xref: /dflybsd-src/sys/dev/drm/i915/intel_display.c (revision 6a0135c2a1bf7216a5ba5339042cfc6a23b8f1eb)
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *	Eric Anholt <eric@anholt.net>
25  *
26  * $FreeBSD: src/sys/dev/drm2/i915/intel_display.c,v 1.2 2012/05/24 19:13:54 dim Exp $
27  */
28 
29 #include <ddb/ddb.h>
30 #include <sys/limits.h>
31 
32 #include <drm/drmP.h>
33 #include <drm/drm_edid.h>
34 #include "intel_drv.h"
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include <drm/drm_dp_helper.h>
38 #include <drm/drm_crtc_helper.h>
39 
40 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
41 
42 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
43 static void intel_increase_pllclock(struct drm_crtc *crtc);
44 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
45 
46 typedef struct {
47 	/* given values */
48 	int n;
49 	int m1, m2;
50 	int p1, p2;
51 	/* derived values */
52 	int	dot;
53 	int	vco;
54 	int	m;
55 	int	p;
56 } intel_clock_t;
57 
58 typedef struct {
59 	int	min, max;
60 } intel_range_t;
61 
62 typedef struct {
63 	int	dot_limit;
64 	int	p2_slow, p2_fast;
65 } intel_p2_t;
66 
67 #define INTEL_P2_NUM		      2
68 typedef struct intel_limit intel_limit_t;
69 struct intel_limit {
70 	intel_range_t   dot, vco, n, m, m1, m2, p, p1;
71 	intel_p2_t	    p2;
72 	bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
73 			int, int, intel_clock_t *, intel_clock_t *);
74 };
75 
76 /* FDI */
77 #define IRONLAKE_FDI_FREQ		2700000 /* in kHz for mode->clock */
78 
79 static bool
80 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
81 		    int target, int refclk, intel_clock_t *match_clock,
82 		    intel_clock_t *best_clock);
83 static bool
84 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
85 			int target, int refclk, intel_clock_t *match_clock,
86 			intel_clock_t *best_clock);
87 
88 static bool
89 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
90 		      int target, int refclk, intel_clock_t *match_clock,
91 		      intel_clock_t *best_clock);
92 static bool
93 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
94 			   int target, int refclk, intel_clock_t *match_clock,
95 			   intel_clock_t *best_clock);
96 
97 static inline u32 /* units of 100MHz */
98 intel_fdi_link_freq(struct drm_device *dev)
99 {
100 	if (IS_GEN5(dev)) {
101 		struct drm_i915_private *dev_priv = dev->dev_private;
102 		return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
103 	} else
104 		return 27;
105 }
106 
107 static const intel_limit_t intel_limits_i8xx_dvo = {
108 	.dot = { .min = 25000, .max = 350000 },
109 	.vco = { .min = 930000, .max = 1400000 },
110 	.n = { .min = 3, .max = 16 },
111 	.m = { .min = 96, .max = 140 },
112 	.m1 = { .min = 18, .max = 26 },
113 	.m2 = { .min = 6, .max = 16 },
114 	.p = { .min = 4, .max = 128 },
115 	.p1 = { .min = 2, .max = 33 },
116 	.p2 = { .dot_limit = 165000,
117 		.p2_slow = 4, .p2_fast = 2 },
118 	.find_pll = intel_find_best_PLL,
119 };
120 
121 static const intel_limit_t intel_limits_i8xx_lvds = {
122 	.dot = { .min = 25000, .max = 350000 },
123 	.vco = { .min = 930000, .max = 1400000 },
124 	.n = { .min = 3, .max = 16 },
125 	.m = { .min = 96, .max = 140 },
126 	.m1 = { .min = 18, .max = 26 },
127 	.m2 = { .min = 6, .max = 16 },
128 	.p = { .min = 4, .max = 128 },
129 	.p1 = { .min = 1, .max = 6 },
130 	.p2 = { .dot_limit = 165000,
131 		.p2_slow = 14, .p2_fast = 7 },
132 	.find_pll = intel_find_best_PLL,
133 };
134 
135 static const intel_limit_t intel_limits_i9xx_sdvo = {
136 	.dot = { .min = 20000, .max = 400000 },
137 	.vco = { .min = 1400000, .max = 2800000 },
138 	.n = { .min = 1, .max = 6 },
139 	.m = { .min = 70, .max = 120 },
140 	.m1 = { .min = 10, .max = 22 },
141 	.m2 = { .min = 5, .max = 9 },
142 	.p = { .min = 5, .max = 80 },
143 	.p1 = { .min = 1, .max = 8 },
144 	.p2 = { .dot_limit = 200000,
145 		.p2_slow = 10, .p2_fast = 5 },
146 	.find_pll = intel_find_best_PLL,
147 };
148 
149 static const intel_limit_t intel_limits_i9xx_lvds = {
150 	.dot = { .min = 20000, .max = 400000 },
151 	.vco = { .min = 1400000, .max = 2800000 },
152 	.n = { .min = 1, .max = 6 },
153 	.m = { .min = 70, .max = 120 },
154 	.m1 = { .min = 10, .max = 22 },
155 	.m2 = { .min = 5, .max = 9 },
156 	.p = { .min = 7, .max = 98 },
157 	.p1 = { .min = 1, .max = 8 },
158 	.p2 = { .dot_limit = 112000,
159 		.p2_slow = 14, .p2_fast = 7 },
160 	.find_pll = intel_find_best_PLL,
161 };
162 
163 
164 static const intel_limit_t intel_limits_g4x_sdvo = {
165 	.dot = { .min = 25000, .max = 270000 },
166 	.vco = { .min = 1750000, .max = 3500000},
167 	.n = { .min = 1, .max = 4 },
168 	.m = { .min = 104, .max = 138 },
169 	.m1 = { .min = 17, .max = 23 },
170 	.m2 = { .min = 5, .max = 11 },
171 	.p = { .min = 10, .max = 30 },
172 	.p1 = { .min = 1, .max = 3},
173 	.p2 = { .dot_limit = 270000,
174 		.p2_slow = 10,
175 		.p2_fast = 10
176 	},
177 	.find_pll = intel_g4x_find_best_PLL,
178 };
179 
180 static const intel_limit_t intel_limits_g4x_hdmi = {
181 	.dot = { .min = 22000, .max = 400000 },
182 	.vco = { .min = 1750000, .max = 3500000},
183 	.n = { .min = 1, .max = 4 },
184 	.m = { .min = 104, .max = 138 },
185 	.m1 = { .min = 16, .max = 23 },
186 	.m2 = { .min = 5, .max = 11 },
187 	.p = { .min = 5, .max = 80 },
188 	.p1 = { .min = 1, .max = 8},
189 	.p2 = { .dot_limit = 165000,
190 		.p2_slow = 10, .p2_fast = 5 },
191 	.find_pll = intel_g4x_find_best_PLL,
192 };
193 
194 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
195 	.dot = { .min = 20000, .max = 115000 },
196 	.vco = { .min = 1750000, .max = 3500000 },
197 	.n = { .min = 1, .max = 3 },
198 	.m = { .min = 104, .max = 138 },
199 	.m1 = { .min = 17, .max = 23 },
200 	.m2 = { .min = 5, .max = 11 },
201 	.p = { .min = 28, .max = 112 },
202 	.p1 = { .min = 2, .max = 8 },
203 	.p2 = { .dot_limit = 0,
204 		.p2_slow = 14, .p2_fast = 14
205 	},
206 	.find_pll = intel_g4x_find_best_PLL,
207 };
208 
209 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
210 	.dot = { .min = 80000, .max = 224000 },
211 	.vco = { .min = 1750000, .max = 3500000 },
212 	.n = { .min = 1, .max = 3 },
213 	.m = { .min = 104, .max = 138 },
214 	.m1 = { .min = 17, .max = 23 },
215 	.m2 = { .min = 5, .max = 11 },
216 	.p = { .min = 14, .max = 42 },
217 	.p1 = { .min = 2, .max = 6 },
218 	.p2 = { .dot_limit = 0,
219 		.p2_slow = 7, .p2_fast = 7
220 	},
221 	.find_pll = intel_g4x_find_best_PLL,
222 };
223 
224 static const intel_limit_t intel_limits_g4x_display_port = {
225 	.dot = { .min = 161670, .max = 227000 },
226 	.vco = { .min = 1750000, .max = 3500000},
227 	.n = { .min = 1, .max = 2 },
228 	.m = { .min = 97, .max = 108 },
229 	.m1 = { .min = 0x10, .max = 0x12 },
230 	.m2 = { .min = 0x05, .max = 0x06 },
231 	.p = { .min = 10, .max = 20 },
232 	.p1 = { .min = 1, .max = 2},
233 	.p2 = { .dot_limit = 0,
234 		.p2_slow = 10, .p2_fast = 10 },
235 	.find_pll = intel_find_pll_g4x_dp,
236 };
237 
238 static const intel_limit_t intel_limits_pineview_sdvo = {
239 	.dot = { .min = 20000, .max = 400000},
240 	.vco = { .min = 1700000, .max = 3500000 },
241 	/* Pineview's Ncounter is a ring counter */
242 	.n = { .min = 3, .max = 6 },
243 	.m = { .min = 2, .max = 256 },
244 	/* Pineview only has one combined m divider, which we treat as m2. */
245 	.m1 = { .min = 0, .max = 0 },
246 	.m2 = { .min = 0, .max = 254 },
247 	.p = { .min = 5, .max = 80 },
248 	.p1 = { .min = 1, .max = 8 },
249 	.p2 = { .dot_limit = 200000,
250 		.p2_slow = 10, .p2_fast = 5 },
251 	.find_pll = intel_find_best_PLL,
252 };
253 
254 static const intel_limit_t intel_limits_pineview_lvds = {
255 	.dot = { .min = 20000, .max = 400000 },
256 	.vco = { .min = 1700000, .max = 3500000 },
257 	.n = { .min = 3, .max = 6 },
258 	.m = { .min = 2, .max = 256 },
259 	.m1 = { .min = 0, .max = 0 },
260 	.m2 = { .min = 0, .max = 254 },
261 	.p = { .min = 7, .max = 112 },
262 	.p1 = { .min = 1, .max = 8 },
263 	.p2 = { .dot_limit = 112000,
264 		.p2_slow = 14, .p2_fast = 14 },
265 	.find_pll = intel_find_best_PLL,
266 };
267 
268 /* Ironlake / Sandybridge
269  *
270  * We calculate clock using (register_value + 2) for N/M1/M2, so here
271  * the range value for them is (actual_value - 2).
272  */
273 static const intel_limit_t intel_limits_ironlake_dac = {
274 	.dot = { .min = 25000, .max = 350000 },
275 	.vco = { .min = 1760000, .max = 3510000 },
276 	.n = { .min = 1, .max = 5 },
277 	.m = { .min = 79, .max = 127 },
278 	.m1 = { .min = 12, .max = 22 },
279 	.m2 = { .min = 5, .max = 9 },
280 	.p = { .min = 5, .max = 80 },
281 	.p1 = { .min = 1, .max = 8 },
282 	.p2 = { .dot_limit = 225000,
283 		.p2_slow = 10, .p2_fast = 5 },
284 	.find_pll = intel_g4x_find_best_PLL,
285 };
286 
287 static const intel_limit_t intel_limits_ironlake_single_lvds = {
288 	.dot = { .min = 25000, .max = 350000 },
289 	.vco = { .min = 1760000, .max = 3510000 },
290 	.n = { .min = 1, .max = 3 },
291 	.m = { .min = 79, .max = 118 },
292 	.m1 = { .min = 12, .max = 22 },
293 	.m2 = { .min = 5, .max = 9 },
294 	.p = { .min = 28, .max = 112 },
295 	.p1 = { .min = 2, .max = 8 },
296 	.p2 = { .dot_limit = 225000,
297 		.p2_slow = 14, .p2_fast = 14 },
298 	.find_pll = intel_g4x_find_best_PLL,
299 };
300 
301 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
302 	.dot = { .min = 25000, .max = 350000 },
303 	.vco = { .min = 1760000, .max = 3510000 },
304 	.n = { .min = 1, .max = 3 },
305 	.m = { .min = 79, .max = 127 },
306 	.m1 = { .min = 12, .max = 22 },
307 	.m2 = { .min = 5, .max = 9 },
308 	.p = { .min = 14, .max = 56 },
309 	.p1 = { .min = 2, .max = 8 },
310 	.p2 = { .dot_limit = 225000,
311 		.p2_slow = 7, .p2_fast = 7 },
312 	.find_pll = intel_g4x_find_best_PLL,
313 };
314 
315 /* LVDS 100mhz refclk limits. */
316 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
317 	.dot = { .min = 25000, .max = 350000 },
318 	.vco = { .min = 1760000, .max = 3510000 },
319 	.n = { .min = 1, .max = 2 },
320 	.m = { .min = 79, .max = 126 },
321 	.m1 = { .min = 12, .max = 22 },
322 	.m2 = { .min = 5, .max = 9 },
323 	.p = { .min = 28, .max = 112 },
324 	.p1 = { .min = 2, .max = 8 },
325 	.p2 = { .dot_limit = 225000,
326 		.p2_slow = 14, .p2_fast = 14 },
327 	.find_pll = intel_g4x_find_best_PLL,
328 };
329 
330 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
331 	.dot = { .min = 25000, .max = 350000 },
332 	.vco = { .min = 1760000, .max = 3510000 },
333 	.n = { .min = 1, .max = 3 },
334 	.m = { .min = 79, .max = 126 },
335 	.m1 = { .min = 12, .max = 22 },
336 	.m2 = { .min = 5, .max = 9 },
337 	.p = { .min = 14, .max = 42 },
338 	.p1 = { .min = 2, .max = 6 },
339 	.p2 = { .dot_limit = 225000,
340 		.p2_slow = 7, .p2_fast = 7 },
341 	.find_pll = intel_g4x_find_best_PLL,
342 };
343 
344 static const intel_limit_t intel_limits_ironlake_display_port = {
345 	.dot = { .min = 25000, .max = 350000 },
346 	.vco = { .min = 1760000, .max = 3510000},
347 	.n = { .min = 1, .max = 2 },
348 	.m = { .min = 81, .max = 90 },
349 	.m1 = { .min = 12, .max = 22 },
350 	.m2 = { .min = 5, .max = 9 },
351 	.p = { .min = 10, .max = 20 },
352 	.p1 = { .min = 1, .max = 2},
353 	.p2 = { .dot_limit = 0,
354 		.p2_slow = 10, .p2_fast = 10 },
355 	.find_pll = intel_find_pll_ironlake_dp,
356 };
357 
358 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
359 						int refclk)
360 {
361 	struct drm_device *dev = crtc->dev;
362 	struct drm_i915_private *dev_priv = dev->dev_private;
363 	const intel_limit_t *limit;
364 
365 	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
366 		if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
367 		    LVDS_CLKB_POWER_UP) {
368 			/* LVDS dual channel */
369 			if (refclk == 100000)
370 				limit = &intel_limits_ironlake_dual_lvds_100m;
371 			else
372 				limit = &intel_limits_ironlake_dual_lvds;
373 		} else {
374 			if (refclk == 100000)
375 				limit = &intel_limits_ironlake_single_lvds_100m;
376 			else
377 				limit = &intel_limits_ironlake_single_lvds;
378 		}
379 	} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
380 			HAS_eDP)
381 		limit = &intel_limits_ironlake_display_port;
382 	else
383 		limit = &intel_limits_ironlake_dac;
384 
385 	return limit;
386 }
387 
388 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
389 {
390 	struct drm_device *dev = crtc->dev;
391 	struct drm_i915_private *dev_priv = dev->dev_private;
392 	const intel_limit_t *limit;
393 
394 	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
395 		if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
396 		    LVDS_CLKB_POWER_UP)
397 			/* LVDS with dual channel */
398 			limit = &intel_limits_g4x_dual_channel_lvds;
399 		else
400 			/* LVDS with dual channel */
401 			limit = &intel_limits_g4x_single_channel_lvds;
402 	} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
403 		   intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
404 		limit = &intel_limits_g4x_hdmi;
405 	} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
406 		limit = &intel_limits_g4x_sdvo;
407 	} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
408 		limit = &intel_limits_g4x_display_port;
409 	} else /* The option is for other outputs */
410 		limit = &intel_limits_i9xx_sdvo;
411 
412 	return limit;
413 }
414 
415 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
416 {
417 	struct drm_device *dev = crtc->dev;
418 	const intel_limit_t *limit;
419 
420 	if (HAS_PCH_SPLIT(dev))
421 		limit = intel_ironlake_limit(crtc, refclk);
422 	else if (IS_G4X(dev)) {
423 		limit = intel_g4x_limit(crtc);
424 	} else if (IS_PINEVIEW(dev)) {
425 		if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
426 			limit = &intel_limits_pineview_lvds;
427 		else
428 			limit = &intel_limits_pineview_sdvo;
429 	} else if (!IS_GEN2(dev)) {
430 		if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
431 			limit = &intel_limits_i9xx_lvds;
432 		else
433 			limit = &intel_limits_i9xx_sdvo;
434 	} else {
435 		if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
436 			limit = &intel_limits_i8xx_lvds;
437 		else
438 			limit = &intel_limits_i8xx_dvo;
439 	}
440 	return limit;
441 }
442 
443 /* m1 is reserved as 0 in Pineview, n is a ring counter */
444 static void pineview_clock(int refclk, intel_clock_t *clock)
445 {
446 	clock->m = clock->m2 + 2;
447 	clock->p = clock->p1 * clock->p2;
448 	clock->vco = refclk * clock->m / clock->n;
449 	clock->dot = clock->vco / clock->p;
450 }
451 
452 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
453 {
454 	if (IS_PINEVIEW(dev)) {
455 		pineview_clock(refclk, clock);
456 		return;
457 	}
458 	clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
459 	clock->p = clock->p1 * clock->p2;
460 	clock->vco = refclk * clock->m / (clock->n + 2);
461 	clock->dot = clock->vco / clock->p;
462 }
463 
464 /**
465  * Returns whether any output on the specified pipe is of the specified type
466  */
467 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
468 {
469 	struct drm_device *dev = crtc->dev;
470 	struct drm_mode_config *mode_config = &dev->mode_config;
471 	struct intel_encoder *encoder;
472 
473 	list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
474 		if (encoder->base.crtc == crtc && encoder->type == type)
475 			return true;
476 
477 	return false;
478 }
479 
480 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
481 /**
482  * Returns whether the given set of divisors are valid for a given refclk with
483  * the given connectors.
484  */
485 
486 static bool intel_PLL_is_valid(struct drm_device *dev,
487 			       const intel_limit_t *limit,
488 			       const intel_clock_t *clock)
489 {
490 	if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
491 		INTELPllInvalid("p1 out of range\n");
492 	if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
493 		INTELPllInvalid("p out of range\n");
494 	if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
495 		INTELPllInvalid("m2 out of range\n");
496 	if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
497 		INTELPllInvalid("m1 out of range\n");
498 	if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
499 		INTELPllInvalid("m1 <= m2\n");
500 	if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
501 		INTELPllInvalid("m out of range\n");
502 	if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
503 		INTELPllInvalid("n out of range\n");
504 	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
505 		INTELPllInvalid("vco out of range\n");
506 	/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
507 	 * connector, etc., rather than just a single range.
508 	 */
509 	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
510 		INTELPllInvalid("dot out of range\n");
511 
512 	return true;
513 }
514 
515 static bool
516 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
517 		    int target, int refclk, intel_clock_t *match_clock,
518 		    intel_clock_t *best_clock)
519 
520 {
521 	struct drm_device *dev = crtc->dev;
522 	struct drm_i915_private *dev_priv = dev->dev_private;
523 	intel_clock_t clock;
524 	int err = target;
525 
526 	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
527 	    (I915_READ(LVDS)) != 0) {
528 		/*
529 		 * For LVDS, if the panel is on, just rely on its current
530 		 * settings for dual-channel.  We haven't figured out how to
531 		 * reliably set up different single/dual channel state, if we
532 		 * even can.
533 		 */
534 		if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
535 		    LVDS_CLKB_POWER_UP)
536 			clock.p2 = limit->p2.p2_fast;
537 		else
538 			clock.p2 = limit->p2.p2_slow;
539 	} else {
540 		if (target < limit->p2.dot_limit)
541 			clock.p2 = limit->p2.p2_slow;
542 		else
543 			clock.p2 = limit->p2.p2_fast;
544 	}
545 
546 	memset(best_clock, 0, sizeof(*best_clock));
547 
548 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
549 	     clock.m1++) {
550 		for (clock.m2 = limit->m2.min;
551 		     clock.m2 <= limit->m2.max; clock.m2++) {
552 			/* m1 is always 0 in Pineview */
553 			if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
554 				break;
555 			for (clock.n = limit->n.min;
556 			     clock.n <= limit->n.max; clock.n++) {
557 				for (clock.p1 = limit->p1.min;
558 					clock.p1 <= limit->p1.max; clock.p1++) {
559 					int this_err;
560 
561 					intel_clock(dev, refclk, &clock);
562 					if (!intel_PLL_is_valid(dev, limit,
563 								&clock))
564 						continue;
565 					if (match_clock &&
566 					    clock.p != match_clock->p)
567 						continue;
568 
569 					this_err = abs(clock.dot - target);
570 					if (this_err < err) {
571 						*best_clock = clock;
572 						err = this_err;
573 					}
574 				}
575 			}
576 		}
577 	}
578 
579 	return (err != target);
580 }
581 
582 static bool
583 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
584 			int target, int refclk, intel_clock_t *match_clock,
585 			intel_clock_t *best_clock)
586 {
587 	struct drm_device *dev = crtc->dev;
588 	struct drm_i915_private *dev_priv = dev->dev_private;
589 	intel_clock_t clock;
590 	int max_n;
591 	bool found;
592 	/* approximately equals target * 0.00585 */
593 	int err_most = (target >> 8) + (target >> 9);
594 	found = false;
595 
596 	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
597 		int lvds_reg;
598 
599 		if (HAS_PCH_SPLIT(dev))
600 			lvds_reg = PCH_LVDS;
601 		else
602 			lvds_reg = LVDS;
603 		if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
604 		    LVDS_CLKB_POWER_UP)
605 			clock.p2 = limit->p2.p2_fast;
606 		else
607 			clock.p2 = limit->p2.p2_slow;
608 	} else {
609 		if (target < limit->p2.dot_limit)
610 			clock.p2 = limit->p2.p2_slow;
611 		else
612 			clock.p2 = limit->p2.p2_fast;
613 	}
614 
615 	memset(best_clock, 0, sizeof(*best_clock));
616 	max_n = limit->n.max;
617 	/* based on hardware requirement, prefer smaller n to precision */
618 	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
619 		/* based on hardware requirement, prefere larger m1,m2 */
620 		for (clock.m1 = limit->m1.max;
621 		     clock.m1 >= limit->m1.min; clock.m1--) {
622 			for (clock.m2 = limit->m2.max;
623 			     clock.m2 >= limit->m2.min; clock.m2--) {
624 				for (clock.p1 = limit->p1.max;
625 				     clock.p1 >= limit->p1.min; clock.p1--) {
626 					int this_err;
627 
628 					intel_clock(dev, refclk, &clock);
629 					if (!intel_PLL_is_valid(dev, limit,
630 								&clock))
631 						continue;
632 					if (match_clock &&
633 					    clock.p != match_clock->p)
634 						continue;
635 
636 					this_err = abs(clock.dot - target);
637 					if (this_err < err_most) {
638 						*best_clock = clock;
639 						err_most = this_err;
640 						max_n = clock.n;
641 						found = true;
642 					}
643 				}
644 			}
645 		}
646 	}
647 	return found;
648 }
649 
650 static bool
651 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
652 			   int target, int refclk, intel_clock_t *match_clock,
653 			   intel_clock_t *best_clock)
654 {
655 	struct drm_device *dev = crtc->dev;
656 	intel_clock_t clock;
657 
658 	if (target < 200000) {
659 		clock.n = 1;
660 		clock.p1 = 2;
661 		clock.p2 = 10;
662 		clock.m1 = 12;
663 		clock.m2 = 9;
664 	} else {
665 		clock.n = 2;
666 		clock.p1 = 1;
667 		clock.p2 = 10;
668 		clock.m1 = 14;
669 		clock.m2 = 8;
670 	}
671 	intel_clock(dev, refclk, &clock);
672 	memcpy(best_clock, &clock, sizeof(intel_clock_t));
673 	return true;
674 }
675 
676 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
677 static bool
678 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
679 		      int target, int refclk, intel_clock_t *match_clock,
680 		      intel_clock_t *best_clock)
681 {
682 	intel_clock_t clock;
683 	if (target < 200000) {
684 		clock.p1 = 2;
685 		clock.p2 = 10;
686 		clock.n = 2;
687 		clock.m1 = 23;
688 		clock.m2 = 8;
689 	} else {
690 		clock.p1 = 1;
691 		clock.p2 = 10;
692 		clock.n = 1;
693 		clock.m1 = 14;
694 		clock.m2 = 2;
695 	}
696 	clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
697 	clock.p = (clock.p1 * clock.p2);
698 	clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
699 	clock.vco = 0;
700 	memcpy(best_clock, &clock, sizeof(intel_clock_t));
701 	return true;
702 }
703 
704 /**
705  * intel_wait_for_vblank - wait for vblank on a given pipe
706  * @dev: drm device
707  * @pipe: pipe to wait for
708  *
709  * Wait for vblank to occur on a given pipe.  Needed for various bits of
710  * mode setting code.
711  */
712 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
713 {
714 	struct drm_i915_private *dev_priv = dev->dev_private;
715 	int pipestat_reg = PIPESTAT(pipe);
716 
717 	/* Clear existing vblank status. Note this will clear any other
718 	 * sticky status fields as well.
719 	 *
720 	 * This races with i915_driver_irq_handler() with the result
721 	 * that either function could miss a vblank event.  Here it is not
722 	 * fatal, as we will either wait upon the next vblank interrupt or
723 	 * timeout.  Generally speaking intel_wait_for_vblank() is only
724 	 * called during modeset at which time the GPU should be idle and
725 	 * should *not* be performing page flips and thus not waiting on
726 	 * vblanks...
727 	 * Currently, the result of us stealing a vblank from the irq
728 	 * handler is that a single frame will be skipped during swapbuffers.
729 	 */
730 	I915_WRITE(pipestat_reg,
731 		   I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
732 
733 	/* Wait for vblank interrupt bit to set */
734 	if (_intel_wait_for(dev,
735 	    I915_READ(pipestat_reg) & PIPE_VBLANK_INTERRUPT_STATUS,
736 	    50, 1, "915vbl"))
737 		DRM_DEBUG_KMS("vblank wait timed out\n");
738 }
739 
740 /*
741  * intel_wait_for_pipe_off - wait for pipe to turn off
742  * @dev: drm device
743  * @pipe: pipe to wait for
744  *
745  * After disabling a pipe, we can't wait for vblank in the usual way,
746  * spinning on the vblank interrupt status bit, since we won't actually
747  * see an interrupt when the pipe is disabled.
748  *
749  * On Gen4 and above:
750  *   wait for the pipe register state bit to turn off
751  *
752  * Otherwise:
753  *   wait for the display line value to settle (it usually
754  *   ends up stopping at the start of the next frame).
755  *
756  */
757 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
758 {
759 	struct drm_i915_private *dev_priv = dev->dev_private;
760 
761 	if (INTEL_INFO(dev)->gen >= 4) {
762 		int reg = PIPECONF(pipe);
763 
764 		/* Wait for the Pipe State to go off */
765 		if (_intel_wait_for(dev,
766 		    (I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0, 100,
767 		    1, "915pip"))
768 			DRM_DEBUG_KMS("pipe_off wait timed out\n");
769 	} else {
770 		u32 last_line, line_mask;
771 		int reg = PIPEDSL(pipe);
772 		unsigned long timeout = jiffies + msecs_to_jiffies(100);
773 
774 		if (IS_GEN2(dev))
775 			line_mask = DSL_LINEMASK_GEN2;
776 		else
777 			line_mask = DSL_LINEMASK_GEN3;
778 
779 		/* Wait for the display line to settle */
780 		do {
781 			last_line = I915_READ(reg) & line_mask;
782 			DELAY(5000);
783 		} while (((I915_READ(reg) & line_mask) != last_line) &&
784 			 time_after(timeout, jiffies));
785 		if (time_after(jiffies, timeout))
786 			DRM_DEBUG_KMS("pipe_off wait timed out\n");
787 	}
788 }
789 
790 static const char *state_string(bool enabled)
791 {
792 	return enabled ? "on" : "off";
793 }
794 
795 /* Only for pre-ILK configs */
796 static void assert_pll(struct drm_i915_private *dev_priv,
797 		       enum i915_pipe pipe, bool state)
798 {
799 	int reg;
800 	u32 val;
801 	bool cur_state;
802 
803 	reg = DPLL(pipe);
804 	val = I915_READ(reg);
805 	cur_state = !!(val & DPLL_VCO_ENABLE);
806 	if (cur_state != state)
807 		kprintf("PLL state assertion failure (expected %s, current %s)\n",
808 		    state_string(state), state_string(cur_state));
809 }
810 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
811 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
812 
813 /* For ILK+ */
814 static void assert_pch_pll(struct drm_i915_private *dev_priv,
815 			   enum i915_pipe pipe, bool state)
816 {
817 	int reg;
818 	u32 val;
819 	bool cur_state;
820 
821 	if (HAS_PCH_CPT(dev_priv->dev)) {
822 		u32 pch_dpll;
823 
824 		pch_dpll = I915_READ(PCH_DPLL_SEL);
825 
826 		/* Make sure the selected PLL is enabled to the transcoder */
827 		KASSERT(((pch_dpll >> (4 * pipe)) & 8) != 0,
828 		    ("transcoder %d PLL not enabled\n", pipe));
829 
830 		/* Convert the transcoder pipe number to a pll pipe number */
831 		pipe = (pch_dpll >> (4 * pipe)) & 1;
832 	}
833 
834 	reg = _PCH_DPLL(pipe);
835 	val = I915_READ(reg);
836 	cur_state = !!(val & DPLL_VCO_ENABLE);
837 	if (cur_state != state)
838 		kprintf("PCH PLL state assertion failure (expected %s, current %s)\n",
839 		    state_string(state), state_string(cur_state));
840 }
841 #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
842 #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
843 
844 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
845 			  enum i915_pipe pipe, bool state)
846 {
847 	int reg;
848 	u32 val;
849 	bool cur_state;
850 
851 	reg = FDI_TX_CTL(pipe);
852 	val = I915_READ(reg);
853 	cur_state = !!(val & FDI_TX_ENABLE);
854 	if (cur_state != state)
855 		kprintf("FDI TX state assertion failure (expected %s, current %s)\n",
856 		    state_string(state), state_string(cur_state));
857 }
858 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
859 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
860 
861 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
862 			  enum i915_pipe pipe, bool state)
863 {
864 	int reg;
865 	u32 val;
866 	bool cur_state;
867 
868 	reg = FDI_RX_CTL(pipe);
869 	val = I915_READ(reg);
870 	cur_state = !!(val & FDI_RX_ENABLE);
871 	if (cur_state != state)
872 		kprintf("FDI RX state assertion failure (expected %s, current %s)\n",
873 		    state_string(state), state_string(cur_state));
874 }
875 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
876 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
877 
878 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
879 				      enum i915_pipe pipe)
880 {
881 	int reg;
882 	u32 val;
883 
884 	/* ILK FDI PLL is always enabled */
885 	if (dev_priv->info->gen == 5)
886 		return;
887 
888 	reg = FDI_TX_CTL(pipe);
889 	val = I915_READ(reg);
890 	if (!(val & FDI_TX_PLL_ENABLE))
891 		kprintf("FDI TX PLL assertion failure, should be active but is disabled\n");
892 }
893 
894 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
895 				      enum i915_pipe pipe)
896 {
897 	int reg;
898 	u32 val;
899 
900 	reg = FDI_RX_CTL(pipe);
901 	val = I915_READ(reg);
902 	if (!(val & FDI_RX_PLL_ENABLE))
903 		kprintf("FDI RX PLL assertion failure, should be active but is disabled\n");
904 }
905 
906 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
907 				  enum i915_pipe pipe)
908 {
909 	int pp_reg, lvds_reg;
910 	u32 val;
911 	enum i915_pipe panel_pipe = PIPE_A;
912 	bool locked = true;
913 
914 	if (HAS_PCH_SPLIT(dev_priv->dev)) {
915 		pp_reg = PCH_PP_CONTROL;
916 		lvds_reg = PCH_LVDS;
917 	} else {
918 		pp_reg = PP_CONTROL;
919 		lvds_reg = LVDS;
920 	}
921 
922 	val = I915_READ(pp_reg);
923 	if (!(val & PANEL_POWER_ON) ||
924 	    ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
925 		locked = false;
926 
927 	if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
928 		panel_pipe = PIPE_B;
929 
930 	if (panel_pipe == pipe && locked)
931 		kprintf("panel assertion failure, pipe %c regs locked\n",
932 	     pipe_name(pipe));
933 }
934 
935 void assert_pipe(struct drm_i915_private *dev_priv,
936 		 enum i915_pipe pipe, bool state)
937 {
938 	int reg;
939 	u32 val;
940 	bool cur_state;
941 
942 	/* if we need the pipe A quirk it must be always on */
943 	if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
944 		state = true;
945 
946 	reg = PIPECONF(pipe);
947 	val = I915_READ(reg);
948 	cur_state = !!(val & PIPECONF_ENABLE);
949 	if (cur_state != state)
950 		kprintf("pipe %c assertion failure (expected %s, current %s)\n",
951 		    pipe_name(pipe), state_string(state), state_string(cur_state));
952 }
953 
954 static void assert_plane(struct drm_i915_private *dev_priv,
955 			 enum plane plane, bool state)
956 {
957 	int reg;
958 	u32 val;
959 	bool cur_state;
960 
961 	reg = DSPCNTR(plane);
962 	val = I915_READ(reg);
963 	cur_state = !!(val & DISPLAY_PLANE_ENABLE);
964 	if (cur_state != state)
965 		kprintf("plane %c assertion failure, (expected %s, current %s)\n",
966 		       plane_name(plane), state_string(state), state_string(cur_state));
967 }
968 
969 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
970 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
971 
972 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
973 				   enum i915_pipe pipe)
974 {
975 	int reg, i;
976 	u32 val;
977 	int cur_pipe;
978 
979 	/* Planes are fixed to pipes on ILK+ */
980 	if (HAS_PCH_SPLIT(dev_priv->dev)) {
981 		reg = DSPCNTR(pipe);
982 		val = I915_READ(reg);
983 		if ((val & DISPLAY_PLANE_ENABLE) != 0)
984 			kprintf("plane %c assertion failure, should be disabled but not\n",
985 			       plane_name(pipe));
986 		return;
987 	}
988 
989 	/* Need to check both planes against the pipe */
990 	for (i = 0; i < 2; i++) {
991 		reg = DSPCNTR(i);
992 		val = I915_READ(reg);
993 		cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
994 			DISPPLANE_SEL_PIPE_SHIFT;
995 		if ((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe)
996 			kprintf("plane %c assertion failure, should be off on pipe %c but is still active\n",
997 		     plane_name(i), pipe_name(pipe));
998 	}
999 }
1000 
1001 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1002 {
1003 	u32 val;
1004 	bool enabled;
1005 
1006 	val = I915_READ(PCH_DREF_CONTROL);
1007 	enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1008 			    DREF_SUPERSPREAD_SOURCE_MASK));
1009 	if (!enabled)
1010 		kprintf("PCH refclk assertion failure, should be active but is disabled\n");
1011 }
1012 
1013 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1014 				       enum i915_pipe pipe)
1015 {
1016 	int reg;
1017 	u32 val;
1018 	bool enabled;
1019 
1020 	reg = TRANSCONF(pipe);
1021 	val = I915_READ(reg);
1022 	enabled = !!(val & TRANS_ENABLE);
1023 	if (enabled)
1024 		kprintf("transcoder assertion failed, should be off on pipe %c but is still active\n",
1025 	     pipe_name(pipe));
1026 }
1027 
1028 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1029 			      enum i915_pipe pipe, u32 val)
1030 {
1031 	if ((val & PORT_ENABLE) == 0)
1032 		return false;
1033 
1034 	if (HAS_PCH_CPT(dev_priv->dev)) {
1035 		if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1036 			return false;
1037 	} else {
1038 		if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1039 			return false;
1040 	}
1041 	return true;
1042 }
1043 
1044 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1045 			      enum i915_pipe pipe, u32 val)
1046 {
1047 	if ((val & LVDS_PORT_EN) == 0)
1048 		return false;
1049 
1050 	if (HAS_PCH_CPT(dev_priv->dev)) {
1051 		if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1052 			return false;
1053 	} else {
1054 		if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1055 			return false;
1056 	}
1057 	return true;
1058 }
1059 
1060 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1061 			      enum i915_pipe pipe, u32 val)
1062 {
1063 	if ((val & ADPA_DAC_ENABLE) == 0)
1064 		return false;
1065 	if (HAS_PCH_CPT(dev_priv->dev)) {
1066 		if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1067 			return false;
1068 	} else {
1069 		if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1070 			return false;
1071 	}
1072 	return true;
1073 }
1074 
1075 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1076 			    enum i915_pipe pipe, u32 port_sel, u32 val)
1077 {
1078 	if ((val & DP_PORT_EN) == 0)
1079 		return false;
1080 
1081 	if (HAS_PCH_CPT(dev_priv->dev)) {
1082 		u32	trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1083 		u32	trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1084 		if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1085 			return false;
1086 	} else {
1087 		if ((val & DP_PIPE_MASK) != (pipe << 30))
1088 			return false;
1089 	}
1090 	return true;
1091 }
1092 
1093 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1094 				   enum i915_pipe pipe, int reg, u32 port_sel)
1095 {
1096 	u32 val = I915_READ(reg);
1097 	if (dp_pipe_enabled(dev_priv, pipe, port_sel, val))
1098 		kprintf("PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1099 	     reg, pipe_name(pipe));
1100 }
1101 
1102 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1103 				     enum i915_pipe pipe, int reg)
1104 {
1105 	u32 val = I915_READ(reg);
1106 	if (hdmi_pipe_enabled(dev_priv, val, pipe))
1107 		kprintf("PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1108 	     reg, pipe_name(pipe));
1109 }
1110 
1111 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1112 				      enum i915_pipe pipe)
1113 {
1114 	int reg;
1115 	u32 val;
1116 
1117 	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1118 	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1119 	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1120 
1121 	reg = PCH_ADPA;
1122 	val = I915_READ(reg);
1123 	if (adpa_pipe_enabled(dev_priv, val, pipe))
1124 		kprintf("PCH VGA enabled on transcoder %c, should be disabled\n",
1125 	     pipe_name(pipe));
1126 
1127 	reg = PCH_LVDS;
1128 	val = I915_READ(reg);
1129 	if (lvds_pipe_enabled(dev_priv, val, pipe))
1130 		kprintf("PCH LVDS enabled on transcoder %c, should be disabled\n",
1131 	     pipe_name(pipe));
1132 
1133 	assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1134 	assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1135 	assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1136 }
1137 
1138 /**
1139  * intel_enable_pll - enable a PLL
1140  * @dev_priv: i915 private structure
1141  * @pipe: pipe PLL to enable
1142  *
1143  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1144  * make sure the PLL reg is writable first though, since the panel write
1145  * protect mechanism may be enabled.
1146  *
1147  * Note!  This is for pre-ILK only.
1148  */
1149 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum i915_pipe pipe)
1150 {
1151 	int reg;
1152 	u32 val;
1153 
1154 	/* No really, not for ILK+ */
1155 	KASSERT(dev_priv->info->gen < 5, ("Wrong device gen"));
1156 
1157 	/* PLL is protected by panel, make sure we can write it */
1158 	if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1159 		assert_panel_unlocked(dev_priv, pipe);
1160 
1161 	reg = DPLL(pipe);
1162 	val = I915_READ(reg);
1163 	val |= DPLL_VCO_ENABLE;
1164 
1165 	/* We do this three times for luck */
1166 	I915_WRITE(reg, val);
1167 	POSTING_READ(reg);
1168 	DELAY(150); /* wait for warmup */
1169 	I915_WRITE(reg, val);
1170 	POSTING_READ(reg);
1171 	DELAY(150); /* wait for warmup */
1172 	I915_WRITE(reg, val);
1173 	POSTING_READ(reg);
1174 	DELAY(150); /* wait for warmup */
1175 }
1176 
1177 /**
1178  * intel_disable_pll - disable a PLL
1179  * @dev_priv: i915 private structure
1180  * @pipe: pipe PLL to disable
1181  *
1182  * Disable the PLL for @pipe, making sure the pipe is off first.
1183  *
1184  * Note!  This is for pre-ILK only.
1185  */
1186 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum i915_pipe pipe)
1187 {
1188 	int reg;
1189 	u32 val;
1190 
1191 	/* Don't disable pipe A or pipe A PLLs if needed */
1192 	if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1193 		return;
1194 
1195 	/* Make sure the pipe isn't still relying on us */
1196 	assert_pipe_disabled(dev_priv, pipe);
1197 
1198 	reg = DPLL(pipe);
1199 	val = I915_READ(reg);
1200 	val &= ~DPLL_VCO_ENABLE;
1201 	I915_WRITE(reg, val);
1202 	POSTING_READ(reg);
1203 }
1204 
1205 /**
1206  * intel_enable_pch_pll - enable PCH PLL
1207  * @dev_priv: i915 private structure
1208  * @pipe: pipe PLL to enable
1209  *
1210  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1211  * drives the transcoder clock.
1212  */
1213 static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
1214 				 enum i915_pipe pipe)
1215 {
1216 	int reg;
1217 	u32 val;
1218 
1219 	if (pipe > 1)
1220 		return;
1221 
1222 	/* PCH only available on ILK+ */
1223 	KASSERT(dev_priv->info->gen >= 5, ("Wrong device gen"));
1224 
1225 	/* PCH refclock must be enabled first */
1226 	assert_pch_refclk_enabled(dev_priv);
1227 
1228 	reg = _PCH_DPLL(pipe);
1229 	val = I915_READ(reg);
1230 	val |= DPLL_VCO_ENABLE;
1231 	I915_WRITE(reg, val);
1232 	POSTING_READ(reg);
1233 	DELAY(200);
1234 }
1235 
1236 static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
1237 				  enum i915_pipe pipe)
1238 {
1239 	int reg;
1240 	u32 val, pll_mask = TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL,
1241 		pll_sel = TRANSC_DPLL_ENABLE;
1242 
1243 	if (pipe > 1)
1244 		return;
1245 
1246 	/* PCH only available on ILK+ */
1247 	KASSERT(dev_priv->info->gen >= 5, ("Wrong device gen"));
1248 
1249 	/* Make sure transcoder isn't still depending on us */
1250 	assert_transcoder_disabled(dev_priv, pipe);
1251 
1252 	if (pipe == 0)
1253 		pll_sel |= TRANSC_DPLLA_SEL;
1254 	else if (pipe == 1)
1255 		pll_sel |= TRANSC_DPLLB_SEL;
1256 
1257 
1258 	if ((I915_READ(PCH_DPLL_SEL) & pll_mask) == pll_sel)
1259 		return;
1260 
1261 	reg = _PCH_DPLL(pipe);
1262 	val = I915_READ(reg);
1263 	val &= ~DPLL_VCO_ENABLE;
1264 	I915_WRITE(reg, val);
1265 	POSTING_READ(reg);
1266 	DELAY(200);
1267 }
1268 
1269 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1270 				    enum i915_pipe pipe)
1271 {
1272 	int reg;
1273 	u32 val, pipeconf_val;
1274 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1275 
1276 	/* PCH only available on ILK+ */
1277 	KASSERT(dev_priv->info->gen >= 5, ("Wrong device gen"));
1278 
1279 	/* Make sure PCH DPLL is enabled */
1280 	assert_pch_pll_enabled(dev_priv, pipe);
1281 
1282 	/* FDI must be feeding us bits for PCH ports */
1283 	assert_fdi_tx_enabled(dev_priv, pipe);
1284 	assert_fdi_rx_enabled(dev_priv, pipe);
1285 
1286 
1287 	reg = TRANSCONF(pipe);
1288 	val = I915_READ(reg);
1289 	pipeconf_val = I915_READ(PIPECONF(pipe));
1290 
1291 	if (HAS_PCH_IBX(dev_priv->dev)) {
1292 		/*
1293 		 * make the BPC in transcoder be consistent with
1294 		 * that in pipeconf reg.
1295 		 */
1296 		val &= ~PIPE_BPC_MASK;
1297 		val |= pipeconf_val & PIPE_BPC_MASK;
1298 	}
1299 
1300 	val &= ~TRANS_INTERLACE_MASK;
1301 	if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1302 		if (HAS_PCH_IBX(dev_priv->dev) &&
1303 		    intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1304 			val |= TRANS_LEGACY_INTERLACED_ILK;
1305 		else
1306 			val |= TRANS_INTERLACED;
1307 	else
1308 		val |= TRANS_PROGRESSIVE;
1309 
1310 	I915_WRITE(reg, val | TRANS_ENABLE);
1311 	if (_intel_wait_for(dev_priv->dev, I915_READ(reg) & TRANS_STATE_ENABLE,
1312 	    100, 1, "915trc"))
1313 		DRM_ERROR("failed to enable transcoder %d\n", pipe);
1314 }
1315 
1316 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1317 				     enum i915_pipe pipe)
1318 {
1319 	int reg;
1320 	u32 val;
1321 
1322 	/* FDI relies on the transcoder */
1323 	assert_fdi_tx_disabled(dev_priv, pipe);
1324 	assert_fdi_rx_disabled(dev_priv, pipe);
1325 
1326 	/* Ports must be off as well */
1327 	assert_pch_ports_disabled(dev_priv, pipe);
1328 
1329 	reg = TRANSCONF(pipe);
1330 	val = I915_READ(reg);
1331 	val &= ~TRANS_ENABLE;
1332 	I915_WRITE(reg, val);
1333 	/* wait for PCH transcoder off, transcoder state */
1334 	if (_intel_wait_for(dev_priv->dev,
1335 	    (I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50,
1336 	    1, "915trd"))
1337 		DRM_ERROR("failed to disable transcoder %d\n", pipe);
1338 }
1339 
1340 /**
1341  * intel_enable_pipe - enable a pipe, asserting requirements
1342  * @dev_priv: i915 private structure
1343  * @pipe: pipe to enable
1344  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1345  *
1346  * Enable @pipe, making sure that various hardware specific requirements
1347  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1348  *
1349  * @pipe should be %PIPE_A or %PIPE_B.
1350  *
1351  * Will wait until the pipe is actually running (i.e. first vblank) before
1352  * returning.
1353  */
1354 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum i915_pipe pipe,
1355 			      bool pch_port)
1356 {
1357 	int reg;
1358 	u32 val;
1359 
1360 	/*
1361 	 * A pipe without a PLL won't actually be able to drive bits from
1362 	 * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1363 	 * need the check.
1364 	 */
1365 	if (!HAS_PCH_SPLIT(dev_priv->dev))
1366 		assert_pll_enabled(dev_priv, pipe);
1367 	else {
1368 		if (pch_port) {
1369 			/* if driving the PCH, we need FDI enabled */
1370 			assert_fdi_rx_pll_enabled(dev_priv, pipe);
1371 			assert_fdi_tx_pll_enabled(dev_priv, pipe);
1372 		}
1373 		/* FIXME: assert CPU port conditions for SNB+ */
1374 	}
1375 
1376 	reg = PIPECONF(pipe);
1377 	val = I915_READ(reg);
1378 	if (val & PIPECONF_ENABLE)
1379 		return;
1380 
1381 	I915_WRITE(reg, val | PIPECONF_ENABLE);
1382 	intel_wait_for_vblank(dev_priv->dev, pipe);
1383 }
1384 
1385 /**
1386  * intel_disable_pipe - disable a pipe, asserting requirements
1387  * @dev_priv: i915 private structure
1388  * @pipe: pipe to disable
1389  *
1390  * Disable @pipe, making sure that various hardware specific requirements
1391  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1392  *
1393  * @pipe should be %PIPE_A or %PIPE_B.
1394  *
1395  * Will wait until the pipe has shut down before returning.
1396  */
1397 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1398 			       enum i915_pipe pipe)
1399 {
1400 	int reg;
1401 	u32 val;
1402 
1403 	/*
1404 	 * Make sure planes won't keep trying to pump pixels to us,
1405 	 * or we might hang the display.
1406 	 */
1407 	assert_planes_disabled(dev_priv, pipe);
1408 
1409 	/* Don't disable pipe A or pipe A PLLs if needed */
1410 	if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1411 		return;
1412 
1413 	reg = PIPECONF(pipe);
1414 	val = I915_READ(reg);
1415 	if ((val & PIPECONF_ENABLE) == 0)
1416 		return;
1417 
1418 	I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1419 	intel_wait_for_pipe_off(dev_priv->dev, pipe);
1420 }
1421 
1422 /*
1423  * Plane regs are double buffered, going from enabled->disabled needs a
1424  * trigger in order to latch.  The display address reg provides this.
1425  */
1426 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1427 				      enum plane plane)
1428 {
1429 	I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1430 	I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1431 }
1432 
1433 /**
1434  * intel_enable_plane - enable a display plane on a given pipe
1435  * @dev_priv: i915 private structure
1436  * @plane: plane to enable
1437  * @pipe: pipe being fed
1438  *
1439  * Enable @plane on @pipe, making sure that @pipe is running first.
1440  */
1441 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1442 			       enum plane plane, enum i915_pipe pipe)
1443 {
1444 	int reg;
1445 	u32 val;
1446 
1447 	/* If the pipe isn't enabled, we can't pump pixels and may hang */
1448 	assert_pipe_enabled(dev_priv, pipe);
1449 
1450 	reg = DSPCNTR(plane);
1451 	val = I915_READ(reg);
1452 	if (val & DISPLAY_PLANE_ENABLE)
1453 		return;
1454 
1455 	I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1456 	intel_flush_display_plane(dev_priv, plane);
1457 	intel_wait_for_vblank(dev_priv->dev, pipe);
1458 }
1459 
1460 /**
1461  * intel_disable_plane - disable a display plane
1462  * @dev_priv: i915 private structure
1463  * @plane: plane to disable
1464  * @pipe: pipe consuming the data
1465  *
1466  * Disable @plane; should be an independent operation.
1467  */
1468 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1469 				enum plane plane, enum i915_pipe pipe)
1470 {
1471 	int reg;
1472 	u32 val;
1473 
1474 	reg = DSPCNTR(plane);
1475 	val = I915_READ(reg);
1476 	if ((val & DISPLAY_PLANE_ENABLE) == 0)
1477 		return;
1478 
1479 	I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1480 	intel_flush_display_plane(dev_priv, plane);
1481 	intel_wait_for_vblank(dev_priv->dev, pipe);
1482 }
1483 
1484 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1485 			   enum i915_pipe pipe, int reg, u32 port_sel)
1486 {
1487 	u32 val = I915_READ(reg);
1488 	if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
1489 		DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
1490 		I915_WRITE(reg, val & ~DP_PORT_EN);
1491 	}
1492 }
1493 
1494 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1495 			     enum i915_pipe pipe, int reg)
1496 {
1497 	u32 val = I915_READ(reg);
1498 	if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
1499 		DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1500 			      reg, pipe);
1501 		I915_WRITE(reg, val & ~PORT_ENABLE);
1502 	}
1503 }
1504 
1505 /* Disable any ports connected to this transcoder */
1506 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1507 				    enum i915_pipe pipe)
1508 {
1509 	u32 reg, val;
1510 
1511 	val = I915_READ(PCH_PP_CONTROL);
1512 	I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1513 
1514 	disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1515 	disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1516 	disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1517 
1518 	reg = PCH_ADPA;
1519 	val = I915_READ(reg);
1520 	if (adpa_pipe_enabled(dev_priv, val, pipe))
1521 		I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1522 
1523 	reg = PCH_LVDS;
1524 	val = I915_READ(reg);
1525 	if (lvds_pipe_enabled(dev_priv, val, pipe)) {
1526 		DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
1527 		I915_WRITE(reg, val & ~LVDS_PORT_EN);
1528 		POSTING_READ(reg);
1529 		DELAY(100);
1530 	}
1531 
1532 	disable_pch_hdmi(dev_priv, pipe, HDMIB);
1533 	disable_pch_hdmi(dev_priv, pipe, HDMIC);
1534 	disable_pch_hdmi(dev_priv, pipe, HDMID);
1535 }
1536 
1537 int
1538 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1539 			   struct drm_i915_gem_object *obj,
1540 			   struct intel_ring_buffer *pipelined)
1541 {
1542 	struct drm_i915_private *dev_priv = dev->dev_private;
1543 	u32 alignment;
1544 	int ret;
1545 
1546 	alignment = 0; /* shut gcc */
1547 	switch (obj->tiling_mode) {
1548 	case I915_TILING_NONE:
1549 		if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1550 			alignment = 128 * 1024;
1551 		else if (INTEL_INFO(dev)->gen >= 4)
1552 			alignment = 4 * 1024;
1553 		else
1554 			alignment = 64 * 1024;
1555 		break;
1556 	case I915_TILING_X:
1557 		/* pin() will align the object as required by fence */
1558 		alignment = 0;
1559 		break;
1560 	case I915_TILING_Y:
1561 		/* FIXME: Is this true? */
1562 		DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1563 		return -EINVAL;
1564 	default:
1565 		KASSERT(0, ("Wrong tiling for fb obj"));
1566 	}
1567 
1568 	dev_priv->mm.interruptible = false;
1569 	ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1570 	if (ret)
1571 		goto err_interruptible;
1572 
1573 	/* Install a fence for tiled scan-out. Pre-i965 always needs a
1574 	 * fence, whereas 965+ only requires a fence if using
1575 	 * framebuffer compression.  For simplicity, we always install
1576 	 * a fence as the cost is not that onerous.
1577 	 */
1578 	if (obj->tiling_mode != I915_TILING_NONE) {
1579 		ret = i915_gem_object_get_fence(obj, pipelined);
1580 		if (ret)
1581 			goto err_unpin;
1582 
1583 		i915_gem_object_pin_fence(obj);
1584 	}
1585 
1586 	dev_priv->mm.interruptible = true;
1587 	return 0;
1588 
1589 err_unpin:
1590 	i915_gem_object_unpin(obj);
1591 err_interruptible:
1592 	dev_priv->mm.interruptible = true;
1593 	return ret;
1594 }
1595 
1596 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1597 {
1598 	i915_gem_object_unpin_fence(obj);
1599 	i915_gem_object_unpin(obj);
1600 }
1601 
1602 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1603 			     int x, int y)
1604 {
1605 	struct drm_device *dev = crtc->dev;
1606 	struct drm_i915_private *dev_priv = dev->dev_private;
1607 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1608 	struct intel_framebuffer *intel_fb;
1609 	struct drm_i915_gem_object *obj;
1610 	int plane = intel_crtc->plane;
1611 	unsigned long Start, Offset;
1612 	u32 dspcntr;
1613 	u32 reg;
1614 
1615 	switch (plane) {
1616 	case 0:
1617 	case 1:
1618 		break;
1619 	default:
1620 		DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1621 		return -EINVAL;
1622 	}
1623 
1624 	intel_fb = to_intel_framebuffer(fb);
1625 	obj = intel_fb->obj;
1626 
1627 	reg = DSPCNTR(plane);
1628 	dspcntr = I915_READ(reg);
1629 	/* Mask out pixel format bits in case we change it */
1630 	dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1631 	switch (fb->bits_per_pixel) {
1632 	case 8:
1633 		dspcntr |= DISPPLANE_8BPP;
1634 		break;
1635 	case 16:
1636 		if (fb->depth == 15)
1637 			dspcntr |= DISPPLANE_BGRX555;
1638 		else
1639 			dspcntr |= DISPPLANE_BGRX565;
1640 		break;
1641 	case 24:
1642 	case 32:
1643 		dspcntr |= DISPPLANE_BGRX888;
1644 		break;
1645 	default:
1646 		DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
1647 		return -EINVAL;
1648 	}
1649 	if (INTEL_INFO(dev)->gen >= 4) {
1650 		if (obj->tiling_mode != I915_TILING_NONE)
1651 			dspcntr |= DISPPLANE_TILED;
1652 		else
1653 			dspcntr &= ~DISPPLANE_TILED;
1654 	}
1655 
1656 	I915_WRITE(reg, dspcntr);
1657 
1658 	Start = obj->gtt_offset;
1659 	Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
1660 
1661 	DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1662 		      Start, Offset, x, y, fb->pitches[0]);
1663 	I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
1664 	if (INTEL_INFO(dev)->gen >= 4) {
1665 		I915_WRITE(DSPSURF(plane), Start);
1666 		I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1667 		I915_WRITE(DSPADDR(plane), Offset);
1668 	} else
1669 		I915_WRITE(DSPADDR(plane), Start + Offset);
1670 	POSTING_READ(reg);
1671 
1672 	return (0);
1673 }
1674 
1675 static int ironlake_update_plane(struct drm_crtc *crtc,
1676 				 struct drm_framebuffer *fb, int x, int y)
1677 {
1678 	struct drm_device *dev = crtc->dev;
1679 	struct drm_i915_private *dev_priv = dev->dev_private;
1680 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1681 	struct intel_framebuffer *intel_fb;
1682 	struct drm_i915_gem_object *obj;
1683 	int plane = intel_crtc->plane;
1684 	unsigned long Start, Offset;
1685 	u32 dspcntr;
1686 	u32 reg;
1687 
1688 	switch (plane) {
1689 	case 0:
1690 	case 1:
1691 	case 2:
1692 		break;
1693 	default:
1694 		DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1695 		return -EINVAL;
1696 	}
1697 
1698 	intel_fb = to_intel_framebuffer(fb);
1699 	obj = intel_fb->obj;
1700 
1701 	reg = DSPCNTR(plane);
1702 	dspcntr = I915_READ(reg);
1703 	/* Mask out pixel format bits in case we change it */
1704 	dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1705 	switch (fb->bits_per_pixel) {
1706 	case 8:
1707 		dspcntr |= DISPPLANE_8BPP;
1708 		break;
1709 	case 16:
1710 		if (fb->depth != 16) {
1711 			DRM_ERROR("bpp 16, depth %d\n", fb->depth);
1712 			return -EINVAL;
1713 		}
1714 
1715 		dspcntr |= DISPPLANE_BGRX565;
1716 		break;
1717 	case 24:
1718 	case 32:
1719 		if (fb->depth == 24)
1720 			dspcntr |= DISPPLANE_BGRX888;
1721 		else if (fb->depth == 30)
1722 			dspcntr |= DISPPLANE_BGRX101010;
1723 		else {
1724 			DRM_ERROR("bpp %d depth %d\n", fb->bits_per_pixel,
1725 			    fb->depth);
1726 			return -EINVAL;
1727 		}
1728 		break;
1729 	default:
1730 		DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
1731 		return -EINVAL;
1732 	}
1733 
1734 	if (obj->tiling_mode != I915_TILING_NONE)
1735 		dspcntr |= DISPPLANE_TILED;
1736 	else
1737 		dspcntr &= ~DISPPLANE_TILED;
1738 
1739 	/* must disable */
1740 	dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1741 
1742 	I915_WRITE(reg, dspcntr);
1743 
1744 	Start = obj->gtt_offset;
1745 	Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
1746 
1747 	DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1748 		      Start, Offset, x, y, fb->pitches[0]);
1749 	I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
1750 	I915_WRITE(DSPSURF(plane), Start);
1751 	I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1752 	I915_WRITE(DSPADDR(plane), Offset);
1753 	POSTING_READ(reg);
1754 
1755 	return 0;
1756 }
1757 
1758 /* Assume fb object is pinned & idle & fenced and just update base pointers */
1759 static int
1760 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1761 			   int x, int y, enum mode_set_atomic state)
1762 {
1763 	struct drm_device *dev = crtc->dev;
1764 	struct drm_i915_private *dev_priv = dev->dev_private;
1765 
1766 	if (dev_priv->display.disable_fbc)
1767 		dev_priv->display.disable_fbc(dev);
1768 	intel_increase_pllclock(crtc);
1769 
1770 	return dev_priv->display.update_plane(crtc, fb, x, y);
1771 }
1772 
1773 static int
1774 intel_finish_fb(struct drm_framebuffer *old_fb)
1775 {
1776 	struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
1777 	struct drm_device *dev = obj->base.dev;
1778 	struct drm_i915_private *dev_priv = dev->dev_private;
1779 	bool was_interruptible = dev_priv->mm.interruptible;
1780 	int ret;
1781 
1782 /* XXX */	lockmgr(&dev->event_lock, LK_EXCLUSIVE);
1783 	while (!atomic_read(&dev_priv->mm.wedged) &&
1784 	       atomic_read(&obj->pending_flip) != 0) {
1785 		lksleep(&obj->pending_flip, &dev->event_lock,
1786 		    0, "915flp", 0);
1787 	}
1788 /* XXX */	lockmgr(&dev->event_lock, LK_RELEASE);
1789 
1790 	/* Big Hammer, we also need to ensure that any pending
1791 	 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
1792 	 * current scanout is retired before unpinning the old
1793 	 * framebuffer.
1794 	 *
1795 	 * This should only fail upon a hung GPU, in which case we
1796 	 * can safely continue.
1797 	 */
1798 	dev_priv->mm.interruptible = false;
1799 	ret = i915_gem_object_finish_gpu(obj);
1800 	dev_priv->mm.interruptible = was_interruptible;
1801 	return ret;
1802 }
1803 
1804 static int
1805 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1806 		    struct drm_framebuffer *old_fb)
1807 {
1808 	struct drm_device *dev = crtc->dev;
1809 #if 0
1810 	struct drm_i915_master_private *master_priv;
1811 #else
1812 	drm_i915_private_t *dev_priv = dev->dev_private;
1813 #endif
1814 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1815 	int ret;
1816 
1817 	/* no fb bound */
1818 	if (!crtc->fb) {
1819 		DRM_ERROR("No FB bound\n");
1820 		return 0;
1821 	}
1822 
1823 	switch (intel_crtc->plane) {
1824 	case 0:
1825 	case 1:
1826 		break;
1827 	case 2:
1828 		if (IS_IVYBRIDGE(dev))
1829 			break;
1830 		/* fall through otherwise */
1831 	default:
1832 		DRM_ERROR("no plane for crtc\n");
1833 		return -EINVAL;
1834 	}
1835 
1836 	DRM_LOCK(dev);
1837 	ret = intel_pin_and_fence_fb_obj(dev,
1838 					 to_intel_framebuffer(crtc->fb)->obj,
1839 					 NULL);
1840 	if (ret != 0) {
1841 		DRM_UNLOCK(dev);
1842 		DRM_ERROR("pin & fence failed\n");
1843 		return ret;
1844 	}
1845 
1846 	if (old_fb)
1847 		intel_finish_fb(old_fb);
1848 
1849 	ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
1850 					 LEAVE_ATOMIC_MODE_SET);
1851 	if (ret) {
1852 		intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
1853 		DRM_UNLOCK(dev);
1854 		DRM_ERROR("failed to update base address\n");
1855 		return ret;
1856 	}
1857 
1858 	if (old_fb) {
1859 		intel_wait_for_vblank(dev, intel_crtc->pipe);
1860 		intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
1861 	}
1862 
1863 	DRM_UNLOCK(dev);
1864 
1865 #if 0
1866 	if (!dev->primary->master)
1867 		return 0;
1868 
1869 	master_priv = dev->primary->master->driver_priv;
1870 	if (!master_priv->sarea_priv)
1871 		return 0;
1872 
1873 	if (intel_crtc->pipe) {
1874 		master_priv->sarea_priv->pipeB_x = x;
1875 		master_priv->sarea_priv->pipeB_y = y;
1876 	} else {
1877 		master_priv->sarea_priv->pipeA_x = x;
1878 		master_priv->sarea_priv->pipeA_y = y;
1879 	}
1880 #else
1881 
1882 	if (!dev_priv->sarea_priv)
1883 		return 0;
1884 
1885 	if (intel_crtc->pipe) {
1886 		dev_priv->sarea_priv->planeB_x = x;
1887 		dev_priv->sarea_priv->planeB_y = y;
1888 	} else {
1889 		dev_priv->sarea_priv->planeA_x = x;
1890 		dev_priv->sarea_priv->planeA_y = y;
1891 	}
1892 #endif
1893 
1894 	return 0;
1895 }
1896 
1897 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
1898 {
1899 	struct drm_device *dev = crtc->dev;
1900 	struct drm_i915_private *dev_priv = dev->dev_private;
1901 	u32 dpa_ctl;
1902 
1903 	DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
1904 	dpa_ctl = I915_READ(DP_A);
1905 	dpa_ctl &= ~DP_PLL_FREQ_MASK;
1906 
1907 	if (clock < 200000) {
1908 		u32 temp;
1909 		dpa_ctl |= DP_PLL_FREQ_160MHZ;
1910 		/* workaround for 160Mhz:
1911 		   1) program 0x4600c bits 15:0 = 0x8124
1912 		   2) program 0x46010 bit 0 = 1
1913 		   3) program 0x46034 bit 24 = 1
1914 		   4) program 0x64000 bit 14 = 1
1915 		   */
1916 		temp = I915_READ(0x4600c);
1917 		temp &= 0xffff0000;
1918 		I915_WRITE(0x4600c, temp | 0x8124);
1919 
1920 		temp = I915_READ(0x46010);
1921 		I915_WRITE(0x46010, temp | 1);
1922 
1923 		temp = I915_READ(0x46034);
1924 		I915_WRITE(0x46034, temp | (1 << 24));
1925 	} else {
1926 		dpa_ctl |= DP_PLL_FREQ_270MHZ;
1927 	}
1928 	I915_WRITE(DP_A, dpa_ctl);
1929 
1930 	POSTING_READ(DP_A);
1931 	DELAY(500);
1932 }
1933 
1934 static void intel_fdi_normal_train(struct drm_crtc *crtc)
1935 {
1936 	struct drm_device *dev = crtc->dev;
1937 	struct drm_i915_private *dev_priv = dev->dev_private;
1938 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1939 	int pipe = intel_crtc->pipe;
1940 	u32 reg, temp;
1941 
1942 	/* enable normal train */
1943 	reg = FDI_TX_CTL(pipe);
1944 	temp = I915_READ(reg);
1945 	if (IS_IVYBRIDGE(dev)) {
1946 		temp &= ~FDI_LINK_TRAIN_NONE_IVB;
1947 		temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
1948 	} else {
1949 		temp &= ~FDI_LINK_TRAIN_NONE;
1950 		temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
1951 	}
1952 	I915_WRITE(reg, temp);
1953 
1954 	reg = FDI_RX_CTL(pipe);
1955 	temp = I915_READ(reg);
1956 	if (HAS_PCH_CPT(dev)) {
1957 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1958 		temp |= FDI_LINK_TRAIN_NORMAL_CPT;
1959 	} else {
1960 		temp &= ~FDI_LINK_TRAIN_NONE;
1961 		temp |= FDI_LINK_TRAIN_NONE;
1962 	}
1963 	I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
1964 
1965 	/* wait one idle pattern time */
1966 	POSTING_READ(reg);
1967 	DELAY(1000);
1968 
1969 	/* IVB wants error correction enabled */
1970 	if (IS_IVYBRIDGE(dev))
1971 		I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
1972 			   FDI_FE_ERRC_ENABLE);
1973 }
1974 
1975 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
1976 {
1977 	struct drm_i915_private *dev_priv = dev->dev_private;
1978 	u32 flags = I915_READ(SOUTH_CHICKEN1);
1979 
1980 	flags |= FDI_PHASE_SYNC_OVR(pipe);
1981 	I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
1982 	flags |= FDI_PHASE_SYNC_EN(pipe);
1983 	I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
1984 	POSTING_READ(SOUTH_CHICKEN1);
1985 }
1986 
1987 /* The FDI link training functions for ILK/Ibexpeak. */
1988 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
1989 {
1990 	struct drm_device *dev = crtc->dev;
1991 	struct drm_i915_private *dev_priv = dev->dev_private;
1992 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1993 	int pipe = intel_crtc->pipe;
1994 	int plane = intel_crtc->plane;
1995 	u32 reg, temp, tries;
1996 
1997 	/* FDI needs bits from pipe & plane first */
1998 	assert_pipe_enabled(dev_priv, pipe);
1999 	assert_plane_enabled(dev_priv, plane);
2000 
2001 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2002 	   for train result */
2003 	reg = FDI_RX_IMR(pipe);
2004 	temp = I915_READ(reg);
2005 	temp &= ~FDI_RX_SYMBOL_LOCK;
2006 	temp &= ~FDI_RX_BIT_LOCK;
2007 	I915_WRITE(reg, temp);
2008 	I915_READ(reg);
2009 	DELAY(150);
2010 
2011 	/* enable CPU FDI TX and PCH FDI RX */
2012 	reg = FDI_TX_CTL(pipe);
2013 	temp = I915_READ(reg);
2014 	temp &= ~(7 << 19);
2015 	temp |= (intel_crtc->fdi_lanes - 1) << 19;
2016 	temp &= ~FDI_LINK_TRAIN_NONE;
2017 	temp |= FDI_LINK_TRAIN_PATTERN_1;
2018 	I915_WRITE(reg, temp | FDI_TX_ENABLE);
2019 
2020 	reg = FDI_RX_CTL(pipe);
2021 	temp = I915_READ(reg);
2022 	temp &= ~FDI_LINK_TRAIN_NONE;
2023 	temp |= FDI_LINK_TRAIN_PATTERN_1;
2024 	I915_WRITE(reg, temp | FDI_RX_ENABLE);
2025 
2026 	POSTING_READ(reg);
2027 	DELAY(150);
2028 
2029 	/* Ironlake workaround, enable clock pointer after FDI enable*/
2030 	if (HAS_PCH_IBX(dev)) {
2031 		I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2032 		I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2033 			   FDI_RX_PHASE_SYNC_POINTER_EN);
2034 	}
2035 
2036 	reg = FDI_RX_IIR(pipe);
2037 	for (tries = 0; tries < 5; tries++) {
2038 		temp = I915_READ(reg);
2039 		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2040 
2041 		if ((temp & FDI_RX_BIT_LOCK)) {
2042 			DRM_DEBUG_KMS("FDI train 1 done.\n");
2043 			I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2044 			break;
2045 		}
2046 	}
2047 	if (tries == 5)
2048 		DRM_ERROR("FDI train 1 fail!\n");
2049 
2050 	/* Train 2 */
2051 	reg = FDI_TX_CTL(pipe);
2052 	temp = I915_READ(reg);
2053 	temp &= ~FDI_LINK_TRAIN_NONE;
2054 	temp |= FDI_LINK_TRAIN_PATTERN_2;
2055 	I915_WRITE(reg, temp);
2056 
2057 	reg = FDI_RX_CTL(pipe);
2058 	temp = I915_READ(reg);
2059 	temp &= ~FDI_LINK_TRAIN_NONE;
2060 	temp |= FDI_LINK_TRAIN_PATTERN_2;
2061 	I915_WRITE(reg, temp);
2062 
2063 	POSTING_READ(reg);
2064 	DELAY(150);
2065 
2066 	reg = FDI_RX_IIR(pipe);
2067 	for (tries = 0; tries < 5; tries++) {
2068 		temp = I915_READ(reg);
2069 		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2070 
2071 		if (temp & FDI_RX_SYMBOL_LOCK) {
2072 			I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2073 			DRM_DEBUG_KMS("FDI train 2 done.\n");
2074 			break;
2075 		}
2076 	}
2077 	if (tries == 5)
2078 		DRM_ERROR("FDI train 2 fail!\n");
2079 
2080 	DRM_DEBUG_KMS("FDI train done\n");
2081 
2082 }
2083 
2084 static const int snb_b_fdi_train_param[] = {
2085 	FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2086 	FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2087 	FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2088 	FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2089 };
2090 
2091 /* The FDI link training functions for SNB/Cougarpoint. */
2092 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2093 {
2094 	struct drm_device *dev = crtc->dev;
2095 	struct drm_i915_private *dev_priv = dev->dev_private;
2096 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2097 	int pipe = intel_crtc->pipe;
2098 	u32 reg, temp, i;
2099 
2100 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2101 	   for train result */
2102 	reg = FDI_RX_IMR(pipe);
2103 	temp = I915_READ(reg);
2104 	temp &= ~FDI_RX_SYMBOL_LOCK;
2105 	temp &= ~FDI_RX_BIT_LOCK;
2106 	I915_WRITE(reg, temp);
2107 
2108 	POSTING_READ(reg);
2109 	DELAY(150);
2110 
2111 	/* enable CPU FDI TX and PCH FDI RX */
2112 	reg = FDI_TX_CTL(pipe);
2113 	temp = I915_READ(reg);
2114 	temp &= ~(7 << 19);
2115 	temp |= (intel_crtc->fdi_lanes - 1) << 19;
2116 	temp &= ~FDI_LINK_TRAIN_NONE;
2117 	temp |= FDI_LINK_TRAIN_PATTERN_1;
2118 	temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2119 	/* SNB-B */
2120 	temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2121 	I915_WRITE(reg, temp | FDI_TX_ENABLE);
2122 
2123 	reg = FDI_RX_CTL(pipe);
2124 	temp = I915_READ(reg);
2125 	if (HAS_PCH_CPT(dev)) {
2126 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2127 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2128 	} else {
2129 		temp &= ~FDI_LINK_TRAIN_NONE;
2130 		temp |= FDI_LINK_TRAIN_PATTERN_1;
2131 	}
2132 	I915_WRITE(reg, temp | FDI_RX_ENABLE);
2133 
2134 	POSTING_READ(reg);
2135 	DELAY(150);
2136 
2137 	if (HAS_PCH_CPT(dev))
2138 		cpt_phase_pointer_enable(dev, pipe);
2139 
2140 	for (i = 0; i < 4; i++) {
2141 		reg = FDI_TX_CTL(pipe);
2142 		temp = I915_READ(reg);
2143 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2144 		temp |= snb_b_fdi_train_param[i];
2145 		I915_WRITE(reg, temp);
2146 
2147 		POSTING_READ(reg);
2148 		DELAY(500);
2149 
2150 		reg = FDI_RX_IIR(pipe);
2151 		temp = I915_READ(reg);
2152 		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2153 
2154 		if (temp & FDI_RX_BIT_LOCK) {
2155 			I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2156 			DRM_DEBUG_KMS("FDI train 1 done.\n");
2157 			break;
2158 		}
2159 	}
2160 	if (i == 4)
2161 		DRM_ERROR("FDI train 1 fail!\n");
2162 
2163 	/* Train 2 */
2164 	reg = FDI_TX_CTL(pipe);
2165 	temp = I915_READ(reg);
2166 	temp &= ~FDI_LINK_TRAIN_NONE;
2167 	temp |= FDI_LINK_TRAIN_PATTERN_2;
2168 	if (IS_GEN6(dev)) {
2169 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2170 		/* SNB-B */
2171 		temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2172 	}
2173 	I915_WRITE(reg, temp);
2174 
2175 	reg = FDI_RX_CTL(pipe);
2176 	temp = I915_READ(reg);
2177 	if (HAS_PCH_CPT(dev)) {
2178 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2179 		temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2180 	} else {
2181 		temp &= ~FDI_LINK_TRAIN_NONE;
2182 		temp |= FDI_LINK_TRAIN_PATTERN_2;
2183 	}
2184 	I915_WRITE(reg, temp);
2185 
2186 	POSTING_READ(reg);
2187 	DELAY(150);
2188 
2189 	for (i = 0; i < 4; i++) {
2190 		reg = FDI_TX_CTL(pipe);
2191 		temp = I915_READ(reg);
2192 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2193 		temp |= snb_b_fdi_train_param[i];
2194 		I915_WRITE(reg, temp);
2195 
2196 		POSTING_READ(reg);
2197 		DELAY(500);
2198 
2199 		reg = FDI_RX_IIR(pipe);
2200 		temp = I915_READ(reg);
2201 		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2202 
2203 		if (temp & FDI_RX_SYMBOL_LOCK) {
2204 			I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2205 			DRM_DEBUG_KMS("FDI train 2 done.\n");
2206 			break;
2207 		}
2208 	}
2209 	if (i == 4)
2210 		DRM_ERROR("FDI train 2 fail!\n");
2211 
2212 	DRM_DEBUG_KMS("FDI train done.\n");
2213 }
2214 
2215 /* Manual link training for Ivy Bridge A0 parts */
2216 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2217 {
2218 	struct drm_device *dev = crtc->dev;
2219 	struct drm_i915_private *dev_priv = dev->dev_private;
2220 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2221 	int pipe = intel_crtc->pipe;
2222 	u32 reg, temp, i;
2223 
2224 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2225 	   for train result */
2226 	reg = FDI_RX_IMR(pipe);
2227 	temp = I915_READ(reg);
2228 	temp &= ~FDI_RX_SYMBOL_LOCK;
2229 	temp &= ~FDI_RX_BIT_LOCK;
2230 	I915_WRITE(reg, temp);
2231 
2232 	POSTING_READ(reg);
2233 	DELAY(150);
2234 
2235 	/* enable CPU FDI TX and PCH FDI RX */
2236 	reg = FDI_TX_CTL(pipe);
2237 	temp = I915_READ(reg);
2238 	temp &= ~(7 << 19);
2239 	temp |= (intel_crtc->fdi_lanes - 1) << 19;
2240 	temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2241 	temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2242 	temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2243 	temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2244 	temp |= FDI_COMPOSITE_SYNC;
2245 	I915_WRITE(reg, temp | FDI_TX_ENABLE);
2246 
2247 	reg = FDI_RX_CTL(pipe);
2248 	temp = I915_READ(reg);
2249 	temp &= ~FDI_LINK_TRAIN_AUTO;
2250 	temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2251 	temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2252 	temp |= FDI_COMPOSITE_SYNC;
2253 	I915_WRITE(reg, temp | FDI_RX_ENABLE);
2254 
2255 	POSTING_READ(reg);
2256 	DELAY(150);
2257 
2258 	for (i = 0; i < 4; i++) {
2259 		reg = FDI_TX_CTL(pipe);
2260 		temp = I915_READ(reg);
2261 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2262 		temp |= snb_b_fdi_train_param[i];
2263 		I915_WRITE(reg, temp);
2264 
2265 		POSTING_READ(reg);
2266 		DELAY(500);
2267 
2268 		reg = FDI_RX_IIR(pipe);
2269 		temp = I915_READ(reg);
2270 		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2271 
2272 		if (temp & FDI_RX_BIT_LOCK ||
2273 		    (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2274 			I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2275 			DRM_DEBUG_KMS("FDI train 1 done.\n");
2276 			break;
2277 		}
2278 	}
2279 	if (i == 4)
2280 		DRM_ERROR("FDI train 1 fail!\n");
2281 
2282 	/* Train 2 */
2283 	reg = FDI_TX_CTL(pipe);
2284 	temp = I915_READ(reg);
2285 	temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2286 	temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2287 	temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2288 	temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2289 	I915_WRITE(reg, temp);
2290 
2291 	reg = FDI_RX_CTL(pipe);
2292 	temp = I915_READ(reg);
2293 	temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2294 	temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2295 	I915_WRITE(reg, temp);
2296 
2297 	POSTING_READ(reg);
2298 	DELAY(150);
2299 
2300 	for (i = 0; i < 4; i++ ) {
2301 		reg = FDI_TX_CTL(pipe);
2302 		temp = I915_READ(reg);
2303 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2304 		temp |= snb_b_fdi_train_param[i];
2305 		I915_WRITE(reg, temp);
2306 
2307 		POSTING_READ(reg);
2308 		DELAY(500);
2309 
2310 		reg = FDI_RX_IIR(pipe);
2311 		temp = I915_READ(reg);
2312 		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2313 
2314 		if (temp & FDI_RX_SYMBOL_LOCK) {
2315 			I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2316 			DRM_DEBUG_KMS("FDI train 2 done.\n");
2317 			break;
2318 		}
2319 	}
2320 	if (i == 4)
2321 		DRM_ERROR("FDI train 2 fail!\n");
2322 
2323 	DRM_DEBUG_KMS("FDI train done.\n");
2324 }
2325 
2326 static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2327 {
2328 	struct drm_device *dev = crtc->dev;
2329 	struct drm_i915_private *dev_priv = dev->dev_private;
2330 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2331 	int pipe = intel_crtc->pipe;
2332 	u32 reg, temp;
2333 
2334 	/* Write the TU size bits so error detection works */
2335 	I915_WRITE(FDI_RX_TUSIZE1(pipe),
2336 		   I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2337 
2338 	/* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2339 	reg = FDI_RX_CTL(pipe);
2340 	temp = I915_READ(reg);
2341 	temp &= ~((0x7 << 19) | (0x7 << 16));
2342 	temp |= (intel_crtc->fdi_lanes - 1) << 19;
2343 	temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2344 	I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2345 
2346 	POSTING_READ(reg);
2347 	DELAY(200);
2348 
2349 	/* Switch from Rawclk to PCDclk */
2350 	temp = I915_READ(reg);
2351 	I915_WRITE(reg, temp | FDI_PCDCLK);
2352 
2353 	POSTING_READ(reg);
2354 	DELAY(200);
2355 
2356 	/* Enable CPU FDI TX PLL, always on for Ironlake */
2357 	reg = FDI_TX_CTL(pipe);
2358 	temp = I915_READ(reg);
2359 	if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2360 		I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2361 
2362 		POSTING_READ(reg);
2363 		DELAY(100);
2364 	}
2365 }
2366 
2367 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2368 {
2369 	struct drm_i915_private *dev_priv = dev->dev_private;
2370 	u32 flags = I915_READ(SOUTH_CHICKEN1);
2371 
2372 	flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2373 	I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2374 	flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2375 	I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2376 	POSTING_READ(SOUTH_CHICKEN1);
2377 }
2378 
2379 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2380 {
2381 	struct drm_device *dev = crtc->dev;
2382 	struct drm_i915_private *dev_priv = dev->dev_private;
2383 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2384 	int pipe = intel_crtc->pipe;
2385 	u32 reg, temp;
2386 
2387 	/* disable CPU FDI tx and PCH FDI rx */
2388 	reg = FDI_TX_CTL(pipe);
2389 	temp = I915_READ(reg);
2390 	I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2391 	POSTING_READ(reg);
2392 
2393 	reg = FDI_RX_CTL(pipe);
2394 	temp = I915_READ(reg);
2395 	temp &= ~(0x7 << 16);
2396 	temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2397 	I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2398 
2399 	POSTING_READ(reg);
2400 	DELAY(100);
2401 
2402 	/* Ironlake workaround, disable clock pointer after downing FDI */
2403 	if (HAS_PCH_IBX(dev)) {
2404 		I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2405 		I915_WRITE(FDI_RX_CHICKEN(pipe),
2406 			   I915_READ(FDI_RX_CHICKEN(pipe) &
2407 				     ~FDI_RX_PHASE_SYNC_POINTER_EN));
2408 	} else if (HAS_PCH_CPT(dev)) {
2409 		cpt_phase_pointer_disable(dev, pipe);
2410 	}
2411 
2412 	/* still set train pattern 1 */
2413 	reg = FDI_TX_CTL(pipe);
2414 	temp = I915_READ(reg);
2415 	temp &= ~FDI_LINK_TRAIN_NONE;
2416 	temp |= FDI_LINK_TRAIN_PATTERN_1;
2417 	I915_WRITE(reg, temp);
2418 
2419 	reg = FDI_RX_CTL(pipe);
2420 	temp = I915_READ(reg);
2421 	if (HAS_PCH_CPT(dev)) {
2422 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2423 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2424 	} else {
2425 		temp &= ~FDI_LINK_TRAIN_NONE;
2426 		temp |= FDI_LINK_TRAIN_PATTERN_1;
2427 	}
2428 	/* BPC in FDI rx is consistent with that in PIPECONF */
2429 	temp &= ~(0x07 << 16);
2430 	temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2431 	I915_WRITE(reg, temp);
2432 
2433 	POSTING_READ(reg);
2434 	DELAY(100);
2435 }
2436 
2437 /*
2438  * When we disable a pipe, we need to clear any pending scanline wait events
2439  * to avoid hanging the ring, which we assume we are waiting on.
2440  */
2441 static void intel_clear_scanline_wait(struct drm_device *dev)
2442 {
2443 	struct drm_i915_private *dev_priv = dev->dev_private;
2444 	struct intel_ring_buffer *ring;
2445 	u32 tmp;
2446 
2447 	if (IS_GEN2(dev))
2448 		/* Can't break the hang on i8xx */
2449 		return;
2450 
2451 	ring = LP_RING(dev_priv);
2452 	tmp = I915_READ_CTL(ring);
2453 	if (tmp & RING_WAIT)
2454 		I915_WRITE_CTL(ring, tmp);
2455 }
2456 
2457 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2458 {
2459 	struct drm_i915_gem_object *obj;
2460 	struct drm_i915_private *dev_priv;
2461 	struct drm_device *dev;
2462 
2463 	if (crtc->fb == NULL)
2464 		return;
2465 
2466 	obj = to_intel_framebuffer(crtc->fb)->obj;
2467 	dev = crtc->dev;
2468 	dev_priv = dev->dev_private;
2469 	lockmgr(&dev->event_lock, LK_EXCLUSIVE);
2470 	while (atomic_read(&obj->pending_flip) != 0)
2471 		lksleep(&obj->pending_flip, &dev->event_lock, 0, "915wfl", 0);
2472 	lockmgr(&dev->event_lock, LK_RELEASE);
2473 }
2474 
2475 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2476 {
2477 	struct drm_device *dev = crtc->dev;
2478 	struct drm_mode_config *mode_config = &dev->mode_config;
2479 	struct intel_encoder *encoder;
2480 
2481 	/*
2482 	 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2483 	 * must be driven by its own crtc; no sharing is possible.
2484 	 */
2485 	list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2486 		if (encoder->base.crtc != crtc)
2487 			continue;
2488 
2489 		switch (encoder->type) {
2490 		case INTEL_OUTPUT_EDP:
2491 			if (!intel_encoder_is_pch_edp(&encoder->base))
2492 				return false;
2493 			continue;
2494 		}
2495 	}
2496 
2497 	return true;
2498 }
2499 
2500 /*
2501  * Enable PCH resources required for PCH ports:
2502  *   - PCH PLLs
2503  *   - FDI training & RX/TX
2504  *   - update transcoder timings
2505  *   - DP transcoding bits
2506  *   - transcoder
2507  */
2508 static void ironlake_pch_enable(struct drm_crtc *crtc)
2509 {
2510 	struct drm_device *dev = crtc->dev;
2511 	struct drm_i915_private *dev_priv = dev->dev_private;
2512 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2513 	int pipe = intel_crtc->pipe;
2514 	u32 reg, temp, transc_sel;
2515 
2516 	/* For PCH output, training FDI link */
2517 	dev_priv->display.fdi_link_train(crtc);
2518 
2519 	intel_enable_pch_pll(dev_priv, pipe);
2520 
2521 	if (HAS_PCH_CPT(dev)) {
2522 		transc_sel = intel_crtc->use_pll_a ? TRANSC_DPLLA_SEL :
2523 			TRANSC_DPLLB_SEL;
2524 
2525 		/* Be sure PCH DPLL SEL is set */
2526 		temp = I915_READ(PCH_DPLL_SEL);
2527 		if (pipe == 0) {
2528 			temp &= ~(TRANSA_DPLLB_SEL);
2529 			temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2530 		} else if (pipe == 1) {
2531 			temp &= ~(TRANSB_DPLLB_SEL);
2532 			temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2533 		} else if (pipe == 2) {
2534 			temp &= ~(TRANSC_DPLLB_SEL);
2535 			temp |= (TRANSC_DPLL_ENABLE | transc_sel);
2536 		}
2537 		I915_WRITE(PCH_DPLL_SEL, temp);
2538 	}
2539 
2540 	/* set transcoder timing, panel must allow it */
2541 	assert_panel_unlocked(dev_priv, pipe);
2542 	I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2543 	I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2544 	I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
2545 
2546 	I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2547 	I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2548 	I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
2549 	I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
2550 
2551 	intel_fdi_normal_train(crtc);
2552 
2553 	/* For PCH DP, enable TRANS_DP_CTL */
2554 	if (HAS_PCH_CPT(dev) &&
2555 	    (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
2556 	     intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2557 		u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
2558 		reg = TRANS_DP_CTL(pipe);
2559 		temp = I915_READ(reg);
2560 		temp &= ~(TRANS_DP_PORT_SEL_MASK |
2561 			  TRANS_DP_SYNC_MASK |
2562 			  TRANS_DP_BPC_MASK);
2563 		temp |= (TRANS_DP_OUTPUT_ENABLE |
2564 			 TRANS_DP_ENH_FRAMING);
2565 		temp |= bpc << 9; /* same format but at 11:9 */
2566 
2567 		if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2568 			temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2569 		if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2570 			temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2571 
2572 		switch (intel_trans_dp_port_sel(crtc)) {
2573 		case PCH_DP_B:
2574 			temp |= TRANS_DP_PORT_SEL_B;
2575 			break;
2576 		case PCH_DP_C:
2577 			temp |= TRANS_DP_PORT_SEL_C;
2578 			break;
2579 		case PCH_DP_D:
2580 			temp |= TRANS_DP_PORT_SEL_D;
2581 			break;
2582 		default:
2583 			DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2584 			temp |= TRANS_DP_PORT_SEL_B;
2585 			break;
2586 		}
2587 
2588 		I915_WRITE(reg, temp);
2589 	}
2590 
2591 	intel_enable_transcoder(dev_priv, pipe);
2592 }
2593 
2594 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
2595 {
2596 	struct drm_i915_private *dev_priv = dev->dev_private;
2597 	int dslreg = PIPEDSL(pipe);
2598 	u32 temp;
2599 
2600 	temp = I915_READ(dslreg);
2601 	udelay(500);
2602 	if (wait_for(I915_READ(dslreg) != temp, 5)) {
2603 		if (wait_for(I915_READ(dslreg) != temp, 5))
2604 			DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
2605 	}
2606 }
2607 
2608 static void ironlake_crtc_enable(struct drm_crtc *crtc)
2609 {
2610 	struct drm_device *dev = crtc->dev;
2611 	struct drm_i915_private *dev_priv = dev->dev_private;
2612 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2613 	int pipe = intel_crtc->pipe;
2614 	int plane = intel_crtc->plane;
2615 	u32 temp;
2616 	bool is_pch_port;
2617 
2618 	if (intel_crtc->active)
2619 		return;
2620 
2621 	intel_crtc->active = true;
2622 	intel_update_watermarks(dev);
2623 
2624 	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2625 		temp = I915_READ(PCH_LVDS);
2626 		if ((temp & LVDS_PORT_EN) == 0)
2627 			I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
2628 	}
2629 
2630 	is_pch_port = intel_crtc_driving_pch(crtc);
2631 
2632 	if (is_pch_port)
2633 		ironlake_fdi_pll_enable(crtc);
2634 	else
2635 		ironlake_fdi_disable(crtc);
2636 
2637 	/* Enable panel fitting for LVDS */
2638 	if (dev_priv->pch_pf_size &&
2639 	    (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
2640 		/* Force use of hard-coded filter coefficients
2641 		 * as some pre-programmed values are broken,
2642 		 * e.g. x201.
2643 		 */
2644 		I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
2645 		I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
2646 		I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
2647 	}
2648 
2649 	intel_enable_pipe(dev_priv, pipe, is_pch_port);
2650 	intel_enable_plane(dev_priv, plane, pipe);
2651 
2652 	if (is_pch_port)
2653 		ironlake_pch_enable(crtc);
2654 
2655 	intel_crtc_load_lut(crtc);
2656 
2657 	DRM_LOCK(dev);
2658 	intel_update_fbc(dev);
2659 	DRM_UNLOCK(dev);
2660 
2661 	intel_crtc_update_cursor(crtc, true);
2662 }
2663 
2664 static void ironlake_crtc_disable(struct drm_crtc *crtc)
2665 {
2666 	struct drm_device *dev = crtc->dev;
2667 	struct drm_i915_private *dev_priv = dev->dev_private;
2668 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2669 	int pipe = intel_crtc->pipe;
2670 	int plane = intel_crtc->plane;
2671 	u32 reg, temp;
2672 
2673 	if (!intel_crtc->active)
2674 		return;
2675 
2676 	intel_crtc_wait_for_pending_flips(crtc);
2677 	drm_vblank_off(dev, pipe);
2678 	intel_crtc_update_cursor(crtc, false);
2679 
2680 	intel_disable_plane(dev_priv, plane, pipe);
2681 
2682 	if (dev_priv->cfb_plane == plane)
2683 		intel_disable_fbc(dev);
2684 
2685 	intel_disable_pipe(dev_priv, pipe);
2686 
2687 	/* Disable PF */
2688 	I915_WRITE(PF_CTL(pipe), 0);
2689 	I915_WRITE(PF_WIN_SZ(pipe), 0);
2690 
2691 	ironlake_fdi_disable(crtc);
2692 
2693 	/* This is a horrible layering violation; we should be doing this in
2694 	 * the connector/encoder ->prepare instead, but we don't always have
2695 	 * enough information there about the config to know whether it will
2696 	 * actually be necessary or just cause undesired flicker.
2697 	 */
2698 	intel_disable_pch_ports(dev_priv, pipe);
2699 
2700 	intel_disable_transcoder(dev_priv, pipe);
2701 
2702 	if (HAS_PCH_CPT(dev)) {
2703 		/* disable TRANS_DP_CTL */
2704 		reg = TRANS_DP_CTL(pipe);
2705 		temp = I915_READ(reg);
2706 		temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2707 		temp |= TRANS_DP_PORT_SEL_NONE;
2708 		I915_WRITE(reg, temp);
2709 
2710 		/* disable DPLL_SEL */
2711 		temp = I915_READ(PCH_DPLL_SEL);
2712 		switch (pipe) {
2713 		case 0:
2714 			temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
2715 			break;
2716 		case 1:
2717 			temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2718 			break;
2719 		case 2:
2720 			/* C shares PLL A or B */
2721 			temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
2722 			break;
2723 		default:
2724 			KASSERT(1, ("Wrong pipe %d", pipe)); /* wtf */
2725 		}
2726 		I915_WRITE(PCH_DPLL_SEL, temp);
2727 	}
2728 
2729 	/* disable PCH DPLL */
2730 	if (!intel_crtc->no_pll)
2731 		intel_disable_pch_pll(dev_priv, pipe);
2732 
2733 	/* Switch from PCDclk to Rawclk */
2734 	reg = FDI_RX_CTL(pipe);
2735 	temp = I915_READ(reg);
2736 	I915_WRITE(reg, temp & ~FDI_PCDCLK);
2737 
2738 	/* Disable CPU FDI TX PLL */
2739 	reg = FDI_TX_CTL(pipe);
2740 	temp = I915_READ(reg);
2741 	I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2742 
2743 	POSTING_READ(reg);
2744 	DELAY(100);
2745 
2746 	reg = FDI_RX_CTL(pipe);
2747 	temp = I915_READ(reg);
2748 	I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2749 
2750 	/* Wait for the clocks to turn off. */
2751 	POSTING_READ(reg);
2752 	DELAY(100);
2753 
2754 	intel_crtc->active = false;
2755 	intel_update_watermarks(dev);
2756 
2757 	DRM_LOCK(dev);
2758 	intel_update_fbc(dev);
2759 	intel_clear_scanline_wait(dev);
2760 	DRM_UNLOCK(dev);
2761 }
2762 
2763 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
2764 {
2765 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2766 	int pipe = intel_crtc->pipe;
2767 	int plane = intel_crtc->plane;
2768 
2769 	/* XXX: When our outputs are all unaware of DPMS modes other than off
2770 	 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2771 	 */
2772 	switch (mode) {
2773 	case DRM_MODE_DPMS_ON:
2774 	case DRM_MODE_DPMS_STANDBY:
2775 	case DRM_MODE_DPMS_SUSPEND:
2776 		DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
2777 		ironlake_crtc_enable(crtc);
2778 		break;
2779 
2780 	case DRM_MODE_DPMS_OFF:
2781 		DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
2782 		ironlake_crtc_disable(crtc);
2783 		break;
2784 	}
2785 }
2786 
2787 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2788 {
2789 	if (!enable && intel_crtc->overlay) {
2790 		struct drm_device *dev = intel_crtc->base.dev;
2791 		struct drm_i915_private *dev_priv = dev->dev_private;
2792 
2793 		DRM_LOCK(dev);
2794 		dev_priv->mm.interruptible = false;
2795 		(void) intel_overlay_switch_off(intel_crtc->overlay);
2796 		dev_priv->mm.interruptible = true;
2797 		DRM_UNLOCK(dev);
2798 	}
2799 
2800 	/* Let userspace switch the overlay on again. In most cases userspace
2801 	 * has to recompute where to put it anyway.
2802 	 */
2803 }
2804 
2805 static void i9xx_crtc_enable(struct drm_crtc *crtc)
2806 {
2807 	struct drm_device *dev = crtc->dev;
2808 	struct drm_i915_private *dev_priv = dev->dev_private;
2809 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2810 	int pipe = intel_crtc->pipe;
2811 	int plane = intel_crtc->plane;
2812 
2813 	if (intel_crtc->active)
2814 		return;
2815 
2816 	intel_crtc->active = true;
2817 	intel_update_watermarks(dev);
2818 
2819 	intel_enable_pll(dev_priv, pipe);
2820 	intel_enable_pipe(dev_priv, pipe, false);
2821 	intel_enable_plane(dev_priv, plane, pipe);
2822 
2823 	intel_crtc_load_lut(crtc);
2824 	intel_update_fbc(dev);
2825 
2826 	/* Give the overlay scaler a chance to enable if it's on this pipe */
2827 	intel_crtc_dpms_overlay(intel_crtc, true);
2828 	intel_crtc_update_cursor(crtc, true);
2829 }
2830 
2831 static void i9xx_crtc_disable(struct drm_crtc *crtc)
2832 {
2833 	struct drm_device *dev = crtc->dev;
2834 	struct drm_i915_private *dev_priv = dev->dev_private;
2835 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2836 	int pipe = intel_crtc->pipe;
2837 	int plane = intel_crtc->plane;
2838 
2839 	if (!intel_crtc->active)
2840 		return;
2841 
2842 	/* Give the overlay scaler a chance to disable if it's on this pipe */
2843 	intel_crtc_wait_for_pending_flips(crtc);
2844 	drm_vblank_off(dev, pipe);
2845 	intel_crtc_dpms_overlay(intel_crtc, false);
2846 	intel_crtc_update_cursor(crtc, false);
2847 
2848 	if (dev_priv->cfb_plane == plane)
2849 		intel_disable_fbc(dev);
2850 
2851 	intel_disable_plane(dev_priv, plane, pipe);
2852 	intel_disable_pipe(dev_priv, pipe);
2853 	intel_disable_pll(dev_priv, pipe);
2854 
2855 	intel_crtc->active = false;
2856 	intel_update_fbc(dev);
2857 	intel_update_watermarks(dev);
2858 	intel_clear_scanline_wait(dev);
2859 }
2860 
2861 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
2862 {
2863 	/* XXX: When our outputs are all unaware of DPMS modes other than off
2864 	 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2865 	 */
2866 	switch (mode) {
2867 	case DRM_MODE_DPMS_ON:
2868 	case DRM_MODE_DPMS_STANDBY:
2869 	case DRM_MODE_DPMS_SUSPEND:
2870 		i9xx_crtc_enable(crtc);
2871 		break;
2872 	case DRM_MODE_DPMS_OFF:
2873 		i9xx_crtc_disable(crtc);
2874 		break;
2875 	}
2876 }
2877 
2878 /**
2879  * Sets the power management mode of the pipe and plane.
2880  */
2881 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2882 {
2883 	struct drm_device *dev = crtc->dev;
2884 	struct drm_i915_private *dev_priv = dev->dev_private;
2885 #if 0
2886 	struct drm_i915_master_private *master_priv;
2887 #endif
2888 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2889 	int pipe = intel_crtc->pipe;
2890 	bool enabled;
2891 
2892 	if (intel_crtc->dpms_mode == mode)
2893 		return;
2894 
2895 	intel_crtc->dpms_mode = mode;
2896 
2897 	dev_priv->display.dpms(crtc, mode);
2898 
2899 #if 0
2900 	if (!dev->primary->master)
2901 		return;
2902 
2903 	master_priv = dev->primary->master->driver_priv;
2904 	if (!master_priv->sarea_priv)
2905 		return;
2906 #else
2907 	if (!dev_priv->sarea_priv)
2908 		return;
2909 #endif
2910 
2911 	enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2912 
2913 	switch (pipe) {
2914 	case 0:
2915 #if 0
2916 		master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2917 		master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2918 #else
2919 		dev_priv->sarea_priv->planeA_w = enabled ? crtc->mode.hdisplay : 0;
2920 		dev_priv->sarea_priv->planeA_h = enabled ? crtc->mode.vdisplay : 0;
2921 #endif
2922 		break;
2923 	case 1:
2924 #if 0
2925 		master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2926 		master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2927 #else
2928 		dev_priv->sarea_priv->planeB_w = enabled ? crtc->mode.hdisplay : 0;
2929 		dev_priv->sarea_priv->planeB_h = enabled ? crtc->mode.vdisplay : 0;
2930 #endif
2931 		break;
2932 	default:
2933 		DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
2934 		break;
2935 	}
2936 }
2937 
2938 static void intel_crtc_disable(struct drm_crtc *crtc)
2939 {
2940 	struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2941 	struct drm_device *dev = crtc->dev;
2942 
2943 	/* Flush any pending WAITs before we disable the pipe. Note that
2944 	 * we need to drop the struct_mutex in order to acquire it again
2945 	 * during the lowlevel dpms routines around a couple of the
2946 	 * operations. It does not look trivial nor desirable to move
2947 	 * that locking higher. So instead we leave a window for the
2948 	 * submission of further commands on the fb before we can actually
2949 	 * disable it. This race with userspace exists anyway, and we can
2950 	 * only rely on the pipe being disabled by userspace after it
2951 	 * receives the hotplug notification and has flushed any pending
2952 	 * batches.
2953 	 */
2954 	if (crtc->fb) {
2955 		DRM_LOCK(dev);
2956 		intel_finish_fb(crtc->fb);
2957 		DRM_UNLOCK(dev);
2958 	}
2959 
2960 	crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2961  	assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
2962 	assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
2963 
2964 	if (crtc->fb) {
2965 		DRM_LOCK(dev);
2966 		intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
2967 		DRM_UNLOCK(dev);
2968 	}
2969 }
2970 
2971 /* Prepare for a mode set.
2972  *
2973  * Note we could be a lot smarter here.  We need to figure out which outputs
2974  * will be enabled, which disabled (in short, how the config will changes)
2975  * and perform the minimum necessary steps to accomplish that, e.g. updating
2976  * watermarks, FBC configuration, making sure PLLs are programmed correctly,
2977  * panel fitting is in the proper state, etc.
2978  */
2979 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
2980 {
2981 	i9xx_crtc_disable(crtc);
2982 }
2983 
2984 static void i9xx_crtc_commit(struct drm_crtc *crtc)
2985 {
2986 	i9xx_crtc_enable(crtc);
2987 }
2988 
2989 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
2990 {
2991 	ironlake_crtc_disable(crtc);
2992 }
2993 
2994 static void ironlake_crtc_commit(struct drm_crtc *crtc)
2995 {
2996 	ironlake_crtc_enable(crtc);
2997 }
2998 
2999 void intel_encoder_prepare(struct drm_encoder *encoder)
3000 {
3001 	struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3002 	/* lvds has its own version of prepare see intel_lvds_prepare */
3003 	encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3004 }
3005 
3006 void intel_encoder_commit(struct drm_encoder *encoder)
3007 {
3008 	struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3009 	struct drm_device *dev = encoder->dev;
3010 	struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3011 	struct intel_crtc *intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
3012 
3013 	/* lvds has its own version of commit see intel_lvds_commit */
3014 	encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3015 
3016 	if (HAS_PCH_CPT(dev))
3017 		intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3018 }
3019 
3020 void intel_encoder_destroy(struct drm_encoder *encoder)
3021 {
3022 	struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3023 
3024 	drm_encoder_cleanup(encoder);
3025 	drm_free(intel_encoder, DRM_MEM_KMS);
3026 }
3027 
3028 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3029 				  const struct drm_display_mode *mode,
3030 				  struct drm_display_mode *adjusted_mode)
3031 {
3032 	struct drm_device *dev = crtc->dev;
3033 
3034 	if (HAS_PCH_SPLIT(dev)) {
3035 		/* FDI link clock is fixed at 2.7G */
3036 		if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3037 			return false;
3038 	}
3039 
3040 	/* All interlaced capable intel hw wants timings in frames. Note though
3041 	 * that intel_lvds_mode_fixup does some funny tricks with the crtc
3042 	 * timings, so we need to be careful not to clobber these.*/
3043 	if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3044 		drm_mode_set_crtcinfo(adjusted_mode, 0);
3045 
3046 	return true;
3047 }
3048 
3049 static int i945_get_display_clock_speed(struct drm_device *dev)
3050 {
3051 	return 400000;
3052 }
3053 
3054 static int i915_get_display_clock_speed(struct drm_device *dev)
3055 {
3056 	return 333000;
3057 }
3058 
3059 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3060 {
3061 	return 200000;
3062 }
3063 
3064 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3065 {
3066 	u16 gcfgc = 0;
3067 
3068 	gcfgc = pci_read_config(dev->dev, GCFGC, 2);
3069 
3070 	if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3071 		return 133000;
3072 	else {
3073 		switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3074 		case GC_DISPLAY_CLOCK_333_MHZ:
3075 			return 333000;
3076 		default:
3077 		case GC_DISPLAY_CLOCK_190_200_MHZ:
3078 			return 190000;
3079 		}
3080 	}
3081 }
3082 
3083 static int i865_get_display_clock_speed(struct drm_device *dev)
3084 {
3085 	return 266000;
3086 }
3087 
3088 static int i855_get_display_clock_speed(struct drm_device *dev)
3089 {
3090 	u16 hpllcc = 0;
3091 	/* Assume that the hardware is in the high speed state.  This
3092 	 * should be the default.
3093 	 */
3094 	switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3095 	case GC_CLOCK_133_200:
3096 	case GC_CLOCK_100_200:
3097 		return 200000;
3098 	case GC_CLOCK_166_250:
3099 		return 250000;
3100 	case GC_CLOCK_100_133:
3101 		return 133000;
3102 	}
3103 
3104 	/* Shouldn't happen */
3105 	return 0;
3106 }
3107 
3108 static int i830_get_display_clock_speed(struct drm_device *dev)
3109 {
3110 	return 133000;
3111 }
3112 
3113 struct fdi_m_n {
3114 	u32        tu;
3115 	u32        gmch_m;
3116 	u32        gmch_n;
3117 	u32        link_m;
3118 	u32        link_n;
3119 };
3120 
3121 static void
3122 fdi_reduce_ratio(u32 *num, u32 *den)
3123 {
3124 	while (*num > 0xffffff || *den > 0xffffff) {
3125 		*num >>= 1;
3126 		*den >>= 1;
3127 	}
3128 }
3129 
3130 static void
3131 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3132 		     int link_clock, struct fdi_m_n *m_n)
3133 {
3134 	m_n->tu = 64; /* default size */
3135 
3136 	/* BUG_ON(pixel_clock > INT_MAX / 36); */
3137 	m_n->gmch_m = bits_per_pixel * pixel_clock;
3138 	m_n->gmch_n = link_clock * nlanes * 8;
3139 	fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3140 
3141 	m_n->link_m = pixel_clock;
3142 	m_n->link_n = link_clock;
3143 	fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3144 }
3145 
3146 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
3147 {
3148 	if (i915_panel_use_ssc >= 0)
3149 		return i915_panel_use_ssc != 0;
3150 	return dev_priv->lvds_use_ssc
3151 		&& !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
3152 }
3153 
3154 /**
3155  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
3156  * @crtc: CRTC structure
3157  * @mode: requested mode
3158  *
3159  * A pipe may be connected to one or more outputs.  Based on the depth of the
3160  * attached framebuffer, choose a good color depth to use on the pipe.
3161  *
3162  * If possible, match the pipe depth to the fb depth.  In some cases, this
3163  * isn't ideal, because the connected output supports a lesser or restricted
3164  * set of depths.  Resolve that here:
3165  *    LVDS typically supports only 6bpc, so clamp down in that case
3166  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
3167  *    Displays may support a restricted set as well, check EDID and clamp as
3168  *      appropriate.
3169  *    DP may want to dither down to 6bpc to fit larger modes
3170  *
3171  * RETURNS:
3172  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
3173  * true if they don't match).
3174  */
3175 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
3176 					 unsigned int *pipe_bpp,
3177 					 struct drm_display_mode *mode)
3178 {
3179 	struct drm_device *dev = crtc->dev;
3180 	struct drm_i915_private *dev_priv = dev->dev_private;
3181 	struct drm_encoder *encoder;
3182 	struct drm_connector *connector;
3183 	unsigned int display_bpc = UINT_MAX, bpc;
3184 
3185 	/* Walk the encoders & connectors on this crtc, get min bpc */
3186 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
3187 		struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3188 
3189 		if (encoder->crtc != crtc)
3190 			continue;
3191 
3192 		if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
3193 			unsigned int lvds_bpc;
3194 
3195 			if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
3196 			    LVDS_A3_POWER_UP)
3197 				lvds_bpc = 8;
3198 			else
3199 				lvds_bpc = 6;
3200 
3201 			if (lvds_bpc < display_bpc) {
3202 				DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
3203 				display_bpc = lvds_bpc;
3204 			}
3205 			continue;
3206 		}
3207 
3208 		if (intel_encoder->type == INTEL_OUTPUT_EDP) {
3209 			/* Use VBT settings if we have an eDP panel */
3210 			unsigned int edp_bpc = dev_priv->edp.bpp / 3;
3211 
3212 			if (edp_bpc < display_bpc) {
3213 				DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
3214 				display_bpc = edp_bpc;
3215 			}
3216 			continue;
3217 		}
3218 
3219 		/* Not one of the known troublemakers, check the EDID */
3220 		list_for_each_entry(connector, &dev->mode_config.connector_list,
3221 				    head) {
3222 			if (connector->encoder != encoder)
3223 				continue;
3224 
3225 			/* Don't use an invalid EDID bpc value */
3226 			if (connector->display_info.bpc &&
3227 			    connector->display_info.bpc < display_bpc) {
3228 				DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
3229 				display_bpc = connector->display_info.bpc;
3230 			}
3231 		}
3232 
3233 		/*
3234 		 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
3235 		 * through, clamp it down.  (Note: >12bpc will be caught below.)
3236 		 */
3237 		if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
3238 			if (display_bpc > 8 && display_bpc < 12) {
3239 				DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
3240 				display_bpc = 12;
3241 			} else {
3242 				DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
3243 				display_bpc = 8;
3244 			}
3245 		}
3246 	}
3247 
3248 	if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
3249 		DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
3250 		display_bpc = 6;
3251 	}
3252 
3253 	/*
3254 	 * We could just drive the pipe at the highest bpc all the time and
3255 	 * enable dithering as needed, but that costs bandwidth.  So choose
3256 	 * the minimum value that expresses the full color range of the fb but
3257 	 * also stays within the max display bpc discovered above.
3258 	 */
3259 
3260 	switch (crtc->fb->depth) {
3261 	case 8:
3262 		bpc = 8; /* since we go through a colormap */
3263 		break;
3264 	case 15:
3265 	case 16:
3266 		bpc = 6; /* min is 18bpp */
3267 		break;
3268 	case 24:
3269 		bpc = 8;
3270 		break;
3271 	case 30:
3272 		bpc = 10;
3273 		break;
3274 	case 48:
3275 		bpc = 12;
3276 		break;
3277 	default:
3278 		DRM_DEBUG("unsupported depth, assuming 24 bits\n");
3279 		bpc = min((unsigned int)8, display_bpc);
3280 		break;
3281 	}
3282 
3283 	display_bpc = min(display_bpc, bpc);
3284 
3285 	DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
3286 			 bpc, display_bpc);
3287 
3288 	*pipe_bpp = display_bpc * 3;
3289 
3290 	return display_bpc != bpc;
3291 }
3292 
3293 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
3294 {
3295 	struct drm_device *dev = crtc->dev;
3296 	struct drm_i915_private *dev_priv = dev->dev_private;
3297 	int refclk;
3298 
3299 	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3300 	    intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
3301 		refclk = dev_priv->lvds_ssc_freq * 1000;
3302 		DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3303 			      refclk / 1000);
3304 	} else if (!IS_GEN2(dev)) {
3305 		refclk = 96000;
3306 	} else {
3307 		refclk = 48000;
3308 	}
3309 
3310 	return refclk;
3311 }
3312 
3313 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
3314 				      intel_clock_t *clock)
3315 {
3316 	/* SDVO TV has fixed PLL values depend on its clock range,
3317 	   this mirrors vbios setting. */
3318 	if (adjusted_mode->clock >= 100000
3319 	    && adjusted_mode->clock < 140500) {
3320 		clock->p1 = 2;
3321 		clock->p2 = 10;
3322 		clock->n = 3;
3323 		clock->m1 = 16;
3324 		clock->m2 = 8;
3325 	} else if (adjusted_mode->clock >= 140500
3326 		   && adjusted_mode->clock <= 200000) {
3327 		clock->p1 = 1;
3328 		clock->p2 = 10;
3329 		clock->n = 6;
3330 		clock->m1 = 12;
3331 		clock->m2 = 8;
3332 	}
3333 }
3334 
3335 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
3336 				     intel_clock_t *clock,
3337 				     intel_clock_t *reduced_clock)
3338 {
3339 	struct drm_device *dev = crtc->dev;
3340 	struct drm_i915_private *dev_priv = dev->dev_private;
3341 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3342 	int pipe = intel_crtc->pipe;
3343 	u32 fp, fp2 = 0;
3344 
3345 	if (IS_PINEVIEW(dev)) {
3346 		fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
3347 		if (reduced_clock)
3348 			fp2 = (1 << reduced_clock->n) << 16 |
3349 				reduced_clock->m1 << 8 | reduced_clock->m2;
3350 	} else {
3351 		fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
3352 		if (reduced_clock)
3353 			fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
3354 				reduced_clock->m2;
3355 	}
3356 
3357 	I915_WRITE(FP0(pipe), fp);
3358 
3359 	intel_crtc->lowfreq_avail = false;
3360 	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3361 	    reduced_clock && i915_powersave) {
3362 		I915_WRITE(FP1(pipe), fp2);
3363 		intel_crtc->lowfreq_avail = true;
3364 	} else {
3365 		I915_WRITE(FP1(pipe), fp);
3366 	}
3367 }
3368 
3369 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
3370 			      struct drm_display_mode *mode,
3371 			      struct drm_display_mode *adjusted_mode,
3372 			      int x, int y,
3373 			      struct drm_framebuffer *old_fb)
3374 {
3375 	struct drm_device *dev = crtc->dev;
3376 	struct drm_i915_private *dev_priv = dev->dev_private;
3377 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3378 	int pipe = intel_crtc->pipe;
3379 	int plane = intel_crtc->plane;
3380 	int refclk, num_connectors = 0;
3381 	intel_clock_t clock, reduced_clock;
3382 	u32 dpll, dspcntr, pipeconf, vsyncshift;
3383 	bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
3384 	bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
3385 	struct drm_mode_config *mode_config = &dev->mode_config;
3386 	struct intel_encoder *encoder;
3387 	const intel_limit_t *limit;
3388 	int ret;
3389 	u32 temp;
3390 	u32 lvds_sync = 0;
3391 
3392 	list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
3393 		if (encoder->base.crtc != crtc)
3394 			continue;
3395 
3396 		switch (encoder->type) {
3397 		case INTEL_OUTPUT_LVDS:
3398 			is_lvds = true;
3399 			break;
3400 		case INTEL_OUTPUT_SDVO:
3401 		case INTEL_OUTPUT_HDMI:
3402 			is_sdvo = true;
3403 			if (encoder->needs_tv_clock)
3404 				is_tv = true;
3405 			break;
3406 		case INTEL_OUTPUT_DVO:
3407 			is_dvo = true;
3408 			break;
3409 		case INTEL_OUTPUT_TVOUT:
3410 			is_tv = true;
3411 			break;
3412 		case INTEL_OUTPUT_ANALOG:
3413 			is_crt = true;
3414 			break;
3415 		case INTEL_OUTPUT_DISPLAYPORT:
3416 			is_dp = true;
3417 			break;
3418 		}
3419 
3420 		num_connectors++;
3421 	}
3422 
3423 	refclk = i9xx_get_refclk(crtc, num_connectors);
3424 
3425 	/*
3426 	 * Returns a set of divisors for the desired target clock with the given
3427 	 * refclk, or false.  The returned values represent the clock equation:
3428 	 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
3429 	 */
3430 	limit = intel_limit(crtc, refclk);
3431 	ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
3432 			     &clock);
3433 	if (!ok) {
3434 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
3435 		return -EINVAL;
3436 	}
3437 
3438 	/* Ensure that the cursor is valid for the new mode before changing... */
3439 	intel_crtc_update_cursor(crtc, true);
3440 
3441 	if (is_lvds && dev_priv->lvds_downclock_avail) {
3442 		/*
3443 		 * Ensure we match the reduced clock's P to the target clock.
3444 		 * If the clocks don't match, we can't switch the display clock
3445 		 * by using the FP0/FP1. In such case we will disable the LVDS
3446 		 * downclock feature.
3447 		*/
3448 		has_reduced_clock = limit->find_pll(limit, crtc,
3449 						    dev_priv->lvds_downclock,
3450 						    refclk,
3451 						    &clock,
3452 						    &reduced_clock);
3453 	}
3454 
3455 	if (is_sdvo && is_tv)
3456 		i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
3457 
3458 	i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
3459 				 &reduced_clock : NULL);
3460 
3461 	dpll = DPLL_VGA_MODE_DIS;
3462 
3463 	if (!IS_GEN2(dev)) {
3464 		if (is_lvds)
3465 			dpll |= DPLLB_MODE_LVDS;
3466 		else
3467 			dpll |= DPLLB_MODE_DAC_SERIAL;
3468 		if (is_sdvo) {
3469 			int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
3470 			if (pixel_multiplier > 1) {
3471 				if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3472 					dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
3473 			}
3474 			dpll |= DPLL_DVO_HIGH_SPEED;
3475 		}
3476 		if (is_dp)
3477 			dpll |= DPLL_DVO_HIGH_SPEED;
3478 
3479 		/* compute bitmask from p1 value */
3480 		if (IS_PINEVIEW(dev))
3481 			dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
3482 		else {
3483 			dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3484 			if (IS_G4X(dev) && has_reduced_clock)
3485 				dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3486 		}
3487 		switch (clock.p2) {
3488 		case 5:
3489 			dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
3490 			break;
3491 		case 7:
3492 			dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
3493 			break;
3494 		case 10:
3495 			dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
3496 			break;
3497 		case 14:
3498 			dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
3499 			break;
3500 		}
3501 		if (INTEL_INFO(dev)->gen >= 4)
3502 			dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
3503 	} else {
3504 		if (is_lvds) {
3505 			dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3506 		} else {
3507 			if (clock.p1 == 2)
3508 				dpll |= PLL_P1_DIVIDE_BY_TWO;
3509 			else
3510 				dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3511 			if (clock.p2 == 4)
3512 				dpll |= PLL_P2_DIVIDE_BY_4;
3513 		}
3514 	}
3515 
3516 	if (is_sdvo && is_tv)
3517 		dpll |= PLL_REF_INPUT_TVCLKINBC;
3518 	else if (is_tv)
3519 		/* XXX: just matching BIOS for now */
3520 		/*	dpll |= PLL_REF_INPUT_TVCLKINBC; */
3521 		dpll |= 3;
3522 	else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
3523 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3524 	else
3525 		dpll |= PLL_REF_INPUT_DREFCLK;
3526 
3527 	/* setup pipeconf */
3528 	pipeconf = I915_READ(PIPECONF(pipe));
3529 
3530 	/* Set up the display plane register */
3531 	dspcntr = DISPPLANE_GAMMA_ENABLE;
3532 
3533 	if (pipe == 0)
3534 		dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
3535 	else
3536 		dspcntr |= DISPPLANE_SEL_PIPE_B;
3537 
3538 	if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
3539 		/* Enable pixel doubling when the dot clock is > 90% of the (display)
3540 		 * core speed.
3541 		 *
3542 		 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3543 		 * pipe == 0 check?
3544 		 */
3545 		if (mode->clock >
3546 		    dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
3547 			pipeconf |= PIPECONF_DOUBLE_WIDE;
3548 		else
3549 			pipeconf &= ~PIPECONF_DOUBLE_WIDE;
3550 	}
3551 
3552 	/* default to 8bpc */
3553 	pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
3554 	if (is_dp) {
3555 		if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
3556 			pipeconf |= PIPECONF_BPP_6 |
3557 				    PIPECONF_DITHER_EN |
3558 				    PIPECONF_DITHER_TYPE_SP;
3559 		}
3560 	}
3561 
3562 	dpll |= DPLL_VCO_ENABLE;
3563 
3564 	DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
3565 	drm_mode_debug_printmodeline(mode);
3566 
3567 	I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
3568 
3569 	POSTING_READ(DPLL(pipe));
3570 	DELAY(150);
3571 
3572 	/* The LVDS pin pair needs to be on before the DPLLs are enabled.
3573 	 * This is an exception to the general rule that mode_set doesn't turn
3574 	 * things on.
3575 	 */
3576 	if (is_lvds) {
3577 		temp = I915_READ(LVDS);
3578 		temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
3579 		if (pipe == 1) {
3580 			temp |= LVDS_PIPEB_SELECT;
3581 		} else {
3582 			temp &= ~LVDS_PIPEB_SELECT;
3583 		}
3584 		/* set the corresponsding LVDS_BORDER bit */
3585 		temp |= dev_priv->lvds_border_bits;
3586 		/* Set the B0-B3 data pairs corresponding to whether we're going to
3587 		 * set the DPLLs for dual-channel mode or not.
3588 		 */
3589 		if (clock.p2 == 7)
3590 			temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3591 		else
3592 			temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3593 
3594 		/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3595 		 * appropriately here, but we need to look more thoroughly into how
3596 		 * panels behave in the two modes.
3597 		 */
3598 		/* set the dithering flag on LVDS as needed */
3599 		if (INTEL_INFO(dev)->gen >= 4) {
3600 			if (dev_priv->lvds_dither)
3601 				temp |= LVDS_ENABLE_DITHER;
3602 			else
3603 				temp &= ~LVDS_ENABLE_DITHER;
3604 		}
3605 		if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
3606 			lvds_sync |= LVDS_HSYNC_POLARITY;
3607 		if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
3608 			lvds_sync |= LVDS_VSYNC_POLARITY;
3609 		if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
3610 		    != lvds_sync) {
3611 			char flags[2] = "-+";
3612 			DRM_INFO("Changing LVDS panel from "
3613 				 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
3614 				 flags[!(temp & LVDS_HSYNC_POLARITY)],
3615 				 flags[!(temp & LVDS_VSYNC_POLARITY)],
3616 				 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
3617 				 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
3618 			temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
3619 			temp |= lvds_sync;
3620 		}
3621 		I915_WRITE(LVDS, temp);
3622 	}
3623 
3624 	if (is_dp) {
3625 		intel_dp_set_m_n(crtc, mode, adjusted_mode);
3626 	}
3627 
3628 	I915_WRITE(DPLL(pipe), dpll);
3629 
3630 	/* Wait for the clocks to stabilize. */
3631 	POSTING_READ(DPLL(pipe));
3632 	DELAY(150);
3633 
3634 	if (INTEL_INFO(dev)->gen >= 4) {
3635 		temp = 0;
3636 		if (is_sdvo) {
3637 			temp = intel_mode_get_pixel_multiplier(adjusted_mode);
3638 			if (temp > 1)
3639 				temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
3640 			else
3641 				temp = 0;
3642 		}
3643 		I915_WRITE(DPLL_MD(pipe), temp);
3644 	} else {
3645 		/* The pixel multiplier can only be updated once the
3646 		 * DPLL is enabled and the clocks are stable.
3647 		 *
3648 		 * So write it again.
3649 		 */
3650 		I915_WRITE(DPLL(pipe), dpll);
3651 	}
3652 
3653 	if (HAS_PIPE_CXSR(dev)) {
3654 		if (intel_crtc->lowfreq_avail) {
3655 			DRM_DEBUG_KMS("enabling CxSR downclocking\n");
3656 			pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
3657 		} else {
3658 			DRM_DEBUG_KMS("disabling CxSR downclocking\n");
3659 			pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
3660 		}
3661 	}
3662 
3663 	pipeconf &= ~PIPECONF_INTERLACE_MASK;
3664 	if (!IS_GEN2(dev) &&
3665 	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
3666 		pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
3667 		/* the chip adds 2 halflines automatically */
3668 		adjusted_mode->crtc_vtotal -= 1;
3669 		adjusted_mode->crtc_vblank_end -= 1;
3670 		vsyncshift = adjusted_mode->crtc_hsync_start
3671 			     - adjusted_mode->crtc_htotal/2;
3672 	} else {
3673 		pipeconf |= PIPECONF_PROGRESSIVE;
3674 		vsyncshift = 0;
3675 	}
3676 
3677 	if (!IS_GEN3(dev))
3678 		I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
3679 
3680 	I915_WRITE(HTOTAL(pipe),
3681 		   (adjusted_mode->crtc_hdisplay - 1) |
3682 		   ((adjusted_mode->crtc_htotal - 1) << 16));
3683 	I915_WRITE(HBLANK(pipe),
3684 		   (adjusted_mode->crtc_hblank_start - 1) |
3685 		   ((adjusted_mode->crtc_hblank_end - 1) << 16));
3686 	I915_WRITE(HSYNC(pipe),
3687 		   (adjusted_mode->crtc_hsync_start - 1) |
3688 		   ((adjusted_mode->crtc_hsync_end - 1) << 16));
3689 
3690 	I915_WRITE(VTOTAL(pipe),
3691 		   (adjusted_mode->crtc_vdisplay - 1) |
3692 		   ((adjusted_mode->crtc_vtotal - 1) << 16));
3693 	I915_WRITE(VBLANK(pipe),
3694 		   (adjusted_mode->crtc_vblank_start - 1) |
3695 		   ((adjusted_mode->crtc_vblank_end - 1) << 16));
3696 	I915_WRITE(VSYNC(pipe),
3697 		   (adjusted_mode->crtc_vsync_start - 1) |
3698 		   ((adjusted_mode->crtc_vsync_end - 1) << 16));
3699 
3700 	/* pipesrc and dspsize control the size that is scaled from,
3701 	 * which should always be the user's requested size.
3702 	 */
3703 	I915_WRITE(DSPSIZE(plane),
3704 		   ((mode->vdisplay - 1) << 16) |
3705 		   (mode->hdisplay - 1));
3706 	I915_WRITE(DSPPOS(plane), 0);
3707 	I915_WRITE(PIPESRC(pipe),
3708 		   ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
3709 
3710 	I915_WRITE(PIPECONF(pipe), pipeconf);
3711 	POSTING_READ(PIPECONF(pipe));
3712 	intel_enable_pipe(dev_priv, pipe, false);
3713 
3714 	intel_wait_for_vblank(dev, pipe);
3715 
3716 	I915_WRITE(DSPCNTR(plane), dspcntr);
3717 	POSTING_READ(DSPCNTR(plane));
3718 	intel_enable_plane(dev_priv, plane, pipe);
3719 
3720 	ret = intel_pipe_set_base(crtc, x, y, old_fb);
3721 
3722 	intel_update_watermarks(dev);
3723 
3724 	return ret;
3725 }
3726 
3727 /*
3728  * Initialize reference clocks when the driver loads
3729  */
3730 void ironlake_init_pch_refclk(struct drm_device *dev)
3731 {
3732 	struct drm_i915_private *dev_priv = dev->dev_private;
3733 	struct drm_mode_config *mode_config = &dev->mode_config;
3734 	struct intel_encoder *encoder;
3735 	u32 temp;
3736 	bool has_lvds = false;
3737 	bool has_cpu_edp = false;
3738 	bool has_pch_edp = false;
3739 	bool has_panel = false;
3740 	bool has_ck505 = false;
3741 	bool can_ssc = false;
3742 
3743 	/* We need to take the global config into account */
3744 	list_for_each_entry(encoder, &mode_config->encoder_list,
3745 			    base.head) {
3746 		switch (encoder->type) {
3747 		case INTEL_OUTPUT_LVDS:
3748 			has_panel = true;
3749 			has_lvds = true;
3750 			break;
3751 		case INTEL_OUTPUT_EDP:
3752 			has_panel = true;
3753 			if (intel_encoder_is_pch_edp(&encoder->base))
3754 				has_pch_edp = true;
3755 			else
3756 				has_cpu_edp = true;
3757 			break;
3758 		}
3759 	}
3760 
3761 	if (HAS_PCH_IBX(dev)) {
3762 		has_ck505 = dev_priv->display_clock_mode;
3763 		can_ssc = has_ck505;
3764 	} else {
3765 		has_ck505 = false;
3766 		can_ssc = true;
3767 	}
3768 
3769 	DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
3770 		      has_panel, has_lvds, has_pch_edp, has_cpu_edp,
3771 		      has_ck505);
3772 
3773 	/* Ironlake: try to setup display ref clock before DPLL
3774 	 * enabling. This is only under driver's control after
3775 	 * PCH B stepping, previous chipset stepping should be
3776 	 * ignoring this setting.
3777 	 */
3778 	temp = I915_READ(PCH_DREF_CONTROL);
3779 	/* Always enable nonspread source */
3780 	temp &= ~DREF_NONSPREAD_SOURCE_MASK;
3781 
3782 	if (has_ck505)
3783 		temp |= DREF_NONSPREAD_CK505_ENABLE;
3784 	else
3785 		temp |= DREF_NONSPREAD_SOURCE_ENABLE;
3786 
3787 	if (has_panel) {
3788 		temp &= ~DREF_SSC_SOURCE_MASK;
3789 		temp |= DREF_SSC_SOURCE_ENABLE;
3790 
3791 		/* SSC must be turned on before enabling the CPU output  */
3792 		if (intel_panel_use_ssc(dev_priv) && can_ssc) {
3793 			DRM_DEBUG_KMS("Using SSC on panel\n");
3794 			temp |= DREF_SSC1_ENABLE;
3795 		} else
3796 			temp &= ~DREF_SSC1_ENABLE;
3797 
3798 		/* Get SSC going before enabling the outputs */
3799 		I915_WRITE(PCH_DREF_CONTROL, temp);
3800 		POSTING_READ(PCH_DREF_CONTROL);
3801 		DELAY(200);
3802 
3803 		temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
3804 
3805 		/* Enable CPU source on CPU attached eDP */
3806 		if (has_cpu_edp) {
3807 			if (intel_panel_use_ssc(dev_priv) && can_ssc) {
3808 				DRM_DEBUG_KMS("Using SSC on eDP\n");
3809 				temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
3810 			}
3811 			else
3812 				temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
3813 		} else
3814 			temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
3815 
3816 		I915_WRITE(PCH_DREF_CONTROL, temp);
3817 		POSTING_READ(PCH_DREF_CONTROL);
3818 		DELAY(200);
3819 	} else {
3820 		DRM_DEBUG_KMS("Disabling SSC entirely\n");
3821 
3822 		temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
3823 
3824 		/* Turn off CPU output */
3825 		temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
3826 
3827 		I915_WRITE(PCH_DREF_CONTROL, temp);
3828 		POSTING_READ(PCH_DREF_CONTROL);
3829 		DELAY(200);
3830 
3831 		/* Turn off the SSC source */
3832 		temp &= ~DREF_SSC_SOURCE_MASK;
3833 		temp |= DREF_SSC_SOURCE_DISABLE;
3834 
3835 		/* Turn off SSC1 */
3836 		temp &= ~ DREF_SSC1_ENABLE;
3837 
3838 		I915_WRITE(PCH_DREF_CONTROL, temp);
3839 		POSTING_READ(PCH_DREF_CONTROL);
3840 		DELAY(200);
3841 	}
3842 }
3843 
3844 static int ironlake_get_refclk(struct drm_crtc *crtc)
3845 {
3846 	struct drm_device *dev = crtc->dev;
3847 	struct drm_i915_private *dev_priv = dev->dev_private;
3848 	struct intel_encoder *encoder;
3849 	struct drm_mode_config *mode_config = &dev->mode_config;
3850 	struct intel_encoder *edp_encoder = NULL;
3851 	int num_connectors = 0;
3852 	bool is_lvds = false;
3853 
3854 	list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
3855 		if (encoder->base.crtc != crtc)
3856 			continue;
3857 
3858 		switch (encoder->type) {
3859 		case INTEL_OUTPUT_LVDS:
3860 			is_lvds = true;
3861 			break;
3862 		case INTEL_OUTPUT_EDP:
3863 			edp_encoder = encoder;
3864 			break;
3865 		}
3866 		num_connectors++;
3867 	}
3868 
3869 	if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
3870 		DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3871 			      dev_priv->lvds_ssc_freq);
3872 		return dev_priv->lvds_ssc_freq * 1000;
3873 	}
3874 
3875 	return 120000;
3876 }
3877 
3878 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
3879 				  struct drm_display_mode *mode,
3880 				  struct drm_display_mode *adjusted_mode,
3881 				  int x, int y,
3882 				  struct drm_framebuffer *old_fb)
3883 {
3884 	struct drm_device *dev = crtc->dev;
3885 	struct drm_i915_private *dev_priv = dev->dev_private;
3886 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3887 	int pipe = intel_crtc->pipe;
3888 	int plane = intel_crtc->plane;
3889 	int refclk, num_connectors = 0;
3890 	intel_clock_t clock, reduced_clock;
3891 	u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
3892 	bool ok, has_reduced_clock = false, is_sdvo = false;
3893 	bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
3894 	struct intel_encoder *has_edp_encoder = NULL;
3895 	struct drm_mode_config *mode_config = &dev->mode_config;
3896 	struct intel_encoder *encoder;
3897 	const intel_limit_t *limit;
3898 	int ret;
3899 	struct fdi_m_n m_n = {0};
3900 	u32 temp;
3901 	u32 lvds_sync = 0;
3902 	int target_clock, pixel_multiplier, lane, link_bw, factor;
3903 	unsigned int pipe_bpp;
3904 	bool dither;
3905 
3906 	list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
3907 		if (encoder->base.crtc != crtc)
3908 			continue;
3909 
3910 		switch (encoder->type) {
3911 		case INTEL_OUTPUT_LVDS:
3912 			is_lvds = true;
3913 			break;
3914 		case INTEL_OUTPUT_SDVO:
3915 		case INTEL_OUTPUT_HDMI:
3916 			is_sdvo = true;
3917 			if (encoder->needs_tv_clock)
3918 				is_tv = true;
3919 			break;
3920 		case INTEL_OUTPUT_TVOUT:
3921 			is_tv = true;
3922 			break;
3923 		case INTEL_OUTPUT_ANALOG:
3924 			is_crt = true;
3925 			break;
3926 		case INTEL_OUTPUT_DISPLAYPORT:
3927 			is_dp = true;
3928 			break;
3929 		case INTEL_OUTPUT_EDP:
3930 			has_edp_encoder = encoder;
3931 			break;
3932 		}
3933 
3934 		num_connectors++;
3935 	}
3936 
3937 	refclk = ironlake_get_refclk(crtc);
3938 
3939 	/*
3940 	 * Returns a set of divisors for the desired target clock with the given
3941 	 * refclk, or false.  The returned values represent the clock equation:
3942 	 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
3943 	 */
3944 	limit = intel_limit(crtc, refclk);
3945 	ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
3946 			     &clock);
3947 	if (!ok) {
3948 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
3949 		return -EINVAL;
3950 	}
3951 
3952 	/* Ensure that the cursor is valid for the new mode before changing... */
3953 	intel_crtc_update_cursor(crtc, true);
3954 
3955 	if (is_lvds && dev_priv->lvds_downclock_avail) {
3956 		/*
3957 		 * Ensure we match the reduced clock's P to the target clock.
3958 		 * If the clocks don't match, we can't switch the display clock
3959 		 * by using the FP0/FP1. In such case we will disable the LVDS
3960 		 * downclock feature.
3961 		*/
3962 		has_reduced_clock = limit->find_pll(limit, crtc,
3963 						    dev_priv->lvds_downclock,
3964 						    refclk,
3965 						    &clock,
3966 						    &reduced_clock);
3967 	}
3968 	/* SDVO TV has fixed PLL values depend on its clock range,
3969 	   this mirrors vbios setting. */
3970 	if (is_sdvo && is_tv) {
3971 		if (adjusted_mode->clock >= 100000
3972 		    && adjusted_mode->clock < 140500) {
3973 			clock.p1 = 2;
3974 			clock.p2 = 10;
3975 			clock.n = 3;
3976 			clock.m1 = 16;
3977 			clock.m2 = 8;
3978 		} else if (adjusted_mode->clock >= 140500
3979 			   && adjusted_mode->clock <= 200000) {
3980 			clock.p1 = 1;
3981 			clock.p2 = 10;
3982 			clock.n = 6;
3983 			clock.m1 = 12;
3984 			clock.m2 = 8;
3985 		}
3986 	}
3987 
3988 	/* FDI link */
3989 	pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
3990 	lane = 0;
3991 	/* CPU eDP doesn't require FDI link, so just set DP M/N
3992 	   according to current link config */
3993 	if (has_edp_encoder &&
3994 	    !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
3995 		target_clock = mode->clock;
3996 		intel_edp_link_config(has_edp_encoder,
3997 				      &lane, &link_bw);
3998 	} else {
3999 		/* [e]DP over FDI requires target mode clock
4000 		   instead of link clock */
4001 		if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
4002 			target_clock = mode->clock;
4003 		else
4004 			target_clock = adjusted_mode->clock;
4005 
4006 		/* FDI is a binary signal running at ~2.7GHz, encoding
4007 		 * each output octet as 10 bits. The actual frequency
4008 		 * is stored as a divider into a 100MHz clock, and the
4009 		 * mode pixel clock is stored in units of 1KHz.
4010 		 * Hence the bw of each lane in terms of the mode signal
4011 		 * is:
4012 		 */
4013 		link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4014 	}
4015 
4016 	/* determine panel color depth */
4017 	temp = I915_READ(PIPECONF(pipe));
4018 	temp &= ~PIPE_BPC_MASK;
4019 	dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp, mode);
4020 	switch (pipe_bpp) {
4021 	case 18:
4022 		temp |= PIPE_6BPC;
4023 		break;
4024 	case 24:
4025 		temp |= PIPE_8BPC;
4026 		break;
4027 	case 30:
4028 		temp |= PIPE_10BPC;
4029 		break;
4030 	case 36:
4031 		temp |= PIPE_12BPC;
4032 		break;
4033 	default:
4034 		kprintf("intel_choose_pipe_bpp returned invalid value %d\n",
4035 			pipe_bpp);
4036 		temp |= PIPE_8BPC;
4037 		pipe_bpp = 24;
4038 		break;
4039 	}
4040 
4041 	intel_crtc->bpp = pipe_bpp;
4042 	I915_WRITE(PIPECONF(pipe), temp);
4043 
4044 	if (!lane) {
4045 		/*
4046 		 * Account for spread spectrum to avoid
4047 		 * oversubscribing the link. Max center spread
4048 		 * is 2.5%; use 5% for safety's sake.
4049 		 */
4050 		u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
4051 		lane = bps / (link_bw * 8) + 1;
4052 	}
4053 
4054 	intel_crtc->fdi_lanes = lane;
4055 
4056 	if (pixel_multiplier > 1)
4057 		link_bw *= pixel_multiplier;
4058 	ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
4059 			     &m_n);
4060 
4061 	fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4062 	if (has_reduced_clock)
4063 		fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4064 			reduced_clock.m2;
4065 
4066 	/* Enable autotuning of the PLL clock (if permissible) */
4067 	factor = 21;
4068 	if (is_lvds) {
4069 		if ((intel_panel_use_ssc(dev_priv) &&
4070 		     dev_priv->lvds_ssc_freq == 100) ||
4071 		    (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
4072 			factor = 25;
4073 	} else if (is_sdvo && is_tv)
4074 		factor = 20;
4075 
4076 	if (clock.m < factor * clock.n)
4077 		fp |= FP_CB_TUNE;
4078 
4079 	dpll = 0;
4080 
4081 	if (is_lvds)
4082 		dpll |= DPLLB_MODE_LVDS;
4083 	else
4084 		dpll |= DPLLB_MODE_DAC_SERIAL;
4085 	if (is_sdvo) {
4086 		int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4087 		if (pixel_multiplier > 1) {
4088 			dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
4089 		}
4090 		dpll |= DPLL_DVO_HIGH_SPEED;
4091 	}
4092 	if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
4093 		dpll |= DPLL_DVO_HIGH_SPEED;
4094 
4095 	/* compute bitmask from p1 value */
4096 	dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4097 	/* also FPA1 */
4098 	dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4099 
4100 	switch (clock.p2) {
4101 	case 5:
4102 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4103 		break;
4104 	case 7:
4105 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4106 		break;
4107 	case 10:
4108 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4109 		break;
4110 	case 14:
4111 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4112 		break;
4113 	}
4114 
4115 	if (is_sdvo && is_tv)
4116 		dpll |= PLL_REF_INPUT_TVCLKINBC;
4117 	else if (is_tv)
4118 		/* XXX: just matching BIOS for now */
4119 		/*	dpll |= PLL_REF_INPUT_TVCLKINBC; */
4120 		dpll |= 3;
4121 	else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4122 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4123 	else
4124 		dpll |= PLL_REF_INPUT_DREFCLK;
4125 
4126 	/* setup pipeconf */
4127 	pipeconf = I915_READ(PIPECONF(pipe));
4128 
4129 	/* Set up the display plane register */
4130 	dspcntr = DISPPLANE_GAMMA_ENABLE;
4131 
4132 	DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
4133 	drm_mode_debug_printmodeline(mode);
4134 
4135 	/* PCH eDP needs FDI, but CPU eDP does not */
4136 	if (!intel_crtc->no_pll) {
4137 		if (!has_edp_encoder ||
4138 		    intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4139 			I915_WRITE(_PCH_FP0(pipe), fp);
4140 			I915_WRITE(_PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4141 
4142 			POSTING_READ(_PCH_DPLL(pipe));
4143 			DELAY(150);
4144 		}
4145 	} else {
4146 		if (dpll == (I915_READ(_PCH_DPLL(0)) & 0x7fffffff) &&
4147 		    fp == I915_READ(_PCH_FP0(0))) {
4148 			intel_crtc->use_pll_a = true;
4149 			DRM_DEBUG_KMS("using pipe a dpll\n");
4150 		} else if (dpll == (I915_READ(_PCH_DPLL(1)) & 0x7fffffff) &&
4151 			   fp == I915_READ(_PCH_FP0(1))) {
4152 			intel_crtc->use_pll_a = false;
4153 			DRM_DEBUG_KMS("using pipe b dpll\n");
4154 		} else {
4155 			DRM_DEBUG_KMS("no matching PLL configuration for pipe 2\n");
4156 			return -EINVAL;
4157 		}
4158 	}
4159 
4160 	/* The LVDS pin pair needs to be on before the DPLLs are enabled.
4161 	 * This is an exception to the general rule that mode_set doesn't turn
4162 	 * things on.
4163 	 */
4164 	if (is_lvds) {
4165 		temp = I915_READ(PCH_LVDS);
4166 		temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4167 		if (HAS_PCH_CPT(dev)) {
4168 			temp &= ~PORT_TRANS_SEL_MASK;
4169 			temp |= PORT_TRANS_SEL_CPT(pipe);
4170 		} else {
4171 			if (pipe == 1)
4172 				temp |= LVDS_PIPEB_SELECT;
4173 			else
4174 				temp &= ~LVDS_PIPEB_SELECT;
4175 		}
4176 
4177 		/* set the corresponsding LVDS_BORDER bit */
4178 		temp |= dev_priv->lvds_border_bits;
4179 		/* Set the B0-B3 data pairs corresponding to whether we're going to
4180 		 * set the DPLLs for dual-channel mode or not.
4181 		 */
4182 		if (clock.p2 == 7)
4183 			temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4184 		else
4185 			temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4186 
4187 		/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4188 		 * appropriately here, but we need to look more thoroughly into how
4189 		 * panels behave in the two modes.
4190 		 */
4191 		if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4192 			lvds_sync |= LVDS_HSYNC_POLARITY;
4193 		if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4194 			lvds_sync |= LVDS_VSYNC_POLARITY;
4195 		if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
4196 		    != lvds_sync) {
4197 			char flags[2] = "-+";
4198 			DRM_INFO("Changing LVDS panel from "
4199 				 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
4200 				 flags[!(temp & LVDS_HSYNC_POLARITY)],
4201 				 flags[!(temp & LVDS_VSYNC_POLARITY)],
4202 				 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
4203 				 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
4204 			temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4205 			temp |= lvds_sync;
4206 		}
4207 		I915_WRITE(PCH_LVDS, temp);
4208 	}
4209 
4210 	pipeconf &= ~PIPECONF_DITHER_EN;
4211 	pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
4212 	if ((is_lvds && dev_priv->lvds_dither) || dither) {
4213 		pipeconf |= PIPECONF_DITHER_EN;
4214 		pipeconf |= PIPECONF_DITHER_TYPE_SP;
4215 	}
4216 	if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4217 		intel_dp_set_m_n(crtc, mode, adjusted_mode);
4218 	} else {
4219 		/* For non-DP output, clear any trans DP clock recovery setting.*/
4220 		I915_WRITE(TRANSDATA_M1(pipe), 0);
4221 		I915_WRITE(TRANSDATA_N1(pipe), 0);
4222 		I915_WRITE(TRANSDPLINK_M1(pipe), 0);
4223 		I915_WRITE(TRANSDPLINK_N1(pipe), 0);
4224 	}
4225 
4226 	if (!intel_crtc->no_pll &&
4227 	    (!has_edp_encoder ||
4228 	     intel_encoder_is_pch_edp(&has_edp_encoder->base))) {
4229 		I915_WRITE(_PCH_DPLL(pipe), dpll);
4230 
4231 		/* Wait for the clocks to stabilize. */
4232 		POSTING_READ(_PCH_DPLL(pipe));
4233 		DELAY(150);
4234 
4235 		/* The pixel multiplier can only be updated once the
4236 		 * DPLL is enabled and the clocks are stable.
4237 		 *
4238 		 * So write it again.
4239 		 */
4240 		I915_WRITE(_PCH_DPLL(pipe), dpll);
4241 	}
4242 
4243 	intel_crtc->lowfreq_avail = false;
4244 	if (!intel_crtc->no_pll) {
4245 		if (is_lvds && has_reduced_clock && i915_powersave) {
4246 			I915_WRITE(_PCH_FP1(pipe), fp2);
4247 			intel_crtc->lowfreq_avail = true;
4248 			if (HAS_PIPE_CXSR(dev)) {
4249 				DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4250 				pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4251 			}
4252 		} else {
4253 			I915_WRITE(_PCH_FP1(pipe), fp);
4254 			if (HAS_PIPE_CXSR(dev)) {
4255 				DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4256 				pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4257 			}
4258 		}
4259 	}
4260 
4261 	pipeconf &= ~PIPECONF_INTERLACE_MASK;
4262 	if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4263 		pipeconf |= PIPECONF_INTERLACED_ILK;
4264 		/* the chip adds 2 halflines automatically */
4265 		adjusted_mode->crtc_vtotal -= 1;
4266 		adjusted_mode->crtc_vblank_end -= 1;
4267 		I915_WRITE(VSYNCSHIFT(pipe),
4268 			   adjusted_mode->crtc_hsync_start
4269 			   - adjusted_mode->crtc_htotal/2);
4270 	} else {
4271 		pipeconf |= PIPECONF_PROGRESSIVE;
4272 		I915_WRITE(VSYNCSHIFT(pipe), 0);
4273 	}
4274 
4275 	I915_WRITE(HTOTAL(pipe),
4276 		   (adjusted_mode->crtc_hdisplay - 1) |
4277 		   ((adjusted_mode->crtc_htotal - 1) << 16));
4278 	I915_WRITE(HBLANK(pipe),
4279 		   (adjusted_mode->crtc_hblank_start - 1) |
4280 		   ((adjusted_mode->crtc_hblank_end - 1) << 16));
4281 	I915_WRITE(HSYNC(pipe),
4282 		   (adjusted_mode->crtc_hsync_start - 1) |
4283 		   ((adjusted_mode->crtc_hsync_end - 1) << 16));
4284 
4285 	I915_WRITE(VTOTAL(pipe),
4286 		   (adjusted_mode->crtc_vdisplay - 1) |
4287 		   ((adjusted_mode->crtc_vtotal - 1) << 16));
4288 	I915_WRITE(VBLANK(pipe),
4289 		   (adjusted_mode->crtc_vblank_start - 1) |
4290 		   ((adjusted_mode->crtc_vblank_end - 1) << 16));
4291 	I915_WRITE(VSYNC(pipe),
4292 		   (adjusted_mode->crtc_vsync_start - 1) |
4293 		   ((adjusted_mode->crtc_vsync_end - 1) << 16));
4294 
4295 	/* pipesrc controls the size that is scaled from, which should
4296 	 * always be the user's requested size.
4297 	 */
4298 	I915_WRITE(PIPESRC(pipe),
4299 		   ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4300 
4301 	I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
4302 	I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
4303 	I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
4304 	I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
4305 
4306 	if (has_edp_encoder &&
4307 	    !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4308 		ironlake_set_pll_edp(crtc, adjusted_mode->clock);
4309 	}
4310 
4311 	I915_WRITE(PIPECONF(pipe), pipeconf);
4312 	POSTING_READ(PIPECONF(pipe));
4313 
4314 	intel_wait_for_vblank(dev, pipe);
4315 
4316 	I915_WRITE(DSPCNTR(plane), dspcntr);
4317 	POSTING_READ(DSPCNTR(plane));
4318 
4319 	ret = intel_pipe_set_base(crtc, x, y, old_fb);
4320 
4321 	intel_update_watermarks(dev);
4322 
4323 	return ret;
4324 }
4325 
4326 static int intel_crtc_mode_set(struct drm_crtc *crtc,
4327 			       struct drm_display_mode *mode,
4328 			       struct drm_display_mode *adjusted_mode,
4329 			       int x, int y,
4330 			       struct drm_framebuffer *old_fb)
4331 {
4332 	struct drm_device *dev = crtc->dev;
4333 	struct drm_i915_private *dev_priv = dev->dev_private;
4334 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4335 	int pipe = intel_crtc->pipe;
4336 	int ret;
4337 
4338 	drm_vblank_pre_modeset(dev, pipe);
4339 
4340 	ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
4341 					      x, y, old_fb);
4342 	drm_vblank_post_modeset(dev, pipe);
4343 
4344 	if (ret)
4345 		intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
4346 	else
4347 		intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
4348 
4349 	return ret;
4350 }
4351 
4352 static bool intel_eld_uptodate(struct drm_connector *connector,
4353 			       int reg_eldv, uint32_t bits_eldv,
4354 			       int reg_elda, uint32_t bits_elda,
4355 			       int reg_edid)
4356 {
4357 	struct drm_i915_private *dev_priv = connector->dev->dev_private;
4358 	uint8_t *eld = connector->eld;
4359 	uint32_t i;
4360 
4361 	i = I915_READ(reg_eldv);
4362 	i &= bits_eldv;
4363 
4364 	if (!eld[0])
4365 		return !i;
4366 
4367 	if (!i)
4368 		return false;
4369 
4370 	i = I915_READ(reg_elda);
4371 	i &= ~bits_elda;
4372 	I915_WRITE(reg_elda, i);
4373 
4374 	for (i = 0; i < eld[2]; i++)
4375 		if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
4376 			return false;
4377 
4378 	return true;
4379 }
4380 
4381 static void g4x_write_eld(struct drm_connector *connector,
4382 			  struct drm_crtc *crtc)
4383 {
4384 	struct drm_i915_private *dev_priv = connector->dev->dev_private;
4385 	uint8_t *eld = connector->eld;
4386 	uint32_t eldv;
4387 	uint32_t len;
4388 	uint32_t i;
4389 
4390 	i = I915_READ(G4X_AUD_VID_DID);
4391 
4392 	if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
4393 		eldv = G4X_ELDV_DEVCL_DEVBLC;
4394 	else
4395 		eldv = G4X_ELDV_DEVCTG;
4396 
4397 	if (intel_eld_uptodate(connector,
4398 			       G4X_AUD_CNTL_ST, eldv,
4399 			       G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
4400 			       G4X_HDMIW_HDMIEDID))
4401 		return;
4402 
4403 	i = I915_READ(G4X_AUD_CNTL_ST);
4404 	i &= ~(eldv | G4X_ELD_ADDR);
4405 	len = (i >> 9) & 0x1f;		/* ELD buffer size */
4406 	I915_WRITE(G4X_AUD_CNTL_ST, i);
4407 
4408 	if (!eld[0])
4409 		return;
4410 
4411 	if (eld[2] < (uint8_t)len)
4412 		len = eld[2];
4413 	DRM_DEBUG_KMS("ELD size %d\n", len);
4414 	for (i = 0; i < len; i++)
4415 		I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
4416 
4417 	i = I915_READ(G4X_AUD_CNTL_ST);
4418 	i |= eldv;
4419 	I915_WRITE(G4X_AUD_CNTL_ST, i);
4420 }
4421 
4422 static void ironlake_write_eld(struct drm_connector *connector,
4423 				     struct drm_crtc *crtc)
4424 {
4425 	struct drm_i915_private *dev_priv = connector->dev->dev_private;
4426 	uint8_t *eld = connector->eld;
4427 	uint32_t eldv;
4428 	uint32_t i;
4429 	int len;
4430 	int hdmiw_hdmiedid;
4431 	int aud_config;
4432 	int aud_cntl_st;
4433 	int aud_cntrl_st2;
4434 
4435 	if (HAS_PCH_IBX(connector->dev)) {
4436 		hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID_A;
4437 		aud_config = IBX_AUD_CONFIG_A;
4438 		aud_cntl_st = IBX_AUD_CNTL_ST_A;
4439 		aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
4440 	} else {
4441 		hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID_A;
4442 		aud_config = CPT_AUD_CONFIG_A;
4443 		aud_cntl_st = CPT_AUD_CNTL_ST_A;
4444 		aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
4445 	}
4446 
4447 	i = to_intel_crtc(crtc)->pipe;
4448 	hdmiw_hdmiedid += i * 0x100;
4449 	aud_cntl_st += i * 0x100;
4450 	aud_config += i * 0x100;
4451 
4452 	DRM_DEBUG_KMS("ELD on pipe %c\n", pipe_name(i));
4453 
4454 	i = I915_READ(aud_cntl_st);
4455 	i = (i >> 29) & 0x3;		/* DIP_Port_Select, 0x1 = PortB */
4456 	if (!i) {
4457 		DRM_DEBUG_KMS("Audio directed to unknown port\n");
4458 		/* operate blindly on all ports */
4459 		eldv = IBX_ELD_VALIDB;
4460 		eldv |= IBX_ELD_VALIDB << 4;
4461 		eldv |= IBX_ELD_VALIDB << 8;
4462 	} else {
4463 		DRM_DEBUG_KMS("ELD on port %c\n", 'A' + i);
4464 		eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
4465 	}
4466 
4467 	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
4468 		DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
4469 		eld[5] |= (1 << 2);	/* Conn_Type, 0x1 = DisplayPort */
4470 		I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
4471 	} else
4472 		I915_WRITE(aud_config, 0);
4473 
4474 	if (intel_eld_uptodate(connector,
4475 			       aud_cntrl_st2, eldv,
4476 			       aud_cntl_st, IBX_ELD_ADDRESS,
4477 			       hdmiw_hdmiedid))
4478 		return;
4479 
4480 	i = I915_READ(aud_cntrl_st2);
4481 	i &= ~eldv;
4482 	I915_WRITE(aud_cntrl_st2, i);
4483 
4484 	if (!eld[0])
4485 		return;
4486 
4487 	i = I915_READ(aud_cntl_st);
4488 	i &= ~IBX_ELD_ADDRESS;
4489 	I915_WRITE(aud_cntl_st, i);
4490 
4491 	/* 84 bytes of hw ELD buffer */
4492 	len = 21;
4493 	if (eld[2] < (uint8_t)len)
4494 		len = eld[2];
4495 	DRM_DEBUG_KMS("ELD size %d\n", len);
4496 	for (i = 0; i < len; i++)
4497 		I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
4498 
4499 	i = I915_READ(aud_cntrl_st2);
4500 	i |= eldv;
4501 	I915_WRITE(aud_cntrl_st2, i);
4502 }
4503 
4504 void intel_write_eld(struct drm_encoder *encoder,
4505 		     struct drm_display_mode *mode)
4506 {
4507 	struct drm_crtc *crtc = encoder->crtc;
4508 	struct drm_connector *connector;
4509 	struct drm_device *dev = encoder->dev;
4510 	struct drm_i915_private *dev_priv = dev->dev_private;
4511 
4512 	connector = drm_select_eld(encoder, mode);
4513 	if (!connector)
4514 		return;
4515 
4516 	DRM_DEBUG_KMS("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
4517 			 connector->base.id,
4518 			 drm_get_connector_name(connector),
4519 			 connector->encoder->base.id,
4520 			 drm_get_encoder_name(connector->encoder));
4521 
4522 	connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
4523 
4524 	if (dev_priv->display.write_eld)
4525 		dev_priv->display.write_eld(connector, crtc);
4526 }
4527 
4528 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4529 void intel_crtc_load_lut(struct drm_crtc *crtc)
4530 {
4531 	struct drm_device *dev = crtc->dev;
4532 	struct drm_i915_private *dev_priv = dev->dev_private;
4533 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4534 	int palreg = PALETTE(intel_crtc->pipe);
4535 	int i;
4536 
4537 	/* The clocks have to be on to load the palette. */
4538 	if (!crtc->enabled || !intel_crtc->active)
4539 		return;
4540 
4541 	/* use legacy palette for Ironlake */
4542 	if (HAS_PCH_SPLIT(dev))
4543 		palreg = LGC_PALETTE(intel_crtc->pipe);
4544 
4545 	for (i = 0; i < 256; i++) {
4546 		I915_WRITE(palreg + 4 * i,
4547 			   (intel_crtc->lut_r[i] << 16) |
4548 			   (intel_crtc->lut_g[i] << 8) |
4549 			   intel_crtc->lut_b[i]);
4550 	}
4551 }
4552 
4553 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
4554 {
4555 	struct drm_device *dev = crtc->dev;
4556 	struct drm_i915_private *dev_priv = dev->dev_private;
4557 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4558 	bool visible = base != 0;
4559 	u32 cntl;
4560 
4561 	if (intel_crtc->cursor_visible == visible)
4562 		return;
4563 
4564 	cntl = I915_READ(_CURACNTR);
4565 	if (visible) {
4566 		/* On these chipsets we can only modify the base whilst
4567 		 * the cursor is disabled.
4568 		 */
4569 		I915_WRITE(_CURABASE, base);
4570 
4571 		cntl &= ~(CURSOR_FORMAT_MASK);
4572 		/* XXX width must be 64, stride 256 => 0x00 << 28 */
4573 		cntl |= CURSOR_ENABLE |
4574 			CURSOR_GAMMA_ENABLE |
4575 			CURSOR_FORMAT_ARGB;
4576 	} else
4577 		cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
4578 	I915_WRITE(_CURACNTR, cntl);
4579 
4580 	intel_crtc->cursor_visible = visible;
4581 }
4582 
4583 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
4584 {
4585 	struct drm_device *dev = crtc->dev;
4586 	struct drm_i915_private *dev_priv = dev->dev_private;
4587 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4588 	int pipe = intel_crtc->pipe;
4589 	bool visible = base != 0;
4590 
4591 	if (intel_crtc->cursor_visible != visible) {
4592 		uint32_t cntl = I915_READ(CURCNTR(pipe));
4593 		if (base) {
4594 			cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
4595 			cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
4596 			cntl |= pipe << 28; /* Connect to correct pipe */
4597 		} else {
4598 			cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
4599 			cntl |= CURSOR_MODE_DISABLE;
4600 		}
4601 		I915_WRITE(CURCNTR(pipe), cntl);
4602 
4603 		intel_crtc->cursor_visible = visible;
4604 	}
4605 	/* and commit changes on next vblank */
4606 	I915_WRITE(CURBASE(pipe), base);
4607 }
4608 
4609 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
4610 {
4611 	struct drm_device *dev = crtc->dev;
4612 	struct drm_i915_private *dev_priv = dev->dev_private;
4613 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4614 	int pipe = intel_crtc->pipe;
4615 	bool visible = base != 0;
4616 
4617 	if (intel_crtc->cursor_visible != visible) {
4618 		uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
4619 		if (base) {
4620 			cntl &= ~CURSOR_MODE;
4621 			cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
4622 		} else {
4623 			cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
4624 			cntl |= CURSOR_MODE_DISABLE;
4625 		}
4626 		I915_WRITE(CURCNTR_IVB(pipe), cntl);
4627 
4628 		intel_crtc->cursor_visible = visible;
4629 	}
4630 	/* and commit changes on next vblank */
4631 	I915_WRITE(CURBASE_IVB(pipe), base);
4632 }
4633 
4634 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
4635 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
4636 				     bool on)
4637 {
4638 	struct drm_device *dev = crtc->dev;
4639 	struct drm_i915_private *dev_priv = dev->dev_private;
4640 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4641 	int pipe = intel_crtc->pipe;
4642 	int x = intel_crtc->cursor_x;
4643 	int y = intel_crtc->cursor_y;
4644 	u32 base, pos;
4645 	bool visible;
4646 
4647 	pos = 0;
4648 
4649 	if (on && crtc->enabled && crtc->fb) {
4650 		base = intel_crtc->cursor_addr;
4651 		if (x > (int) crtc->fb->width)
4652 			base = 0;
4653 
4654 		if (y > (int) crtc->fb->height)
4655 			base = 0;
4656 	} else
4657 		base = 0;
4658 
4659 	if (x < 0) {
4660 		if (x + intel_crtc->cursor_width < 0)
4661 			base = 0;
4662 
4663 		pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
4664 		x = -x;
4665 	}
4666 	pos |= x << CURSOR_X_SHIFT;
4667 
4668 	if (y < 0) {
4669 		if (y + intel_crtc->cursor_height < 0)
4670 			base = 0;
4671 
4672 		pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
4673 		y = -y;
4674 	}
4675 	pos |= y << CURSOR_Y_SHIFT;
4676 
4677 	visible = base != 0;
4678 	if (!visible && !intel_crtc->cursor_visible)
4679 		return;
4680 
4681 	if (IS_IVYBRIDGE(dev)) {
4682 		I915_WRITE(CURPOS_IVB(pipe), pos);
4683 		ivb_update_cursor(crtc, base);
4684 	} else {
4685 		I915_WRITE(CURPOS(pipe), pos);
4686 		if (IS_845G(dev) || IS_I865G(dev))
4687 			i845_update_cursor(crtc, base);
4688 		else
4689 			i9xx_update_cursor(crtc, base);
4690 	}
4691 
4692 	if (visible)
4693 		intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
4694 }
4695 
4696 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
4697 				 struct drm_file *file,
4698 				 uint32_t handle,
4699 				 uint32_t width, uint32_t height)
4700 {
4701 	struct drm_device *dev = crtc->dev;
4702 	struct drm_i915_private *dev_priv = dev->dev_private;
4703 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4704 	struct drm_i915_gem_object *obj;
4705 	uint32_t addr;
4706 	int ret;
4707 
4708 	DRM_DEBUG_KMS("\n");
4709 
4710 	/* if we want to turn off the cursor ignore width and height */
4711 	if (!handle) {
4712 		DRM_DEBUG_KMS("cursor off\n");
4713 		addr = 0;
4714 		obj = NULL;
4715 		DRM_LOCK(dev);
4716 		goto finish;
4717 	}
4718 
4719 	/* Currently we only support 64x64 cursors */
4720 	if (width != 64 || height != 64) {
4721 		DRM_ERROR("we currently only support 64x64 cursors\n");
4722 		return -EINVAL;
4723 	}
4724 
4725 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
4726 	if (&obj->base == NULL)
4727 		return -ENOENT;
4728 
4729 	if (obj->base.size < width * height * 4) {
4730 		DRM_ERROR("buffer is to small\n");
4731 		ret = -ENOMEM;
4732 		goto fail;
4733 	}
4734 
4735 	/* we only need to pin inside GTT if cursor is non-phy */
4736 	DRM_LOCK(dev);
4737 	if (!dev_priv->info->cursor_needs_physical) {
4738 		if (obj->tiling_mode) {
4739 			DRM_ERROR("cursor cannot be tiled\n");
4740 			ret = -EINVAL;
4741 			goto fail_locked;
4742 		}
4743 
4744 		ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
4745 		if (ret) {
4746 			DRM_ERROR("failed to move cursor bo into the GTT\n");
4747 			goto fail_locked;
4748 		}
4749 
4750 		ret = i915_gem_object_put_fence(obj);
4751 		if (ret) {
4752 			DRM_ERROR("failed to release fence for cursor\n");
4753 			goto fail_unpin;
4754 		}
4755 
4756 		addr = obj->gtt_offset;
4757 	} else {
4758 		int align = IS_I830(dev) ? 16 * 1024 : 256;
4759 		ret = i915_gem_attach_phys_object(dev, obj,
4760 						  (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
4761 						  align);
4762 		if (ret) {
4763 			DRM_ERROR("failed to attach phys object\n");
4764 			goto fail_locked;
4765 		}
4766 		addr = obj->phys_obj->handle->busaddr;
4767 	}
4768 
4769 	if (IS_GEN2(dev))
4770 		I915_WRITE(CURSIZE, (height << 12) | width);
4771 
4772  finish:
4773 	if (intel_crtc->cursor_bo) {
4774 		if (dev_priv->info->cursor_needs_physical) {
4775 			if (intel_crtc->cursor_bo != obj)
4776 				i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
4777 		} else
4778 			i915_gem_object_unpin(intel_crtc->cursor_bo);
4779 		drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
4780 	}
4781 
4782 	DRM_UNLOCK(dev);
4783 
4784 	intel_crtc->cursor_addr = addr;
4785 	intel_crtc->cursor_bo = obj;
4786 	intel_crtc->cursor_width = width;
4787 	intel_crtc->cursor_height = height;
4788 
4789 	intel_crtc_update_cursor(crtc, true);
4790 
4791 	return 0;
4792 fail_unpin:
4793 	i915_gem_object_unpin(obj);
4794 fail_locked:
4795 	DRM_UNLOCK(dev);
4796 fail:
4797 	drm_gem_object_unreference_unlocked(&obj->base);
4798 	return ret;
4799 }
4800 
4801 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
4802 {
4803 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4804 
4805 	intel_crtc->cursor_x = x;
4806 	intel_crtc->cursor_y = y;
4807 
4808 	intel_crtc_update_cursor(crtc, true);
4809 
4810 	return 0;
4811 }
4812 
4813 /** Sets the color ramps on behalf of RandR */
4814 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
4815 				 u16 blue, int regno)
4816 {
4817 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4818 
4819 	intel_crtc->lut_r[regno] = red >> 8;
4820 	intel_crtc->lut_g[regno] = green >> 8;
4821 	intel_crtc->lut_b[regno] = blue >> 8;
4822 }
4823 
4824 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
4825 			     u16 *blue, int regno)
4826 {
4827 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4828 
4829 	*red = intel_crtc->lut_r[regno] << 8;
4830 	*green = intel_crtc->lut_g[regno] << 8;
4831 	*blue = intel_crtc->lut_b[regno] << 8;
4832 }
4833 
4834 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
4835 				 u16 *blue, uint32_t start, uint32_t size)
4836 {
4837 	int end = (start + size > 256) ? 256 : start + size, i;
4838 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4839 
4840 	for (i = start; i < end; i++) {
4841 		intel_crtc->lut_r[i] = red[i] >> 8;
4842 		intel_crtc->lut_g[i] = green[i] >> 8;
4843 		intel_crtc->lut_b[i] = blue[i] >> 8;
4844 	}
4845 
4846 	intel_crtc_load_lut(crtc);
4847 }
4848 
4849 /**
4850  * Get a pipe with a simple mode set on it for doing load-based monitor
4851  * detection.
4852  *
4853  * It will be up to the load-detect code to adjust the pipe as appropriate for
4854  * its requirements.  The pipe will be connected to no other encoders.
4855  *
4856  * Currently this code will only succeed if there is a pipe with no encoders
4857  * configured for it.  In the future, it could choose to temporarily disable
4858  * some outputs to free up a pipe for its use.
4859  *
4860  * \return crtc, or NULL if no pipes are available.
4861  */
4862 
4863 /* VESA 640x480x72Hz mode to set on the pipe */
4864 static struct drm_display_mode load_detect_mode = {
4865 	DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
4866 		 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
4867 };
4868 
4869 static int
4870 intel_framebuffer_create(struct drm_device *dev,
4871     struct drm_mode_fb_cmd2 *mode_cmd, struct drm_i915_gem_object *obj,
4872      struct drm_framebuffer **res)
4873 {
4874 	struct intel_framebuffer *intel_fb;
4875 	int ret;
4876 
4877 	intel_fb = kmalloc(sizeof(*intel_fb), DRM_MEM_KMS, M_WAITOK | M_ZERO);
4878 	ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
4879 	if (ret) {
4880 		drm_gem_object_unreference_unlocked(&obj->base);
4881 		drm_free(intel_fb, DRM_MEM_KMS);
4882 		return (ret);
4883 	}
4884 
4885 	*res = &intel_fb->base;
4886 	return (0);
4887 }
4888 
4889 static u32
4890 intel_framebuffer_pitch_for_width(int width, int bpp)
4891 {
4892 	u32 pitch = howmany(width * bpp, 8);
4893 	return roundup2(pitch, 64);
4894 }
4895 
4896 static u32
4897 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
4898 {
4899 	u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
4900 	return roundup2(pitch * mode->vdisplay, PAGE_SIZE);
4901 }
4902 
4903 static int
4904 intel_framebuffer_create_for_mode(struct drm_device *dev,
4905     struct drm_display_mode *mode, int depth, int bpp,
4906     struct drm_framebuffer **res)
4907 {
4908 	struct drm_i915_gem_object *obj;
4909 	struct drm_mode_fb_cmd2 mode_cmd;
4910 
4911 	obj = i915_gem_alloc_object(dev,
4912 				    intel_framebuffer_size_for_mode(mode, bpp));
4913 	if (obj == NULL)
4914 		return (-ENOMEM);
4915 
4916 	mode_cmd.width = mode->hdisplay;
4917 	mode_cmd.height = mode->vdisplay;
4918 	mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
4919 								bpp);
4920 	mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
4921 
4922 	return (intel_framebuffer_create(dev, &mode_cmd, obj, res));
4923 }
4924 
4925 static int
4926 mode_fits_in_fbdev(struct drm_device *dev,
4927     struct drm_display_mode *mode, struct drm_framebuffer **res)
4928 {
4929 	struct drm_i915_private *dev_priv = dev->dev_private;
4930 	struct drm_i915_gem_object *obj;
4931 	struct drm_framebuffer *fb;
4932 
4933 	if (dev_priv->fbdev == NULL) {
4934 		*res = NULL;
4935 		return (0);
4936 	}
4937 
4938 	obj = dev_priv->fbdev->ifb.obj;
4939 	if (obj == NULL) {
4940 		*res = NULL;
4941 		return (0);
4942 	}
4943 
4944 	fb = &dev_priv->fbdev->ifb.base;
4945 	if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
4946 	    fb->bits_per_pixel)) {
4947 		*res = NULL;
4948 		return (0);
4949 	}
4950 
4951 	if (obj->base.size < mode->vdisplay * fb->pitches[0]) {
4952 		*res = NULL;
4953 		return (0);
4954 	}
4955 
4956 	*res = fb;
4957 	return (0);
4958 }
4959 
4960 bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
4961 				struct drm_connector *connector,
4962 				struct drm_display_mode *mode,
4963 				struct intel_load_detect_pipe *old)
4964 {
4965 	struct intel_crtc *intel_crtc;
4966 	struct drm_crtc *possible_crtc;
4967 	struct drm_encoder *encoder = &intel_encoder->base;
4968 	struct drm_crtc *crtc = NULL;
4969 	struct drm_device *dev = encoder->dev;
4970 	struct drm_framebuffer *old_fb;
4971 	int i = -1, r;
4972 
4973 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
4974 		      connector->base.id, drm_get_connector_name(connector),
4975 		      encoder->base.id, drm_get_encoder_name(encoder));
4976 
4977 	/*
4978 	 * Algorithm gets a little messy:
4979 	 *
4980 	 *   - if the connector already has an assigned crtc, use it (but make
4981 	 *     sure it's on first)
4982 	 *
4983 	 *   - try to find the first unused crtc that can drive this connector,
4984 	 *     and use that if we find one
4985 	 */
4986 
4987 	/* See if we already have a CRTC for this connector */
4988 	if (encoder->crtc) {
4989 		crtc = encoder->crtc;
4990 
4991 		intel_crtc = to_intel_crtc(crtc);
4992 		old->dpms_mode = intel_crtc->dpms_mode;
4993 		old->load_detect_temp = false;
4994 
4995 		/* Make sure the crtc and connector are running */
4996 		if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4997 			struct drm_encoder_helper_funcs *encoder_funcs;
4998 			struct drm_crtc_helper_funcs *crtc_funcs;
4999 
5000 			crtc_funcs = crtc->helper_private;
5001 			crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
5002 
5003 			encoder_funcs = encoder->helper_private;
5004 			encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
5005 		}
5006 
5007 		return true;
5008 	}
5009 
5010 	/* Find an unused one (if possible) */
5011 	list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
5012 		i++;
5013 		if (!(encoder->possible_crtcs & (1 << i)))
5014 			continue;
5015 		if (!possible_crtc->enabled) {
5016 			crtc = possible_crtc;
5017 			break;
5018 		}
5019 	}
5020 
5021 	/*
5022 	 * If we didn't find an unused CRTC, don't use any.
5023 	 */
5024 	if (!crtc) {
5025 		DRM_DEBUG_KMS("no pipe available for load-detect\n");
5026 		return false;
5027 	}
5028 
5029 	encoder->crtc = crtc;
5030 	connector->encoder = encoder;
5031 
5032 	intel_crtc = to_intel_crtc(crtc);
5033 	old->dpms_mode = intel_crtc->dpms_mode;
5034 	old->load_detect_temp = true;
5035 	old->release_fb = NULL;
5036 
5037 	if (!mode)
5038 		mode = &load_detect_mode;
5039 
5040 	old_fb = crtc->fb;
5041 
5042 	/* We need a framebuffer large enough to accommodate all accesses
5043 	 * that the plane may generate whilst we perform load detection.
5044 	 * We can not rely on the fbcon either being present (we get called
5045 	 * during its initialisation to detect all boot displays, or it may
5046 	 * not even exist) or that it is large enough to satisfy the
5047 	 * requested mode.
5048 	 */
5049 	r = mode_fits_in_fbdev(dev, mode, &crtc->fb);
5050 	if (crtc->fb == NULL) {
5051 		DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
5052 		r = intel_framebuffer_create_for_mode(dev, mode, 24, 32,
5053 		    &crtc->fb);
5054 		old->release_fb = crtc->fb;
5055 	} else
5056 		DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
5057 	if (r != 0) {
5058 		DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
5059 		crtc->fb = old_fb;
5060 		return false;
5061 	}
5062 
5063 	if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
5064 		DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
5065 		if (old->release_fb)
5066 			old->release_fb->funcs->destroy(old->release_fb);
5067 		crtc->fb = old_fb;
5068 		return false;
5069 	}
5070 
5071 	/* let the connector get through one full cycle before testing */
5072 	intel_wait_for_vblank(dev, intel_crtc->pipe);
5073 
5074 	return true;
5075 }
5076 
5077 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
5078 				    struct drm_connector *connector,
5079 				    struct intel_load_detect_pipe *old)
5080 {
5081 	struct drm_encoder *encoder = &intel_encoder->base;
5082 	struct drm_device *dev = encoder->dev;
5083 	struct drm_crtc *crtc = encoder->crtc;
5084 	struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
5085 	struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
5086 
5087 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5088 		      connector->base.id, drm_get_connector_name(connector),
5089 		      encoder->base.id, drm_get_encoder_name(encoder));
5090 
5091 	if (old->load_detect_temp) {
5092 		connector->encoder = NULL;
5093 		drm_helper_disable_unused_functions(dev);
5094 
5095 		if (old->release_fb)
5096 			old->release_fb->funcs->destroy(old->release_fb);
5097 
5098 		return;
5099 	}
5100 
5101 	/* Switch crtc and encoder back off if necessary */
5102 	if (old->dpms_mode != DRM_MODE_DPMS_ON) {
5103 		encoder_funcs->dpms(encoder, old->dpms_mode);
5104 		crtc_funcs->dpms(crtc, old->dpms_mode);
5105 	}
5106 }
5107 
5108 /* Returns the clock of the currently programmed mode of the given pipe. */
5109 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
5110 {
5111 	struct drm_i915_private *dev_priv = dev->dev_private;
5112 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5113 	int pipe = intel_crtc->pipe;
5114 	u32 dpll = I915_READ(DPLL(pipe));
5115 	u32 fp;
5116 	intel_clock_t clock;
5117 
5118 	if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
5119 		fp = I915_READ(FP0(pipe));
5120 	else
5121 		fp = I915_READ(FP1(pipe));
5122 
5123 	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
5124 	if (IS_PINEVIEW(dev)) {
5125 		clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
5126 		clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
5127 	} else {
5128 		clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
5129 		clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
5130 	}
5131 
5132 	if (!IS_GEN2(dev)) {
5133 		if (IS_PINEVIEW(dev))
5134 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
5135 				DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
5136 		else
5137 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
5138 			       DPLL_FPA01_P1_POST_DIV_SHIFT);
5139 
5140 		switch (dpll & DPLL_MODE_MASK) {
5141 		case DPLLB_MODE_DAC_SERIAL:
5142 			clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
5143 				5 : 10;
5144 			break;
5145 		case DPLLB_MODE_LVDS:
5146 			clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
5147 				7 : 14;
5148 			break;
5149 		default:
5150 			DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
5151 				  "mode\n", (int)(dpll & DPLL_MODE_MASK));
5152 			return 0;
5153 		}
5154 
5155 		/* XXX: Handle the 100Mhz refclk */
5156 		intel_clock(dev, 96000, &clock);
5157 	} else {
5158 		bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
5159 
5160 		if (is_lvds) {
5161 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
5162 				       DPLL_FPA01_P1_POST_DIV_SHIFT);
5163 			clock.p2 = 14;
5164 
5165 			if ((dpll & PLL_REF_INPUT_MASK) ==
5166 			    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
5167 				/* XXX: might not be 66MHz */
5168 				intel_clock(dev, 66000, &clock);
5169 			} else
5170 				intel_clock(dev, 48000, &clock);
5171 		} else {
5172 			if (dpll & PLL_P1_DIVIDE_BY_TWO)
5173 				clock.p1 = 2;
5174 			else {
5175 				clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
5176 					    DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
5177 			}
5178 			if (dpll & PLL_P2_DIVIDE_BY_4)
5179 				clock.p2 = 4;
5180 			else
5181 				clock.p2 = 2;
5182 
5183 			intel_clock(dev, 48000, &clock);
5184 		}
5185 	}
5186 
5187 	/* XXX: It would be nice to validate the clocks, but we can't reuse
5188 	 * i830PllIsValid() because it relies on the xf86_config connector
5189 	 * configuration being accurate, which it isn't necessarily.
5190 	 */
5191 
5192 	return clock.dot;
5193 }
5194 
5195 /** Returns the currently programmed mode of the given pipe. */
5196 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
5197 					     struct drm_crtc *crtc)
5198 {
5199 	struct drm_i915_private *dev_priv = dev->dev_private;
5200 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5201 	int pipe = intel_crtc->pipe;
5202 	struct drm_display_mode *mode;
5203 	int htot = I915_READ(HTOTAL(pipe));
5204 	int hsync = I915_READ(HSYNC(pipe));
5205 	int vtot = I915_READ(VTOTAL(pipe));
5206 	int vsync = I915_READ(VSYNC(pipe));
5207 
5208 	mode = kmalloc(sizeof(*mode), DRM_MEM_KMS, M_WAITOK | M_ZERO);
5209 
5210 	mode->clock = intel_crtc_clock_get(dev, crtc);
5211 	mode->hdisplay = (htot & 0xffff) + 1;
5212 	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
5213 	mode->hsync_start = (hsync & 0xffff) + 1;
5214 	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
5215 	mode->vdisplay = (vtot & 0xffff) + 1;
5216 	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
5217 	mode->vsync_start = (vsync & 0xffff) + 1;
5218 	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
5219 
5220 	drm_mode_set_name(mode);
5221 	drm_mode_set_crtcinfo(mode, 0);
5222 
5223 	return mode;
5224 }
5225 
5226 #define GPU_IDLE_TIMEOUT (500 /* ms */ * 1000 / hz)
5227 
5228 /* When this timer fires, we've been idle for awhile */
5229 static void intel_gpu_idle_timer(void *arg)
5230 {
5231 	struct drm_device *dev = arg;
5232 	drm_i915_private_t *dev_priv = dev->dev_private;
5233 
5234 	if (!list_empty(&dev_priv->mm.active_list)) {
5235 		/* Still processing requests, so just re-arm the timer. */
5236 		callout_reset(&dev_priv->idle_callout, GPU_IDLE_TIMEOUT,
5237 		    i915_hangcheck_elapsed, dev);
5238 		return;
5239 	}
5240 
5241 	dev_priv->busy = false;
5242 	taskqueue_enqueue(dev_priv->tq, &dev_priv->idle_task);
5243 }
5244 
5245 #define CRTC_IDLE_TIMEOUT (1000 /* ms */ * 1000 / hz)
5246 
5247 static void intel_crtc_idle_timer(void *arg)
5248 {
5249 	struct intel_crtc *intel_crtc = arg;
5250 	struct drm_crtc *crtc = &intel_crtc->base;
5251 	drm_i915_private_t *dev_priv = crtc->dev->dev_private;
5252 	struct intel_framebuffer *intel_fb;
5253 
5254 	intel_fb = to_intel_framebuffer(crtc->fb);
5255 	if (intel_fb && intel_fb->obj->active) {
5256 		/* The framebuffer is still being accessed by the GPU. */
5257 		callout_reset(&intel_crtc->idle_callout, CRTC_IDLE_TIMEOUT,
5258 		    i915_hangcheck_elapsed, crtc->dev);
5259 		return;
5260 	}
5261 
5262 	intel_crtc->busy = false;
5263 	taskqueue_enqueue(dev_priv->tq, &dev_priv->idle_task);
5264 }
5265 
5266 static void intel_increase_pllclock(struct drm_crtc *crtc)
5267 {
5268 	struct drm_device *dev = crtc->dev;
5269 	drm_i915_private_t *dev_priv = dev->dev_private;
5270 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5271 	int pipe = intel_crtc->pipe;
5272 	int dpll_reg = DPLL(pipe);
5273 	int dpll;
5274 
5275 	if (HAS_PCH_SPLIT(dev))
5276 		return;
5277 
5278 	if (!dev_priv->lvds_downclock_avail)
5279 		return;
5280 
5281 	dpll = I915_READ(dpll_reg);
5282 	if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
5283 		DRM_DEBUG_DRIVER("upclocking LVDS\n");
5284 
5285 		assert_panel_unlocked(dev_priv, pipe);
5286 
5287 		dpll &= ~DISPLAY_RATE_SELECT_FPA1;
5288 		I915_WRITE(dpll_reg, dpll);
5289 		intel_wait_for_vblank(dev, pipe);
5290 
5291 		dpll = I915_READ(dpll_reg);
5292 		if (dpll & DISPLAY_RATE_SELECT_FPA1)
5293 			DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
5294 	}
5295 
5296 	/* Schedule downclock */
5297 	callout_reset(&intel_crtc->idle_callout, CRTC_IDLE_TIMEOUT,
5298 	    intel_crtc_idle_timer, intel_crtc);
5299 }
5300 
5301 static void intel_decrease_pllclock(struct drm_crtc *crtc)
5302 {
5303 	struct drm_device *dev = crtc->dev;
5304 	drm_i915_private_t *dev_priv = dev->dev_private;
5305 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5306 
5307 	if (HAS_PCH_SPLIT(dev))
5308 		return;
5309 
5310 	if (!dev_priv->lvds_downclock_avail)
5311 		return;
5312 
5313 	/*
5314 	 * Since this is called by a timer, we should never get here in
5315 	 * the manual case.
5316 	 */
5317 	if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
5318 		int pipe = intel_crtc->pipe;
5319 		int dpll_reg = DPLL(pipe);
5320 		u32 dpll;
5321 
5322 		DRM_DEBUG_DRIVER("downclocking LVDS\n");
5323 
5324 		assert_panel_unlocked(dev_priv, pipe);
5325 
5326 		dpll = I915_READ(dpll_reg);
5327 		dpll |= DISPLAY_RATE_SELECT_FPA1;
5328 		I915_WRITE(dpll_reg, dpll);
5329 		intel_wait_for_vblank(dev, pipe);
5330 		dpll = I915_READ(dpll_reg);
5331 		if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
5332 			DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
5333 	}
5334 }
5335 
5336 /**
5337  * intel_idle_update - adjust clocks for idleness
5338  * @work: work struct
5339  *
5340  * Either the GPU or display (or both) went idle.  Check the busy status
5341  * here and adjust the CRTC and GPU clocks as necessary.
5342  */
5343 static void intel_idle_update(void *arg, int pending)
5344 {
5345 	drm_i915_private_t *dev_priv = arg;
5346 	struct drm_device *dev = dev_priv->dev;
5347 	struct drm_crtc *crtc;
5348 	struct intel_crtc *intel_crtc;
5349 
5350 	if (!i915_powersave)
5351 		return;
5352 
5353 	DRM_LOCK(dev);
5354 
5355 	i915_update_gfx_val(dev_priv);
5356 
5357 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5358 		/* Skip inactive CRTCs */
5359 		if (!crtc->fb)
5360 			continue;
5361 
5362 		intel_crtc = to_intel_crtc(crtc);
5363 		if (!intel_crtc->busy)
5364 			intel_decrease_pllclock(crtc);
5365 	}
5366 
5367 	DRM_UNLOCK(dev);
5368 }
5369 
5370 /**
5371  * intel_mark_busy - mark the GPU and possibly the display busy
5372  * @dev: drm device
5373  * @obj: object we're operating on
5374  *
5375  * Callers can use this function to indicate that the GPU is busy processing
5376  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
5377  * buffer), we'll also mark the display as busy, so we know to increase its
5378  * clock frequency.
5379  */
5380 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
5381 {
5382 	drm_i915_private_t *dev_priv = dev->dev_private;
5383 	struct drm_crtc *crtc = NULL;
5384 	struct intel_framebuffer *intel_fb;
5385 	struct intel_crtc *intel_crtc;
5386 
5387 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
5388 		return;
5389 
5390 	if (!dev_priv->busy)
5391 		dev_priv->busy = true;
5392 	else
5393 		callout_reset(&dev_priv->idle_callout, GPU_IDLE_TIMEOUT,
5394 		    intel_gpu_idle_timer, dev);
5395 
5396 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5397 		if (!crtc->fb)
5398 			continue;
5399 
5400 		intel_crtc = to_intel_crtc(crtc);
5401 		intel_fb = to_intel_framebuffer(crtc->fb);
5402 		if (intel_fb->obj == obj) {
5403 			if (!intel_crtc->busy) {
5404 				/* Non-busy -> busy, upclock */
5405 				intel_increase_pllclock(crtc);
5406 				intel_crtc->busy = true;
5407 			} else {
5408 				/* Busy -> busy, put off timer */
5409 				callout_reset(&intel_crtc->idle_callout,
5410 				    CRTC_IDLE_TIMEOUT, intel_crtc_idle_timer,
5411 				    intel_crtc);
5412 			}
5413 		}
5414 	}
5415 }
5416 
5417 static void intel_crtc_destroy(struct drm_crtc *crtc)
5418 {
5419 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5420 	struct drm_device *dev = crtc->dev;
5421 	struct drm_i915_private *dev_priv = dev->dev_private;
5422 	struct intel_unpin_work *work;
5423 
5424 	lockmgr(&dev->event_lock, LK_EXCLUSIVE);
5425 	work = intel_crtc->unpin_work;
5426 	intel_crtc->unpin_work = NULL;
5427 	lockmgr(&dev->event_lock, LK_RELEASE);
5428 
5429 	if (work) {
5430 		taskqueue_cancel(dev_priv->tq, &work->task, NULL);
5431 		taskqueue_drain(dev_priv->tq, &work->task);
5432 		drm_free(work, DRM_MEM_KMS);
5433 	}
5434 
5435 	drm_crtc_cleanup(crtc);
5436 
5437 	drm_free(intel_crtc, DRM_MEM_KMS);
5438 }
5439 
5440 static void intel_unpin_work_fn(void *arg, int pending)
5441 {
5442 	struct intel_unpin_work *work = arg;
5443 	struct drm_device *dev;
5444 
5445 	dev = work->dev;
5446 	DRM_LOCK(dev);
5447 	intel_unpin_fb_obj(work->old_fb_obj);
5448 	drm_gem_object_unreference(&work->pending_flip_obj->base);
5449 	drm_gem_object_unreference(&work->old_fb_obj->base);
5450 
5451 	intel_update_fbc(work->dev);
5452 	DRM_UNLOCK(dev);
5453 	drm_free(work, DRM_MEM_KMS);
5454 }
5455 
5456 static void do_intel_finish_page_flip(struct drm_device *dev,
5457 				      struct drm_crtc *crtc)
5458 {
5459 	drm_i915_private_t *dev_priv = dev->dev_private;
5460 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5461 	struct intel_unpin_work *work;
5462 	struct drm_i915_gem_object *obj;
5463 
5464 	/* Ignore early vblank irqs */
5465 	if (intel_crtc == NULL)
5466 		return;
5467 
5468 	lockmgr(&dev->event_lock, LK_EXCLUSIVE);
5469 	work = intel_crtc->unpin_work;
5470 	if (work == NULL || !atomic_read(&work->pending)) {
5471 		lockmgr(&dev->event_lock, LK_RELEASE);
5472 		return;
5473 	}
5474 
5475 	intel_crtc->unpin_work = NULL;
5476 
5477 	if (work->event)
5478 		drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
5479 
5480 	drm_vblank_put(dev, intel_crtc->pipe);
5481 
5482 	lockmgr(&dev->event_lock, LK_RELEASE);
5483 
5484 	obj = work->old_fb_obj;
5485 
5486 	atomic_clear_mask(1 << intel_crtc->plane,
5487 			  &obj->pending_flip.counter);
5488 	wakeup(&obj->pending_flip);
5489 
5490 	taskqueue_enqueue(dev_priv->tq, &work->task);
5491 }
5492 
5493 void intel_finish_page_flip(struct drm_device *dev, int pipe)
5494 {
5495 	drm_i915_private_t *dev_priv = dev->dev_private;
5496 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
5497 
5498 	do_intel_finish_page_flip(dev, crtc);
5499 }
5500 
5501 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
5502 {
5503 	drm_i915_private_t *dev_priv = dev->dev_private;
5504 	struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
5505 
5506 	do_intel_finish_page_flip(dev, crtc);
5507 }
5508 
5509 void intel_prepare_page_flip(struct drm_device *dev, int plane)
5510 {
5511 	drm_i915_private_t *dev_priv = dev->dev_private;
5512 	struct intel_crtc *intel_crtc =
5513 		to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
5514 
5515 	lockmgr(&dev->event_lock, LK_EXCLUSIVE);
5516 	if (intel_crtc->unpin_work)
5517 		atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
5518 	lockmgr(&dev->event_lock, LK_RELEASE);
5519 }
5520 
5521 static int intel_gen2_queue_flip(struct drm_device *dev,
5522 				 struct drm_crtc *crtc,
5523 				 struct drm_framebuffer *fb,
5524 				 struct drm_i915_gem_object *obj)
5525 {
5526 	struct drm_i915_private *dev_priv = dev->dev_private;
5527 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5528 	unsigned long offset;
5529 	u32 flip_mask;
5530 	int ret;
5531 
5532 	ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
5533 	if (ret)
5534 		goto out;
5535 
5536 	/* Offset into the new buffer for cases of shared fbs between CRTCs */
5537 	offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
5538 
5539 	ret = BEGIN_LP_RING(6);
5540 	if (ret)
5541 		goto out;
5542 
5543 	/* Can't queue multiple flips, so wait for the previous
5544 	 * one to finish before executing the next.
5545 	 */
5546 	if (intel_crtc->plane)
5547 		flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
5548 	else
5549 		flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
5550 	OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
5551 	OUT_RING(MI_NOOP);
5552 	OUT_RING(MI_DISPLAY_FLIP |
5553 		 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5554 	OUT_RING(fb->pitches[0]);
5555 	OUT_RING(obj->gtt_offset + offset);
5556 	OUT_RING(0); /* aux display base address, unused */
5557 	ADVANCE_LP_RING();
5558 out:
5559 	return ret;
5560 }
5561 
5562 static int intel_gen3_queue_flip(struct drm_device *dev,
5563 				 struct drm_crtc *crtc,
5564 				 struct drm_framebuffer *fb,
5565 				 struct drm_i915_gem_object *obj)
5566 {
5567 	struct drm_i915_private *dev_priv = dev->dev_private;
5568 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5569 	unsigned long offset;
5570 	u32 flip_mask;
5571 	int ret;
5572 
5573 	ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
5574 	if (ret)
5575 		goto out;
5576 
5577 	/* Offset into the new buffer for cases of shared fbs between CRTCs */
5578 	offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
5579 
5580 	ret = BEGIN_LP_RING(6);
5581 	if (ret)
5582 		goto out;
5583 
5584 	if (intel_crtc->plane)
5585 		flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
5586 	else
5587 		flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
5588 	OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
5589 	OUT_RING(MI_NOOP);
5590 	OUT_RING(MI_DISPLAY_FLIP_I915 |
5591 		 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5592 	OUT_RING(fb->pitches[0]);
5593 	OUT_RING(obj->gtt_offset + offset);
5594 	OUT_RING(MI_NOOP);
5595 
5596 	ADVANCE_LP_RING();
5597 out:
5598 	return ret;
5599 }
5600 
5601 static int intel_gen4_queue_flip(struct drm_device *dev,
5602 				 struct drm_crtc *crtc,
5603 				 struct drm_framebuffer *fb,
5604 				 struct drm_i915_gem_object *obj)
5605 {
5606 	struct drm_i915_private *dev_priv = dev->dev_private;
5607 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5608 	uint32_t pf, pipesrc;
5609 	int ret;
5610 
5611 	ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
5612 	if (ret)
5613 		goto out;
5614 
5615 	ret = BEGIN_LP_RING(4);
5616 	if (ret)
5617 		goto out;
5618 
5619 	/* i965+ uses the linear or tiled offsets from the
5620 	 * Display Registers (which do not change across a page-flip)
5621 	 * so we need only reprogram the base address.
5622 	 */
5623 	OUT_RING(MI_DISPLAY_FLIP |
5624 		 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5625 	OUT_RING(fb->pitches[0]);
5626 	OUT_RING(obj->gtt_offset | obj->tiling_mode);
5627 
5628 	/* XXX Enabling the panel-fitter across page-flip is so far
5629 	 * untested on non-native modes, so ignore it for now.
5630 	 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
5631 	 */
5632 	pf = 0;
5633 	pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
5634 	OUT_RING(pf | pipesrc);
5635 	ADVANCE_LP_RING();
5636 out:
5637 	return ret;
5638 }
5639 
5640 static int intel_gen6_queue_flip(struct drm_device *dev,
5641 				 struct drm_crtc *crtc,
5642 				 struct drm_framebuffer *fb,
5643 				 struct drm_i915_gem_object *obj)
5644 {
5645 	struct drm_i915_private *dev_priv = dev->dev_private;
5646 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5647 	uint32_t pf, pipesrc;
5648 	int ret;
5649 
5650 	ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
5651 	if (ret)
5652 		goto out;
5653 
5654 	ret = BEGIN_LP_RING(4);
5655 	if (ret)
5656 		goto out;
5657 
5658 	OUT_RING(MI_DISPLAY_FLIP |
5659 		 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5660 	OUT_RING(fb->pitches[0] | obj->tiling_mode);
5661 	OUT_RING(obj->gtt_offset);
5662 
5663 	/* Contrary to the suggestions in the documentation,
5664 	 * "Enable Panel Fitter" does not seem to be required when page
5665 	 * flipping with a non-native mode, and worse causes a normal
5666 	 * modeset to fail.
5667 	 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
5668 	 */
5669 	pf = 0;
5670 	pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
5671 	OUT_RING(pf | pipesrc);
5672 	ADVANCE_LP_RING();
5673 out:
5674 	return ret;
5675 }
5676 
5677 /*
5678  * On gen7 we currently use the blit ring because (in early silicon at least)
5679  * the render ring doesn't give us interrpts for page flip completion, which
5680  * means clients will hang after the first flip is queued.  Fortunately the
5681  * blit ring generates interrupts properly, so use it instead.
5682  */
5683 static int intel_gen7_queue_flip(struct drm_device *dev,
5684 				 struct drm_crtc *crtc,
5685 				 struct drm_framebuffer *fb,
5686 				 struct drm_i915_gem_object *obj)
5687 {
5688 	struct drm_i915_private *dev_priv = dev->dev_private;
5689 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5690 	struct intel_ring_buffer *ring = &dev_priv->rings[BCS];
5691 	int ret;
5692 
5693 	ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
5694 	if (ret)
5695 		goto out;
5696 
5697 	ret = intel_ring_begin(ring, 4);
5698 	if (ret)
5699 		goto out;
5700 
5701 	intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
5702 	intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
5703 	intel_ring_emit(ring, (obj->gtt_offset));
5704 	intel_ring_emit(ring, (MI_NOOP));
5705 	intel_ring_advance(ring);
5706 out:
5707 	return ret;
5708 }
5709 
5710 static int intel_default_queue_flip(struct drm_device *dev,
5711 				    struct drm_crtc *crtc,
5712 				    struct drm_framebuffer *fb,
5713 				    struct drm_i915_gem_object *obj)
5714 {
5715 	return -ENODEV;
5716 }
5717 
5718 static int intel_crtc_page_flip(struct drm_crtc *crtc,
5719 				struct drm_framebuffer *fb,
5720 				struct drm_pending_vblank_event *event)
5721 {
5722 	struct drm_device *dev = crtc->dev;
5723 	struct drm_i915_private *dev_priv = dev->dev_private;
5724 	struct intel_framebuffer *intel_fb;
5725 	struct drm_i915_gem_object *obj;
5726 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5727 	struct intel_unpin_work *work;
5728 	int ret;
5729 
5730 	work = kmalloc(sizeof *work, DRM_MEM_KMS, M_WAITOK | M_ZERO);
5731 
5732 	work->event = event;
5733 	work->dev = crtc->dev;
5734 	intel_fb = to_intel_framebuffer(crtc->fb);
5735 	work->old_fb_obj = intel_fb->obj;
5736 	TASK_INIT(&work->task, 0, intel_unpin_work_fn, work);
5737 
5738 	ret = drm_vblank_get(dev, intel_crtc->pipe);
5739 	if (ret)
5740 		goto free_work;
5741 
5742 	/* We borrow the event spin lock for protecting unpin_work */
5743 	lockmgr(&dev->event_lock, LK_EXCLUSIVE);
5744 	if (intel_crtc->unpin_work) {
5745 		lockmgr(&dev->event_lock, LK_RELEASE);
5746 		drm_free(work, DRM_MEM_KMS);
5747 		drm_vblank_put(dev, intel_crtc->pipe);
5748 
5749 		DRM_DEBUG("flip queue: crtc already busy\n");
5750 		return -EBUSY;
5751 	}
5752 	intel_crtc->unpin_work = work;
5753 	lockmgr(&dev->event_lock, LK_RELEASE);
5754 
5755 	intel_fb = to_intel_framebuffer(fb);
5756 	obj = intel_fb->obj;
5757 
5758 	DRM_LOCK(dev);
5759 
5760 	/* Reference the objects for the scheduled work. */
5761 	drm_gem_object_reference(&work->old_fb_obj->base);
5762 	drm_gem_object_reference(&obj->base);
5763 
5764 	crtc->fb = fb;
5765 
5766 	work->pending_flip_obj = obj;
5767 
5768 	work->enable_stall_check = true;
5769 
5770 	/* Block clients from rendering to the new back buffer until
5771 	 * the flip occurs and the object is no longer visible.
5772 	 */
5773 	atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
5774 
5775 	ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
5776 	if (ret)
5777 		goto cleanup_pending;
5778 	intel_disable_fbc(dev);
5779 	DRM_UNLOCK(dev);
5780 
5781 	return 0;
5782 
5783 cleanup_pending:
5784 	atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
5785 	drm_gem_object_unreference(&work->old_fb_obj->base);
5786 	drm_gem_object_unreference(&obj->base);
5787 	DRM_UNLOCK(dev);
5788 
5789 	lockmgr(&dev->event_lock, LK_EXCLUSIVE);
5790 	intel_crtc->unpin_work = NULL;
5791 	lockmgr(&dev->event_lock, LK_RELEASE);
5792 
5793 	drm_vblank_put(dev, intel_crtc->pipe);
5794 free_work:
5795 	drm_free(work, DRM_MEM_KMS);
5796 
5797 	return ret;
5798 }
5799 
5800 static void intel_sanitize_modesetting(struct drm_device *dev,
5801 				       int pipe, int plane)
5802 {
5803 	struct drm_i915_private *dev_priv = dev->dev_private;
5804 	u32 reg, val;
5805 
5806 	/* Clear any frame start delays used for debugging left by the BIOS */
5807 	for_each_pipe(pipe) {
5808 		reg = PIPECONF(pipe);
5809 		I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
5810 	}
5811 
5812 	if (HAS_PCH_SPLIT(dev))
5813 		return;
5814 
5815 	/* Who knows what state these registers were left in by the BIOS or
5816 	 * grub?
5817 	 *
5818 	 * If we leave the registers in a conflicting state (e.g. with the
5819 	 * display plane reading from the other pipe than the one we intend
5820 	 * to use) then when we attempt to teardown the active mode, we will
5821 	 * not disable the pipes and planes in the correct order -- leaving
5822 	 * a plane reading from a disabled pipe and possibly leading to
5823 	 * undefined behaviour.
5824 	 */
5825 
5826 	reg = DSPCNTR(plane);
5827 	val = I915_READ(reg);
5828 
5829 	if ((val & DISPLAY_PLANE_ENABLE) == 0)
5830 		return;
5831 	if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
5832 		return;
5833 
5834 	/* This display plane is active and attached to the other CPU pipe. */
5835 	pipe = !pipe;
5836 
5837 	/* Disable the plane and wait for it to stop reading from the pipe. */
5838 	intel_disable_plane(dev_priv, plane, pipe);
5839 	intel_disable_pipe(dev_priv, pipe);
5840 }
5841 
5842 static void intel_crtc_reset(struct drm_crtc *crtc)
5843 {
5844 	struct drm_device *dev = crtc->dev;
5845 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5846 
5847 	/* Reset flags back to the 'unknown' status so that they
5848 	 * will be correctly set on the initial modeset.
5849 	 */
5850 	intel_crtc->dpms_mode = -1;
5851 
5852 	/* We need to fix up any BIOS configuration that conflicts with
5853 	 * our expectations.
5854 	 */
5855 	intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
5856 }
5857 
5858 static struct drm_crtc_helper_funcs intel_helper_funcs = {
5859 	.dpms = intel_crtc_dpms,
5860 	.mode_fixup = intel_crtc_mode_fixup,
5861 	.mode_set = intel_crtc_mode_set,
5862 	.mode_set_base = intel_pipe_set_base,
5863 	.mode_set_base_atomic = intel_pipe_set_base_atomic,
5864 	.load_lut = intel_crtc_load_lut,
5865 	.disable = intel_crtc_disable,
5866 };
5867 
5868 static const struct drm_crtc_funcs intel_crtc_funcs = {
5869 	.reset = intel_crtc_reset,
5870 	.cursor_set = intel_crtc_cursor_set,
5871 	.cursor_move = intel_crtc_cursor_move,
5872 	.gamma_set = intel_crtc_gamma_set,
5873 	.set_config = drm_crtc_helper_set_config,
5874 	.destroy = intel_crtc_destroy,
5875 	.page_flip = intel_crtc_page_flip,
5876 };
5877 
5878 static void intel_crtc_init(struct drm_device *dev, int pipe)
5879 {
5880 	drm_i915_private_t *dev_priv = dev->dev_private;
5881 	struct intel_crtc *intel_crtc;
5882 	int i;
5883 
5884 	intel_crtc = kmalloc(sizeof(struct intel_crtc) +
5885 	    (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)),
5886 	    DRM_MEM_KMS, M_WAITOK | M_ZERO);
5887 
5888 	drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
5889 
5890 	drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
5891 	for (i = 0; i < 256; i++) {
5892 		intel_crtc->lut_r[i] = i;
5893 		intel_crtc->lut_g[i] = i;
5894 		intel_crtc->lut_b[i] = i;
5895 	}
5896 
5897 	/* Swap pipes & planes for FBC on pre-965 */
5898 	intel_crtc->pipe = pipe;
5899 	intel_crtc->plane = pipe;
5900 	if (IS_MOBILE(dev) && IS_GEN3(dev)) {
5901 		DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
5902 		intel_crtc->plane = !pipe;
5903 	}
5904 
5905 	KASSERT(pipe < DRM_ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) &&
5906 	    dev_priv->plane_to_crtc_mapping[intel_crtc->plane] == NULL,
5907 	    ("plane_to_crtc is already initialized"));
5908 	dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
5909 	dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
5910 
5911 	intel_crtc_reset(&intel_crtc->base);
5912 	intel_crtc->active = true; /* force the pipe off on setup_init_config */
5913 	intel_crtc->bpp = 24; /* default for pre-Ironlake */
5914 
5915 	if (HAS_PCH_SPLIT(dev)) {
5916 		if (pipe == 2 && IS_IVYBRIDGE(dev))
5917 			intel_crtc->no_pll = true;
5918 		intel_helper_funcs.prepare = ironlake_crtc_prepare;
5919 		intel_helper_funcs.commit = ironlake_crtc_commit;
5920 	} else {
5921 		intel_helper_funcs.prepare = i9xx_crtc_prepare;
5922 		intel_helper_funcs.commit = i9xx_crtc_commit;
5923 	}
5924 
5925 	drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
5926 
5927 	intel_crtc->busy = false;
5928 
5929 	callout_init_mp(&intel_crtc->idle_callout);
5930 }
5931 
5932 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
5933 				struct drm_file *file)
5934 {
5935 	drm_i915_private_t *dev_priv = dev->dev_private;
5936 	struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
5937 	struct drm_mode_object *drmmode_obj;
5938 	struct intel_crtc *crtc;
5939 
5940 	if (!dev_priv) {
5941 		DRM_ERROR("called with no initialization\n");
5942 		return -EINVAL;
5943 	}
5944 
5945 	drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
5946 			DRM_MODE_OBJECT_CRTC);
5947 
5948 	if (!drmmode_obj) {
5949 		DRM_ERROR("no such CRTC id\n");
5950 		return -EINVAL;
5951 	}
5952 
5953 	crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
5954 	pipe_from_crtc_id->pipe = crtc->pipe;
5955 
5956 	return 0;
5957 }
5958 
5959 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
5960 {
5961 	struct intel_encoder *encoder;
5962 	int index_mask = 0;
5963 	int entry = 0;
5964 
5965 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
5966 		if (type_mask & encoder->clone_mask)
5967 			index_mask |= (1 << entry);
5968 		entry++;
5969 	}
5970 
5971 	return index_mask;
5972 }
5973 
5974 static bool has_edp_a(struct drm_device *dev)
5975 {
5976 	struct drm_i915_private *dev_priv = dev->dev_private;
5977 
5978 	if (!IS_MOBILE(dev))
5979 		return false;
5980 
5981 	if ((I915_READ(DP_A) & DP_DETECTED) == 0)
5982 		return false;
5983 
5984 	if (IS_GEN5(dev) &&
5985 	    (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
5986 		return false;
5987 
5988 	return true;
5989 }
5990 
5991 static void intel_setup_outputs(struct drm_device *dev)
5992 {
5993 	struct drm_i915_private *dev_priv = dev->dev_private;
5994 	struct intel_encoder *encoder;
5995 	bool dpd_is_edp = false;
5996 	bool has_lvds;
5997 
5998 	has_lvds = intel_lvds_init(dev);
5999 	if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
6000 		/* disable the panel fitter on everything but LVDS */
6001 		I915_WRITE(PFIT_CONTROL, 0);
6002 	}
6003 
6004 	if (HAS_PCH_SPLIT(dev)) {
6005 		dpd_is_edp = intel_dpd_is_edp(dev);
6006 
6007 		if (has_edp_a(dev))
6008 			intel_dp_init(dev, DP_A);
6009 
6010 		if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
6011 			intel_dp_init(dev, PCH_DP_D);
6012 	}
6013 
6014 	intel_crt_init(dev);
6015 
6016 	if (HAS_PCH_SPLIT(dev)) {
6017 		int found;
6018 
6019 		DRM_DEBUG_KMS(
6020 "HDMIB %d PCH_DP_B %d HDMIC %d HDMID %d PCH_DP_C %d PCH_DP_D %d LVDS %d\n",
6021 		    (I915_READ(HDMIB) & PORT_DETECTED) != 0,
6022 		    (I915_READ(PCH_DP_B) & DP_DETECTED) != 0,
6023 		    (I915_READ(HDMIC) & PORT_DETECTED) != 0,
6024 		    (I915_READ(HDMID) & PORT_DETECTED) != 0,
6025 		    (I915_READ(PCH_DP_C) & DP_DETECTED) != 0,
6026 		    (I915_READ(PCH_DP_D) & DP_DETECTED) != 0,
6027 		    (I915_READ(PCH_LVDS) & LVDS_DETECTED) != 0);
6028 
6029 		if (I915_READ(HDMIB) & PORT_DETECTED) {
6030 			/* PCH SDVOB multiplex with HDMIB */
6031 			found = intel_sdvo_init(dev, PCH_SDVOB);
6032 			if (!found)
6033 				intel_hdmi_init(dev, HDMIB);
6034 			if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
6035 				intel_dp_init(dev, PCH_DP_B);
6036 		}
6037 
6038 		if (I915_READ(HDMIC) & PORT_DETECTED)
6039 			intel_hdmi_init(dev, HDMIC);
6040 
6041 		if (I915_READ(HDMID) & PORT_DETECTED)
6042 			intel_hdmi_init(dev, HDMID);
6043 
6044 		if (I915_READ(PCH_DP_C) & DP_DETECTED)
6045 			intel_dp_init(dev, PCH_DP_C);
6046 
6047 		if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
6048 			intel_dp_init(dev, PCH_DP_D);
6049 
6050 	} else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
6051 		bool found = false;
6052 
6053 		if (I915_READ(SDVOB) & SDVO_DETECTED) {
6054 			DRM_DEBUG_KMS("probing SDVOB\n");
6055 			found = intel_sdvo_init(dev, SDVOB);
6056 			if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
6057 				DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
6058 				intel_hdmi_init(dev, SDVOB);
6059 			}
6060 
6061 			if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
6062 				DRM_DEBUG_KMS("probing DP_B\n");
6063 				intel_dp_init(dev, DP_B);
6064 			}
6065 		}
6066 
6067 		/* Before G4X SDVOC doesn't have its own detect register */
6068 
6069 		if (I915_READ(SDVOB) & SDVO_DETECTED) {
6070 			DRM_DEBUG_KMS("probing SDVOC\n");
6071 			found = intel_sdvo_init(dev, SDVOC);
6072 		}
6073 
6074 		if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
6075 
6076 			if (SUPPORTS_INTEGRATED_HDMI(dev)) {
6077 				DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
6078 				intel_hdmi_init(dev, SDVOC);
6079 			}
6080 			if (SUPPORTS_INTEGRATED_DP(dev)) {
6081 				DRM_DEBUG_KMS("probing DP_C\n");
6082 				intel_dp_init(dev, DP_C);
6083 			}
6084 		}
6085 
6086 		if (SUPPORTS_INTEGRATED_DP(dev) &&
6087 		    (I915_READ(DP_D) & DP_DETECTED)) {
6088 			DRM_DEBUG_KMS("probing DP_D\n");
6089 			intel_dp_init(dev, DP_D);
6090 		}
6091 	} else if (IS_GEN2(dev)) {
6092 #if 1
6093 		KIB_NOTYET();
6094 #else
6095 		intel_dvo_init(dev);
6096 #endif
6097 	}
6098 
6099 	if (SUPPORTS_TV(dev))
6100 		intel_tv_init(dev);
6101 
6102 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
6103 		encoder->base.possible_crtcs = encoder->crtc_mask;
6104 		encoder->base.possible_clones =
6105 			intel_encoder_clones(dev, encoder->clone_mask);
6106 	}
6107 
6108 	/* disable all the possible outputs/crtcs before entering KMS mode */
6109 	drm_helper_disable_unused_functions(dev);
6110 
6111 	if (HAS_PCH_SPLIT(dev))
6112 		ironlake_init_pch_refclk(dev);
6113 }
6114 
6115 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
6116 {
6117 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
6118 
6119 	drm_framebuffer_cleanup(fb);
6120 	drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
6121 
6122 	drm_free(intel_fb, DRM_MEM_KMS);
6123 }
6124 
6125 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
6126 						struct drm_file *file,
6127 						unsigned int *handle)
6128 {
6129 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
6130 	struct drm_i915_gem_object *obj = intel_fb->obj;
6131 
6132 	return drm_gem_handle_create(file, &obj->base, handle);
6133 }
6134 
6135 static const struct drm_framebuffer_funcs intel_fb_funcs = {
6136 	.destroy = intel_user_framebuffer_destroy,
6137 	.create_handle = intel_user_framebuffer_create_handle,
6138 };
6139 
6140 int intel_framebuffer_init(struct drm_device *dev,
6141 			   struct intel_framebuffer *intel_fb,
6142 			   struct drm_mode_fb_cmd2 *mode_cmd,
6143 			   struct drm_i915_gem_object *obj)
6144 {
6145 	int ret;
6146 
6147 	if (obj->tiling_mode == I915_TILING_Y)
6148 		return -EINVAL;
6149 
6150 	if (mode_cmd->pitches[0] & 63)
6151 		return -EINVAL;
6152 
6153 	switch (mode_cmd->pixel_format) {
6154 	case DRM_FORMAT_RGB332:
6155 	case DRM_FORMAT_RGB565:
6156 	case DRM_FORMAT_XRGB8888:
6157 	case DRM_FORMAT_XBGR8888:
6158 	case DRM_FORMAT_ARGB8888:
6159 	case DRM_FORMAT_XRGB2101010:
6160 	case DRM_FORMAT_ARGB2101010:
6161 		/* RGB formats are common across chipsets */
6162 		break;
6163 	case DRM_FORMAT_YUYV:
6164 	case DRM_FORMAT_UYVY:
6165 	case DRM_FORMAT_YVYU:
6166 	case DRM_FORMAT_VYUY:
6167 		break;
6168 	default:
6169 		DRM_DEBUG_KMS("unsupported pixel format %u\n",
6170 				mode_cmd->pixel_format);
6171 		return -EINVAL;
6172 	}
6173 
6174 	ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
6175 	if (ret) {
6176 		DRM_ERROR("framebuffer init failed %d\n", ret);
6177 		return ret;
6178 	}
6179 
6180 	drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
6181 	intel_fb->obj = obj;
6182 	return 0;
6183 }
6184 
6185 static int
6186 intel_user_framebuffer_create(struct drm_device *dev,
6187     struct drm_file *filp, struct drm_mode_fb_cmd2 *mode_cmd,
6188     struct drm_framebuffer **res)
6189 {
6190 	struct drm_i915_gem_object *obj;
6191 
6192 	obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
6193 						mode_cmd->handles[0]));
6194 	if (&obj->base == NULL)
6195 		return (-ENOENT);
6196 
6197 	return (intel_framebuffer_create(dev, mode_cmd, obj, res));
6198 }
6199 
6200 static const struct drm_mode_config_funcs intel_mode_funcs = {
6201 	.fb_create = intel_user_framebuffer_create,
6202 	.output_poll_changed = intel_fb_output_poll_changed,
6203 };
6204 
6205 /* Set up chip specific display functions */
6206 static void intel_init_display(struct drm_device *dev)
6207 {
6208 	struct drm_i915_private *dev_priv = dev->dev_private;
6209 
6210 	/* We always want a DPMS function */
6211 	if (HAS_PCH_SPLIT(dev)) {
6212 		dev_priv->display.dpms = ironlake_crtc_dpms;
6213 		dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
6214 		dev_priv->display.update_plane = ironlake_update_plane;
6215 	} else {
6216 		dev_priv->display.dpms = i9xx_crtc_dpms;
6217 		dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
6218 		dev_priv->display.update_plane = i9xx_update_plane;
6219 	}
6220 
6221 	if (I915_HAS_FBC(dev)) {
6222 		if (HAS_PCH_SPLIT(dev)) {
6223 			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
6224 			dev_priv->display.enable_fbc = ironlake_enable_fbc;
6225 			dev_priv->display.disable_fbc = ironlake_disable_fbc;
6226 		} else if (IS_GM45(dev)) {
6227 			dev_priv->display.fbc_enabled = g4x_fbc_enabled;
6228 			dev_priv->display.enable_fbc = g4x_enable_fbc;
6229 			dev_priv->display.disable_fbc = g4x_disable_fbc;
6230 		} else if (IS_CRESTLINE(dev)) {
6231 			dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
6232 			dev_priv->display.enable_fbc = i8xx_enable_fbc;
6233 			dev_priv->display.disable_fbc = i8xx_disable_fbc;
6234 		}
6235 		/* 855GM needs testing */
6236 	}
6237 
6238 	/* Returns the core display clock speed */
6239 	if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
6240 		dev_priv->display.get_display_clock_speed =
6241 			i945_get_display_clock_speed;
6242 	else if (IS_I915G(dev))
6243 		dev_priv->display.get_display_clock_speed =
6244 			i915_get_display_clock_speed;
6245 	else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
6246 		dev_priv->display.get_display_clock_speed =
6247 			i9xx_misc_get_display_clock_speed;
6248 	else if (IS_I915GM(dev))
6249 		dev_priv->display.get_display_clock_speed =
6250 			i915gm_get_display_clock_speed;
6251 	else if (IS_I865G(dev))
6252 		dev_priv->display.get_display_clock_speed =
6253 			i865_get_display_clock_speed;
6254 	else if (IS_I85X(dev))
6255 		dev_priv->display.get_display_clock_speed =
6256 			i855_get_display_clock_speed;
6257 	else /* 852, 830 */
6258 		dev_priv->display.get_display_clock_speed =
6259 			i830_get_display_clock_speed;
6260 
6261 	/* For FIFO watermark updates */
6262 	if (HAS_PCH_SPLIT(dev)) {
6263 		dev_priv->display.force_wake_get = __gen6_gt_force_wake_get;
6264 		dev_priv->display.force_wake_put = __gen6_gt_force_wake_put;
6265 
6266 		/* IVB configs may use multi-threaded forcewake */
6267 		if (IS_IVYBRIDGE(dev)) {
6268 			u32	ecobus;
6269 
6270 			/* A small trick here - if the bios hasn't configured MT forcewake,
6271 			 * and if the device is in RC6, then force_wake_mt_get will not wake
6272 			 * the device and the ECOBUS read will return zero. Which will be
6273 			 * (correctly) interpreted by the test below as MT forcewake being
6274 			 * disabled.
6275 			 */
6276 			DRM_LOCK(dev);
6277 			__gen6_gt_force_wake_mt_get(dev_priv);
6278 			ecobus = I915_READ_NOTRACE(ECOBUS);
6279 			__gen6_gt_force_wake_mt_put(dev_priv);
6280 			DRM_UNLOCK(dev);
6281 
6282 			if (ecobus & FORCEWAKE_MT_ENABLE) {
6283 				DRM_DEBUG_KMS("Using MT version of forcewake\n");
6284 				dev_priv->display.force_wake_get =
6285 					__gen6_gt_force_wake_mt_get;
6286 				dev_priv->display.force_wake_put =
6287 					__gen6_gt_force_wake_mt_put;
6288 			}
6289 		}
6290 
6291 		if (HAS_PCH_IBX(dev))
6292 			dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
6293 		else if (HAS_PCH_CPT(dev))
6294 			dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
6295 
6296 		if (IS_GEN5(dev)) {
6297 			if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
6298 				dev_priv->display.update_wm = ironlake_update_wm;
6299 			else {
6300 				DRM_DEBUG_KMS("Failed to get proper latency. "
6301 					      "Disable CxSR\n");
6302 				dev_priv->display.update_wm = NULL;
6303 			}
6304 			dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
6305 			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6306 			dev_priv->display.write_eld = ironlake_write_eld;
6307 		} else if (IS_GEN6(dev)) {
6308 			if (SNB_READ_WM0_LATENCY()) {
6309 				dev_priv->display.update_wm = sandybridge_update_wm;
6310 				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
6311 			} else {
6312 				DRM_DEBUG_KMS("Failed to read display plane latency. "
6313 					      "Disable CxSR\n");
6314 				dev_priv->display.update_wm = NULL;
6315 			}
6316 			dev_priv->display.fdi_link_train = gen6_fdi_link_train;
6317 			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6318 			dev_priv->display.write_eld = ironlake_write_eld;
6319 		} else if (IS_IVYBRIDGE(dev)) {
6320 			/* FIXME: detect B0+ stepping and use auto training */
6321 			dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
6322 			if (SNB_READ_WM0_LATENCY()) {
6323 				dev_priv->display.update_wm = sandybridge_update_wm;
6324 				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
6325 			} else {
6326 				DRM_DEBUG_KMS("Failed to read display plane latency. "
6327 					      "Disable CxSR\n");
6328 				dev_priv->display.update_wm = NULL;
6329 			}
6330 			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6331 			dev_priv->display.write_eld = ironlake_write_eld;
6332 		} else
6333 			dev_priv->display.update_wm = NULL;
6334 	} else if (IS_PINEVIEW(dev)) {
6335 		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
6336 					    dev_priv->is_ddr3,
6337 					    dev_priv->fsb_freq,
6338 					    dev_priv->mem_freq)) {
6339 			DRM_INFO("failed to find known CxSR latency "
6340 				 "(found ddr%s fsb freq %d, mem freq %d), "
6341 				 "disabling CxSR\n",
6342 				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
6343 				 dev_priv->fsb_freq, dev_priv->mem_freq);
6344 			/* Disable CxSR and never update its watermark again */
6345 			pineview_disable_cxsr(dev);
6346 			dev_priv->display.update_wm = NULL;
6347 		} else
6348 			dev_priv->display.update_wm = pineview_update_wm;
6349 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6350 	} else if (IS_G4X(dev)) {
6351 		dev_priv->display.write_eld = g4x_write_eld;
6352 		dev_priv->display.update_wm = g4x_update_wm;
6353 		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
6354 	} else if (IS_GEN4(dev)) {
6355 		dev_priv->display.update_wm = i965_update_wm;
6356 		if (IS_CRESTLINE(dev))
6357 			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
6358 		else if (IS_BROADWATER(dev))
6359 			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
6360 	} else if (IS_GEN3(dev)) {
6361 		dev_priv->display.update_wm = i9xx_update_wm;
6362 		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6363 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6364 	} else if (IS_I865G(dev)) {
6365 		dev_priv->display.update_wm = i830_update_wm;
6366 		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
6367 		dev_priv->display.get_fifo_size = i830_get_fifo_size;
6368 	} else if (IS_I85X(dev)) {
6369 		dev_priv->display.update_wm = i9xx_update_wm;
6370 		dev_priv->display.get_fifo_size = i85x_get_fifo_size;
6371 		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
6372 	} else {
6373 		dev_priv->display.update_wm = i830_update_wm;
6374 		dev_priv->display.init_clock_gating = i830_init_clock_gating;
6375 		if (IS_845G(dev))
6376 			dev_priv->display.get_fifo_size = i845_get_fifo_size;
6377 		else
6378 			dev_priv->display.get_fifo_size = i830_get_fifo_size;
6379 	}
6380 
6381 	/* Default just returns -ENODEV to indicate unsupported */
6382 	dev_priv->display.queue_flip = intel_default_queue_flip;
6383 
6384 	switch (INTEL_INFO(dev)->gen) {
6385 	case 2:
6386 		dev_priv->display.queue_flip = intel_gen2_queue_flip;
6387 		break;
6388 
6389 	case 3:
6390 		dev_priv->display.queue_flip = intel_gen3_queue_flip;
6391 		break;
6392 
6393 	case 4:
6394 	case 5:
6395 		dev_priv->display.queue_flip = intel_gen4_queue_flip;
6396 		break;
6397 
6398 	case 6:
6399 		dev_priv->display.queue_flip = intel_gen6_queue_flip;
6400 		break;
6401 	case 7:
6402 		dev_priv->display.queue_flip = intel_gen7_queue_flip;
6403 		break;
6404 	}
6405 }
6406 
6407 /*
6408  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
6409  * resume, or other times.  This quirk makes sure that's the case for
6410  * affected systems.
6411  */
6412 static void quirk_pipea_force(struct drm_device *dev)
6413 {
6414 	struct drm_i915_private *dev_priv = dev->dev_private;
6415 
6416 	dev_priv->quirks |= QUIRK_PIPEA_FORCE;
6417 	DRM_DEBUG("applying pipe a force quirk\n");
6418 }
6419 
6420 /*
6421  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
6422  */
6423 static void quirk_ssc_force_disable(struct drm_device *dev)
6424 {
6425 	struct drm_i915_private *dev_priv = dev->dev_private;
6426 	dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
6427 }
6428 
6429 struct intel_quirk {
6430 	int device;
6431 	int subsystem_vendor;
6432 	int subsystem_device;
6433 	void (*hook)(struct drm_device *dev);
6434 };
6435 
6436 #define	PCI_ANY_ID	(~0u)
6437 
6438 struct intel_quirk intel_quirks[] = {
6439 	/* HP Mini needs pipe A force quirk (LP: #322104) */
6440 	{ 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
6441 
6442 	/* Thinkpad R31 needs pipe A force quirk */
6443 	{ 0x3577, 0x1014, 0x0505, quirk_pipea_force },
6444 	/* Toshiba Protege R-205, S-209 needs pipe A force quirk */
6445 	{ 0x2592, 0x1179, 0x0001, quirk_pipea_force },
6446 
6447 	/* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
6448 	{ 0x3577,  0x1014, 0x0513, quirk_pipea_force },
6449 	/* ThinkPad X40 needs pipe A force quirk */
6450 
6451 	/* ThinkPad T60 needs pipe A force quirk (bug #16494) */
6452 	{ 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
6453 
6454 	/* 855 & before need to leave pipe A & dpll A up */
6455 	{ 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
6456 	{ 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
6457 
6458 	/* Lenovo U160 cannot use SSC on LVDS */
6459 	{ 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
6460 
6461 	/* Sony Vaio Y cannot use SSC on LVDS */
6462 	{ 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
6463 };
6464 
6465 static void intel_init_quirks(struct drm_device *dev)
6466 {
6467 	struct intel_quirk *q;
6468 	device_t d;
6469 	int i;
6470 
6471 	d = dev->dev;
6472 	for (i = 0; i < DRM_ARRAY_SIZE(intel_quirks); i++) {
6473 		q = &intel_quirks[i];
6474 		if (pci_get_device(d) == q->device &&
6475 		    (pci_get_subvendor(d) == q->subsystem_vendor ||
6476 		     q->subsystem_vendor == PCI_ANY_ID) &&
6477 		    (pci_get_subdevice(d) == q->subsystem_device ||
6478 		     q->subsystem_device == PCI_ANY_ID))
6479 			q->hook(dev);
6480 	}
6481 }
6482 
6483 /* Disable the VGA plane that we never use */
6484 static void i915_disable_vga(struct drm_device *dev)
6485 {
6486 	struct drm_i915_private *dev_priv = dev->dev_private;
6487 	u8 sr1;
6488 	u32 vga_reg;
6489 
6490 	if (HAS_PCH_SPLIT(dev))
6491 		vga_reg = CPU_VGACNTRL;
6492 	else
6493 		vga_reg = VGACNTRL;
6494 
6495 #if 0
6496 	vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
6497 #endif
6498 	outb(VGA_SR_INDEX, 1);
6499 	sr1 = inb(VGA_SR_DATA);
6500 	outb(VGA_SR_DATA, sr1 | 1 << 5);
6501 #if 0
6502 	vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
6503 #endif
6504 	DELAY(300);
6505 
6506 	I915_WRITE(vga_reg, VGA_DISP_DISABLE);
6507 	POSTING_READ(vga_reg);
6508 }
6509 
6510 void intel_modeset_init(struct drm_device *dev)
6511 {
6512 	struct drm_i915_private *dev_priv = dev->dev_private;
6513 	int i, ret;
6514 
6515 	drm_mode_config_init(dev);
6516 
6517 	dev->mode_config.min_width = 0;
6518 	dev->mode_config.min_height = 0;
6519 
6520 	dev->mode_config.preferred_depth = 24;
6521 	dev->mode_config.prefer_shadow = 1;
6522 
6523 	dev->mode_config.funcs = __DECONST(struct drm_mode_config_funcs *,
6524 	    &intel_mode_funcs);
6525 
6526 	intel_init_quirks(dev);
6527 
6528 	intel_init_display(dev);
6529 
6530 	if (IS_GEN2(dev)) {
6531 		dev->mode_config.max_width = 2048;
6532 		dev->mode_config.max_height = 2048;
6533 	} else if (IS_GEN3(dev)) {
6534 		dev->mode_config.max_width = 4096;
6535 		dev->mode_config.max_height = 4096;
6536 	} else {
6537 		dev->mode_config.max_width = 8192;
6538 		dev->mode_config.max_height = 8192;
6539 	}
6540 	dev->mode_config.fb_base = dev->agp->base;
6541 
6542 	DRM_DEBUG_KMS("%d display pipe%s available.\n",
6543 		      dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
6544 
6545 	for (i = 0; i < dev_priv->num_pipe; i++) {
6546 		intel_crtc_init(dev, i);
6547 		ret = intel_plane_init(dev, i);
6548 		if (ret)
6549 			DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
6550 	}
6551 
6552 	/* Just disable it once at startup */
6553 	i915_disable_vga(dev);
6554 	intel_setup_outputs(dev);
6555 
6556 	intel_init_clock_gating(dev);
6557 
6558 	if (IS_IRONLAKE_M(dev)) {
6559 		ironlake_enable_drps(dev);
6560 		intel_init_emon(dev);
6561 	}
6562 
6563 	if (IS_GEN6(dev)) {
6564 		gen6_enable_rps(dev_priv);
6565 		gen6_update_ring_freq(dev_priv);
6566 	}
6567 
6568 	TASK_INIT(&dev_priv->idle_task, 0, intel_idle_update, dev_priv);
6569 	callout_init_mp(&dev_priv->idle_callout);
6570 }
6571 
6572 void intel_modeset_gem_init(struct drm_device *dev)
6573 {
6574 	if (IS_IRONLAKE_M(dev))
6575 		ironlake_enable_rc6(dev);
6576 
6577 	intel_setup_overlay(dev);
6578 }
6579 
6580 void intel_modeset_cleanup(struct drm_device *dev)
6581 {
6582 	struct drm_i915_private *dev_priv = dev->dev_private;
6583 	struct drm_crtc *crtc;
6584 	struct intel_crtc *intel_crtc;
6585 
6586 	drm_kms_helper_poll_fini(dev);
6587 	DRM_LOCK(dev);
6588 
6589 #if 0
6590 	intel_unregister_dsm_handler();
6591 #endif
6592 
6593 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6594 		/* Skip inactive CRTCs */
6595 		if (!crtc->fb)
6596 			continue;
6597 
6598 		intel_crtc = to_intel_crtc(crtc);
6599 		intel_increase_pllclock(crtc);
6600 	}
6601 
6602 	intel_disable_fbc(dev);
6603 
6604 	if (IS_IRONLAKE_M(dev))
6605 		ironlake_disable_drps(dev);
6606 	if (IS_GEN6(dev))
6607 		gen6_disable_rps(dev);
6608 
6609 	if (IS_IRONLAKE_M(dev))
6610 		ironlake_disable_rc6(dev);
6611 
6612 	/* Disable the irq before mode object teardown, for the irq might
6613 	 * enqueue unpin/hotplug work. */
6614 	drm_irq_uninstall(dev);
6615 	DRM_UNLOCK(dev);
6616 
6617 	if (taskqueue_cancel(dev_priv->tq, &dev_priv->hotplug_task, NULL))
6618 		taskqueue_drain(dev_priv->tq, &dev_priv->hotplug_task);
6619 	if (taskqueue_cancel(dev_priv->tq, &dev_priv->rps_task, NULL))
6620 		taskqueue_drain(dev_priv->tq, &dev_priv->rps_task);
6621 
6622 	/* Shut off idle work before the crtcs get freed. */
6623 	if (taskqueue_cancel(dev_priv->tq, &dev_priv->idle_task, NULL))
6624 		taskqueue_drain(dev_priv->tq, &dev_priv->idle_task);
6625 
6626 	drm_mode_config_cleanup(dev);
6627 }
6628 
6629 /*
6630  * Return which encoder is currently attached for connector.
6631  */
6632 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
6633 {
6634 	return &intel_attached_encoder(connector)->base;
6635 }
6636 
6637 void intel_connector_attach_encoder(struct intel_connector *connector,
6638 				    struct intel_encoder *encoder)
6639 {
6640 	connector->encoder = encoder;
6641 	drm_mode_connector_attach_encoder(&connector->base,
6642 					  &encoder->base);
6643 }
6644 
6645 /*
6646  * set vga decode state - true == enable VGA decode
6647  */
6648 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
6649 {
6650 	struct drm_i915_private *dev_priv;
6651 	device_t bridge_dev;
6652 	u16 gmch_ctrl;
6653 
6654 	dev_priv = dev->dev_private;
6655 	bridge_dev = intel_gtt_get_bridge_device();
6656 	gmch_ctrl = pci_read_config(bridge_dev, INTEL_GMCH_CTRL, 2);
6657 	if (state)
6658 		gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
6659 	else
6660 		gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
6661 	pci_write_config(bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl, 2);
6662 	return (0);
6663 }
6664 
6665 struct intel_display_error_state {
6666 	struct intel_cursor_error_state {
6667 		u32 control;
6668 		u32 position;
6669 		u32 base;
6670 		u32 size;
6671 	} cursor[2];
6672 
6673 	struct intel_pipe_error_state {
6674 		u32 conf;
6675 		u32 source;
6676 
6677 		u32 htotal;
6678 		u32 hblank;
6679 		u32 hsync;
6680 		u32 vtotal;
6681 		u32 vblank;
6682 		u32 vsync;
6683 	} pipe[2];
6684 
6685 	struct intel_plane_error_state {
6686 		u32 control;
6687 		u32 stride;
6688 		u32 size;
6689 		u32 pos;
6690 		u32 addr;
6691 		u32 surface;
6692 		u32 tile_offset;
6693 	} plane[2];
6694 };
6695 
6696 struct intel_display_error_state *
6697 intel_display_capture_error_state(struct drm_device *dev)
6698 {
6699 	drm_i915_private_t *dev_priv = dev->dev_private;
6700 	struct intel_display_error_state *error;
6701 	int i;
6702 
6703 	error = kmalloc(sizeof(*error), DRM_MEM_KMS, M_NOWAIT);
6704 	if (error == NULL)
6705 		return NULL;
6706 
6707 	for (i = 0; i < 2; i++) {
6708 		error->cursor[i].control = I915_READ(CURCNTR(i));
6709 		error->cursor[i].position = I915_READ(CURPOS(i));
6710 		error->cursor[i].base = I915_READ(CURBASE(i));
6711 
6712 		error->plane[i].control = I915_READ(DSPCNTR(i));
6713 		error->plane[i].stride = I915_READ(DSPSTRIDE(i));
6714 		error->plane[i].size = I915_READ(DSPSIZE(i));
6715 		error->plane[i].pos = I915_READ(DSPPOS(i));
6716 		error->plane[i].addr = I915_READ(DSPADDR(i));
6717 		if (INTEL_INFO(dev)->gen >= 4) {
6718 			error->plane[i].surface = I915_READ(DSPSURF(i));
6719 			error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
6720 		}
6721 
6722 		error->pipe[i].conf = I915_READ(PIPECONF(i));
6723 		error->pipe[i].source = I915_READ(PIPESRC(i));
6724 		error->pipe[i].htotal = I915_READ(HTOTAL(i));
6725 		error->pipe[i].hblank = I915_READ(HBLANK(i));
6726 		error->pipe[i].hsync = I915_READ(HSYNC(i));
6727 		error->pipe[i].vtotal = I915_READ(VTOTAL(i));
6728 		error->pipe[i].vblank = I915_READ(VBLANK(i));
6729 		error->pipe[i].vsync = I915_READ(VSYNC(i));
6730 	}
6731 
6732 	return error;
6733 }
6734 
6735 void
6736 intel_display_print_error_state(struct sbuf *m,
6737 				struct drm_device *dev,
6738 				struct intel_display_error_state *error)
6739 {
6740 	int i;
6741 
6742 	for (i = 0; i < 2; i++) {
6743 		sbuf_printf(m, "Pipe [%d]:\n", i);
6744 		sbuf_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
6745 		sbuf_printf(m, "  SRC: %08x\n", error->pipe[i].source);
6746 		sbuf_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
6747 		sbuf_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
6748 		sbuf_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
6749 		sbuf_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
6750 		sbuf_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
6751 		sbuf_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
6752 
6753 		sbuf_printf(m, "Plane [%d]:\n", i);
6754 		sbuf_printf(m, "  CNTR: %08x\n", error->plane[i].control);
6755 		sbuf_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
6756 		sbuf_printf(m, "  SIZE: %08x\n", error->plane[i].size);
6757 		sbuf_printf(m, "  POS: %08x\n", error->plane[i].pos);
6758 		sbuf_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
6759 		if (INTEL_INFO(dev)->gen >= 4) {
6760 			sbuf_printf(m, "  SURF: %08x\n", error->plane[i].surface);
6761 			sbuf_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
6762 		}
6763 
6764 		sbuf_printf(m, "Cursor [%d]:\n", i);
6765 		sbuf_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
6766 		sbuf_printf(m, "  POS: %08x\n", error->cursor[i].position);
6767 		sbuf_printf(m, "  BASE: %08x\n", error->cursor[i].base);
6768 	}
6769 }
6770