4530 	if (intel_crtc->overlay) {
4531 		struct drm_device *dev = intel_crtc->base.dev;
4532 		struct drm_i915_private *dev_priv = to_i915(dev);
4533 
4534 		mutex_lock(&dev->struct_mutex);
4535 		dev_priv->mm.interruptible = false;
4536 		(void) intel_overlay_switch_off(intel_crtc->overlay);
4537 		dev_priv->mm.interruptible = true;
4538 		mutex_unlock(&dev->struct_mutex);
4539 	}
4540 
4541 	/* Let userspace switch the overlay on again. In most cases userspace
4542 	 * has to recompute where to put it anyway.
4543 	 */
4544 }
4545 
4546 /**
4547  * intel_post_enable_primary - Perform operations after enabling primary plane
4548  * @crtc: the CRTC whose primary plane was just enabled
4549  *
4550  * Performs potentially sleeping operations that must be done after the primary
4551  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4552  * called due to an explicit primary plane update, or due to an implicit
4553  * re-enable that is caused when a sprite plane is updated to no longer
4554  * completely hide the primary plane.
4555  */
4556 static void
4557 intel_post_enable_primary(struct drm_crtc *crtc)
4558 {
4559 	struct drm_device *dev = crtc->dev;
4560 	struct drm_i915_private *dev_priv = to_i915(dev);
4561 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4562 	int pipe = intel_crtc->pipe;
4563 
4564 	/*
4565 	 * FIXME IPS should be fine as long as one plane is
4566 	 * enabled, but in practice it seems to have problems
4567 	 * when going from primary only to sprite only and vice
4568 	 * versa.
4569 	 */
4570 	hsw_enable_ips(intel_crtc);
4571 
4572 	/*
4573 	 * Gen2 reports pipe underruns whenever all planes are disabled.
4574 	 * So don't enable underrun reporting before at least some planes
4575 	 * are enabled.
4576 	 * FIXME: Need to fix the logic to work when we turn off all planes
4577 	 * but leave the pipe running.
4578 	 */
4579 	if (IS_GEN2(dev))
4580 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4581 
4582 	/* Underruns don't always raise interrupts, so check manually. */
4583 	intel_check_cpu_fifo_underruns(dev_priv);
4584 	intel_check_pch_fifo_underruns(dev_priv);
4585 }
4586 
4587 /* FIXME move all this to pre_plane_update() with proper state tracking */
4588 static void
4589 intel_pre_disable_primary(struct drm_crtc *crtc)
4590 {
4591 	struct drm_device *dev = crtc->dev;
4592 	struct drm_i915_private *dev_priv = to_i915(dev);
4593 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4594 	int pipe = intel_crtc->pipe;
4595 
4596 	/*
4597 	 * Gen2 reports pipe underruns whenever all planes are disabled.
4598 	 * So diasble underrun reporting before all the planes get disabled.
4599 	 * FIXME: Need to fix the logic to work when we turn off all planes
4600 	 * but leave the pipe running.
4601 	 */
4602 	if (IS_GEN2(dev))
4603 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4604 
4605 	/*
4606 	 * FIXME IPS should be fine as long as one plane is
4607 	 * enabled, but in practice it seems to have problems
4608 	 * when going from primary only to sprite only and vice
4609 	 * versa.
4610 	 */
4611 	hsw_disable_ips(intel_crtc);
4612 }
4613 
4614 /* FIXME get rid of this and use pre_plane_update */
4615 static void
4616 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
4617 {
4618 	struct drm_device *dev = crtc->dev;
4619 	struct drm_i915_private *dev_priv = to_i915(dev);
4620 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4621 	int pipe = intel_crtc->pipe;
4622 
4623 	intel_pre_disable_primary(crtc);
4624 
4625 	/*
4626 	 * Vblank time updates from the shadow to live plane control register
4627 	 * are blocked if the memory self-refresh mode is active at that
4628 	 * moment. So to make sure the plane gets truly disabled, disable
4629 	 * first the self-refresh mode. The self-refresh enable bit in turn
4630 	 * will be checked/applied by the HW only at the next frame start
4631 	 * event which is after the vblank start event, so we need to have a
4632 	 * wait-for-vblank between disabling the plane and the pipe.
4633 	 */
4634 	if (HAS_GMCH_DISPLAY(dev)) {
4635 		intel_set_memory_cxsr(dev_priv, false);
4636 		dev_priv->wm.vlv.cxsr = false;
4637 		intel_wait_for_vblank(dev, pipe);
4638 	}
4639 }
4640 
4641 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
4642 {
4643 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4644 	struct drm_atomic_state *old_state = old_crtc_state->base.state;
4645 	struct intel_crtc_state *pipe_config =
4646 		to_intel_crtc_state(crtc->base.state);
4647 	struct drm_plane *primary = crtc->base.primary;
4648 	struct drm_plane_state *old_pri_state =
4649 		drm_atomic_get_existing_plane_state(old_state, primary);
4650 
4651 	intel_frontbuffer_flip(to_i915(crtc->base.dev), pipe_config->fb_bits);
4652 
4653 	crtc->wm.cxsr_allowed = true;
4654 
4655 	if (pipe_config->update_wm_post && pipe_config->base.active)
4656 		intel_update_watermarks(&crtc->base);
4657 
4658 	if (old_pri_state) {
4659 		struct intel_plane_state *primary_state =
4660 			to_intel_plane_state(primary->state);
4661 		struct intel_plane_state *old_primary_state =
4662 			to_intel_plane_state(old_pri_state);
4663 
4664 		intel_fbc_post_update(crtc);
4665 
4666 		if (primary_state->visible &&
4667 		    (needs_modeset(&pipe_config->base) ||
4668 		     !old_primary_state->visible))
4669 			intel_post_enable_primary(&crtc->base);
4670 	}
4671 }
4672 
4673 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
4674 {
4675 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4676 	struct drm_device *dev = crtc->base.dev;
4677 	struct drm_i915_private *dev_priv = to_i915(dev);
4678 	struct intel_crtc_state *pipe_config =
4679 		to_intel_crtc_state(crtc->base.state);
4680 	struct drm_atomic_state *old_state = old_crtc_state->base.state;
4681 	struct drm_plane *primary = crtc->base.primary;
4682 	struct drm_plane_state *old_pri_state =
4683 		drm_atomic_get_existing_plane_state(old_state, primary);
4684 	bool modeset = needs_modeset(&pipe_config->base);
4685 
4686 	if (old_pri_state) {
4687 		struct intel_plane_state *primary_state =
4688 			to_intel_plane_state(primary->state);
4689 		struct intel_plane_state *old_primary_state =
4690 			to_intel_plane_state(old_pri_state);
4691 
4692 		intel_fbc_pre_update(crtc, pipe_config, primary_state);
4693 
4694 		if (old_primary_state->visible &&
4695 		    (modeset || !primary_state->visible))
4696 			intel_pre_disable_primary(&crtc->base);
4697 	}
4698 
4699 	if (pipe_config->disable_cxsr && HAS_GMCH_DISPLAY(dev)) {
4700 		crtc->wm.cxsr_allowed = false;
4701 
4702 		/*
4703 		 * Vblank time updates from the shadow to live plane control register
4704 		 * are blocked if the memory self-refresh mode is active at that
4705 		 * moment. So to make sure the plane gets truly disabled, disable
4706 		 * first the self-refresh mode. The self-refresh enable bit in turn
4707 		 * will be checked/applied by the HW only at the next frame start
4708 		 * event which is after the vblank start event, so we need to have a
4709 		 * wait-for-vblank between disabling the plane and the pipe.
4710 		 */
4711 		if (old_crtc_state->base.active) {
4712 			intel_set_memory_cxsr(dev_priv, false);
4713 			dev_priv->wm.vlv.cxsr = false;
4714 			intel_wait_for_vblank(dev, crtc->pipe);
4715 		}
4716 	}
4717 
4718 	/*
4719 	 * IVB workaround: must disable low power watermarks for at least
4720 	 * one frame before enabling scaling.  LP watermarks can be re-enabled
4721 	 * when scaling is disabled.
4722 	 *
4723 	 * WaCxSRDisabledForSpriteScaling:ivb
4724 	 */
4725 	if (pipe_config->disable_lp_wm) {
4726 		ilk_disable_lp_wm(dev);
4727 		intel_wait_for_vblank(dev, crtc->pipe);
4728 	}
4729 
4730 	/*
4731 	 * If we're doing a modeset, we're done.  No need to do any pre-vblank
4732 	 * watermark programming here.
4733 	 */
4734 	if (needs_modeset(&pipe_config->base))
4735 		return;
4736 
4737 	/*
4738 	 * For platforms that support atomic watermarks, program the
4739 	 * 'intermediate' watermarks immediately.  On pre-gen9 platforms, these
4740 	 * will be the intermediate values that are safe for both pre- and
4741 	 * post- vblank; when vblank happens, the 'active' values will be set
4742 	 * to the final 'target' values and we'll do this again to get the
4743 	 * optimal watermarks.  For gen9+ platforms, the values we program here
4744 	 * will be the final target values which will get automatically latched
4745 	 * at vblank time; no further programming will be necessary.
4746 	 *
4747 	 * If a platform hasn't been transitioned to atomic watermarks yet,
4748 	 * we'll continue to update watermarks the old way, if flags tell
4749 	 * us to.
4750 	 */
4751 	if (dev_priv->display.initial_watermarks != NULL)
4752 		dev_priv->display.initial_watermarks(pipe_config);
4753 	else if (pipe_config->update_wm_pre)
4754 		intel_update_watermarks(&crtc->base);
4755 }
4756 
4757 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4758 {
4759 	struct drm_device *dev = crtc->dev;
4760 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4761 	struct drm_plane *p;
4762 	int pipe = intel_crtc->pipe;
4763 
4764 	intel_crtc_dpms_overlay_disable(intel_crtc);
4765 
4766 	drm_for_each_plane_mask(p, dev, plane_mask)
4767 		to_intel_plane(p)->disable_plane(p, crtc);
4768 
4769 	/*
4770 	 * FIXME: Once we grow proper nuclear flip support out of this we need
4771 	 * to compute the mask of flip planes precisely. For the time being
4772 	 * consider this a flip to a NULL plane.
4773 	 */
4774 	intel_frontbuffer_flip(to_i915(dev), INTEL_FRONTBUFFER_ALL_MASK(pipe));
4775 }
4776 
4777 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4778 {
4779 	struct drm_device *dev = crtc->dev;
4780 	struct drm_i915_private *dev_priv = to_i915(dev);
4781 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4782 	struct intel_encoder *encoder;
4783 	int pipe = intel_crtc->pipe;
4784 	struct intel_crtc_state *pipe_config =
4785 		to_intel_crtc_state(crtc->state);
4786 
4787 	if (WARN_ON(intel_crtc->active))
4788 		return;
4789 
4790 	/*
4791 	 * Sometimes spurious CPU pipe underruns happen during FDI
4792 	 * training, at least with VGA+HDMI cloning. Suppress them.
4793 	 *
4794 	 * On ILK we get an occasional spurious CPU pipe underruns
4795 	 * between eDP port A enable and vdd enable. Also PCH port
4796 	 * enable seems to result in the occasional CPU pipe underrun.
4797 	 *
4798 	 * Spurious PCH underruns also occur during PCH enabling.
4799 	 */
4800 	if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
4801 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4802 	if (intel_crtc->config->has_pch_encoder)
4803 		intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4804 
4805 	if (intel_crtc->config->has_pch_encoder)
4806 		intel_prepare_shared_dpll(intel_crtc);
4807 
4808 	if (intel_crtc_has_dp_encoder(intel_crtc->config))
4809 		intel_dp_set_m_n(intel_crtc, M1_N1);
4810 
4811 	intel_set_pipe_timings(intel_crtc);
4812 	intel_set_pipe_src_size(intel_crtc);
4813 
4814 	if (intel_crtc->config->has_pch_encoder) {
4815 		intel_cpu_transcoder_set_m_n(intel_crtc,
4816 				     &intel_crtc->config->fdi_m_n, NULL);
4817 	}
4818 
4819 	ironlake_set_pipeconf(crtc);
4820 
4821 	intel_crtc->active = true;
4822 
4823 	for_each_encoder_on_crtc(dev, crtc, encoder)
4824 		if (encoder->pre_enable)
4825 			encoder->pre_enable(encoder);
4826 
4827 	if (intel_crtc->config->has_pch_encoder) {
4828 		/* Note: FDI PLL enabling _must_ be done before we enable the
4829 		 * cpu pipes, hence this is separate from all the other fdi/pch
4830 		 * enabling. */
4831 		ironlake_fdi_pll_enable(intel_crtc);
4832 	} else {
4833 		assert_fdi_tx_disabled(dev_priv, pipe);
4834 		assert_fdi_rx_disabled(dev_priv, pipe);
4835 	}
4836 
4837 	ironlake_pfit_enable(intel_crtc);
4838 
4839 	/*
4840 	 * On ILK+ LUT must be loaded before the pipe is running but with
4841 	 * clocks enabled
4842 	 */
4843 	intel_color_load_luts(&pipe_config->base);
4844 
4845 	if (dev_priv->display.initial_watermarks != NULL)
4846 		dev_priv->display.initial_watermarks(intel_crtc->config);
4847 	intel_enable_pipe(intel_crtc);
4848 
4849 	if (intel_crtc->config->has_pch_encoder)
4850 		ironlake_pch_enable(crtc);
4851 
4852 	assert_vblank_disabled(crtc);
4853 	drm_crtc_vblank_on(crtc);
4854 
4855 	for_each_encoder_on_crtc(dev, crtc, encoder)
4856 		encoder->enable(encoder);
4857 
4858 	if (HAS_PCH_CPT(dev))
4859 		cpt_verify_modeset(dev, intel_crtc->pipe);
4860 
4861 	/* Must wait for vblank to avoid spurious PCH FIFO underruns */
4862 	if (intel_crtc->config->has_pch_encoder)
4863 		intel_wait_for_vblank(dev, pipe);
4864 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4865 	intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4866 }
4867 
4868 /* IPS only exists on ULT machines and is tied to pipe A. */
4869 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4870 {
4871 	return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4872 }
4873 
4874 static void haswell_crtc_enable(struct drm_crtc *crtc)
4875 {
4876 	struct drm_device *dev = crtc->dev;
4877 	struct drm_i915_private *dev_priv = to_i915(dev);
4878 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4879 	struct intel_encoder *encoder;
4880 	int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4881 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4882 	struct intel_crtc_state *pipe_config =
4883 		to_intel_crtc_state(crtc->state);
4884 
4885 	if (WARN_ON(intel_crtc->active))
4886 		return;
4887 
4888 	if (intel_crtc->config->has_pch_encoder)
4889 		intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4890 						      false);
4891 
4892 	for_each_encoder_on_crtc(dev, crtc, encoder)
4893 		if (encoder->pre_pll_enable)
4894 			encoder->pre_pll_enable(encoder);
4895 
4896 	if (intel_crtc->config->shared_dpll)
4897 		intel_enable_shared_dpll(intel_crtc);
4898 
4899 	if (intel_crtc_has_dp_encoder(intel_crtc->config))
4900 		intel_dp_set_m_n(intel_crtc, M1_N1);
4901 
4902 	if (!transcoder_is_dsi(cpu_transcoder))
4903 		intel_set_pipe_timings(intel_crtc);
4904 
4905 	intel_set_pipe_src_size(intel_crtc);
4906 
4907 	if (cpu_transcoder != TRANSCODER_EDP &&
4908 	    !transcoder_is_dsi(cpu_transcoder)) {
4909 		I915_WRITE(PIPE_MULT(cpu_transcoder),
4910 			   intel_crtc->config->pixel_multiplier - 1);
4911 	}
4912 
4913 	if (intel_crtc->config->has_pch_encoder) {
4914 		intel_cpu_transcoder_set_m_n(intel_crtc,
4915 				     &intel_crtc->config->fdi_m_n, NULL);
4916 	}
4917 
4918 	if (!transcoder_is_dsi(cpu_transcoder))
4919 		haswell_set_pipeconf(crtc);
4920 
4921 	haswell_set_pipemisc(crtc);
4922 
4923 	intel_color_set_csc(&pipe_config->base);
4924 
4925 	intel_crtc->active = true;
4926 
4927 	if (intel_crtc->config->has_pch_encoder)
4928 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4929 	else
4930 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4931 
4932 	for_each_encoder_on_crtc(dev, crtc, encoder) {
4933 		if (encoder->pre_enable)
4934 			encoder->pre_enable(encoder);
4935 	}
4936 
4937 	if (intel_crtc->config->has_pch_encoder)
4938 		dev_priv->display.fdi_link_train(crtc);
4939 
4940 	if (!transcoder_is_dsi(cpu_transcoder))
4941 		intel_ddi_enable_pipe_clock(intel_crtc);
4942 
4943 	if (INTEL_INFO(dev)->gen >= 9)
4944 		skylake_pfit_enable(intel_crtc);
4945 	else
4946 		ironlake_pfit_enable(intel_crtc);
4947 
4948 	/*
4949 	 * On ILK+ LUT must be loaded before the pipe is running but with
4950 	 * clocks enabled
4951 	 */
4952 	intel_color_load_luts(&pipe_config->base);
4953 
4954 	intel_ddi_set_pipe_settings(crtc);
4955 	if (!transcoder_is_dsi(cpu_transcoder))
4956 		intel_ddi_enable_transcoder_func(crtc);
4957 
4958 	if (dev_priv->display.initial_watermarks != NULL)
4959 		dev_priv->display.initial_watermarks(pipe_config);
4960 	else
4961 		intel_update_watermarks(crtc);
4962 
4963 	/* XXX: Do the pipe assertions at the right place for BXT DSI. */
4964 	if (!transcoder_is_dsi(cpu_transcoder))
4965 		intel_enable_pipe(intel_crtc);
4966 
4967 	if (intel_crtc->config->has_pch_encoder)
4968 		lpt_pch_enable(crtc);
4969 
4970 	if (intel_crtc->config->dp_encoder_is_mst)
4971 		intel_ddi_set_vc_payload_alloc(crtc, true);
4972 
4973 	assert_vblank_disabled(crtc);
4974 	drm_crtc_vblank_on(crtc);
4975 
4976 	for_each_encoder_on_crtc(dev, crtc, encoder) {
4977 		encoder->enable(encoder);
4978 		intel_opregion_notify_encoder(encoder, true);
4979 	}
4980 
4981 	if (intel_crtc->config->has_pch_encoder) {
4982 		intel_wait_for_vblank(dev, pipe);
4983 		intel_wait_for_vblank(dev, pipe);
4984 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4985 		intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4986 						      true);
4987 	}
4988 
4989 	/* If we change the relative order between pipe/planes enabling, we need
4990 	 * to change the workaround. */
4991 	hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
4992 	if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
4993 		intel_wait_for_vblank(dev, hsw_workaround_pipe);
4994 		intel_wait_for_vblank(dev, hsw_workaround_pipe);
4995 	}
4996 }
4997 
4998 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
4999 {
5000 	struct drm_device *dev = crtc->base.dev;
5001 	struct drm_i915_private *dev_priv = to_i915(dev);
5002 	int pipe = crtc->pipe;
5003 
5004 	/* To avoid upsetting the power well on haswell only disable the pfit if
5005 	 * it's in use. The hw state code will make sure we get this right. */
5006 	if (force || crtc->config->pch_pfit.enabled) {
5007 		I915_WRITE(PF_CTL(pipe), 0);
5008 		I915_WRITE(PF_WIN_POS(pipe), 0);
5009 		I915_WRITE(PF_WIN_SZ(pipe), 0);
5010 	}
5011 }
5012 
5013 static void ironlake_crtc_disable(struct drm_crtc *crtc)
5014 {
5015 	struct drm_device *dev = crtc->dev;
5016 	struct drm_i915_private *dev_priv = to_i915(dev);
5017 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5018 	struct intel_encoder *encoder;
5019 	int pipe = intel_crtc->pipe;
5020 
5021 	/*
5022 	 * Sometimes spurious CPU pipe underruns happen when the
5023 	 * pipe is already disabled, but FDI RX/TX is still enabled.
5024 	 * Happens at least with VGA+HDMI cloning. Suppress them.
5025 	 */
5026 	if (intel_crtc->config->has_pch_encoder) {
5027 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5028 		intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5029 	}
5030 
5031 	for_each_encoder_on_crtc(dev, crtc, encoder)
5032 		encoder->disable(encoder);
5033 
5034 	drm_crtc_vblank_off(crtc);
5035 	assert_vblank_disabled(crtc);
5036 
5037 	intel_disable_pipe(intel_crtc);
5038 
5039 	ironlake_pfit_disable(intel_crtc, false);
5040 
5041 	if (intel_crtc->config->has_pch_encoder)
5042 		ironlake_fdi_disable(crtc);
5043 
5044 	for_each_encoder_on_crtc(dev, crtc, encoder)
5045 		if (encoder->post_disable)
5046 			encoder->post_disable(encoder);
5047 
5048 	if (intel_crtc->config->has_pch_encoder) {
5049 		ironlake_disable_pch_transcoder(dev_priv, pipe);
5050 
5051 		if (HAS_PCH_CPT(dev)) {
5052 			i915_reg_t reg;
5053 			u32 temp;
5054 
5055 			/* disable TRANS_DP_CTL */
5056 			reg = TRANS_DP_CTL(pipe);
5057 			temp = I915_READ(reg);
5058 			temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5059 				  TRANS_DP_PORT_SEL_MASK);
5060 			temp |= TRANS_DP_PORT_SEL_NONE;
5061 			I915_WRITE(reg, temp);
5062 
5063 			/* disable DPLL_SEL */
5064 			temp = I915_READ(PCH_DPLL_SEL);
5065 			temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5066 			I915_WRITE(PCH_DPLL_SEL, temp);
5067 		}
5068 
5069 		ironlake_fdi_pll_disable(intel_crtc);
5070 	}
5071 
5072 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5073 	intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5074 }
5075 
5076 static void haswell_crtc_disable(struct drm_crtc *crtc)
5077 {
5078 	struct drm_device *dev = crtc->dev;
5079 	struct drm_i915_private *dev_priv = to_i915(dev);
5080 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5081 	struct intel_encoder *encoder;
5082 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5083 
5084 	if (intel_crtc->config->has_pch_encoder)
5085 		intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5086 						      false);
5087 
5088 	for_each_encoder_on_crtc(dev, crtc, encoder) {
5089 		intel_opregion_notify_encoder(encoder, false);
5090 		encoder->disable(encoder);
5091 	}
5092 
5093 	drm_crtc_vblank_off(crtc);
5094 	assert_vblank_disabled(crtc);
5095 
5096 	/* XXX: Do the pipe assertions at the right place for BXT DSI. */
5097 	if (!transcoder_is_dsi(cpu_transcoder))
5098 		intel_disable_pipe(intel_crtc);
5099 
5100 	if (intel_crtc->config->dp_encoder_is_mst)
5101 		intel_ddi_set_vc_payload_alloc(crtc, false);
5102 
5103 	if (!transcoder_is_dsi(cpu_transcoder))
5104 		intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5105 
5106 	if (INTEL_INFO(dev)->gen >= 9)
5107 		skylake_scaler_disable(intel_crtc);
5108 	else
5109 		ironlake_pfit_disable(intel_crtc, false);
5110 
5111 	if (!transcoder_is_dsi(cpu_transcoder))
5112 		intel_ddi_disable_pipe_clock(intel_crtc);
5113 
5114 	for_each_encoder_on_crtc(dev, crtc, encoder)
5115 		if (encoder->post_disable)
5116 			encoder->post_disable(encoder);
5117 
5118 	if (intel_crtc->config->has_pch_encoder) {
5119 		lpt_disable_pch_transcoder(dev_priv);
5120 		lpt_disable_iclkip(dev_priv);
5121 		intel_ddi_fdi_disable(crtc);
5122 
5123 		intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5124 						      true);
5125 	}
5126 }
5127 
5128 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5129 {
5130 	struct drm_device *dev = crtc->base.dev;
5131 	struct drm_i915_private *dev_priv = to_i915(dev);
5132 	struct intel_crtc_state *pipe_config = crtc->config;
5133 
5134 	if (!pipe_config->gmch_pfit.control)
5135 		return;
5136 
5137 	/*
5138 	 * The panel fitter should only be adjusted whilst the pipe is disabled,
5139 	 * according to register description and PRM.
5140 	 */
5141 	WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5142 	assert_pipe_disabled(dev_priv, crtc->pipe);
5143 
5144 	I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5145 	I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5146 
5147 	/* Border color in case we don't scale up to the full screen. Black by
5148 	 * default, change to something else for debugging. */
5149 	I915_WRITE(BCLRPAT(crtc->pipe), 0);
5150 }
5151 
5152 static enum intel_display_power_domain port_to_power_domain(enum port port)
5153 {
5154 	switch (port) {
5155 	case PORT_A:
5156 		return POWER_DOMAIN_PORT_DDI_A_LANES;
5157 	case PORT_B:
5158 		return POWER_DOMAIN_PORT_DDI_B_LANES;
5159 	case PORT_C:
5160 		return POWER_DOMAIN_PORT_DDI_C_LANES;
5161 	case PORT_D:
5162 		return POWER_DOMAIN_PORT_DDI_D_LANES;
5163 	case PORT_E:
5164 		return POWER_DOMAIN_PORT_DDI_E_LANES;
5165 	default:
5166 		MISSING_CASE(port);
5167 		return POWER_DOMAIN_PORT_OTHER;
5168 	}
5169 }
5170 
5171 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5172 {
5173 	switch (port) {
5174 	case PORT_A:
5175 		return POWER_DOMAIN_AUX_A;
5176 	case PORT_B:
5177 		return POWER_DOMAIN_AUX_B;
5178 	case PORT_C:
5179 		return POWER_DOMAIN_AUX_C;
5180 	case PORT_D:
5181 		return POWER_DOMAIN_AUX_D;
5182 	case PORT_E:
5183 		/* FIXME: Check VBT for actual wiring of PORT E */
5184 		return POWER_DOMAIN_AUX_D;
5185 	default:
5186 		MISSING_CASE(port);
5187 		return POWER_DOMAIN_AUX_A;
5188 	}
5189 }
5190 
5191 enum intel_display_power_domain
5192 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5193 {
5194 	struct drm_device *dev = intel_encoder->base.dev;
5195 	struct intel_digital_port *intel_dig_port;
5196 
5197 	switch (intel_encoder->type) {
5198 	case INTEL_OUTPUT_UNKNOWN:
5199 		/* Only DDI platforms should ever use this output type */
5200 		WARN_ON_ONCE(!HAS_DDI(dev));
5201 	case INTEL_OUTPUT_DP:
5202 	case INTEL_OUTPUT_HDMI:
5203 	case INTEL_OUTPUT_EDP:
5204 		intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5205 		return port_to_power_domain(intel_dig_port->port);
5206 	case INTEL_OUTPUT_DP_MST:
5207 		intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5208 		return port_to_power_domain(intel_dig_port->port);
5209 	case INTEL_OUTPUT_ANALOG:
5210 		return POWER_DOMAIN_PORT_CRT;
5211 	case INTEL_OUTPUT_DSI:
5212 		return POWER_DOMAIN_PORT_DSI;
5213 	default:
5214 		return POWER_DOMAIN_PORT_OTHER;
5215 	}
5216 }
5217 
5218 enum intel_display_power_domain
5219 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5220 {
5221 	struct drm_device *dev = intel_encoder->base.dev;
5222 	struct intel_digital_port *intel_dig_port;
5223 
5224 	switch (intel_encoder->type) {
5225 	case INTEL_OUTPUT_UNKNOWN:
5226 	case INTEL_OUTPUT_HDMI:
5227 		/*
5228 		 * Only DDI platforms should ever use these output types.
5229 		 * We can get here after the HDMI detect code has already set
5230 		 * the type of the shared encoder. Since we can't be sure
5231 		 * what's the status of the given connectors, play safe and
5232 		 * run the DP detection too.
5233 		 */
5234 		WARN_ON_ONCE(!HAS_DDI(dev));
5235 	case INTEL_OUTPUT_DP:
5236 	case INTEL_OUTPUT_EDP:
5237 		intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5238 		return port_to_aux_power_domain(intel_dig_port->port);
5239 	case INTEL_OUTPUT_DP_MST:
5240 		intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5241 		return port_to_aux_power_domain(intel_dig_port->port);
5242 	default:
5243 		MISSING_CASE(intel_encoder->type);
5244 		return POWER_DOMAIN_AUX_A;
5245 	}
5246 }
5247 
5248 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
5249 					    struct intel_crtc_state *crtc_state)
5250 {
5251 	struct drm_device *dev = crtc->dev;
5252 	struct drm_encoder *encoder;
5253 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5254 	enum i915_pipe pipe = intel_crtc->pipe;
5255 	unsigned long mask;
5256 	enum transcoder transcoder = crtc_state->cpu_transcoder;
5257 
5258 	if (!crtc_state->base.active)
5259 		return 0;
5260 
5261 	mask = BIT(POWER_DOMAIN_PIPE(pipe));
5262 	mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5263 	if (crtc_state->pch_pfit.enabled ||
5264 	    crtc_state->pch_pfit.force_thru)
5265 		mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5266 
5267 	drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5268 		struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5269 
5270 		mask |= BIT(intel_display_port_power_domain(intel_encoder));
5271 	}
5272 
5273 	if (crtc_state->shared_dpll)
5274 		mask |= BIT(POWER_DOMAIN_PLLS);
5275 
5276 	return mask;
5277 }
5278 
5279 static unsigned long
5280 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5281 			       struct intel_crtc_state *crtc_state)
5282 {
5283 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5284 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5285 	enum intel_display_power_domain domain;
5286 	unsigned long domains, new_domains, old_domains;
5287 
5288 	old_domains = intel_crtc->enabled_power_domains;
5289 	intel_crtc->enabled_power_domains = new_domains =
5290 		get_crtc_power_domains(crtc, crtc_state);
5291 
5292 	domains = new_domains & ~old_domains;
5293 
5294 	for_each_power_domain(domain, domains)
5295 		intel_display_power_get(dev_priv, domain);
5296 
5297 	return old_domains & ~new_domains;
5298 }
5299 
5300 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5301 				      unsigned long domains)
5302 {
5303 	enum intel_display_power_domain domain;
5304 
5305 	for_each_power_domain(domain, domains)
5306 		intel_display_power_put(dev_priv, domain);
5307 }
5308 
5309 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5310 {
5311 	int max_cdclk_freq = dev_priv->max_cdclk_freq;
5312 
5313 	if (INTEL_INFO(dev_priv)->gen >= 9 ||
5314 	    IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5315 		return max_cdclk_freq;
5316 	else if (IS_CHERRYVIEW(dev_priv))
5317 		return max_cdclk_freq*95/100;
5318 	else if (INTEL_INFO(dev_priv)->gen < 4)
5319 		return 2*max_cdclk_freq*90/100;
5320 	else
5321 		return max_cdclk_freq*90/100;
5322 }
5323 
5324 static int skl_calc_cdclk(int max_pixclk, int vco);
5325 
5326 static void intel_update_max_cdclk(struct drm_device *dev)
5327 {
5328 	struct drm_i915_private *dev_priv = to_i915(dev);
5329 
5330 	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5331 		u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5332 		int max_cdclk, vco;
5333 
5334 		vco = dev_priv->skl_preferred_vco_freq;
5335 		WARN_ON(vco != 8100000 && vco != 8640000);
5336 
5337 		/*
5338 		 * Use the lower (vco 8640) cdclk values as a
5339 		 * first guess. skl_calc_cdclk() will correct it
5340 		 * if the preferred vco is 8100 instead.
5341 		 */
5342 		if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5343 			max_cdclk = 617143;
5344 		else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5345 			max_cdclk = 540000;
5346 		else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5347 			max_cdclk = 432000;
5348 		else
5349 			max_cdclk = 308571;
5350 
5351 		dev_priv->max_cdclk_freq = skl_calc_cdclk(max_cdclk, vco);
5352 	} else if (IS_BROXTON(dev)) {
5353 		dev_priv->max_cdclk_freq = 624000;
5354 	} else if (IS_BROADWELL(dev))  {
5355 		/*
5356 		 * FIXME with extra cooling we can allow
5357 		 * 540 MHz for ULX and 675 Mhz for ULT.
5358 		 * How can we know if extra cooling is
5359 		 * available? PCI ID, VTB, something else?
5360 		 */
5361 		if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5362 			dev_priv->max_cdclk_freq = 450000;
5363 		else if (IS_BDW_ULX(dev))
5364 			dev_priv->max_cdclk_freq = 450000;
5365 		else if (IS_BDW_ULT(dev))
5366 			dev_priv->max_cdclk_freq = 540000;
5367 		else
5368 			dev_priv->max_cdclk_freq = 675000;
5369 	} else if (IS_CHERRYVIEW(dev)) {
5370 		dev_priv->max_cdclk_freq = 320000;
5371 	} else if (IS_VALLEYVIEW(dev)) {
5372 		dev_priv->max_cdclk_freq = 400000;
5373 	} else {
5374 		/* otherwise assume cdclk is fixed */
5375 		dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5376 	}
5377 
5378 	dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5379 
5380 	DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5381 			 dev_priv->max_cdclk_freq);
5382 
5383 	DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5384 			 dev_priv->max_dotclk_freq);
5385 }
5386 
5387 static void intel_update_cdclk(struct drm_device *dev)
5388 {
5389 	struct drm_i915_private *dev_priv = to_i915(dev);
5390 
5391 	dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5392 
5393 	if (INTEL_GEN(dev_priv) >= 9)
5394 		DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz, VCO: %d kHz, ref: %d kHz\n",
5395 				 dev_priv->cdclk_freq, dev_priv->cdclk_pll.vco,
5396 				 dev_priv->cdclk_pll.ref);
5397 	else
5398 		DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5399 				 dev_priv->cdclk_freq);
5400 
5401 	/*
5402 	 * 9:0 CMBUS [sic] CDCLK frequency (cdfreq):
5403 	 * Programmng [sic] note: bit[9:2] should be programmed to the number
5404 	 * of cdclk that generates 4MHz reference clock freq which is used to
5405 	 * generate GMBus clock. This will vary with the cdclk freq.
5406 	 */
5407 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5408 		I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5409 }
5410 
5411 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5412 static int skl_cdclk_decimal(int cdclk)
5413 {
5414 	return DIV_ROUND_CLOSEST(cdclk - 1000, 500);
5415 }
5416 
5417 static int bxt_de_pll_vco(struct drm_i915_private *dev_priv, int cdclk)
5418 {
5419 	int ratio;
5420 
5421 	if (cdclk == dev_priv->cdclk_pll.ref)
5422 		return 0;
5423 
5424 	switch (cdclk) {
5425 	default:
5426 		MISSING_CASE(cdclk);
5427 	case 144000:
5428 	case 288000:
5429 	case 384000:
5430 	case 576000:
5431 		ratio = 60;
5432 		break;
5433 	case 624000:
5434 		ratio = 65;
5435 		break;
5436 	}
5437 
5438 	return dev_priv->cdclk_pll.ref * ratio;
5439 }
5440 
5441 static void bxt_de_pll_disable(struct drm_i915_private *dev_priv)
5442 {
5443 	I915_WRITE(BXT_DE_PLL_ENABLE, 0);
5444 
5445 	/* Timeout 200us */
5446 	if (intel_wait_for_register(dev_priv,
5447 				    BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 0,
5448 				    1))
5449 		DRM_ERROR("timeout waiting for DE PLL unlock\n");
5450 
5451 	dev_priv->cdclk_pll.vco = 0;
5452 }
5453 
5454 static void bxt_de_pll_enable(struct drm_i915_private *dev_priv, int vco)
5455 {
5456 	int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->cdclk_pll.ref);
5457 	u32 val;
5458 
5459 	val = I915_READ(BXT_DE_PLL_CTL);
5460 	val &= ~BXT_DE_PLL_RATIO_MASK;
5461 	val |= BXT_DE_PLL_RATIO(ratio);
5462 	I915_WRITE(BXT_DE_PLL_CTL, val);
5463 
5464 	I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5465 
5466 	/* Timeout 200us */
5467 	if (intel_wait_for_register(dev_priv,
5468 				    BXT_DE_PLL_ENABLE,
5469 				    BXT_DE_PLL_LOCK,
5470 				    BXT_DE_PLL_LOCK,
5471 				    1))
5472 		DRM_ERROR("timeout waiting for DE PLL lock\n");
5473 
5474 	dev_priv->cdclk_pll.vco = vco;
5475 }
5476 
5477 static void bxt_set_cdclk(struct drm_i915_private *dev_priv, int cdclk)
5478 {
5479 	u32 val, divider;
5480 	int vco, ret;
5481 
5482 	vco = bxt_de_pll_vco(dev_priv, cdclk);
5483 
5484 	DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
5485 
5486 	/* cdclk = vco / 2 / div{1,1.5,2,4} */
5487 	switch (DIV_ROUND_CLOSEST(vco, cdclk)) {
5488 	case 8:
5489 		divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5490 		break;
5491 	case 4:
5492 		divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5493 		break;
5494 	case 3:
5495 		divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5496 		break;
5497 	case 2:
5498 		divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5499 		break;
5500 	default:
5501 		WARN_ON(cdclk != dev_priv->cdclk_pll.ref);
5502 		WARN_ON(vco != 0);
5503 
5504 		divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5505 		break;
5506 	}
5507 
5508 	/* Inform power controller of upcoming frequency change */
5509 	mutex_lock(&dev_priv->rps.hw_lock);
5510 	ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5511 				      0x80000000);
5512 	mutex_unlock(&dev_priv->rps.hw_lock);
5513 
5514 	if (ret) {
5515 		DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5516 			  ret, cdclk);
5517 		return;
5518 	}
5519 
5520 	if (dev_priv->cdclk_pll.vco != 0 &&
5521 	    dev_priv->cdclk_pll.vco != vco)
5522 		bxt_de_pll_disable(dev_priv);
5523 
5524 	if (dev_priv->cdclk_pll.vco != vco)
5525 		bxt_de_pll_enable(dev_priv, vco);
5526 
5527 	val = divider | skl_cdclk_decimal(cdclk);
5528 	/*
5529 	 * FIXME if only the cd2x divider needs changing, it could be done
5530 	 * without shutting off the pipe (if only one pipe is active).
5531 	 */
5532 	val |= BXT_CDCLK_CD2X_PIPE_NONE;
5533 	/*
5534 	 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5535 	 * enable otherwise.
5536 	 */
5537 	if (cdclk >= 500000)
5538 		val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5539 	I915_WRITE(CDCLK_CTL, val);
5540 
5541 	mutex_lock(&dev_priv->rps.hw_lock);
5542 	ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5543 				      DIV_ROUND_UP(cdclk, 25000));
5544 	mutex_unlock(&dev_priv->rps.hw_lock);
5545 
5546 	if (ret) {
5547 		DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5548 			  ret, cdclk);
5549 		return;
5550 	}
5551 
5552 	intel_update_cdclk(&dev_priv->drm);
5553 }
5554 
5555 static void bxt_sanitize_cdclk(struct drm_i915_private *dev_priv)
5556 {
5557 	u32 cdctl, expected;
5558 
5559 	intel_update_cdclk(&dev_priv->drm);
5560 
5561 	if (dev_priv->cdclk_pll.vco == 0 ||
5562 	    dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
5563 		goto sanitize;
5564 
5565 	/* DPLL okay; verify the cdclock
5566 	 *
5567 	 * Some BIOS versions leave an incorrect decimal frequency value and
5568 	 * set reserved MBZ bits in CDCLK_CTL at least during exiting from S4,
5569 	 * so sanitize this register.
5570 	 */
5571 	cdctl = I915_READ(CDCLK_CTL);
5572 	/*
5573 	 * Let's ignore the pipe field, since BIOS could have configured the
5574 	 * dividers both synching to an active pipe, or asynchronously
5575 	 * (PIPE_NONE).
5576 	 */
5577 	cdctl &= ~BXT_CDCLK_CD2X_PIPE_NONE;
5578 
5579 	expected = (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) |
5580 		   skl_cdclk_decimal(dev_priv->cdclk_freq);
5581 	/*
5582 	 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5583 	 * enable otherwise.
5584 	 */
5585 	if (dev_priv->cdclk_freq >= 500000)
5586 		expected |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5587 
5588 	if (cdctl == expected)
5589 		/* All well; nothing to sanitize */
5590 		return;
5591 
5592 sanitize:
5593 	DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
5594 
5595 	/* force cdclk programming */
5596 	dev_priv->cdclk_freq = 0;
5597 
5598 	/* force full PLL disable + enable */
5599 	dev_priv->cdclk_pll.vco = -1;
5600 }
5601 
5602 void bxt_init_cdclk(struct drm_i915_private *dev_priv)
5603 {
5604 	bxt_sanitize_cdclk(dev_priv);
5605 
5606 	if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0)
5607 		return;
5608 
5609 	/*
5610 	 * FIXME:
5611 	 * - The initial CDCLK needs to be read from VBT.
5612 	 *   Need to make this change after VBT has changes for BXT.
5613 	 */
5614 	bxt_set_cdclk(dev_priv, bxt_calc_cdclk(0));
5615 }
5616 
5617 void bxt_uninit_cdclk(struct drm_i915_private *dev_priv)
5618 {
5619 	bxt_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref);
5620 }
5621 
5622 static int skl_calc_cdclk(int max_pixclk, int vco)
5623 {
5624 	if (vco == 8640000) {
5625 		if (max_pixclk > 540000)
5626 			return 617143;
5627 		else if (max_pixclk > 432000)
5628 			return 540000;
5629 		else if (max_pixclk > 308571)
5630 			return 432000;
5631 		else
5632 			return 308571;
5633 	} else {
5634 		if (max_pixclk > 540000)
5635 			return 675000;
5636 		else if (max_pixclk > 450000)
5637 			return 540000;
5638 		else if (max_pixclk > 337500)
5639 			return 450000;
5640 		else
5641 			return 337500;
5642 	}
5643 }
5644 
5645 static void
5646 skl_dpll0_update(struct drm_i915_private *dev_priv)
5647 {
5648 	u32 val;
5649 
5650 	dev_priv->cdclk_pll.ref = 24000;
5651 	dev_priv->cdclk_pll.vco = 0;
5652 
5653 	val = I915_READ(LCPLL1_CTL);
5654 	if ((val & LCPLL_PLL_ENABLE) == 0)
5655 		return;
5656 
5657 	if (WARN_ON((val & LCPLL_PLL_LOCK) == 0))
5658 		return;
5659 
5660 	val = I915_READ(DPLL_CTRL1);
5661 
5662 	if (WARN_ON((val & (DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) |
5663 			    DPLL_CTRL1_SSC(SKL_DPLL0) |
5664 			    DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) !=
5665 		    DPLL_CTRL1_OVERRIDE(SKL_DPLL0)))
5666 		return;
5667 
5668 	switch (val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) {
5669 	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0):
5670 	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0):
5671 	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0):
5672 	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0):
5673 		dev_priv->cdclk_pll.vco = 8100000;
5674 		break;
5675 	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0):
5676 	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0):
5677 		dev_priv->cdclk_pll.vco = 8640000;
5678 		break;
5679 	default:
5680 		MISSING_CASE(val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5681 		break;
5682 	}
5683 }
5684 
5685 void skl_set_preferred_cdclk_vco(struct drm_i915_private *dev_priv, int vco)
5686 {
5687 	bool changed = dev_priv->skl_preferred_vco_freq != vco;
5688 
5689 	dev_priv->skl_preferred_vco_freq = vco;
5690 
5691 	if (changed)
5692 		intel_update_max_cdclk(&dev_priv->drm);
5693 }
5694 
5695 static void
5696 skl_dpll0_enable(struct drm_i915_private *dev_priv, int vco)
5697 {
5698 	int min_cdclk = skl_calc_cdclk(0, vco);
5699 	u32 val;
5700 
5701 	WARN_ON(vco != 8100000 && vco != 8640000);
5702 
5703 	/* select the minimum CDCLK before enabling DPLL 0 */
5704 	val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_cdclk);
5705 	I915_WRITE(CDCLK_CTL, val);
5706 	POSTING_READ(CDCLK_CTL);
5707 
5708 	/*
5709 	 * We always enable DPLL0 with the lowest link rate possible, but still
5710 	 * taking into account the VCO required to operate the eDP panel at the
5711 	 * desired frequency. The usual DP link rates operate with a VCO of
5712 	 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5713 	 * The modeset code is responsible for the selection of the exact link
5714 	 * rate later on, with the constraint of choosing a frequency that
5715 	 * works with vco.
5716 	 */
5717 	val = I915_READ(DPLL_CTRL1);
5718 
5719 	val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5720 		 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5721 	val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5722 	if (vco == 8640000)
5723 		val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5724 					    SKL_DPLL0);
5725 	else
5726 		val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5727 					    SKL_DPLL0);
5728 
5729 	I915_WRITE(DPLL_CTRL1, val);
5730 	POSTING_READ(DPLL_CTRL1);
5731 
5732 	I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5733 
5734 	if (intel_wait_for_register(dev_priv,
5735 				    LCPLL1_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
5736 				    5))
5737 		DRM_ERROR("DPLL0 not locked\n");
5738 
5739 	dev_priv->cdclk_pll.vco = vco;
5740 
5741 	/* We'll want to keep using the current vco from now on. */
5742 	skl_set_preferred_cdclk_vco(dev_priv, vco);
5743 }
5744 
5745 static void
5746 skl_dpll0_disable(struct drm_i915_private *dev_priv)
5747 {
5748 	I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5749 	if (intel_wait_for_register(dev_priv,
5750 				   LCPLL1_CTL, LCPLL_PLL_LOCK, 0,
5751 				   1))
5752 		DRM_ERROR("Couldn't disable DPLL0\n");
5753 
5754 	dev_priv->cdclk_pll.vco = 0;
5755 }
5756 
5757 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5758 {
5759 	int ret;
5760 	u32 val;
5761 
5762 	/* inform PCU we want to change CDCLK */
5763 	val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5764 	mutex_lock(&dev_priv->rps.hw_lock);
5765 	ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5766 	mutex_unlock(&dev_priv->rps.hw_lock);
5767 
5768 	return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5769 }
5770 
5771 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5772 {
5773 	return _wait_for(skl_cdclk_pcu_ready(dev_priv), 3000, 10) == 0;
5774 }
5775 
5776 static void skl_set_cdclk(struct drm_i915_private *dev_priv, int cdclk, int vco)
5777 {
5778 	struct drm_device *dev = &dev_priv->drm;
5779 	u32 freq_select, pcu_ack;
5780 
5781 	WARN_ON((cdclk == 24000) != (vco == 0));
5782 
5783 	DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
5784 
5785 	if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5786 		DRM_ERROR("failed to inform PCU about cdclk change\n");
5787 		return;
5788 	}
5789 
5790 	/* set CDCLK_CTL */
5791 	switch (cdclk) {
5792 	case 450000:
5793 	case 432000:
5794 		freq_select = CDCLK_FREQ_450_432;
5795 		pcu_ack = 1;
5796 		break;
5797 	case 540000:
5798 		freq_select = CDCLK_FREQ_540;
5799 		pcu_ack = 2;
5800 		break;
5801 	case 308571:
5802 	case 337500:
5803 	default:
5804 		freq_select = CDCLK_FREQ_337_308;
5805 		pcu_ack = 0;
5806 		break;
5807 	case 617143:
5808 	case 675000:
5809 		freq_select = CDCLK_FREQ_675_617;
5810 		pcu_ack = 3;
5811 		break;
5812 	}
5813 
5814 	if (dev_priv->cdclk_pll.vco != 0 &&
5815 	    dev_priv->cdclk_pll.vco != vco)
5816 		skl_dpll0_disable(dev_priv);
5817 
5818 	if (dev_priv->cdclk_pll.vco != vco)
5819 		skl_dpll0_enable(dev_priv, vco);
5820 
5821 	I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(cdclk));
5822 	POSTING_READ(CDCLK_CTL);
5823 
5824 	/* inform PCU of the change */
5825 	mutex_lock(&dev_priv->rps.hw_lock);
5826 	sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5827 	mutex_unlock(&dev_priv->rps.hw_lock);
5828 
5829 	intel_update_cdclk(dev);
5830 }
5831 
5832 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv);
5833 
5834 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5835 {
5836 	skl_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref, 0);
5837 }
5838 
5839 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5840 {
5841 	int cdclk, vco;
5842 
5843 	skl_sanitize_cdclk(dev_priv);
5844 
5845 	if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0) {
5846 		/*
5847 		 * Use the current vco as our initial
5848 		 * guess as to what the preferred vco is.
5849 		 */
5850 		if (dev_priv->skl_preferred_vco_freq == 0)
5851 			skl_set_preferred_cdclk_vco(dev_priv,
5852 						    dev_priv->cdclk_pll.vco);
5853 		return;
5854 	}
5855 
5856 	vco = dev_priv->skl_preferred_vco_freq;
5857 	if (vco == 0)
5858 		vco = 8100000;
5859 	cdclk = skl_calc_cdclk(0, vco);
5860 
5861 	skl_set_cdclk(dev_priv, cdclk, vco);
5862 }
5863 
5864 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
5865 {
5866 	uint32_t cdctl, expected;
5867 
5868 	/*
5869 	 * check if the pre-os intialized the display
5870 	 * There is SWF18 scratchpad register defined which is set by the
5871 	 * pre-os which can be used by the OS drivers to check the status
5872 	 */
5873 	if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
5874 		goto sanitize;
5875 
5876 	intel_update_cdclk(&dev_priv->drm);
5877 	/* Is PLL enabled and locked ? */
5878 	if (dev_priv->cdclk_pll.vco == 0 ||
5879 	    dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
5880 		goto sanitize;
5881 
5882 	/* DPLL okay; verify the cdclock
5883 	 *
5884 	 * Noticed in some instances that the freq selection is correct but
5885 	 * decimal part is programmed wrong from BIOS where pre-os does not
5886 	 * enable display. Verify the same as well.
5887 	 */
5888 	cdctl = I915_READ(CDCLK_CTL);
5889 	expected = (cdctl & CDCLK_FREQ_SEL_MASK) |
5890 		skl_cdclk_decimal(dev_priv->cdclk_freq);
5891 	if (cdctl == expected)
5892 		/* All well; nothing to sanitize */
5893 		return;
5894 
5895 sanitize:
5896 	DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
5897 
5898 	/* force cdclk programming */
5899 	dev_priv->cdclk_freq = 0;
5900 	/* force full PLL disable + enable */
5901 	dev_priv->cdclk_pll.vco = -1;
5902 }
5903 
5904 /* Adjust CDclk dividers to allow high res or save power if possible */
5905 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5906 {
5907 	struct drm_i915_private *dev_priv = to_i915(dev);
5908 	u32 val, cmd;
5909 
5910 	WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5911 					!= dev_priv->cdclk_freq);
5912 
5913 	if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5914 		cmd = 2;
5915 	else if (cdclk == 266667)
5916 		cmd = 1;
5917 	else
5918 		cmd = 0;
5919 
5920 	mutex_lock(&dev_priv->rps.hw_lock);
5921 	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5922 	val &= ~DSPFREQGUAR_MASK;
5923 	val |= (cmd << DSPFREQGUAR_SHIFT);
5924 	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5925 	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5926 		      DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5927 		     50)) {
5928 		DRM_ERROR("timed out waiting for CDclk change\n");
5929 	}
5930 	mutex_unlock(&dev_priv->rps.hw_lock);
5931 
5932 	mutex_lock(&dev_priv->sb_lock);
5933 
5934 	if (cdclk == 400000) {
5935 		u32 divider;
5936 
5937 		divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5938 
5939 		/* adjust cdclk divider */
5940 		val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5941 		val &= ~CCK_FREQUENCY_VALUES;
5942 		val |= divider;
5943 		vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5944 
5945 		if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5946 			      CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
5947 			     50))
5948 			DRM_ERROR("timed out waiting for CDclk change\n");
5949 	}
5950 
5951 	/* adjust self-refresh exit latency value */
5952 	val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5953 	val &= ~0x7f;
5954 
5955 	/*
5956 	 * For high bandwidth configs, we set a higher latency in the bunit
5957 	 * so that the core display fetch happens in time to avoid underruns.
5958 	 */
5959 	if (cdclk == 400000)
5960 		val |= 4500 / 250; /* 4.5 usec */
5961 	else
5962 		val |= 3000 / 250; /* 3.0 usec */
5963 	vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5964 
5965 	mutex_unlock(&dev_priv->sb_lock);
5966 
5967 	intel_update_cdclk(dev);
5968 }
5969 
5970 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5971 {
5972 	struct drm_i915_private *dev_priv = to_i915(dev);
5973 	u32 val, cmd;
5974 
5975 	WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5976 						!= dev_priv->cdclk_freq);
5977 
5978 	switch (cdclk) {
5979 	case 333333:
5980 	case 320000:
5981 	case 266667:
5982 	case 200000:
5983 		break;
5984 	default:
5985 		MISSING_CASE(cdclk);
5986 		return;
5987 	}
5988 
5989 	/*
5990 	 * Specs are full of misinformation, but testing on actual
5991 	 * hardware has shown that we just need to write the desired
5992 	 * CCK divider into the Punit register.
5993 	 */
5994 	cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5995 
5996 	mutex_lock(&dev_priv->rps.hw_lock);
5997 	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5998 	val &= ~DSPFREQGUAR_MASK_CHV;
5999 	val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
6000 	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
6001 	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
6002 		      DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
6003 		     50)) {
6004 		DRM_ERROR("timed out waiting for CDclk change\n");
6005 	}
6006 	mutex_unlock(&dev_priv->rps.hw_lock);
6007 
6008 	intel_update_cdclk(dev);
6009 }
6010 
6011 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
6012 				 int max_pixclk)
6013 {
6014 	int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
6015 	int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
6016 
6017 	/*
6018 	 * Really only a few cases to deal with, as only 4 CDclks are supported:
6019 	 *   200MHz
6020 	 *   267MHz
6021 	 *   320/333MHz (depends on HPLL freq)
6022 	 *   400MHz (VLV only)
6023 	 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
6024 	 * of the lower bin and adjust if needed.
6025 	 *
6026 	 * We seem to get an unstable or solid color picture at 200MHz.
6027 	 * Not sure what's wrong. For now use 200MHz only when all pipes
6028 	 * are off.
6029 	 */
6030 	if (!IS_CHERRYVIEW(dev_priv) &&
6031 	    max_pixclk > freq_320*limit/100)
6032 		return 400000;
6033 	else if (max_pixclk > 266667*limit/100)
6034 		return freq_320;
6035 	else if (max_pixclk > 0)
6036 		return 266667;
6037 	else
6038 		return 200000;
6039 }
6040 
6041 static int bxt_calc_cdclk(int max_pixclk)
6042 {
6043 	if (max_pixclk > 576000)
6044 		return 624000;
6045 	else if (max_pixclk > 384000)
6046 		return 576000;
6047 	else if (max_pixclk > 288000)
6048 		return 384000;
6049 	else if (max_pixclk > 144000)
6050 		return 288000;
6051 	else
6052 		return 144000;
6053 }
6054 
6055 /* Compute the max pixel clock for new configuration. */
6056 static int intel_mode_max_pixclk(struct drm_device *dev,
6057 				 struct drm_atomic_state *state)
6058 {
6059 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
6060 	struct drm_i915_private *dev_priv = to_i915(dev);
6061 	struct drm_crtc *crtc;
6062 	struct drm_crtc_state *crtc_state;
6063 	unsigned max_pixclk = 0, i;
6064 	enum i915_pipe pipe;
6065 
6066 	memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
6067 	       sizeof(intel_state->min_pixclk));
6068 
6069 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
6070 		int pixclk = 0;
6071 
6072 		if (crtc_state->enable)
6073 			pixclk = crtc_state->adjusted_mode.crtc_clock;
6074 
6075 		intel_state->min_pixclk[i] = pixclk;
6076 	}
6077 
6078 	for_each_pipe(dev_priv, pipe)
6079 		max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
6080 
6081 	return max_pixclk;
6082 }
6083 
6084 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
6085 {
6086 	struct drm_device *dev = state->dev;
6087 	struct drm_i915_private *dev_priv = to_i915(dev);
6088 	int max_pixclk = intel_mode_max_pixclk(dev, state);
6089 	struct intel_atomic_state *intel_state =
6090 		to_intel_atomic_state(state);
6091 
6092 	intel_state->cdclk = intel_state->dev_cdclk =
6093 		valleyview_calc_cdclk(dev_priv, max_pixclk);
6094 
6095 	if (!intel_state->active_crtcs)
6096 		intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
6097 
6098 	return 0;
6099 }
6100 
6101 static int bxt_modeset_calc_cdclk(struct drm_atomic_state *state)
6102 {
6103 	int max_pixclk = ilk_max_pixel_rate(state);
6104 	struct intel_atomic_state *intel_state =
6105 		to_intel_atomic_state(state);
6106 
6107 	intel_state->cdclk = intel_state->dev_cdclk =
6108 		bxt_calc_cdclk(max_pixclk);
6109 
6110 	if (!intel_state->active_crtcs)
6111 		intel_state->dev_cdclk = bxt_calc_cdclk(0);
6112 
6113 	return 0;
6114 }
6115 
6116 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6117 {
6118 	unsigned int credits, default_credits;
6119 
6120 	if (IS_CHERRYVIEW(dev_priv))
6121 		default_credits = PFI_CREDIT(12);
6122 	else
6123 		default_credits = PFI_CREDIT(8);
6124 
6125 	if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6126 		/* CHV suggested value is 31 or 63 */
6127 		if (IS_CHERRYVIEW(dev_priv))
6128 			credits = PFI_CREDIT_63;
6129 		else
6130 			credits = PFI_CREDIT(15);
6131 	} else {
6132 		credits = default_credits;
6133 	}
6134 
6135 	/*
6136 	 * WA - write default credits before re-programming
6137 	 * FIXME: should we also set the resend bit here?
6138 	 */
6139 	I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6140 		   default_credits);
6141 
6142 	I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6143 		   credits | PFI_CREDIT_RESEND);
6144 
6145 	/*
6146 	 * FIXME is this guaranteed to clear
6147 	 * immediately or should we poll for it?
6148 	 */
6149 	WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6150 }
6151 
6152 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6153 {
6154 	struct drm_device *dev = old_state->dev;
6155 	struct drm_i915_private *dev_priv = to_i915(dev);
6156 	struct intel_atomic_state *old_intel_state =
6157 		to_intel_atomic_state(old_state);
6158 	unsigned req_cdclk = old_intel_state->dev_cdclk;
6159 
6160 	/*
6161 	 * FIXME: We can end up here with all power domains off, yet
6162 	 * with a CDCLK frequency other than the minimum. To account
6163 	 * for this take the PIPE-A power domain, which covers the HW
6164 	 * blocks needed for the following programming. This can be
6165 	 * removed once it's guaranteed that we get here either with
6166 	 * the minimum CDCLK set, or the required power domains
6167 	 * enabled.
6168 	 */
6169 	intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6170 
6171 	if (IS_CHERRYVIEW(dev))
6172 		cherryview_set_cdclk(dev, req_cdclk);
6173 	else
6174 		valleyview_set_cdclk(dev, req_cdclk);
6175 
6176 	vlv_program_pfi_credits(dev_priv);
6177 
6178 	intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6179 }
6180 
6181 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6182 {
6183 	struct drm_device *dev = crtc->dev;
6184 	struct drm_i915_private *dev_priv = to_i915(dev);
6185 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6186 	struct intel_encoder *encoder;
6187 	struct intel_crtc_state *pipe_config =
6188 		to_intel_crtc_state(crtc->state);
6189 	int pipe = intel_crtc->pipe;
6190 
6191 	if (WARN_ON(intel_crtc->active))
6192 		return;
6193 
6194 	if (intel_crtc_has_dp_encoder(intel_crtc->config))
6195 		intel_dp_set_m_n(intel_crtc, M1_N1);
6196 
6197 	intel_set_pipe_timings(intel_crtc);
6198 	intel_set_pipe_src_size(intel_crtc);
6199 
6200 	if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6201 		struct drm_i915_private *dev_priv = to_i915(dev);
6202 
6203 		I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6204 		I915_WRITE(CHV_CANVAS(pipe), 0);
6205 	}
6206 
6207 	i9xx_set_pipeconf(intel_crtc);
6208 
6209 	intel_crtc->active = true;
6210 
6211 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6212 
6213 	for_each_encoder_on_crtc(dev, crtc, encoder)
6214 		if (encoder->pre_pll_enable)
6215 			encoder->pre_pll_enable(encoder);
6216 
6217 	if (IS_CHERRYVIEW(dev)) {
6218 		chv_prepare_pll(intel_crtc, intel_crtc->config);
6219 		chv_enable_pll(intel_crtc, intel_crtc->config);
6220 	} else {
6221 		vlv_prepare_pll(intel_crtc, intel_crtc->config);
6222 		vlv_enable_pll(intel_crtc, intel_crtc->config);
6223 	}
6224 
6225 	for_each_encoder_on_crtc(dev, crtc, encoder)
6226 		if (encoder->pre_enable)
6227 			encoder->pre_enable(encoder);
6228 
6229 	i9xx_pfit_enable(intel_crtc);
6230 
6231 	intel_color_load_luts(&pipe_config->base);
6232 
6233 	intel_update_watermarks(crtc);
6234 	intel_enable_pipe(intel_crtc);
6235 
6236 	assert_vblank_disabled(crtc);
6237 	drm_crtc_vblank_on(crtc);
6238 
6239 	for_each_encoder_on_crtc(dev, crtc, encoder)
6240 		encoder->enable(encoder);
6241 }
6242 
6243 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6244 {
6245 	struct drm_device *dev = crtc->base.dev;
6246 	struct drm_i915_private *dev_priv = to_i915(dev);
6247 
6248 	I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6249 	I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6250 }
6251 
6252 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6253 {
6254 	struct drm_device *dev = crtc->dev;
6255 	struct drm_i915_private *dev_priv = to_i915(dev);
6256 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6257 	struct intel_encoder *encoder;
6258 	struct intel_crtc_state *pipe_config =
6259 		to_intel_crtc_state(crtc->state);
6260 	enum i915_pipe pipe = intel_crtc->pipe;
6261 
6262 	if (WARN_ON(intel_crtc->active))
6263 		return;
6264 
6265 	i9xx_set_pll_dividers(intel_crtc);
6266 
6267 	if (intel_crtc_has_dp_encoder(intel_crtc->config))
6268 		intel_dp_set_m_n(intel_crtc, M1_N1);
6269 
6270 	intel_set_pipe_timings(intel_crtc);
6271 	intel_set_pipe_src_size(intel_crtc);
6272 
6273 	i9xx_set_pipeconf(intel_crtc);
6274 
6275 	intel_crtc->active = true;
6276 
6277 	if (!IS_GEN2(dev))
6278 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6279 
6280 	for_each_encoder_on_crtc(dev, crtc, encoder)
6281 		if (encoder->pre_enable)
6282 			encoder->pre_enable(encoder);
6283 
6284 	i9xx_enable_pll(intel_crtc);
6285 
6286 	i9xx_pfit_enable(intel_crtc);
6287 
6288 	intel_color_load_luts(&pipe_config->base);
6289 
6290 	intel_update_watermarks(crtc);
6291 	intel_enable_pipe(intel_crtc);
6292 
6293 	assert_vblank_disabled(crtc);
6294 	drm_crtc_vblank_on(crtc);
6295 
6296 	for_each_encoder_on_crtc(dev, crtc, encoder)
6297 		encoder->enable(encoder);
6298 }
6299 
6300 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6301 {
6302 	struct drm_device *dev = crtc->base.dev;
6303 	struct drm_i915_private *dev_priv = to_i915(dev);
6304 
6305 	if (!crtc->config->gmch_pfit.control)
6306 		return;
6307 
6308 	assert_pipe_disabled(dev_priv, crtc->pipe);
6309 
6310 	DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6311 			 I915_READ(PFIT_CONTROL));
6312 	I915_WRITE(PFIT_CONTROL, 0);
6313 }
6314 
6315 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6316 {
6317 	struct drm_device *dev = crtc->dev;
6318 	struct drm_i915_private *dev_priv = to_i915(dev);
6319 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6320 	struct intel_encoder *encoder;
6321 	int pipe = intel_crtc->pipe;
6322 
6323 	/*
6324 	 * On gen2 planes are double buffered but the pipe isn't, so we must
6325 	 * wait for planes to fully turn off before disabling the pipe.
6326 	 */
6327 	if (IS_GEN2(dev))
6328 		intel_wait_for_vblank(dev, pipe);
6329 
6330 	for_each_encoder_on_crtc(dev, crtc, encoder)
6331 		encoder->disable(encoder);
6332 
6333 	drm_crtc_vblank_off(crtc);
6334 	assert_vblank_disabled(crtc);
6335 
6336 	intel_disable_pipe(intel_crtc);
6337 
6338 	i9xx_pfit_disable(intel_crtc);
6339 
6340 	for_each_encoder_on_crtc(dev, crtc, encoder)
6341 		if (encoder->post_disable)
6342 			encoder->post_disable(encoder);
6343 
6344 	if (!intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DSI)) {
6345 		if (IS_CHERRYVIEW(dev))
6346 			chv_disable_pll(dev_priv, pipe);
6347 		else if (IS_VALLEYVIEW(dev))
6348 			vlv_disable_pll(dev_priv, pipe);
6349 		else
6350 			i9xx_disable_pll(intel_crtc);
6351 	}
6352 
6353 	for_each_encoder_on_crtc(dev, crtc, encoder)
6354 		if (encoder->post_pll_disable)
6355 			encoder->post_pll_disable(encoder);
6356 
6357 	if (!IS_GEN2(dev))
6358 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6359 }
6360 
6361 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6362 {
6363 	struct intel_encoder *encoder;
6364 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6365 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6366 	enum intel_display_power_domain domain;
6367 	unsigned long domains;
6368 
6369 	if (!intel_crtc->active)
6370 		return;
6371 
6372 	if (to_intel_plane_state(crtc->primary->state)->visible) {
6373 		WARN_ON(intel_crtc->flip_work);
6374 
6375 		intel_pre_disable_primary_noatomic(crtc);
6376 
6377 		intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6378 		to_intel_plane_state(crtc->primary->state)->visible = false;
6379 	}
6380 
6381 	dev_priv->display.crtc_disable(crtc);
6382 
6383 	DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
6384 		      crtc->base.id, crtc->name);
6385 
6386 	WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
6387 	crtc->state->active = false;
6388 	intel_crtc->active = false;
6389 	crtc->enabled = false;
6390 	crtc->state->connector_mask = 0;
6391 	crtc->state->encoder_mask = 0;
6392 
6393 	for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
6394 		encoder->base.crtc = NULL;
6395 
6396 	intel_fbc_disable(intel_crtc);
6397 	intel_update_watermarks(crtc);
6398 	intel_disable_shared_dpll(intel_crtc);
6399 
6400 	domains = intel_crtc->enabled_power_domains;
6401 	for_each_power_domain(domain, domains)
6402 		intel_display_power_put(dev_priv, domain);
6403 	intel_crtc->enabled_power_domains = 0;
6404 
6405 	dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6406 	dev_priv->min_pixclk[intel_crtc->pipe] = 0;
6407 }
6408 
6409 /*
6410  * turn all crtc's off, but do not adjust state
6411  * This has to be paired with a call to intel_modeset_setup_hw_state.
6412  */
6413 int intel_display_suspend(struct drm_device *dev)
6414 {
6415 	struct drm_i915_private *dev_priv = to_i915(dev);
6416 	struct drm_atomic_state *state;
6417 	int ret;
6418 
6419 	state = drm_atomic_helper_suspend(dev);
6420 	ret = PTR_ERR_OR_ZERO(state);
6421 	if (ret)
6422 		DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6423 	else
6424 		dev_priv->modeset_restore_state = state;
6425 	return ret;
6426 }
6427 
6428 void intel_encoder_destroy(struct drm_encoder *encoder)
6429 {
6430 	struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6431 
6432 	drm_encoder_cleanup(encoder);
6433 	kfree(intel_encoder);
6434 }
6435 
6436 /* Cross check the actual hw state with our own modeset state tracking (and it's
6437  * internal consistency). */
6438 static void intel_connector_verify_state(struct intel_connector *connector)
6439 {
6440 	struct drm_crtc *crtc = connector->base.state->crtc;
6441 
6442 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6443 		      connector->base.base.id,
6444 		      connector->base.name);
6445 
6446 	if (connector->get_hw_state(connector)) {
6447 		struct intel_encoder *encoder = connector->encoder;
6448 		struct drm_connector_state *conn_state = connector->base.state;
6449 
6450 		I915_STATE_WARN(!crtc,
6451 			 "connector enabled without attached crtc\n");
6452 
6453 		if (!crtc)
6454 			return;
6455 
6456 		I915_STATE_WARN(!crtc->state->active,
6457 		      "connector is active, but attached crtc isn't\n");
6458 
6459 		if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6460 			return;
6461 
6462 		I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6463 			"atomic encoder doesn't match attached encoder\n");
6464 
6465 		I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6466 			"attached encoder crtc differs from connector crtc\n");
6467 	} else {
6468 		I915_STATE_WARN(crtc && crtc->state->active,
6469 			"attached crtc is active, but connector isn't\n");
6470 		I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6471 			"best encoder set without crtc!\n");
6472 	}
6473 }
6474 
6475 int intel_connector_init(struct intel_connector *connector)
6476 {
6477 	drm_atomic_helper_connector_reset(&connector->base);
6478 
6479 	if (!connector->base.state)
6480 		return -ENOMEM;
6481 
6482 	return 0;
6483 }
6484 
6485 struct intel_connector *intel_connector_alloc(void)
6486 {
6487 	struct intel_connector *connector;
6488 
6489 	connector = kzalloc(sizeof *connector, GFP_KERNEL);
6490 	if (!connector)
6491 		return NULL;
6492 
6493 	if (intel_connector_init(connector) < 0) {
6494 		kfree(connector);
6495 		return NULL;
6496 	}
6497 
6498 	return connector;
6499 }
6500 
6501 /* Simple connector->get_hw_state implementation for encoders that support only
6502  * one connector and no cloning and hence the encoder state determines the state
6503  * of the connector. */
6504 bool intel_connector_get_hw_state(struct intel_connector *connector)
6505 {
6506 	enum i915_pipe pipe = 0;
6507 	struct intel_encoder *encoder = connector->encoder;
6508 
6509 	return encoder->get_hw_state(encoder, &pipe);
6510 }
6511 
6512 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6513 {
6514 	if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6515 		return crtc_state->fdi_lanes;
6516 
6517 	return 0;
6518 }
6519 
6520 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum i915_pipe pipe,
6521 				     struct intel_crtc_state *pipe_config)
6522 {
6523 	struct drm_atomic_state *state = pipe_config->base.state;
6524 	struct intel_crtc *other_crtc;
6525 	struct intel_crtc_state *other_crtc_state;
6526 
6527 	DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6528 		      pipe_name(pipe), pipe_config->fdi_lanes);
6529 	if (pipe_config->fdi_lanes > 4) {
6530 		DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6531 			      pipe_name(pipe), pipe_config->fdi_lanes);
6532 		return -EINVAL;
6533 	}
6534 
6535 	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6536 		if (pipe_config->fdi_lanes > 2) {
6537 			DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6538 				      pipe_config->fdi_lanes);
6539 			return -EINVAL;
6540 		} else {
6541 			return 0;
6542 		}
6543 	}
6544 
6545 	if (INTEL_INFO(dev)->num_pipes == 2)
6546 		return 0;
6547 
6548 	/* Ivybridge 3 pipe is really complicated */
6549 	switch (pipe) {
6550 	case PIPE_A:
6551 		return 0;
6552 	case PIPE_B:
6553 		if (pipe_config->fdi_lanes <= 2)
6554 			return 0;
6555 
6556 		other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6557 		other_crtc_state =
6558 			intel_atomic_get_crtc_state(state, other_crtc);
6559 		if (IS_ERR(other_crtc_state))
6560 			return PTR_ERR(other_crtc_state);
6561 
6562 		if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6563 			DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6564 				      pipe_name(pipe), pipe_config->fdi_lanes);
6565 			return -EINVAL;
6566 		}
6567 		return 0;
6568 	case PIPE_C:
6569 		if (pipe_config->fdi_lanes > 2) {
6570 			DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6571 				      pipe_name(pipe), pipe_config->fdi_lanes);
6572 			return -EINVAL;
6573 		}
6574 
6575 		other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6576 		other_crtc_state =
6577 			intel_atomic_get_crtc_state(state, other_crtc);
6578 		if (IS_ERR(other_crtc_state))
6579 			return PTR_ERR(other_crtc_state);
6580 
6581 		if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6582 			DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6583 			return -EINVAL;
6584 		}
6585 		return 0;
6586 	default:
6587 		BUG();
6588 	}
6589 }
6590 
6591 #define RETRY 1
6592 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6593 				       struct intel_crtc_state *pipe_config)
6594 {
6595 	struct drm_device *dev = intel_crtc->base.dev;
6596 	const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6597 	int lane, link_bw, fdi_dotclock, ret;
6598 	bool needs_recompute = false;
6599 
6600 retry:
6601 	/* FDI is a binary signal running at ~2.7GHz, encoding
6602 	 * each output octet as 10 bits. The actual frequency
6603 	 * is stored as a divider into a 100MHz clock, and the
6604 	 * mode pixel clock is stored in units of 1KHz.
6605 	 * Hence the bw of each lane in terms of the mode signal
6606 	 * is:
6607 	 */
6608 	link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
6609 
6610 	fdi_dotclock = adjusted_mode->crtc_clock;
6611 
6612 	lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6613 					   pipe_config->pipe_bpp);
6614 
6615 	pipe_config->fdi_lanes = lane;
6616 
6617 	intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6618 			       link_bw, &pipe_config->fdi_m_n);
6619 
6620 	ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
6621 	if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6622 		pipe_config->pipe_bpp -= 2*3;
6623 		DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6624 			      pipe_config->pipe_bpp);
6625 		needs_recompute = true;
6626 		pipe_config->bw_constrained = true;
6627 
6628 		goto retry;
6629 	}
6630 
6631 	if (needs_recompute)
6632 		return RETRY;
6633 
6634 	return ret;
6635 }
6636 
6637 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6638 				     struct intel_crtc_state *pipe_config)
6639 {
6640 	if (pipe_config->pipe_bpp > 24)
6641 		return false;
6642 
6643 	/* HSW can handle pixel rate up to cdclk? */
6644 	if (IS_HASWELL(dev_priv))
6645 		return true;
6646 
6647 	/*
6648 	 * We compare against max which means we must take
6649 	 * the increased cdclk requirement into account when
6650 	 * calculating the new cdclk.
6651 	 *
6652 	 * Should measure whether using a lower cdclk w/o IPS
6653 	 */
6654 	return ilk_pipe_pixel_rate(pipe_config) <=
6655 		dev_priv->max_cdclk_freq * 95 / 100;
6656 }
6657 
6658 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6659 				   struct intel_crtc_state *pipe_config)
6660 {
6661 	struct drm_device *dev = crtc->base.dev;
6662 	struct drm_i915_private *dev_priv = to_i915(dev);
6663 
6664 	pipe_config->ips_enabled = i915.enable_ips &&
6665 		hsw_crtc_supports_ips(crtc) &&
6666 		pipe_config_supports_ips(dev_priv, pipe_config);
6667 }
6668 
6669 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6670 {
6671 	const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6672 
6673 	/* GDG double wide on either pipe, otherwise pipe A only */
6674 	return INTEL_INFO(dev_priv)->gen < 4 &&
6675 		(crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6676 }
6677 
6678 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6679 				     struct intel_crtc_state *pipe_config)
6680 {
6681 	struct drm_device *dev = crtc->base.dev;
6682 	struct drm_i915_private *dev_priv = to_i915(dev);
6683 	const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6684 	int clock_limit = dev_priv->max_dotclk_freq;
6685 
6686 	if (INTEL_INFO(dev)->gen < 4) {
6687 		clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
6688 
6689 		/*
6690 		 * Enable double wide mode when the dot clock
6691 		 * is > 90% of the (display) core speed.
6692 		 */
6693 		if (intel_crtc_supports_double_wide(crtc) &&
6694 		    adjusted_mode->crtc_clock > clock_limit) {
6695 			clock_limit = dev_priv->max_dotclk_freq;
6696 			pipe_config->double_wide = true;
6697 		}
6698 	}
6699 
6700 	if (adjusted_mode->crtc_clock > clock_limit) {
6701 		DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6702 			      adjusted_mode->crtc_clock, clock_limit,
6703 			      yesno(pipe_config->double_wide));
6704 		return -EINVAL;
6705 	}
6706 
6707 	/*
6708 	 * Pipe horizontal size must be even in:
6709 	 * - DVO ganged mode
6710 	 * - LVDS dual channel mode
6711 	 * - Double wide pipe
6712 	 */
6713 	if ((intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6714 	     intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6715 		pipe_config->pipe_src_w &= ~1;
6716 
6717 	/* Cantiga+ cannot handle modes with a hsync front porch of 0.
6718 	 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6719 	 */
6720 	if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6721 		adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6722 		return -EINVAL;
6723 
6724 	if (HAS_IPS(dev))
6725 		hsw_compute_ips_config(crtc, pipe_config);
6726 
6727 	if (pipe_config->has_pch_encoder)
6728 		return ironlake_fdi_compute_config(crtc, pipe_config);
6729 
6730 	return 0;
6731 }
6732 
6733 static int skylake_get_display_clock_speed(struct drm_device *dev)
6734 {
6735 	struct drm_i915_private *dev_priv = to_i915(dev);
6736 	uint32_t cdctl;
6737 
6738 	skl_dpll0_update(dev_priv);
6739 
6740 	if (dev_priv->cdclk_pll.vco == 0)
6741 		return dev_priv->cdclk_pll.ref;
6742 
6743 	cdctl = I915_READ(CDCLK_CTL);
6744 
6745 	if (dev_priv->cdclk_pll.vco == 8640000) {
6746 		switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6747 		case CDCLK_FREQ_450_432:
6748 			return 432000;
6749 		case CDCLK_FREQ_337_308:
6750 			return 308571;
6751 		case CDCLK_FREQ_540:
6752 			return 540000;
6753 		case CDCLK_FREQ_675_617:
6754 			return 617143;
6755 		default:
6756 			MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
6757 		}
6758 	} else {
6759 		switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6760 		case CDCLK_FREQ_450_432:
6761 			return 450000;
6762 		case CDCLK_FREQ_337_308:
6763 			return 337500;
6764 		case CDCLK_FREQ_540:
6765 			return 540000;
6766 		case CDCLK_FREQ_675_617:
6767 			return 675000;
6768 		default:
6769 			MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
6770 		}
6771 	}
6772 
6773 	return dev_priv->cdclk_pll.ref;
6774 }
6775 
6776 static void bxt_de_pll_update(struct drm_i915_private *dev_priv)
6777 {
6778 	u32 val;
6779 
6780 	dev_priv->cdclk_pll.ref = 19200;
6781 	dev_priv->cdclk_pll.vco = 0;
6782 
6783 	val = I915_READ(BXT_DE_PLL_ENABLE);
6784 	if ((val & BXT_DE_PLL_PLL_ENABLE) == 0)
6785 		return;
6786 
6787 	if (WARN_ON((val & BXT_DE_PLL_LOCK) == 0))
6788 		return;
6789 
6790 	val = I915_READ(BXT_DE_PLL_CTL);
6791 	dev_priv->cdclk_pll.vco = (val & BXT_DE_PLL_RATIO_MASK) *
6792 		dev_priv->cdclk_pll.ref;
6793 }
6794 
6795 static int broxton_get_display_clock_speed(struct drm_device *dev)
6796 {
6797 	struct drm_i915_private *dev_priv = to_i915(dev);
6798 	u32 divider;
6799 	int div, vco;
6800 
6801 	bxt_de_pll_update(dev_priv);
6802 
6803 	vco = dev_priv->cdclk_pll.vco;
6804 	if (vco == 0)
6805 		return dev_priv->cdclk_pll.ref;
6806 
6807 	divider = I915_READ(CDCLK_CTL) & BXT_CDCLK_CD2X_DIV_SEL_MASK;
6808 
6809 	switch (divider) {
6810 	case BXT_CDCLK_CD2X_DIV_SEL_1:
6811 		div = 2;
6812 		break;
6813 	case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6814 		div = 3;
6815 		break;
6816 	case BXT_CDCLK_CD2X_DIV_SEL_2:
6817 		div = 4;
6818 		break;
6819 	case BXT_CDCLK_CD2X_DIV_SEL_4:
6820 		div = 8;
6821 		break;
6822 	default:
6823 		MISSING_CASE(divider);
6824 		return dev_priv->cdclk_pll.ref;
6825 	}
6826 
6827 	return DIV_ROUND_CLOSEST(vco, div);
6828 }
6829 
6830 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6831 {
6832 	struct drm_i915_private *dev_priv = to_i915(dev);
6833 	uint32_t lcpll = I915_READ(LCPLL_CTL);
6834 	uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6835 
6836 	if (lcpll & LCPLL_CD_SOURCE_FCLK)
6837 		return 800000;
6838 	else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6839 		return 450000;
6840 	else if (freq == LCPLL_CLK_FREQ_450)
6841 		return 450000;
6842 	else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6843 		return 540000;
6844 	else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6845 		return 337500;
6846 	else
6847 		return 675000;
6848 }
6849 
6850 static int haswell_get_display_clock_speed(struct drm_device *dev)
6851 {
6852 	struct drm_i915_private *dev_priv = to_i915(dev);
6853 	uint32_t lcpll = I915_READ(LCPLL_CTL);
6854 	uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6855 
6856 	if (lcpll & LCPLL_CD_SOURCE_FCLK)
6857 		return 800000;
6858 	else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6859 		return 450000;
6860 	else if (freq == LCPLL_CLK_FREQ_450)
6861 		return 450000;
6862 	else if (IS_HSW_ULT(dev))
6863 		return 337500;
6864 	else
6865 		return 540000;
6866 }
6867 
6868 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6869 {
6870 	return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6871 				      CCK_DISPLAY_CLOCK_CONTROL);
6872 }
6873 
6874 static int ilk_get_display_clock_speed(struct drm_device *dev)
6875 {
6876 	return 450000;
6877 }
6878 
6879 static int i945_get_display_clock_speed(struct drm_device *dev)
6880 {
6881 	return 400000;
6882 }
6883 
6884 static int i915_get_display_clock_speed(struct drm_device *dev)
6885 {
6886 	return 333333;
6887 }
6888 
6889 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6890 {
6891 	return 200000;
6892 }
6893 
6894 static int pnv_get_display_clock_speed(struct drm_device *dev)
6895 {
6896 	u16 gcfgc = 0;
6897 
6898 	pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6899 
6900 	switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6901 	case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6902 		return 266667;
6903 	case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6904 		return 333333;
6905 	case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6906 		return 444444;
6907 	case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6908 		return 200000;
6909 	default:
6910 		DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6911 	case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6912 		return 133333;
6913 	case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6914 		return 166667;
6915 	}
6916 }
6917 
6918 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6919 {
6920 	u16 gcfgc = 0;
6921 
6922 	pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6923 
6924 	if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6925 		return 133333;
6926 	else {
6927 		switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6928 		case GC_DISPLAY_CLOCK_333_MHZ:
6929 			return 333333;
6930 		default:
6931 		case GC_DISPLAY_CLOCK_190_200_MHZ:
6932 			return 190000;
6933 		}
6934 	}
6935 }
6936 
6937 static int i865_get_display_clock_speed(struct drm_device *dev)
6938 {
6939 	return 266667;
6940 }
6941 
6942 static int i85x_get_display_clock_speed(struct drm_device *dev)
6943 {
6944 	u16 hpllcc = 0;
6945 
6946 	/*
6947 	 * 852GM/852GMV only supports 133 MHz and the HPLLCC
6948 	 * encoding is different :(
6949 	 * FIXME is this the right way to detect 852GM/852GMV?
6950 	 */
6951 	if (dev->pdev->revision == 0x1)
6952 		return 133333;
6953 
6954 	pci_bus_read_config_word(dev->pdev->bus,
6955 				 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6956 
6957 	/* Assume that the hardware is in the high speed state.  This
6958 	 * should be the default.
6959 	 */
6960 	switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6961 	case GC_CLOCK_133_200:
6962 	case GC_CLOCK_133_200_2:
6963 	case GC_CLOCK_100_200:
6964 		return 200000;
6965 	case GC_CLOCK_166_250:
6966 		return 250000;
6967 	case GC_CLOCK_100_133:
6968 		return 133333;
6969 	case GC_CLOCK_133_266:
6970 	case GC_CLOCK_133_266_2:
6971 	case GC_CLOCK_166_266:
6972 		return 266667;
6973 	}
6974 
6975 	/* Shouldn't happen */
6976 	return 0;
6977 }
6978 
6979 static int i830_get_display_clock_speed(struct drm_device *dev)
6980 {
6981 	return 133333;
6982 }
6983 
6984 static unsigned int intel_hpll_vco(struct drm_device *dev)
6985 {
6986 	struct drm_i915_private *dev_priv = to_i915(dev);
6987 	static const unsigned int blb_vco[8] = {
6988 		[0] = 3200000,
6989 		[1] = 4000000,
6990 		[2] = 5333333,
6991 		[3] = 4800000,
6992 		[4] = 6400000,
6993 	};
6994 	static const unsigned int pnv_vco[8] = {
6995 		[0] = 3200000,
6996 		[1] = 4000000,
6997 		[2] = 5333333,
6998 		[3] = 4800000,
6999 		[4] = 2666667,
7000 	};
7001 	static const unsigned int cl_vco[8] = {
7002 		[0] = 3200000,
7003 		[1] = 4000000,
7004 		[2] = 5333333,
7005 		[3] = 6400000,
7006 		[4] = 3333333,
7007 		[5] = 3566667,
7008 		[6] = 4266667,
7009 	};
7010 	static const unsigned int elk_vco[8] = {
7011 		[0] = 3200000,
7012 		[1] = 4000000,
7013 		[2] = 5333333,
7014 		[3] = 4800000,
7015 	};
7016 	static const unsigned int ctg_vco[8] = {
7017 		[0] = 3200000,
7018 		[1] = 4000000,
7019 		[2] = 5333333,
7020 		[3] = 6400000,
7021 		[4] = 2666667,
7022 		[5] = 4266667,
7023 	};
7024 	const unsigned int *vco_table;
7025 	unsigned int vco;
7026 	uint8_t tmp = 0;
7027 
7028 	/* FIXME other chipsets? */
7029 	if (IS_GM45(dev))
7030 		vco_table = ctg_vco;
7031 	else if (IS_G4X(dev))
7032 		vco_table = elk_vco;
7033 	else if (IS_CRESTLINE(dev))
7034 		vco_table = cl_vco;
7035 	else if (IS_PINEVIEW(dev))
7036 		vco_table = pnv_vco;
7037 	else if (IS_G33(dev))
7038 		vco_table = blb_vco;
7039 	else
7040 		return 0;
7041 
7042 	tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
7043 
7044 	vco = vco_table[tmp & 0x7];
7045 	if (vco == 0)
7046 		DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
7047 	else
7048 		DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
7049 
7050 	return vco;
7051 }
7052 
7053 static int gm45_get_display_clock_speed(struct drm_device *dev)
7054 {
7055 	unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7056 	uint16_t tmp = 0;
7057 
7058 	pci_read_config_word(dev->pdev, GCFGC, &tmp);
7059 
7060 	cdclk_sel = (tmp >> 12) & 0x1;
7061 
7062 	switch (vco) {
7063 	case 2666667:
7064 	case 4000000:
7065 	case 5333333:
7066 		return cdclk_sel ? 333333 : 222222;
7067 	case 3200000:
7068 		return cdclk_sel ? 320000 : 228571;
7069 	default:
7070 		DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7071 		return 222222;
7072 	}
7073 }
7074 
7075 static int i965gm_get_display_clock_speed(struct drm_device *dev)
7076 {
7077 	static const uint8_t div_3200[] = { 16, 10,  8 };
7078 	static const uint8_t div_4000[] = { 20, 12, 10 };
7079 	static const uint8_t div_5333[] = { 24, 16, 14 };
7080 	const uint8_t *div_table;
7081 	unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7082 	uint16_t tmp = 0;
7083 
7084 	pci_read_config_word(dev->pdev, GCFGC, &tmp);
7085 
7086 	cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7087 
7088 	if (cdclk_sel >= ARRAY_SIZE(div_3200))
7089 		goto fail;
7090 
7091 	switch (vco) {
7092 	case 3200000:
7093 		div_table = div_3200;
7094 		break;
7095 	case 4000000:
7096 		div_table = div_4000;
7097 		break;
7098 	case 5333333:
7099 		div_table = div_5333;
7100 		break;
7101 	default:
7102 		goto fail;
7103 	}
7104 
7105 	return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7106 
7107 fail:
7108 	DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7109 	return 200000;
7110 }
7111 
7112 static int g33_get_display_clock_speed(struct drm_device *dev)
7113 {
7114 	static const uint8_t div_3200[] = { 12, 10,  8,  7, 5, 16 };
7115 	static const uint8_t div_4000[] = { 14, 12, 10,  8, 6, 20 };
7116 	static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7117 	static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7118 	const uint8_t *div_table;
7119 	unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7120 	uint16_t tmp = 0;
7121 
7122 	pci_read_config_word(dev->pdev, GCFGC, &tmp);
7123 
7124 	cdclk_sel = (tmp >> 4) & 0x7;
7125 
7126 	if (cdclk_sel >= ARRAY_SIZE(div_3200))
7127 		goto fail;
7128 
7129 	switch (vco) {
7130 	case 3200000:
7131 		div_table = div_3200;
7132 		break;
7133 	case 4000000:
7134 		div_table = div_4000;
7135 		break;
7136 	case 4800000:
7137 		div_table = div_4800;
7138 		break;
7139 	case 5333333:
7140 		div_table = div_5333;
7141 		break;
7142 	default:
7143 		goto fail;
7144 	}
7145 
7146 	return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7147 
7148 fail:
7149 	DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7150 	return 190476;
7151 }
7152 
7153 static void
7154 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7155 {
7156 	while (*num > DATA_LINK_M_N_MASK ||
7157 	       *den > DATA_LINK_M_N_MASK) {
7158 		*num >>= 1;
7159 		*den >>= 1;
7160 	}
7161 }
7162 
7163 static void compute_m_n(unsigned int m, unsigned int n,
7164 			uint32_t *ret_m, uint32_t *ret_n)
7165 {
7166 	*ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7167 	*ret_m = div_u64((uint64_t) m * *ret_n, n);
7168 	intel_reduce_m_n_ratio(ret_m, ret_n);
7169 }
7170 
7171 void
7172 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7173 		       int pixel_clock, int link_clock,
7174 		       struct intel_link_m_n *m_n)
7175 {
7176 	m_n->tu = 64;
7177 
7178 	compute_m_n(bits_per_pixel * pixel_clock,
7179 		    link_clock * nlanes * 8,
7180 		    &m_n->gmch_m, &m_n->gmch_n);
7181 
7182 	compute_m_n(pixel_clock, link_clock,
7183 		    &m_n->link_m, &m_n->link_n);
7184 }
7185 
7186 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7187 {
7188 	if (i915.panel_use_ssc >= 0)
7189 		return i915.panel_use_ssc != 0;
7190 	return dev_priv->vbt.lvds_use_ssc
7191 		&& !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7192 }
7193 
7194 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7195 {
7196 	return (1 << dpll->n) << 16 | dpll->m2;
7197 }
7198 
7199 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7200 {
7201 	return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7202 }
7203 
7204 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7205 				     struct intel_crtc_state *crtc_state,
7206 				     struct dpll *reduced_clock)
7207 {
7208 	struct drm_device *dev = crtc->base.dev;
7209 	u32 fp, fp2 = 0;
7210 
7211 	if (IS_PINEVIEW(dev)) {
7212 		fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7213 		if (reduced_clock)
7214 			fp2 = pnv_dpll_compute_fp(reduced_clock);
7215 	} else {
7216 		fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7217 		if (reduced_clock)
7218 			fp2 = i9xx_dpll_compute_fp(reduced_clock);
7219 	}
7220 
7221 	crtc_state->dpll_hw_state.fp0 = fp;
7222 
7223 	crtc->lowfreq_avail = false;
7224 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7225 	    reduced_clock) {
7226 		crtc_state->dpll_hw_state.fp1 = fp2;
7227 		crtc->lowfreq_avail = true;
7228 	} else {
7229 		crtc_state->dpll_hw_state.fp1 = fp;
7230 	}
7231 }
7232 
7233 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum i915_pipe
7234 		pipe)
7235 {
7236 	u32 reg_val;
7237 
7238 	/*
7239 	 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7240 	 * and set it to a reasonable value instead.
7241 	 */
7242 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7243 	reg_val &= 0xffffff00;
7244 	reg_val |= 0x00000030;
7245 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7246 
7247 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7248 	reg_val &= 0x8cffffff;
7249 	reg_val = 0x8c000000;
7250 	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7251 
7252 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7253 	reg_val &= 0xffffff00;
7254 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7255 
7256 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7257 	reg_val &= 0x00ffffff;
7258 	reg_val |= 0xb0000000;
7259 	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7260 }
7261 
7262 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7263 					 struct intel_link_m_n *m_n)
7264 {
7265 	struct drm_device *dev = crtc->base.dev;
7266 	struct drm_i915_private *dev_priv = to_i915(dev);
7267 	int pipe = crtc->pipe;
7268 
7269 	I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7270 	I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7271 	I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7272 	I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7273 }
7274 
7275 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7276 					 struct intel_link_m_n *m_n,
7277 					 struct intel_link_m_n *m2_n2)
7278 {
7279 	struct drm_device *dev = crtc->base.dev;
7280 	struct drm_i915_private *dev_priv = to_i915(dev);
7281 	int pipe = crtc->pipe;
7282 	enum transcoder transcoder = crtc->config->cpu_transcoder;
7283 
7284 	if (INTEL_INFO(dev)->gen >= 5) {
7285 		I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7286 		I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7287 		I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7288 		I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7289 		/* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7290 		 * for gen < 8) and if DRRS is supported (to make sure the
7291 		 * registers are not unnecessarily accessed).
7292 		 */
7293 		if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7294 			crtc->config->has_drrs) {
7295 			I915_WRITE(PIPE_DATA_M2(transcoder),
7296 					TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7297 			I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7298 			I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7299 			I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7300 		}
7301 	} else {
7302 		I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7303 		I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7304 		I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7305 		I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7306 	}
7307 }
7308 
7309 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7310 {
7311 	struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7312 
7313 	if (m_n == M1_N1) {
7314 		dp_m_n = &crtc->config->dp_m_n;
7315 		dp_m2_n2 = &crtc->config->dp_m2_n2;
7316 	} else if (m_n == M2_N2) {
7317 
7318 		/*
7319 		 * M2_N2 registers are not supported. Hence m2_n2 divider value
7320 		 * needs to be programmed into M1_N1.
7321 		 */
7322 		dp_m_n = &crtc->config->dp_m2_n2;
7323 	} else {
7324 		DRM_ERROR("Unsupported divider value\n");
7325 		return;
7326 	}
7327 
7328 	if (crtc->config->has_pch_encoder)
7329 		intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7330 	else
7331 		intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7332 }
7333 
7334 static void vlv_compute_dpll(struct intel_crtc *crtc,
7335 			     struct intel_crtc_state *pipe_config)
7336 {
7337 	pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
7338 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7339 	if (crtc->pipe != PIPE_A)
7340 		pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7341 
7342 	/* DPLL not used with DSI, but still need the rest set up */
7343 	if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7344 		pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
7345 			DPLL_EXT_BUFFER_ENABLE_VLV;
7346 
7347 	pipe_config->dpll_hw_state.dpll_md =
7348 		(pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7349 }
7350 
7351 static void chv_compute_dpll(struct intel_crtc *crtc,
7352 			     struct intel_crtc_state *pipe_config)
7353 {
7354 	pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7355 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7356 	if (crtc->pipe != PIPE_A)
7357 		pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7358 
7359 	/* DPLL not used with DSI, but still need the rest set up */
7360 	if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7361 		pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
7362 
7363 	pipe_config->dpll_hw_state.dpll_md =
7364 		(pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7365 }
7366 
7367 static void vlv_prepare_pll(struct intel_crtc *crtc,
7368 			    const struct intel_crtc_state *pipe_config)
7369 {
7370 	struct drm_device *dev = crtc->base.dev;
7371 	struct drm_i915_private *dev_priv = to_i915(dev);
7372 	enum i915_pipe pipe = crtc->pipe;
7373 	u32 mdiv;
7374 	u32 bestn, bestm1, bestm2, bestp1, bestp2;
7375 	u32 coreclk, reg_val;
7376 
7377 	/* Enable Refclk */
7378 	I915_WRITE(DPLL(pipe),
7379 		   pipe_config->dpll_hw_state.dpll &
7380 		   ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
7381 
7382 	/* No need to actually set up the DPLL with DSI */
7383 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7384 		return;
7385 
7386 	mutex_lock(&dev_priv->sb_lock);
7387 
7388 	bestn = pipe_config->dpll.n;
7389 	bestm1 = pipe_config->dpll.m1;
7390 	bestm2 = pipe_config->dpll.m2;
7391 	bestp1 = pipe_config->dpll.p1;
7392 	bestp2 = pipe_config->dpll.p2;
7393 
7394 	/* See eDP HDMI DPIO driver vbios notes doc */
7395 
7396 	/* PLL B needs special handling */
7397 	if (pipe == PIPE_B)
7398 		vlv_pllb_recal_opamp(dev_priv, pipe);
7399 
7400 	/* Set up Tx target for periodic Rcomp update */
7401 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7402 
7403 	/* Disable target IRef on PLL */
7404 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7405 	reg_val &= 0x00ffffff;
7406 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7407 
7408 	/* Disable fast lock */
7409 	vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7410 
7411 	/* Set idtafcrecal before PLL is enabled */
7412 	mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7413 	mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7414 	mdiv |= ((bestn << DPIO_N_SHIFT));
7415 	mdiv |= (1 << DPIO_K_SHIFT);
7416 
7417 	/*
7418 	 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7419 	 * but we don't support that).
7420 	 * Note: don't use the DAC post divider as it seems unstable.
7421 	 */
7422 	mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7423 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7424 
7425 	mdiv |= DPIO_ENABLE_CALIBRATION;
7426 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7427 
7428 	/* Set HBR and RBR LPF coefficients */
7429 	if (pipe_config->port_clock == 162000 ||
7430 	    intel_crtc_has_type(crtc->config, INTEL_OUTPUT_ANALOG) ||
7431 	    intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI))
7432 		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7433 				 0x009f0003);
7434 	else
7435 		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7436 				 0x00d0000f);
7437 
7438 	if (intel_crtc_has_dp_encoder(pipe_config)) {
7439 		/* Use SSC source */
7440 		if (pipe == PIPE_A)
7441 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7442 					 0x0df40000);
7443 		else
7444 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7445 					 0x0df70000);
7446 	} else { /* HDMI or VGA */
7447 		/* Use bend source */
7448 		if (pipe == PIPE_A)
7449 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7450 					 0x0df70000);
7451 		else
7452 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7453 					 0x0df40000);
7454 	}
7455 
7456 	coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7457 	coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7458 	if (intel_crtc_has_dp_encoder(crtc->config))
7459 		coreclk |= 0x01000000;
7460 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7461 
7462 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7463 	mutex_unlock(&dev_priv->sb_lock);
7464 }
7465 
7466 static void chv_prepare_pll(struct intel_crtc *crtc,
7467 			    const struct intel_crtc_state *pipe_config)
7468 {
7469 	struct drm_device *dev = crtc->base.dev;
7470 	struct drm_i915_private *dev_priv = to_i915(dev);
7471 	enum i915_pipe pipe = crtc->pipe;
7472 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
7473 	u32 loopfilter, tribuf_calcntr;
7474 	u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7475 	u32 dpio_val;
7476 	int vco;
7477 
7478 	/* Enable Refclk and SSC */
7479 	I915_WRITE(DPLL(pipe),
7480 		   pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7481 
7482 	/* No need to actually set up the DPLL with DSI */
7483 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7484 		return;
7485 
7486 	bestn = pipe_config->dpll.n;
7487 	bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7488 	bestm1 = pipe_config->dpll.m1;
7489 	bestm2 = pipe_config->dpll.m2 >> 22;
7490 	bestp1 = pipe_config->dpll.p1;
7491 	bestp2 = pipe_config->dpll.p2;
7492 	vco = pipe_config->dpll.vco;
7493 	dpio_val = 0;
7494 	loopfilter = 0;
7495 
7496 	mutex_lock(&dev_priv->sb_lock);
7497 
7498 	/* p1 and p2 divider */
7499 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7500 			5 << DPIO_CHV_S1_DIV_SHIFT |
7501 			bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7502 			bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7503 			1 << DPIO_CHV_K_DIV_SHIFT);
7504 
7505 	/* Feedback post-divider - m2 */
7506 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7507 
7508 	/* Feedback refclk divider - n and m1 */
7509 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7510 			DPIO_CHV_M1_DIV_BY_2 |
7511 			1 << DPIO_CHV_N_DIV_SHIFT);
7512 
7513 	/* M2 fraction division */
7514 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7515 
7516 	/* M2 fraction division enable */
7517 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7518 	dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7519 	dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7520 	if (bestm2_frac)
7521 		dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7522 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7523 
7524 	/* Program digital lock detect threshold */
7525 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7526 	dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7527 					DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7528 	dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7529 	if (!bestm2_frac)
7530 		dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7531 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7532 
7533 	/* Loop filter */
7534 	if (vco == 5400000) {
7535 		loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7536 		loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7537 		loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7538 		tribuf_calcntr = 0x9;
7539 	} else if (vco <= 6200000) {
7540 		loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7541 		loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7542 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7543 		tribuf_calcntr = 0x9;
7544 	} else if (vco <= 6480000) {
7545 		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7546 		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7547 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7548 		tribuf_calcntr = 0x8;
7549 	} else {
7550 		/* Not supported. Apply the same limits as in the max case */
7551 		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7552 		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7553 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7554 		tribuf_calcntr = 0;
7555 	}
7556 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7557 
7558 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7559 	dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7560 	dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7561 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7562 
7563 	/* AFC Recal */
7564 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7565 			vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7566 			DPIO_AFC_RECAL);
7567 
7568 	mutex_unlock(&dev_priv->sb_lock);
7569 }
7570 
7571 /**
7572  * vlv_force_pll_on - forcibly enable just the PLL
7573  * @dev_priv: i915 private structure
7574  * @pipe: pipe PLL to enable
7575  * @dpll: PLL configuration
7576  *
7577  * Enable the PLL for @pipe using the supplied @dpll config. To be used
7578  * in cases where we need the PLL enabled even when @pipe is not going to
7579  * be enabled.
7580  */
7581 int vlv_force_pll_on(struct drm_device *dev, enum i915_pipe pipe,
7582 		     const struct dpll *dpll)
7583 {
7584 	struct intel_crtc *crtc =
7585 		to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7586 	struct intel_crtc_state *pipe_config;
7587 
7588 	pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7589 	if (!pipe_config)
7590 		return -ENOMEM;
7591 
7592 	pipe_config->base.crtc = &crtc->base;
7593 	pipe_config->pixel_multiplier = 1;
7594 	pipe_config->dpll = *dpll;
7595 
7596 	if (IS_CHERRYVIEW(dev)) {
7597 		chv_compute_dpll(crtc, pipe_config);
7598 		chv_prepare_pll(crtc, pipe_config);
7599 		chv_enable_pll(crtc, pipe_config);
7600 	} else {
7601 		vlv_compute_dpll(crtc, pipe_config);
7602 		vlv_prepare_pll(crtc, pipe_config);
7603 		vlv_enable_pll(crtc, pipe_config);
7604 	}
7605 
7606 	kfree(pipe_config);
7607 
7608 	return 0;
7609 }
7610 
7611 /**
7612  * vlv_force_pll_off - forcibly disable just the PLL
7613  * @dev_priv: i915 private structure
7614  * @pipe: pipe PLL to disable
7615  *
7616  * Disable the PLL for @pipe. To be used in cases where we need
7617  * the PLL enabled even when @pipe is not going to be enabled.
7618  */
7619 void vlv_force_pll_off(struct drm_device *dev, enum i915_pipe pipe)
7620 {
7621 	if (IS_CHERRYVIEW(dev))
7622 		chv_disable_pll(to_i915(dev), pipe);
7623 	else
7624 		vlv_disable_pll(to_i915(dev), pipe);
7625 }
7626 
7627 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7628 			      struct intel_crtc_state *crtc_state,
7629 			      struct dpll *reduced_clock)
7630 {
7631 	struct drm_device *dev = crtc->base.dev;
7632 	struct drm_i915_private *dev_priv = to_i915(dev);
7633 	u32 dpll;
7634 	struct dpll *clock = &crtc_state->dpll;
7635 
7636 	i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7637 
7638 	dpll = DPLL_VGA_MODE_DIS;
7639 
7640 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
7641 		dpll |= DPLLB_MODE_LVDS;
7642 	else
7643 		dpll |= DPLLB_MODE_DAC_SERIAL;
7644 
7645 	if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7646 		dpll |= (crtc_state->pixel_multiplier - 1)
7647 			<< SDVO_MULTIPLIER_SHIFT_HIRES;
7648 	}
7649 
7650 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7651 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
7652 		dpll |= DPLL_SDVO_HIGH_SPEED;
7653 
7654 	if (intel_crtc_has_dp_encoder(crtc_state))
7655 		dpll |= DPLL_SDVO_HIGH_SPEED;
7656 
7657 	/* compute bitmask from p1 value */
7658 	if (IS_PINEVIEW(dev))
7659 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7660 	else {
7661 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7662 		if (IS_G4X(dev) && reduced_clock)
7663 			dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7664 	}
7665 	switch (clock->p2) {
7666 	case 5:
7667 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7668 		break;
7669 	case 7:
7670 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7671 		break;
7672 	case 10:
7673 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7674 		break;
7675 	case 14:
7676 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7677 		break;
7678 	}
7679 	if (INTEL_INFO(dev)->gen >= 4)
7680 		dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7681 
7682 	if (crtc_state->sdvo_tv_clock)
7683 		dpll |= PLL_REF_INPUT_TVCLKINBC;
7684 	else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7685 		 intel_panel_use_ssc(dev_priv))
7686 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7687 	else
7688 		dpll |= PLL_REF_INPUT_DREFCLK;
7689 
7690 	dpll |= DPLL_VCO_ENABLE;
7691 	crtc_state->dpll_hw_state.dpll = dpll;
7692 
7693 	if (INTEL_INFO(dev)->gen >= 4) {
7694 		u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7695 			<< DPLL_MD_UDI_MULTIPLIER_SHIFT;
7696 		crtc_state->dpll_hw_state.dpll_md = dpll_md;
7697 	}
7698 }
7699 
7700 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7701 			      struct intel_crtc_state *crtc_state,
7702 			      struct dpll *reduced_clock)
7703 {
7704 	struct drm_device *dev = crtc->base.dev;
7705 	struct drm_i915_private *dev_priv = to_i915(dev);
7706 	u32 dpll;
7707 	struct dpll *clock = &crtc_state->dpll;
7708 
7709 	i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7710 
7711 	dpll = DPLL_VGA_MODE_DIS;
7712 
7713 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7714 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7715 	} else {
7716 		if (clock->p1 == 2)
7717 			dpll |= PLL_P1_DIVIDE_BY_TWO;
7718 		else
7719 			dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7720 		if (clock->p2 == 4)
7721 			dpll |= PLL_P2_DIVIDE_BY_4;
7722 	}
7723 
7724 	if (!IS_I830(dev) && intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
7725 		dpll |= DPLL_DVO_2X_MODE;
7726 
7727 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7728 	    intel_panel_use_ssc(dev_priv))
7729 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7730 	else
7731 		dpll |= PLL_REF_INPUT_DREFCLK;
7732 
7733 	dpll |= DPLL_VCO_ENABLE;
7734 	crtc_state->dpll_hw_state.dpll = dpll;
7735 }
7736 
7737 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7738 {
7739 	struct drm_device *dev = intel_crtc->base.dev;
7740 	struct drm_i915_private *dev_priv = to_i915(dev);
7741 	enum i915_pipe pipe = intel_crtc->pipe;
7742 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7743 	const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
7744 	uint32_t crtc_vtotal, crtc_vblank_end;
7745 	int vsyncshift = 0;
7746 
7747 	/* We need to be careful not to changed the adjusted mode, for otherwise
7748 	 * the hw state checker will get angry at the mismatch. */
7749 	crtc_vtotal = adjusted_mode->crtc_vtotal;
7750 	crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7751 
7752 	if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7753 		/* the chip adds 2 halflines automatically */
7754 		crtc_vtotal -= 1;
7755 		crtc_vblank_end -= 1;
7756 
7757 		if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
7758 			vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7759 		else
7760 			vsyncshift = adjusted_mode->crtc_hsync_start -
7761 				adjusted_mode->crtc_htotal / 2;
7762 		if (vsyncshift < 0)
7763 			vsyncshift += adjusted_mode->crtc_htotal;
7764 	}
7765 
7766 	if (INTEL_INFO(dev)->gen > 3)
7767 		I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7768 
7769 	I915_WRITE(HTOTAL(cpu_transcoder),
7770 		   (adjusted_mode->crtc_hdisplay - 1) |
7771 		   ((adjusted_mode->crtc_htotal - 1) << 16));
7772 	I915_WRITE(HBLANK(cpu_transcoder),
7773 		   (adjusted_mode->crtc_hblank_start - 1) |
7774 		   ((adjusted_mode->crtc_hblank_end - 1) << 16));
7775 	I915_WRITE(HSYNC(cpu_transcoder),
7776 		   (adjusted_mode->crtc_hsync_start - 1) |
7777 		   ((adjusted_mode->crtc_hsync_end - 1) << 16));
7778 
7779 	I915_WRITE(VTOTAL(cpu_transcoder),
7780 		   (adjusted_mode->crtc_vdisplay - 1) |
7781 		   ((crtc_vtotal - 1) << 16));
7782 	I915_WRITE(VBLANK(cpu_transcoder),
7783 		   (adjusted_mode->crtc_vblank_start - 1) |
7784 		   ((crtc_vblank_end - 1) << 16));
7785 	I915_WRITE(VSYNC(cpu_transcoder),
7786 		   (adjusted_mode->crtc_vsync_start - 1) |
7787 		   ((adjusted_mode->crtc_vsync_end - 1) << 16));
7788 
7789 	/* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7790 	 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7791 	 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7792 	 * bits. */
7793 	if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7794 	    (pipe == PIPE_B || pipe == PIPE_C))
7795 		I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7796 
7797 }
7798 
7799 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
7800 {
7801 	struct drm_device *dev = intel_crtc->base.dev;
7802 	struct drm_i915_private *dev_priv = to_i915(dev);
7803 	enum i915_pipe pipe = intel_crtc->pipe;
7804 
7805 	/* pipesrc controls the size that is scaled from, which should
7806 	 * always be the user's requested size.
7807 	 */
7808 	I915_WRITE(PIPESRC(pipe),
7809 		   ((intel_crtc->config->pipe_src_w - 1) << 16) |
7810 		   (intel_crtc->config->pipe_src_h - 1));
7811 }
7812 
7813 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7814 				   struct intel_crtc_state *pipe_config)
7815 {
7816 	struct drm_device *dev = crtc->base.dev;
7817 	struct drm_i915_private *dev_priv = to_i915(dev);
7818 	enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7819 	uint32_t tmp;
7820 
7821 	tmp = I915_READ(HTOTAL(cpu_transcoder));
7822 	pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7823 	pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7824 	tmp = I915_READ(HBLANK(cpu_transcoder));
7825 	pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7826 	pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7827 	tmp = I915_READ(HSYNC(cpu_transcoder));
7828 	pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7829 	pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7830 
7831 	tmp = I915_READ(VTOTAL(cpu_transcoder));
7832 	pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7833 	pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7834 	tmp = I915_READ(VBLANK(cpu_transcoder));
7835 	pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7836 	pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7837 	tmp = I915_READ(VSYNC(cpu_transcoder));
7838 	pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7839 	pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7840 
7841 	if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7842 		pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7843 		pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7844 		pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7845 	}
7846 }
7847 
7848 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
7849 				    struct intel_crtc_state *pipe_config)
7850 {
7851 	struct drm_device *dev = crtc->base.dev;
7852 	struct drm_i915_private *dev_priv = to_i915(dev);
7853 	u32 tmp;
7854 
7855 	tmp = I915_READ(PIPESRC(crtc->pipe));
7856 	pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7857 	pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7858 
7859 	pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7860 	pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7861 }
7862 
7863 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7864 				 struct intel_crtc_state *pipe_config)
7865 {
7866 	mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7867 	mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7868 	mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7869 	mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7870 
7871 	mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7872 	mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7873 	mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7874 	mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7875 
7876 	mode->flags = pipe_config->base.adjusted_mode.flags;
7877 	mode->type = DRM_MODE_TYPE_DRIVER;
7878 
7879 	mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7880 	mode->flags |= pipe_config->base.adjusted_mode.flags;
7881 
7882 	mode->hsync = drm_mode_hsync(mode);
7883 	mode->vrefresh = drm_mode_vrefresh(mode);
7884 	drm_mode_set_name(mode);
7885 }
7886 
7887 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7888 {
7889 	struct drm_device *dev = intel_crtc->base.dev;
7890 	struct drm_i915_private *dev_priv = to_i915(dev);
7891 	uint32_t pipeconf;
7892 
7893 	pipeconf = 0;
7894 
7895 	if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7896 	    (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7897 		pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7898 
7899 	if (intel_crtc->config->double_wide)
7900 		pipeconf |= PIPECONF_DOUBLE_WIDE;
7901 
7902 	/* only g4x and later have fancy bpc/dither controls */
7903 	if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
7904 		/* Bspec claims that we can't use dithering for 30bpp pipes. */
7905 		if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7906 			pipeconf |= PIPECONF_DITHER_EN |
7907 				    PIPECONF_DITHER_TYPE_SP;
7908 
7909 		switch (intel_crtc->config->pipe_bpp) {
7910 		case 18:
7911 			pipeconf |= PIPECONF_6BPC;
7912 			break;
7913 		case 24:
7914 			pipeconf |= PIPECONF_8BPC;
7915 			break;
7916 		case 30:
7917 			pipeconf |= PIPECONF_10BPC;
7918 			break;
7919 		default:
7920 			/* Case prevented by intel_choose_pipe_bpp_dither. */
7921 			BUG();
7922 		}
7923 	}
7924 
7925 	if (HAS_PIPE_CXSR(dev)) {
7926 		if (intel_crtc->lowfreq_avail) {
7927 			DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7928 			pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7929 		} else {
7930 			DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7931 		}
7932 	}
7933 
7934 	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7935 		if (INTEL_INFO(dev)->gen < 4 ||
7936 		    intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
7937 			pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7938 		else
7939 			pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7940 	} else
7941 		pipeconf |= PIPECONF_PROGRESSIVE;
7942 
7943 	if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
7944 	     intel_crtc->config->limited_color_range)
7945 		pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7946 
7947 	I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7948 	POSTING_READ(PIPECONF(intel_crtc->pipe));
7949 }
7950 
7951 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
7952 				   struct intel_crtc_state *crtc_state)
7953 {
7954 	struct drm_device *dev = crtc->base.dev;
7955 	struct drm_i915_private *dev_priv = to_i915(dev);
7956 	const struct intel_limit *limit;
7957 	int refclk = 48000;
7958 
7959 	memset(&crtc_state->dpll_hw_state, 0,
7960 	       sizeof(crtc_state->dpll_hw_state));
7961 
7962 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7963 		if (intel_panel_use_ssc(dev_priv)) {
7964 			refclk = dev_priv->vbt.lvds_ssc_freq;
7965 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7966 		}
7967 
7968 		limit = &intel_limits_i8xx_lvds;
7969 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
7970 		limit = &intel_limits_i8xx_dvo;
7971 	} else {
7972 		limit = &intel_limits_i8xx_dac;
7973 	}
7974 
7975 	if (!crtc_state->clock_set &&
7976 	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7977 				 refclk, NULL, &crtc_state->dpll)) {
7978 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
7979 		return -EINVAL;
7980 	}
7981 
7982 	i8xx_compute_dpll(crtc, crtc_state, NULL);
7983 
7984 	return 0;
7985 }
7986 
7987 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
7988 				  struct intel_crtc_state *crtc_state)
7989 {
7990 	struct drm_device *dev = crtc->base.dev;
7991 	struct drm_i915_private *dev_priv = to_i915(dev);
7992 	const struct intel_limit *limit;
7993 	int refclk = 96000;
7994 
7995 	memset(&crtc_state->dpll_hw_state, 0,
7996 	       sizeof(crtc_state->dpll_hw_state));
7997 
7998 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7999 		if (intel_panel_use_ssc(dev_priv)) {
8000 			refclk = dev_priv->vbt.lvds_ssc_freq;
8001 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8002 		}
8003 
8004 		if (intel_is_dual_link_lvds(dev))
8005 			limit = &intel_limits_g4x_dual_channel_lvds;
8006 		else
8007 			limit = &intel_limits_g4x_single_channel_lvds;
8008 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
8009 		   intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
8010 		limit = &intel_limits_g4x_hdmi;
8011 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
8012 		limit = &intel_limits_g4x_sdvo;
8013 	} else {
8014 		/* The option is for other outputs */
8015 		limit = &intel_limits_i9xx_sdvo;
8016 	}
8017 
8018 	if (!crtc_state->clock_set &&
8019 	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8020 				refclk, NULL, &crtc_state->dpll)) {
8021 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
8022 		return -EINVAL;
8023 	}
8024 
8025 	i9xx_compute_dpll(crtc, crtc_state, NULL);
8026 
8027 	return 0;
8028 }
8029 
8030 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
8031 				  struct intel_crtc_state *crtc_state)
8032 {
8033 	struct drm_device *dev = crtc->base.dev;
8034 	struct drm_i915_private *dev_priv = to_i915(dev);
8035 	const struct intel_limit *limit;
8036 	int refclk = 96000;
8037 
8038 	memset(&crtc_state->dpll_hw_state, 0,
8039 	       sizeof(crtc_state->dpll_hw_state));
8040 
8041 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8042 		if (intel_panel_use_ssc(dev_priv)) {
8043 			refclk = dev_priv->vbt.lvds_ssc_freq;
8044 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8045 		}
8046 
8047 		limit = &intel_limits_pineview_lvds;
8048 	} else {
8049 		limit = &intel_limits_pineview_sdvo;
8050 	}
8051 
8052 	if (!crtc_state->clock_set &&
8053 	    !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8054 				refclk, NULL, &crtc_state->dpll)) {
8055 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
8056 		return -EINVAL;
8057 	}
8058 
8059 	i9xx_compute_dpll(crtc, crtc_state, NULL);
8060 
8061 	return 0;
8062 }
8063 
8064 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
8065 				   struct intel_crtc_state *crtc_state)
8066 {
8067 	struct drm_device *dev = crtc->base.dev;
8068 	struct drm_i915_private *dev_priv = to_i915(dev);
8069 	const struct intel_limit *limit;
8070 	int refclk = 96000;
8071 
8072 	memset(&crtc_state->dpll_hw_state, 0,
8073 	       sizeof(crtc_state->dpll_hw_state));
8074 
8075 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8076 		if (intel_panel_use_ssc(dev_priv)) {
8077 			refclk = dev_priv->vbt.lvds_ssc_freq;
8078 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8079 		}
8080 
8081 		limit = &intel_limits_i9xx_lvds;
8082 	} else {
8083 		limit = &intel_limits_i9xx_sdvo;
8084 	}
8085 
8086 	if (!crtc_state->clock_set &&
8087 	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8088 				 refclk, NULL, &crtc_state->dpll)) {
8089 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
8090 		return -EINVAL;
8091 	}
8092 
8093 	i9xx_compute_dpll(crtc, crtc_state, NULL);
8094 
8095 	return 0;
8096 }
8097 
8098 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
8099 				  struct intel_crtc_state *crtc_state)
8100 {
8101 	int refclk = 100000;
8102 	const struct intel_limit *limit = &intel_limits_chv;
8103 
8104 	memset(&crtc_state->dpll_hw_state, 0,
8105 	       sizeof(crtc_state->dpll_hw_state));
8106 
8107 	if (!crtc_state->clock_set &&
8108 	    !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8109 				refclk, NULL, &crtc_state->dpll)) {
8110 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
8111 		return -EINVAL;
8112 	}
8113 
8114 	chv_compute_dpll(crtc, crtc_state);
8115 
8116 	return 0;
8117 }
8118 
8119 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
8120 				  struct intel_crtc_state *crtc_state)
8121 {
8122 	int refclk = 100000;
8123 	const struct intel_limit *limit = &intel_limits_vlv;
8124 
8125 	memset(&crtc_state->dpll_hw_state, 0,
8126 	       sizeof(crtc_state->dpll_hw_state));
8127 
8128 	if (!crtc_state->clock_set &&
8129 	    !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8130 				refclk, NULL, &crtc_state->dpll)) {
8131 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
8132 		return -EINVAL;
8133 	}
8134 
8135 	vlv_compute_dpll(crtc, crtc_state);
8136 
8137 	return 0;
8138 }
8139 
8140 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
8141 				 struct intel_crtc_state *pipe_config)
8142 {
8143 	struct drm_device *dev = crtc->base.dev;
8144 	struct drm_i915_private *dev_priv = to_i915(dev);
8145 	uint32_t tmp;
8146 
8147 	if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
8148 		return;
8149 
8150 	tmp = I915_READ(PFIT_CONTROL);
8151 	if (!(tmp & PFIT_ENABLE))
8152 		return;
8153 
8154 	/* Check whether the pfit is attached to our pipe. */
8155 	if (INTEL_INFO(dev)->gen < 4) {
8156 		if (crtc->pipe != PIPE_B)
8157 			return;
8158 	} else {
8159 		if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8160 			return;
8161 	}
8162 
8163 	pipe_config->gmch_pfit.control = tmp;
8164 	pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
8165 }
8166 
8167 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8168 			       struct intel_crtc_state *pipe_config)
8169 {
8170 	struct drm_device *dev = crtc->base.dev;
8171 	struct drm_i915_private *dev_priv = to_i915(dev);
8172 	int pipe = pipe_config->cpu_transcoder;
8173 	struct dpll clock;
8174 	u32 mdiv;
8175 	int refclk = 100000;
8176 
8177 	/* In case of DSI, DPLL will not be used */
8178 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8179 		return;
8180 
8181 	mutex_lock(&dev_priv->sb_lock);
8182 	mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8183 	mutex_unlock(&dev_priv->sb_lock);
8184 
8185 	clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8186 	clock.m2 = mdiv & DPIO_M2DIV_MASK;
8187 	clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8188 	clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8189 	clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8190 
8191 	pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8192 }
8193 
8194 static void
8195 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8196 			      struct intel_initial_plane_config *plane_config)
8197 {
8198 	struct drm_device *dev = crtc->base.dev;
8199 	struct drm_i915_private *dev_priv = to_i915(dev);
8200 	u32 val, base, offset;
8201 	int pipe = crtc->pipe, plane = crtc->plane;
8202 	int fourcc, pixel_format;
8203 	unsigned int aligned_height;
8204 	struct drm_framebuffer *fb;
8205 	struct intel_framebuffer *intel_fb;
8206 
8207 	val = I915_READ(DSPCNTR(plane));
8208 	if (!(val & DISPLAY_PLANE_ENABLE))
8209 		return;
8210 
8211 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8212 	if (!intel_fb) {
8213 		DRM_DEBUG_KMS("failed to alloc fb\n");
8214 		return;
8215 	}
8216 
8217 	fb = &intel_fb->base;
8218 
8219 	if (INTEL_INFO(dev)->gen >= 4) {
8220 		if (val & DISPPLANE_TILED) {
8221 			plane_config->tiling = I915_TILING_X;
8222 			fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8223 		}
8224 	}
8225 
8226 	pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8227 	fourcc = i9xx_format_to_fourcc(pixel_format);
8228 	fb->pixel_format = fourcc;
8229 	fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8230 
8231 	if (INTEL_INFO(dev)->gen >= 4) {
8232 		if (plane_config->tiling)
8233 			offset = I915_READ(DSPTILEOFF(plane));
8234 		else
8235 			offset = I915_READ(DSPLINOFF(plane));
8236 		base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8237 	} else {
8238 		base = I915_READ(DSPADDR(plane));
8239 	}
8240 	plane_config->base = base;
8241 
8242 	val = I915_READ(PIPESRC(pipe));
8243 	fb->width = ((val >> 16) & 0xfff) + 1;
8244 	fb->height = ((val >> 0) & 0xfff) + 1;
8245 
8246 	val = I915_READ(DSPSTRIDE(pipe));
8247 	fb->pitches[0] = val & 0xffffffc0;
8248 
8249 	aligned_height = intel_fb_align_height(dev, fb->height,
8250 					       fb->pixel_format,
8251 					       fb->modifier[0]);
8252 
8253 	plane_config->size = fb->pitches[0] * aligned_height;
8254 
8255 	DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8256 		      pipe_name(pipe), plane, fb->width, fb->height,
8257 		      fb->bits_per_pixel, base, fb->pitches[0],
8258 		      plane_config->size);
8259 
8260 	plane_config->fb = intel_fb;
8261 }
8262 
8263 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8264 			       struct intel_crtc_state *pipe_config)
8265 {
8266 	struct drm_device *dev = crtc->base.dev;
8267 	struct drm_i915_private *dev_priv = to_i915(dev);
8268 	int pipe = pipe_config->cpu_transcoder;
8269 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
8270 	struct dpll clock;
8271 	u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8272 	int refclk = 100000;
8273 
8274 	/* In case of DSI, DPLL will not be used */
8275 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8276 		return;
8277 
8278 	mutex_lock(&dev_priv->sb_lock);
8279 	cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8280 	pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8281 	pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8282 	pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8283 	pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8284 	mutex_unlock(&dev_priv->sb_lock);
8285 
8286 	clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8287 	clock.m2 = (pll_dw0 & 0xff) << 22;
8288 	if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8289 		clock.m2 |= pll_dw2 & 0x3fffff;
8290 	clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8291 	clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8292 	clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8293 
8294 	pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8295 }
8296 
8297 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8298 				 struct intel_crtc_state *pipe_config)
8299 {
8300 	struct drm_device *dev = crtc->base.dev;
8301 	struct drm_i915_private *dev_priv = to_i915(dev);
8302 	enum intel_display_power_domain power_domain;
8303 	uint32_t tmp;
8304 	bool ret;
8305 
8306 	power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8307 	if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8308 		return false;
8309 
8310 	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8311 	pipe_config->shared_dpll = NULL;
8312 
8313 	ret = false;
8314 
8315 	tmp = I915_READ(PIPECONF(crtc->pipe));
8316 	if (!(tmp & PIPECONF_ENABLE))
8317 		goto out;
8318 
8319 	if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
8320 		switch (tmp & PIPECONF_BPC_MASK) {
8321 		case PIPECONF_6BPC:
8322 			pipe_config->pipe_bpp = 18;
8323 			break;
8324 		case PIPECONF_8BPC:
8325 			pipe_config->pipe_bpp = 24;
8326 			break;
8327 		case PIPECONF_10BPC:
8328 			pipe_config->pipe_bpp = 30;
8329 			break;
8330 		default:
8331 			break;
8332 		}
8333 	}
8334 
8335 	if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
8336 	    (tmp & PIPECONF_COLOR_RANGE_SELECT))
8337 		pipe_config->limited_color_range = true;
8338 
8339 	if (INTEL_INFO(dev)->gen < 4)
8340 		pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8341 
8342 	intel_get_pipe_timings(crtc, pipe_config);
8343 	intel_get_pipe_src_size(crtc, pipe_config);
8344 
8345 	i9xx_get_pfit_config(crtc, pipe_config);
8346 
8347 	if (INTEL_INFO(dev)->gen >= 4) {
8348 		/* No way to read it out on pipes B and C */
8349 		if (IS_CHERRYVIEW(dev) && crtc->pipe != PIPE_A)
8350 			tmp = dev_priv->chv_dpll_md[crtc->pipe];
8351 		else
8352 			tmp = I915_READ(DPLL_MD(crtc->pipe));
8353 		pipe_config->pixel_multiplier =
8354 			((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8355 			 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8356 		pipe_config->dpll_hw_state.dpll_md = tmp;
8357 	} else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8358 		tmp = I915_READ(DPLL(crtc->pipe));
8359 		pipe_config->pixel_multiplier =
8360 			((tmp & SDVO_MULTIPLIER_MASK)
8361 			 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8362 	} else {
8363 		/* Note that on i915G/GM the pixel multiplier is in the sdvo
8364 		 * port and will be fixed up in the encoder->get_config
8365 		 * function. */
8366 		pipe_config->pixel_multiplier = 1;
8367 	}
8368 	pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8369 	if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
8370 		/*
8371 		 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8372 		 * on 830. Filter it out here so that we don't
8373 		 * report errors due to that.
8374 		 */
8375 		if (IS_I830(dev))
8376 			pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8377 
8378 		pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8379 		pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8380 	} else {
8381 		/* Mask out read-only status bits. */
8382 		pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8383 						     DPLL_PORTC_READY_MASK |
8384 						     DPLL_PORTB_READY_MASK);
8385 	}
8386 
8387 	if (IS_CHERRYVIEW(dev))
8388 		chv_crtc_clock_get(crtc, pipe_config);
8389 	else if (IS_VALLEYVIEW(dev))
8390 		vlv_crtc_clock_get(crtc, pipe_config);
8391 	else
8392 		i9xx_crtc_clock_get(crtc, pipe_config);
8393 
8394 	/*
8395 	 * Normally the dotclock is filled in by the encoder .get_config()
8396 	 * but in case the pipe is enabled w/o any ports we need a sane
8397 	 * default.
8398 	 */
8399 	pipe_config->base.adjusted_mode.crtc_clock =
8400 		pipe_config->port_clock / pipe_config->pixel_multiplier;
8401 
8402 	ret = true;
8403 
8404 out:
8405 	intel_display_power_put(dev_priv, power_domain);
8406 
8407 	return ret;
8408 }
8409 
8410 static void ironlake_init_pch_refclk(struct drm_device *dev)
8411 {
8412 	struct drm_i915_private *dev_priv = to_i915(dev);
8413 	struct intel_encoder *encoder;
8414 	int i;
8415 	u32 val, final;
8416 	bool has_lvds = false;
8417 	bool has_cpu_edp = false;
8418 	bool has_panel = false;
8419 	bool has_ck505 = false;
8420 	bool can_ssc = false;
8421 	bool using_ssc_source = false;
8422 
8423 	/* We need to take the global config into account */
8424 	for_each_intel_encoder(dev, encoder) {
8425 		switch (encoder->type) {
8426 		case INTEL_OUTPUT_LVDS:
8427 			has_panel = true;
8428 			has_lvds = true;
8429 			break;
8430 		case INTEL_OUTPUT_EDP:
8431 			has_panel = true;
8432 			if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8433 				has_cpu_edp = true;
8434 			break;
8435 		default:
8436 			break;
8437 		}
8438 	}
8439 
8440 	if (HAS_PCH_IBX(dev)) {
8441 		has_ck505 = dev_priv->vbt.display_clock_mode;
8442 		can_ssc = has_ck505;
8443 	} else {
8444 		has_ck505 = false;
8445 		can_ssc = true;
8446 	}
8447 
8448 	/* Check if any DPLLs are using the SSC source */
8449 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8450 		u32 temp = I915_READ(PCH_DPLL(i));
8451 
8452 		if (!(temp & DPLL_VCO_ENABLE))
8453 			continue;
8454 
8455 		if ((temp & PLL_REF_INPUT_MASK) ==
8456 		    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
8457 			using_ssc_source = true;
8458 			break;
8459 		}
8460 	}
8461 
8462 	DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
8463 		      has_panel, has_lvds, has_ck505, using_ssc_source);
8464 
8465 	/* Ironlake: try to setup display ref clock before DPLL
8466 	 * enabling. This is only under driver's control after
8467 	 * PCH B stepping, previous chipset stepping should be
8468 	 * ignoring this setting.
8469 	 */
8470 	val = I915_READ(PCH_DREF_CONTROL);
8471 
8472 	/* As we must carefully and slowly disable/enable each source in turn,
8473 	 * compute the final state we want first and check if we need to
8474 	 * make any changes at all.
8475 	 */
8476 	final = val;
8477 	final &= ~DREF_NONSPREAD_SOURCE_MASK;
8478 	if (has_ck505)
8479 		final |= DREF_NONSPREAD_CK505_ENABLE;
8480 	else
8481 		final |= DREF_NONSPREAD_SOURCE_ENABLE;
8482 
8483 	final &= ~DREF_SSC_SOURCE_MASK;
8484 	final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8485 	final &= ~DREF_SSC1_ENABLE;
8486 
8487 	if (has_panel) {
8488 		final |= DREF_SSC_SOURCE_ENABLE;
8489 
8490 		if (intel_panel_use_ssc(dev_priv) && can_ssc)
8491 			final |= DREF_SSC1_ENABLE;
8492 
8493 		if (has_cpu_edp) {
8494 			if (intel_panel_use_ssc(dev_priv) && can_ssc)
8495 				final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8496 			else
8497 				final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8498 		} else
8499 			final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8500 	} else if (using_ssc_source) {
8501 		final |= DREF_SSC_SOURCE_ENABLE;
8502 		final |= DREF_SSC1_ENABLE;
8503 	}
8504 
8505 	if (final == val)
8506 		return;
8507 
8508 	/* Always enable nonspread source */
8509 	val &= ~DREF_NONSPREAD_SOURCE_MASK;
8510 
8511 	if (has_ck505)
8512 		val |= DREF_NONSPREAD_CK505_ENABLE;
8513 	else
8514 		val |= DREF_NONSPREAD_SOURCE_ENABLE;
8515 
8516 	if (has_panel) {
8517 		val &= ~DREF_SSC_SOURCE_MASK;
8518 		val |= DREF_SSC_SOURCE_ENABLE;
8519 
8520 		/* SSC must be turned on before enabling the CPU output  */
8521 		if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8522 			DRM_DEBUG_KMS("Using SSC on panel\n");
8523 			val |= DREF_SSC1_ENABLE;
8524 		} else
8525 			val &= ~DREF_SSC1_ENABLE;
8526 
8527 		/* Get SSC going before enabling the outputs */
8528 		I915_WRITE(PCH_DREF_CONTROL, val);
8529 		POSTING_READ(PCH_DREF_CONTROL);
8530 		udelay(200);
8531 
8532 		val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8533 
8534 		/* Enable CPU source on CPU attached eDP */
8535 		if (has_cpu_edp) {
8536 			if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8537 				DRM_DEBUG_KMS("Using SSC on eDP\n");
8538 				val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8539 			} else
8540 				val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8541 		} else
8542 			val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8543 
8544 		I915_WRITE(PCH_DREF_CONTROL, val);
8545 		POSTING_READ(PCH_DREF_CONTROL);
8546 		udelay(200);
8547 	} else {
8548 		DRM_DEBUG_KMS("Disabling CPU source output\n");
8549 
8550 		val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8551 
8552 		/* Turn off CPU output */
8553 		val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8554 
8555 		I915_WRITE(PCH_DREF_CONTROL, val);
8556 		POSTING_READ(PCH_DREF_CONTROL);
8557 		udelay(200);
8558 
8559 		if (!using_ssc_source) {
8560 			DRM_DEBUG_KMS("Disabling SSC source\n");
8561 
8562 			/* Turn off the SSC source */
8563 			val &= ~DREF_SSC_SOURCE_MASK;
8564 			val |= DREF_SSC_SOURCE_DISABLE;
8565 
8566 			/* Turn off SSC1 */
8567 			val &= ~DREF_SSC1_ENABLE;
8568 
8569 			I915_WRITE(PCH_DREF_CONTROL, val);
8570 			POSTING_READ(PCH_DREF_CONTROL);
8571 			udelay(200);
8572 		}
8573 	}
8574 
8575 	BUG_ON(val != final);
8576 }
8577 
8578 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8579 {
8580 	uint32_t tmp;
8581 
8582 	tmp = I915_READ(SOUTH_CHICKEN2);
8583 	tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8584 	I915_WRITE(SOUTH_CHICKEN2, tmp);
8585 
8586 	if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
8587 			FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8588 		DRM_ERROR("FDI mPHY reset assert timeout\n");
8589 
8590 	tmp = I915_READ(SOUTH_CHICKEN2);
8591 	tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8592 	I915_WRITE(SOUTH_CHICKEN2, tmp);
8593 
8594 	if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
8595 			 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8596 		DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8597 }
8598 
8599 /* WaMPhyProgramming:hsw */
8600 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8601 {
8602 	uint32_t tmp;
8603 
8604 	tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8605 	tmp &= ~(0xFF << 24);
8606 	tmp |= (0x12 << 24);
8607 	intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8608 
8609 	tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8610 	tmp |= (1 << 11);
8611 	intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8612 
8613 	tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8614 	tmp |= (1 << 11);
8615 	intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8616 
8617 	tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8618 	tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8619 	intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8620 
8621 	tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8622 	tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8623 	intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8624 
8625 	tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8626 	tmp &= ~(7 << 13);
8627 	tmp |= (5 << 13);
8628 	intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8629 
8630 	tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8631 	tmp &= ~(7 << 13);
8632 	tmp |= (5 << 13);
8633 	intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8634 
8635 	tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8636 	tmp &= ~0xFF;
8637 	tmp |= 0x1C;
8638 	intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8639 
8640 	tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8641 	tmp &= ~0xFF;
8642 	tmp |= 0x1C;
8643 	intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8644 
8645 	tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8646 	tmp &= ~(0xFF << 16);
8647 	tmp |= (0x1C << 16);
8648 	intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8649 
8650 	tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8651 	tmp &= ~(0xFF << 16);
8652 	tmp |= (0x1C << 16);
8653 	intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8654 
8655 	tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8656 	tmp |= (1 << 27);
8657 	intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8658 
8659 	tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8660 	tmp |= (1 << 27);
8661 	intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8662 
8663 	tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8664 	tmp &= ~(0xF << 28);
8665 	tmp |= (4 << 28);
8666 	intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8667 
8668 	tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8669 	tmp &= ~(0xF << 28);
8670 	tmp |= (4 << 28);
8671 	intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8672 }
8673 
8674 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8675  * Programming" based on the parameters passed:
8676  * - Sequence to enable CLKOUT_DP
8677  * - Sequence to enable CLKOUT_DP without spread
8678  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8679  */
8680 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8681 				 bool with_fdi)
8682 {
8683 	struct drm_i915_private *dev_priv = to_i915(dev);
8684 	uint32_t reg, tmp;
8685 
8686 	if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8687 		with_spread = true;
8688 	if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
8689 		with_fdi = false;
8690 
8691 	mutex_lock(&dev_priv->sb_lock);
8692 
8693 	tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8694 	tmp &= ~SBI_SSCCTL_DISABLE;
8695 	tmp |= SBI_SSCCTL_PATHALT;
8696 	intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8697 
8698 	udelay(24);
8699 
8700 	if (with_spread) {
8701 		tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8702 		tmp &= ~SBI_SSCCTL_PATHALT;
8703 		intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8704 
8705 		if (with_fdi) {
8706 			lpt_reset_fdi_mphy(dev_priv);
8707 			lpt_program_fdi_mphy(dev_priv);
8708 		}
8709 	}
8710 
8711 	reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8712 	tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8713 	tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8714 	intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8715 
8716 	mutex_unlock(&dev_priv->sb_lock);
8717 }
8718 
8719 /* Sequence to disable CLKOUT_DP */
8720 static void lpt_disable_clkout_dp(struct drm_device *dev)
8721 {
8722 	struct drm_i915_private *dev_priv = to_i915(dev);
8723 	uint32_t reg, tmp;
8724 
8725 	mutex_lock(&dev_priv->sb_lock);
8726 
8727 	reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8728 	tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8729 	tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8730 	intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8731 
8732 	tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8733 	if (!(tmp & SBI_SSCCTL_DISABLE)) {
8734 		if (!(tmp & SBI_SSCCTL_PATHALT)) {
8735 			tmp |= SBI_SSCCTL_PATHALT;
8736 			intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8737 			udelay(32);
8738 		}
8739 		tmp |= SBI_SSCCTL_DISABLE;
8740 		intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8741 	}
8742 
8743 	mutex_unlock(&dev_priv->sb_lock);
8744 }
8745 
8746 #define BEND_IDX(steps) ((50 + (steps)) / 5)
8747 
8748 static const uint16_t sscdivintphase[] = {
8749 	[BEND_IDX( 50)] = 0x3B23,
8750 	[BEND_IDX( 45)] = 0x3B23,
8751 	[BEND_IDX( 40)] = 0x3C23,
8752 	[BEND_IDX( 35)] = 0x3C23,
8753 	[BEND_IDX( 30)] = 0x3D23,
8754 	[BEND_IDX( 25)] = 0x3D23,
8755 	[BEND_IDX( 20)] = 0x3E23,
8756 	[BEND_IDX( 15)] = 0x3E23,
8757 	[BEND_IDX( 10)] = 0x3F23,
8758 	[BEND_IDX(  5)] = 0x3F23,
8759 	[BEND_IDX(  0)] = 0x0025,
8760 	[BEND_IDX( -5)] = 0x0025,
8761 	[BEND_IDX(-10)] = 0x0125,
8762 	[BEND_IDX(-15)] = 0x0125,
8763 	[BEND_IDX(-20)] = 0x0225,
8764 	[BEND_IDX(-25)] = 0x0225,
8765 	[BEND_IDX(-30)] = 0x0325,
8766 	[BEND_IDX(-35)] = 0x0325,
8767 	[BEND_IDX(-40)] = 0x0425,
8768 	[BEND_IDX(-45)] = 0x0425,
8769 	[BEND_IDX(-50)] = 0x0525,
8770 };
8771 
8772 /*
8773  * Bend CLKOUT_DP
8774  * steps -50 to 50 inclusive, in steps of 5
8775  * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
8776  * change in clock period = -(steps / 10) * 5.787 ps
8777  */
8778 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
8779 {
8780 	uint32_t tmp;
8781 	int idx = BEND_IDX(steps);
8782 
8783 	if (WARN_ON(steps % 5 != 0))
8784 		return;
8785 
8786 	if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
8787 		return;
8788 
8789 	mutex_lock(&dev_priv->sb_lock);
8790 
8791 	if (steps % 10 != 0)
8792 		tmp = 0xAAAAAAAB;
8793 	else
8794 		tmp = 0x00000000;
8795 	intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
8796 
8797 	tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
8798 	tmp &= 0xffff0000;
8799 	tmp |= sscdivintphase[idx];
8800 	intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
8801 
8802 	mutex_unlock(&dev_priv->sb_lock);
8803 }
8804 
8805 #undef BEND_IDX
8806 
8807 static void lpt_init_pch_refclk(struct drm_device *dev)
8808 {
8809 	struct intel_encoder *encoder;
8810 	bool has_vga = false;
8811 
8812 	for_each_intel_encoder(dev, encoder) {
8813 		switch (encoder->type) {
8814 		case INTEL_OUTPUT_ANALOG:
8815 			has_vga = true;
8816 			break;
8817 		default:
8818 			break;
8819 		}
8820 	}
8821 
8822 	if (has_vga) {
8823 		lpt_bend_clkout_dp(to_i915(dev), 0);
8824 		lpt_enable_clkout_dp(dev, true, true);
8825 	} else {
8826 		lpt_disable_clkout_dp(dev);
8827 	}
8828 }
8829 
8830 /*
8831  * Initialize reference clocks when the driver loads
8832  */
8833 void intel_init_pch_refclk(struct drm_device *dev)
8834 {
8835 	if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8836 		ironlake_init_pch_refclk(dev);
8837 	else if (HAS_PCH_LPT(dev))
8838 		lpt_init_pch_refclk(dev);
8839 }
8840 
8841 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8842 {
8843 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8844 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8845 	int pipe = intel_crtc->pipe;
8846 	uint32_t val;
8847 
8848 	val = 0;
8849 
8850 	switch (intel_crtc->config->pipe_bpp) {
8851 	case 18:
8852 		val |= PIPECONF_6BPC;
8853 		break;
8854 	case 24:
8855 		val |= PIPECONF_8BPC;
8856 		break;
8857 	case 30:
8858 		val |= PIPECONF_10BPC;
8859 		break;
8860 	case 36:
8861 		val |= PIPECONF_12BPC;
8862 		break;
8863 	default:
8864 		/* Case prevented by intel_choose_pipe_bpp_dither. */
8865 		BUG();
8866 	}
8867 
8868 	if (intel_crtc->config->dither)
8869 		val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8870 
8871 	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8872 		val |= PIPECONF_INTERLACED_ILK;
8873 	else
8874 		val |= PIPECONF_PROGRESSIVE;
8875 
8876 	if (intel_crtc->config->limited_color_range)
8877 		val |= PIPECONF_COLOR_RANGE_SELECT;
8878 
8879 	I915_WRITE(PIPECONF(pipe), val);
8880 	POSTING_READ(PIPECONF(pipe));
8881 }
8882 
8883 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8884 {
8885 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8886 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8887 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8888 	u32 val = 0;
8889 
8890 	if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
8891 		val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8892 
8893 	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8894 		val |= PIPECONF_INTERLACED_ILK;
8895 	else
8896 		val |= PIPECONF_PROGRESSIVE;
8897 
8898 	I915_WRITE(PIPECONF(cpu_transcoder), val);
8899 	POSTING_READ(PIPECONF(cpu_transcoder));
8900 }
8901 
8902 static void haswell_set_pipemisc(struct drm_crtc *crtc)
8903 {
8904 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8905 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8906 
8907 	if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
8908 		u32 val = 0;
8909 
8910 		switch (intel_crtc->config->pipe_bpp) {
8911 		case 18:
8912 			val |= PIPEMISC_DITHER_6_BPC;
8913 			break;
8914 		case 24:
8915 			val |= PIPEMISC_DITHER_8_BPC;
8916 			break;
8917 		case 30:
8918 			val |= PIPEMISC_DITHER_10_BPC;
8919 			break;
8920 		case 36:
8921 			val |= PIPEMISC_DITHER_12_BPC;
8922 			break;
8923 		default:
8924 			/* Case prevented by pipe_config_set_bpp. */
8925 			BUG();
8926 		}
8927 
8928 		if (intel_crtc->config->dither)
8929 			val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8930 
8931 		I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
8932 	}
8933 }
8934 
8935 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8936 {
8937 	/*
8938 	 * Account for spread spectrum to avoid
8939 	 * oversubscribing the link. Max center spread
8940 	 * is 2.5%; use 5% for safety's sake.
8941 	 */
8942 	u32 bps = target_clock * bpp * 21 / 20;
8943 	return DIV_ROUND_UP(bps, link_bw * 8);
8944 }
8945 
8946 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8947 {
8948 	return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8949 }
8950 
8951 static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8952 				  struct intel_crtc_state *crtc_state,
8953 				  struct dpll *reduced_clock)
8954 {
8955 	struct drm_crtc *crtc = &intel_crtc->base;
8956 	struct drm_device *dev = crtc->dev;
8957 	struct drm_i915_private *dev_priv = to_i915(dev);
8958 	u32 dpll, fp, fp2;
8959 	int factor;
8960 
8961 	/* Enable autotuning of the PLL clock (if permissible) */
8962 	factor = 21;
8963 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8964 		if ((intel_panel_use_ssc(dev_priv) &&
8965 		     dev_priv->vbt.lvds_ssc_freq == 100000) ||
8966 		    (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8967 			factor = 25;
8968 	} else if (crtc_state->sdvo_tv_clock)
8969 		factor = 20;
8970 
8971 	fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8972 
8973 	if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8974 		fp |= FP_CB_TUNE;
8975 
8976 	if (reduced_clock) {
8977 		fp2 = i9xx_dpll_compute_fp(reduced_clock);
8978 
8979 		if (reduced_clock->m < factor * reduced_clock->n)
8980 			fp2 |= FP_CB_TUNE;
8981 	} else {
8982 		fp2 = fp;
8983 	}
8984 
8985 	dpll = 0;
8986 
8987 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8988 		dpll |= DPLLB_MODE_LVDS;
8989 	else
8990 		dpll |= DPLLB_MODE_DAC_SERIAL;
8991 
8992 	dpll |= (crtc_state->pixel_multiplier - 1)
8993 		<< PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8994 
8995 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8996 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8997 		dpll |= DPLL_SDVO_HIGH_SPEED;
8998 
8999 	if (intel_crtc_has_dp_encoder(crtc_state))
9000 		dpll |= DPLL_SDVO_HIGH_SPEED;
9001 
9002 	/* compute bitmask from p1 value */
9003 	dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
9004 	/* also FPA1 */
9005 	dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
9006 
9007 	switch (crtc_state->dpll.p2) {
9008 	case 5:
9009 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
9010 		break;
9011 	case 7:
9012 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
9013 		break;
9014 	case 10:
9015 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
9016 		break;
9017 	case 14:
9018 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
9019 		break;
9020 	}
9021 
9022 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9023 	    intel_panel_use_ssc(dev_priv))
9024 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
9025 	else
9026 		dpll |= PLL_REF_INPUT_DREFCLK;
9027 
9028 	dpll |= DPLL_VCO_ENABLE;
9029 
9030 	crtc_state->dpll_hw_state.dpll = dpll;
9031 	crtc_state->dpll_hw_state.fp0 = fp;
9032 	crtc_state->dpll_hw_state.fp1 = fp2;
9033 }
9034 
9035 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
9036 				       struct intel_crtc_state *crtc_state)
9037 {
9038 	struct drm_device *dev = crtc->base.dev;
9039 	struct drm_i915_private *dev_priv = to_i915(dev);
9040 	struct dpll reduced_clock;
9041 	bool has_reduced_clock = false;
9042 	struct intel_shared_dpll *pll;
9043 	const struct intel_limit *limit;
9044 	int refclk = 120000;
9045 
9046 	memset(&crtc_state->dpll_hw_state, 0,
9047 	       sizeof(crtc_state->dpll_hw_state));
9048 
9049 	crtc->lowfreq_avail = false;
9050 
9051 	/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
9052 	if (!crtc_state->has_pch_encoder)
9053 		return 0;
9054 
9055 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9056 		if (intel_panel_use_ssc(dev_priv)) {
9057 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
9058 				      dev_priv->vbt.lvds_ssc_freq);
9059 			refclk = dev_priv->vbt.lvds_ssc_freq;
9060 		}
9061 
9062 		if (intel_is_dual_link_lvds(dev)) {
9063 			if (refclk == 100000)
9064 				limit = &intel_limits_ironlake_dual_lvds_100m;
9065 			else
9066 				limit = &intel_limits_ironlake_dual_lvds;
9067 		} else {
9068 			if (refclk == 100000)
9069 				limit = &intel_limits_ironlake_single_lvds_100m;
9070 			else
9071 				limit = &intel_limits_ironlake_single_lvds;
9072 		}
9073 	} else {
9074 		limit = &intel_limits_ironlake_dac;
9075 	}
9076 
9077 	if (!crtc_state->clock_set &&
9078 	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9079 				refclk, NULL, &crtc_state->dpll)) {
9080 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
9081 		return -EINVAL;
9082 	}
9083 
9084 	ironlake_compute_dpll(crtc, crtc_state,
9085 			      has_reduced_clock ? &reduced_clock : NULL);
9086 
9087 	pll = intel_get_shared_dpll(crtc, crtc_state, NULL);
9088 	if (pll == NULL) {
9089 		DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
9090 				 pipe_name(crtc->pipe));
9091 		return -EINVAL;
9092 	}
9093 
9094 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9095 	    has_reduced_clock)
9096 		crtc->lowfreq_avail = true;
9097 
9098 	return 0;
9099 }
9100 
9101 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
9102 					 struct intel_link_m_n *m_n)
9103 {
9104 	struct drm_device *dev = crtc->base.dev;
9105 	struct drm_i915_private *dev_priv = to_i915(dev);
9106 	enum i915_pipe pipe = crtc->pipe;
9107 
9108 	m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
9109 	m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
9110 	m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
9111 		& ~TU_SIZE_MASK;
9112 	m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
9113 	m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
9114 		    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9115 }
9116 
9117 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9118 					 enum transcoder transcoder,
9119 					 struct intel_link_m_n *m_n,
9120 					 struct intel_link_m_n *m2_n2)
9121 {
9122 	struct drm_device *dev = crtc->base.dev;
9123 	struct drm_i915_private *dev_priv = to_i915(dev);
9124 	enum i915_pipe pipe = crtc->pipe;
9125 
9126 	if (INTEL_INFO(dev)->gen >= 5) {
9127 		m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9128 		m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9129 		m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9130 			& ~TU_SIZE_MASK;
9131 		m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9132 		m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9133 			    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9134 		/* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9135 		 * gen < 8) and if DRRS is supported (to make sure the
9136 		 * registers are not unnecessarily read).
9137 		 */
9138 		if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
9139 			crtc->config->has_drrs) {
9140 			m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9141 			m2_n2->link_n =	I915_READ(PIPE_LINK_N2(transcoder));
9142 			m2_n2->gmch_m =	I915_READ(PIPE_DATA_M2(transcoder))
9143 					& ~TU_SIZE_MASK;
9144 			m2_n2->gmch_n =	I915_READ(PIPE_DATA_N2(transcoder));
9145 			m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9146 					& TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9147 		}
9148 	} else {
9149 		m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9150 		m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9151 		m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9152 			& ~TU_SIZE_MASK;
9153 		m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9154 		m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9155 			    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9156 	}
9157 }
9158 
9159 void intel_dp_get_m_n(struct intel_crtc *crtc,
9160 		      struct intel_crtc_state *pipe_config)
9161 {
9162 	if (pipe_config->has_pch_encoder)
9163 		intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9164 	else
9165 		intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9166 					     &pipe_config->dp_m_n,
9167 					     &pipe_config->dp_m2_n2);
9168 }
9169 
9170 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9171 					struct intel_crtc_state *pipe_config)
9172 {
9173 	intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9174 				     &pipe_config->fdi_m_n, NULL);
9175 }
9176 
9177 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9178 				    struct intel_crtc_state *pipe_config)
9179 {
9180 	struct drm_device *dev = crtc->base.dev;
9181 	struct drm_i915_private *dev_priv = to_i915(dev);
9182 	struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9183 	uint32_t ps_ctrl = 0;
9184 	int id = -1;
9185 	int i;
9186 
9187 	/* find scaler attached to this pipe */
9188 	for (i = 0; i < crtc->num_scalers; i++) {
9189 		ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9190 		if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9191 			id = i;
9192 			pipe_config->pch_pfit.enabled = true;
9193 			pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9194 			pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9195 			break;
9196 		}
9197 	}
9198 
9199 	scaler_state->scaler_id = id;
9200 	if (id >= 0) {
9201 		scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9202 	} else {
9203 		scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9204 	}
9205 }
9206 
9207 static void
9208 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9209 				 struct intel_initial_plane_config *plane_config)
9210 {
9211 	struct drm_device *dev = crtc->base.dev;
9212 	struct drm_i915_private *dev_priv = to_i915(dev);
9213 	u32 val, base, offset, stride_mult, tiling;
9214 	int pipe = crtc->pipe;
9215 	int fourcc, pixel_format;
9216 	unsigned int aligned_height;
9217 	struct drm_framebuffer *fb;
9218 	struct intel_framebuffer *intel_fb;
9219 
9220 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9221 	if (!intel_fb) {
9222 		DRM_DEBUG_KMS("failed to alloc fb\n");
9223 		return;
9224 	}
9225 
9226 	fb = &intel_fb->base;
9227 
9228 	val = I915_READ(PLANE_CTL(pipe, 0));
9229 	if (!(val & PLANE_CTL_ENABLE))
9230 		goto error;
9231 
9232 	pixel_format = val & PLANE_CTL_FORMAT_MASK;
9233 	fourcc = skl_format_to_fourcc(pixel_format,
9234 				      val & PLANE_CTL_ORDER_RGBX,
9235 				      val & PLANE_CTL_ALPHA_MASK);
9236 	fb->pixel_format = fourcc;
9237 	fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9238 
9239 	tiling = val & PLANE_CTL_TILED_MASK;
9240 	switch (tiling) {
9241 	case PLANE_CTL_TILED_LINEAR:
9242 		fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9243 		break;
9244 	case PLANE_CTL_TILED_X:
9245 		plane_config->tiling = I915_TILING_X;
9246 		fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9247 		break;
9248 	case PLANE_CTL_TILED_Y:
9249 		fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9250 		break;
9251 	case PLANE_CTL_TILED_YF:
9252 		fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9253 		break;
9254 	default:
9255 		MISSING_CASE(tiling);
9256 		goto error;
9257 	}
9258 
9259 	base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9260 	plane_config->base = base;
9261 
9262 	offset = I915_READ(PLANE_OFFSET(pipe, 0));
9263 
9264 	val = I915_READ(PLANE_SIZE(pipe, 0));
9265 	fb->height = ((val >> 16) & 0xfff) + 1;
9266 	fb->width = ((val >> 0) & 0x1fff) + 1;
9267 
9268 	val = I915_READ(PLANE_STRIDE(pipe, 0));
9269 	stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
9270 						fb->pixel_format);
9271 	fb->pitches[0] = (val & 0x3ff) * stride_mult;
9272 
9273 	aligned_height = intel_fb_align_height(dev, fb->height,
9274 					       fb->pixel_format,
9275 					       fb->modifier[0]);
9276 
9277 	plane_config->size = fb->pitches[0] * aligned_height;
9278 
9279 	DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9280 		      pipe_name(pipe), fb->width, fb->height,
9281 		      fb->bits_per_pixel, base, fb->pitches[0],
9282 		      plane_config->size);
9283 
9284 	plane_config->fb = intel_fb;
9285 	return;
9286 
9287 error:
9288 	kfree(fb);
9289 }
9290 
9291 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9292 				     struct intel_crtc_state *pipe_config)
9293 {
9294 	struct drm_device *dev = crtc->base.dev;
9295 	struct drm_i915_private *dev_priv = to_i915(dev);
9296 	uint32_t tmp;
9297 
9298 	tmp = I915_READ(PF_CTL(crtc->pipe));
9299 
9300 	if (tmp & PF_ENABLE) {
9301 		pipe_config->pch_pfit.enabled = true;
9302 		pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9303 		pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9304 
9305 		/* We currently do not free assignements of panel fitters on
9306 		 * ivb/hsw (since we don't use the higher upscaling modes which
9307 		 * differentiates them) so just WARN about this case for now. */
9308 		if (IS_GEN7(dev)) {
9309 			WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9310 				PF_PIPE_SEL_IVB(crtc->pipe));
9311 		}
9312 	}
9313 }
9314 
9315 static void
9316 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9317 				  struct intel_initial_plane_config *plane_config)
9318 {
9319 	struct drm_device *dev = crtc->base.dev;
9320 	struct drm_i915_private *dev_priv = to_i915(dev);
9321 	u32 val, base, offset;
9322 	int pipe = crtc->pipe;
9323 	int fourcc, pixel_format;
9324 	unsigned int aligned_height;
9325 	struct drm_framebuffer *fb;
9326 	struct intel_framebuffer *intel_fb;
9327 
9328 	val = I915_READ(DSPCNTR(pipe));
9329 	if (!(val & DISPLAY_PLANE_ENABLE))
9330 		return;
9331 
9332 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9333 	if (!intel_fb) {
9334 		DRM_DEBUG_KMS("failed to alloc fb\n");
9335 		return;
9336 	}
9337 
9338 	fb = &intel_fb->base;
9339 
9340 	if (INTEL_INFO(dev)->gen >= 4) {
9341 		if (val & DISPPLANE_TILED) {
9342 			plane_config->tiling = I915_TILING_X;
9343 			fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9344 		}
9345 	}
9346 
9347 	pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9348 	fourcc = i9xx_format_to_fourcc(pixel_format);
9349 	fb->pixel_format = fourcc;
9350 	fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9351 
9352 	base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9353 	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9354 		offset = I915_READ(DSPOFFSET(pipe));
9355 	} else {
9356 		if (plane_config->tiling)
9357 			offset = I915_READ(DSPTILEOFF(pipe));
9358 		else
9359 			offset = I915_READ(DSPLINOFF(pipe));
9360 	}
9361 	plane_config->base = base;
9362 
9363 	val = I915_READ(PIPESRC(pipe));
9364 	fb->width = ((val >> 16) & 0xfff) + 1;
9365 	fb->height = ((val >> 0) & 0xfff) + 1;
9366 
9367 	val = I915_READ(DSPSTRIDE(pipe));
9368 	fb->pitches[0] = val & 0xffffffc0;
9369 
9370 	aligned_height = intel_fb_align_height(dev, fb->height,
9371 					       fb->pixel_format,
9372 					       fb->modifier[0]);
9373 
9374 	plane_config->size = fb->pitches[0] * aligned_height;
9375 
9376 	DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9377 		      pipe_name(pipe), fb->width, fb->height,
9378 		      fb->bits_per_pixel, base, fb->pitches[0],
9379 		      plane_config->size);
9380 
9381 	plane_config->fb = intel_fb;
9382 }
9383 
9384 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9385 				     struct intel_crtc_state *pipe_config)
9386 {
9387 	struct drm_device *dev = crtc->base.dev;
9388 	struct drm_i915_private *dev_priv = to_i915(dev);
9389 	enum intel_display_power_domain power_domain;
9390 	uint32_t tmp;
9391 	bool ret;
9392 
9393 	power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9394 	if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9395 		return false;
9396 
9397 	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9398 	pipe_config->shared_dpll = NULL;
9399 
9400 	ret = false;
9401 	tmp = I915_READ(PIPECONF(crtc->pipe));
9402 	if (!(tmp & PIPECONF_ENABLE))
9403 		goto out;
9404 
9405 	switch (tmp & PIPECONF_BPC_MASK) {
9406 	case PIPECONF_6BPC:
9407 		pipe_config->pipe_bpp = 18;
9408 		break;
9409 	case PIPECONF_8BPC:
9410 		pipe_config->pipe_bpp = 24;
9411 		break;
9412 	case PIPECONF_10BPC:
9413 		pipe_config->pipe_bpp = 30;
9414 		break;
9415 	case PIPECONF_12BPC:
9416 		pipe_config->pipe_bpp = 36;
9417 		break;
9418 	default:
9419 		break;
9420 	}
9421 
9422 	if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9423 		pipe_config->limited_color_range = true;
9424 
9425 	if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9426 		struct intel_shared_dpll *pll;
9427 		enum intel_dpll_id pll_id;
9428 
9429 		pipe_config->has_pch_encoder = true;
9430 
9431 		tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9432 		pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9433 					  FDI_DP_PORT_WIDTH_SHIFT) + 1;
9434 
9435 		ironlake_get_fdi_m_n_config(crtc, pipe_config);
9436 
9437 		if (HAS_PCH_IBX(dev_priv)) {
9438 			/*
9439 			 * The pipe->pch transcoder and pch transcoder->pll
9440 			 * mapping is fixed.
9441 			 */
9442 			pll_id = (enum intel_dpll_id) crtc->pipe;
9443 		} else {
9444 			tmp = I915_READ(PCH_DPLL_SEL);
9445 			if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9446 				pll_id = DPLL_ID_PCH_PLL_B;
9447 			else
9448 				pll_id= DPLL_ID_PCH_PLL_A;
9449 		}
9450 
9451 		pipe_config->shared_dpll =
9452 			intel_get_shared_dpll_by_id(dev_priv, pll_id);
9453 		pll = pipe_config->shared_dpll;
9454 
9455 		WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9456 						 &pipe_config->dpll_hw_state));
9457 
9458 		tmp = pipe_config->dpll_hw_state.dpll;
9459 		pipe_config->pixel_multiplier =
9460 			((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9461 			 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9462 
9463 		ironlake_pch_clock_get(crtc, pipe_config);
9464 	} else {
9465 		pipe_config->pixel_multiplier = 1;
9466 	}
9467 
9468 	intel_get_pipe_timings(crtc, pipe_config);
9469 	intel_get_pipe_src_size(crtc, pipe_config);
9470 
9471 	ironlake_get_pfit_config(crtc, pipe_config);
9472 
9473 	ret = true;
9474 
9475 out:
9476 	intel_display_power_put(dev_priv, power_domain);
9477 
9478 	return ret;
9479 }
9480 
9481 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9482 {
9483 	struct drm_device *dev = &dev_priv->drm;
9484 	struct intel_crtc *crtc;
9485 
9486 	for_each_intel_crtc(dev, crtc)
9487 		I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9488 		     pipe_name(crtc->pipe));
9489 
9490 	I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9491 	I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9492 	I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9493 	I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9494 	I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9495 	I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9496 	     "CPU PWM1 enabled\n");
9497 	if (IS_HASWELL(dev))
9498 		I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9499 		     "CPU PWM2 enabled\n");
9500 	I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9501 	     "PCH PWM1 enabled\n");
9502 	I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9503 	     "Utility pin enabled\n");
9504 	I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9505 
9506 	/*
9507 	 * In theory we can still leave IRQs enabled, as long as only the HPD
9508 	 * interrupts remain enabled. We used to check for that, but since it's
9509 	 * gen-specific and since we only disable LCPLL after we fully disable
9510 	 * the interrupts, the check below should be enough.
9511 	 */
9512 	I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9513 }
9514 
9515 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9516 {
9517 	struct drm_device *dev = &dev_priv->drm;
9518 
9519 	if (IS_HASWELL(dev))
9520 		return I915_READ(D_COMP_HSW);
9521 	else
9522 		return I915_READ(D_COMP_BDW);
9523 }
9524 
9525 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9526 {
9527 	struct drm_device *dev = &dev_priv->drm;
9528 
9529 	if (IS_HASWELL(dev)) {
9530 		mutex_lock(&dev_priv->rps.hw_lock);
9531 		if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9532 					    val))
9533 			DRM_ERROR("Failed to write to D_COMP\n");
9534 		mutex_unlock(&dev_priv->rps.hw_lock);
9535 	} else {
9536 		I915_WRITE(D_COMP_BDW, val);
9537 		POSTING_READ(D_COMP_BDW);
9538 	}
9539 }
9540 
9541 /*
9542  * This function implements pieces of two sequences from BSpec:
9543  * - Sequence for display software to disable LCPLL
9544  * - Sequence for display software to allow package C8+
9545  * The steps implemented here are just the steps that actually touch the LCPLL
9546  * register. Callers should take care of disabling all the display engine
9547  * functions, doing the mode unset, fixing interrupts, etc.
9548  */
9549 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9550 			      bool switch_to_fclk, bool allow_power_down)
9551 {
9552 	uint32_t val;
9553 
9554 	assert_can_disable_lcpll(dev_priv);
9555 
9556 	val = I915_READ(LCPLL_CTL);
9557 
9558 	if (switch_to_fclk) {
9559 		val |= LCPLL_CD_SOURCE_FCLK;
9560 		I915_WRITE(LCPLL_CTL, val);
9561 
9562 		if (wait_for_us(I915_READ(LCPLL_CTL) &
9563 				LCPLL_CD_SOURCE_FCLK_DONE, 1))
9564 			DRM_ERROR("Switching to FCLK failed\n");
9565 
9566 		val = I915_READ(LCPLL_CTL);
9567 	}
9568 
9569 	val |= LCPLL_PLL_DISABLE;
9570 	I915_WRITE(LCPLL_CTL, val);
9571 	POSTING_READ(LCPLL_CTL);
9572 
9573 	if (intel_wait_for_register(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 0, 1))
9574 		DRM_ERROR("LCPLL still locked\n");
9575 
9576 	val = hsw_read_dcomp(dev_priv);
9577 	val |= D_COMP_COMP_DISABLE;
9578 	hsw_write_dcomp(dev_priv, val);
9579 	ndelay(100);
9580 
9581 	if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9582 		     1))
9583 		DRM_ERROR("D_COMP RCOMP still in progress\n");
9584 
9585 	if (allow_power_down) {
9586 		val = I915_READ(LCPLL_CTL);
9587 		val |= LCPLL_POWER_DOWN_ALLOW;
9588 		I915_WRITE(LCPLL_CTL, val);
9589 		POSTING_READ(LCPLL_CTL);
9590 	}
9591 }
9592 
9593 /*
9594  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9595  * source.
9596  */
9597 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9598 {
9599 	uint32_t val;
9600 
9601 	val = I915_READ(LCPLL_CTL);
9602 
9603 	if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9604 		    LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9605 		return;
9606 
9607 	/*
9608 	 * Make sure we're not on PC8 state before disabling PC8, otherwise
9609 	 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9610 	 */
9611 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9612 
9613 	if (val & LCPLL_POWER_DOWN_ALLOW) {
9614 		val &= ~LCPLL_POWER_DOWN_ALLOW;
9615 		I915_WRITE(LCPLL_CTL, val);
9616 		POSTING_READ(LCPLL_CTL);
9617 	}
9618 
9619 	val = hsw_read_dcomp(dev_priv);
9620 	val |= D_COMP_COMP_FORCE;
9621 	val &= ~D_COMP_COMP_DISABLE;
9622 	hsw_write_dcomp(dev_priv, val);
9623 
9624 	val = I915_READ(LCPLL_CTL);
9625 	val &= ~LCPLL_PLL_DISABLE;
9626 	I915_WRITE(LCPLL_CTL, val);
9627 
9628 	if (intel_wait_for_register(dev_priv,
9629 				    LCPLL_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
9630 				    5))
9631 		DRM_ERROR("LCPLL not locked yet\n");
9632 
9633 	if (val & LCPLL_CD_SOURCE_FCLK) {
9634 		val = I915_READ(LCPLL_CTL);
9635 		val &= ~LCPLL_CD_SOURCE_FCLK;
9636 		I915_WRITE(LCPLL_CTL, val);
9637 
9638 		if (wait_for_us((I915_READ(LCPLL_CTL) &
9639 				 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9640 			DRM_ERROR("Switching back to LCPLL failed\n");
9641 	}
9642 
9643 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9644 	intel_update_cdclk(&dev_priv->drm);
9645 }
9646 
9647 /*
9648  * Package states C8 and deeper are really deep PC states that can only be
9649  * reached when all the devices on the system allow it, so even if the graphics
9650  * device allows PC8+, it doesn't mean the system will actually get to these
9651  * states. Our driver only allows PC8+ when going into runtime PM.
9652  *
9653  * The requirements for PC8+ are that all the outputs are disabled, the power
9654  * well is disabled and most interrupts are disabled, and these are also
9655  * requirements for runtime PM. When these conditions are met, we manually do
9656  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9657  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9658  * hang the machine.
9659  *
9660  * When we really reach PC8 or deeper states (not just when we allow it) we lose
9661  * the state of some registers, so when we come back from PC8+ we need to
9662  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9663  * need to take care of the registers kept by RC6. Notice that this happens even
9664  * if we don't put the device in PCI D3 state (which is what currently happens
9665  * because of the runtime PM support).
9666  *
9667  * For more, read "Display Sequences for Package C8" on the hardware
9668  * documentation.
9669  */
9670 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9671 {
9672 	struct drm_device *dev = &dev_priv->drm;
9673 	uint32_t val;
9674 
9675 	DRM_DEBUG_KMS("Enabling package C8+\n");
9676 
9677 	if (HAS_PCH_LPT_LP(dev)) {
9678 		val = I915_READ(SOUTH_DSPCLK_GATE_D);
9679 		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9680 		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9681 	}
9682 
9683 	lpt_disable_clkout_dp(dev);
9684 	hsw_disable_lcpll(dev_priv, true, true);
9685 }
9686 
9687 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9688 {
9689 	struct drm_device *dev = &dev_priv->drm;
9690 	uint32_t val;
9691 
9692 	DRM_DEBUG_KMS("Disabling package C8+\n");
9693 
9694 	hsw_restore_lcpll(dev_priv);
9695 	lpt_init_pch_refclk(dev);
9696 
9697 	if (HAS_PCH_LPT_LP(dev)) {
9698 		val = I915_READ(SOUTH_DSPCLK_GATE_D);
9699 		val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9700 		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9701 	}
9702 }
9703 
9704 static void bxt_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9705 {
9706 	struct drm_device *dev = old_state->dev;
9707 	struct intel_atomic_state *old_intel_state =
9708 		to_intel_atomic_state(old_state);
9709 	unsigned int req_cdclk = old_intel_state->dev_cdclk;
9710 
9711 	bxt_set_cdclk(to_i915(dev), req_cdclk);
9712 }
9713 
9714 /* compute the max rate for new configuration */
9715 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9716 {
9717 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9718 	struct drm_i915_private *dev_priv = to_i915(state->dev);
9719 	struct drm_crtc *crtc;
9720 	struct drm_crtc_state *cstate;
9721 	struct intel_crtc_state *crtc_state;
9722 	unsigned max_pixel_rate = 0, i;
9723 	enum i915_pipe pipe;
9724 
9725 	memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
9726 	       sizeof(intel_state->min_pixclk));
9727 
9728 	for_each_crtc_in_state(state, crtc, cstate, i) {
9729 		int pixel_rate;
9730 
9731 		crtc_state = to_intel_crtc_state(cstate);
9732 		if (!crtc_state->base.enable) {
9733 			intel_state->min_pixclk[i] = 0;
9734 			continue;
9735 		}
9736 
9737 		pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9738 
9739 		/* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9740 		if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
9741 			pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9742 
9743 		intel_state->min_pixclk[i] = pixel_rate;
9744 	}
9745 
9746 	for_each_pipe(dev_priv, pipe)
9747 		max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
9748 
9749 	return max_pixel_rate;
9750 }
9751 
9752 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9753 {
9754 	struct drm_i915_private *dev_priv = to_i915(dev);
9755 	uint32_t val, data;
9756 	int ret;
9757 
9758 	if (WARN((I915_READ(LCPLL_CTL) &
9759 		  (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9760 		   LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9761 		   LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9762 		   LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9763 		 "trying to change cdclk frequency with cdclk not enabled\n"))
9764 		return;
9765 
9766 	mutex_lock(&dev_priv->rps.hw_lock);
9767 	ret = sandybridge_pcode_write(dev_priv,
9768 				      BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9769 	mutex_unlock(&dev_priv->rps.hw_lock);
9770 	if (ret) {
9771 		DRM_ERROR("failed to inform pcode about cdclk change\n");
9772 		return;
9773 	}
9774 
9775 	val = I915_READ(LCPLL_CTL);
9776 	val |= LCPLL_CD_SOURCE_FCLK;
9777 	I915_WRITE(LCPLL_CTL, val);
9778 
9779 	if (wait_for_us(I915_READ(LCPLL_CTL) &
9780 			LCPLL_CD_SOURCE_FCLK_DONE, 1))
9781 		DRM_ERROR("Switching to FCLK failed\n");
9782 
9783 	val = I915_READ(LCPLL_CTL);
9784 	val &= ~LCPLL_CLK_FREQ_MASK;
9785 
9786 	switch (cdclk) {
9787 	case 450000:
9788 		val |= LCPLL_CLK_FREQ_450;
9789 		data = 0;
9790 		break;
9791 	case 540000:
9792 		val |= LCPLL_CLK_FREQ_54O_BDW;
9793 		data = 1;
9794 		break;
9795 	case 337500:
9796 		val |= LCPLL_CLK_FREQ_337_5_BDW;
9797 		data = 2;
9798 		break;
9799 	case 675000:
9800 		val |= LCPLL_CLK_FREQ_675_BDW;
9801 		data = 3;
9802 		break;
9803 	default:
9804 		WARN(1, "invalid cdclk frequency\n");
9805 		return;
9806 	}
9807 
9808 	I915_WRITE(LCPLL_CTL, val);
9809 
9810 	val = I915_READ(LCPLL_CTL);
9811 	val &= ~LCPLL_CD_SOURCE_FCLK;
9812 	I915_WRITE(LCPLL_CTL, val);
9813 
9814 	if (wait_for_us((I915_READ(LCPLL_CTL) &
9815 			LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9816 		DRM_ERROR("Switching back to LCPLL failed\n");
9817 
9818 	mutex_lock(&dev_priv->rps.hw_lock);
9819 	sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9820 	mutex_unlock(&dev_priv->rps.hw_lock);
9821 
9822 	I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
9823 
9824 	intel_update_cdclk(dev);
9825 
9826 	WARN(cdclk != dev_priv->cdclk_freq,
9827 	     "cdclk requested %d kHz but got %d kHz\n",
9828 	     cdclk, dev_priv->cdclk_freq);
9829 }
9830 
9831 static int broadwell_calc_cdclk(int max_pixclk)
9832 {
9833 	if (max_pixclk > 540000)
9834 		return 675000;
9835 	else if (max_pixclk > 450000)
9836 		return 540000;
9837 	else if (max_pixclk > 337500)
9838 		return 450000;
9839 	else
9840 		return 337500;
9841 }
9842 
9843 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9844 {
9845 	struct drm_i915_private *dev_priv = to_i915(state->dev);
9846 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9847 	int max_pixclk = ilk_max_pixel_rate(state);
9848 	int cdclk;
9849 
9850 	/*
9851 	 * FIXME should also account for plane ratio
9852 	 * once 64bpp pixel formats are supported.
9853 	 */
9854 	cdclk = broadwell_calc_cdclk(max_pixclk);
9855 
9856 	if (cdclk > dev_priv->max_cdclk_freq) {
9857 		DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9858 			      cdclk, dev_priv->max_cdclk_freq);
9859 		return -EINVAL;
9860 	}
9861 
9862 	intel_state->cdclk = intel_state->dev_cdclk = cdclk;
9863 	if (!intel_state->active_crtcs)
9864 		intel_state->dev_cdclk = broadwell_calc_cdclk(0);
9865 
9866 	return 0;
9867 }
9868 
9869 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9870 {
9871 	struct drm_device *dev = old_state->dev;
9872 	struct intel_atomic_state *old_intel_state =
9873 		to_intel_atomic_state(old_state);
9874 	unsigned req_cdclk = old_intel_state->dev_cdclk;
9875 
9876 	broadwell_set_cdclk(dev, req_cdclk);
9877 }
9878 
9879 static int skl_modeset_calc_cdclk(struct drm_atomic_state *state)
9880 {
9881 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9882 	struct drm_i915_private *dev_priv = to_i915(state->dev);
9883 	const int max_pixclk = ilk_max_pixel_rate(state);
9884 	int vco = intel_state->cdclk_pll_vco;
9885 	int cdclk;
9886 
9887 	/*
9888 	 * FIXME should also account for plane ratio
9889 	 * once 64bpp pixel formats are supported.
9890 	 */
9891 	cdclk = skl_calc_cdclk(max_pixclk, vco);
9892 
9893 	/*
9894 	 * FIXME move the cdclk caclulation to
9895 	 * compute_config() so we can fail gracegully.
9896 	 */
9897 	if (cdclk > dev_priv->max_cdclk_freq) {
9898 		DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9899 			  cdclk, dev_priv->max_cdclk_freq);
9900 		cdclk = dev_priv->max_cdclk_freq;
9901 	}
9902 
9903 	intel_state->cdclk = intel_state->dev_cdclk = cdclk;
9904 	if (!intel_state->active_crtcs)
9905 		intel_state->dev_cdclk = skl_calc_cdclk(0, vco);
9906 
9907 	return 0;
9908 }
9909 
9910 static void skl_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9911 {
9912 	struct drm_i915_private *dev_priv = to_i915(old_state->dev);
9913 	struct intel_atomic_state *intel_state = to_intel_atomic_state(old_state);
9914 	unsigned int req_cdclk = intel_state->dev_cdclk;
9915 	unsigned int req_vco = intel_state->cdclk_pll_vco;
9916 
9917 	skl_set_cdclk(dev_priv, req_cdclk, req_vco);
9918 }
9919 
9920 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9921 				      struct intel_crtc_state *crtc_state)
9922 {
9923 	if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) {
9924 		if (!intel_ddi_pll_select(crtc, crtc_state))
9925 			return -EINVAL;
9926 	}
9927 
9928 	crtc->lowfreq_avail = false;
9929 
9930 	return 0;
9931 }
9932 
9933 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9934 				enum port port,
9935 				struct intel_crtc_state *pipe_config)
9936 {
9937 	enum intel_dpll_id id;
9938 
9939 	switch (port) {
9940 	case PORT_A:
9941 		pipe_config->ddi_pll_sel = SKL_DPLL0;
9942 		id = DPLL_ID_SKL_DPLL0;
9943 		break;
9944 	case PORT_B:
9945 		pipe_config->ddi_pll_sel = SKL_DPLL1;
9946 		id = DPLL_ID_SKL_DPLL1;
9947 		break;
9948 	case PORT_C:
9949 		pipe_config->ddi_pll_sel = SKL_DPLL2;
9950 		id = DPLL_ID_SKL_DPLL2;
9951 		break;
9952 	default:
9953 		DRM_ERROR("Incorrect port type\n");
9954 		return;
9955 	}
9956 
9957 	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9958 }
9959 
9960 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9961 				enum port port,
9962 				struct intel_crtc_state *pipe_config)
9963 {
9964 	enum intel_dpll_id id;
9965 	u32 temp;
9966 
9967 	temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9968 	pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9969 
9970 	switch (pipe_config->ddi_pll_sel) {
9971 	case SKL_DPLL0:
9972 		id = DPLL_ID_SKL_DPLL0;
9973 		break;
9974 	case SKL_DPLL1:
9975 		id = DPLL_ID_SKL_DPLL1;
9976 		break;
9977 	case SKL_DPLL2:
9978 		id = DPLL_ID_SKL_DPLL2;
9979 		break;
9980 	case SKL_DPLL3:
9981 		id = DPLL_ID_SKL_DPLL3;
9982 		break;
9983 	default:
9984 		MISSING_CASE(pipe_config->ddi_pll_sel);
9985 		return;
9986 	}
9987 
9988 	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9989 }
9990 
9991 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9992 				enum port port,
9993 				struct intel_crtc_state *pipe_config)
9994 {
9995 	enum intel_dpll_id id;
9996 
9997 	pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9998 
9999 	switch (pipe_config->ddi_pll_sel) {
10000 	case PORT_CLK_SEL_WRPLL1:
10001 		id = DPLL_ID_WRPLL1;
10002 		break;
10003 	case PORT_CLK_SEL_WRPLL2:
10004 		id = DPLL_ID_WRPLL2;
10005 		break;
10006 	case PORT_CLK_SEL_SPLL:
10007 		id = DPLL_ID_SPLL;
10008 		break;
10009 	case PORT_CLK_SEL_LCPLL_810:
10010 		id = DPLL_ID_LCPLL_810;
10011 		break;
10012 	case PORT_CLK_SEL_LCPLL_1350:
10013 		id = DPLL_ID_LCPLL_1350;
10014 		break;
10015 	case PORT_CLK_SEL_LCPLL_2700:
10016 		id = DPLL_ID_LCPLL_2700;
10017 		break;
10018 	default:
10019 		MISSING_CASE(pipe_config->ddi_pll_sel);
10020 		/* fall through */
10021 	case PORT_CLK_SEL_NONE:
10022 		return;
10023 	}
10024 
10025 	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10026 }
10027 
10028 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
10029 				     struct intel_crtc_state *pipe_config,
10030 				     unsigned long *power_domain_mask)
10031 {
10032 	struct drm_device *dev = crtc->base.dev;
10033 	struct drm_i915_private *dev_priv = to_i915(dev);
10034 	enum intel_display_power_domain power_domain;
10035 	u32 tmp;
10036 
10037 	/*
10038 	 * The pipe->transcoder mapping is fixed with the exception of the eDP
10039 	 * transcoder handled below.
10040 	 */
10041 	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10042 
10043 	/*
10044 	 * XXX: Do intel_display_power_get_if_enabled before reading this (for
10045 	 * consistency and less surprising code; it's in always on power).
10046 	 */
10047 	tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
10048 	if (tmp & TRANS_DDI_FUNC_ENABLE) {
10049 		enum i915_pipe trans_edp_pipe;
10050 		switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
10051 		default:
10052 			WARN(1, "unknown pipe linked to edp transcoder\n");
10053 		case TRANS_DDI_EDP_INPUT_A_ONOFF:
10054 		case TRANS_DDI_EDP_INPUT_A_ON:
10055 			trans_edp_pipe = PIPE_A;
10056 			break;
10057 		case TRANS_DDI_EDP_INPUT_B_ONOFF:
10058 			trans_edp_pipe = PIPE_B;
10059 			break;
10060 		case TRANS_DDI_EDP_INPUT_C_ONOFF:
10061 			trans_edp_pipe = PIPE_C;
10062 			break;
10063 		}
10064 
10065 		if (trans_edp_pipe == crtc->pipe)
10066 			pipe_config->cpu_transcoder = TRANSCODER_EDP;
10067 	}
10068 
10069 	power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
10070 	if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10071 		return false;
10072 	*power_domain_mask |= BIT(power_domain);
10073 
10074 	tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
10075 
10076 	return tmp & PIPECONF_ENABLE;
10077 }
10078 
10079 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
10080 					 struct intel_crtc_state *pipe_config,
10081 					 unsigned long *power_domain_mask)
10082 {
10083 	struct drm_device *dev = crtc->base.dev;
10084 	struct drm_i915_private *dev_priv = to_i915(dev);
10085 	enum intel_display_power_domain power_domain;
10086 	enum port port;
10087 	enum transcoder cpu_transcoder;
10088 	u32 tmp;
10089 
10090 	for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
10091 		if (port == PORT_A)
10092 			cpu_transcoder = TRANSCODER_DSI_A;
10093 		else
10094 			cpu_transcoder = TRANSCODER_DSI_C;
10095 
10096 		power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
10097 		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10098 			continue;
10099 		*power_domain_mask |= BIT(power_domain);
10100 
10101 		/*
10102 		 * The PLL needs to be enabled with a valid divider
10103 		 * configuration, otherwise accessing DSI registers will hang
10104 		 * the machine. See BSpec North Display Engine
10105 		 * registers/MIPI[BXT]. We can break out here early, since we
10106 		 * need the same DSI PLL to be enabled for both DSI ports.
10107 		 */
10108 		if (!intel_dsi_pll_is_enabled(dev_priv))
10109 			break;
10110 
10111 		/* XXX: this works for video mode only */
10112 		tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
10113 		if (!(tmp & DPI_ENABLE))
10114 			continue;
10115 
10116 		tmp = I915_READ(MIPI_CTRL(port));
10117 		if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
10118 			continue;
10119 
10120 		pipe_config->cpu_transcoder = cpu_transcoder;
10121 		break;
10122 	}
10123 
10124 	return transcoder_is_dsi(pipe_config->cpu_transcoder);
10125 }
10126 
10127 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
10128 				       struct intel_crtc_state *pipe_config)
10129 {
10130 	struct drm_device *dev = crtc->base.dev;
10131 	struct drm_i915_private *dev_priv = to_i915(dev);
10132 	struct intel_shared_dpll *pll;
10133 	enum port port;
10134 	uint32_t tmp;
10135 
10136 	tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
10137 
10138 	port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
10139 
10140 	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
10141 		skylake_get_ddi_pll(dev_priv, port, pipe_config);
10142 	else if (IS_BROXTON(dev))
10143 		bxt_get_ddi_pll(dev_priv, port, pipe_config);
10144 	else
10145 		haswell_get_ddi_pll(dev_priv, port, pipe_config);
10146 
10147 	pll = pipe_config->shared_dpll;
10148 	if (pll) {
10149 		WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
10150 						 &pipe_config->dpll_hw_state));
10151 	}
10152 
10153 	/*
10154 	 * Haswell has only FDI/PCH transcoder A. It is which is connected to
10155 	 * DDI E. So just check whether this pipe is wired to DDI E and whether
10156 	 * the PCH transcoder is on.
10157 	 */
10158 	if (INTEL_INFO(dev)->gen < 9 &&
10159 	    (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
10160 		pipe_config->has_pch_encoder = true;
10161 
10162 		tmp = I915_READ(FDI_RX_CTL(PIPE_A));
10163 		pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
10164 					  FDI_DP_PORT_WIDTH_SHIFT) + 1;
10165 
10166 		ironlake_get_fdi_m_n_config(crtc, pipe_config);
10167 	}
10168 }
10169 
10170 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
10171 				    struct intel_crtc_state *pipe_config)
10172 {
10173 	struct drm_device *dev = crtc->base.dev;
10174 	struct drm_i915_private *dev_priv = to_i915(dev);
10175 	enum intel_display_power_domain power_domain;
10176 	unsigned long power_domain_mask;
10177 	bool active;
10178 
10179 	power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10180 	if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10181 		return false;
10182 	power_domain_mask = BIT(power_domain);
10183 
10184 	pipe_config->shared_dpll = NULL;
10185 
10186 	active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
10187 
10188 	if (IS_BROXTON(dev_priv) &&
10189 	    bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_mask)) {
10190 		WARN_ON(active);
10191 		active = true;
10192 	}
10193 
10194 	if (!active)
10195 		goto out;
10196 
10197 	if (!transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10198 		haswell_get_ddi_port_state(crtc, pipe_config);
10199 		intel_get_pipe_timings(crtc, pipe_config);
10200 	}
10201 
10202 	intel_get_pipe_src_size(crtc, pipe_config);
10203 
10204 	pipe_config->gamma_mode =
10205 		I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
10206 
10207 	if (INTEL_INFO(dev)->gen >= 9) {
10208 		skl_init_scalers(dev, crtc, pipe_config);
10209 	}
10210 
10211 	if (INTEL_INFO(dev)->gen >= 9) {
10212 		pipe_config->scaler_state.scaler_id = -1;
10213 		pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
10214 	}
10215 
10216 	power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10217 	if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
10218 		power_domain_mask |= BIT(power_domain);
10219 		if (INTEL_INFO(dev)->gen >= 9)
10220 			skylake_get_pfit_config(crtc, pipe_config);
10221 		else
10222 			ironlake_get_pfit_config(crtc, pipe_config);
10223 	}
10224 
10225 	if (IS_HASWELL(dev))
10226 		pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10227 			(I915_READ(IPS_CTL) & IPS_ENABLE);
10228 
10229 	if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
10230 	    !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10231 		pipe_config->pixel_multiplier =
10232 			I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10233 	} else {
10234 		pipe_config->pixel_multiplier = 1;
10235 	}
10236 
10237 out:
10238 	for_each_power_domain(power_domain, power_domain_mask)
10239 		intel_display_power_put(dev_priv, power_domain);
10240 
10241 	return active;
10242 }
10243 
10244 static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
10245 			       const struct intel_plane_state *plane_state)
10246 {
10247 	struct drm_device *dev = crtc->dev;
10248 	struct drm_i915_private *dev_priv = to_i915(dev);
10249 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10250 	uint32_t cntl = 0, size = 0;
10251 
10252 	if (plane_state && plane_state->visible) {
10253 		unsigned int width = plane_state->base.crtc_w;
10254 		unsigned int height = plane_state->base.crtc_h;
10255 		unsigned int stride = roundup_pow_of_two(width) * 4;
10256 
10257 		switch (stride) {
10258 		default:
10259 			WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10260 				  width, stride);
10261 			stride = 256;
10262 			/* fallthrough */
10263 		case 256:
10264 		case 512:
10265 		case 1024:
10266 		case 2048:
10267 			break;
10268 		}
10269 
10270 		cntl |= CURSOR_ENABLE |
10271 			CURSOR_GAMMA_ENABLE |
10272 			CURSOR_FORMAT_ARGB |
10273 			CURSOR_STRIDE(stride);
10274 
10275 		size = (height << 12) | width;
10276 	}
10277 
10278 	if (intel_crtc->cursor_cntl != 0 &&
10279 	    (intel_crtc->cursor_base != base ||
10280 	     intel_crtc->cursor_size != size ||
10281 	     intel_crtc->cursor_cntl != cntl)) {
10282 		/* On these chipsets we can only modify the base/size/stride
10283 		 * whilst the cursor is disabled.
10284 		 */
10285 		I915_WRITE(CURCNTR(PIPE_A), 0);
10286 		POSTING_READ(CURCNTR(PIPE_A));
10287 		intel_crtc->cursor_cntl = 0;
10288 	}
10289 
10290 	if (intel_crtc->cursor_base != base) {
10291 		I915_WRITE(CURBASE(PIPE_A), base);
10292 		intel_crtc->cursor_base = base;
10293 	}
10294 
10295 	if (intel_crtc->cursor_size != size) {
10296 		I915_WRITE(CURSIZE, size);
10297 		intel_crtc->cursor_size = size;
10298 	}
10299 
10300 	if (intel_crtc->cursor_cntl != cntl) {
10301 		I915_WRITE(CURCNTR(PIPE_A), cntl);
10302 		POSTING_READ(CURCNTR(PIPE_A));
10303 		intel_crtc->cursor_cntl = cntl;
10304 	}
10305 }
10306 
10307 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10308 			       const struct intel_plane_state *plane_state)
10309 {
10310 	struct drm_device *dev = crtc->dev;
10311 	struct drm_i915_private *dev_priv = to_i915(dev);
10312 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10313 	int pipe = intel_crtc->pipe;
10314 	uint32_t cntl = 0;
10315 
10316 	if (plane_state && plane_state->visible) {
10317 		cntl = MCURSOR_GAMMA_ENABLE;
10318 		switch (plane_state->base.crtc_w) {
10319 			case 64:
10320 				cntl |= CURSOR_MODE_64_ARGB_AX;
10321 				break;
10322 			case 128:
10323 				cntl |= CURSOR_MODE_128_ARGB_AX;
10324 				break;
10325 			case 256:
10326 				cntl |= CURSOR_MODE_256_ARGB_AX;
10327 				break;
10328 			default:
10329 				MISSING_CASE(plane_state->base.crtc_w);
10330 				return;
10331 		}
10332 		cntl |= pipe << 28; /* Connect to correct pipe */
10333 
10334 		if (HAS_DDI(dev))
10335 			cntl |= CURSOR_PIPE_CSC_ENABLE;
10336 
10337 		if (plane_state->base.rotation == DRM_ROTATE_180)
10338 			cntl |= CURSOR_ROTATE_180;
10339 	}
10340 
10341 	if (intel_crtc->cursor_cntl != cntl) {
10342 		I915_WRITE(CURCNTR(pipe), cntl);
10343 		POSTING_READ(CURCNTR(pipe));
10344 		intel_crtc->cursor_cntl = cntl;
10345 	}
10346 
10347 	/* and commit changes on next vblank */
10348 	I915_WRITE(CURBASE(pipe), base);
10349 	POSTING_READ(CURBASE(pipe));
10350 
10351 	intel_crtc->cursor_base = base;
10352 }
10353 
10354 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10355 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10356 				     const struct intel_plane_state *plane_state)
10357 {
10358 	struct drm_device *dev = crtc->dev;
10359 	struct drm_i915_private *dev_priv = to_i915(dev);
10360 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10361 	int pipe = intel_crtc->pipe;
10362 	u32 base = intel_crtc->cursor_addr;
10363 	u32 pos = 0;
10364 
10365 	if (plane_state) {
10366 		int x = plane_state->base.crtc_x;
10367 		int y = plane_state->base.crtc_y;
10368 
10369 		if (x < 0) {
10370 			pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10371 			x = -x;
10372 		}
10373 		pos |= x << CURSOR_X_SHIFT;
10374 
10375 		if (y < 0) {
10376 			pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10377 			y = -y;
10378 		}
10379 		pos |= y << CURSOR_Y_SHIFT;
10380 
10381 		/* ILK+ do this automagically */
10382 		if (HAS_GMCH_DISPLAY(dev) &&
10383 		    plane_state->base.rotation == DRM_ROTATE_180) {
10384 			base += (plane_state->base.crtc_h *
10385 				 plane_state->base.crtc_w - 1) * 4;
10386 		}
10387 	}
10388 
10389 	I915_WRITE(CURPOS(pipe), pos);
10390 
10391 	if (IS_845G(dev) || IS_I865G(dev))
10392 		i845_update_cursor(crtc, base, plane_state);
10393 	else
10394 		i9xx_update_cursor(crtc, base, plane_state);
10395 }
10396 
10397 static bool cursor_size_ok(struct drm_device *dev,
10398 			   uint32_t width, uint32_t height)
10399 {
10400 	if (width == 0 || height == 0)
10401 		return false;
10402 
10403 	/*
10404 	 * 845g/865g are special in that they are only limited by
10405 	 * the width of their cursors, the height is arbitrary up to
10406 	 * the precision of the register. Everything else requires
10407 	 * square cursors, limited to a few power-of-two sizes.
10408 	 */
10409 	if (IS_845G(dev) || IS_I865G(dev)) {
10410 		if ((width & 63) != 0)
10411 			return false;
10412 
10413 		if (width > (IS_845G(dev) ? 64 : 512))
10414 			return false;
10415 
10416 		if (height > 1023)
10417 			return false;
10418 	} else {
10419 		switch (width | height) {
10420 		case 256:
10421 		case 128:
10422 			if (IS_GEN2(dev))
10423 				return false;
10424 		case 64:
10425 			break;
10426 		default:
10427 			return false;
10428 		}
10429 	}
10430 
10431 	return true;
10432 }
10433 
10434 /* VESA 640x480x72Hz mode to set on the pipe */
10435 static struct drm_display_mode load_detect_mode = {
10436 	DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10437 		 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10438 };
10439 
10440 struct drm_framebuffer *
10441 __intel_framebuffer_create(struct drm_device *dev,
10442 			   struct drm_mode_fb_cmd2 *mode_cmd,
10443 			   struct drm_i915_gem_object *obj)
10444 {
10445 	struct intel_framebuffer *intel_fb;
10446 	int ret;
10447 
10448 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10449 	if (!intel_fb)
10450 		return ERR_PTR(-ENOMEM);
10451 
10452 	ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10453 	if (ret)
10454 		goto err;
10455 
10456 	return &intel_fb->base;
10457 
10458 err:
10459 	kfree(intel_fb);
10460 	return ERR_PTR(ret);
10461 }
10462 
10463 static struct drm_framebuffer *
10464 intel_framebuffer_create(struct drm_device *dev,
10465 			 struct drm_mode_fb_cmd2 *mode_cmd,
10466 			 struct drm_i915_gem_object *obj)
10467 {
10468 	struct drm_framebuffer *fb;
10469 	int ret;
10470 
10471 	ret = i915_mutex_lock_interruptible(dev);
10472 	if (ret)
10473 		return ERR_PTR(ret);
10474 	fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10475 	mutex_unlock(&dev->struct_mutex);
10476 
10477 	return fb;
10478 }
10479 
10480 static u32
10481 intel_framebuffer_pitch_for_width(int width, int bpp)
10482 {
10483 	u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10484 	return ALIGN(pitch, 64);
10485 }
10486 
10487 static u32
10488 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10489 {
10490 	u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10491 	return PAGE_ALIGN(pitch * mode->vdisplay);
10492 }
10493 
10494 static struct drm_framebuffer *
10495 intel_framebuffer_create_for_mode(struct drm_device *dev,
10496 				  struct drm_display_mode *mode,
10497 				  int depth, int bpp)
10498 {
10499 	struct drm_framebuffer *fb;
10500 	struct drm_i915_gem_object *obj;
10501 	struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10502 
10503 	obj = i915_gem_object_create(dev,
10504 				    intel_framebuffer_size_for_mode(mode, bpp));
10505 	if (IS_ERR(obj))
10506 		return ERR_CAST(obj);
10507 
10508 	mode_cmd.width = mode->hdisplay;
10509 	mode_cmd.height = mode->vdisplay;
10510 	mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10511 								bpp);
10512 	mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10513 
10514 	fb = intel_framebuffer_create(dev, &mode_cmd, obj);
10515 	if (IS_ERR(fb))
10516 		i915_gem_object_put_unlocked(obj);
10517 
10518 	return fb;
10519 }
10520 
10521 static struct drm_framebuffer *
10522 mode_fits_in_fbdev(struct drm_device *dev,
10523 		   struct drm_display_mode *mode)
10524 {
10525 #ifdef CONFIG_DRM_FBDEV_EMULATION
10526 	struct drm_i915_private *dev_priv = to_i915(dev);
10527 	struct drm_i915_gem_object *obj;
10528 	struct drm_framebuffer *fb;
10529 
10530 	if (!dev_priv->fbdev)
10531 		return NULL;
10532 
10533 	if (!dev_priv->fbdev->fb)
10534 		return NULL;
10535 
10536 	obj = dev_priv->fbdev->fb->obj;
10537 	BUG_ON(!obj);
10538 
10539 	fb = &dev_priv->fbdev->fb->base;
10540 	if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10541 							       fb->bits_per_pixel))
10542 		return NULL;
10543 
10544 	if (obj->base.size < mode->vdisplay * fb->pitches[0])
10545 		return NULL;
10546 
10547 	drm_framebuffer_reference(fb);
10548 	return fb;
10549 #else
10550 	return NULL;
10551 #endif
10552 }
10553 
10554 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10555 					   struct drm_crtc *crtc,
10556 					   struct drm_display_mode *mode,
10557 					   struct drm_framebuffer *fb,
10558 					   int x, int y)
10559 {
10560 	struct drm_plane_state *plane_state;
10561 	int hdisplay, vdisplay;
10562 	int ret;
10563 
10564 	plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10565 	if (IS_ERR(plane_state))
10566 		return PTR_ERR(plane_state);
10567 
10568 	if (mode)
10569 		drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10570 	else
10571 		hdisplay = vdisplay = 0;
10572 
10573 	ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10574 	if (ret)
10575 		return ret;
10576 	drm_atomic_set_fb_for_plane(plane_state, fb);
10577 	plane_state->crtc_x = 0;
10578 	plane_state->crtc_y = 0;
10579 	plane_state->crtc_w = hdisplay;
10580 	plane_state->crtc_h = vdisplay;
10581 	plane_state->src_x = x << 16;
10582 	plane_state->src_y = y << 16;
10583 	plane_state->src_w = hdisplay << 16;
10584 	plane_state->src_h = vdisplay << 16;
10585 
10586 	return 0;
10587 }
10588 
10589 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10590 				struct drm_display_mode *mode,
10591 				struct intel_load_detect_pipe *old,
10592 				struct drm_modeset_acquire_ctx *ctx)
10593 {
10594 	struct intel_crtc *intel_crtc;
10595 	struct intel_encoder *intel_encoder =
10596 		intel_attached_encoder(connector);
10597 	struct drm_crtc *possible_crtc;
10598 	struct drm_encoder *encoder = &intel_encoder->base;
10599 	struct drm_crtc *crtc = NULL;
10600 	struct drm_device *dev = encoder->dev;
10601 	struct drm_framebuffer *fb;
10602 	struct drm_mode_config *config = &dev->mode_config;
10603 	struct drm_atomic_state *state = NULL, *restore_state = NULL;
10604 	struct drm_connector_state *connector_state;
10605 	struct intel_crtc_state *crtc_state;
10606 	int ret, i = -1;
10607 
10608 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10609 		      connector->base.id, connector->name,
10610 		      encoder->base.id, encoder->name);
10611 
10612 	old->restore_state = NULL;
10613 
10614 retry:
10615 	ret = drm_modeset_lock(&config->connection_mutex, ctx);
10616 	if (ret)
10617 		goto fail;
10618 
10619 	/*
10620 	 * Algorithm gets a little messy:
10621 	 *
10622 	 *   - if the connector already has an assigned crtc, use it (but make
10623 	 *     sure it's on first)
10624 	 *
10625 	 *   - try to find the first unused crtc that can drive this connector,
10626 	 *     and use that if we find one
10627 	 */
10628 
10629 	/* See if we already have a CRTC for this connector */
10630 	if (connector->state->crtc) {
10631 		crtc = connector->state->crtc;
10632 
10633 		ret = drm_modeset_lock(&crtc->mutex, ctx);
10634 		if (ret)
10635 			goto fail;
10636 
10637 		/* Make sure the crtc and connector are running */
10638 		goto found;
10639 	}
10640 
10641 	/* Find an unused one (if possible) */
10642 	for_each_crtc(dev, possible_crtc) {
10643 		i++;
10644 		if (!(encoder->possible_crtcs & (1 << i)))
10645 			continue;
10646 
10647 		ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
10648 		if (ret)
10649 			goto fail;
10650 
10651 		if (possible_crtc->state->enable) {
10652 			drm_modeset_unlock(&possible_crtc->mutex);
10653 			continue;
10654 		}
10655 
10656 		crtc = possible_crtc;
10657 		break;
10658 	}
10659 
10660 	/*
10661 	 * If we didn't find an unused CRTC, don't use any.
10662 	 */
10663 	if (!crtc) {
10664 		DRM_DEBUG_KMS("no pipe available for load-detect\n");
10665 		goto fail;
10666 	}
10667 
10668 found:
10669 	intel_crtc = to_intel_crtc(crtc);
10670 
10671 	ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10672 	if (ret)
10673 		goto fail;
10674 
10675 	state = drm_atomic_state_alloc(dev);
10676 	restore_state = drm_atomic_state_alloc(dev);
10677 	if (!state || !restore_state) {
10678 		ret = -ENOMEM;
10679 		goto fail;
10680 	}
10681 
10682 	state->acquire_ctx = ctx;
10683 	restore_state->acquire_ctx = ctx;
10684 
10685 	connector_state = drm_atomic_get_connector_state(state, connector);
10686 	if (IS_ERR(connector_state)) {
10687 		ret = PTR_ERR(connector_state);
10688 		goto fail;
10689 	}
10690 
10691 	ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
10692 	if (ret)
10693 		goto fail;
10694 
10695 	crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10696 	if (IS_ERR(crtc_state)) {
10697 		ret = PTR_ERR(crtc_state);
10698 		goto fail;
10699 	}
10700 
10701 	crtc_state->base.active = crtc_state->base.enable = true;
10702 
10703 	if (!mode)
10704 		mode = &load_detect_mode;
10705 
10706 	/* We need a framebuffer large enough to accommodate all accesses
10707 	 * that the plane may generate whilst we perform load detection.
10708 	 * We can not rely on the fbcon either being present (we get called
10709 	 * during its initialisation to detect all boot displays, or it may
10710 	 * not even exist) or that it is large enough to satisfy the
10711 	 * requested mode.
10712 	 */
10713 	fb = mode_fits_in_fbdev(dev, mode);
10714 	if (fb == NULL) {
10715 		DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10716 		fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10717 	} else
10718 		DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10719 	if (IS_ERR(fb)) {
10720 		DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10721 		goto fail;
10722 	}
10723 
10724 	ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10725 	if (ret)
10726 		goto fail;
10727 
10728 	drm_framebuffer_unreference(fb);
10729 
10730 	ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
10731 	if (ret)
10732 		goto fail;
10733 
10734 	ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
10735 	if (!ret)
10736 		ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
10737 	if (!ret)
10738 		ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
10739 	if (ret) {
10740 		DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
10741 		goto fail;
10742 	}
10743 
10744 	ret = drm_atomic_commit(state);
10745 	if (ret) {
10746 		DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10747 		goto fail;
10748 	}
10749 
10750 	old->restore_state = restore_state;
10751 
10752 	/* let the connector get through one full cycle before testing */
10753 	intel_wait_for_vblank(dev, intel_crtc->pipe);
10754 	return true;
10755 
10756 fail:
10757 	drm_atomic_state_free(state);
10758 	drm_atomic_state_free(restore_state);
10759 	restore_state = state = NULL;
10760 
10761 	if (ret == -EDEADLK) {
10762 		drm_modeset_backoff(ctx);
10763 		goto retry;
10764 	}
10765 
10766 	return false;
10767 }
10768 
10769 void intel_release_load_detect_pipe(struct drm_connector *connector,
10770 				    struct intel_load_detect_pipe *old,
10771 				    struct drm_modeset_acquire_ctx *ctx)
10772 {
10773 	struct intel_encoder *intel_encoder =
10774 		intel_attached_encoder(connector);
10775 	struct drm_encoder *encoder = &intel_encoder->base;
10776 	struct drm_atomic_state *state = old->restore_state;
10777 	int ret;
10778 
10779 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10780 		      connector->base.id, connector->name,
10781 		      encoder->base.id, encoder->name);
10782 
10783 	if (!state)
10784 		return;
10785 
10786 	ret = drm_atomic_commit(state);
10787 	if (ret) {
10788 		DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
10789 		drm_atomic_state_free(state);
10790 	}
10791 }
10792 
10793 static int i9xx_pll_refclk(struct drm_device *dev,
10794 			   const struct intel_crtc_state *pipe_config)
10795 {
10796 	struct drm_i915_private *dev_priv = to_i915(dev);
10797 	u32 dpll = pipe_config->dpll_hw_state.dpll;
10798 
10799 	if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10800 		return dev_priv->vbt.lvds_ssc_freq;
10801 	else if (HAS_PCH_SPLIT(dev))
10802 		return 120000;
10803 	else if (!IS_GEN2(dev))
10804 		return 96000;
10805 	else
10806 		return 48000;
10807 }
10808 
10809 /* Returns the clock of the currently programmed mode of the given pipe. */
10810 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10811 				struct intel_crtc_state *pipe_config)
10812 {
10813 	struct drm_device *dev = crtc->base.dev;
10814 	struct drm_i915_private *dev_priv = to_i915(dev);
10815 	int pipe = pipe_config->cpu_transcoder;
10816 	u32 dpll = pipe_config->dpll_hw_state.dpll;
10817 	u32 fp;
10818 	struct dpll clock;
10819 	int port_clock;
10820 	int refclk = i9xx_pll_refclk(dev, pipe_config);
10821 
10822 	if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10823 		fp = pipe_config->dpll_hw_state.fp0;
10824 	else
10825 		fp = pipe_config->dpll_hw_state.fp1;
10826 
10827 	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10828 	if (IS_PINEVIEW(dev)) {
10829 		clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10830 		clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10831 	} else {
10832 		clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10833 		clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10834 	}
10835 
10836 	if (!IS_GEN2(dev)) {
10837 		if (IS_PINEVIEW(dev))
10838 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10839 				DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10840 		else
10841 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10842 			       DPLL_FPA01_P1_POST_DIV_SHIFT);
10843 
10844 		switch (dpll & DPLL_MODE_MASK) {
10845 		case DPLLB_MODE_DAC_SERIAL:
10846 			clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10847 				5 : 10;
10848 			break;
10849 		case DPLLB_MODE_LVDS:
10850 			clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10851 				7 : 14;
10852 			break;
10853 		default:
10854 			DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10855 				  "mode\n", (int)(dpll & DPLL_MODE_MASK));
10856 			return;
10857 		}
10858 
10859 		if (IS_PINEVIEW(dev))
10860 			port_clock = pnv_calc_dpll_params(refclk, &clock);
10861 		else
10862 			port_clock = i9xx_calc_dpll_params(refclk, &clock);
10863 	} else {
10864 		u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10865 		bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10866 
10867 		if (is_lvds) {
10868 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10869 				       DPLL_FPA01_P1_POST_DIV_SHIFT);
10870 
10871 			if (lvds & LVDS_CLKB_POWER_UP)
10872 				clock.p2 = 7;
10873 			else
10874 				clock.p2 = 14;
10875 		} else {
10876 			if (dpll & PLL_P1_DIVIDE_BY_TWO)
10877 				clock.p1 = 2;
10878 			else {
10879 				clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10880 					    DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10881 			}
10882 			if (dpll & PLL_P2_DIVIDE_BY_4)
10883 				clock.p2 = 4;
10884 			else
10885 				clock.p2 = 2;
10886 		}
10887 
10888 		port_clock = i9xx_calc_dpll_params(refclk, &clock);
10889 	}
10890 
10891 	/*
10892 	 * This value includes pixel_multiplier. We will use
10893 	 * port_clock to compute adjusted_mode.crtc_clock in the
10894 	 * encoder's get_config() function.
10895 	 */
10896 	pipe_config->port_clock = port_clock;
10897 }
10898 
10899 int intel_dotclock_calculate(int link_freq,
10900 			     const struct intel_link_m_n *m_n)
10901 {
10902 	/*
10903 	 * The calculation for the data clock is:
10904 	 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10905 	 * But we want to avoid losing precison if possible, so:
10906 	 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10907 	 *
10908 	 * and the link clock is simpler:
10909 	 * link_clock = (m * link_clock) / n
10910 	 */
10911 
10912 	if (!m_n->link_n)
10913 		return 0;
10914 
10915 	return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10916 }
10917 
10918 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10919 				   struct intel_crtc_state *pipe_config)
10920 {
10921 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10922 
10923 	/* read out port_clock from the DPLL */
10924 	i9xx_crtc_clock_get(crtc, pipe_config);
10925 
10926 	/*
10927 	 * In case there is an active pipe without active ports,
10928 	 * we may need some idea for the dotclock anyway.
10929 	 * Calculate one based on the FDI configuration.
10930 	 */
10931 	pipe_config->base.adjusted_mode.crtc_clock =
10932 		intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
10933 					 &pipe_config->fdi_m_n);
10934 }
10935 
10936 /** Returns the currently programmed mode of the given pipe. */
10937 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10938 					     struct drm_crtc *crtc)
10939 {
10940 	struct drm_i915_private *dev_priv = to_i915(dev);
10941 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10942 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10943 	struct drm_display_mode *mode;
10944 	struct intel_crtc_state *pipe_config;
10945 	int htot = I915_READ(HTOTAL(cpu_transcoder));
10946 	int hsync = I915_READ(HSYNC(cpu_transcoder));
10947 	int vtot = I915_READ(VTOTAL(cpu_transcoder));
10948 	int vsync = I915_READ(VSYNC(cpu_transcoder));
10949 	enum i915_pipe pipe = intel_crtc->pipe;
10950 
10951 	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10952 	if (!mode)
10953 		return NULL;
10954 
10955 	pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10956 	if (!pipe_config) {
10957 		kfree(mode);
10958 		return NULL;
10959 	}
10960 
10961 	/*
10962 	 * Construct a pipe_config sufficient for getting the clock info
10963 	 * back out of crtc_clock_get.
10964 	 *
10965 	 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10966 	 * to use a real value here instead.
10967 	 */
10968 	pipe_config->cpu_transcoder = (enum transcoder) pipe;
10969 	pipe_config->pixel_multiplier = 1;
10970 	pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10971 	pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10972 	pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10973 	i9xx_crtc_clock_get(intel_crtc, pipe_config);
10974 
10975 	mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
10976 	mode->hdisplay = (htot & 0xffff) + 1;
10977 	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10978 	mode->hsync_start = (hsync & 0xffff) + 1;
10979 	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10980 	mode->vdisplay = (vtot & 0xffff) + 1;
10981 	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10982 	mode->vsync_start = (vsync & 0xffff) + 1;
10983 	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10984 
10985 	drm_mode_set_name(mode);
10986 
10987 	kfree(pipe_config);
10988 
10989 	return mode;
10990 }
10991 
10992 static void intel_crtc_destroy(struct drm_crtc *crtc)
10993 {
10994 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10995 	struct drm_device *dev = crtc->dev;
10996 	struct intel_flip_work *work;
10997 
10998 	spin_lock_irq(&dev->event_lock);
10999 	work = intel_crtc->flip_work;
11000 	intel_crtc->flip_work = NULL;
11001 	spin_unlock_irq(&dev->event_lock);
11002 
11003 	if (work) {
11004 		cancel_work_sync(&work->mmio_work);
11005 		cancel_work_sync(&work->unpin_work);
11006 		kfree(work);
11007 	}
11008 
11009 	drm_crtc_cleanup(crtc);
11010 
11011 	kfree(intel_crtc);
11012 }
11013 
11014 static void intel_unpin_work_fn(struct work_struct *__work)
11015 {
11016 	struct intel_flip_work *work =
11017 		container_of(__work, struct intel_flip_work, unpin_work);
11018 	struct intel_crtc *crtc = to_intel_crtc(work->crtc);
11019 	struct drm_device *dev = crtc->base.dev;
11020 	struct drm_plane *primary = crtc->base.primary;
11021 
11022 	if (is_mmio_work(work))
11023 		flush_work(&work->mmio_work);
11024 
11025 	mutex_lock(&dev->struct_mutex);
11026 	intel_unpin_fb_obj(work->old_fb, primary->state->rotation);
11027 	i915_gem_object_put(work->pending_flip_obj);
11028 	mutex_unlock(&dev->struct_mutex);
11029 
11030 	i915_gem_request_put(work->flip_queued_req);
11031 
11032 	intel_frontbuffer_flip_complete(to_i915(dev),
11033 					to_intel_plane(primary)->frontbuffer_bit);
11034 	intel_fbc_post_update(crtc);
11035 	drm_framebuffer_unreference(work->old_fb);
11036 
11037 	BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
11038 	atomic_dec(&crtc->unpin_work_count);
11039 
11040 	kfree(work);
11041 }
11042 
11043 /* Is 'a' after or equal to 'b'? */
11044 static bool g4x_flip_count_after_eq(u32 a, u32 b)
11045 {
11046 	return !((a - b) & 0x80000000);
11047 }
11048 
11049 static bool __pageflip_finished_cs(struct intel_crtc *crtc,
11050 				   struct intel_flip_work *work)
11051 {
11052 	struct drm_device *dev = crtc->base.dev;
11053 	struct drm_i915_private *dev_priv = to_i915(dev);
11054 	unsigned reset_counter;
11055 
11056 	reset_counter = i915_reset_counter(&dev_priv->gpu_error);
11057 	if (crtc->reset_counter != reset_counter)
11058 		return true;
11059 
11060 	/*
11061 	 * The relevant registers doen't exist on pre-ctg.
11062 	 * As the flip done interrupt doesn't trigger for mmio
11063 	 * flips on gmch platforms, a flip count check isn't
11064 	 * really needed there. But since ctg has the registers,
11065 	 * include it in the check anyway.
11066 	 */
11067 	if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
11068 		return true;
11069 
11070 	/*
11071 	 * BDW signals flip done immediately if the plane
11072 	 * is disabled, even if the plane enable is already
11073 	 * armed to occur at the next vblank :(
11074 	 */
11075 
11076 	/*
11077 	 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
11078 	 * used the same base address. In that case the mmio flip might
11079 	 * have completed, but the CS hasn't even executed the flip yet.
11080 	 *
11081 	 * A flip count check isn't enough as the CS might have updated
11082 	 * the base address just after start of vblank, but before we
11083 	 * managed to process the interrupt. This means we'd complete the
11084 	 * CS flip too soon.
11085 	 *
11086 	 * Combining both checks should get us a good enough result. It may
11087 	 * still happen that the CS flip has been executed, but has not
11088 	 * yet actually completed. But in case the base address is the same
11089 	 * anyway, we don't really care.
11090 	 */
11091 	return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
11092 		crtc->flip_work->gtt_offset &&
11093 		g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
11094 				    crtc->flip_work->flip_count);
11095 }
11096 
11097 static bool
11098 __pageflip_finished_mmio(struct intel_crtc *crtc,
11099 			       struct intel_flip_work *work)
11100 {
11101 	/*
11102 	 * MMIO work completes when vblank is different from
11103 	 * flip_queued_vblank.
11104 	 *
11105 	 * Reset counter value doesn't matter, this is handled by
11106 	 * i915_wait_request finishing early, so no need to handle
11107 	 * reset here.
11108 	 */
11109 	return intel_crtc_get_vblank_counter(crtc) != work->flip_queued_vblank;
11110 }
11111 
11112 
11113 static bool pageflip_finished(struct intel_crtc *crtc,
11114 			      struct intel_flip_work *work)
11115 {
11116 	if (!atomic_read(&work->pending))
11117 		return false;
11118 
11119 	smp_rmb();
11120 
11121 	if (is_mmio_work(work))
11122 		return __pageflip_finished_mmio(crtc, work);
11123 	else
11124 		return __pageflip_finished_cs(crtc, work);
11125 }
11126 
11127 void intel_finish_page_flip_cs(struct drm_i915_private *dev_priv, int pipe)
11128 {
11129 	struct drm_device *dev = &dev_priv->drm;
11130 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11131 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11132 	struct intel_flip_work *work;
11133 	unsigned long flags;
11134 
11135 	/* Ignore early vblank irqs */
11136 	if (!crtc)
11137 		return;
11138 
11139 	/*
11140 	 * This is called both by irq handlers and the reset code (to complete
11141 	 * lost pageflips) so needs the full irqsave spinlocks.
11142 	 */
11143 	spin_lock_irqsave(&dev->event_lock, flags);
11144 	work = intel_crtc->flip_work;
11145 
11146 	if (work != NULL &&
11147 	    !is_mmio_work(work) &&
11148 	    pageflip_finished(intel_crtc, work))
11149 		page_flip_completed(intel_crtc);
11150 
11151 	spin_unlock_irqrestore(&dev->event_lock, flags);
11152 }
11153 
11154 void intel_finish_page_flip_mmio(struct drm_i915_private *dev_priv, int pipe)
11155 {
11156 	struct drm_device *dev = &dev_priv->drm;
11157 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11158 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11159 	struct intel_flip_work *work;
11160 	unsigned long flags;
11161 
11162 	/* Ignore early vblank irqs */
11163 	if (!crtc)
11164 		return;
11165 
11166 	/*
11167 	 * This is called both by irq handlers and the reset code (to complete
11168 	 * lost pageflips) so needs the full irqsave spinlocks.
11169 	 */
11170 	spin_lock_irqsave(&dev->event_lock, flags);
11171 	work = intel_crtc->flip_work;
11172 
11173 	if (work != NULL &&
11174 	    is_mmio_work(work) &&
11175 	    pageflip_finished(intel_crtc, work))
11176 		page_flip_completed(intel_crtc);
11177 
11178 	spin_unlock_irqrestore(&dev->event_lock, flags);
11179 }
11180 
11181 static inline void intel_mark_page_flip_active(struct intel_crtc *crtc,
11182 					       struct intel_flip_work *work)
11183 {
11184 	work->flip_queued_vblank = intel_crtc_get_vblank_counter(crtc);
11185 
11186 	/* Ensure that the work item is consistent when activating it ... */
11187 	smp_mb__before_atomic();
11188 	atomic_set(&work->pending, 1);
11189 }
11190 
11191 static int intel_gen2_queue_flip(struct drm_device *dev,
11192 				 struct drm_crtc *crtc,
11193 				 struct drm_framebuffer *fb,
11194 				 struct drm_i915_gem_object *obj,
11195 				 struct drm_i915_gem_request *req,
11196 				 uint32_t flags)
11197 {
11198 	struct intel_ring *ring = req->ring;
11199 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11200 	u32 flip_mask;
11201 	int ret;
11202 
11203 	ret = intel_ring_begin(req, 6);
11204 	if (ret)
11205 		return ret;
11206 
11207 	/* Can't queue multiple flips, so wait for the previous
11208 	 * one to finish before executing the next.
11209 	 */
11210 	if (intel_crtc->plane)
11211 		flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11212 	else
11213 		flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11214 	intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11215 	intel_ring_emit(ring, MI_NOOP);
11216 	intel_ring_emit(ring, MI_DISPLAY_FLIP |
11217 			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11218 	intel_ring_emit(ring, fb->pitches[0]);
11219 	intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11220 	intel_ring_emit(ring, 0); /* aux display base address, unused */
11221 
11222 	return 0;
11223 }
11224 
11225 static int intel_gen3_queue_flip(struct drm_device *dev,
11226 				 struct drm_crtc *crtc,
11227 				 struct drm_framebuffer *fb,
11228 				 struct drm_i915_gem_object *obj,
11229 				 struct drm_i915_gem_request *req,
11230 				 uint32_t flags)
11231 {
11232 	struct intel_ring *ring = req->ring;
11233 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11234 	u32 flip_mask;
11235 	int ret;
11236 
11237 	ret = intel_ring_begin(req, 6);
11238 	if (ret)
11239 		return ret;
11240 
11241 	if (intel_crtc->plane)
11242 		flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11243 	else
11244 		flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11245 	intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11246 	intel_ring_emit(ring, MI_NOOP);
11247 	intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
11248 			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11249 	intel_ring_emit(ring, fb->pitches[0]);
11250 	intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11251 	intel_ring_emit(ring, MI_NOOP);
11252 
11253 	return 0;
11254 }
11255 
11256 static int intel_gen4_queue_flip(struct drm_device *dev,
11257 				 struct drm_crtc *crtc,
11258 				 struct drm_framebuffer *fb,
11259 				 struct drm_i915_gem_object *obj,
11260 				 struct drm_i915_gem_request *req,
11261 				 uint32_t flags)
11262 {
11263 	struct intel_ring *ring = req->ring;
11264 	struct drm_i915_private *dev_priv = to_i915(dev);
11265 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11266 	uint32_t pf, pipesrc;
11267 	int ret;
11268 
11269 	ret = intel_ring_begin(req, 4);
11270 	if (ret)
11271 		return ret;
11272 
11273 	/* i965+ uses the linear or tiled offsets from the
11274 	 * Display Registers (which do not change across a page-flip)
11275 	 * so we need only reprogram the base address.
11276 	 */
11277 	intel_ring_emit(ring, MI_DISPLAY_FLIP |
11278 			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11279 	intel_ring_emit(ring, fb->pitches[0]);
11280 	intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset |
11281 			i915_gem_object_get_tiling(obj));
11282 
11283 	/* XXX Enabling the panel-fitter across page-flip is so far
11284 	 * untested on non-native modes, so ignore it for now.
11285 	 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11286 	 */
11287 	pf = 0;
11288 	pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11289 	intel_ring_emit(ring, pf | pipesrc);
11290 
11291 	return 0;
11292 }
11293 
11294 static int intel_gen6_queue_flip(struct drm_device *dev,
11295 				 struct drm_crtc *crtc,
11296 				 struct drm_framebuffer *fb,
11297 				 struct drm_i915_gem_object *obj,
11298 				 struct drm_i915_gem_request *req,
11299 				 uint32_t flags)
11300 {
11301 	struct intel_ring *ring = req->ring;
11302 	struct drm_i915_private *dev_priv = to_i915(dev);
11303 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11304 	uint32_t pf, pipesrc;
11305 	int ret;
11306 
11307 	ret = intel_ring_begin(req, 4);
11308 	if (ret)
11309 		return ret;
11310 
11311 	intel_ring_emit(ring, MI_DISPLAY_FLIP |
11312 			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11313 	intel_ring_emit(ring, fb->pitches[0] | i915_gem_object_get_tiling(obj));
11314 	intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11315 
11316 	/* Contrary to the suggestions in the documentation,
11317 	 * "Enable Panel Fitter" does not seem to be required when page
11318 	 * flipping with a non-native mode, and worse causes a normal
11319 	 * modeset to fail.
11320 	 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11321 	 */
11322 	pf = 0;
11323 	pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11324 	intel_ring_emit(ring, pf | pipesrc);
11325 
11326 	return 0;
11327 }
11328 
11329 static int intel_gen7_queue_flip(struct drm_device *dev,
11330 				 struct drm_crtc *crtc,
11331 				 struct drm_framebuffer *fb,
11332 				 struct drm_i915_gem_object *obj,
11333 				 struct drm_i915_gem_request *req,
11334 				 uint32_t flags)
11335 {
11336 	struct intel_ring *ring = req->ring;
11337 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11338 	uint32_t plane_bit = 0;
11339 	int len, ret;
11340 
11341 	switch (intel_crtc->plane) {
11342 	case PLANE_A:
11343 		plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11344 		break;
11345 	case PLANE_B:
11346 		plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11347 		break;
11348 	case PLANE_C:
11349 		plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11350 		break;
11351 	default:
11352 		WARN_ONCE(1, "unknown plane in flip command\n");
11353 		return -ENODEV;
11354 	}
11355 
11356 	len = 4;
11357 	if (req->engine->id == RCS) {
11358 		len += 6;
11359 		/*
11360 		 * On Gen 8, SRM is now taking an extra dword to accommodate
11361 		 * 48bits addresses, and we need a NOOP for the batch size to
11362 		 * stay even.
11363 		 */
11364 		if (IS_GEN8(dev))
11365 			len += 2;
11366 	}
11367 
11368 	/*
11369 	 * BSpec MI_DISPLAY_FLIP for IVB:
11370 	 * "The full packet must be contained within the same cache line."
11371 	 *
11372 	 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11373 	 * cacheline, if we ever start emitting more commands before
11374 	 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11375 	 * then do the cacheline alignment, and finally emit the
11376 	 * MI_DISPLAY_FLIP.
11377 	 */
11378 	ret = intel_ring_cacheline_align(req);
11379 	if (ret)
11380 		return ret;
11381 
11382 	ret = intel_ring_begin(req, len);
11383 	if (ret)
11384 		return ret;
11385 
11386 	/* Unmask the flip-done completion message. Note that the bspec says that
11387 	 * we should do this for both the BCS and RCS, and that we must not unmask
11388 	 * more than one flip event at any time (or ensure that one flip message
11389 	 * can be sent by waiting for flip-done prior to queueing new flips).
11390 	 * Experimentation says that BCS works despite DERRMR masking all
11391 	 * flip-done completion events and that unmasking all planes at once
11392 	 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11393 	 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11394 	 */
11395 	if (req->engine->id == RCS) {
11396 		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11397 		intel_ring_emit_reg(ring, DERRMR);
11398 		intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11399 					  DERRMR_PIPEB_PRI_FLIP_DONE |
11400 					  DERRMR_PIPEC_PRI_FLIP_DONE));
11401 		if (IS_GEN8(dev))
11402 			intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
11403 					      MI_SRM_LRM_GLOBAL_GTT);
11404 		else
11405 			intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
11406 					      MI_SRM_LRM_GLOBAL_GTT);
11407 		intel_ring_emit_reg(ring, DERRMR);
11408 		intel_ring_emit(ring, req->engine->scratch.gtt_offset + 256);
11409 		if (IS_GEN8(dev)) {
11410 			intel_ring_emit(ring, 0);
11411 			intel_ring_emit(ring, MI_NOOP);
11412 		}
11413 	}
11414 
11415 	intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11416 	intel_ring_emit(ring, fb->pitches[0] | i915_gem_object_get_tiling(obj));
11417 	intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11418 	intel_ring_emit(ring, (MI_NOOP));
11419 
11420 	return 0;
11421 }
11422 
11423 static bool use_mmio_flip(struct intel_engine_cs *engine,
11424 			  struct drm_i915_gem_object *obj)
11425 {
11426 	struct reservation_object *resv;
11427 
11428 	/*
11429 	 * This is not being used for older platforms, because
11430 	 * non-availability of flip done interrupt forces us to use
11431 	 * CS flips. Older platforms derive flip done using some clever
11432 	 * tricks involving the flip_pending status bits and vblank irqs.
11433 	 * So using MMIO flips there would disrupt this mechanism.
11434 	 */
11435 
11436 	if (engine == NULL)
11437 		return true;
11438 
11439 	if (INTEL_GEN(engine->i915) < 5)
11440 		return false;
11441 
11442 	if (i915.use_mmio_flip < 0)
11443 		return false;
11444 	else if (i915.use_mmio_flip > 0)
11445 		return true;
11446 	else if (i915.enable_execlists)
11447 		return true;
11448 
11449 	resv = i915_gem_object_get_dmabuf_resv(obj);
11450 	if (resv && !reservation_object_test_signaled_rcu(resv, false))
11451 		return true;
11452 
11453 	return engine != i915_gem_active_get_engine(&obj->last_write,
11454 						    &obj->base.dev->struct_mutex);
11455 }
11456 
11457 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11458 			     unsigned int rotation,
11459 			     struct intel_flip_work *work)
11460 {
11461 	struct drm_device *dev = intel_crtc->base.dev;
11462 	struct drm_i915_private *dev_priv = to_i915(dev);
11463 	struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11464 	const enum i915_pipe pipe = intel_crtc->pipe;
11465 	u32 ctl, stride, tile_height;
11466 
11467 	ctl = I915_READ(PLANE_CTL(pipe, 0));
11468 	ctl &= ~PLANE_CTL_TILED_MASK;
11469 	switch (fb->modifier[0]) {
11470 	case DRM_FORMAT_MOD_NONE:
11471 		break;
11472 	case I915_FORMAT_MOD_X_TILED:
11473 		ctl |= PLANE_CTL_TILED_X;
11474 		break;
11475 	case I915_FORMAT_MOD_Y_TILED:
11476 		ctl |= PLANE_CTL_TILED_Y;
11477 		break;
11478 	case I915_FORMAT_MOD_Yf_TILED:
11479 		ctl |= PLANE_CTL_TILED_YF;
11480 		break;
11481 	default:
11482 		MISSING_CASE(fb->modifier[0]);
11483 	}
11484 
11485 	/*
11486 	 * The stride is either expressed as a multiple of 64 bytes chunks for
11487 	 * linear buffers or in number of tiles for tiled buffers.
11488 	 */
11489 	if (intel_rotation_90_or_270(rotation)) {
11490 		/* stride = Surface height in tiles */
11491 		tile_height = intel_tile_height(dev_priv, fb->modifier[0], 0);
11492 		stride = DIV_ROUND_UP(fb->height, tile_height);
11493 	} else {
11494 		stride = fb->pitches[0] /
11495 			intel_fb_stride_alignment(dev_priv, fb->modifier[0],
11496 						  fb->pixel_format);
11497 	}
11498 
11499 	/*
11500 	 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11501 	 * PLANE_SURF updates, the update is then guaranteed to be atomic.
11502 	 */
11503 	I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11504 	I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11505 
11506 	I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11507 	POSTING_READ(PLANE_SURF(pipe, 0));
11508 }
11509 
11510 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11511 			     struct intel_flip_work *work)
11512 {
11513 	struct drm_device *dev = intel_crtc->base.dev;
11514 	struct drm_i915_private *dev_priv = to_i915(dev);
11515 	struct intel_framebuffer *intel_fb =
11516 		to_intel_framebuffer(intel_crtc->base.primary->fb);
11517 	struct drm_i915_gem_object *obj = intel_fb->obj;
11518 	i915_reg_t reg = DSPCNTR(intel_crtc->plane);
11519 	u32 dspcntr;
11520 
11521 	dspcntr = I915_READ(reg);
11522 
11523 	if (i915_gem_object_is_tiled(obj))
11524 		dspcntr |= DISPPLANE_TILED;
11525 	else
11526 		dspcntr &= ~DISPPLANE_TILED;
11527 
11528 	I915_WRITE(reg, dspcntr);
11529 
11530 	I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
11531 	POSTING_READ(DSPSURF(intel_crtc->plane));
11532 }
11533 
11534 static void intel_mmio_flip_work_func(struct work_struct *w)
11535 {
11536 	struct intel_flip_work *work =
11537 		container_of(w, struct intel_flip_work, mmio_work);
11538 	struct intel_crtc *crtc = to_intel_crtc(work->crtc);
11539 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11540 	struct intel_framebuffer *intel_fb =
11541 		to_intel_framebuffer(crtc->base.primary->fb);
11542 	struct drm_i915_gem_object *obj = intel_fb->obj;
11543 	struct reservation_object *resv;
11544 
11545 	if (work->flip_queued_req)
11546 		WARN_ON(i915_wait_request(work->flip_queued_req,
11547 					  false, NULL,
11548 					  NO_WAITBOOST));
11549 
11550 	/* For framebuffer backed by dmabuf, wait for fence */
11551 	resv = i915_gem_object_get_dmabuf_resv(obj);
11552 	if (resv)
11553 		WARN_ON(reservation_object_wait_timeout_rcu(resv, false, false,
11554 							    MAX_SCHEDULE_TIMEOUT) < 0);
11555 
11556 	intel_pipe_update_start(crtc);
11557 
11558 	if (INTEL_GEN(dev_priv) >= 9)
11559 		skl_do_mmio_flip(crtc, work->rotation, work);
11560 	else
11561 		/* use_mmio_flip() retricts MMIO flips to ilk+ */
11562 		ilk_do_mmio_flip(crtc, work);
11563 
11564 	intel_pipe_update_end(crtc, work);
11565 }
11566 
11567 static int intel_default_queue_flip(struct drm_device *dev,
11568 				    struct drm_crtc *crtc,
11569 				    struct drm_framebuffer *fb,
11570 				    struct drm_i915_gem_object *obj,
11571 				    struct drm_i915_gem_request *req,
11572 				    uint32_t flags)
11573 {
11574 	return -ENODEV;
11575 }
11576 
11577 static bool __pageflip_stall_check_cs(struct drm_i915_private *dev_priv,
11578 				      struct intel_crtc *intel_crtc,
11579 				      struct intel_flip_work *work)
11580 {
11581 	u32 addr, vblank;
11582 
11583 	if (!atomic_read(&work->pending))
11584 		return false;
11585 
11586 	smp_rmb();
11587 
11588 	vblank = intel_crtc_get_vblank_counter(intel_crtc);
11589 	if (work->flip_ready_vblank == 0) {
11590 		if (work->flip_queued_req &&
11591 		    !i915_gem_request_completed(work->flip_queued_req))
11592 			return false;
11593 
11594 		work->flip_ready_vblank = vblank;
11595 	}
11596 
11597 	if (vblank - work->flip_ready_vblank < 3)
11598 		return false;
11599 
11600 	/* Potential stall - if we see that the flip has happened,
11601 	 * assume a missed interrupt. */
11602 	if (INTEL_GEN(dev_priv) >= 4)
11603 		addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11604 	else
11605 		addr = I915_READ(DSPADDR(intel_crtc->plane));
11606 
11607 	/* There is a potential issue here with a false positive after a flip
11608 	 * to the same address. We could address this by checking for a
11609 	 * non-incrementing frame counter.
11610 	 */
11611 	return addr == work->gtt_offset;
11612 }
11613 
11614 void intel_check_page_flip(struct drm_i915_private *dev_priv, int pipe)
11615 {
11616 	struct drm_device *dev = &dev_priv->drm;
11617 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11618 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11619 	struct intel_flip_work *work;
11620 
11621 //	WARN_ON(!in_interrupt());
11622 
11623 	if (crtc == NULL)
11624 		return;
11625 
11626 	lockmgr(&dev->event_lock, LK_EXCLUSIVE);
11627 	work = intel_crtc->flip_work;
11628 
11629 	if (work != NULL && !is_mmio_work(work) &&
11630 	    __pageflip_stall_check_cs(dev_priv, intel_crtc, work)) {
11631 		WARN_ONCE(1,
11632 			  "Kicking stuck page flip: queued at %d, now %d\n",
11633 			work->flip_queued_vblank, intel_crtc_get_vblank_counter(intel_crtc));
11634 		page_flip_completed(intel_crtc);
11635 		work = NULL;
11636 	}
11637 
11638 	if (work != NULL && !is_mmio_work(work) &&
11639 	    intel_crtc_get_vblank_counter(intel_crtc) - work->flip_queued_vblank > 1)
11640 		intel_queue_rps_boost_for_request(work->flip_queued_req);
11641 	lockmgr(&dev->event_lock, LK_RELEASE);
11642 }
11643 
11644 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11645 				struct drm_framebuffer *fb,
11646 				struct drm_pending_vblank_event *event,
11647 				uint32_t page_flip_flags)
11648 {
11649 	struct drm_device *dev = crtc->dev;
11650 	struct drm_i915_private *dev_priv = to_i915(dev);
11651 	struct drm_framebuffer *old_fb = crtc->primary->fb;
11652 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11653 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11654 	struct drm_plane *primary = crtc->primary;
11655 	enum i915_pipe pipe = intel_crtc->pipe;
11656 	struct intel_flip_work *work;
11657 	struct intel_engine_cs *engine;
11658 	bool mmio_flip;
11659 	struct drm_i915_gem_request *request;
11660 	int ret;
11661 
11662 	/*
11663 	 * drm_mode_page_flip_ioctl() should already catch this, but double
11664 	 * check to be safe.  In the future we may enable pageflipping from
11665 	 * a disabled primary plane.
11666 	 */
11667 	if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11668 		return -EBUSY;
11669 
11670 	/* Can't change pixel format via MI display flips. */
11671 	if (fb->pixel_format != crtc->primary->fb->pixel_format)
11672 		return -EINVAL;
11673 
11674 	/*
11675 	 * TILEOFF/LINOFF registers can't be changed via MI display flips.
11676 	 * Note that pitch changes could also affect these register.
11677 	 */
11678 	if (INTEL_INFO(dev)->gen > 3 &&
11679 	    (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11680 	     fb->pitches[0] != crtc->primary->fb->pitches[0]))
11681 		return -EINVAL;
11682 
11683 	if (i915_terminally_wedged(&dev_priv->gpu_error))
11684 		goto out_hang;
11685 
11686 	work = kzalloc(sizeof(*work), GFP_KERNEL);
11687 	if (work == NULL)
11688 		return -ENOMEM;
11689 
11690 	work->event = event;
11691 	work->crtc = crtc;
11692 	work->old_fb = old_fb;
11693 	INIT_WORK(&work->unpin_work, intel_unpin_work_fn);
11694 
11695 	ret = drm_crtc_vblank_get(crtc);
11696 	if (ret)
11697 		goto free_work;
11698 
11699 	/* We borrow the event spin lock for protecting flip_work */
11700 	spin_lock_irq(&dev->event_lock);
11701 	if (intel_crtc->flip_work) {
11702 		/* Before declaring the flip queue wedged, check if
11703 		 * the hardware completed the operation behind our backs.
11704 		 */
11705 		if (pageflip_finished(intel_crtc, intel_crtc->flip_work)) {
11706 			DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11707 			page_flip_completed(intel_crtc);
11708 		} else {
11709 			DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11710 			spin_unlock_irq(&dev->event_lock);
11711 
11712 			drm_crtc_vblank_put(crtc);
11713 			kfree(work);
11714 			return -EBUSY;
11715 		}
11716 	}
11717 	intel_crtc->flip_work = work;
11718 	spin_unlock_irq(&dev->event_lock);
11719 
11720 	if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11721 		flush_workqueue(dev_priv->wq);
11722 
11723 	/* Reference the objects for the scheduled work. */
11724 	drm_framebuffer_reference(work->old_fb);
11725 
11726 	crtc->primary->fb = fb;
11727 	update_state_fb(crtc->primary);
11728 
11729 	intel_fbc_pre_update(intel_crtc, intel_crtc->config,
11730 			     to_intel_plane_state(primary->state));
11731 
11732 	work->pending_flip_obj = i915_gem_object_get(obj);
11733 
11734 	ret = i915_mutex_lock_interruptible(dev);
11735 	if (ret)
11736 		goto cleanup;
11737 
11738 	intel_crtc->reset_counter = i915_reset_counter(&dev_priv->gpu_error);
11739 	if (__i915_reset_in_progress_or_wedged(intel_crtc->reset_counter)) {
11740 		ret = -EIO;
11741 		goto cleanup;
11742 	}
11743 
11744 	atomic_inc(&intel_crtc->unpin_work_count);
11745 
11746 	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11747 		work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
11748 
11749 	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
11750 		engine = &dev_priv->engine[BCS];
11751 		if (i915_gem_object_get_tiling(obj) !=
11752 		    i915_gem_object_get_tiling(intel_fb_obj(work->old_fb)))
11753 			/* vlv: DISPLAY_FLIP fails to change tiling */
11754 			engine = NULL;
11755 	} else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11756 		engine = &dev_priv->engine[BCS];
11757 	} else if (INTEL_INFO(dev)->gen >= 7) {
11758 		engine = i915_gem_active_get_engine(&obj->last_write,
11759 						    &obj->base.dev->struct_mutex);
11760 		if (engine == NULL || engine->id != RCS)
11761 			engine = &dev_priv->engine[BCS];
11762 	} else {
11763 		engine = &dev_priv->engine[RCS];
11764 	}
11765 
11766 	mmio_flip = use_mmio_flip(engine, obj);
11767 
11768 	ret = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
11769 	if (ret)
11770 		goto cleanup_pending;
11771 
11772 	work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11773 						  obj, 0);
11774 	work->gtt_offset += intel_crtc->dspaddr_offset;
11775 	work->rotation = crtc->primary->state->rotation;
11776 
11777 	if (mmio_flip) {
11778 		INIT_WORK(&work->mmio_work, intel_mmio_flip_work_func);
11779 
11780 		work->flip_queued_req = i915_gem_active_get(&obj->last_write,
11781 							    &obj->base.dev->struct_mutex);
11782 		schedule_work(&work->mmio_work);
11783 	} else {
11784 		request = i915_gem_request_alloc(engine, engine->last_context);
11785 		if (IS_ERR(request)) {
11786 			ret = PTR_ERR(request);
11787 			goto cleanup_unpin;
11788 		}
11789 
11790 		ret = i915_gem_object_sync(obj, request);
11791 		if (ret)
11792 			goto cleanup_request;
11793 
11794 		ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11795 						   page_flip_flags);
11796 		if (ret)
11797 			goto cleanup_request;
11798 
11799 		intel_mark_page_flip_active(intel_crtc, work);
11800 
11801 		work->flip_queued_req = i915_gem_request_get(request);
11802 		i915_add_request_no_flush(request);
11803 	}
11804 
11805 	i915_gem_track_fb(intel_fb_obj(old_fb), obj,
11806 			  to_intel_plane(primary)->frontbuffer_bit);
11807 	mutex_unlock(&dev->struct_mutex);
11808 
11809 	intel_frontbuffer_flip_prepare(to_i915(dev),
11810 				       to_intel_plane(primary)->frontbuffer_bit);
11811 
11812 	trace_i915_flip_request(intel_crtc->plane, obj);
11813 
11814 	return 0;
11815 
11816 cleanup_request:
11817 	i915_add_request_no_flush(request);
11818 cleanup_unpin:
11819 	intel_unpin_fb_obj(fb, crtc->primary->state->rotation);
11820 cleanup_pending:
11821 	atomic_dec(&intel_crtc->unpin_work_count);
11822 	mutex_unlock(&dev->struct_mutex);
11823 cleanup:
11824 	crtc->primary->fb = old_fb;
11825 	update_state_fb(crtc->primary);
11826 
11827 	i915_gem_object_put_unlocked(obj);
11828 	drm_framebuffer_unreference(work->old_fb);
11829 
11830 	spin_lock_irq(&dev->event_lock);
11831 	intel_crtc->flip_work = NULL;
11832 	spin_unlock_irq(&dev->event_lock);
11833 
11834 	drm_crtc_vblank_put(crtc);
11835 free_work:
11836 	kfree(work);
11837 
11838 	if (ret == -EIO) {
11839 		struct drm_atomic_state *state;
11840 		struct drm_plane_state *plane_state;
11841 
11842 out_hang:
11843 		state = drm_atomic_state_alloc(dev);
11844 		if (!state)
11845 			return -ENOMEM;
11846 		state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11847 
11848 retry:
11849 		plane_state = drm_atomic_get_plane_state(state, primary);
11850 		ret = PTR_ERR_OR_ZERO(plane_state);
11851 		if (!ret) {
11852 			drm_atomic_set_fb_for_plane(plane_state, fb);
11853 
11854 			ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11855 			if (!ret)
11856 				ret = drm_atomic_commit(state);
11857 		}
11858 
11859 		if (ret == -EDEADLK) {
11860 			drm_modeset_backoff(state->acquire_ctx);
11861 			drm_atomic_state_clear(state);
11862 			goto retry;
11863 		}
11864 
11865 		if (ret)
11866 			drm_atomic_state_free(state);
11867 
11868 		if (ret == 0 && event) {
11869 			spin_lock_irq(&dev->event_lock);
11870 			drm_crtc_send_vblank_event(crtc, event);
11871 			spin_unlock_irq(&dev->event_lock);
11872 		}
11873 	}
11874 	return ret;
11875 }
11876 
11877 
11878 /**
11879  * intel_wm_need_update - Check whether watermarks need updating
11880  * @plane: drm plane
11881  * @state: new plane state
11882  *
11883  * Check current plane state versus the new one to determine whether
11884  * watermarks need to be recalculated.
11885  *
11886  * Returns true or false.
11887  */
11888 static bool intel_wm_need_update(struct drm_plane *plane,
11889 				 struct drm_plane_state *state)
11890 {
11891 	struct intel_plane_state *new = to_intel_plane_state(state);
11892 	struct intel_plane_state *cur = to_intel_plane_state(plane->state);
11893 
11894 	/* Update watermarks on tiling or size changes. */
11895 	if (new->visible != cur->visible)
11896 		return true;
11897 
11898 	if (!cur->base.fb || !new->base.fb)
11899 		return false;
11900 
11901 	if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] ||
11902 	    cur->base.rotation != new->base.rotation ||
11903 	    drm_rect_width(&new->src) != drm_rect_width(&cur->src) ||
11904 	    drm_rect_height(&new->src) != drm_rect_height(&cur->src) ||
11905 	    drm_rect_width(&new->dst) != drm_rect_width(&cur->dst) ||
11906 	    drm_rect_height(&new->dst) != drm_rect_height(&cur->dst))
11907 		return true;
11908 
11909 	return false;
11910 }
11911 
11912 static bool needs_scaling(struct intel_plane_state *state)
11913 {
11914 	int src_w = drm_rect_width(&state->src) >> 16;
11915 	int src_h = drm_rect_height(&state->src) >> 16;
11916 	int dst_w = drm_rect_width(&state->dst);
11917 	int dst_h = drm_rect_height(&state->dst);
11918 
11919 	return (src_w != dst_w || src_h != dst_h);
11920 }
11921 
11922 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11923 				    struct drm_plane_state *plane_state)
11924 {
11925 	struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
11926 	struct drm_crtc *crtc = crtc_state->crtc;
11927 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11928 	struct drm_plane *plane = plane_state->plane;
11929 	struct drm_device *dev = crtc->dev;
11930 	struct drm_i915_private *dev_priv = to_i915(dev);
11931 	struct intel_plane_state *old_plane_state =
11932 		to_intel_plane_state(plane->state);
11933 	bool mode_changed = needs_modeset(crtc_state);
11934 	bool was_crtc_enabled = crtc->state->active;
11935 	bool is_crtc_enabled = crtc_state->active;
11936 	bool turn_off, turn_on, visible, was_visible;
11937 	struct drm_framebuffer *fb = plane_state->fb;
11938 	int ret;
11939 
11940 	if (INTEL_GEN(dev) >= 9 && plane->type != DRM_PLANE_TYPE_CURSOR) {
11941 		ret = skl_update_scaler_plane(
11942 			to_intel_crtc_state(crtc_state),
11943 			to_intel_plane_state(plane_state));
11944 		if (ret)
11945 			return ret;
11946 	}
11947 
11948 	was_visible = old_plane_state->visible;
11949 	visible = to_intel_plane_state(plane_state)->visible;
11950 
11951 	if (!was_crtc_enabled && WARN_ON(was_visible))
11952 		was_visible = false;
11953 
11954 	/*
11955 	 * Visibility is calculated as if the crtc was on, but
11956 	 * after scaler setup everything depends on it being off
11957 	 * when the crtc isn't active.
11958 	 *
11959 	 * FIXME this is wrong for watermarks. Watermarks should also
11960 	 * be computed as if the pipe would be active. Perhaps move
11961 	 * per-plane wm computation to the .check_plane() hook, and
11962 	 * only combine the results from all planes in the current place?
11963 	 */
11964 	if (!is_crtc_enabled)
11965 		to_intel_plane_state(plane_state)->visible = visible = false;
11966 
11967 	if (!was_visible && !visible)
11968 		return 0;
11969 
11970 	if (fb != old_plane_state->base.fb)
11971 		pipe_config->fb_changed = true;
11972 
11973 	turn_off = was_visible && (!visible || mode_changed);
11974 	turn_on = visible && (!was_visible || mode_changed);
11975 
11976 	DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n",
11977 			 intel_crtc->base.base.id,
11978 			 intel_crtc->base.name,
11979 			 plane->base.id, plane->name,
11980 			 fb ? fb->base.id : -1);
11981 
11982 	DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
11983 			 plane->base.id, plane->name,
11984 			 was_visible, visible,
11985 			 turn_off, turn_on, mode_changed);
11986 
11987 	if (turn_on) {
11988 		pipe_config->update_wm_pre = true;
11989 
11990 		/* must disable cxsr around plane enable/disable */
11991 		if (plane->type != DRM_PLANE_TYPE_CURSOR)
11992 			pipe_config->disable_cxsr = true;
11993 	} else if (turn_off) {
11994 		pipe_config->update_wm_post = true;
11995 
11996 		/* must disable cxsr around plane enable/disable */
11997 		if (plane->type != DRM_PLANE_TYPE_CURSOR)
11998 			pipe_config->disable_cxsr = true;
11999 	} else if (intel_wm_need_update(plane, plane_state)) {
12000 		/* FIXME bollocks */
12001 		pipe_config->update_wm_pre = true;
12002 		pipe_config->update_wm_post = true;
12003 	}
12004 
12005 	/* Pre-gen9 platforms need two-step watermark updates */
12006 	if ((pipe_config->update_wm_pre || pipe_config->update_wm_post) &&
12007 	    INTEL_INFO(dev)->gen < 9 && dev_priv->display.optimize_watermarks)
12008 		to_intel_crtc_state(crtc_state)->wm.need_postvbl_update = true;
12009 
12010 	if (visible || was_visible)
12011 		pipe_config->fb_bits |= to_intel_plane(plane)->frontbuffer_bit;
12012 
12013 	/*
12014 	 * WaCxSRDisabledForSpriteScaling:ivb
12015 	 *
12016 	 * cstate->update_wm was already set above, so this flag will
12017 	 * take effect when we commit and program watermarks.
12018 	 */
12019 	if (plane->type == DRM_PLANE_TYPE_OVERLAY && IS_IVYBRIDGE(dev) &&
12020 	    needs_scaling(to_intel_plane_state(plane_state)) &&
12021 	    !needs_scaling(old_plane_state))
12022 		pipe_config->disable_lp_wm = true;
12023 
12024 	return 0;
12025 }
12026 
12027 static bool encoders_cloneable(const struct intel_encoder *a,
12028 			       const struct intel_encoder *b)
12029 {
12030 	/* masks could be asymmetric, so check both ways */
12031 	return a == b || (a->cloneable & (1 << b->type) &&
12032 			  b->cloneable & (1 << a->type));
12033 }
12034 
12035 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
12036 					 struct intel_crtc *crtc,
12037 					 struct intel_encoder *encoder)
12038 {
12039 	struct intel_encoder *source_encoder;
12040 	struct drm_connector *connector;
12041 	struct drm_connector_state *connector_state;
12042 	int i;
12043 
12044 	for_each_connector_in_state(state, connector, connector_state, i) {
12045 		if (connector_state->crtc != &crtc->base)
12046 			continue;
12047 
12048 		source_encoder =
12049 			to_intel_encoder(connector_state->best_encoder);
12050 		if (!encoders_cloneable(encoder, source_encoder))
12051 			return false;
12052 	}
12053 
12054 	return true;
12055 }
12056 
12057 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
12058 				   struct drm_crtc_state *crtc_state)
12059 {
12060 	struct drm_device *dev = crtc->dev;
12061 	struct drm_i915_private *dev_priv = to_i915(dev);
12062 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12063 	struct intel_crtc_state *pipe_config =
12064 		to_intel_crtc_state(crtc_state);
12065 	struct drm_atomic_state *state = crtc_state->state;
12066 	int ret;
12067 	bool mode_changed = needs_modeset(crtc_state);
12068 
12069 	if (mode_changed && !crtc_state->active)
12070 		pipe_config->update_wm_post = true;
12071 
12072 	if (mode_changed && crtc_state->enable &&
12073 	    dev_priv->display.crtc_compute_clock &&
12074 	    !WARN_ON(pipe_config->shared_dpll)) {
12075 		ret = dev_priv->display.crtc_compute_clock(intel_crtc,
12076 							   pipe_config);
12077 		if (ret)
12078 			return ret;
12079 	}
12080 
12081 	if (crtc_state->color_mgmt_changed) {
12082 		ret = intel_color_check(crtc, crtc_state);
12083 		if (ret)
12084 			return ret;
12085 
12086 		/*
12087 		 * Changing color management on Intel hardware is
12088 		 * handled as part of planes update.
12089 		 */
12090 		crtc_state->planes_changed = true;
12091 	}
12092 
12093 	ret = 0;
12094 	if (dev_priv->display.compute_pipe_wm) {
12095 		ret = dev_priv->display.compute_pipe_wm(pipe_config);
12096 		if (ret) {
12097 			DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
12098 			return ret;
12099 		}
12100 	}
12101 
12102 	if (dev_priv->display.compute_intermediate_wm &&
12103 	    !to_intel_atomic_state(state)->skip_intermediate_wm) {
12104 		if (WARN_ON(!dev_priv->display.compute_pipe_wm))
12105 			return 0;
12106 
12107 		/*
12108 		 * Calculate 'intermediate' watermarks that satisfy both the
12109 		 * old state and the new state.  We can program these
12110 		 * immediately.
12111 		 */
12112 		ret = dev_priv->display.compute_intermediate_wm(crtc->dev,
12113 								intel_crtc,
12114 								pipe_config);
12115 		if (ret) {
12116 			DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
12117 			return ret;
12118 		}
12119 	} else if (dev_priv->display.compute_intermediate_wm) {
12120 		if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9)
12121 			pipe_config->wm.ilk.intermediate = pipe_config->wm.ilk.optimal;
12122 	}
12123 
12124 	if (INTEL_INFO(dev)->gen >= 9) {
12125 		if (mode_changed)
12126 			ret = skl_update_scaler_crtc(pipe_config);
12127 
12128 		if (!ret)
12129 			ret = intel_atomic_setup_scalers(dev, intel_crtc,
12130 							 pipe_config);
12131 	}
12132 
12133 	return ret;
12134 }
12135 
12136 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
12137 	.mode_set_base_atomic = intel_pipe_set_base_atomic,
12138 	.atomic_begin = intel_begin_crtc_commit,
12139 	.atomic_flush = intel_finish_crtc_commit,
12140 	.atomic_check = intel_crtc_atomic_check,
12141 };
12142 
12143 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12144 {
12145 	struct intel_connector *connector;
12146 
12147 	for_each_intel_connector(dev, connector) {
12148 		if (connector->base.state->crtc)
12149 			drm_connector_unreference(&connector->base);
12150 
12151 		if (connector->base.encoder) {
12152 			connector->base.state->best_encoder =
12153 				connector->base.encoder;
12154 			connector->base.state->crtc =
12155 				connector->base.encoder->crtc;
12156 
12157 			drm_connector_reference(&connector->base);
12158 		} else {
12159 			connector->base.state->best_encoder = NULL;
12160 			connector->base.state->crtc = NULL;
12161 		}
12162 	}
12163 }
12164 
12165 static void
12166 connected_sink_compute_bpp(struct intel_connector *connector,
12167 			   struct intel_crtc_state *pipe_config)
12168 {
12169 	int bpp = pipe_config->pipe_bpp;
12170 
12171 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
12172 		connector->base.base.id,
12173 		connector->base.name);
12174 
12175 	/* Don't use an invalid EDID bpc value */
12176 	if (connector->base.display_info.bpc &&
12177 	    connector->base.display_info.bpc * 3 < bpp) {
12178 		DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12179 			      bpp, connector->base.display_info.bpc*3);
12180 		pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
12181 	}
12182 
12183 	/* Clamp bpp to default limit on screens without EDID 1.4 */
12184 	if (connector->base.display_info.bpc == 0) {
12185 		int type = connector->base.connector_type;
12186 		int clamp_bpp = 24;
12187 
12188 		/* Fall back to 18 bpp when DP sink capability is unknown. */
12189 		if (type == DRM_MODE_CONNECTOR_DisplayPort ||
12190 		    type == DRM_MODE_CONNECTOR_eDP)
12191 			clamp_bpp = 18;
12192 
12193 		if (bpp > clamp_bpp) {
12194 			DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of %d\n",
12195 				      bpp, clamp_bpp);
12196 			pipe_config->pipe_bpp = clamp_bpp;
12197 		}
12198 	}
12199 }
12200 
12201 static int
12202 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12203 			  struct intel_crtc_state *pipe_config)
12204 {
12205 	struct drm_device *dev = crtc->base.dev;
12206 	struct drm_atomic_state *state;
12207 	struct drm_connector *connector;
12208 	struct drm_connector_state *connector_state;
12209 	int bpp, i;
12210 
12211 	if ((IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)))
12212 		bpp = 10*3;
12213 	else if (INTEL_INFO(dev)->gen >= 5)
12214 		bpp = 12*3;
12215 	else
12216 		bpp = 8*3;
12217 
12218 
12219 	pipe_config->pipe_bpp = bpp;
12220 
12221 	state = pipe_config->base.state;
12222 
12223 	/* Clamp display bpp to EDID value */
12224 	for_each_connector_in_state(state, connector, connector_state, i) {
12225 		if (connector_state->crtc != &crtc->base)
12226 			continue;
12227 
12228 		connected_sink_compute_bpp(to_intel_connector(connector),
12229 					   pipe_config);
12230 	}
12231 
12232 	return bpp;
12233 }
12234 
12235 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12236 {
12237 	DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12238 			"type: 0x%x flags: 0x%x\n",
12239 		mode->crtc_clock,
12240 		mode->crtc_hdisplay, mode->crtc_hsync_start,
12241 		mode->crtc_hsync_end, mode->crtc_htotal,
12242 		mode->crtc_vdisplay, mode->crtc_vsync_start,
12243 		mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12244 }
12245 
12246 static void intel_dump_pipe_config(struct intel_crtc *crtc,
12247 				   struct intel_crtc_state *pipe_config,
12248 				   const char *context)
12249 {
12250 	struct drm_device *dev = crtc->base.dev;
12251 	struct drm_plane *plane;
12252 	struct intel_plane *intel_plane;
12253 	struct intel_plane_state *state;
12254 	struct drm_framebuffer *fb;
12255 
12256 	DRM_DEBUG_KMS("[CRTC:%d:%s]%s config %p for pipe %c\n",
12257 		      crtc->base.base.id, crtc->base.name,
12258 		      context, pipe_config, pipe_name(crtc->pipe));
12259 
12260 	DRM_DEBUG_KMS("cpu_transcoder: %s\n", transcoder_name(pipe_config->cpu_transcoder));
12261 	DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12262 		      pipe_config->pipe_bpp, pipe_config->dither);
12263 	DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12264 		      pipe_config->has_pch_encoder,
12265 		      pipe_config->fdi_lanes,
12266 		      pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12267 		      pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12268 		      pipe_config->fdi_m_n.tu);
12269 	DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12270 		      intel_crtc_has_dp_encoder(pipe_config),
12271 		      pipe_config->lane_count,
12272 		      pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12273 		      pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12274 		      pipe_config->dp_m_n.tu);
12275 
12276 	DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12277 		      intel_crtc_has_dp_encoder(pipe_config),
12278 		      pipe_config->lane_count,
12279 		      pipe_config->dp_m2_n2.gmch_m,
12280 		      pipe_config->dp_m2_n2.gmch_n,
12281 		      pipe_config->dp_m2_n2.link_m,
12282 		      pipe_config->dp_m2_n2.link_n,
12283 		      pipe_config->dp_m2_n2.tu);
12284 
12285 	DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12286 		      pipe_config->has_audio,
12287 		      pipe_config->has_infoframe);
12288 
12289 	DRM_DEBUG_KMS("requested mode:\n");
12290 	drm_mode_debug_printmodeline(&pipe_config->base.mode);
12291 	DRM_DEBUG_KMS("adjusted mode:\n");
12292 	drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12293 	intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12294 	DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12295 	DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12296 		      pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12297 	DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12298 		      crtc->num_scalers,
12299 		      pipe_config->scaler_state.scaler_users,
12300 		      pipe_config->scaler_state.scaler_id);
12301 	DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12302 		      pipe_config->gmch_pfit.control,
12303 		      pipe_config->gmch_pfit.pgm_ratios,
12304 		      pipe_config->gmch_pfit.lvds_border_bits);
12305 	DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12306 		      pipe_config->pch_pfit.pos,
12307 		      pipe_config->pch_pfit.size,
12308 		      pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12309 	DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
12310 	DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
12311 
12312 	if (IS_BROXTON(dev)) {
12313 		DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12314 			      "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12315 			      "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12316 			      pipe_config->ddi_pll_sel,
12317 			      pipe_config->dpll_hw_state.ebb0,
12318 			      pipe_config->dpll_hw_state.ebb4,
12319 			      pipe_config->dpll_hw_state.pll0,
12320 			      pipe_config->dpll_hw_state.pll1,
12321 			      pipe_config->dpll_hw_state.pll2,
12322 			      pipe_config->dpll_hw_state.pll3,
12323 			      pipe_config->dpll_hw_state.pll6,
12324 			      pipe_config->dpll_hw_state.pll8,
12325 			      pipe_config->dpll_hw_state.pll9,
12326 			      pipe_config->dpll_hw_state.pll10,
12327 			      pipe_config->dpll_hw_state.pcsdw12);
12328 	} else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
12329 		DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12330 			      "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12331 			      pipe_config->ddi_pll_sel,
12332 			      pipe_config->dpll_hw_state.ctrl1,
12333 			      pipe_config->dpll_hw_state.cfgcr1,
12334 			      pipe_config->dpll_hw_state.cfgcr2);
12335 	} else if (HAS_DDI(dev)) {
12336 		DRM_DEBUG_KMS("ddi_pll_sel: 0x%x; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12337 			      pipe_config->ddi_pll_sel,
12338 			      pipe_config->dpll_hw_state.wrpll,
12339 			      pipe_config->dpll_hw_state.spll);
12340 	} else {
12341 		DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12342 			      "fp0: 0x%x, fp1: 0x%x\n",
12343 			      pipe_config->dpll_hw_state.dpll,
12344 			      pipe_config->dpll_hw_state.dpll_md,
12345 			      pipe_config->dpll_hw_state.fp0,
12346 			      pipe_config->dpll_hw_state.fp1);
12347 	}
12348 
12349 	DRM_DEBUG_KMS("planes on this crtc\n");
12350 	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12351 		intel_plane = to_intel_plane(plane);
12352 		if (intel_plane->pipe != crtc->pipe)
12353 			continue;
12354 
12355 		state = to_intel_plane_state(plane->state);
12356 		fb = state->base.fb;
12357 		if (!fb) {
12358 			DRM_DEBUG_KMS("[PLANE:%d:%s] disabled, scaler_id = %d\n",
12359 				      plane->base.id, plane->name, state->scaler_id);
12360 			continue;
12361 		}
12362 
12363 		DRM_DEBUG_KMS("[PLANE:%d:%s] enabled",
12364 			      plane->base.id, plane->name);
12365 		DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = %s",
12366 			      fb->base.id, fb->width, fb->height,
12367 			      drm_get_format_name(fb->pixel_format));
12368 		DRM_DEBUG_KMS("\tscaler:%d src %dx%d+%d+%d dst %dx%d+%d+%d\n",
12369 			      state->scaler_id,
12370 			      state->src.x1 >> 16, state->src.y1 >> 16,
12371 			      drm_rect_width(&state->src) >> 16,
12372 			      drm_rect_height(&state->src) >> 16,
12373 			      state->dst.x1, state->dst.y1,
12374 			      drm_rect_width(&state->dst),
12375 			      drm_rect_height(&state->dst));
12376 	}
12377 }
12378 
12379 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12380 {
12381 	struct drm_device *dev = state->dev;
12382 	struct drm_connector *connector;
12383 	unsigned int used_ports = 0;
12384 	unsigned int used_mst_ports = 0;
12385 
12386 	/*
12387 	 * Walk the connector list instead of the encoder
12388 	 * list to detect the problem on ddi platforms
12389 	 * where there's just one encoder per digital port.
12390 	 */
12391 	drm_for_each_connector(connector, dev) {
12392 		struct drm_connector_state *connector_state;
12393 		struct intel_encoder *encoder;
12394 
12395 		connector_state = drm_atomic_get_existing_connector_state(state, connector);
12396 		if (!connector_state)
12397 			connector_state = connector->state;
12398 
12399 		if (!connector_state->best_encoder)
12400 			continue;
12401 
12402 		encoder = to_intel_encoder(connector_state->best_encoder);
12403 
12404 		WARN_ON(!connector_state->crtc);
12405 
12406 		switch (encoder->type) {
12407 			unsigned int port_mask;
12408 		case INTEL_OUTPUT_UNKNOWN:
12409 			if (WARN_ON(!HAS_DDI(dev)))
12410 				break;
12411 		case INTEL_OUTPUT_DP:
12412 		case INTEL_OUTPUT_HDMI:
12413 		case INTEL_OUTPUT_EDP:
12414 			port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12415 
12416 			/* the same port mustn't appear more than once */
12417 			if (used_ports & port_mask)
12418 				return false;
12419 
12420 			used_ports |= port_mask;
12421 			break;
12422 		case INTEL_OUTPUT_DP_MST:
12423 			used_mst_ports |=
12424 				1 << enc_to_mst(&encoder->base)->primary->port;
12425 			break;
12426 		default:
12427 			break;
12428 		}
12429 	}
12430 
12431 	/* can't mix MST and SST/HDMI on the same port */
12432 	if (used_ports & used_mst_ports)
12433 		return false;
12434 
12435 	return true;
12436 }
12437 
12438 static void
12439 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12440 {
12441 	struct drm_crtc_state tmp_state;
12442 	struct intel_crtc_scaler_state scaler_state;
12443 	struct intel_dpll_hw_state dpll_hw_state;
12444 	struct intel_shared_dpll *shared_dpll;
12445 	uint32_t ddi_pll_sel;
12446 	bool force_thru;
12447 
12448 	/* FIXME: before the switch to atomic started, a new pipe_config was
12449 	 * kzalloc'd. Code that depends on any field being zero should be
12450 	 * fixed, so that the crtc_state can be safely duplicated. For now,
12451 	 * only fields that are know to not cause problems are preserved. */
12452 
12453 	tmp_state = crtc_state->base;
12454 	scaler_state = crtc_state->scaler_state;
12455 	shared_dpll = crtc_state->shared_dpll;
12456 	dpll_hw_state = crtc_state->dpll_hw_state;
12457 	ddi_pll_sel = crtc_state->ddi_pll_sel;
12458 	force_thru = crtc_state->pch_pfit.force_thru;
12459 
12460 	memset(crtc_state, 0, sizeof *crtc_state);
12461 
12462 	crtc_state->base = tmp_state;
12463 	crtc_state->scaler_state = scaler_state;
12464 	crtc_state->shared_dpll = shared_dpll;
12465 	crtc_state->dpll_hw_state = dpll_hw_state;
12466 	crtc_state->ddi_pll_sel = ddi_pll_sel;
12467 	crtc_state->pch_pfit.force_thru = force_thru;
12468 }
12469 
12470 static int
12471 intel_modeset_pipe_config(struct drm_crtc *crtc,
12472 			  struct intel_crtc_state *pipe_config)
12473 {
12474 	struct drm_atomic_state *state = pipe_config->base.state;
12475 	struct intel_encoder *encoder;
12476 	struct drm_connector *connector;
12477 	struct drm_connector_state *connector_state;
12478 	int base_bpp, ret = -EINVAL;
12479 	int i;
12480 	bool retry = true;
12481 
12482 	clear_intel_crtc_state(pipe_config);
12483 
12484 	pipe_config->cpu_transcoder =
12485 		(enum transcoder) to_intel_crtc(crtc)->pipe;
12486 
12487 	/*
12488 	 * Sanitize sync polarity flags based on requested ones. If neither
12489 	 * positive or negative polarity is requested, treat this as meaning
12490 	 * negative polarity.
12491 	 */
12492 	if (!(pipe_config->base.adjusted_mode.flags &
12493 	      (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12494 		pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12495 
12496 	if (!(pipe_config->base.adjusted_mode.flags &
12497 	      (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12498 		pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12499 
12500 	base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12501 					     pipe_config);
12502 	if (base_bpp < 0)
12503 		goto fail;
12504 
12505 	/*
12506 	 * Determine the real pipe dimensions. Note that stereo modes can
12507 	 * increase the actual pipe size due to the frame doubling and
12508 	 * insertion of additional space for blanks between the frame. This
12509 	 * is stored in the crtc timings. We use the requested mode to do this
12510 	 * computation to clearly distinguish it from the adjusted mode, which
12511 	 * can be changed by the connectors in the below retry loop.
12512 	 */
12513 	drm_crtc_get_hv_timing(&pipe_config->base.mode,
12514 			       &pipe_config->pipe_src_w,
12515 			       &pipe_config->pipe_src_h);
12516 
12517 	for_each_connector_in_state(state, connector, connector_state, i) {
12518 		if (connector_state->crtc != crtc)
12519 			continue;
12520 
12521 		encoder = to_intel_encoder(connector_state->best_encoder);
12522 
12523 		if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
12524 			DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
12525 			goto fail;
12526 		}
12527 
12528 		/*
12529 		 * Determine output_types before calling the .compute_config()
12530 		 * hooks so that the hooks can use this information safely.
12531 		 */
12532 		pipe_config->output_types |= 1 << encoder->type;
12533 	}
12534 
12535 encoder_retry:
12536 	/* Ensure the port clock defaults are reset when retrying. */
12537 	pipe_config->port_clock = 0;
12538 	pipe_config->pixel_multiplier = 1;
12539 
12540 	/* Fill in default crtc timings, allow encoders to overwrite them. */
12541 	drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12542 			      CRTC_STEREO_DOUBLE);
12543 
12544 	/* Pass our mode to the connectors and the CRTC to give them a chance to
12545 	 * adjust it according to limitations or connector properties, and also
12546 	 * a chance to reject the mode entirely.
12547 	 */
12548 	for_each_connector_in_state(state, connector, connector_state, i) {
12549 		if (connector_state->crtc != crtc)
12550 			continue;
12551 
12552 		encoder = to_intel_encoder(connector_state->best_encoder);
12553 
12554 		if (!(encoder->compute_config(encoder, pipe_config))) {
12555 			DRM_DEBUG_KMS("Encoder config failure\n");
12556 			goto fail;
12557 		}
12558 	}
12559 
12560 	/* Set default port clock if not overwritten by the encoder. Needs to be
12561 	 * done afterwards in case the encoder adjusts the mode. */
12562 	if (!pipe_config->port_clock)
12563 		pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12564 			* pipe_config->pixel_multiplier;
12565 
12566 	ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12567 	if (ret < 0) {
12568 		DRM_DEBUG_KMS("CRTC fixup failed\n");
12569 		goto fail;
12570 	}
12571 
12572 	if (ret == RETRY) {
12573 		if (WARN(!retry, "loop in pipe configuration computation\n")) {
12574 			ret = -EINVAL;
12575 			goto fail;
12576 		}
12577 
12578 		DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12579 		retry = false;
12580 		goto encoder_retry;
12581 	}
12582 
12583 	/* Dithering seems to not pass-through bits correctly when it should, so
12584 	 * only enable it on 6bpc panels. */
12585 	pipe_config->dither = pipe_config->pipe_bpp == 6*3;
12586 	DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12587 		      base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12588 
12589 fail:
12590 	return ret;
12591 }
12592 
12593 static void
12594 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
12595 {
12596 	struct drm_crtc *crtc;
12597 	struct drm_crtc_state *crtc_state;
12598 	int i;
12599 
12600 	/* Double check state. */
12601 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
12602 		to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12603 
12604 		/* Update hwmode for vblank functions */
12605 		if (crtc->state->active)
12606 			crtc->hwmode = crtc->state->adjusted_mode;
12607 		else
12608 			crtc->hwmode.crtc_clock = 0;
12609 
12610 		/*
12611 		 * Update legacy state to satisfy fbc code. This can
12612 		 * be removed when fbc uses the atomic state.
12613 		 */
12614 		if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12615 			struct drm_plane_state *plane_state = crtc->primary->state;
12616 
12617 			crtc->primary->fb = plane_state->fb;
12618 			crtc->x = plane_state->src_x >> 16;
12619 			crtc->y = plane_state->src_y >> 16;
12620 		}
12621 	}
12622 }
12623 
12624 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12625 {
12626 	int diff;
12627 
12628 	if (clock1 == clock2)
12629 		return true;
12630 
12631 	if (!clock1 || !clock2)
12632 		return false;
12633 
12634 	diff = abs(clock1 - clock2);
12635 
12636 	if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12637 		return true;
12638 
12639 	return false;
12640 }
12641 
12642 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12643 	list_for_each_entry((intel_crtc), \
12644 			    &(dev)->mode_config.crtc_list, \
12645 			    base.head) \
12646 		for_each_if (mask & (1 <<(intel_crtc)->pipe))
12647 
12648 static bool
12649 intel_compare_m_n(unsigned int m, unsigned int n,
12650 		  unsigned int m2, unsigned int n2,
12651 		  bool exact)
12652 {
12653 	if (m == m2 && n == n2)
12654 		return true;
12655 
12656 	if (exact || !m || !n || !m2 || !n2)
12657 		return false;
12658 
12659 	BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12660 
12661 	if (n > n2) {
12662 		while (n > n2) {
12663 			m2 <<= 1;
12664 			n2 <<= 1;
12665 		}
12666 	} else if (n < n2) {
12667 		while (n < n2) {
12668 			m <<= 1;
12669 			n <<= 1;
12670 		}
12671 	}
12672 
12673 	if (n != n2)
12674 		return false;
12675 
12676 	return intel_fuzzy_clock_check(m, m2);
12677 }
12678 
12679 static bool
12680 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12681 		       struct intel_link_m_n *m2_n2,
12682 		       bool adjust)
12683 {
12684 	if (m_n->tu == m2_n2->tu &&
12685 	    intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12686 			      m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12687 	    intel_compare_m_n(m_n->link_m, m_n->link_n,
12688 			      m2_n2->link_m, m2_n2->link_n, !adjust)) {
12689 		if (adjust)
12690 			*m2_n2 = *m_n;
12691 
12692 		return true;
12693 	}
12694 
12695 	return false;
12696 }
12697 
12698 static bool
12699 intel_pipe_config_compare(struct drm_device *dev,
12700 			  struct intel_crtc_state *current_config,
12701 			  struct intel_crtc_state *pipe_config,
12702 			  bool adjust)
12703 {
12704 	bool ret = true;
12705 
12706 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12707 	do { \
12708 		if (!adjust) \
12709 			DRM_ERROR(fmt, ##__VA_ARGS__); \
12710 		else \
12711 			DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12712 	} while (0)
12713 
12714 #define PIPE_CONF_CHECK_X(name)	\
12715 	if (current_config->name != pipe_config->name) { \
12716 		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12717 			  "(expected 0x%08x, found 0x%08x)\n", \
12718 			  current_config->name, \
12719 			  pipe_config->name); \
12720 		ret = false; \
12721 	}
12722 
12723 #define PIPE_CONF_CHECK_I(name)	\
12724 	if (current_config->name != pipe_config->name) { \
12725 		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12726 			  "(expected %i, found %i)\n", \
12727 			  current_config->name, \
12728 			  pipe_config->name); \
12729 		ret = false; \
12730 	}
12731 
12732 #define PIPE_CONF_CHECK_P(name)	\
12733 	if (current_config->name != pipe_config->name) { \
12734 		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12735 			  "(expected %p, found %p)\n", \
12736 			  current_config->name, \
12737 			  pipe_config->name); \
12738 		ret = false; \
12739 	}
12740 
12741 #define PIPE_CONF_CHECK_M_N(name) \
12742 	if (!intel_compare_link_m_n(&current_config->name, \
12743 				    &pipe_config->name,\
12744 				    adjust)) { \
12745 		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12746 			  "(expected tu %i gmch %i/%i link %i/%i, " \
12747 			  "found tu %i, gmch %i/%i link %i/%i)\n", \
12748 			  current_config->name.tu, \
12749 			  current_config->name.gmch_m, \
12750 			  current_config->name.gmch_n, \
12751 			  current_config->name.link_m, \
12752 			  current_config->name.link_n, \
12753 			  pipe_config->name.tu, \
12754 			  pipe_config->name.gmch_m, \
12755 			  pipe_config->name.gmch_n, \
12756 			  pipe_config->name.link_m, \
12757 			  pipe_config->name.link_n); \
12758 		ret = false; \
12759 	}
12760 
12761 /* This is required for BDW+ where there is only one set of registers for
12762  * switching between high and low RR.
12763  * This macro can be used whenever a comparison has to be made between one
12764  * hw state and multiple sw state variables.
12765  */
12766 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12767 	if (!intel_compare_link_m_n(&current_config->name, \
12768 				    &pipe_config->name, adjust) && \
12769 	    !intel_compare_link_m_n(&current_config->alt_name, \
12770 				    &pipe_config->name, adjust)) { \
12771 		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12772 			  "(expected tu %i gmch %i/%i link %i/%i, " \
12773 			  "or tu %i gmch %i/%i link %i/%i, " \
12774 			  "found tu %i, gmch %i/%i link %i/%i)\n", \
12775 			  current_config->name.tu, \
12776 			  current_config->name.gmch_m, \
12777 			  current_config->name.gmch_n, \
12778 			  current_config->name.link_m, \
12779 			  current_config->name.link_n, \
12780 			  current_config->alt_name.tu, \
12781 			  current_config->alt_name.gmch_m, \
12782 			  current_config->alt_name.gmch_n, \
12783 			  current_config->alt_name.link_m, \
12784 			  current_config->alt_name.link_n, \
12785 			  pipe_config->name.tu, \
12786 			  pipe_config->name.gmch_m, \
12787 			  pipe_config->name.gmch_n, \
12788 			  pipe_config->name.link_m, \
12789 			  pipe_config->name.link_n); \
12790 		ret = false; \
12791 	}
12792 
12793 #define PIPE_CONF_CHECK_FLAGS(name, mask)	\
12794 	if ((current_config->name ^ pipe_config->name) & (mask)) { \
12795 		INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12796 			  "(expected %i, found %i)\n", \
12797 			  current_config->name & (mask), \
12798 			  pipe_config->name & (mask)); \
12799 		ret = false; \
12800 	}
12801 
12802 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12803 	if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12804 		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12805 			  "(expected %i, found %i)\n", \
12806 			  current_config->name, \
12807 			  pipe_config->name); \
12808 		ret = false; \
12809 	}
12810 
12811 #define PIPE_CONF_QUIRK(quirk)	\
12812 	((current_config->quirks | pipe_config->quirks) & (quirk))
12813 
12814 	PIPE_CONF_CHECK_I(cpu_transcoder);
12815 
12816 	PIPE_CONF_CHECK_I(has_pch_encoder);
12817 	PIPE_CONF_CHECK_I(fdi_lanes);
12818 	PIPE_CONF_CHECK_M_N(fdi_m_n);
12819 
12820 	PIPE_CONF_CHECK_I(lane_count);
12821 	PIPE_CONF_CHECK_X(lane_lat_optim_mask);
12822 
12823 	if (INTEL_INFO(dev)->gen < 8) {
12824 		PIPE_CONF_CHECK_M_N(dp_m_n);
12825 
12826 		if (current_config->has_drrs)
12827 			PIPE_CONF_CHECK_M_N(dp_m2_n2);
12828 	} else
12829 		PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12830 
12831 	PIPE_CONF_CHECK_X(output_types);
12832 
12833 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12834 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12835 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12836 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12837 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12838 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12839 
12840 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12841 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12842 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12843 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12844 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12845 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12846 
12847 	PIPE_CONF_CHECK_I(pixel_multiplier);
12848 	PIPE_CONF_CHECK_I(has_hdmi_sink);
12849 	if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12850 	    IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
12851 		PIPE_CONF_CHECK_I(limited_color_range);
12852 	PIPE_CONF_CHECK_I(has_infoframe);
12853 
12854 	PIPE_CONF_CHECK_I(has_audio);
12855 
12856 	PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12857 			      DRM_MODE_FLAG_INTERLACE);
12858 
12859 	if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12860 		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12861 				      DRM_MODE_FLAG_PHSYNC);
12862 		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12863 				      DRM_MODE_FLAG_NHSYNC);
12864 		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12865 				      DRM_MODE_FLAG_PVSYNC);
12866 		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12867 				      DRM_MODE_FLAG_NVSYNC);
12868 	}
12869 
12870 	PIPE_CONF_CHECK_X(gmch_pfit.control);
12871 	/* pfit ratios are autocomputed by the hw on gen4+ */
12872 	if (INTEL_INFO(dev)->gen < 4)
12873 		PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
12874 	PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
12875 
12876 	if (!adjust) {
12877 		PIPE_CONF_CHECK_I(pipe_src_w);
12878 		PIPE_CONF_CHECK_I(pipe_src_h);
12879 
12880 		PIPE_CONF_CHECK_I(pch_pfit.enabled);
12881 		if (current_config->pch_pfit.enabled) {
12882 			PIPE_CONF_CHECK_X(pch_pfit.pos);
12883 			PIPE_CONF_CHECK_X(pch_pfit.size);
12884 		}
12885 
12886 		PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12887 	}
12888 
12889 	/* BDW+ don't expose a synchronous way to read the state */
12890 	if (IS_HASWELL(dev))
12891 		PIPE_CONF_CHECK_I(ips_enabled);
12892 
12893 	PIPE_CONF_CHECK_I(double_wide);
12894 
12895 	PIPE_CONF_CHECK_X(ddi_pll_sel);
12896 
12897 	PIPE_CONF_CHECK_P(shared_dpll);
12898 	PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12899 	PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12900 	PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12901 	PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12902 	PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12903 	PIPE_CONF_CHECK_X(dpll_hw_state.spll);
12904 	PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12905 	PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12906 	PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12907 
12908 	PIPE_CONF_CHECK_X(dsi_pll.ctrl);
12909 	PIPE_CONF_CHECK_X(dsi_pll.div);
12910 
12911 	if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12912 		PIPE_CONF_CHECK_I(pipe_bpp);
12913 
12914 	PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12915 	PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12916 
12917 #undef PIPE_CONF_CHECK_X
12918 #undef PIPE_CONF_CHECK_I
12919 #undef PIPE_CONF_CHECK_P
12920 #undef PIPE_CONF_CHECK_FLAGS
12921 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12922 #undef PIPE_CONF_QUIRK
12923 #undef INTEL_ERR_OR_DBG_KMS
12924 
12925 	return ret;
12926 }
12927 
12928 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
12929 					   const struct intel_crtc_state *pipe_config)
12930 {
12931 	if (pipe_config->has_pch_encoder) {
12932 		int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
12933 							    &pipe_config->fdi_m_n);
12934 		int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
12935 
12936 		/*
12937 		 * FDI already provided one idea for the dotclock.
12938 		 * Yell if the encoder disagrees.
12939 		 */
12940 		WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
12941 		     "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12942 		     fdi_dotclock, dotclock);
12943 	}
12944 }
12945 
12946 static void verify_wm_state(struct drm_crtc *crtc,
12947 			    struct drm_crtc_state *new_state)
12948 {
12949 	struct drm_device *dev = crtc->dev;
12950 	struct drm_i915_private *dev_priv = to_i915(dev);
12951 	struct skl_ddb_allocation hw_ddb, *sw_ddb;
12952 	struct skl_ddb_entry *hw_entry, *sw_entry;
12953 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12954 	const enum i915_pipe pipe = intel_crtc->pipe;
12955 	int plane;
12956 
12957 	if (INTEL_INFO(dev)->gen < 9 || !new_state->active)
12958 		return;
12959 
12960 	skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12961 	sw_ddb = &dev_priv->wm.skl_hw.ddb;
12962 
12963 	/* planes */
12964 	for_each_plane(dev_priv, pipe, plane) {
12965 		hw_entry = &hw_ddb.plane[pipe][plane];
12966 		sw_entry = &sw_ddb->plane[pipe][plane];
12967 
12968 		if (skl_ddb_entry_equal(hw_entry, sw_entry))
12969 			continue;
12970 
12971 		DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12972 			  "(expected (%u,%u), found (%u,%u))\n",
12973 			  pipe_name(pipe), plane + 1,
12974 			  sw_entry->start, sw_entry->end,
12975 			  hw_entry->start, hw_entry->end);
12976 	}
12977 
12978 	/* cursor */
12979 	hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12980 	sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
12981 
12982 	if (!skl_ddb_entry_equal(hw_entry, sw_entry)) {
12983 		DRM_ERROR("mismatch in DDB state pipe %c cursor "
12984 			  "(expected (%u,%u), found (%u,%u))\n",
12985 			  pipe_name(pipe),
12986 			  sw_entry->start, sw_entry->end,
12987 			  hw_entry->start, hw_entry->end);
12988 	}
12989 }
12990 
12991 static void
12992 verify_connector_state(struct drm_device *dev, struct drm_crtc *crtc)
12993 {
12994 	struct drm_connector *connector;
12995 
12996 	drm_for_each_connector(connector, dev) {
12997 		struct drm_encoder *encoder = connector->encoder;
12998 		struct drm_connector_state *state = connector->state;
12999 
13000 		if (state->crtc != crtc)
13001 			continue;
13002 
13003 		intel_connector_verify_state(to_intel_connector(connector));
13004 
13005 		I915_STATE_WARN(state->best_encoder != encoder,
13006 		     "connector's atomic encoder doesn't match legacy encoder\n");
13007 	}
13008 }
13009 
13010 static void
13011 verify_encoder_state(struct drm_device *dev)
13012 {
13013 	struct intel_encoder *encoder;
13014 	struct intel_connector *connector;
13015 
13016 	for_each_intel_encoder(dev, encoder) {
13017 		bool enabled = false;
13018 		enum i915_pipe pipe;
13019 
13020 		DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
13021 			      encoder->base.base.id,
13022 			      encoder->base.name);
13023 
13024 		for_each_intel_connector(dev, connector) {
13025 			if (connector->base.state->best_encoder != &encoder->base)
13026 				continue;
13027 			enabled = true;
13028 
13029 			I915_STATE_WARN(connector->base.state->crtc !=
13030 					encoder->base.crtc,
13031 			     "connector's crtc doesn't match encoder crtc\n");
13032 		}
13033 
13034 		I915_STATE_WARN(!!encoder->base.crtc != enabled,
13035 		     "encoder's enabled state mismatch "
13036 		     "(expected %i, found %i)\n",
13037 		     !!encoder->base.crtc, enabled);
13038 
13039 		if (!encoder->base.crtc) {
13040 			bool active;
13041 
13042 			active = encoder->get_hw_state(encoder, &pipe);
13043 			I915_STATE_WARN(active,
13044 			     "encoder detached but still enabled on pipe %c.\n",
13045 			     pipe_name(pipe));
13046 		}
13047 	}
13048 }
13049 
13050 static void
13051 verify_crtc_state(struct drm_crtc *crtc,
13052 		  struct drm_crtc_state *old_crtc_state,
13053 		  struct drm_crtc_state *new_crtc_state)
13054 {
13055 	struct drm_device *dev = crtc->dev;
13056 	struct drm_i915_private *dev_priv = to_i915(dev);
13057 	struct intel_encoder *encoder;
13058 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13059 	struct intel_crtc_state *pipe_config, *sw_config;
13060 	struct drm_atomic_state *old_state;
13061 	bool active;
13062 
13063 	old_state = old_crtc_state->state;
13064 	__drm_atomic_helper_crtc_destroy_state(old_crtc_state);
13065 	pipe_config = to_intel_crtc_state(old_crtc_state);
13066 	memset(pipe_config, 0, sizeof(*pipe_config));
13067 	pipe_config->base.crtc = crtc;
13068 	pipe_config->base.state = old_state;
13069 
13070 	DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
13071 
13072 	active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
13073 
13074 	/* hw state is inconsistent with the pipe quirk */
13075 	if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
13076 	    (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
13077 		active = new_crtc_state->active;
13078 
13079 	I915_STATE_WARN(new_crtc_state->active != active,
13080 	     "crtc active state doesn't match with hw state "
13081 	     "(expected %i, found %i)\n", new_crtc_state->active, active);
13082 
13083 	I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
13084 	     "transitional active state does not match atomic hw state "
13085 	     "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
13086 
13087 	for_each_encoder_on_crtc(dev, crtc, encoder) {
13088 		enum i915_pipe pipe;
13089 
13090 		active = encoder->get_hw_state(encoder, &pipe);
13091 		I915_STATE_WARN(active != new_crtc_state->active,
13092 			"[ENCODER:%i] active %i with crtc active %i\n",
13093 			encoder->base.base.id, active, new_crtc_state->active);
13094 
13095 		I915_STATE_WARN(active && intel_crtc->pipe != pipe,
13096 				"Encoder connected to wrong pipe %c\n",
13097 				pipe_name(pipe));
13098 
13099 		if (active) {
13100 			pipe_config->output_types |= 1 << encoder->type;
13101 			encoder->get_config(encoder, pipe_config);
13102 		}
13103 	}
13104 
13105 	if (!new_crtc_state->active)
13106 		return;
13107 
13108 	intel_pipe_config_sanity_check(dev_priv, pipe_config);
13109 
13110 	sw_config = to_intel_crtc_state(crtc->state);
13111 	if (!intel_pipe_config_compare(dev, sw_config,
13112 				       pipe_config, false)) {
13113 		I915_STATE_WARN(1, "pipe state doesn't match!\n");
13114 		intel_dump_pipe_config(intel_crtc, pipe_config,
13115 				       "[hw state]");
13116 		intel_dump_pipe_config(intel_crtc, sw_config,
13117 				       "[sw state]");
13118 	}
13119 }
13120 
13121 static void
13122 verify_single_dpll_state(struct drm_i915_private *dev_priv,
13123 			 struct intel_shared_dpll *pll,
13124 			 struct drm_crtc *crtc,
13125 			 struct drm_crtc_state *new_state)
13126 {
13127 	struct intel_dpll_hw_state dpll_hw_state;
13128 	unsigned crtc_mask;
13129 	bool active;
13130 
13131 	memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
13132 
13133 	DRM_DEBUG_KMS("%s\n", pll->name);
13134 
13135 	active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
13136 
13137 	if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
13138 		I915_STATE_WARN(!pll->on && pll->active_mask,
13139 		     "pll in active use but not on in sw tracking\n");
13140 		I915_STATE_WARN(pll->on && !pll->active_mask,
13141 		     "pll is on but not used by any active crtc\n");
13142 		I915_STATE_WARN(pll->on != active,
13143 		     "pll on state mismatch (expected %i, found %i)\n",
13144 		     pll->on, active);
13145 	}
13146 
13147 	if (!crtc) {
13148 		I915_STATE_WARN(pll->active_mask & ~pll->config.crtc_mask,
13149 				"more active pll users than references: %x vs %x\n",
13150 				pll->active_mask, pll->config.crtc_mask);
13151 
13152 		return;
13153 	}
13154 
13155 	crtc_mask = 1 << drm_crtc_index(crtc);
13156 
13157 	if (new_state->active)
13158 		I915_STATE_WARN(!(pll->active_mask & crtc_mask),
13159 				"pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
13160 				pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13161 	else
13162 		I915_STATE_WARN(pll->active_mask & crtc_mask,
13163 				"pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
13164 				pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13165 
13166 	I915_STATE_WARN(!(pll->config.crtc_mask & crtc_mask),
13167 			"pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
13168 			crtc_mask, pll->config.crtc_mask);
13169 
13170 	I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state,
13171 					  &dpll_hw_state,
13172 					  sizeof(dpll_hw_state)),
13173 			"pll hw state mismatch\n");
13174 }
13175 
13176 static void
13177 verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
13178 			 struct drm_crtc_state *old_crtc_state,
13179 			 struct drm_crtc_state *new_crtc_state)
13180 {
13181 	struct drm_i915_private *dev_priv = to_i915(dev);
13182 	struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
13183 	struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
13184 
13185 	if (new_state->shared_dpll)
13186 		verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
13187 
13188 	if (old_state->shared_dpll &&
13189 	    old_state->shared_dpll != new_state->shared_dpll) {
13190 		unsigned crtc_mask = 1 << drm_crtc_index(crtc);
13191 		struct intel_shared_dpll *pll = old_state->shared_dpll;
13192 
13193 		I915_STATE_WARN(pll->active_mask & crtc_mask,
13194 				"pll active mismatch (didn't expect pipe %c in active mask)\n",
13195 				pipe_name(drm_crtc_index(crtc)));
13196 		I915_STATE_WARN(pll->config.crtc_mask & crtc_mask,
13197 				"pll enabled crtcs mismatch (found %x in enabled mask)\n",
13198 				pipe_name(drm_crtc_index(crtc)));
13199 	}
13200 }
13201 
13202 static void
13203 intel_modeset_verify_crtc(struct drm_crtc *crtc,
13204 			 struct drm_crtc_state *old_state,
13205 			 struct drm_crtc_state *new_state)
13206 {
13207 	if (!needs_modeset(new_state) &&
13208 	    !to_intel_crtc_state(new_state)->update_pipe)
13209 		return;
13210 
13211 	verify_wm_state(crtc, new_state);
13212 	verify_connector_state(crtc->dev, crtc);
13213 	verify_crtc_state(crtc, old_state, new_state);
13214 	verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
13215 }
13216 
13217 static void
13218 verify_disabled_dpll_state(struct drm_device *dev)
13219 {
13220 	struct drm_i915_private *dev_priv = to_i915(dev);
13221 	int i;
13222 
13223 	for (i = 0; i < dev_priv->num_shared_dpll; i++)
13224 		verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
13225 }
13226 
13227 static void
13228 intel_modeset_verify_disabled(struct drm_device *dev)
13229 {
13230 	verify_encoder_state(dev);
13231 	verify_connector_state(dev, NULL);
13232 	verify_disabled_dpll_state(dev);
13233 }
13234 
13235 static void update_scanline_offset(struct intel_crtc *crtc)
13236 {
13237 	struct drm_device *dev = crtc->base.dev;
13238 
13239 	/*
13240 	 * The scanline counter increments at the leading edge of hsync.
13241 	 *
13242 	 * On most platforms it starts counting from vtotal-1 on the
13243 	 * first active line. That means the scanline counter value is
13244 	 * always one less than what we would expect. Ie. just after
13245 	 * start of vblank, which also occurs at start of hsync (on the
13246 	 * last active line), the scanline counter will read vblank_start-1.
13247 	 *
13248 	 * On gen2 the scanline counter starts counting from 1 instead
13249 	 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13250 	 * to keep the value positive), instead of adding one.
13251 	 *
13252 	 * On HSW+ the behaviour of the scanline counter depends on the output
13253 	 * type. For DP ports it behaves like most other platforms, but on HDMI
13254 	 * there's an extra 1 line difference. So we need to add two instead of
13255 	 * one to the value.
13256 	 */
13257 	if (IS_GEN2(dev)) {
13258 		const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
13259 		int vtotal;
13260 
13261 		vtotal = adjusted_mode->crtc_vtotal;
13262 		if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
13263 			vtotal /= 2;
13264 
13265 		crtc->scanline_offset = vtotal - 1;
13266 	} else if (HAS_DDI(dev) &&
13267 		   intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI)) {
13268 		crtc->scanline_offset = 2;
13269 	} else
13270 		crtc->scanline_offset = 1;
13271 }
13272 
13273 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
13274 {
13275 	struct drm_device *dev = state->dev;
13276 	struct drm_i915_private *dev_priv = to_i915(dev);
13277 	struct intel_shared_dpll_config *shared_dpll = NULL;
13278 	struct drm_crtc *crtc;
13279 	struct drm_crtc_state *crtc_state;
13280 	int i;
13281 
13282 	if (!dev_priv->display.crtc_compute_clock)
13283 		return;
13284 
13285 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
13286 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13287 		struct intel_shared_dpll *old_dpll =
13288 			to_intel_crtc_state(crtc->state)->shared_dpll;
13289 
13290 		if (!needs_modeset(crtc_state))
13291 			continue;
13292 
13293 		to_intel_crtc_state(crtc_state)->shared_dpll = NULL;
13294 
13295 		if (!old_dpll)
13296 			continue;
13297 
13298 		if (!shared_dpll)
13299 			shared_dpll = intel_atomic_get_shared_dpll_state(state);
13300 
13301 		intel_shared_dpll_config_put(shared_dpll, old_dpll, intel_crtc);
13302 	}
13303 }
13304 
13305 /*
13306  * This implements the workaround described in the "notes" section of the mode
13307  * set sequence documentation. When going from no pipes or single pipe to
13308  * multiple pipes, and planes are enabled after the pipe, we need to wait at
13309  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13310  */
13311 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13312 {
13313 	struct drm_crtc_state *crtc_state;
13314 	struct intel_crtc *intel_crtc;
13315 	struct drm_crtc *crtc;
13316 	struct intel_crtc_state *first_crtc_state = NULL;
13317 	struct intel_crtc_state *other_crtc_state = NULL;
13318 	enum i915_pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13319 	int i;
13320 
13321 	/* look at all crtc's that are going to be enabled in during modeset */
13322 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
13323 		intel_crtc = to_intel_crtc(crtc);
13324 
13325 		if (!crtc_state->active || !needs_modeset(crtc_state))
13326 			continue;
13327 
13328 		if (first_crtc_state) {
13329 			other_crtc_state = to_intel_crtc_state(crtc_state);
13330 			break;
13331 		} else {
13332 			first_crtc_state = to_intel_crtc_state(crtc_state);
13333 			first_pipe = intel_crtc->pipe;
13334 		}
13335 	}
13336 
13337 	/* No workaround needed? */
13338 	if (!first_crtc_state)
13339 		return 0;
13340 
13341 	/* w/a possibly needed, check how many crtc's are already enabled. */
13342 	for_each_intel_crtc(state->dev, intel_crtc) {
13343 		struct intel_crtc_state *pipe_config;
13344 
13345 		pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13346 		if (IS_ERR(pipe_config))
13347 			return PTR_ERR(pipe_config);
13348 
13349 		pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13350 
13351 		if (!pipe_config->base.active ||
13352 		    needs_modeset(&pipe_config->base))
13353 			continue;
13354 
13355 		/* 2 or more enabled crtcs means no need for w/a */
13356 		if (enabled_pipe != INVALID_PIPE)
13357 			return 0;
13358 
13359 		enabled_pipe = intel_crtc->pipe;
13360 	}
13361 
13362 	if (enabled_pipe != INVALID_PIPE)
13363 		first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13364 	else if (other_crtc_state)
13365 		other_crtc_state->hsw_workaround_pipe = first_pipe;
13366 
13367 	return 0;
13368 }
13369 
13370 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13371 {
13372 	struct drm_crtc *crtc;
13373 	struct drm_crtc_state *crtc_state;
13374 	int ret = 0;
13375 
13376 	/* add all active pipes to the state */
13377 	for_each_crtc(state->dev, crtc) {
13378 		crtc_state = drm_atomic_get_crtc_state(state, crtc);
13379 		if (IS_ERR(crtc_state))
13380 			return PTR_ERR(crtc_state);
13381 
13382 		if (!crtc_state->active || needs_modeset(crtc_state))
13383 			continue;
13384 
13385 		crtc_state->mode_changed = true;
13386 
13387 		ret = drm_atomic_add_affected_connectors(state, crtc);
13388 		if (ret)
13389 			break;
13390 
13391 		ret = drm_atomic_add_affected_planes(state, crtc);
13392 		if (ret)
13393 			break;
13394 	}
13395 
13396 	return ret;
13397 }
13398 
13399 static int intel_modeset_checks(struct drm_atomic_state *state)
13400 {
13401 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13402 	struct drm_i915_private *dev_priv = to_i915(state->dev);
13403 	struct drm_crtc *crtc;
13404 	struct drm_crtc_state *crtc_state;
13405 	int ret = 0, i;
13406 
13407 	if (!check_digital_port_conflicts(state)) {
13408 		DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13409 		return -EINVAL;
13410 	}
13411 
13412 	intel_state->modeset = true;
13413 	intel_state->active_crtcs = dev_priv->active_crtcs;
13414 
13415 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
13416 		if (crtc_state->active)
13417 			intel_state->active_crtcs |= 1 << i;
13418 		else
13419 			intel_state->active_crtcs &= ~(1 << i);
13420 
13421 		if (crtc_state->active != crtc->state->active)
13422 			intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
13423 	}
13424 
13425 	/*
13426 	 * See if the config requires any additional preparation, e.g.
13427 	 * to adjust global state with pipes off.  We need to do this
13428 	 * here so we can get the modeset_pipe updated config for the new
13429 	 * mode set on this crtc.  For other crtcs we need to use the
13430 	 * adjusted_mode bits in the crtc directly.
13431 	 */
13432 	if (dev_priv->display.modeset_calc_cdclk) {
13433 		if (!intel_state->cdclk_pll_vco)
13434 			intel_state->cdclk_pll_vco = dev_priv->cdclk_pll.vco;
13435 		if (!intel_state->cdclk_pll_vco)
13436 			intel_state->cdclk_pll_vco = dev_priv->skl_preferred_vco_freq;
13437 
13438 		ret = dev_priv->display.modeset_calc_cdclk(state);
13439 		if (ret < 0)
13440 			return ret;
13441 
13442 		if (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
13443 		    intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco)
13444 			ret = intel_modeset_all_pipes(state);
13445 
13446 		if (ret < 0)
13447 			return ret;
13448 
13449 		DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
13450 			      intel_state->cdclk, intel_state->dev_cdclk);
13451 	} else
13452 		to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
13453 
13454 	intel_modeset_clear_plls(state);
13455 
13456 	if (IS_HASWELL(dev_priv))
13457 		return haswell_mode_set_planes_workaround(state);
13458 
13459 	return 0;
13460 }
13461 
13462 /*
13463  * Handle calculation of various watermark data at the end of the atomic check
13464  * phase.  The code here should be run after the per-crtc and per-plane 'check'
13465  * handlers to ensure that all derived state has been updated.
13466  */
13467 static int calc_watermark_data(struct drm_atomic_state *state)
13468 {
13469 	struct drm_device *dev = state->dev;
13470 	struct drm_i915_private *dev_priv = to_i915(dev);
13471 
13472 	/* Is there platform-specific watermark information to calculate? */
13473 	if (dev_priv->display.compute_global_watermarks)
13474 		return dev_priv->display.compute_global_watermarks(state);
13475 
13476 	return 0;
13477 }
13478 
13479 /**
13480  * intel_atomic_check - validate state object
13481  * @dev: drm device
13482  * @state: state to validate
13483  */
13484 static int intel_atomic_check(struct drm_device *dev,
13485 			      struct drm_atomic_state *state)
13486 {
13487 	struct drm_i915_private *dev_priv = to_i915(dev);
13488 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13489 	struct drm_crtc *crtc;
13490 	struct drm_crtc_state *crtc_state;
13491 	int ret, i;
13492 	bool any_ms = false;
13493 
13494 	ret = drm_atomic_helper_check_modeset(dev, state);
13495 	if (ret)
13496 		return ret;
13497 
13498 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
13499 		struct intel_crtc_state *pipe_config =
13500 			to_intel_crtc_state(crtc_state);
13501 
13502 		/* Catch I915_MODE_FLAG_INHERITED */
13503 		if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13504 			crtc_state->mode_changed = true;
13505 
13506 		if (!needs_modeset(crtc_state))
13507 			continue;
13508 
13509 		if (!crtc_state->enable) {
13510 			any_ms = true;
13511 			continue;
13512 		}
13513 
13514 		/* FIXME: For only active_changed we shouldn't need to do any
13515 		 * state recomputation at all. */
13516 
13517 		ret = drm_atomic_add_affected_connectors(state, crtc);
13518 		if (ret)
13519 			return ret;
13520 
13521 		ret = intel_modeset_pipe_config(crtc, pipe_config);
13522 		if (ret) {
13523 			intel_dump_pipe_config(to_intel_crtc(crtc),
13524 					       pipe_config, "[failed]");
13525 			return ret;
13526 		}
13527 
13528 		if (i915.fastboot &&
13529 		    intel_pipe_config_compare(dev,
13530 					to_intel_crtc_state(crtc->state),
13531 					pipe_config, true)) {
13532 			crtc_state->mode_changed = false;
13533 			to_intel_crtc_state(crtc_state)->update_pipe = true;
13534 		}
13535 
13536 		if (needs_modeset(crtc_state))
13537 			any_ms = true;
13538 
13539 		ret = drm_atomic_add_affected_planes(state, crtc);
13540 		if (ret)
13541 			return ret;
13542 
13543 		intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13544 				       needs_modeset(crtc_state) ?
13545 				       "[modeset]" : "[fastset]");
13546 	}
13547 
13548 	if (any_ms) {
13549 		ret = intel_modeset_checks(state);
13550 
13551 		if (ret)
13552 			return ret;
13553 	} else
13554 		intel_state->cdclk = dev_priv->cdclk_freq;
13555 
13556 	ret = drm_atomic_helper_check_planes(dev, state);
13557 	if (ret)
13558 		return ret;
13559 
13560 	intel_fbc_choose_crtc(dev_priv, state);
13561 	return calc_watermark_data(state);
13562 }
13563 
13564 static int intel_atomic_prepare_commit(struct drm_device *dev,
13565 				       struct drm_atomic_state *state,
13566 				       bool nonblock)
13567 {
13568 	struct drm_i915_private *dev_priv = to_i915(dev);
13569 	struct drm_plane_state *plane_state;
13570 	struct drm_crtc_state *crtc_state;
13571 	struct drm_plane *plane;
13572 	struct drm_crtc *crtc;
13573 	int i, ret;
13574 
13575 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
13576 		if (state->legacy_cursor_update)
13577 			continue;
13578 
13579 		ret = intel_crtc_wait_for_pending_flips(crtc);
13580 		if (ret)
13581 			return ret;
13582 
13583 		if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
13584 			flush_workqueue(dev_priv->wq);
13585 	}
13586 
13587 	ret = mutex_lock_interruptible(&dev->struct_mutex);
13588 	if (ret)
13589 		return ret;
13590 
13591 	ret = drm_atomic_helper_prepare_planes(dev, state);
13592 	mutex_unlock(&dev->struct_mutex);
13593 
13594 	if (!ret && !nonblock) {
13595 		for_each_plane_in_state(state, plane, plane_state, i) {
13596 			struct intel_plane_state *intel_plane_state =
13597 				to_intel_plane_state(plane_state);
13598 
13599 			if (!intel_plane_state->wait_req)
13600 				continue;
13601 
13602 			ret = i915_wait_request(intel_plane_state->wait_req,
13603 						true, NULL, NULL);
13604 			if (ret) {
13605 				/* Any hang should be swallowed by the wait */
13606 				WARN_ON(ret == -EIO);
13607 				mutex_lock(&dev->struct_mutex);
13608 				drm_atomic_helper_cleanup_planes(dev, state);
13609 				mutex_unlock(&dev->struct_mutex);
13610 				break;
13611 			}
13612 		}
13613 	}
13614 
13615 	return ret;
13616 }
13617 
13618 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
13619 {
13620 	struct drm_device *dev = crtc->base.dev;
13621 
13622 	if (!dev->max_vblank_count)
13623 		return drm_accurate_vblank_count(&crtc->base);
13624 
13625 	return dev->driver->get_vblank_counter(dev, crtc->pipe);
13626 }
13627 
13628 static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
13629 					  struct drm_i915_private *dev_priv,
13630 					  unsigned crtc_mask)
13631 {
13632 	unsigned last_vblank_count[I915_MAX_PIPES];
13633 	enum i915_pipe pipe;
13634 	int ret;
13635 
13636 	if (!crtc_mask)
13637 		return;
13638 
13639 	for_each_pipe(dev_priv, pipe) {
13640 		struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13641 
13642 		if (!((1 << pipe) & crtc_mask))
13643 			continue;
13644 
13645 		ret = drm_crtc_vblank_get(crtc);
13646 		if (WARN_ON(ret != 0)) {
13647 			crtc_mask &= ~(1 << pipe);
13648 			continue;
13649 		}
13650 
13651 		last_vblank_count[pipe] = drm_crtc_vblank_count(crtc);
13652 	}
13653 
13654 	for_each_pipe(dev_priv, pipe) {
13655 		struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13656 		long lret;
13657 
13658 		if (!((1 << pipe) & crtc_mask))
13659 			continue;
13660 
13661 		lret = wait_event_timeout(dev->vblank[pipe].queue,
13662 				last_vblank_count[pipe] !=
13663 					drm_crtc_vblank_count(crtc),
13664 				msecs_to_jiffies(50));
13665 
13666 		WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
13667 
13668 		drm_crtc_vblank_put(crtc);
13669 	}
13670 }
13671 
13672 static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
13673 {
13674 	/* fb updated, need to unpin old fb */
13675 	if (crtc_state->fb_changed)
13676 		return true;
13677 
13678 	/* wm changes, need vblank before final wm's */
13679 	if (crtc_state->update_wm_post)
13680 		return true;
13681 
13682 	/*
13683 	 * cxsr is re-enabled after vblank.
13684 	 * This is already handled by crtc_state->update_wm_post,
13685 	 * but added for clarity.
13686 	 */
13687 	if (crtc_state->disable_cxsr)
13688 		return true;
13689 
13690 	return false;
13691 }
13692 
13693 static void intel_atomic_commit_tail(struct drm_atomic_state *state)
13694 {
13695 	struct drm_device *dev = state->dev;
13696 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13697 	struct drm_i915_private *dev_priv = to_i915(dev);
13698 	struct drm_crtc_state *old_crtc_state;
13699 	struct drm_crtc *crtc;
13700 	struct intel_crtc_state *intel_cstate;
13701 	struct drm_plane *plane;
13702 	struct drm_plane_state *plane_state;
13703 	bool hw_check = intel_state->modeset;
13704 	unsigned long put_domains[I915_MAX_PIPES] = {};
13705 	unsigned crtc_vblank_mask = 0;
13706 	int i, ret;
13707 
13708 	for_each_plane_in_state(state, plane, plane_state, i) {
13709 		struct intel_plane_state *intel_plane_state =
13710 			to_intel_plane_state(plane_state);
13711 
13712 		if (!intel_plane_state->wait_req)
13713 			continue;
13714 
13715 		ret = i915_wait_request(intel_plane_state->wait_req,
13716 					true, NULL, NULL);
13717 		/* EIO should be eaten, and we can't get interrupted in the
13718 		 * worker, and blocking commits have waited already. */
13719 		WARN_ON(ret);
13720 	}
13721 
13722 	drm_atomic_helper_wait_for_dependencies(state);
13723 
13724 	if (intel_state->modeset) {
13725 		memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
13726 		       sizeof(intel_state->min_pixclk));
13727 		dev_priv->active_crtcs = intel_state->active_crtcs;
13728 		dev_priv->atomic_cdclk_freq = intel_state->cdclk;
13729 
13730 		intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
13731 	}
13732 
13733 	for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13734 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13735 
13736 		if (needs_modeset(crtc->state) ||
13737 		    to_intel_crtc_state(crtc->state)->update_pipe) {
13738 			hw_check = true;
13739 
13740 			put_domains[to_intel_crtc(crtc)->pipe] =
13741 				modeset_get_crtc_power_domains(crtc,
13742 					to_intel_crtc_state(crtc->state));
13743 		}
13744 
13745 		if (!needs_modeset(crtc->state))
13746 			continue;
13747 
13748 		intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
13749 
13750 		if (old_crtc_state->active) {
13751 			intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
13752 			dev_priv->display.crtc_disable(crtc);
13753 			intel_crtc->active = false;
13754 			intel_fbc_disable(intel_crtc);
13755 			intel_disable_shared_dpll(intel_crtc);
13756 
13757 			/*
13758 			 * Underruns don't always raise
13759 			 * interrupts, so check manually.
13760 			 */
13761 			intel_check_cpu_fifo_underruns(dev_priv);
13762 			intel_check_pch_fifo_underruns(dev_priv);
13763 
13764 			if (!crtc->state->active)
13765 				intel_update_watermarks(crtc);
13766 		}
13767 	}
13768 
13769 	/* Only after disabling all output pipelines that will be changed can we
13770 	 * update the the output configuration. */
13771 	intel_modeset_update_crtc_state(state);
13772 
13773 	if (intel_state->modeset) {
13774 		drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13775 
13776 		if (dev_priv->display.modeset_commit_cdclk &&
13777 		    (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
13778 		     intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco))
13779 			dev_priv->display.modeset_commit_cdclk(state);
13780 
13781 		intel_modeset_verify_disabled(dev);
13782 	}
13783 
13784 	/* Now enable the clocks, plane, pipe, and connectors that we set up. */
13785 	for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13786 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13787 		bool modeset = needs_modeset(crtc->state);
13788 		struct intel_crtc_state *pipe_config =
13789 			to_intel_crtc_state(crtc->state);
13790 
13791 		if (modeset && crtc->state->active) {
13792 			update_scanline_offset(to_intel_crtc(crtc));
13793 			dev_priv->display.crtc_enable(crtc);
13794 		}
13795 
13796 		/* Complete events for now disable pipes here. */
13797 		if (modeset && !crtc->state->active && crtc->state->event) {
13798 			spin_lock_irq(&dev->event_lock);
13799 			drm_crtc_send_vblank_event(crtc, crtc->state->event);
13800 			spin_unlock_irq(&dev->event_lock);
13801 
13802 			crtc->state->event = NULL;
13803 		}
13804 
13805 		if (!modeset)
13806 			intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
13807 
13808 		if (crtc->state->active &&
13809 		    drm_atomic_get_existing_plane_state(state, crtc->primary))
13810 			intel_fbc_enable(intel_crtc, pipe_config, to_intel_plane_state(crtc->primary->state));
13811 
13812 		if (crtc->state->active)
13813 			drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
13814 
13815 		if (pipe_config->base.active && needs_vblank_wait(pipe_config))
13816 			crtc_vblank_mask |= 1 << i;
13817 	}
13818 
13819 	/* FIXME: We should call drm_atomic_helper_commit_hw_done() here
13820 	 * already, but still need the state for the delayed optimization. To
13821 	 * fix this:
13822 	 * - wrap the optimization/post_plane_update stuff into a per-crtc work.
13823 	 * - schedule that vblank worker _before_ calling hw_done
13824 	 * - at the start of commit_tail, cancel it _synchrously
13825 	 * - switch over to the vblank wait helper in the core after that since
13826 	 *   we don't need out special handling any more.
13827 	 */
13828 	if (!state->legacy_cursor_update)
13829 		intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
13830 
13831 	/*
13832 	 * Now that the vblank has passed, we can go ahead and program the
13833 	 * optimal watermarks on platforms that need two-step watermark
13834 	 * programming.
13835 	 *
13836 	 * TODO: Move this (and other cleanup) to an async worker eventually.
13837 	 */
13838 	for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13839 		intel_cstate = to_intel_crtc_state(crtc->state);
13840 
13841 		if (dev_priv->display.optimize_watermarks)
13842 			dev_priv->display.optimize_watermarks(intel_cstate);
13843 	}
13844 
13845 	for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13846 		intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
13847 
13848 		if (put_domains[i])
13849 			modeset_put_power_domains(dev_priv, put_domains[i]);
13850 
13851 		intel_modeset_verify_crtc(crtc, old_crtc_state, crtc->state);
13852 	}
13853 
13854 	drm_atomic_helper_commit_hw_done(state);
13855 
13856 	if (intel_state->modeset)
13857 		intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
13858 
13859 	mutex_lock(&dev->struct_mutex);
13860 	drm_atomic_helper_cleanup_planes(dev, state);
13861 	mutex_unlock(&dev->struct_mutex);
13862 
13863 	drm_atomic_helper_commit_cleanup_done(state);
13864 
13865 	drm_atomic_state_free(state);
13866 
13867 	/* As one of the primary mmio accessors, KMS has a high likelihood
13868 	 * of triggering bugs in unclaimed access. After we finish
13869 	 * modesetting, see if an error has been flagged, and if so
13870 	 * enable debugging for the next modeset - and hope we catch
13871 	 * the culprit.
13872 	 *
13873 	 * XXX note that we assume display power is on at this point.
13874 	 * This might hold true now but we need to add pm helper to check
13875 	 * unclaimed only when the hardware is on, as atomic commits
13876 	 * can happen also when the device is completely off.
13877 	 */
13878 	intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
13879 }
13880 
13881 static void intel_atomic_commit_work(struct work_struct *work)
13882 {
13883 	struct drm_atomic_state *state = container_of(work,
13884 						      struct drm_atomic_state,
13885 						      commit_work);
13886 	intel_atomic_commit_tail(state);
13887 }
13888 
13889 static void intel_atomic_track_fbs(struct drm_atomic_state *state)
13890 {
13891 	struct drm_plane_state *old_plane_state;
13892 	struct drm_plane *plane;
13893 	int i;
13894 
13895 	for_each_plane_in_state(state, plane, old_plane_state, i)
13896 		i915_gem_track_fb(intel_fb_obj(old_plane_state->fb),
13897 				  intel_fb_obj(plane->state->fb),
13898 				  to_intel_plane(plane)->frontbuffer_bit);
13899 }
13900 
13901 /**
13902  * intel_atomic_commit - commit validated state object
13903  * @dev: DRM device
13904  * @state: the top-level driver state object
13905  * @nonblock: nonblocking commit
13906  *
13907  * This function commits a top-level state object that has been validated
13908  * with drm_atomic_helper_check().
13909  *
13910  * FIXME:  Atomic modeset support for i915 is not yet complete.  At the moment
13911  * nonblocking commits are only safe for pure plane updates. Everything else
13912  * should work though.
13913  *
13914  * RETURNS
13915  * Zero for success or -errno.
13916  */
13917 static int intel_atomic_commit(struct drm_device *dev,
13918 			       struct drm_atomic_state *state,
13919 			       bool nonblock)
13920 {
13921 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13922 	struct drm_i915_private *dev_priv = to_i915(dev);
13923 	int ret = 0;
13924 
13925 	if (intel_state->modeset && nonblock) {
13926 		DRM_DEBUG_KMS("nonblocking commit for modeset not yet implemented.\n");
13927 		return -EINVAL;
13928 	}
13929 
13930 	ret = drm_atomic_helper_setup_commit(state, nonblock);
13931 	if (ret)
13932 		return ret;
13933 
13934 	INIT_WORK(&state->commit_work, intel_atomic_commit_work);
13935 
13936 	ret = intel_atomic_prepare_commit(dev, state, nonblock);
13937 	if (ret) {
13938 		DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
13939 		return ret;
13940 	}
13941 
13942 	drm_atomic_helper_swap_state(state, true);
13943 	dev_priv->wm.distrust_bios_wm = false;
13944 	dev_priv->wm.skl_results = intel_state->wm_results;
13945 	intel_shared_dpll_commit(state);
13946 	intel_atomic_track_fbs(state);
13947 
13948 	if (nonblock)
13949 		queue_work(system_unbound_wq, &state->commit_work);
13950 	else
13951 		intel_atomic_commit_tail(state);
13952 
13953 	return 0;
13954 }
13955 
13956 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13957 {
13958 	struct drm_device *dev = crtc->dev;
13959 	struct drm_atomic_state *state;
13960 	struct drm_crtc_state *crtc_state;
13961 	int ret;
13962 
13963 	state = drm_atomic_state_alloc(dev);
13964 	if (!state) {
13965 		DRM_DEBUG_KMS("[CRTC:%d:%s] crtc restore failed, out of memory",
13966 			      crtc->base.id, crtc->name);
13967 		return;
13968 	}
13969 
13970 	state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13971 
13972 retry:
13973 	crtc_state = drm_atomic_get_crtc_state(state, crtc);
13974 	ret = PTR_ERR_OR_ZERO(crtc_state);
13975 	if (!ret) {
13976 		if (!crtc_state->active)
13977 			goto out;
13978 
13979 		crtc_state->mode_changed = true;
13980 		ret = drm_atomic_commit(state);
13981 	}
13982 
13983 	if (ret == -EDEADLK) {
13984 		drm_atomic_state_clear(state);
13985 		drm_modeset_backoff(state->acquire_ctx);
13986 		goto retry;
13987 	}
13988 
13989 	if (ret)
13990 out:
13991 		drm_atomic_state_free(state);
13992 }
13993 
13994 #undef for_each_intel_crtc_masked
13995 
13996 /*
13997  * FIXME: Remove this once i915 is fully DRIVER_ATOMIC by calling
13998  *        drm_atomic_helper_legacy_gamma_set() directly.
13999  */
14000 static int intel_atomic_legacy_gamma_set(struct drm_crtc *crtc,
14001 					 u16 *red, u16 *green, u16 *blue,
14002 					 uint32_t size)
14003 {
14004 	struct drm_device *dev = crtc->dev;
14005 	struct drm_mode_config *config = &dev->mode_config;
14006 	struct drm_crtc_state *state;
14007 	int ret;
14008 
14009 	ret = drm_atomic_helper_legacy_gamma_set(crtc, red, green, blue, size);
14010 	if (ret)
14011 		return ret;
14012 
14013 	/*
14014 	 * Make sure we update the legacy properties so this works when
14015 	 * atomic is not enabled.
14016 	 */
14017 
14018 	state = crtc->state;
14019 
14020 	drm_object_property_set_value(&crtc->base,
14021 				      config->degamma_lut_property,
14022 				      (state->degamma_lut) ?
14023 				      state->degamma_lut->base.id : 0);
14024 
14025 	drm_object_property_set_value(&crtc->base,
14026 				      config->ctm_property,
14027 				      (state->ctm) ?
14028 				      state->ctm->base.id : 0);
14029 
14030 	drm_object_property_set_value(&crtc->base,
14031 				      config->gamma_lut_property,
14032 				      (state->gamma_lut) ?
14033 				      state->gamma_lut->base.id : 0);
14034 
14035 	return 0;
14036 }
14037 
14038 static const struct drm_crtc_funcs intel_crtc_funcs = {
14039 	.gamma_set = intel_atomic_legacy_gamma_set,
14040 	.set_config = drm_atomic_helper_set_config,
14041 	.set_property = drm_atomic_helper_crtc_set_property,
14042 	.destroy = intel_crtc_destroy,
14043 	.page_flip = intel_crtc_page_flip,
14044 	.atomic_duplicate_state = intel_crtc_duplicate_state,
14045 	.atomic_destroy_state = intel_crtc_destroy_state,
14046 };
14047 
14048 /**
14049  * intel_prepare_plane_fb - Prepare fb for usage on plane
14050  * @plane: drm plane to prepare for
14051  * @fb: framebuffer to prepare for presentation
14052  *
14053  * Prepares a framebuffer for usage on a display plane.  Generally this
14054  * involves pinning the underlying object and updating the frontbuffer tracking
14055  * bits.  Some older platforms need special physical address handling for
14056  * cursor planes.
14057  *
14058  * Must be called with struct_mutex held.
14059  *
14060  * Returns 0 on success, negative error code on failure.
14061  */
14062 int
14063 intel_prepare_plane_fb(struct drm_plane *plane,
14064 		       struct drm_plane_state *new_state)
14065 {
14066 	struct drm_device *dev = plane->dev;
14067 	struct drm_framebuffer *fb = new_state->fb;
14068 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14069 	struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
14070 	struct reservation_object *resv;
14071 	int ret = 0;
14072 
14073 	if (!obj && !old_obj)
14074 		return 0;
14075 
14076 	if (old_obj) {
14077 		struct drm_crtc_state *crtc_state =
14078 			drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
14079 
14080 		/* Big Hammer, we also need to ensure that any pending
14081 		 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
14082 		 * current scanout is retired before unpinning the old
14083 		 * framebuffer. Note that we rely on userspace rendering
14084 		 * into the buffer attached to the pipe they are waiting
14085 		 * on. If not, userspace generates a GPU hang with IPEHR
14086 		 * point to the MI_WAIT_FOR_EVENT.
14087 		 *
14088 		 * This should only fail upon a hung GPU, in which case we
14089 		 * can safely continue.
14090 		 */
14091 		if (needs_modeset(crtc_state))
14092 			ret = i915_gem_object_wait_rendering(old_obj, true);
14093 		if (ret) {
14094 			/* GPU hangs should have been swallowed by the wait */
14095 			WARN_ON(ret == -EIO);
14096 			return ret;
14097 		}
14098 	}
14099 
14100 	if (!obj)
14101 		return 0;
14102 
14103 	/* For framebuffer backed by dmabuf, wait for fence */
14104 	resv = i915_gem_object_get_dmabuf_resv(obj);
14105 	if (resv) {
14106 		long lret;
14107 
14108 		lret = reservation_object_wait_timeout_rcu(resv, false, true,
14109 							   MAX_SCHEDULE_TIMEOUT);
14110 		if (lret == -ERESTARTSYS)
14111 			return lret;
14112 
14113 		WARN(lret < 0, "waiting returns %li\n", lret);
14114 	}
14115 
14116 	if (plane->type == DRM_PLANE_TYPE_CURSOR &&
14117 	    INTEL_INFO(dev)->cursor_needs_physical) {
14118 		int align = IS_I830(dev) ? 16 * 1024 : 256;
14119 		ret = i915_gem_object_attach_phys(obj, align);
14120 		if (ret)
14121 			DRM_DEBUG_KMS("failed to attach phys object\n");
14122 	} else {
14123 		ret = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
14124 	}
14125 
14126 	if (ret == 0) {
14127 		to_intel_plane_state(new_state)->wait_req =
14128 			i915_gem_active_get(&obj->last_write,
14129 					    &obj->base.dev->struct_mutex);
14130 	}
14131 
14132 	return ret;
14133 }
14134 
14135 /**
14136  * intel_cleanup_plane_fb - Cleans up an fb after plane use
14137  * @plane: drm plane to clean up for
14138  * @fb: old framebuffer that was on plane
14139  *
14140  * Cleans up a framebuffer that has just been removed from a plane.
14141  *
14142  * Must be called with struct_mutex held.
14143  */
14144 void
14145 intel_cleanup_plane_fb(struct drm_plane *plane,
14146 		       struct drm_plane_state *old_state)
14147 {
14148 	struct drm_device *dev = plane->dev;
14149 	struct intel_plane_state *old_intel_state;
14150 	struct intel_plane_state *intel_state = to_intel_plane_state(plane->state);
14151 	struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
14152 	struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
14153 
14154 	old_intel_state = to_intel_plane_state(old_state);
14155 
14156 	if (!obj && !old_obj)
14157 		return;
14158 
14159 	if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
14160 	    !INTEL_INFO(dev)->cursor_needs_physical))
14161 		intel_unpin_fb_obj(old_state->fb, old_state->rotation);
14162 
14163 	i915_gem_request_assign(&intel_state->wait_req, NULL);
14164 	i915_gem_request_assign(&old_intel_state->wait_req, NULL);
14165 }
14166 
14167 int
14168 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
14169 {
14170 	int max_scale;
14171 	int crtc_clock, cdclk;
14172 
14173 	if (!intel_crtc || !crtc_state->base.enable)
14174 		return DRM_PLANE_HELPER_NO_SCALING;
14175 
14176 	crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
14177 	cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
14178 
14179 	if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
14180 		return DRM_PLANE_HELPER_NO_SCALING;
14181 
14182 	/*
14183 	 * skl max scale is lower of:
14184 	 *    close to 3 but not 3, -1 is for that purpose
14185 	 *            or
14186 	 *    cdclk/crtc_clock
14187 	 */
14188 	max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
14189 
14190 	return max_scale;
14191 }
14192 
14193 static int
14194 intel_check_primary_plane(struct drm_plane *plane,
14195 			  struct intel_crtc_state *crtc_state,
14196 			  struct intel_plane_state *state)
14197 {
14198 	struct drm_crtc *crtc = state->base.crtc;
14199 	struct drm_framebuffer *fb = state->base.fb;
14200 	int min_scale = DRM_PLANE_HELPER_NO_SCALING;
14201 	int max_scale = DRM_PLANE_HELPER_NO_SCALING;
14202 	bool can_position = false;
14203 
14204 	if (INTEL_INFO(plane->dev)->gen >= 9) {
14205 		/* use scaler when colorkey is not required */
14206 		if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
14207 			min_scale = 1;
14208 			max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
14209 		}
14210 		can_position = true;
14211 	}
14212 
14213 	return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
14214 					     &state->dst, &state->clip,
14215 					     state->base.rotation,
14216 					     min_scale, max_scale,
14217 					     can_position, true,
14218 					     &state->visible);
14219 }
14220 
14221 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
14222 				    struct drm_crtc_state *old_crtc_state)
14223 {
14224 	struct drm_device *dev = crtc->dev;
14225 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14226 	struct intel_crtc_state *old_intel_state =
14227 		to_intel_crtc_state(old_crtc_state);
14228 	bool modeset = needs_modeset(crtc->state);
14229 
14230 	/* Perform vblank evasion around commit operation */
14231 	intel_pipe_update_start(intel_crtc);
14232 
14233 	if (modeset)
14234 		return;
14235 
14236 	if (crtc->state->color_mgmt_changed || to_intel_crtc_state(crtc->state)->update_pipe) {
14237 		intel_color_set_csc(crtc->state);
14238 		intel_color_load_luts(crtc->state);
14239 	}
14240 
14241 	if (to_intel_crtc_state(crtc->state)->update_pipe)
14242 		intel_update_pipe_config(intel_crtc, old_intel_state);
14243 	else if (INTEL_INFO(dev)->gen >= 9)
14244 		skl_detach_scalers(intel_crtc);
14245 }
14246 
14247 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
14248 				     struct drm_crtc_state *old_crtc_state)
14249 {
14250 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14251 
14252 	intel_pipe_update_end(intel_crtc, NULL);
14253 }
14254 
14255 /**
14256  * intel_plane_destroy - destroy a plane
14257  * @plane: plane to destroy
14258  *
14259  * Common destruction function for all types of planes (primary, cursor,
14260  * sprite).
14261  */
14262 void intel_plane_destroy(struct drm_plane *plane)
14263 {
14264 	if (!plane)
14265 		return;
14266 
14267 	drm_plane_cleanup(plane);
14268 	kfree(to_intel_plane(plane));
14269 }
14270 
14271 const struct drm_plane_funcs intel_plane_funcs = {
14272 	.update_plane = drm_atomic_helper_update_plane,
14273 	.disable_plane = drm_atomic_helper_disable_plane,
14274 	.destroy = intel_plane_destroy,
14275 	.set_property = drm_atomic_helper_plane_set_property,
14276 	.atomic_get_property = intel_plane_atomic_get_property,
14277 	.atomic_set_property = intel_plane_atomic_set_property,
14278 	.atomic_duplicate_state = intel_plane_duplicate_state,
14279 	.atomic_destroy_state = intel_plane_destroy_state,
14280 
14281 };
14282 
14283 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
14284 						    int pipe)
14285 {
14286 	struct intel_plane *primary = NULL;
14287 	struct intel_plane_state *state = NULL;
14288 	const uint32_t *intel_primary_formats;
14289 	unsigned int num_formats;
14290 	int ret;
14291 
14292 	primary = kzalloc(sizeof(*primary), GFP_KERNEL);
14293 	if (!primary)
14294 		goto fail;
14295 
14296 	state = intel_create_plane_state(&primary->base);
14297 	if (!state)
14298 		goto fail;
14299 	primary->base.state = &state->base;
14300 
14301 	primary->can_scale = false;
14302 	primary->max_downscale = 1;
14303 	if (INTEL_INFO(dev)->gen >= 9) {
14304 		primary->can_scale = true;
14305 		state->scaler_id = -1;
14306 	}
14307 	primary->pipe = pipe;
14308 	primary->plane = pipe;
14309 	primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
14310 	primary->check_plane = intel_check_primary_plane;
14311 	if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
14312 		primary->plane = !pipe;
14313 
14314 	if (INTEL_INFO(dev)->gen >= 9) {
14315 		intel_primary_formats = skl_primary_formats;
14316 		num_formats = ARRAY_SIZE(skl_primary_formats);
14317 
14318 		primary->update_plane = skylake_update_primary_plane;
14319 		primary->disable_plane = skylake_disable_primary_plane;
14320 	} else if (HAS_PCH_SPLIT(dev)) {
14321 		intel_primary_formats = i965_primary_formats;
14322 		num_formats = ARRAY_SIZE(i965_primary_formats);
14323 
14324 		primary->update_plane = ironlake_update_primary_plane;
14325 		primary->disable_plane = i9xx_disable_primary_plane;
14326 	} else if (INTEL_INFO(dev)->gen >= 4) {
14327 		intel_primary_formats = i965_primary_formats;
14328 		num_formats = ARRAY_SIZE(i965_primary_formats);
14329 
14330 		primary->update_plane = i9xx_update_primary_plane;
14331 		primary->disable_plane = i9xx_disable_primary_plane;
14332 	} else {
14333 		intel_primary_formats = i8xx_primary_formats;
14334 		num_formats = ARRAY_SIZE(i8xx_primary_formats);
14335 
14336 		primary->update_plane = i9xx_update_primary_plane;
14337 		primary->disable_plane = i9xx_disable_primary_plane;
14338 	}
14339 
14340 	if (INTEL_INFO(dev)->gen >= 9)
14341 		ret = drm_universal_plane_init(dev, &primary->base, 0,
14342 					       &intel_plane_funcs,
14343 					       intel_primary_formats, num_formats,
14344 					       DRM_PLANE_TYPE_PRIMARY,
14345 					       "plane 1%c", pipe_name(pipe));
14346 	else if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
14347 		ret = drm_universal_plane_init(dev, &primary->base, 0,
14348 					       &intel_plane_funcs,
14349 					       intel_primary_formats, num_formats,
14350 					       DRM_PLANE_TYPE_PRIMARY,
14351 					       "primary %c", pipe_name(pipe));
14352 	else
14353 		ret = drm_universal_plane_init(dev, &primary->base, 0,
14354 					       &intel_plane_funcs,
14355 					       intel_primary_formats, num_formats,
14356 					       DRM_PLANE_TYPE_PRIMARY,
14357 					       "plane %c", plane_name(primary->plane));
14358 	if (ret)
14359 		goto fail;
14360 
14361 	if (INTEL_INFO(dev)->gen >= 4)
14362 		intel_create_rotation_property(dev, primary);
14363 
14364 	drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
14365 
14366 	return &primary->base;
14367 
14368 fail:
14369 	kfree(state);
14370 	kfree(primary);
14371 
14372 	return NULL;
14373 }
14374 
14375 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
14376 {
14377 	if (!dev->mode_config.rotation_property) {
14378 		unsigned long flags = DRM_ROTATE_0 |
14379 			DRM_ROTATE_180;
14380 
14381 		if (INTEL_INFO(dev)->gen >= 9)
14382 			flags |= DRM_ROTATE_90 | DRM_ROTATE_270;
14383 
14384 		dev->mode_config.rotation_property =
14385 			drm_mode_create_rotation_property(dev, flags);
14386 	}
14387 	if (dev->mode_config.rotation_property)
14388 		drm_object_attach_property(&plane->base.base,
14389 				dev->mode_config.rotation_property,
14390 				plane->base.state->rotation);
14391 }
14392 
14393 static int
14394 intel_check_cursor_plane(struct drm_plane *plane,
14395 			 struct intel_crtc_state *crtc_state,
14396 			 struct intel_plane_state *state)
14397 {
14398 	struct drm_crtc *crtc = crtc_state->base.crtc;
14399 	struct drm_framebuffer *fb = state->base.fb;
14400 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14401 	enum i915_pipe pipe = to_intel_plane(plane)->pipe;
14402 	unsigned stride;
14403 	int ret;
14404 
14405 	ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
14406 					    &state->dst, &state->clip,
14407 					    state->base.rotation,
14408 					    DRM_PLANE_HELPER_NO_SCALING,
14409 					    DRM_PLANE_HELPER_NO_SCALING,
14410 					    true, true, &state->visible);
14411 	if (ret)
14412 		return ret;
14413 
14414 	/* if we want to turn off the cursor ignore width and height */
14415 	if (!obj)
14416 		return 0;
14417 
14418 	/* Check for which cursor types we support */
14419 	if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
14420 		DRM_DEBUG("Cursor dimension %dx%d not supported\n",
14421 			  state->base.crtc_w, state->base.crtc_h);
14422 		return -EINVAL;
14423 	}
14424 
14425 	stride = roundup_pow_of_two(state->base.crtc_w) * 4;
14426 	if (obj->base.size < stride * state->base.crtc_h) {
14427 		DRM_DEBUG_KMS("buffer is too small\n");
14428 		return -ENOMEM;
14429 	}
14430 
14431 	if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
14432 		DRM_DEBUG_KMS("cursor cannot be tiled\n");
14433 		return -EINVAL;
14434 	}
14435 
14436 	/*
14437 	 * There's something wrong with the cursor on CHV pipe C.
14438 	 * If it straddles the left edge of the screen then
14439 	 * moving it away from the edge or disabling it often
14440 	 * results in a pipe underrun, and often that can lead to
14441 	 * dead pipe (constant underrun reported, and it scans
14442 	 * out just a solid color). To recover from that, the
14443 	 * display power well must be turned off and on again.
14444 	 * Refuse the put the cursor into that compromised position.
14445 	 */
14446 	if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
14447 	    state->visible && state->base.crtc_x < 0) {
14448 		DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
14449 		return -EINVAL;
14450 	}
14451 
14452 	return 0;
14453 }
14454 
14455 static void
14456 intel_disable_cursor_plane(struct drm_plane *plane,
14457 			   struct drm_crtc *crtc)
14458 {
14459 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14460 
14461 	intel_crtc->cursor_addr = 0;
14462 	intel_crtc_update_cursor(crtc, NULL);
14463 }
14464 
14465 static void
14466 intel_update_cursor_plane(struct drm_plane *plane,
14467 			  const struct intel_crtc_state *crtc_state,
14468 			  const struct intel_plane_state *state)
14469 {
14470 	struct drm_crtc *crtc = crtc_state->base.crtc;
14471 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14472 	struct drm_device *dev = plane->dev;
14473 	struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
14474 	uint32_t addr;
14475 
14476 	if (!obj)
14477 		addr = 0;
14478 	else if (!INTEL_INFO(dev)->cursor_needs_physical)
14479 		addr = i915_gem_obj_ggtt_offset(obj);
14480 	else
14481 		addr = obj->phys_handle->busaddr;
14482 
14483 	intel_crtc->cursor_addr = addr;
14484 	intel_crtc_update_cursor(crtc, state);
14485 }
14486 
14487 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
14488 						   int pipe)
14489 {
14490 	struct intel_plane *cursor = NULL;
14491 	struct intel_plane_state *state = NULL;
14492 	int ret;
14493 
14494 	cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
14495 	if (!cursor)
14496 		goto fail;
14497 
14498 	state = intel_create_plane_state(&cursor->base);
14499 	if (!state)
14500 		goto fail;
14501 	cursor->base.state = &state->base;
14502 
14503 	cursor->can_scale = false;
14504 	cursor->max_downscale = 1;
14505 	cursor->pipe = pipe;
14506 	cursor->plane = pipe;
14507 	cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
14508 	cursor->check_plane = intel_check_cursor_plane;
14509 	cursor->update_plane = intel_update_cursor_plane;
14510 	cursor->disable_plane = intel_disable_cursor_plane;
14511 
14512 	ret = drm_universal_plane_init(dev, &cursor->base, 0,
14513 				       &intel_plane_funcs,
14514 				       intel_cursor_formats,
14515 				       ARRAY_SIZE(intel_cursor_formats),
14516 				       DRM_PLANE_TYPE_CURSOR,
14517 				       "cursor %c", pipe_name(pipe));
14518 	if (ret)
14519 		goto fail;
14520 
14521 	if (INTEL_INFO(dev)->gen >= 4) {
14522 		if (!dev->mode_config.rotation_property)
14523 			dev->mode_config.rotation_property =
14524 				drm_mode_create_rotation_property(dev,
14525 							DRM_ROTATE_0 |
14526 							DRM_ROTATE_180);
14527 		if (dev->mode_config.rotation_property)
14528 			drm_object_attach_property(&cursor->base.base,
14529 				dev->mode_config.rotation_property,
14530 				state->base.rotation);
14531 	}
14532 
14533 	if (INTEL_INFO(dev)->gen >=9)
14534 		state->scaler_id = -1;
14535 
14536 	drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
14537 
14538 	return &cursor->base;
14539 
14540 fail:
14541 	kfree(state);
14542 	kfree(cursor);
14543 
14544 	return NULL;
14545 }
14546 
14547 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
14548 	struct intel_crtc_state *crtc_state)
14549 {
14550 	int i;
14551 	struct intel_scaler *intel_scaler;
14552 	struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
14553 
14554 	for (i = 0; i < intel_crtc->num_scalers; i++) {
14555 		intel_scaler = &scaler_state->scalers[i];
14556 		intel_scaler->in_use = 0;
14557 		intel_scaler->mode = PS_SCALER_MODE_DYN;
14558 	}
14559 
14560 	scaler_state->scaler_id = -1;
14561 }
14562 
14563 static void intel_crtc_init(struct drm_device *dev, int pipe)
14564 {
14565 	struct drm_i915_private *dev_priv = to_i915(dev);
14566 	struct intel_crtc *intel_crtc;
14567 	struct intel_crtc_state *crtc_state = NULL;
14568 	struct drm_plane *primary = NULL;
14569 	struct drm_plane *cursor = NULL;
14570 	int ret;
14571 
14572 	intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
14573 	if (intel_crtc == NULL)
14574 		return;
14575 
14576 	crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
14577 	if (!crtc_state)
14578 		goto fail;
14579 	intel_crtc->config = crtc_state;
14580 	intel_crtc->base.state = &crtc_state->base;
14581 	crtc_state->base.crtc = &intel_crtc->base;
14582 
14583 	/* initialize shared scalers */
14584 	if (INTEL_INFO(dev)->gen >= 9) {
14585 		if (pipe == PIPE_C)
14586 			intel_crtc->num_scalers = 1;
14587 		else
14588 			intel_crtc->num_scalers = SKL_NUM_SCALERS;
14589 
14590 		skl_init_scalers(dev, intel_crtc, crtc_state);
14591 	}
14592 
14593 	primary = intel_primary_plane_create(dev, pipe);
14594 	if (!primary)
14595 		goto fail;
14596 
14597 	cursor = intel_cursor_plane_create(dev, pipe);
14598 	if (!cursor)
14599 		goto fail;
14600 
14601 	ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
14602 					cursor, &intel_crtc_funcs,
14603 					"pipe %c", pipe_name(pipe));
14604 	if (ret)
14605 		goto fail;
14606 
14607 	/*
14608 	 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
14609 	 * is hooked to pipe B. Hence we want plane A feeding pipe B.
14610 	 */
14611 	intel_crtc->pipe = pipe;
14612 	intel_crtc->plane = pipe;
14613 	if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
14614 		DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
14615 		intel_crtc->plane = !pipe;
14616 	}
14617 
14618 	intel_crtc->cursor_base = ~0;
14619 	intel_crtc->cursor_cntl = ~0;
14620 	intel_crtc->cursor_size = ~0;
14621 
14622 	intel_crtc->wm.cxsr_allowed = true;
14623 
14624 	BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
14625 	       dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
14626 	dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
14627 	dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
14628 
14629 	drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
14630 
14631 	intel_color_init(&intel_crtc->base);
14632 
14633 	WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
14634 	return;
14635 
14636 fail:
14637 	intel_plane_destroy(primary);
14638 	intel_plane_destroy(cursor);
14639 	kfree(crtc_state);
14640 	kfree(intel_crtc);
14641 }
14642 
14643 enum i915_pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14644 {
14645 	struct drm_encoder *encoder = connector->base.encoder;
14646 	struct drm_device *dev = connector->base.dev;
14647 
14648 	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
14649 
14650 	if (!encoder || WARN_ON(!encoder->crtc))
14651 		return INVALID_PIPE;
14652 
14653 	return to_intel_crtc(encoder->crtc)->pipe;
14654 }
14655 
14656 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
14657 				struct drm_file *file)
14658 {
14659 	struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14660 	struct drm_crtc *drmmode_crtc;
14661 	struct intel_crtc *crtc;
14662 
14663 	drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
14664 	if (!drmmode_crtc)
14665 		return -ENOENT;
14666 
14667 	crtc = to_intel_crtc(drmmode_crtc);
14668 	pipe_from_crtc_id->pipe = crtc->pipe;
14669 
14670 	return 0;
14671 }
14672 
14673 static int intel_encoder_clones(struct intel_encoder *encoder)
14674 {
14675 	struct drm_device *dev = encoder->base.dev;
14676 	struct intel_encoder *source_encoder;
14677 	int index_mask = 0;
14678 	int entry = 0;
14679 
14680 	for_each_intel_encoder(dev, source_encoder) {
14681 		if (encoders_cloneable(encoder, source_encoder))
14682 			index_mask |= (1 << entry);
14683 
14684 		entry++;
14685 	}
14686 
14687 	return index_mask;
14688 }
14689 
14690 static bool has_edp_a(struct drm_device *dev)
14691 {
14692 	struct drm_i915_private *dev_priv = to_i915(dev);
14693 
14694 	if (!IS_MOBILE(dev))
14695 		return false;
14696 
14697 	if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14698 		return false;
14699 
14700 	if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14701 		return false;
14702 
14703 	return true;
14704 }
14705 
14706 static bool intel_crt_present(struct drm_device *dev)
14707 {
14708 	struct drm_i915_private *dev_priv = to_i915(dev);
14709 
14710 	if (INTEL_INFO(dev)->gen >= 9)
14711 		return false;
14712 
14713 	if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
14714 		return false;
14715 
14716 	if (IS_CHERRYVIEW(dev))
14717 		return false;
14718 
14719 	if (HAS_PCH_LPT_H(dev) && I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
14720 		return false;
14721 
14722 	/* DDI E can't be used if DDI A requires 4 lanes */
14723 	if (HAS_DDI(dev) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
14724 		return false;
14725 
14726 	if (!dev_priv->vbt.int_crt_support)
14727 		return false;
14728 
14729 	return true;
14730 }
14731 
14732 static void intel_setup_outputs(struct drm_device *dev)
14733 {
14734 	struct drm_i915_private *dev_priv = to_i915(dev);
14735 	struct intel_encoder *encoder;
14736 	bool dpd_is_edp = false;
14737 
14738 	/*
14739 	 * intel_edp_init_connector() depends on this completing first, to
14740 	 * prevent the registeration of both eDP and LVDS and the incorrect
14741 	 * sharing of the PPS.
14742 	 */
14743 	intel_lvds_init(dev);
14744 
14745 	if (intel_crt_present(dev))
14746 		intel_crt_init(dev);
14747 
14748 	if (IS_BROXTON(dev)) {
14749 		/*
14750 		 * FIXME: Broxton doesn't support port detection via the
14751 		 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14752 		 * detect the ports.
14753 		 */
14754 		intel_ddi_init(dev, PORT_A);
14755 		intel_ddi_init(dev, PORT_B);
14756 		intel_ddi_init(dev, PORT_C);
14757 
14758 		intel_dsi_init(dev);
14759 	} else if (HAS_DDI(dev)) {
14760 		int found;
14761 
14762 		/*
14763 		 * Haswell uses DDI functions to detect digital outputs.
14764 		 * On SKL pre-D0 the strap isn't connected, so we assume
14765 		 * it's there.
14766 		 */
14767 		found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
14768 		/* WaIgnoreDDIAStrap: skl */
14769 		if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
14770 			intel_ddi_init(dev, PORT_A);
14771 
14772 		/* DDI B, C and D detection is indicated by the SFUSE_STRAP
14773 		 * register */
14774 		found = I915_READ(SFUSE_STRAP);
14775 
14776 		if (found & SFUSE_STRAP_DDIB_DETECTED)
14777 			intel_ddi_init(dev, PORT_B);
14778 		if (found & SFUSE_STRAP_DDIC_DETECTED)
14779 			intel_ddi_init(dev, PORT_C);
14780 		if (found & SFUSE_STRAP_DDID_DETECTED)
14781 			intel_ddi_init(dev, PORT_D);
14782 		/*
14783 		 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14784 		 */
14785 		if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
14786 		    (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14787 		     dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14788 		     dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14789 			intel_ddi_init(dev, PORT_E);
14790 
14791 	} else if (HAS_PCH_SPLIT(dev)) {
14792 		int found;
14793 		dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14794 
14795 		if (has_edp_a(dev))
14796 			intel_dp_init(dev, DP_A, PORT_A);
14797 
14798 		if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14799 			/* PCH SDVOB multiplex with HDMIB */
14800 			found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
14801 			if (!found)
14802 				intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14803 			if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14804 				intel_dp_init(dev, PCH_DP_B, PORT_B);
14805 		}
14806 
14807 		if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14808 			intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14809 
14810 		if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14811 			intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14812 
14813 		if (I915_READ(PCH_DP_C) & DP_DETECTED)
14814 			intel_dp_init(dev, PCH_DP_C, PORT_C);
14815 
14816 		if (I915_READ(PCH_DP_D) & DP_DETECTED)
14817 			intel_dp_init(dev, PCH_DP_D, PORT_D);
14818 	} else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
14819 		bool has_edp, has_port;
14820 
14821 		/*
14822 		 * The DP_DETECTED bit is the latched state of the DDC
14823 		 * SDA pin at boot. However since eDP doesn't require DDC
14824 		 * (no way to plug in a DP->HDMI dongle) the DDC pins for
14825 		 * eDP ports may have been muxed to an alternate function.
14826 		 * Thus we can't rely on the DP_DETECTED bit alone to detect
14827 		 * eDP ports. Consult the VBT as well as DP_DETECTED to
14828 		 * detect eDP ports.
14829 		 *
14830 		 * Sadly the straps seem to be missing sometimes even for HDMI
14831 		 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
14832 		 * and VBT for the presence of the port. Additionally we can't
14833 		 * trust the port type the VBT declares as we've seen at least
14834 		 * HDMI ports that the VBT claim are DP or eDP.
14835 		 */
14836 		has_edp = intel_dp_is_edp(dev, PORT_B);
14837 		has_port = intel_bios_is_port_present(dev_priv, PORT_B);
14838 		if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
14839 			has_edp &= intel_dp_init(dev, VLV_DP_B, PORT_B);
14840 		if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
14841 			intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
14842 
14843 		has_edp = intel_dp_is_edp(dev, PORT_C);
14844 		has_port = intel_bios_is_port_present(dev_priv, PORT_C);
14845 		if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
14846 			has_edp &= intel_dp_init(dev, VLV_DP_C, PORT_C);
14847 		if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
14848 			intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
14849 
14850 		if (IS_CHERRYVIEW(dev)) {
14851 			/*
14852 			 * eDP not supported on port D,
14853 			 * so no need to worry about it
14854 			 */
14855 			has_port = intel_bios_is_port_present(dev_priv, PORT_D);
14856 			if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
14857 				intel_dp_init(dev, CHV_DP_D, PORT_D);
14858 			if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
14859 				intel_hdmi_init(dev, CHV_HDMID, PORT_D);
14860 		}
14861 
14862 		intel_dsi_init(dev);
14863 	} else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14864 		bool found = false;
14865 
14866 		if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14867 			DRM_DEBUG_KMS("probing SDVOB\n");
14868 			found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
14869 			if (!found && IS_G4X(dev)) {
14870 				DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14871 				intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14872 			}
14873 
14874 			if (!found && IS_G4X(dev))
14875 				intel_dp_init(dev, DP_B, PORT_B);
14876 		}
14877 
14878 		/* Before G4X SDVOC doesn't have its own detect register */
14879 
14880 		if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14881 			DRM_DEBUG_KMS("probing SDVOC\n");
14882 			found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
14883 		}
14884 
14885 		if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14886 
14887 			if (IS_G4X(dev)) {
14888 				DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14889 				intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14890 			}
14891 			if (IS_G4X(dev))
14892 				intel_dp_init(dev, DP_C, PORT_C);
14893 		}
14894 
14895 		if (IS_G4X(dev) &&
14896 		    (I915_READ(DP_D) & DP_DETECTED))
14897 			intel_dp_init(dev, DP_D, PORT_D);
14898 	} else if (IS_GEN2(dev))
14899 		intel_dvo_init(dev);
14900 
14901 	if (SUPPORTS_TV(dev))
14902 		intel_tv_init(dev);
14903 
14904 	intel_psr_init(dev);
14905 
14906 	for_each_intel_encoder(dev, encoder) {
14907 		encoder->base.possible_crtcs = encoder->crtc_mask;
14908 		encoder->base.possible_clones =
14909 			intel_encoder_clones(encoder);
14910 	}
14911 
14912 	intel_init_pch_refclk(dev);
14913 
14914 	drm_helper_move_panel_connectors_to_head(dev);
14915 }
14916 
14917 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14918 {
14919 	struct drm_device *dev = fb->dev;
14920 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14921 
14922 	drm_framebuffer_cleanup(fb);
14923 	mutex_lock(&dev->struct_mutex);
14924 	WARN_ON(!intel_fb->obj->framebuffer_references--);
14925 	i915_gem_object_put(intel_fb->obj);
14926 	mutex_unlock(&dev->struct_mutex);
14927 	kfree(intel_fb);
14928 }
14929 
14930 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14931 						struct drm_file *file,
14932 						unsigned int *handle)
14933 {
14934 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14935 	struct drm_i915_gem_object *obj = intel_fb->obj;
14936 
14937 	if (obj->userptr.mm) {
14938 		DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14939 		return -EINVAL;
14940 	}
14941 
14942 	return drm_gem_handle_create(file, &obj->base, handle);
14943 }
14944 
14945 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14946 					struct drm_file *file,
14947 					unsigned flags, unsigned color,
14948 					struct drm_clip_rect *clips,
14949 					unsigned num_clips)
14950 {
14951 	struct drm_device *dev = fb->dev;
14952 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14953 	struct drm_i915_gem_object *obj = intel_fb->obj;
14954 
14955 	mutex_lock(&dev->struct_mutex);
14956 	intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14957 	mutex_unlock(&dev->struct_mutex);
14958 
14959 	return 0;
14960 }
14961 
14962 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14963 	.destroy = intel_user_framebuffer_destroy,
14964 	.create_handle = intel_user_framebuffer_create_handle,
14965 	.dirty = intel_user_framebuffer_dirty,
14966 };
14967 
14968 static
14969 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14970 			 uint32_t pixel_format)
14971 {
14972 	u32 gen = INTEL_INFO(dev)->gen;
14973 
14974 	if (gen >= 9) {
14975 		int cpp = drm_format_plane_cpp(pixel_format, 0);
14976 
14977 		/* "The stride in bytes must not exceed the of the size of 8K
14978 		 *  pixels and 32K bytes."
14979 		 */
14980 		return min(8192 * cpp, 32768);
14981 	} else if (gen >= 5 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
14982 		return 32*1024;
14983 	} else if (gen >= 4) {
14984 		if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14985 			return 16*1024;
14986 		else
14987 			return 32*1024;
14988 	} else if (gen >= 3) {
14989 		if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14990 			return 8*1024;
14991 		else
14992 			return 16*1024;
14993 	} else {
14994 		/* XXX DSPC is limited to 4k tiled */
14995 		return 8*1024;
14996 	}
14997 }
14998 
14999 static int intel_framebuffer_init(struct drm_device *dev,
15000 				  struct intel_framebuffer *intel_fb,
15001 				  struct drm_mode_fb_cmd2 *mode_cmd,
15002 				  struct drm_i915_gem_object *obj)
15003 {
15004 	struct drm_i915_private *dev_priv = to_i915(dev);
15005 	unsigned int aligned_height;
15006 	int ret;
15007 	u32 pitch_limit, stride_alignment;
15008 
15009 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
15010 
15011 	if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
15012 		/* Enforce that fb modifier and tiling mode match, but only for
15013 		 * X-tiled. This is needed for FBC. */
15014 		if (!!(i915_gem_object_get_tiling(obj) == I915_TILING_X) !=
15015 		    !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
15016 			DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
15017 			return -EINVAL;
15018 		}
15019 	} else {
15020 		if (i915_gem_object_get_tiling(obj) == I915_TILING_X)
15021 			mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
15022 		else if (i915_gem_object_get_tiling(obj) == I915_TILING_Y) {
15023 			DRM_DEBUG("No Y tiling for legacy addfb\n");
15024 			return -EINVAL;
15025 		}
15026 	}
15027 
15028 	/* Passed in modifier sanity checking. */
15029 	switch (mode_cmd->modifier[0]) {
15030 	case I915_FORMAT_MOD_Y_TILED:
15031 	case I915_FORMAT_MOD_Yf_TILED:
15032 		if (INTEL_INFO(dev)->gen < 9) {
15033 			DRM_DEBUG("Unsupported tiling 0x%llx!\n",
15034 				  mode_cmd->modifier[0]);
15035 			return -EINVAL;
15036 		}
15037 	case DRM_FORMAT_MOD_NONE:
15038 	case I915_FORMAT_MOD_X_TILED:
15039 		break;
15040 	default:
15041 		DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
15042 			  mode_cmd->modifier[0]);
15043 		return -EINVAL;
15044 	}
15045 
15046 	stride_alignment = intel_fb_stride_alignment(dev_priv,
15047 						     mode_cmd->modifier[0],
15048 						     mode_cmd->pixel_format);
15049 	if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
15050 		DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
15051 			  mode_cmd->pitches[0], stride_alignment);
15052 		return -EINVAL;
15053 	}
15054 
15055 	pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
15056 					   mode_cmd->pixel_format);
15057 	if (mode_cmd->pitches[0] > pitch_limit) {
15058 		DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
15059 			  mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
15060 			  "tiled" : "linear",
15061 			  mode_cmd->pitches[0], pitch_limit);
15062 		return -EINVAL;
15063 	}
15064 
15065 	if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
15066 	    mode_cmd->pitches[0] != i915_gem_object_get_stride(obj)) {
15067 		DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
15068 			  mode_cmd->pitches[0],
15069 			  i915_gem_object_get_stride(obj));
15070 		return -EINVAL;
15071 	}
15072 
15073 	/* Reject formats not supported by any plane early. */
15074 	switch (mode_cmd->pixel_format) {
15075 	case DRM_FORMAT_C8:
15076 	case DRM_FORMAT_RGB565:
15077 	case DRM_FORMAT_XRGB8888:
15078 	case DRM_FORMAT_ARGB8888:
15079 		break;
15080 	case DRM_FORMAT_XRGB1555:
15081 		if (INTEL_INFO(dev)->gen > 3) {
15082 			DRM_DEBUG("unsupported pixel format: %s\n",
15083 				  drm_get_format_name(mode_cmd->pixel_format));
15084 			return -EINVAL;
15085 		}
15086 		break;
15087 	case DRM_FORMAT_ABGR8888:
15088 		if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
15089 		    INTEL_INFO(dev)->gen < 9) {
15090 			DRM_DEBUG("unsupported pixel format: %s\n",
15091 				  drm_get_format_name(mode_cmd->pixel_format));
15092 			return -EINVAL;
15093 		}
15094 		break;
15095 	case DRM_FORMAT_XBGR8888:
15096 	case DRM_FORMAT_XRGB2101010:
15097 	case DRM_FORMAT_XBGR2101010:
15098 		if (INTEL_INFO(dev)->gen < 4) {
15099 			DRM_DEBUG("unsupported pixel format: %s\n",
15100 				  drm_get_format_name(mode_cmd->pixel_format));
15101 			return -EINVAL;
15102 		}
15103 		break;
15104 	case DRM_FORMAT_ABGR2101010:
15105 		if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
15106 			DRM_DEBUG("unsupported pixel format: %s\n",
15107 				  drm_get_format_name(mode_cmd->pixel_format));
15108 			return -EINVAL;
15109 		}
15110 		break;
15111 	case DRM_FORMAT_YUYV:
15112 	case DRM_FORMAT_UYVY:
15113 	case DRM_FORMAT_YVYU:
15114 	case DRM_FORMAT_VYUY:
15115 		if (INTEL_INFO(dev)->gen < 5) {
15116 			DRM_DEBUG("unsupported pixel format: %s\n",
15117 				  drm_get_format_name(mode_cmd->pixel_format));
15118 			return -EINVAL;
15119 		}
15120 		break;
15121 	default:
15122 		DRM_DEBUG("unsupported pixel format: %s\n",
15123 			  drm_get_format_name(mode_cmd->pixel_format));
15124 		return -EINVAL;
15125 	}
15126 
15127 	/* FIXME need to adjust LINOFF/TILEOFF accordingly. */
15128 	if (mode_cmd->offsets[0] != 0)
15129 		return -EINVAL;
15130 
15131 	aligned_height = intel_fb_align_height(dev, mode_cmd->height,
15132 					       mode_cmd->pixel_format,
15133 					       mode_cmd->modifier[0]);
15134 	/* FIXME drm helper for size checks (especially planar formats)? */
15135 	if (obj->base.size < aligned_height * mode_cmd->pitches[0])
15136 		return -EINVAL;
15137 
15138 	drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
15139 	intel_fb->obj = obj;
15140 
15141 	intel_fill_fb_info(dev_priv, &intel_fb->base);
15142 
15143 	ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
15144 	if (ret) {
15145 		DRM_ERROR("framebuffer init failed %d\n", ret);
15146 		return ret;
15147 	}
15148 
15149 	intel_fb->obj->framebuffer_references++;
15150 
15151 	return 0;
15152 }
15153 
15154 static struct drm_framebuffer *
15155 intel_user_framebuffer_create(struct drm_device *dev,
15156 			      struct drm_file *filp,
15157 			      const struct drm_mode_fb_cmd2 *user_mode_cmd)
15158 {
15159 	struct drm_framebuffer *fb;
15160 	struct drm_i915_gem_object *obj;
15161 	struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
15162 
15163 	obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
15164 	if (!obj)
15165 		return ERR_PTR(-ENOENT);
15166 
15167 	fb = intel_framebuffer_create(dev, &mode_cmd, obj);
15168 	if (IS_ERR(fb))
15169 		i915_gem_object_put_unlocked(obj);
15170 
15171 	return fb;
15172 }
15173 
15174 #ifndef CONFIG_DRM_FBDEV_EMULATION
15175 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
15176 {
15177 }
15178 #endif
15179 
15180 static const struct drm_mode_config_funcs intel_mode_funcs = {
15181 	.fb_create = intel_user_framebuffer_create,
15182 	.output_poll_changed = intel_fbdev_output_poll_changed,
15183 	.atomic_check = intel_atomic_check,
15184 	.atomic_commit = intel_atomic_commit,
15185 	.atomic_state_alloc = intel_atomic_state_alloc,
15186 	.atomic_state_clear = intel_atomic_state_clear,
15187 };
15188 
15189 /**
15190  * intel_init_display_hooks - initialize the display modesetting hooks
15191  * @dev_priv: device private
15192  */
15193 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
15194 {
15195 	if (INTEL_INFO(dev_priv)->gen >= 9) {
15196 		dev_priv->display.get_pipe_config = haswell_get_pipe_config;
15197 		dev_priv->display.get_initial_plane_config =
15198 			skylake_get_initial_plane_config;
15199 		dev_priv->display.crtc_compute_clock =
15200 			haswell_crtc_compute_clock;
15201 		dev_priv->display.crtc_enable = haswell_crtc_enable;
15202 		dev_priv->display.crtc_disable = haswell_crtc_disable;
15203 	} else if (HAS_DDI(dev_priv)) {
15204 		dev_priv->display.get_pipe_config = haswell_get_pipe_config;
15205 		dev_priv->display.get_initial_plane_config =
15206 			ironlake_get_initial_plane_config;
15207 		dev_priv->display.crtc_compute_clock =
15208 			haswell_crtc_compute_clock;
15209 		dev_priv->display.crtc_enable = haswell_crtc_enable;
15210 		dev_priv->display.crtc_disable = haswell_crtc_disable;
15211 	} else if (HAS_PCH_SPLIT(dev_priv)) {
15212 		dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
15213 		dev_priv->display.get_initial_plane_config =
15214 			ironlake_get_initial_plane_config;
15215 		dev_priv->display.crtc_compute_clock =
15216 			ironlake_crtc_compute_clock;
15217 		dev_priv->display.crtc_enable = ironlake_crtc_enable;
15218 		dev_priv->display.crtc_disable = ironlake_crtc_disable;
15219 	} else if (IS_CHERRYVIEW(dev_priv)) {
15220 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15221 		dev_priv->display.get_initial_plane_config =
15222 			i9xx_get_initial_plane_config;
15223 		dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
15224 		dev_priv->display.crtc_enable = valleyview_crtc_enable;
15225 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
15226 	} else if (IS_VALLEYVIEW(dev_priv)) {
15227 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15228 		dev_priv->display.get_initial_plane_config =
15229 			i9xx_get_initial_plane_config;
15230 		dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
15231 		dev_priv->display.crtc_enable = valleyview_crtc_enable;
15232 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
15233 	} else if (IS_G4X(dev_priv)) {
15234 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15235 		dev_priv->display.get_initial_plane_config =
15236 			i9xx_get_initial_plane_config;
15237 		dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
15238 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
15239 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
15240 	} else if (IS_PINEVIEW(dev_priv)) {
15241 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15242 		dev_priv->display.get_initial_plane_config =
15243 			i9xx_get_initial_plane_config;
15244 		dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
15245 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
15246 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
15247 	} else if (!IS_GEN2(dev_priv)) {
15248 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15249 		dev_priv->display.get_initial_plane_config =
15250 			i9xx_get_initial_plane_config;
15251 		dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
15252 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
15253 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
15254 	} else {
15255 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15256 		dev_priv->display.get_initial_plane_config =
15257 			i9xx_get_initial_plane_config;
15258 		dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
15259 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
15260 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
15261 	}
15262 
15263 	/* Returns the core display clock speed */
15264 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
15265 		dev_priv->display.get_display_clock_speed =
15266 			skylake_get_display_clock_speed;
15267 	else if (IS_BROXTON(dev_priv))
15268 		dev_priv->display.get_display_clock_speed =
15269 			broxton_get_display_clock_speed;
15270 	else if (IS_BROADWELL(dev_priv))
15271 		dev_priv->display.get_display_clock_speed =
15272 			broadwell_get_display_clock_speed;
15273 	else if (IS_HASWELL(dev_priv))
15274 		dev_priv->display.get_display_clock_speed =
15275 			haswell_get_display_clock_speed;
15276 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15277 		dev_priv->display.get_display_clock_speed =
15278 			valleyview_get_display_clock_speed;
15279 	else if (IS_GEN5(dev_priv))
15280 		dev_priv->display.get_display_clock_speed =
15281 			ilk_get_display_clock_speed;
15282 	else if (IS_I945G(dev_priv) || IS_BROADWATER(dev_priv) ||
15283 		 IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
15284 		dev_priv->display.get_display_clock_speed =
15285 			i945_get_display_clock_speed;
15286 	else if (IS_GM45(dev_priv))
15287 		dev_priv->display.get_display_clock_speed =
15288 			gm45_get_display_clock_speed;
15289 	else if (IS_CRESTLINE(dev_priv))
15290 		dev_priv->display.get_display_clock_speed =
15291 			i965gm_get_display_clock_speed;
15292 	else if (IS_PINEVIEW(dev_priv))
15293 		dev_priv->display.get_display_clock_speed =
15294 			pnv_get_display_clock_speed;
15295 	else if (IS_G33(dev_priv) || IS_G4X(dev_priv))
15296 		dev_priv->display.get_display_clock_speed =
15297 			g33_get_display_clock_speed;
15298 	else if (IS_I915G(dev_priv))
15299 		dev_priv->display.get_display_clock_speed =
15300 			i915_get_display_clock_speed;
15301 	else if (IS_I945GM(dev_priv) || IS_845G(dev_priv))
15302 		dev_priv->display.get_display_clock_speed =
15303 			i9xx_misc_get_display_clock_speed;
15304 	else if (IS_I915GM(dev_priv))
15305 		dev_priv->display.get_display_clock_speed =
15306 			i915gm_get_display_clock_speed;
15307 	else if (IS_I865G(dev_priv))
15308 		dev_priv->display.get_display_clock_speed =
15309 			i865_get_display_clock_speed;
15310 	else if (IS_I85X(dev_priv))
15311 		dev_priv->display.get_display_clock_speed =
15312 			i85x_get_display_clock_speed;
15313 	else { /* 830 */
15314 		WARN(!IS_I830(dev_priv), "Unknown platform. Assuming 133 MHz CDCLK\n");
15315 		dev_priv->display.get_display_clock_speed =
15316 			i830_get_display_clock_speed;
15317 	}
15318 
15319 	if (IS_GEN5(dev_priv)) {
15320 		dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
15321 	} else if (IS_GEN6(dev_priv)) {
15322 		dev_priv->display.fdi_link_train = gen6_fdi_link_train;
15323 	} else if (IS_IVYBRIDGE(dev_priv)) {
15324 		/* FIXME: detect B0+ stepping and use auto training */
15325 		dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
15326 	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
15327 		dev_priv->display.fdi_link_train = hsw_fdi_link_train;
15328 	}
15329 
15330 	if (IS_BROADWELL(dev_priv)) {
15331 		dev_priv->display.modeset_commit_cdclk =
15332 			broadwell_modeset_commit_cdclk;
15333 		dev_priv->display.modeset_calc_cdclk =
15334 			broadwell_modeset_calc_cdclk;
15335 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
15336 		dev_priv->display.modeset_commit_cdclk =
15337 			valleyview_modeset_commit_cdclk;
15338 		dev_priv->display.modeset_calc_cdclk =
15339 			valleyview_modeset_calc_cdclk;
15340 	} else if (IS_BROXTON(dev_priv)) {
15341 		dev_priv->display.modeset_commit_cdclk =
15342 			bxt_modeset_commit_cdclk;
15343 		dev_priv->display.modeset_calc_cdclk =
15344 			bxt_modeset_calc_cdclk;
15345 	} else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
15346 		dev_priv->display.modeset_commit_cdclk =
15347 			skl_modeset_commit_cdclk;
15348 		dev_priv->display.modeset_calc_cdclk =
15349 			skl_modeset_calc_cdclk;
15350 	}
15351 
15352 	switch (INTEL_INFO(dev_priv)->gen) {
15353 	case 2:
15354 		dev_priv->display.queue_flip = intel_gen2_queue_flip;
15355 		break;
15356 
15357 	case 3:
15358 		dev_priv->display.queue_flip = intel_gen3_queue_flip;
15359 		break;
15360 
15361 	case 4:
15362 	case 5:
15363 		dev_priv->display.queue_flip = intel_gen4_queue_flip;
15364 		break;
15365 
15366 	case 6:
15367 		dev_priv->display.queue_flip = intel_gen6_queue_flip;
15368 		break;
15369 	case 7:
15370 	case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
15371 		dev_priv->display.queue_flip = intel_gen7_queue_flip;
15372 		break;
15373 	case 9:
15374 		/* Drop through - unsupported since execlist only. */
15375 	default:
15376 		/* Default just returns -ENODEV to indicate unsupported */
15377 		dev_priv->display.queue_flip = intel_default_queue_flip;
15378 	}
15379 }
15380 
15381 /*
15382  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
15383  * resume, or other times.  This quirk makes sure that's the case for
15384  * affected systems.
15385  */
15386 static void quirk_pipea_force(struct drm_device *dev)
15387 {
15388 	struct drm_i915_private *dev_priv = to_i915(dev);
15389 
15390 	dev_priv->quirks |= QUIRK_PIPEA_FORCE;
15391 	DRM_INFO("applying pipe a force quirk\n");
15392 }
15393 
15394 static void quirk_pipeb_force(struct drm_device *dev)
15395 {
15396 	struct drm_i915_private *dev_priv = to_i915(dev);
15397 
15398 	dev_priv->quirks |= QUIRK_PIPEB_FORCE;
15399 	DRM_INFO("applying pipe b force quirk\n");
15400 }
15401 
15402 /*
15403  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
15404  */
15405 static void quirk_ssc_force_disable(struct drm_device *dev)
15406 {
15407 	struct drm_i915_private *dev_priv = to_i915(dev);
15408 	dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
15409 	DRM_INFO("applying lvds SSC disable quirk\n");
15410 }
15411 
15412 /*
15413  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
15414  * brightness value
15415  */
15416 static void quirk_invert_brightness(struct drm_device *dev)
15417 {
15418 	struct drm_i915_private *dev_priv = to_i915(dev);
15419 	dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
15420 	DRM_INFO("applying inverted panel brightness quirk\n");
15421 }
15422 
15423 /* Some VBT's incorrectly indicate no backlight is present */
15424 static void quirk_backlight_present(struct drm_device *dev)
15425 {
15426 	struct drm_i915_private *dev_priv = to_i915(dev);
15427 	dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
15428 	DRM_INFO("applying backlight present quirk\n");
15429 }
15430 
15431 struct intel_quirk {
15432 	int device;
15433 	int subsystem_vendor;
15434 	int subsystem_device;
15435 	void (*hook)(struct drm_device *dev);
15436 };
15437 
15438 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
15439 struct intel_dmi_quirk {
15440 	void (*hook)(struct drm_device *dev);
15441 	const struct dmi_system_id (*dmi_id_list)[];
15442 };
15443 
15444 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
15445 {
15446 	DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
15447 	return 1;
15448 }
15449 
15450 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
15451 	{
15452 		.dmi_id_list = &(const struct dmi_system_id[]) {
15453 			{
15454 				.callback = intel_dmi_reverse_brightness,
15455 				.ident = "NCR Corporation",
15456 				.matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
15457 					    DMI_MATCH(DMI_PRODUCT_NAME, ""),
15458 				},
15459 			},
15460 			{ }  /* terminating entry */
15461 		},
15462 		.hook = quirk_invert_brightness,
15463 	},
15464 };
15465 
15466 static struct intel_quirk intel_quirks[] = {
15467 	/* Toshiba Protege R-205, S-209 needs pipe A force quirk */
15468 	{ 0x2592, 0x1179, 0x0001, quirk_pipea_force },
15469 
15470 	/* ThinkPad T60 needs pipe A force quirk (bug #16494) */
15471 	{ 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
15472 
15473 	/* 830 needs to leave pipe A & dpll A up */
15474 	{ 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
15475 
15476 	/* 830 needs to leave pipe B & dpll B up */
15477 	{ 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
15478 
15479 	/* Lenovo U160 cannot use SSC on LVDS */
15480 	{ 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
15481 
15482 	/* Sony Vaio Y cannot use SSC on LVDS */
15483 	{ 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
15484 
15485 	/* Acer Aspire 5734Z must invert backlight brightness */
15486 	{ 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
15487 
15488 	/* Acer/eMachines G725 */
15489 	{ 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
15490 
15491 	/* Acer/eMachines e725 */
15492 	{ 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
15493 
15494 	/* Acer/Packard Bell NCL20 */
15495 	{ 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
15496 
15497 	/* Acer Aspire 4736Z */
15498 	{ 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
15499 
15500 	/* Acer Aspire 5336 */
15501 	{ 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
15502 
15503 	/* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
15504 	{ 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
15505 
15506 	/* Acer C720 Chromebook (Core i3 4005U) */
15507 	{ 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
15508 
15509 	/* Apple Macbook 2,1 (Core 2 T7400) */
15510 	{ 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
15511 
15512 	/* Apple Macbook 4,1 */
15513 	{ 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
15514 
15515 	/* Toshiba CB35 Chromebook (Celeron 2955U) */
15516 	{ 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
15517 
15518 	/* HP Chromebook 14 (Celeron 2955U) */
15519 	{ 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
15520 
15521 	/* Dell Chromebook 11 */
15522 	{ 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
15523 
15524 	/* Dell Chromebook 11 (2015 version) */
15525 	{ 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
15526 };
15527 
15528 static void intel_init_quirks(struct drm_device *dev)
15529 {
15530 	struct pci_dev *d = dev->pdev;
15531 	int i;
15532 
15533 	for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
15534 		struct intel_quirk *q = &intel_quirks[i];
15535 
15536 		if (d->device == q->device &&
15537 		    (d->subsystem_vendor == q->subsystem_vendor ||
15538 		     q->subsystem_vendor == PCI_ANY_ID) &&
15539 		    (d->subsystem_device == q->subsystem_device ||
15540 		     q->subsystem_device == PCI_ANY_ID))
15541 			q->hook(dev);
15542 	}
15543 	for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
15544 		if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
15545 			intel_dmi_quirks[i].hook(dev);
15546 	}
15547 }
15548 
15549 /* Disable the VGA plane that we never use */
15550 static void i915_disable_vga(struct drm_device *dev)
15551 {
15552 	struct drm_i915_private *dev_priv = to_i915(dev);
15553 	u8 sr1;
15554 	i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15555 
15556 	/* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
15557 	vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
15558 	outb(SR01, VGA_SR_INDEX);
15559 	sr1 = inb(VGA_SR_DATA);
15560 	outb(sr1 | 1<<5, VGA_SR_DATA);
15561 	vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
15562 	udelay(300);
15563 
15564 	I915_WRITE(vga_reg, VGA_DISP_DISABLE);
15565 	POSTING_READ(vga_reg);
15566 }
15567 
15568 void intel_modeset_init_hw(struct drm_device *dev)
15569 {
15570 	struct drm_i915_private *dev_priv = to_i915(dev);
15571 
15572 	intel_update_cdclk(dev);
15573 
15574 	dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
15575 
15576 	intel_init_clock_gating(dev);
15577 }
15578 
15579 /*
15580  * Calculate what we think the watermarks should be for the state we've read
15581  * out of the hardware and then immediately program those watermarks so that
15582  * we ensure the hardware settings match our internal state.
15583  *
15584  * We can calculate what we think WM's should be by creating a duplicate of the
15585  * current state (which was constructed during hardware readout) and running it
15586  * through the atomic check code to calculate new watermark values in the
15587  * state object.
15588  */
15589 static void sanitize_watermarks(struct drm_device *dev)
15590 {
15591 	struct drm_i915_private *dev_priv = to_i915(dev);
15592 	struct drm_atomic_state *state;
15593 	struct drm_crtc *crtc;
15594 	struct drm_crtc_state *cstate;
15595 	struct drm_modeset_acquire_ctx ctx;
15596 	int ret;
15597 	int i;
15598 
15599 	/* Only supported on platforms that use atomic watermark design */
15600 	if (!dev_priv->display.optimize_watermarks)
15601 		return;
15602 
15603 	/*
15604 	 * We need to hold connection_mutex before calling duplicate_state so
15605 	 * that the connector loop is protected.
15606 	 */
15607 	drm_modeset_acquire_init(&ctx, 0);
15608 retry:
15609 	ret = drm_modeset_lock_all_ctx(dev, &ctx);
15610 	if (ret == -EDEADLK) {
15611 		drm_modeset_backoff(&ctx);
15612 		goto retry;
15613 	} else if (WARN_ON(ret)) {
15614 		goto fail;
15615 	}
15616 
15617 	state = drm_atomic_helper_duplicate_state(dev, &ctx);
15618 	if (WARN_ON(IS_ERR(state)))
15619 		goto fail;
15620 
15621 	/*
15622 	 * Hardware readout is the only time we don't want to calculate
15623 	 * intermediate watermarks (since we don't trust the current
15624 	 * watermarks).
15625 	 */
15626 	to_intel_atomic_state(state)->skip_intermediate_wm = true;
15627 
15628 	ret = intel_atomic_check(dev, state);
15629 	if (ret) {
15630 		/*
15631 		 * If we fail here, it means that the hardware appears to be
15632 		 * programmed in a way that shouldn't be possible, given our
15633 		 * understanding of watermark requirements.  This might mean a
15634 		 * mistake in the hardware readout code or a mistake in the
15635 		 * watermark calculations for a given platform.  Raise a WARN
15636 		 * so that this is noticeable.
15637 		 *
15638 		 * If this actually happens, we'll have to just leave the
15639 		 * BIOS-programmed watermarks untouched and hope for the best.
15640 		 */
15641 		WARN(true, "Could not determine valid watermarks for inherited state\n");
15642 		goto fail;
15643 	}
15644 
15645 	/* Write calculated watermark values back */
15646 	for_each_crtc_in_state(state, crtc, cstate, i) {
15647 		struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
15648 
15649 		cs->wm.need_postvbl_update = true;
15650 		dev_priv->display.optimize_watermarks(cs);
15651 	}
15652 
15653 	drm_atomic_state_free(state);
15654 fail:
15655 	drm_modeset_drop_locks(&ctx);
15656 	drm_modeset_acquire_fini(&ctx);
15657 }
15658 
15659 void intel_modeset_init(struct drm_device *dev)
15660 {
15661 	struct drm_i915_private *dev_priv = to_i915(dev);
15662 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
15663 	int sprite, ret;
15664 	enum i915_pipe pipe;
15665 	struct intel_crtc *crtc;
15666 
15667 	drm_mode_config_init(dev);
15668 
15669 	dev->mode_config.min_width = 0;
15670 	dev->mode_config.min_height = 0;
15671 
15672 	dev->mode_config.preferred_depth = 24;
15673 	dev->mode_config.prefer_shadow = 1;
15674 
15675 	dev->mode_config.allow_fb_modifiers = true;
15676 
15677 	dev->mode_config.funcs = &intel_mode_funcs;
15678 
15679 	intel_init_quirks(dev);
15680 
15681 	intel_init_pm(dev);
15682 
15683 	if (INTEL_INFO(dev)->num_pipes == 0)
15684 		return;
15685 
15686 	/*
15687 	 * There may be no VBT; and if the BIOS enabled SSC we can
15688 	 * just keep using it to avoid unnecessary flicker.  Whereas if the
15689 	 * BIOS isn't using it, don't assume it will work even if the VBT
15690 	 * indicates as much.
15691 	 */
15692 	if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
15693 		bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15694 					    DREF_SSC1_ENABLE);
15695 
15696 		if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
15697 			DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
15698 				     bios_lvds_use_ssc ? "en" : "dis",
15699 				     dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
15700 			dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
15701 		}
15702 	}
15703 
15704 	if (IS_GEN2(dev)) {
15705 		dev->mode_config.max_width = 2048;
15706 		dev->mode_config.max_height = 2048;
15707 	} else if (IS_GEN3(dev)) {
15708 		dev->mode_config.max_width = 4096;
15709 		dev->mode_config.max_height = 4096;
15710 	} else {
15711 		dev->mode_config.max_width = 8192;
15712 		dev->mode_config.max_height = 8192;
15713 	}
15714 
15715 	if (IS_845G(dev) || IS_I865G(dev)) {
15716 		dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
15717 		dev->mode_config.cursor_height = 1023;
15718 	} else if (IS_GEN2(dev)) {
15719 		dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15720 		dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15721 	} else {
15722 		dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15723 		dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15724 	}
15725 
15726 	dev->mode_config.fb_base = ggtt->mappable_base;
15727 
15728 	DRM_DEBUG_KMS("%d display pipe%s available.\n",
15729 		      INTEL_INFO(dev)->num_pipes,
15730 		      INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
15731 
15732 	for_each_pipe(dev_priv, pipe) {
15733 		intel_crtc_init(dev, pipe);
15734 		for_each_sprite(dev_priv, pipe, sprite) {
15735 			ret = intel_plane_init(dev, pipe, sprite);
15736 			if (ret)
15737 				DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
15738 					      pipe_name(pipe), sprite_name(pipe, sprite), ret);
15739 		}
15740 	}
15741 
15742 	intel_update_czclk(dev_priv);
15743 	intel_update_cdclk(dev);
15744 
15745 	intel_shared_dpll_init(dev);
15746 
15747 	if (dev_priv->max_cdclk_freq == 0)
15748 		intel_update_max_cdclk(dev);
15749 
15750 	/* Just disable it once at startup */
15751 	i915_disable_vga(dev);
15752 	intel_setup_outputs(dev);
15753 
15754 	drm_modeset_lock_all(dev);
15755 	intel_modeset_setup_hw_state(dev);
15756 	drm_modeset_unlock_all(dev);
15757 
15758 	for_each_intel_crtc(dev, crtc) {
15759 		struct intel_initial_plane_config plane_config = {};
15760 
15761 		if (!crtc->active)
15762 			continue;
15763 
15764 		/*
15765 		 * Note that reserving the BIOS fb up front prevents us
15766 		 * from stuffing other stolen allocations like the ring
15767 		 * on top.  This prevents some ugliness at boot time, and
15768 		 * can even allow for smooth boot transitions if the BIOS
15769 		 * fb is large enough for the active pipe configuration.
15770 		 */
15771 		dev_priv->display.get_initial_plane_config(crtc,
15772 							   &plane_config);
15773 
15774 		/*
15775 		 * If the fb is shared between multiple heads, we'll
15776 		 * just get the first one.
15777 		 */
15778 		intel_find_initial_plane_obj(crtc, &plane_config);
15779 	}
15780 
15781 	/*
15782 	 * Make sure hardware watermarks really match the state we read out.
15783 	 * Note that we need to do this after reconstructing the BIOS fb's
15784 	 * since the watermark calculation done here will use pstate->fb.
15785 	 */
15786 	sanitize_watermarks(dev);
15787 }
15788 
15789 static void intel_enable_pipe_a(struct drm_device *dev)
15790 {
15791 	struct intel_connector *connector;
15792 	struct drm_connector *crt = NULL;
15793 	struct intel_load_detect_pipe load_detect_temp;
15794 	struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
15795 
15796 	/* We can't just switch on the pipe A, we need to set things up with a
15797 	 * proper mode and output configuration. As a gross hack, enable pipe A
15798 	 * by enabling the load detect pipe once. */
15799 	for_each_intel_connector(dev, connector) {
15800 		if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15801 			crt = &connector->base;
15802 			break;
15803 		}
15804 	}
15805 
15806 	if (!crt)
15807 		return;
15808 
15809 	if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
15810 		intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
15811 }
15812 
15813 static bool
15814 intel_check_plane_mapping(struct intel_crtc *crtc)
15815 {
15816 	struct drm_device *dev = crtc->base.dev;
15817 	struct drm_i915_private *dev_priv = to_i915(dev);
15818 	u32 val;
15819 
15820 	if (INTEL_INFO(dev)->num_pipes == 1)
15821 		return true;
15822 
15823 	val = I915_READ(DSPCNTR(!crtc->plane));
15824 
15825 	if ((val & DISPLAY_PLANE_ENABLE) &&
15826 	    (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15827 		return false;
15828 
15829 	return true;
15830 }
15831 
15832 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15833 {
15834 	struct drm_device *dev = crtc->base.dev;
15835 	struct intel_encoder *encoder;
15836 
15837 	for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15838 		return true;
15839 
15840 	return false;
15841 }
15842 
15843 static bool intel_encoder_has_connectors(struct intel_encoder *encoder)
15844 {
15845 	struct drm_device *dev = encoder->base.dev;
15846 	struct intel_connector *connector;
15847 
15848 	for_each_connector_on_encoder(dev, &encoder->base, connector)
15849 		return true;
15850 
15851 	return false;
15852 }
15853 
15854 static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
15855 			      enum transcoder pch_transcoder)
15856 {
15857 	return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
15858 		(HAS_PCH_LPT_H(dev_priv) && pch_transcoder == TRANSCODER_A);
15859 }
15860 
15861 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15862 {
15863 	struct drm_device *dev = crtc->base.dev;
15864 	struct drm_i915_private *dev_priv = to_i915(dev);
15865 	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
15866 
15867 	/* Clear any frame start delays used for debugging left by the BIOS */
15868 	if (!transcoder_is_dsi(cpu_transcoder)) {
15869 		i915_reg_t reg = PIPECONF(cpu_transcoder);
15870 
15871 		I915_WRITE(reg,
15872 			   I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15873 	}
15874 
15875 	/* restore vblank interrupts to correct state */
15876 	drm_crtc_vblank_reset(&crtc->base);
15877 	if (crtc->active) {
15878 		struct intel_plane *plane;
15879 
15880 		drm_crtc_vblank_on(&crtc->base);
15881 
15882 		/* Disable everything but the primary plane */
15883 		for_each_intel_plane_on_crtc(dev, crtc, plane) {
15884 			if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15885 				continue;
15886 
15887 			plane->disable_plane(&plane->base, &crtc->base);
15888 		}
15889 	}
15890 
15891 	/* We need to sanitize the plane -> pipe mapping first because this will
15892 	 * disable the crtc (and hence change the state) if it is wrong. Note
15893 	 * that gen4+ has a fixed plane -> pipe mapping.  */
15894 	if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
15895 		bool plane;
15896 
15897 		DRM_DEBUG_KMS("[CRTC:%d:%s] wrong plane connection detected!\n",
15898 			      crtc->base.base.id, crtc->base.name);
15899 
15900 		/* Pipe has the wrong plane attached and the plane is active.
15901 		 * Temporarily change the plane mapping and disable everything
15902 		 * ...  */
15903 		plane = crtc->plane;
15904 		to_intel_plane_state(crtc->base.primary->state)->visible = true;
15905 		crtc->plane = !plane;
15906 		intel_crtc_disable_noatomic(&crtc->base);
15907 		crtc->plane = plane;
15908 	}
15909 
15910 	if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15911 	    crtc->pipe == PIPE_A && !crtc->active) {
15912 		/* BIOS forgot to enable pipe A, this mostly happens after
15913 		 * resume. Force-enable the pipe to fix this, the update_dpms
15914 		 * call below we restore the pipe to the right state, but leave
15915 		 * the required bits on. */
15916 		intel_enable_pipe_a(dev);
15917 	}
15918 
15919 	/* Adjust the state of the output pipe according to whether we
15920 	 * have active connectors/encoders. */
15921 	if (crtc->active && !intel_crtc_has_encoders(crtc))
15922 		intel_crtc_disable_noatomic(&crtc->base);
15923 
15924 	if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15925 		/*
15926 		 * We start out with underrun reporting disabled to avoid races.
15927 		 * For correct bookkeeping mark this on active crtcs.
15928 		 *
15929 		 * Also on gmch platforms we dont have any hardware bits to
15930 		 * disable the underrun reporting. Which means we need to start
15931 		 * out with underrun reporting disabled also on inactive pipes,
15932 		 * since otherwise we'll complain about the garbage we read when
15933 		 * e.g. coming up after runtime pm.
15934 		 *
15935 		 * No protection against concurrent access is required - at
15936 		 * worst a fifo underrun happens which also sets this to false.
15937 		 */
15938 		crtc->cpu_fifo_underrun_disabled = true;
15939 		/*
15940 		 * We track the PCH trancoder underrun reporting state
15941 		 * within the crtc. With crtc for pipe A housing the underrun
15942 		 * reporting state for PCH transcoder A, crtc for pipe B housing
15943 		 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
15944 		 * and marking underrun reporting as disabled for the non-existing
15945 		 * PCH transcoders B and C would prevent enabling the south
15946 		 * error interrupt (see cpt_can_enable_serr_int()).
15947 		 */
15948 		if (has_pch_trancoder(dev_priv, (enum transcoder)crtc->pipe))
15949 			crtc->pch_fifo_underrun_disabled = true;
15950 	}
15951 }
15952 
15953 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15954 {
15955 	struct intel_connector *connector;
15956 	struct drm_device *dev = encoder->base.dev;
15957 
15958 	/* We need to check both for a crtc link (meaning that the
15959 	 * encoder is active and trying to read from a pipe) and the
15960 	 * pipe itself being active. */
15961 	bool has_active_crtc = encoder->base.crtc &&
15962 		to_intel_crtc(encoder->base.crtc)->active;
15963 
15964 	if (intel_encoder_has_connectors(encoder) && !has_active_crtc) {
15965 		DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15966 			      encoder->base.base.id,
15967 			      encoder->base.name);
15968 
15969 		/* Connector is active, but has no active pipe. This is
15970 		 * fallout from our resume register restoring. Disable
15971 		 * the encoder manually again. */
15972 		if (encoder->base.crtc) {
15973 			DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15974 				      encoder->base.base.id,
15975 				      encoder->base.name);
15976 			encoder->disable(encoder);
15977 			if (encoder->post_disable)
15978 				encoder->post_disable(encoder);
15979 		}
15980 		encoder->base.crtc = NULL;
15981 
15982 		/* Inconsistent output/port/pipe state happens presumably due to
15983 		 * a bug in one of the get_hw_state functions. Or someplace else
15984 		 * in our code, like the register restore mess on resume. Clamp
15985 		 * things to off as a safer default. */
15986 		for_each_intel_connector(dev, connector) {
15987 			if (connector->encoder != encoder)
15988 				continue;
15989 			connector->base.dpms = DRM_MODE_DPMS_OFF;
15990 			connector->base.encoder = NULL;
15991 		}
15992 	}
15993 	/* Enabled encoders without active connectors will be fixed in
15994 	 * the crtc fixup. */
15995 }
15996 
15997 void i915_redisable_vga_power_on(struct drm_device *dev)
15998 {
15999 	struct drm_i915_private *dev_priv = to_i915(dev);
16000 	i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
16001 
16002 	if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
16003 		DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
16004 		i915_disable_vga(dev);
16005 	}
16006 }
16007 
16008 void i915_redisable_vga(struct drm_device *dev)
16009 {
16010 	struct drm_i915_private *dev_priv = to_i915(dev);
16011 
16012 	/* This function can be called both from intel_modeset_setup_hw_state or
16013 	 * at a very early point in our resume sequence, where the power well
16014 	 * structures are not yet restored. Since this function is at a very
16015 	 * paranoid "someone might have enabled VGA while we were not looking"
16016 	 * level, just check if the power well is enabled instead of trying to
16017 	 * follow the "don't touch the power well if we don't need it" policy
16018 	 * the rest of the driver uses. */
16019 	if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
16020 		return;
16021 
16022 	i915_redisable_vga_power_on(dev);
16023 
16024 	intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
16025 }
16026 
16027 static bool primary_get_hw_state(struct intel_plane *plane)
16028 {
16029 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
16030 
16031 	return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
16032 }
16033 
16034 /* FIXME read out full plane state for all planes */
16035 static void readout_plane_state(struct intel_crtc *crtc)
16036 {
16037 	struct drm_plane *primary = crtc->base.primary;
16038 	struct intel_plane_state *plane_state =
16039 		to_intel_plane_state(primary->state);
16040 
16041 	plane_state->visible = crtc->active &&
16042 		primary_get_hw_state(to_intel_plane(primary));
16043 
16044 	if (plane_state->visible)
16045 		crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
16046 }
16047 
16048 static void intel_modeset_readout_hw_state(struct drm_device *dev)
16049 {
16050 	struct drm_i915_private *dev_priv = to_i915(dev);
16051 	enum i915_pipe pipe;
16052 	struct intel_crtc *crtc;
16053 	struct intel_encoder *encoder;
16054 	struct intel_connector *connector;
16055 	int i;
16056 
16057 	dev_priv->active_crtcs = 0;
16058 
16059 	for_each_intel_crtc(dev, crtc) {
16060 		struct intel_crtc_state *crtc_state = crtc->config;
16061 		int pixclk = 0;
16062 
16063 		__drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
16064 		memset(crtc_state, 0, sizeof(*crtc_state));
16065 		crtc_state->base.crtc = &crtc->base;
16066 
16067 		crtc_state->base.active = crtc_state->base.enable =
16068 			dev_priv->display.get_pipe_config(crtc, crtc_state);
16069 
16070 		crtc->base.enabled = crtc_state->base.enable;
16071 		crtc->active = crtc_state->base.active;
16072 
16073 		if (crtc_state->base.active) {
16074 			dev_priv->active_crtcs |= 1 << crtc->pipe;
16075 
16076 			if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
16077 				pixclk = ilk_pipe_pixel_rate(crtc_state);
16078 			else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16079 				pixclk = crtc_state->base.adjusted_mode.crtc_clock;
16080 			else
16081 				WARN_ON(dev_priv->display.modeset_calc_cdclk);
16082 
16083 			/* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
16084 			if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
16085 				pixclk = DIV_ROUND_UP(pixclk * 100, 95);
16086 		}
16087 
16088 		dev_priv->min_pixclk[crtc->pipe] = pixclk;
16089 
16090 		readout_plane_state(crtc);
16091 
16092 		DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
16093 			      crtc->base.base.id, crtc->base.name,
16094 			      crtc->active ? "enabled" : "disabled");
16095 	}
16096 
16097 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16098 		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16099 
16100 		pll->on = pll->funcs.get_hw_state(dev_priv, pll,
16101 						  &pll->config.hw_state);
16102 		pll->config.crtc_mask = 0;
16103 		for_each_intel_crtc(dev, crtc) {
16104 			if (crtc->active && crtc->config->shared_dpll == pll)
16105 				pll->config.crtc_mask |= 1 << crtc->pipe;
16106 		}
16107 		pll->active_mask = pll->config.crtc_mask;
16108 
16109 		DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
16110 			      pll->name, pll->config.crtc_mask, pll->on);
16111 	}
16112 
16113 	for_each_intel_encoder(dev, encoder) {
16114 		pipe = 0;
16115 
16116 		if (encoder->get_hw_state(encoder, &pipe)) {
16117 			crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
16118 			encoder->base.crtc = &crtc->base;
16119 			crtc->config->output_types |= 1 << encoder->type;
16120 			encoder->get_config(encoder, crtc->config);
16121 		} else {
16122 			encoder->base.crtc = NULL;
16123 		}
16124 
16125 		DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
16126 			      encoder->base.base.id,
16127 			      encoder->base.name,
16128 			      encoder->base.crtc ? "enabled" : "disabled",
16129 			      pipe_name(pipe));
16130 	}
16131 
16132 	for_each_intel_connector(dev, connector) {
16133 		if (connector->get_hw_state(connector)) {
16134 			connector->base.dpms = DRM_MODE_DPMS_ON;
16135 
16136 			encoder = connector->encoder;
16137 			connector->base.encoder = &encoder->base;
16138 
16139 			if (encoder->base.crtc &&
16140 			    encoder->base.crtc->state->active) {
16141 				/*
16142 				 * This has to be done during hardware readout
16143 				 * because anything calling .crtc_disable may
16144 				 * rely on the connector_mask being accurate.
16145 				 */
16146 				encoder->base.crtc->state->connector_mask |=
16147 					1 << drm_connector_index(&connector->base);
16148 				encoder->base.crtc->state->encoder_mask |=
16149 					1 << drm_encoder_index(&encoder->base);
16150 			}
16151 
16152 		} else {
16153 			connector->base.dpms = DRM_MODE_DPMS_OFF;
16154 			connector->base.encoder = NULL;
16155 		}
16156 		DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
16157 			      connector->base.base.id,
16158 			      connector->base.name,
16159 			      connector->base.encoder ? "enabled" : "disabled");
16160 	}
16161 
16162 	for_each_intel_crtc(dev, crtc) {
16163 		crtc->base.hwmode = crtc->config->base.adjusted_mode;
16164 
16165 		memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
16166 		if (crtc->base.state->active) {
16167 			intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
16168 			intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
16169 			WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
16170 
16171 			/*
16172 			 * The initial mode needs to be set in order to keep
16173 			 * the atomic core happy. It wants a valid mode if the
16174 			 * crtc's enabled, so we do the above call.
16175 			 *
16176 			 * At this point some state updated by the connectors
16177 			 * in their ->detect() callback has not run yet, so
16178 			 * no recalculation can be done yet.
16179 			 *
16180 			 * Even if we could do a recalculation and modeset
16181 			 * right now it would cause a double modeset if
16182 			 * fbdev or userspace chooses a different initial mode.
16183 			 *
16184 			 * If that happens, someone indicated they wanted a
16185 			 * mode change, which means it's safe to do a full
16186 			 * recalculation.
16187 			 */
16188 			crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
16189 
16190 			drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
16191 			update_scanline_offset(crtc);
16192 		}
16193 
16194 		intel_pipe_config_sanity_check(dev_priv, crtc->config);
16195 	}
16196 }
16197 
16198 /* Scan out the current hw modeset state,
16199  * and sanitizes it to the current state
16200  */
16201 static void
16202 intel_modeset_setup_hw_state(struct drm_device *dev)
16203 {
16204 	struct drm_i915_private *dev_priv = to_i915(dev);
16205 	enum i915_pipe pipe;
16206 	struct intel_crtc *crtc;
16207 	struct intel_encoder *encoder;
16208 	int i;
16209 
16210 	intel_modeset_readout_hw_state(dev);
16211 
16212 	/* HW state is read out, now we need to sanitize this mess. */
16213 	for_each_intel_encoder(dev, encoder) {
16214 		intel_sanitize_encoder(encoder);
16215 	}
16216 
16217 	for_each_pipe(dev_priv, pipe) {
16218 		crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
16219 		intel_sanitize_crtc(crtc);
16220 		intel_dump_pipe_config(crtc, crtc->config,
16221 				       "[setup_hw_state]");
16222 	}
16223 
16224 	intel_modeset_update_connector_atomic_state(dev);
16225 
16226 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16227 		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16228 
16229 		if (!pll->on || pll->active_mask)
16230 			continue;
16231 
16232 		DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
16233 
16234 		pll->funcs.disable(dev_priv, pll);
16235 		pll->on = false;
16236 	}
16237 
16238 	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
16239 		vlv_wm_get_hw_state(dev);
16240 	else if (IS_GEN9(dev))
16241 		skl_wm_get_hw_state(dev);
16242 	else if (HAS_PCH_SPLIT(dev))
16243 		ilk_wm_get_hw_state(dev);
16244 
16245 	for_each_intel_crtc(dev, crtc) {
16246 		unsigned long put_domains;
16247 
16248 		put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
16249 		if (WARN_ON(put_domains))
16250 			modeset_put_power_domains(dev_priv, put_domains);
16251 	}
16252 	intel_display_set_init_power(dev_priv, false);
16253 
16254 	intel_fbc_init_pipe_state(dev_priv);
16255 }
16256 
16257 void intel_display_resume(struct drm_device *dev)
16258 {
16259 	struct drm_i915_private *dev_priv = to_i915(dev);
16260 	struct drm_atomic_state *state = dev_priv->modeset_restore_state;
16261 	struct drm_modeset_acquire_ctx ctx;
16262 	int ret;
16263 
16264 	dev_priv->modeset_restore_state = NULL;
16265 	if (state)
16266 		state->acquire_ctx = &ctx;
16267 
16268 	/*
16269 	 * This is a cludge because with real atomic modeset mode_config.mutex
16270 	 * won't be taken. Unfortunately some probed state like
16271 	 * audio_codec_enable is still protected by mode_config.mutex, so lock
16272 	 * it here for now.
16273 	 */
16274 	mutex_lock(&dev->mode_config.mutex);
16275 	drm_modeset_acquire_init(&ctx, 0);
16276 
16277 	while (1) {
16278 		ret = drm_modeset_lock_all_ctx(dev, &ctx);
16279 		if (ret != -EDEADLK)
16280 			break;
16281 
16282 		drm_modeset_backoff(&ctx);
16283 	}
16284 
16285 	if (!ret)
16286 		ret = __intel_display_resume(dev, state);
16287 
16288 	drm_modeset_drop_locks(&ctx);
16289 	drm_modeset_acquire_fini(&ctx);
16290 	mutex_unlock(&dev->mode_config.mutex);
16291 
16292 	if (ret) {
16293 		DRM_ERROR("Restoring old state failed with %i\n", ret);
16294 		drm_atomic_state_free(state);
16295 	}
16296 }
16297 
16298 void intel_modeset_gem_init(struct drm_device *dev)
16299 {
16300 	struct drm_i915_private *dev_priv = to_i915(dev);
16301 	struct drm_crtc *c;
16302 	struct drm_i915_gem_object *obj;
16303 	int ret;
16304 
16305 	intel_init_gt_powersave(dev_priv);
16306 
16307 	intel_modeset_init_hw(dev);
16308 
16309 	intel_setup_overlay(dev_priv);
16310 
16311 	/*
16312 	 * Make sure any fbs we allocated at startup are properly
16313 	 * pinned & fenced.  When we do the allocation it's too early
16314 	 * for this.
16315 	 */
16316 	for_each_crtc(dev, c) {
16317 		obj = intel_fb_obj(c->primary->fb);
16318 		if (obj == NULL)
16319 			continue;
16320 
16321 		mutex_lock(&dev->struct_mutex);
16322 		ret = intel_pin_and_fence_fb_obj(c->primary->fb,
16323 						 c->primary->state->rotation);
16324 		mutex_unlock(&dev->struct_mutex);
16325 		if (ret) {
16326 			DRM_ERROR("failed to pin boot fb on pipe %d\n",
16327 				  to_intel_crtc(c)->pipe);
16328 			drm_framebuffer_unreference(c->primary->fb);
16329 			c->primary->fb = NULL;
16330 			c->primary->crtc = c->primary->state->crtc = NULL;
16331 			update_state_fb(c->primary);
16332 			c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
16333 		}
16334 	}
16335 }
16336 
16337 int intel_connector_register(struct drm_connector *connector)
16338 {
16339 	struct intel_connector *intel_connector = to_intel_connector(connector);
16340 	int ret;
16341 
16342 	ret = intel_backlight_device_register(intel_connector);
16343 	if (ret)
16344 		goto err;
16345 
16346 	return 0;
16347 
16348 err:
16349 	return ret;
16350 }
16351 
16352 void intel_connector_unregister(struct drm_connector *connector)
16353 {
16354 	struct intel_connector *intel_connector = to_intel_connector(connector);
16355 
16356 	intel_backlight_device_unregister(intel_connector);
16357 	intel_panel_destroy_backlight(connector);
16358 }
16359 
16360 void intel_modeset_cleanup(struct drm_device *dev)
16361 {
16362 	struct drm_i915_private *dev_priv = to_i915(dev);
16363 
16364 	intel_disable_gt_powersave(dev_priv);
16365 
16366 	/*
16367 	 * Interrupts and polling as the first thing to avoid creating havoc.
16368 	 * Too much stuff here (turning of connectors, ...) would
16369 	 * experience fancy races otherwise.
16370 	 */
16371 	intel_irq_uninstall(dev_priv);
16372 
16373 	/*
16374 	 * Due to the hpd irq storm handling the hotplug work can re-arm the
16375 	 * poll handlers. Hence disable polling after hpd handling is shut down.
16376 	 */
16377 	drm_kms_helper_poll_fini(dev);
16378 
16379 	intel_unregister_dsm_handler();
16380 
16381 	intel_fbc_global_disable(dev_priv);
16382 
16383 	/* flush any delayed tasks or pending work */
16384 	flush_scheduled_work();
16385 
16386 	drm_mode_config_cleanup(dev);
16387 
16388 	intel_cleanup_overlay(dev_priv);
16389 
16390 	intel_cleanup_gt_powersave(dev_priv);
16391 
16392 	intel_teardown_gmbus(dev);
16393 }
16394 
16395 void intel_connector_attach_encoder(struct intel_connector *connector,
16396 				    struct intel_encoder *encoder)
16397 {
16398 	connector->encoder = encoder;
16399 	drm_mode_connector_attach_encoder(&connector->base,
16400 					  &encoder->base);
16401 }
16402 
16403 /*
16404  * set vga decode state - true == enable VGA decode
16405  */
16406 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
16407 {
16408 	struct drm_i915_private *dev_priv = to_i915(dev);
16409 	unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
16410 	u16 gmch_ctrl;
16411 
16412 	if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
16413 		DRM_ERROR("failed to read control word\n");
16414 		return -EIO;
16415 	}
16416 
16417 	if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
16418 		return 0;
16419 
16420 	if (state)
16421 		gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
16422 	else
16423 		gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
16424 
16425 	if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
16426 		DRM_ERROR("failed to write control word\n");
16427 		return -EIO;
16428 	}
16429 
16430 	return 0;
16431 }
16432 
16433 struct intel_display_error_state {
16434 
16435 	u32 power_well_driver;
16436 
16437 	int num_transcoders;
16438 
16439 	struct intel_cursor_error_state {
16440 		u32 control;
16441 		u32 position;
16442 		u32 base;
16443 		u32 size;
16444 	} cursor[I915_MAX_PIPES];
16445 
16446 	struct intel_pipe_error_state {
16447 		bool power_domain_on;
16448 		u32 source;
16449 		u32 stat;
16450 	} pipe[I915_MAX_PIPES];
16451 
16452 	struct intel_plane_error_state {
16453 		u32 control;
16454 		u32 stride;
16455 		u32 size;
16456 		u32 pos;
16457 		u32 addr;
16458 		u32 surface;
16459 		u32 tile_offset;
16460 	} plane[I915_MAX_PIPES];
16461 
16462 	struct intel_transcoder_error_state {
16463 		bool power_domain_on;
16464 		enum transcoder cpu_transcoder;
16465 
16466 		u32 conf;
16467 
16468 		u32 htotal;
16469 		u32 hblank;
16470 		u32 hsync;
16471 		u32 vtotal;
16472 		u32 vblank;
16473 		u32 vsync;
16474 	} transcoder[4];
16475 };
16476 
16477 struct intel_display_error_state *
16478 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
16479 {
16480 	struct intel_display_error_state *error;
16481 	int transcoders[] = {
16482 		TRANSCODER_A,
16483 		TRANSCODER_B,
16484 		TRANSCODER_C,
16485 		TRANSCODER_EDP,
16486 	};
16487 	int i;
16488 
16489 	if (INTEL_INFO(dev_priv)->num_pipes == 0)
16490 		return NULL;
16491 
16492 	error = kzalloc(sizeof(*error), GFP_ATOMIC);
16493 	if (error == NULL)
16494 		return NULL;
16495 
16496 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
16497 		error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
16498 
16499 	for_each_pipe(dev_priv, i) {
16500 		error->pipe[i].power_domain_on =
16501 			__intel_display_power_is_enabled(dev_priv,
16502 							 POWER_DOMAIN_PIPE(i));
16503 		if (!error->pipe[i].power_domain_on)
16504 			continue;
16505 
16506 		error->cursor[i].control = I915_READ(CURCNTR(i));
16507 		error->cursor[i].position = I915_READ(CURPOS(i));
16508 		error->cursor[i].base = I915_READ(CURBASE(i));
16509 
16510 		error->plane[i].control = I915_READ(DSPCNTR(i));
16511 		error->plane[i].stride = I915_READ(DSPSTRIDE(i));
16512 		if (INTEL_GEN(dev_priv) <= 3) {
16513 			error->plane[i].size = I915_READ(DSPSIZE(i));
16514 			error->plane[i].pos = I915_READ(DSPPOS(i));
16515 		}
16516 		if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
16517 			error->plane[i].addr = I915_READ(DSPADDR(i));
16518 		if (INTEL_GEN(dev_priv) >= 4) {
16519 			error->plane[i].surface = I915_READ(DSPSURF(i));
16520 			error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
16521 		}
16522 
16523 		error->pipe[i].source = I915_READ(PIPESRC(i));
16524 
16525 		if (HAS_GMCH_DISPLAY(dev_priv))
16526 			error->pipe[i].stat = I915_READ(PIPESTAT(i));
16527 	}
16528 
16529 	/* Note: this does not include DSI transcoders. */
16530 	error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes;
16531 	if (HAS_DDI(dev_priv))
16532 		error->num_transcoders++; /* Account for eDP. */
16533 
16534 	for (i = 0; i < error->num_transcoders; i++) {
16535 		enum transcoder cpu_transcoder = transcoders[i];
16536 
16537 		error->transcoder[i].power_domain_on =
16538 			__intel_display_power_is_enabled(dev_priv,
16539 				POWER_DOMAIN_TRANSCODER(cpu_transcoder));
16540 		if (!error->transcoder[i].power_domain_on)
16541 			continue;
16542 
16543 		error->transcoder[i].cpu_transcoder = cpu_transcoder;
16544 
16545 		error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
16546 		error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
16547 		error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
16548 		error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
16549 		error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
16550 		error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
16551 		error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
16552 	}
16553 
16554 	return error;
16555 }
16556 
16557 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
16558 
16559 void
16560 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
16561 				struct drm_device *dev,
16562 				struct intel_display_error_state *error)
16563 {
16564 	struct drm_i915_private *dev_priv = to_i915(dev);
16565 	int i;
16566 
16567 	if (!error)
16568 		return;
16569 
16570 	err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
16571 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
16572 		err_printf(m, "PWR_WELL_CTL2: %08x\n",
16573 			   error->power_well_driver);
16574 	for_each_pipe(dev_priv, i) {
16575 		err_printf(m, "Pipe [%d]:\n", i);
16576 		err_printf(m, "  Power: %s\n",
16577 			   onoff(error->pipe[i].power_domain_on));
16578 		err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
16579 		err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
16580 
16581 		err_printf(m, "Plane [%d]:\n", i);
16582 		err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
16583 		err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
16584 		if (INTEL_INFO(dev)->gen <= 3) {
16585 			err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
16586 			err_printf(m, "  POS: %08x\n", error->plane[i].pos);
16587 		}
16588 		if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
16589 			err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
16590 		if (INTEL_INFO(dev)->gen >= 4) {
16591 			err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
16592 			err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
16593 		}
16594 
16595 		err_printf(m, "Cursor [%d]:\n", i);
16596 		err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
16597 		err_printf(m, "  POS: %08x\n", error->cursor[i].position);
16598 		err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
16599 	}
16600 
16601 	for (i = 0; i < error->num_transcoders; i++) {
16602 		err_printf(m, "CPU transcoder: %s\n",
16603 			   transcoder_name(error->transcoder[i].cpu_transcoder));
16604 		err_printf(m, "  Power: %s\n",
16605 			   onoff(error->transcoder[i].power_domain_on));
16606 		err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
16607 		err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
16608 		err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
16609 		err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
16610 		err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
16611 		err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
16612 		err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
16613 	}
16614 }
16615