xref: /dflybsd-src/sys/dev/drm/i915/intel_ddi.c (revision 872a09d51adf63b4bdae6adb1d96a53f76e161e2)
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27 
28 #include "i915_drv.h"
29 #include "intel_drv.h"
30 
31 struct ddi_buf_trans {
32 	u32 trans1;	/* balance leg enable, de-emph level */
33 	u32 trans2;	/* vref sel, vswing */
34 	u8 i_boost;	/* SKL: I_boost; valid: 0x0, 0x1, 0x3, 0x7 */
35 };
36 
37 /* HDMI/DVI modes ignore everything but the last 2 items. So we share
38  * them for both DP and FDI transports, allowing those ports to
39  * automatically adapt to HDMI connections as well
40  */
41 static const struct ddi_buf_trans hsw_ddi_translations_dp[] = {
42 	{ 0x00FFFFFF, 0x0006000E, 0x0 },
43 	{ 0x00D75FFF, 0x0005000A, 0x0 },
44 	{ 0x00C30FFF, 0x00040006, 0x0 },
45 	{ 0x80AAAFFF, 0x000B0000, 0x0 },
46 	{ 0x00FFFFFF, 0x0005000A, 0x0 },
47 	{ 0x00D75FFF, 0x000C0004, 0x0 },
48 	{ 0x80C30FFF, 0x000B0000, 0x0 },
49 	{ 0x00FFFFFF, 0x00040006, 0x0 },
50 	{ 0x80D75FFF, 0x000B0000, 0x0 },
51 };
52 
53 static const struct ddi_buf_trans hsw_ddi_translations_fdi[] = {
54 	{ 0x00FFFFFF, 0x0007000E, 0x0 },
55 	{ 0x00D75FFF, 0x000F000A, 0x0 },
56 	{ 0x00C30FFF, 0x00060006, 0x0 },
57 	{ 0x00AAAFFF, 0x001E0000, 0x0 },
58 	{ 0x00FFFFFF, 0x000F000A, 0x0 },
59 	{ 0x00D75FFF, 0x00160004, 0x0 },
60 	{ 0x00C30FFF, 0x001E0000, 0x0 },
61 	{ 0x00FFFFFF, 0x00060006, 0x0 },
62 	{ 0x00D75FFF, 0x001E0000, 0x0 },
63 };
64 
65 static const struct ddi_buf_trans hsw_ddi_translations_hdmi[] = {
66 					/* Idx	NT mV d	T mV d	db	*/
67 	{ 0x00FFFFFF, 0x0006000E, 0x0 },/* 0:	400	400	0	*/
68 	{ 0x00E79FFF, 0x000E000C, 0x0 },/* 1:	400	500	2	*/
69 	{ 0x00D75FFF, 0x0005000A, 0x0 },/* 2:	400	600	3.5	*/
70 	{ 0x00FFFFFF, 0x0005000A, 0x0 },/* 3:	600	600	0	*/
71 	{ 0x00E79FFF, 0x001D0007, 0x0 },/* 4:	600	750	2	*/
72 	{ 0x00D75FFF, 0x000C0004, 0x0 },/* 5:	600	900	3.5	*/
73 	{ 0x00FFFFFF, 0x00040006, 0x0 },/* 6:	800	800	0	*/
74 	{ 0x80E79FFF, 0x00030002, 0x0 },/* 7:	800	1000	2	*/
75 	{ 0x00FFFFFF, 0x00140005, 0x0 },/* 8:	850	850	0	*/
76 	{ 0x00FFFFFF, 0x000C0004, 0x0 },/* 9:	900	900	0	*/
77 	{ 0x00FFFFFF, 0x001C0003, 0x0 },/* 10:	950	950	0	*/
78 	{ 0x80FFFFFF, 0x00030002, 0x0 },/* 11:	1000	1000	0	*/
79 };
80 
81 static const struct ddi_buf_trans bdw_ddi_translations_edp[] = {
82 	{ 0x00FFFFFF, 0x00000012, 0x0 },
83 	{ 0x00EBAFFF, 0x00020011, 0x0 },
84 	{ 0x00C71FFF, 0x0006000F, 0x0 },
85 	{ 0x00AAAFFF, 0x000E000A, 0x0 },
86 	{ 0x00FFFFFF, 0x00020011, 0x0 },
87 	{ 0x00DB6FFF, 0x0005000F, 0x0 },
88 	{ 0x00BEEFFF, 0x000A000C, 0x0 },
89 	{ 0x00FFFFFF, 0x0005000F, 0x0 },
90 	{ 0x00DB6FFF, 0x000A000C, 0x0 },
91 };
92 
93 static const struct ddi_buf_trans bdw_ddi_translations_dp[] = {
94 	{ 0x00FFFFFF, 0x0007000E, 0x0 },
95 	{ 0x00D75FFF, 0x000E000A, 0x0 },
96 	{ 0x00BEFFFF, 0x00140006, 0x0 },
97 	{ 0x80B2CFFF, 0x001B0002, 0x0 },
98 	{ 0x00FFFFFF, 0x000E000A, 0x0 },
99 	{ 0x00DB6FFF, 0x00160005, 0x0 },
100 	{ 0x80C71FFF, 0x001A0002, 0x0 },
101 	{ 0x00F7DFFF, 0x00180004, 0x0 },
102 	{ 0x80D75FFF, 0x001B0002, 0x0 },
103 };
104 
105 static const struct ddi_buf_trans bdw_ddi_translations_fdi[] = {
106 	{ 0x00FFFFFF, 0x0001000E, 0x0 },
107 	{ 0x00D75FFF, 0x0004000A, 0x0 },
108 	{ 0x00C30FFF, 0x00070006, 0x0 },
109 	{ 0x00AAAFFF, 0x000C0000, 0x0 },
110 	{ 0x00FFFFFF, 0x0004000A, 0x0 },
111 	{ 0x00D75FFF, 0x00090004, 0x0 },
112 	{ 0x00C30FFF, 0x000C0000, 0x0 },
113 	{ 0x00FFFFFF, 0x00070006, 0x0 },
114 	{ 0x00D75FFF, 0x000C0000, 0x0 },
115 };
116 
117 static const struct ddi_buf_trans bdw_ddi_translations_hdmi[] = {
118 					/* Idx	NT mV d	T mV df	db	*/
119 	{ 0x00FFFFFF, 0x0007000E, 0x0 },/* 0:	400	400	0	*/
120 	{ 0x00D75FFF, 0x000E000A, 0x0 },/* 1:	400	600	3.5	*/
121 	{ 0x00BEFFFF, 0x00140006, 0x0 },/* 2:	400	800	6	*/
122 	{ 0x00FFFFFF, 0x0009000D, 0x0 },/* 3:	450	450	0	*/
123 	{ 0x00FFFFFF, 0x000E000A, 0x0 },/* 4:	600	600	0	*/
124 	{ 0x00D7FFFF, 0x00140006, 0x0 },/* 5:	600	800	2.5	*/
125 	{ 0x80CB2FFF, 0x001B0002, 0x0 },/* 6:	600	1000	4.5	*/
126 	{ 0x00FFFFFF, 0x00140006, 0x0 },/* 7:	800	800	0	*/
127 	{ 0x80E79FFF, 0x001B0002, 0x0 },/* 8:	800	1000	2	*/
128 	{ 0x80FFFFFF, 0x001B0002, 0x0 },/* 9:	1000	1000	0	*/
129 };
130 
131 /* Skylake H and S */
132 static const struct ddi_buf_trans skl_ddi_translations_dp[] = {
133 	{ 0x00002016, 0x000000A0, 0x0 },
134 	{ 0x00005012, 0x0000009B, 0x0 },
135 	{ 0x00007011, 0x00000088, 0x0 },
136 	{ 0x80009010, 0x000000C0, 0x1 },
137 	{ 0x00002016, 0x0000009B, 0x0 },
138 	{ 0x00005012, 0x00000088, 0x0 },
139 	{ 0x80007011, 0x000000C0, 0x1 },
140 	{ 0x00002016, 0x000000DF, 0x0 },
141 	{ 0x80005012, 0x000000C0, 0x1 },
142 };
143 
144 /* Skylake U */
145 static const struct ddi_buf_trans skl_u_ddi_translations_dp[] = {
146 	{ 0x0000201B, 0x000000A2, 0x0 },
147 	{ 0x00005012, 0x00000088, 0x0 },
148 	{ 0x80007011, 0x000000CD, 0x1 },
149 	{ 0x80009010, 0x000000C0, 0x1 },
150 	{ 0x0000201B, 0x0000009D, 0x0 },
151 	{ 0x80005012, 0x000000C0, 0x1 },
152 	{ 0x80007011, 0x000000C0, 0x1 },
153 	{ 0x00002016, 0x00000088, 0x0 },
154 	{ 0x80005012, 0x000000C0, 0x1 },
155 };
156 
157 /* Skylake Y */
158 static const struct ddi_buf_trans skl_y_ddi_translations_dp[] = {
159 	{ 0x00000018, 0x000000A2, 0x0 },
160 	{ 0x00005012, 0x00000088, 0x0 },
161 	{ 0x80007011, 0x000000CD, 0x3 },
162 	{ 0x80009010, 0x000000C0, 0x3 },
163 	{ 0x00000018, 0x0000009D, 0x0 },
164 	{ 0x80005012, 0x000000C0, 0x3 },
165 	{ 0x80007011, 0x000000C0, 0x3 },
166 	{ 0x00000018, 0x00000088, 0x0 },
167 	{ 0x80005012, 0x000000C0, 0x3 },
168 };
169 
170 /*
171  * Skylake H and S
172  * eDP 1.4 low vswing translation parameters
173  */
174 static const struct ddi_buf_trans skl_ddi_translations_edp[] = {
175 	{ 0x00000018, 0x000000A8, 0x0 },
176 	{ 0x00004013, 0x000000A9, 0x0 },
177 	{ 0x00007011, 0x000000A2, 0x0 },
178 	{ 0x00009010, 0x0000009C, 0x0 },
179 	{ 0x00000018, 0x000000A9, 0x0 },
180 	{ 0x00006013, 0x000000A2, 0x0 },
181 	{ 0x00007011, 0x000000A6, 0x0 },
182 	{ 0x00000018, 0x000000AB, 0x0 },
183 	{ 0x00007013, 0x0000009F, 0x0 },
184 	{ 0x00000018, 0x000000DF, 0x0 },
185 };
186 
187 /*
188  * Skylake U
189  * eDP 1.4 low vswing translation parameters
190  */
191 static const struct ddi_buf_trans skl_u_ddi_translations_edp[] = {
192 	{ 0x00000018, 0x000000A8, 0x0 },
193 	{ 0x00004013, 0x000000A9, 0x0 },
194 	{ 0x00007011, 0x000000A2, 0x0 },
195 	{ 0x00009010, 0x0000009C, 0x0 },
196 	{ 0x00000018, 0x000000A9, 0x0 },
197 	{ 0x00006013, 0x000000A2, 0x0 },
198 	{ 0x00007011, 0x000000A6, 0x0 },
199 	{ 0x00002016, 0x000000AB, 0x0 },
200 	{ 0x00005013, 0x0000009F, 0x0 },
201 	{ 0x00000018, 0x000000DF, 0x0 },
202 };
203 
204 /*
205  * Skylake Y
206  * eDP 1.4 low vswing translation parameters
207  */
208 static const struct ddi_buf_trans skl_y_ddi_translations_edp[] = {
209 	{ 0x00000018, 0x000000A8, 0x0 },
210 	{ 0x00004013, 0x000000AB, 0x0 },
211 	{ 0x00007011, 0x000000A4, 0x0 },
212 	{ 0x00009010, 0x000000DF, 0x0 },
213 	{ 0x00000018, 0x000000AA, 0x0 },
214 	{ 0x00006013, 0x000000A4, 0x0 },
215 	{ 0x00007011, 0x0000009D, 0x0 },
216 	{ 0x00000018, 0x000000A0, 0x0 },
217 	{ 0x00006012, 0x000000DF, 0x0 },
218 	{ 0x00000018, 0x0000008A, 0x0 },
219 };
220 
221 /* Skylake U, H and S */
222 static const struct ddi_buf_trans skl_ddi_translations_hdmi[] = {
223 	{ 0x00000018, 0x000000AC, 0x0 },
224 	{ 0x00005012, 0x0000009D, 0x0 },
225 	{ 0x00007011, 0x00000088, 0x0 },
226 	{ 0x00000018, 0x000000A1, 0x0 },
227 	{ 0x00000018, 0x00000098, 0x0 },
228 	{ 0x00004013, 0x00000088, 0x0 },
229 	{ 0x80006012, 0x000000CD, 0x1 },
230 	{ 0x00000018, 0x000000DF, 0x0 },
231 	{ 0x80003015, 0x000000CD, 0x1 },	/* Default */
232 	{ 0x80003015, 0x000000C0, 0x1 },
233 	{ 0x80000018, 0x000000C0, 0x1 },
234 };
235 
236 /* Skylake Y */
237 static const struct ddi_buf_trans skl_y_ddi_translations_hdmi[] = {
238 	{ 0x00000018, 0x000000A1, 0x0 },
239 	{ 0x00005012, 0x000000DF, 0x0 },
240 	{ 0x80007011, 0x000000CB, 0x3 },
241 	{ 0x00000018, 0x000000A4, 0x0 },
242 	{ 0x00000018, 0x0000009D, 0x0 },
243 	{ 0x00004013, 0x00000080, 0x0 },
244 	{ 0x80006013, 0x000000C0, 0x3 },
245 	{ 0x00000018, 0x0000008A, 0x0 },
246 	{ 0x80003015, 0x000000C0, 0x3 },	/* Default */
247 	{ 0x80003015, 0x000000C0, 0x3 },
248 	{ 0x80000018, 0x000000C0, 0x3 },
249 };
250 
251 struct bxt_ddi_buf_trans {
252 	u32 margin;	/* swing value */
253 	u32 scale;	/* scale value */
254 	u32 enable;	/* scale enable */
255 	u32 deemphasis;
256 	bool default_index; /* true if the entry represents default value */
257 };
258 
259 static const struct bxt_ddi_buf_trans bxt_ddi_translations_dp[] = {
260 					/* Idx	NT mV diff	db  */
261 	{ 52,  0x9A, 0, 128, true  },	/* 0:	400		0   */
262 	{ 78,  0x9A, 0, 85,  false },	/* 1:	400		3.5 */
263 	{ 104, 0x9A, 0, 64,  false },	/* 2:	400		6   */
264 	{ 154, 0x9A, 0, 43,  false },	/* 3:	400		9.5 */
265 	{ 77,  0x9A, 0, 128, false },	/* 4:	600		0   */
266 	{ 116, 0x9A, 0, 85,  false },	/* 5:	600		3.5 */
267 	{ 154, 0x9A, 0, 64,  false },	/* 6:	600		6   */
268 	{ 102, 0x9A, 0, 128, false },	/* 7:	800		0   */
269 	{ 154, 0x9A, 0, 85,  false },	/* 8:	800		3.5 */
270 	{ 154, 0x9A, 1, 128, false },	/* 9:	1200		0   */
271 };
272 
273 static const struct bxt_ddi_buf_trans bxt_ddi_translations_edp[] = {
274 					/* Idx	NT mV diff	db  */
275 	{ 26, 0, 0, 128, false },	/* 0:	200		0   */
276 	{ 38, 0, 0, 112, false },	/* 1:	200		1.5 */
277 	{ 48, 0, 0, 96,  false },	/* 2:	200		4   */
278 	{ 54, 0, 0, 69,  false },	/* 3:	200		6   */
279 	{ 32, 0, 0, 128, false },	/* 4:	250		0   */
280 	{ 48, 0, 0, 104, false },	/* 5:	250		1.5 */
281 	{ 54, 0, 0, 85,  false },	/* 6:	250		4   */
282 	{ 43, 0, 0, 128, false },	/* 7:	300		0   */
283 	{ 54, 0, 0, 101, false },	/* 8:	300		1.5 */
284 	{ 48, 0, 0, 128, false },	/* 9:	300		0   */
285 };
286 
287 /* BSpec has 2 recommended values - entries 0 and 8.
288  * Using the entry with higher vswing.
289  */
290 static const struct bxt_ddi_buf_trans bxt_ddi_translations_hdmi[] = {
291 					/* Idx	NT mV diff	db  */
292 	{ 52,  0x9A, 0, 128, false },	/* 0:	400		0   */
293 	{ 52,  0x9A, 0, 85,  false },	/* 1:	400		3.5 */
294 	{ 52,  0x9A, 0, 64,  false },	/* 2:	400		6   */
295 	{ 42,  0x9A, 0, 43,  false },	/* 3:	400		9.5 */
296 	{ 77,  0x9A, 0, 128, false },	/* 4:	600		0   */
297 	{ 77,  0x9A, 0, 85,  false },	/* 5:	600		3.5 */
298 	{ 77,  0x9A, 0, 64,  false },	/* 6:	600		6   */
299 	{ 102, 0x9A, 0, 128, false },	/* 7:	800		0   */
300 	{ 102, 0x9A, 0, 85,  false },	/* 8:	800		3.5 */
301 	{ 154, 0x9A, 1, 128, true },	/* 9:	1200		0   */
302 };
303 
304 enum port intel_ddi_get_encoder_port(struct intel_encoder *encoder)
305 {
306 	switch (encoder->type) {
307 	case INTEL_OUTPUT_DP_MST:
308 		return enc_to_mst(&encoder->base)->primary->port;
309 	case INTEL_OUTPUT_DP:
310 	case INTEL_OUTPUT_EDP:
311 	case INTEL_OUTPUT_HDMI:
312 	case INTEL_OUTPUT_UNKNOWN:
313 		return enc_to_dig_port(&encoder->base)->port;
314 	case INTEL_OUTPUT_ANALOG:
315 		return PORT_E;
316 	default:
317 		MISSING_CASE(encoder->type);
318 		return PORT_A;
319 	}
320 }
321 
322 static const struct ddi_buf_trans *
323 bdw_get_buf_trans_edp(struct drm_i915_private *dev_priv, int *n_entries)
324 {
325 	if (dev_priv->vbt.edp.low_vswing) {
326 		*n_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
327 		return bdw_ddi_translations_edp;
328 	} else {
329 		*n_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
330 		return bdw_ddi_translations_dp;
331 	}
332 }
333 
334 static const struct ddi_buf_trans *
335 skl_get_buf_trans_dp(struct drm_i915_private *dev_priv, int *n_entries)
336 {
337 	if (IS_SKL_ULX(dev_priv) || IS_KBL_ULX(dev_priv)) {
338 		*n_entries = ARRAY_SIZE(skl_y_ddi_translations_dp);
339 		return skl_y_ddi_translations_dp;
340 	} else if (IS_SKL_ULT(dev_priv) || IS_KBL_ULT(dev_priv)) {
341 		*n_entries = ARRAY_SIZE(skl_u_ddi_translations_dp);
342 		return skl_u_ddi_translations_dp;
343 	} else {
344 		*n_entries = ARRAY_SIZE(skl_ddi_translations_dp);
345 		return skl_ddi_translations_dp;
346 	}
347 }
348 
349 static const struct ddi_buf_trans *
350 skl_get_buf_trans_edp(struct drm_i915_private *dev_priv, int *n_entries)
351 {
352 	if (dev_priv->vbt.edp.low_vswing) {
353 		if (IS_SKL_ULX(dev_priv) || IS_KBL_ULX(dev_priv)) {
354 			*n_entries = ARRAY_SIZE(skl_y_ddi_translations_edp);
355 			return skl_y_ddi_translations_edp;
356 		} else if (IS_SKL_ULT(dev_priv) || IS_KBL_ULT(dev_priv)) {
357 			*n_entries = ARRAY_SIZE(skl_u_ddi_translations_edp);
358 			return skl_u_ddi_translations_edp;
359 		} else {
360 			*n_entries = ARRAY_SIZE(skl_ddi_translations_edp);
361 			return skl_ddi_translations_edp;
362 		}
363 	}
364 
365 	return skl_get_buf_trans_dp(dev_priv, n_entries);
366 }
367 
368 static const struct ddi_buf_trans *
369 skl_get_buf_trans_hdmi(struct drm_i915_private *dev_priv, int *n_entries)
370 {
371 	if (IS_SKL_ULX(dev_priv) || IS_KBL_ULX(dev_priv)) {
372 		*n_entries = ARRAY_SIZE(skl_y_ddi_translations_hdmi);
373 		return skl_y_ddi_translations_hdmi;
374 	} else {
375 		*n_entries = ARRAY_SIZE(skl_ddi_translations_hdmi);
376 		return skl_ddi_translations_hdmi;
377 	}
378 }
379 
380 static int intel_ddi_hdmi_level(struct drm_i915_private *dev_priv, enum port port)
381 {
382 	int n_hdmi_entries;
383 	int hdmi_level;
384 	int hdmi_default_entry;
385 
386 	hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
387 
388 	if (IS_BROXTON(dev_priv))
389 		return hdmi_level;
390 
391 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
392 		skl_get_buf_trans_hdmi(dev_priv, &n_hdmi_entries);
393 		hdmi_default_entry = 8;
394 	} else if (IS_BROADWELL(dev_priv)) {
395 		n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
396 		hdmi_default_entry = 7;
397 	} else if (IS_HASWELL(dev_priv)) {
398 		n_hdmi_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi);
399 		hdmi_default_entry = 6;
400 	} else {
401 		WARN(1, "ddi translation table missing\n");
402 		n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
403 		hdmi_default_entry = 7;
404 	}
405 
406 	/* Choose a good default if VBT is badly populated */
407 	if (hdmi_level == HDMI_LEVEL_SHIFT_UNKNOWN ||
408 	    hdmi_level >= n_hdmi_entries)
409 		hdmi_level = hdmi_default_entry;
410 
411 	return hdmi_level;
412 }
413 
414 /*
415  * Starting with Haswell, DDI port buffers must be programmed with correct
416  * values in advance. This function programs the correct values for
417  * DP/eDP/FDI use cases.
418  */
419 void intel_prepare_dp_ddi_buffers(struct intel_encoder *encoder)
420 {
421 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
422 	u32 iboost_bit = 0;
423 	int i, n_dp_entries, n_edp_entries, size;
424 	enum port port = intel_ddi_get_encoder_port(encoder);
425 	const struct ddi_buf_trans *ddi_translations_fdi;
426 	const struct ddi_buf_trans *ddi_translations_dp;
427 	const struct ddi_buf_trans *ddi_translations_edp;
428 	const struct ddi_buf_trans *ddi_translations;
429 
430 	if (IS_BROXTON(dev_priv))
431 		return;
432 
433 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
434 		ddi_translations_fdi = NULL;
435 		ddi_translations_dp =
436 				skl_get_buf_trans_dp(dev_priv, &n_dp_entries);
437 		ddi_translations_edp =
438 				skl_get_buf_trans_edp(dev_priv, &n_edp_entries);
439 
440 		/* If we're boosting the current, set bit 31 of trans1 */
441 		if (dev_priv->vbt.ddi_port_info[port].dp_boost_level)
442 			iboost_bit = DDI_BUF_BALANCE_LEG_ENABLE;
443 
444 		if (WARN_ON(encoder->type == INTEL_OUTPUT_EDP &&
445 			    port != PORT_A && port != PORT_E &&
446 			    n_edp_entries > 9))
447 			n_edp_entries = 9;
448 	} else if (IS_BROADWELL(dev_priv)) {
449 		ddi_translations_fdi = bdw_ddi_translations_fdi;
450 		ddi_translations_dp = bdw_ddi_translations_dp;
451 		ddi_translations_edp = bdw_get_buf_trans_edp(dev_priv, &n_edp_entries);
452 		n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
453 	} else if (IS_HASWELL(dev_priv)) {
454 		ddi_translations_fdi = hsw_ddi_translations_fdi;
455 		ddi_translations_dp = hsw_ddi_translations_dp;
456 		ddi_translations_edp = hsw_ddi_translations_dp;
457 		n_dp_entries = n_edp_entries = ARRAY_SIZE(hsw_ddi_translations_dp);
458 	} else {
459 		WARN(1, "ddi translation table missing\n");
460 		ddi_translations_edp = bdw_ddi_translations_dp;
461 		ddi_translations_fdi = bdw_ddi_translations_fdi;
462 		ddi_translations_dp = bdw_ddi_translations_dp;
463 		n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
464 		n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
465 	}
466 
467 	switch (encoder->type) {
468 	case INTEL_OUTPUT_EDP:
469 		ddi_translations = ddi_translations_edp;
470 		size = n_edp_entries;
471 		break;
472 	case INTEL_OUTPUT_DP:
473 		ddi_translations = ddi_translations_dp;
474 		size = n_dp_entries;
475 		break;
476 	case INTEL_OUTPUT_ANALOG:
477 		ddi_translations = ddi_translations_fdi;
478 		size = n_dp_entries;
479 		break;
480 	default:
481 		BUG();
482 	}
483 
484 	for (i = 0; i < size; i++) {
485 		I915_WRITE(DDI_BUF_TRANS_LO(port, i),
486 			   ddi_translations[i].trans1 | iboost_bit);
487 		I915_WRITE(DDI_BUF_TRANS_HI(port, i),
488 			   ddi_translations[i].trans2);
489 	}
490 }
491 
492 /*
493  * Starting with Haswell, DDI port buffers must be programmed with correct
494  * values in advance. This function programs the correct values for
495  * HDMI/DVI use cases.
496  */
497 static void intel_prepare_hdmi_ddi_buffers(struct intel_encoder *encoder)
498 {
499 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
500 	u32 iboost_bit = 0;
501 	int n_hdmi_entries, hdmi_level;
502 	enum port port = intel_ddi_get_encoder_port(encoder);
503 	const struct ddi_buf_trans *ddi_translations_hdmi;
504 
505 	if (IS_BROXTON(dev_priv))
506 		return;
507 
508 	hdmi_level = intel_ddi_hdmi_level(dev_priv, port);
509 
510 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
511 		ddi_translations_hdmi = skl_get_buf_trans_hdmi(dev_priv, &n_hdmi_entries);
512 
513 		/* If we're boosting the current, set bit 31 of trans1 */
514 		if (dev_priv->vbt.ddi_port_info[port].hdmi_boost_level)
515 			iboost_bit = DDI_BUF_BALANCE_LEG_ENABLE;
516 	} else if (IS_BROADWELL(dev_priv)) {
517 		ddi_translations_hdmi = bdw_ddi_translations_hdmi;
518 		n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
519 	} else if (IS_HASWELL(dev_priv)) {
520 		ddi_translations_hdmi = hsw_ddi_translations_hdmi;
521 		n_hdmi_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi);
522 	} else {
523 		WARN(1, "ddi translation table missing\n");
524 		ddi_translations_hdmi = bdw_ddi_translations_hdmi;
525 		n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
526 	}
527 
528 	/* Entry 9 is for HDMI: */
529 	I915_WRITE(DDI_BUF_TRANS_LO(port, 9),
530 		   ddi_translations_hdmi[hdmi_level].trans1 | iboost_bit);
531 	I915_WRITE(DDI_BUF_TRANS_HI(port, 9),
532 		   ddi_translations_hdmi[hdmi_level].trans2);
533 }
534 
535 static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
536 				    enum port port)
537 {
538 	i915_reg_t reg = DDI_BUF_CTL(port);
539 	int i;
540 
541 	for (i = 0; i < 16; i++) {
542 		udelay(1);
543 		if (I915_READ(reg) & DDI_BUF_IS_IDLE)
544 			return;
545 	}
546 	DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
547 }
548 
549 /* Starting with Haswell, different DDI ports can work in FDI mode for
550  * connection to the PCH-located connectors. For this, it is necessary to train
551  * both the DDI port and PCH receiver for the desired DDI buffer settings.
552  *
553  * The recommended port to work in FDI mode is DDI E, which we use here. Also,
554  * please note that when FDI mode is active on DDI E, it shares 2 lines with
555  * DDI A (which is used for eDP)
556  */
557 
558 void hsw_fdi_link_train(struct drm_crtc *crtc)
559 {
560 	struct drm_device *dev = crtc->dev;
561 	struct drm_i915_private *dev_priv = to_i915(dev);
562 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
563 	struct intel_encoder *encoder;
564 	u32 temp, i, rx_ctl_val;
565 
566 	for_each_encoder_on_crtc(dev, crtc, encoder) {
567 		WARN_ON(encoder->type != INTEL_OUTPUT_ANALOG);
568 		intel_prepare_dp_ddi_buffers(encoder);
569 	}
570 
571 	/* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
572 	 * mode set "sequence for CRT port" document:
573 	 * - TP1 to TP2 time with the default value
574 	 * - FDI delay to 90h
575 	 *
576 	 * WaFDIAutoLinkSetTimingOverrride:hsw
577 	 */
578 	I915_WRITE(FDI_RX_MISC(PIPE_A), FDI_RX_PWRDN_LANE1_VAL(2) |
579 				  FDI_RX_PWRDN_LANE0_VAL(2) |
580 				  FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
581 
582 	/* Enable the PCH Receiver FDI PLL */
583 	rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
584 		     FDI_RX_PLL_ENABLE |
585 		     FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
586 	I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
587 	POSTING_READ(FDI_RX_CTL(PIPE_A));
588 	udelay(220);
589 
590 	/* Switch from Rawclk to PCDclk */
591 	rx_ctl_val |= FDI_PCDCLK;
592 	I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
593 
594 	/* Configure Port Clock Select */
595 	I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->config->ddi_pll_sel);
596 	WARN_ON(intel_crtc->config->ddi_pll_sel != PORT_CLK_SEL_SPLL);
597 
598 	/* Start the training iterating through available voltages and emphasis,
599 	 * testing each value twice. */
600 	for (i = 0; i < ARRAY_SIZE(hsw_ddi_translations_fdi) * 2; i++) {
601 		/* Configure DP_TP_CTL with auto-training */
602 		I915_WRITE(DP_TP_CTL(PORT_E),
603 					DP_TP_CTL_FDI_AUTOTRAIN |
604 					DP_TP_CTL_ENHANCED_FRAME_ENABLE |
605 					DP_TP_CTL_LINK_TRAIN_PAT1 |
606 					DP_TP_CTL_ENABLE);
607 
608 		/* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
609 		 * DDI E does not support port reversal, the functionality is
610 		 * achieved on the PCH side in FDI_RX_CTL, so no need to set the
611 		 * port reversal bit */
612 		I915_WRITE(DDI_BUF_CTL(PORT_E),
613 			   DDI_BUF_CTL_ENABLE |
614 			   ((intel_crtc->config->fdi_lanes - 1) << 1) |
615 			   DDI_BUF_TRANS_SELECT(i / 2));
616 		POSTING_READ(DDI_BUF_CTL(PORT_E));
617 
618 		udelay(600);
619 
620 		/* Program PCH FDI Receiver TU */
621 		I915_WRITE(FDI_RX_TUSIZE1(PIPE_A), TU_SIZE(64));
622 
623 		/* Enable PCH FDI Receiver with auto-training */
624 		rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
625 		I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
626 		POSTING_READ(FDI_RX_CTL(PIPE_A));
627 
628 		/* Wait for FDI receiver lane calibration */
629 		udelay(30);
630 
631 		/* Unset FDI_RX_MISC pwrdn lanes */
632 		temp = I915_READ(FDI_RX_MISC(PIPE_A));
633 		temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
634 		I915_WRITE(FDI_RX_MISC(PIPE_A), temp);
635 		POSTING_READ(FDI_RX_MISC(PIPE_A));
636 
637 		/* Wait for FDI auto training time */
638 		udelay(5);
639 
640 		temp = I915_READ(DP_TP_STATUS(PORT_E));
641 		if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
642 			DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
643 			break;
644 		}
645 
646 		/*
647 		 * Leave things enabled even if we failed to train FDI.
648 		 * Results in less fireworks from the state checker.
649 		 */
650 		if (i == ARRAY_SIZE(hsw_ddi_translations_fdi) * 2 - 1) {
651 			DRM_ERROR("FDI link training failed!\n");
652 			break;
653 		}
654 
655 		rx_ctl_val &= ~FDI_RX_ENABLE;
656 		I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
657 		POSTING_READ(FDI_RX_CTL(PIPE_A));
658 
659 		temp = I915_READ(DDI_BUF_CTL(PORT_E));
660 		temp &= ~DDI_BUF_CTL_ENABLE;
661 		I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
662 		POSTING_READ(DDI_BUF_CTL(PORT_E));
663 
664 		/* Disable DP_TP_CTL and FDI_RX_CTL and retry */
665 		temp = I915_READ(DP_TP_CTL(PORT_E));
666 		temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
667 		temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
668 		I915_WRITE(DP_TP_CTL(PORT_E), temp);
669 		POSTING_READ(DP_TP_CTL(PORT_E));
670 
671 		intel_wait_ddi_buf_idle(dev_priv, PORT_E);
672 
673 		/* Reset FDI_RX_MISC pwrdn lanes */
674 		temp = I915_READ(FDI_RX_MISC(PIPE_A));
675 		temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
676 		temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
677 		I915_WRITE(FDI_RX_MISC(PIPE_A), temp);
678 		POSTING_READ(FDI_RX_MISC(PIPE_A));
679 	}
680 
681 	/* Enable normal pixel sending for FDI */
682 	I915_WRITE(DP_TP_CTL(PORT_E),
683 		   DP_TP_CTL_FDI_AUTOTRAIN |
684 		   DP_TP_CTL_LINK_TRAIN_NORMAL |
685 		   DP_TP_CTL_ENHANCED_FRAME_ENABLE |
686 		   DP_TP_CTL_ENABLE);
687 }
688 
689 void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder)
690 {
691 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
692 	struct intel_digital_port *intel_dig_port =
693 		enc_to_dig_port(&encoder->base);
694 
695 	intel_dp->DP = intel_dig_port->saved_port_bits |
696 		DDI_BUF_CTL_ENABLE | DDI_BUF_TRANS_SELECT(0);
697 	intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
698 }
699 
700 static struct intel_encoder *
701 intel_ddi_get_crtc_encoder(struct drm_crtc *crtc)
702 {
703 	struct drm_device *dev = crtc->dev;
704 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
705 	struct intel_encoder *intel_encoder, *ret = NULL;
706 	int num_encoders = 0;
707 
708 	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
709 		ret = intel_encoder;
710 		num_encoders++;
711 	}
712 
713 	if (num_encoders != 1)
714 		WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
715 		     pipe_name(intel_crtc->pipe));
716 
717 	BUG_ON(ret == NULL);
718 	return ret;
719 }
720 
721 struct intel_encoder *
722 intel_ddi_get_crtc_new_encoder(struct intel_crtc_state *crtc_state)
723 {
724 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
725 	struct intel_encoder *ret = NULL;
726 	struct drm_atomic_state *state;
727 	struct drm_connector *connector;
728 	struct drm_connector_state *connector_state;
729 	int num_encoders = 0;
730 	int i;
731 
732 	state = crtc_state->base.state;
733 
734 	for_each_connector_in_state(state, connector, connector_state, i) {
735 		if (connector_state->crtc != crtc_state->base.crtc)
736 			continue;
737 
738 		ret = to_intel_encoder(connector_state->best_encoder);
739 		num_encoders++;
740 	}
741 
742 	WARN(num_encoders != 1, "%d encoders on crtc for pipe %c\n", num_encoders,
743 	     pipe_name(crtc->pipe));
744 
745 	BUG_ON(ret == NULL);
746 	return ret;
747 }
748 
749 #define LC_FREQ 2700
750 
751 static int hsw_ddi_calc_wrpll_link(struct drm_i915_private *dev_priv,
752 				   i915_reg_t reg)
753 {
754 	int refclk = LC_FREQ;
755 	int n, p, r;
756 	u32 wrpll;
757 
758 	wrpll = I915_READ(reg);
759 	switch (wrpll & WRPLL_PLL_REF_MASK) {
760 	case WRPLL_PLL_SSC:
761 	case WRPLL_PLL_NON_SSC:
762 		/*
763 		 * We could calculate spread here, but our checking
764 		 * code only cares about 5% accuracy, and spread is a max of
765 		 * 0.5% downspread.
766 		 */
767 		refclk = 135;
768 		break;
769 	case WRPLL_PLL_LCPLL:
770 		refclk = LC_FREQ;
771 		break;
772 	default:
773 		WARN(1, "bad wrpll refclk\n");
774 		return 0;
775 	}
776 
777 	r = wrpll & WRPLL_DIVIDER_REF_MASK;
778 	p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
779 	n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;
780 
781 	/* Convert to KHz, p & r have a fixed point portion */
782 	return (refclk * n * 100) / (p * r);
783 }
784 
785 static int skl_calc_wrpll_link(struct drm_i915_private *dev_priv,
786 			       uint32_t dpll)
787 {
788 	i915_reg_t cfgcr1_reg, cfgcr2_reg;
789 	uint32_t cfgcr1_val, cfgcr2_val;
790 	uint32_t p0, p1, p2, dco_freq;
791 
792 	cfgcr1_reg = DPLL_CFGCR1(dpll);
793 	cfgcr2_reg = DPLL_CFGCR2(dpll);
794 
795 	cfgcr1_val = I915_READ(cfgcr1_reg);
796 	cfgcr2_val = I915_READ(cfgcr2_reg);
797 
798 	p0 = cfgcr2_val & DPLL_CFGCR2_PDIV_MASK;
799 	p2 = cfgcr2_val & DPLL_CFGCR2_KDIV_MASK;
800 
801 	if (cfgcr2_val &  DPLL_CFGCR2_QDIV_MODE(1))
802 		p1 = (cfgcr2_val & DPLL_CFGCR2_QDIV_RATIO_MASK) >> 8;
803 	else
804 		p1 = 1;
805 
806 
807 	switch (p0) {
808 	case DPLL_CFGCR2_PDIV_1:
809 		p0 = 1;
810 		break;
811 	case DPLL_CFGCR2_PDIV_2:
812 		p0 = 2;
813 		break;
814 	case DPLL_CFGCR2_PDIV_3:
815 		p0 = 3;
816 		break;
817 	case DPLL_CFGCR2_PDIV_7:
818 		p0 = 7;
819 		break;
820 	}
821 
822 	switch (p2) {
823 	case DPLL_CFGCR2_KDIV_5:
824 		p2 = 5;
825 		break;
826 	case DPLL_CFGCR2_KDIV_2:
827 		p2 = 2;
828 		break;
829 	case DPLL_CFGCR2_KDIV_3:
830 		p2 = 3;
831 		break;
832 	case DPLL_CFGCR2_KDIV_1:
833 		p2 = 1;
834 		break;
835 	}
836 
837 	dco_freq = (cfgcr1_val & DPLL_CFGCR1_DCO_INTEGER_MASK) * 24 * 1000;
838 
839 	dco_freq += (((cfgcr1_val & DPLL_CFGCR1_DCO_FRACTION_MASK) >> 9) * 24 *
840 		1000) / 0x8000;
841 
842 	return dco_freq / (p0 * p1 * p2 * 5);
843 }
844 
845 static void ddi_dotclock_get(struct intel_crtc_state *pipe_config)
846 {
847 	int dotclock;
848 
849 	if (pipe_config->has_pch_encoder)
850 		dotclock = intel_dotclock_calculate(pipe_config->port_clock,
851 						    &pipe_config->fdi_m_n);
852 	else if (intel_crtc_has_dp_encoder(pipe_config))
853 		dotclock = intel_dotclock_calculate(pipe_config->port_clock,
854 						    &pipe_config->dp_m_n);
855 	else if (pipe_config->has_hdmi_sink && pipe_config->pipe_bpp == 36)
856 		dotclock = pipe_config->port_clock * 2 / 3;
857 	else
858 		dotclock = pipe_config->port_clock;
859 
860 	if (pipe_config->pixel_multiplier)
861 		dotclock /= pipe_config->pixel_multiplier;
862 
863 	pipe_config->base.adjusted_mode.crtc_clock = dotclock;
864 }
865 
866 static void skl_ddi_clock_get(struct intel_encoder *encoder,
867 				struct intel_crtc_state *pipe_config)
868 {
869 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
870 	int link_clock = 0;
871 	uint32_t dpll_ctl1, dpll;
872 
873 	dpll = pipe_config->ddi_pll_sel;
874 
875 	dpll_ctl1 = I915_READ(DPLL_CTRL1);
876 
877 	if (dpll_ctl1 & DPLL_CTRL1_HDMI_MODE(dpll)) {
878 		link_clock = skl_calc_wrpll_link(dev_priv, dpll);
879 	} else {
880 		link_clock = dpll_ctl1 & DPLL_CTRL1_LINK_RATE_MASK(dpll);
881 		link_clock >>= DPLL_CTRL1_LINK_RATE_SHIFT(dpll);
882 
883 		switch (link_clock) {
884 		case DPLL_CTRL1_LINK_RATE_810:
885 			link_clock = 81000;
886 			break;
887 		case DPLL_CTRL1_LINK_RATE_1080:
888 			link_clock = 108000;
889 			break;
890 		case DPLL_CTRL1_LINK_RATE_1350:
891 			link_clock = 135000;
892 			break;
893 		case DPLL_CTRL1_LINK_RATE_1620:
894 			link_clock = 162000;
895 			break;
896 		case DPLL_CTRL1_LINK_RATE_2160:
897 			link_clock = 216000;
898 			break;
899 		case DPLL_CTRL1_LINK_RATE_2700:
900 			link_clock = 270000;
901 			break;
902 		default:
903 			WARN(1, "Unsupported link rate\n");
904 			break;
905 		}
906 		link_clock *= 2;
907 	}
908 
909 	pipe_config->port_clock = link_clock;
910 
911 	ddi_dotclock_get(pipe_config);
912 }
913 
914 static void hsw_ddi_clock_get(struct intel_encoder *encoder,
915 			      struct intel_crtc_state *pipe_config)
916 {
917 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
918 	int link_clock = 0;
919 	u32 val, pll;
920 
921 	val = pipe_config->ddi_pll_sel;
922 	switch (val & PORT_CLK_SEL_MASK) {
923 	case PORT_CLK_SEL_LCPLL_810:
924 		link_clock = 81000;
925 		break;
926 	case PORT_CLK_SEL_LCPLL_1350:
927 		link_clock = 135000;
928 		break;
929 	case PORT_CLK_SEL_LCPLL_2700:
930 		link_clock = 270000;
931 		break;
932 	case PORT_CLK_SEL_WRPLL1:
933 		link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(0));
934 		break;
935 	case PORT_CLK_SEL_WRPLL2:
936 		link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(1));
937 		break;
938 	case PORT_CLK_SEL_SPLL:
939 		pll = I915_READ(SPLL_CTL) & SPLL_PLL_FREQ_MASK;
940 		if (pll == SPLL_PLL_FREQ_810MHz)
941 			link_clock = 81000;
942 		else if (pll == SPLL_PLL_FREQ_1350MHz)
943 			link_clock = 135000;
944 		else if (pll == SPLL_PLL_FREQ_2700MHz)
945 			link_clock = 270000;
946 		else {
947 			WARN(1, "bad spll freq\n");
948 			return;
949 		}
950 		break;
951 	default:
952 		WARN(1, "bad port clock sel\n");
953 		return;
954 	}
955 
956 	pipe_config->port_clock = link_clock * 2;
957 
958 	ddi_dotclock_get(pipe_config);
959 }
960 
961 static int bxt_calc_pll_link(struct drm_i915_private *dev_priv,
962 				enum intel_dpll_id dpll)
963 {
964 	struct intel_shared_dpll *pll;
965 	struct intel_dpll_hw_state *state;
966 	struct dpll clock;
967 
968 	/* For DDI ports we always use a shared PLL. */
969 	if (WARN_ON(dpll == DPLL_ID_PRIVATE))
970 		return 0;
971 
972 	pll = &dev_priv->shared_dplls[dpll];
973 	state = &pll->config.hw_state;
974 
975 	clock.m1 = 2;
976 	clock.m2 = (state->pll0 & PORT_PLL_M2_MASK) << 22;
977 	if (state->pll3 & PORT_PLL_M2_FRAC_ENABLE)
978 		clock.m2 |= state->pll2 & PORT_PLL_M2_FRAC_MASK;
979 	clock.n = (state->pll1 & PORT_PLL_N_MASK) >> PORT_PLL_N_SHIFT;
980 	clock.p1 = (state->ebb0 & PORT_PLL_P1_MASK) >> PORT_PLL_P1_SHIFT;
981 	clock.p2 = (state->ebb0 & PORT_PLL_P2_MASK) >> PORT_PLL_P2_SHIFT;
982 
983 	return chv_calc_dpll_params(100000, &clock);
984 }
985 
986 static void bxt_ddi_clock_get(struct intel_encoder *encoder,
987 				struct intel_crtc_state *pipe_config)
988 {
989 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
990 	enum port port = intel_ddi_get_encoder_port(encoder);
991 	uint32_t dpll = port;
992 
993 	pipe_config->port_clock = bxt_calc_pll_link(dev_priv, dpll);
994 
995 	ddi_dotclock_get(pipe_config);
996 }
997 
998 void intel_ddi_clock_get(struct intel_encoder *encoder,
999 			 struct intel_crtc_state *pipe_config)
1000 {
1001 	struct drm_device *dev = encoder->base.dev;
1002 
1003 	if (INTEL_INFO(dev)->gen <= 8)
1004 		hsw_ddi_clock_get(encoder, pipe_config);
1005 	else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
1006 		skl_ddi_clock_get(encoder, pipe_config);
1007 	else if (IS_BROXTON(dev))
1008 		bxt_ddi_clock_get(encoder, pipe_config);
1009 }
1010 
1011 static bool
1012 hsw_ddi_pll_select(struct intel_crtc *intel_crtc,
1013 		   struct intel_crtc_state *crtc_state,
1014 		   struct intel_encoder *intel_encoder)
1015 {
1016 	struct intel_shared_dpll *pll;
1017 
1018 	pll = intel_get_shared_dpll(intel_crtc, crtc_state,
1019 				    intel_encoder);
1020 	if (!pll)
1021 		DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
1022 				 pipe_name(intel_crtc->pipe));
1023 
1024 	return pll;
1025 }
1026 
1027 static bool
1028 skl_ddi_pll_select(struct intel_crtc *intel_crtc,
1029 		   struct intel_crtc_state *crtc_state,
1030 		   struct intel_encoder *intel_encoder)
1031 {
1032 	struct intel_shared_dpll *pll;
1033 
1034 	pll = intel_get_shared_dpll(intel_crtc, crtc_state, intel_encoder);
1035 	if (pll == NULL) {
1036 		DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
1037 				 pipe_name(intel_crtc->pipe));
1038 		return false;
1039 	}
1040 
1041 	return true;
1042 }
1043 
1044 static bool
1045 bxt_ddi_pll_select(struct intel_crtc *intel_crtc,
1046 		   struct intel_crtc_state *crtc_state,
1047 		   struct intel_encoder *intel_encoder)
1048 {
1049 	return !!intel_get_shared_dpll(intel_crtc, crtc_state, intel_encoder);
1050 }
1051 
1052 /*
1053  * Tries to find a *shared* PLL for the CRTC and store it in
1054  * intel_crtc->ddi_pll_sel.
1055  *
1056  * For private DPLLs, compute_config() should do the selection for us. This
1057  * function should be folded into compute_config() eventually.
1058  */
1059 bool intel_ddi_pll_select(struct intel_crtc *intel_crtc,
1060 			  struct intel_crtc_state *crtc_state)
1061 {
1062 	struct drm_device *dev = intel_crtc->base.dev;
1063 	struct intel_encoder *intel_encoder =
1064 		intel_ddi_get_crtc_new_encoder(crtc_state);
1065 
1066 	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
1067 		return skl_ddi_pll_select(intel_crtc, crtc_state,
1068 					  intel_encoder);
1069 	else if (IS_BROXTON(dev))
1070 		return bxt_ddi_pll_select(intel_crtc, crtc_state,
1071 					  intel_encoder);
1072 	else
1073 		return hsw_ddi_pll_select(intel_crtc, crtc_state,
1074 					  intel_encoder);
1075 }
1076 
1077 void intel_ddi_set_pipe_settings(struct drm_crtc *crtc)
1078 {
1079 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
1080 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1081 	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1082 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1083 	int type = intel_encoder->type;
1084 	uint32_t temp;
1085 
1086 	if (type == INTEL_OUTPUT_DP || type == INTEL_OUTPUT_EDP || type == INTEL_OUTPUT_DP_MST) {
1087 		WARN_ON(transcoder_is_dsi(cpu_transcoder));
1088 
1089 		temp = TRANS_MSA_SYNC_CLK;
1090 		switch (intel_crtc->config->pipe_bpp) {
1091 		case 18:
1092 			temp |= TRANS_MSA_6_BPC;
1093 			break;
1094 		case 24:
1095 			temp |= TRANS_MSA_8_BPC;
1096 			break;
1097 		case 30:
1098 			temp |= TRANS_MSA_10_BPC;
1099 			break;
1100 		case 36:
1101 			temp |= TRANS_MSA_12_BPC;
1102 			break;
1103 		default:
1104 			BUG();
1105 		}
1106 		I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
1107 	}
1108 }
1109 
1110 void intel_ddi_set_vc_payload_alloc(struct drm_crtc *crtc, bool state)
1111 {
1112 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1113 	struct drm_device *dev = crtc->dev;
1114 	struct drm_i915_private *dev_priv = to_i915(dev);
1115 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1116 	uint32_t temp;
1117 	temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1118 	if (state == true)
1119 		temp |= TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
1120 	else
1121 		temp &= ~TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
1122 	I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
1123 }
1124 
1125 void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc)
1126 {
1127 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1128 	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1129 	struct drm_device *dev = crtc->dev;
1130 	struct drm_i915_private *dev_priv = to_i915(dev);
1131 	enum i915_pipe pipe = intel_crtc->pipe;
1132 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1133 	enum port port = intel_ddi_get_encoder_port(intel_encoder);
1134 	int type = intel_encoder->type;
1135 	uint32_t temp;
1136 
1137 	/* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
1138 	temp = TRANS_DDI_FUNC_ENABLE;
1139 	temp |= TRANS_DDI_SELECT_PORT(port);
1140 
1141 	switch (intel_crtc->config->pipe_bpp) {
1142 	case 18:
1143 		temp |= TRANS_DDI_BPC_6;
1144 		break;
1145 	case 24:
1146 		temp |= TRANS_DDI_BPC_8;
1147 		break;
1148 	case 30:
1149 		temp |= TRANS_DDI_BPC_10;
1150 		break;
1151 	case 36:
1152 		temp |= TRANS_DDI_BPC_12;
1153 		break;
1154 	default:
1155 		BUG();
1156 	}
1157 
1158 	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
1159 		temp |= TRANS_DDI_PVSYNC;
1160 	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
1161 		temp |= TRANS_DDI_PHSYNC;
1162 
1163 	if (cpu_transcoder == TRANSCODER_EDP) {
1164 		switch (pipe) {
1165 		case PIPE_A:
1166 			/* On Haswell, can only use the always-on power well for
1167 			 * eDP when not using the panel fitter, and when not
1168 			 * using motion blur mitigation (which we don't
1169 			 * support). */
1170 			if (IS_HASWELL(dev) &&
1171 			    (intel_crtc->config->pch_pfit.enabled ||
1172 			     intel_crtc->config->pch_pfit.force_thru))
1173 				temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
1174 			else
1175 				temp |= TRANS_DDI_EDP_INPUT_A_ON;
1176 			break;
1177 		case PIPE_B:
1178 			temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
1179 			break;
1180 		case PIPE_C:
1181 			temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
1182 			break;
1183 		default:
1184 			BUG();
1185 			break;
1186 		}
1187 	}
1188 
1189 	if (type == INTEL_OUTPUT_HDMI) {
1190 		if (intel_crtc->config->has_hdmi_sink)
1191 			temp |= TRANS_DDI_MODE_SELECT_HDMI;
1192 		else
1193 			temp |= TRANS_DDI_MODE_SELECT_DVI;
1194 	} else if (type == INTEL_OUTPUT_ANALOG) {
1195 		temp |= TRANS_DDI_MODE_SELECT_FDI;
1196 		temp |= (intel_crtc->config->fdi_lanes - 1) << 1;
1197 	} else if (type == INTEL_OUTPUT_DP ||
1198 		   type == INTEL_OUTPUT_EDP) {
1199 		temp |= TRANS_DDI_MODE_SELECT_DP_SST;
1200 		temp |= DDI_PORT_WIDTH(intel_crtc->config->lane_count);
1201 	} else if (type == INTEL_OUTPUT_DP_MST) {
1202 		temp |= TRANS_DDI_MODE_SELECT_DP_MST;
1203 		temp |= DDI_PORT_WIDTH(intel_crtc->config->lane_count);
1204 	} else {
1205 		WARN(1, "Invalid encoder type %d for pipe %c\n",
1206 		     intel_encoder->type, pipe_name(pipe));
1207 	}
1208 
1209 	I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
1210 }
1211 
1212 void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
1213 				       enum transcoder cpu_transcoder)
1214 {
1215 	i915_reg_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1216 	uint32_t val = I915_READ(reg);
1217 
1218 	val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK | TRANS_DDI_DP_VC_PAYLOAD_ALLOC);
1219 	val |= TRANS_DDI_PORT_NONE;
1220 	I915_WRITE(reg, val);
1221 }
1222 
1223 bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
1224 {
1225 	struct drm_device *dev = intel_connector->base.dev;
1226 	struct drm_i915_private *dev_priv = to_i915(dev);
1227 	struct intel_encoder *intel_encoder = intel_connector->encoder;
1228 	int type = intel_connector->base.connector_type;
1229 	enum port port = intel_ddi_get_encoder_port(intel_encoder);
1230 	enum i915_pipe pipe = 0;
1231 	enum transcoder cpu_transcoder;
1232 	enum intel_display_power_domain power_domain;
1233 	uint32_t tmp;
1234 	bool ret;
1235 
1236 	power_domain = intel_display_port_power_domain(intel_encoder);
1237 	if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
1238 		return false;
1239 
1240 	if (!intel_encoder->get_hw_state(intel_encoder, &pipe)) {
1241 		ret = false;
1242 		goto out;
1243 	}
1244 
1245 	if (port == PORT_A)
1246 		cpu_transcoder = TRANSCODER_EDP;
1247 	else
1248 		cpu_transcoder = (enum transcoder) pipe;
1249 
1250 	tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1251 
1252 	switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
1253 	case TRANS_DDI_MODE_SELECT_HDMI:
1254 	case TRANS_DDI_MODE_SELECT_DVI:
1255 		ret = type == DRM_MODE_CONNECTOR_HDMIA;
1256 		break;
1257 
1258 	case TRANS_DDI_MODE_SELECT_DP_SST:
1259 		ret = type == DRM_MODE_CONNECTOR_eDP ||
1260 		      type == DRM_MODE_CONNECTOR_DisplayPort;
1261 		break;
1262 
1263 	case TRANS_DDI_MODE_SELECT_DP_MST:
1264 		/* if the transcoder is in MST state then
1265 		 * connector isn't connected */
1266 		ret = false;
1267 		break;
1268 
1269 	case TRANS_DDI_MODE_SELECT_FDI:
1270 		ret = type == DRM_MODE_CONNECTOR_VGA;
1271 		break;
1272 
1273 	default:
1274 		ret = false;
1275 		break;
1276 	}
1277 
1278 out:
1279 	intel_display_power_put(dev_priv, power_domain);
1280 
1281 	return ret;
1282 }
1283 
1284 bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
1285 			    enum i915_pipe *pipe)
1286 {
1287 	struct drm_device *dev = encoder->base.dev;
1288 	struct drm_i915_private *dev_priv = to_i915(dev);
1289 	enum port port = intel_ddi_get_encoder_port(encoder);
1290 	enum intel_display_power_domain power_domain;
1291 	u32 tmp;
1292 	int i;
1293 	bool ret;
1294 
1295 	power_domain = intel_display_port_power_domain(encoder);
1296 	if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
1297 		return false;
1298 
1299 	ret = false;
1300 
1301 	tmp = I915_READ(DDI_BUF_CTL(port));
1302 
1303 	if (!(tmp & DDI_BUF_CTL_ENABLE))
1304 		goto out;
1305 
1306 	if (port == PORT_A) {
1307 		tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
1308 
1309 		switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
1310 		case TRANS_DDI_EDP_INPUT_A_ON:
1311 		case TRANS_DDI_EDP_INPUT_A_ONOFF:
1312 			*pipe = PIPE_A;
1313 			break;
1314 		case TRANS_DDI_EDP_INPUT_B_ONOFF:
1315 			*pipe = PIPE_B;
1316 			break;
1317 		case TRANS_DDI_EDP_INPUT_C_ONOFF:
1318 			*pipe = PIPE_C;
1319 			break;
1320 		}
1321 
1322 		ret = true;
1323 
1324 		goto out;
1325 	}
1326 
1327 	for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) {
1328 		tmp = I915_READ(TRANS_DDI_FUNC_CTL(i));
1329 
1330 		if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(port)) {
1331 			if ((tmp & TRANS_DDI_MODE_SELECT_MASK) ==
1332 			    TRANS_DDI_MODE_SELECT_DP_MST)
1333 				goto out;
1334 
1335 			*pipe = i;
1336 			ret = true;
1337 
1338 			goto out;
1339 		}
1340 	}
1341 
1342 	DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
1343 
1344 out:
1345 	if (ret && IS_BROXTON(dev_priv)) {
1346 		tmp = I915_READ(BXT_PHY_CTL(port));
1347 		if ((tmp & (BXT_PHY_LANE_POWERDOWN_ACK |
1348 			    BXT_PHY_LANE_ENABLED)) != BXT_PHY_LANE_ENABLED)
1349 			DRM_ERROR("Port %c enabled but PHY powered down? "
1350 				  "(PHY_CTL %08x)\n", port_name(port), tmp);
1351 	}
1352 
1353 	intel_display_power_put(dev_priv, power_domain);
1354 
1355 	return ret;
1356 }
1357 
1358 void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc)
1359 {
1360 	struct drm_crtc *crtc = &intel_crtc->base;
1361 	struct drm_device *dev = crtc->dev;
1362 	struct drm_i915_private *dev_priv = to_i915(dev);
1363 	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1364 	enum port port = intel_ddi_get_encoder_port(intel_encoder);
1365 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1366 
1367 	if (cpu_transcoder != TRANSCODER_EDP)
1368 		I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
1369 			   TRANS_CLK_SEL_PORT(port));
1370 }
1371 
1372 void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc)
1373 {
1374 	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
1375 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1376 
1377 	if (cpu_transcoder != TRANSCODER_EDP)
1378 		I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
1379 			   TRANS_CLK_SEL_DISABLED);
1380 }
1381 
1382 static void _skl_ddi_set_iboost(struct drm_i915_private *dev_priv,
1383 				enum port port, uint8_t iboost)
1384 {
1385 	u32 tmp;
1386 
1387 	tmp = I915_READ(DISPIO_CR_TX_BMU_CR0);
1388 	tmp &= ~(BALANCE_LEG_MASK(port) | BALANCE_LEG_DISABLE(port));
1389 	if (iboost)
1390 		tmp |= iboost << BALANCE_LEG_SHIFT(port);
1391 	else
1392 		tmp |= BALANCE_LEG_DISABLE(port);
1393 	I915_WRITE(DISPIO_CR_TX_BMU_CR0, tmp);
1394 }
1395 
1396 static void skl_ddi_set_iboost(struct intel_encoder *encoder, u32 level)
1397 {
1398 	struct intel_digital_port *intel_dig_port = enc_to_dig_port(&encoder->base);
1399 	struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
1400 	enum port port = intel_dig_port->port;
1401 	int type = encoder->type;
1402 	const struct ddi_buf_trans *ddi_translations;
1403 	uint8_t iboost;
1404 	uint8_t dp_iboost, hdmi_iboost;
1405 	int n_entries;
1406 
1407 	/* VBT may override standard boost values */
1408 	dp_iboost = dev_priv->vbt.ddi_port_info[port].dp_boost_level;
1409 	hdmi_iboost = dev_priv->vbt.ddi_port_info[port].hdmi_boost_level;
1410 
1411 	if (type == INTEL_OUTPUT_DP) {
1412 		if (dp_iboost) {
1413 			iboost = dp_iboost;
1414 		} else {
1415 			ddi_translations = skl_get_buf_trans_dp(dev_priv, &n_entries);
1416 			iboost = ddi_translations[level].i_boost;
1417 		}
1418 	} else if (type == INTEL_OUTPUT_EDP) {
1419 		if (dp_iboost) {
1420 			iboost = dp_iboost;
1421 		} else {
1422 			ddi_translations = skl_get_buf_trans_edp(dev_priv, &n_entries);
1423 
1424 			if (WARN_ON(port != PORT_A &&
1425 				    port != PORT_E && n_entries > 9))
1426 				n_entries = 9;
1427 
1428 			iboost = ddi_translations[level].i_boost;
1429 		}
1430 	} else if (type == INTEL_OUTPUT_HDMI) {
1431 		if (hdmi_iboost) {
1432 			iboost = hdmi_iboost;
1433 		} else {
1434 			ddi_translations = skl_get_buf_trans_hdmi(dev_priv, &n_entries);
1435 			iboost = ddi_translations[level].i_boost;
1436 		}
1437 	} else {
1438 		return;
1439 	}
1440 
1441 	/* Make sure that the requested I_boost is valid */
1442 	if (iboost && iboost != 0x1 && iboost != 0x3 && iboost != 0x7) {
1443 		DRM_ERROR("Invalid I_boost value %u\n", iboost);
1444 		return;
1445 	}
1446 
1447 	_skl_ddi_set_iboost(dev_priv, port, iboost);
1448 
1449 	if (port == PORT_A && intel_dig_port->max_lanes == 4)
1450 		_skl_ddi_set_iboost(dev_priv, PORT_E, iboost);
1451 }
1452 
1453 static void bxt_ddi_vswing_sequence(struct drm_i915_private *dev_priv,
1454 				    u32 level, enum port port, int type)
1455 {
1456 	const struct bxt_ddi_buf_trans *ddi_translations;
1457 	u32 n_entries, i;
1458 	uint32_t val;
1459 
1460 	if (type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp.low_vswing) {
1461 		n_entries = ARRAY_SIZE(bxt_ddi_translations_edp);
1462 		ddi_translations = bxt_ddi_translations_edp;
1463 	} else if (type == INTEL_OUTPUT_DP
1464 			|| type == INTEL_OUTPUT_EDP) {
1465 		n_entries = ARRAY_SIZE(bxt_ddi_translations_dp);
1466 		ddi_translations = bxt_ddi_translations_dp;
1467 	} else if (type == INTEL_OUTPUT_HDMI) {
1468 		n_entries = ARRAY_SIZE(bxt_ddi_translations_hdmi);
1469 		ddi_translations = bxt_ddi_translations_hdmi;
1470 	} else {
1471 		DRM_DEBUG_KMS("Vswing programming not done for encoder %d\n",
1472 				type);
1473 		return;
1474 	}
1475 
1476 	/* Check if default value has to be used */
1477 	if (level >= n_entries ||
1478 	    (type == INTEL_OUTPUT_HDMI && level == HDMI_LEVEL_SHIFT_UNKNOWN)) {
1479 		for (i = 0; i < n_entries; i++) {
1480 			if (ddi_translations[i].default_index) {
1481 				level = i;
1482 				break;
1483 			}
1484 		}
1485 	}
1486 
1487 	/*
1488 	 * While we write to the group register to program all lanes at once we
1489 	 * can read only lane registers and we pick lanes 0/1 for that.
1490 	 */
1491 	val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
1492 	val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
1493 	I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);
1494 
1495 	val = I915_READ(BXT_PORT_TX_DW2_LN0(port));
1496 	val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE);
1497 	val |= ddi_translations[level].margin << MARGIN_000_SHIFT |
1498 	       ddi_translations[level].scale << UNIQ_TRANS_SCALE_SHIFT;
1499 	I915_WRITE(BXT_PORT_TX_DW2_GRP(port), val);
1500 
1501 	val = I915_READ(BXT_PORT_TX_DW3_LN0(port));
1502 	val &= ~SCALE_DCOMP_METHOD;
1503 	if (ddi_translations[level].enable)
1504 		val |= SCALE_DCOMP_METHOD;
1505 
1506 	if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD))
1507 		DRM_ERROR("Disabled scaling while ouniqetrangenmethod was set");
1508 
1509 	I915_WRITE(BXT_PORT_TX_DW3_GRP(port), val);
1510 
1511 	val = I915_READ(BXT_PORT_TX_DW4_LN0(port));
1512 	val &= ~DE_EMPHASIS;
1513 	val |= ddi_translations[level].deemphasis << DEEMPH_SHIFT;
1514 	I915_WRITE(BXT_PORT_TX_DW4_GRP(port), val);
1515 
1516 	val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
1517 	val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT;
1518 	I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);
1519 }
1520 
1521 static uint32_t translate_signal_level(int signal_levels)
1522 {
1523 	uint32_t level;
1524 
1525 	switch (signal_levels) {
1526 	default:
1527 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level: 0x%x\n",
1528 			      signal_levels);
1529 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
1530 		level = 0;
1531 		break;
1532 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
1533 		level = 1;
1534 		break;
1535 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
1536 		level = 2;
1537 		break;
1538 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
1539 		level = 3;
1540 		break;
1541 
1542 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
1543 		level = 4;
1544 		break;
1545 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
1546 		level = 5;
1547 		break;
1548 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
1549 		level = 6;
1550 		break;
1551 
1552 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
1553 		level = 7;
1554 		break;
1555 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
1556 		level = 8;
1557 		break;
1558 
1559 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
1560 		level = 9;
1561 		break;
1562 	}
1563 
1564 	return level;
1565 }
1566 
1567 uint32_t ddi_signal_levels(struct intel_dp *intel_dp)
1568 {
1569 	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1570 	struct drm_i915_private *dev_priv = to_i915(dport->base.base.dev);
1571 	struct intel_encoder *encoder = &dport->base;
1572 	uint8_t train_set = intel_dp->train_set[0];
1573 	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1574 					 DP_TRAIN_PRE_EMPHASIS_MASK);
1575 	enum port port = dport->port;
1576 	uint32_t level;
1577 
1578 	level = translate_signal_level(signal_levels);
1579 
1580 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
1581 		skl_ddi_set_iboost(encoder, level);
1582 	else if (IS_BROXTON(dev_priv))
1583 		bxt_ddi_vswing_sequence(dev_priv, level, port, encoder->type);
1584 
1585 	return DDI_BUF_TRANS_SELECT(level);
1586 }
1587 
1588 void intel_ddi_clk_select(struct intel_encoder *encoder,
1589 			  const struct intel_crtc_state *pipe_config)
1590 {
1591 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1592 	enum port port = intel_ddi_get_encoder_port(encoder);
1593 
1594 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
1595 		uint32_t dpll = pipe_config->ddi_pll_sel;
1596 		uint32_t val;
1597 
1598 		/* DDI -> PLL mapping  */
1599 		val = I915_READ(DPLL_CTRL2);
1600 
1601 		val &= ~(DPLL_CTRL2_DDI_CLK_OFF(port) |
1602 			DPLL_CTRL2_DDI_CLK_SEL_MASK(port));
1603 		val |= (DPLL_CTRL2_DDI_CLK_SEL(dpll, port) |
1604 			DPLL_CTRL2_DDI_SEL_OVERRIDE(port));
1605 
1606 		I915_WRITE(DPLL_CTRL2, val);
1607 
1608 	} else if (INTEL_INFO(dev_priv)->gen < 9) {
1609 		WARN_ON(pipe_config->ddi_pll_sel == PORT_CLK_SEL_NONE);
1610 		I915_WRITE(PORT_CLK_SEL(port), pipe_config->ddi_pll_sel);
1611 	}
1612 }
1613 
1614 static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder)
1615 {
1616 	struct drm_encoder *encoder = &intel_encoder->base;
1617 	struct drm_i915_private *dev_priv = to_i915(encoder->dev);
1618 	struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
1619 	enum port port = intel_ddi_get_encoder_port(intel_encoder);
1620 	int type = intel_encoder->type;
1621 
1622 	if (type == INTEL_OUTPUT_HDMI) {
1623 		struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1624 
1625 		intel_dp_dual_mode_set_tmds_output(intel_hdmi, true);
1626 	}
1627 
1628 	if (type == INTEL_OUTPUT_EDP) {
1629 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1630 		intel_edp_panel_on(intel_dp);
1631 	}
1632 
1633 	intel_ddi_clk_select(intel_encoder, crtc->config);
1634 
1635 	if (type == INTEL_OUTPUT_DP || type == INTEL_OUTPUT_EDP) {
1636 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1637 
1638 		intel_prepare_dp_ddi_buffers(intel_encoder);
1639 
1640 		intel_dp_set_link_params(intel_dp, crtc->config);
1641 
1642 		intel_ddi_init_dp_buf_reg(intel_encoder);
1643 
1644 		intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1645 		intel_dp_start_link_train(intel_dp);
1646 		if (port != PORT_A || INTEL_INFO(dev_priv)->gen >= 9)
1647 			intel_dp_stop_link_train(intel_dp);
1648 	} else if (type == INTEL_OUTPUT_HDMI) {
1649 		struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1650 		int level = intel_ddi_hdmi_level(dev_priv, port);
1651 
1652 		intel_prepare_hdmi_ddi_buffers(intel_encoder);
1653 
1654 		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
1655 			skl_ddi_set_iboost(intel_encoder, level);
1656 		else if (IS_BROXTON(dev_priv))
1657 			bxt_ddi_vswing_sequence(dev_priv, level, port,
1658 						INTEL_OUTPUT_HDMI);
1659 
1660 		intel_hdmi->set_infoframes(encoder,
1661 					   crtc->config->has_hdmi_sink,
1662 					   &crtc->config->base.adjusted_mode);
1663 	}
1664 }
1665 
1666 static void intel_ddi_post_disable(struct intel_encoder *intel_encoder)
1667 {
1668 	struct drm_encoder *encoder = &intel_encoder->base;
1669 	struct drm_device *dev = encoder->dev;
1670 	struct drm_i915_private *dev_priv = to_i915(dev);
1671 	enum port port = intel_ddi_get_encoder_port(intel_encoder);
1672 	int type = intel_encoder->type;
1673 	uint32_t val;
1674 	bool wait = false;
1675 
1676 	val = I915_READ(DDI_BUF_CTL(port));
1677 	if (val & DDI_BUF_CTL_ENABLE) {
1678 		val &= ~DDI_BUF_CTL_ENABLE;
1679 		I915_WRITE(DDI_BUF_CTL(port), val);
1680 		wait = true;
1681 	}
1682 
1683 	val = I915_READ(DP_TP_CTL(port));
1684 	val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
1685 	val |= DP_TP_CTL_LINK_TRAIN_PAT1;
1686 	I915_WRITE(DP_TP_CTL(port), val);
1687 
1688 	if (wait)
1689 		intel_wait_ddi_buf_idle(dev_priv, port);
1690 
1691 	if (type == INTEL_OUTPUT_DP || type == INTEL_OUTPUT_EDP) {
1692 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1693 		intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
1694 		intel_edp_panel_vdd_on(intel_dp);
1695 		intel_edp_panel_off(intel_dp);
1696 	}
1697 
1698 	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
1699 		I915_WRITE(DPLL_CTRL2, (I915_READ(DPLL_CTRL2) |
1700 					DPLL_CTRL2_DDI_CLK_OFF(port)));
1701 	else if (INTEL_INFO(dev)->gen < 9)
1702 		I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
1703 
1704 	if (type == INTEL_OUTPUT_HDMI) {
1705 		struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1706 
1707 		intel_dp_dual_mode_set_tmds_output(intel_hdmi, false);
1708 	}
1709 }
1710 
1711 static void intel_enable_ddi(struct intel_encoder *intel_encoder)
1712 {
1713 	struct drm_encoder *encoder = &intel_encoder->base;
1714 	struct drm_crtc *crtc = encoder->crtc;
1715 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1716 	struct drm_device *dev = encoder->dev;
1717 	struct drm_i915_private *dev_priv = to_i915(dev);
1718 	enum port port = intel_ddi_get_encoder_port(intel_encoder);
1719 	int type = intel_encoder->type;
1720 
1721 	if (type == INTEL_OUTPUT_HDMI) {
1722 		struct intel_digital_port *intel_dig_port =
1723 			enc_to_dig_port(encoder);
1724 
1725 		/* In HDMI/DVI mode, the port width, and swing/emphasis values
1726 		 * are ignored so nothing special needs to be done besides
1727 		 * enabling the port.
1728 		 */
1729 		I915_WRITE(DDI_BUF_CTL(port),
1730 			   intel_dig_port->saved_port_bits |
1731 			   DDI_BUF_CTL_ENABLE);
1732 	} else if (type == INTEL_OUTPUT_EDP) {
1733 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1734 
1735 		if (port == PORT_A && INTEL_INFO(dev)->gen < 9)
1736 			intel_dp_stop_link_train(intel_dp);
1737 
1738 		intel_edp_backlight_on(intel_dp);
1739 		intel_psr_enable(intel_dp);
1740 		intel_edp_drrs_enable(intel_dp);
1741 	}
1742 
1743 	if (intel_crtc->config->has_audio) {
1744 		intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
1745 		intel_audio_codec_enable(intel_encoder);
1746 	}
1747 }
1748 
1749 static void intel_disable_ddi(struct intel_encoder *intel_encoder)
1750 {
1751 	struct drm_encoder *encoder = &intel_encoder->base;
1752 	struct drm_crtc *crtc = encoder->crtc;
1753 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1754 	int type = intel_encoder->type;
1755 	struct drm_device *dev = encoder->dev;
1756 	struct drm_i915_private *dev_priv = to_i915(dev);
1757 
1758 	if (intel_crtc->config->has_audio) {
1759 		intel_audio_codec_disable(intel_encoder);
1760 		intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
1761 	}
1762 
1763 	if (type == INTEL_OUTPUT_EDP) {
1764 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1765 
1766 		intel_edp_drrs_disable(intel_dp);
1767 		intel_psr_disable(intel_dp);
1768 		intel_edp_backlight_off(intel_dp);
1769 	}
1770 }
1771 
1772 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
1773 			    enum dpio_phy phy)
1774 {
1775 	enum port port;
1776 
1777 	if (!(I915_READ(BXT_P_CR_GT_DISP_PWRON) & GT_DISPLAY_POWER_ON(phy)))
1778 		return false;
1779 
1780 	if ((I915_READ(BXT_PORT_CL1CM_DW0(phy)) &
1781 	     (PHY_POWER_GOOD | PHY_RESERVED)) != PHY_POWER_GOOD) {
1782 		DRM_DEBUG_DRIVER("DDI PHY %d powered, but power hasn't settled\n",
1783 				 phy);
1784 
1785 		return false;
1786 	}
1787 
1788 	if (phy == DPIO_PHY1 &&
1789 	    !(I915_READ(BXT_PORT_REF_DW3(DPIO_PHY1)) & GRC_DONE)) {
1790 		DRM_DEBUG_DRIVER("DDI PHY 1 powered, but GRC isn't done\n");
1791 
1792 		return false;
1793 	}
1794 
1795 	if (!(I915_READ(BXT_PHY_CTL_FAMILY(phy)) & COMMON_RESET_DIS)) {
1796 		DRM_DEBUG_DRIVER("DDI PHY %d powered, but still in reset\n",
1797 				 phy);
1798 
1799 		return false;
1800 	}
1801 
1802 	for_each_port_masked(port,
1803 			     phy == DPIO_PHY0 ? BIT(PORT_B) | BIT(PORT_C) :
1804 						BIT(PORT_A)) {
1805 		u32 tmp = I915_READ(BXT_PHY_CTL(port));
1806 
1807 		if (tmp & BXT_PHY_CMNLANE_POWERDOWN_ACK) {
1808 			DRM_DEBUG_DRIVER("DDI PHY %d powered, but common lane "
1809 					 "for port %c powered down "
1810 					 "(PHY_CTL %08x)\n",
1811 					 phy, port_name(port), tmp);
1812 
1813 			return false;
1814 		}
1815 	}
1816 
1817 	return true;
1818 }
1819 
1820 static u32 bxt_get_grc(struct drm_i915_private *dev_priv, enum dpio_phy phy)
1821 {
1822 	u32 val = I915_READ(BXT_PORT_REF_DW6(phy));
1823 
1824 	return (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT;
1825 }
1826 
1827 static void bxt_phy_wait_grc_done(struct drm_i915_private *dev_priv,
1828 				  enum dpio_phy phy)
1829 {
1830 	if (intel_wait_for_register(dev_priv,
1831 				    BXT_PORT_REF_DW3(phy),
1832 				    GRC_DONE, GRC_DONE,
1833 				    10))
1834 		DRM_ERROR("timeout waiting for PHY%d GRC\n", phy);
1835 }
1836 
1837 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy)
1838 {
1839 	u32 val;
1840 
1841 	if (bxt_ddi_phy_is_enabled(dev_priv, phy)) {
1842 		/* Still read out the GRC value for state verification */
1843 		if (phy == DPIO_PHY0)
1844 			dev_priv->bxt_phy_grc = bxt_get_grc(dev_priv, phy);
1845 
1846 		if (bxt_ddi_phy_verify_state(dev_priv, phy)) {
1847 			DRM_DEBUG_DRIVER("DDI PHY %d already enabled, "
1848 					 "won't reprogram it\n", phy);
1849 
1850 			return;
1851 		}
1852 
1853 		DRM_DEBUG_DRIVER("DDI PHY %d enabled with invalid state, "
1854 				 "force reprogramming it\n", phy);
1855 	}
1856 
1857 	val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
1858 	val |= GT_DISPLAY_POWER_ON(phy);
1859 	I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);
1860 
1861 	/*
1862 	 * The PHY registers start out inaccessible and respond to reads with
1863 	 * all 1s.  Eventually they become accessible as they power up, then
1864 	 * the reserved bit will give the default 0.  Poll on the reserved bit
1865 	 * becoming 0 to find when the PHY is accessible.
1866 	 * HW team confirmed that the time to reach phypowergood status is
1867 	 * anywhere between 50 us and 100us.
1868 	 */
1869 	if (wait_for_us(((I915_READ(BXT_PORT_CL1CM_DW0(phy)) &
1870 		(PHY_RESERVED | PHY_POWER_GOOD)) == PHY_POWER_GOOD), 100)) {
1871 		DRM_ERROR("timeout during PHY%d power on\n", phy);
1872 	}
1873 
1874 	/* Program PLL Rcomp code offset */
1875 	val = I915_READ(BXT_PORT_CL1CM_DW9(phy));
1876 	val &= ~IREF0RC_OFFSET_MASK;
1877 	val |= 0xE4 << IREF0RC_OFFSET_SHIFT;
1878 	I915_WRITE(BXT_PORT_CL1CM_DW9(phy), val);
1879 
1880 	val = I915_READ(BXT_PORT_CL1CM_DW10(phy));
1881 	val &= ~IREF1RC_OFFSET_MASK;
1882 	val |= 0xE4 << IREF1RC_OFFSET_SHIFT;
1883 	I915_WRITE(BXT_PORT_CL1CM_DW10(phy), val);
1884 
1885 	/* Program power gating */
1886 	val = I915_READ(BXT_PORT_CL1CM_DW28(phy));
1887 	val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN |
1888 		SUS_CLK_CONFIG;
1889 	I915_WRITE(BXT_PORT_CL1CM_DW28(phy), val);
1890 
1891 	if (phy == DPIO_PHY0) {
1892 		val = I915_READ(BXT_PORT_CL2CM_DW6_BC);
1893 		val |= DW6_OLDO_DYN_PWR_DOWN_EN;
1894 		I915_WRITE(BXT_PORT_CL2CM_DW6_BC, val);
1895 	}
1896 
1897 	val = I915_READ(BXT_PORT_CL1CM_DW30(phy));
1898 	val &= ~OCL2_LDOFUSE_PWR_DIS;
1899 	/*
1900 	 * On PHY1 disable power on the second channel, since no port is
1901 	 * connected there. On PHY0 both channels have a port, so leave it
1902 	 * enabled.
1903 	 * TODO: port C is only connected on BXT-P, so on BXT0/1 we should
1904 	 * power down the second channel on PHY0 as well.
1905 	 *
1906 	 * FIXME: Clarify programming of the following, the register is
1907 	 * read-only with bit 6 fixed at 0 at least in stepping A.
1908 	 */
1909 	if (phy == DPIO_PHY1)
1910 		val |= OCL2_LDOFUSE_PWR_DIS;
1911 	I915_WRITE(BXT_PORT_CL1CM_DW30(phy), val);
1912 
1913 	if (phy == DPIO_PHY0) {
1914 		uint32_t grc_code;
1915 		/*
1916 		 * PHY0 isn't connected to an RCOMP resistor so copy over
1917 		 * the corresponding calibrated value from PHY1, and disable
1918 		 * the automatic calibration on PHY0.
1919 		 */
1920 		val = dev_priv->bxt_phy_grc = bxt_get_grc(dev_priv, DPIO_PHY1);
1921 		grc_code = val << GRC_CODE_FAST_SHIFT |
1922 			   val << GRC_CODE_SLOW_SHIFT |
1923 			   val;
1924 		I915_WRITE(BXT_PORT_REF_DW6(DPIO_PHY0), grc_code);
1925 
1926 		val = I915_READ(BXT_PORT_REF_DW8(DPIO_PHY0));
1927 		val |= GRC_DIS | GRC_RDY_OVRD;
1928 		I915_WRITE(BXT_PORT_REF_DW8(DPIO_PHY0), val);
1929 	}
1930 
1931 	val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
1932 	val |= COMMON_RESET_DIS;
1933 	I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
1934 
1935 	if (phy == DPIO_PHY1)
1936 		bxt_phy_wait_grc_done(dev_priv, DPIO_PHY1);
1937 }
1938 
1939 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy)
1940 {
1941 	uint32_t val;
1942 
1943 	val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
1944 	val &= ~COMMON_RESET_DIS;
1945 	I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
1946 
1947 	val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
1948 	val &= ~GT_DISPLAY_POWER_ON(phy);
1949 	I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);
1950 }
1951 
1952 static bool __printf(6, 7)
1953 __phy_reg_verify_state(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1954 		       i915_reg_t reg, u32 mask, u32 expected,
1955 		       const char *reg_fmt, ...)
1956 {
1957 	struct va_format vaf;
1958 	va_list args;
1959 	u32 val;
1960 
1961 	val = I915_READ(reg);
1962 	if ((val & mask) == expected)
1963 		return true;
1964 
1965 	va_start(args, reg_fmt);
1966 	vaf.fmt = reg_fmt;
1967 	vaf.va = &args;
1968 
1969 	DRM_DEBUG_DRIVER("DDI PHY %d reg %pV [%08x] state mismatch: "
1970 			 "current %08x, expected %08x (mask %08x)\n",
1971 			 phy, &vaf, reg.reg, val, (val & ~mask) | expected,
1972 			 mask);
1973 
1974 	va_end(args);
1975 
1976 	return false;
1977 }
1978 
1979 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
1980 			      enum dpio_phy phy)
1981 {
1982 	uint32_t mask;
1983 	bool ok;
1984 
1985 #define _CHK(reg, mask, exp, fmt, ...)					\
1986 	__phy_reg_verify_state(dev_priv, phy, reg, mask, exp, fmt,	\
1987 			       ## __VA_ARGS__)
1988 
1989 	if (!bxt_ddi_phy_is_enabled(dev_priv, phy))
1990 		return false;
1991 
1992 	ok = true;
1993 
1994 	/* PLL Rcomp code offset */
1995 	ok &= _CHK(BXT_PORT_CL1CM_DW9(phy),
1996 		    IREF0RC_OFFSET_MASK, 0xe4 << IREF0RC_OFFSET_SHIFT,
1997 		    "BXT_PORT_CL1CM_DW9(%d)", phy);
1998 	ok &= _CHK(BXT_PORT_CL1CM_DW10(phy),
1999 		    IREF1RC_OFFSET_MASK, 0xe4 << IREF1RC_OFFSET_SHIFT,
2000 		    "BXT_PORT_CL1CM_DW10(%d)", phy);
2001 
2002 	/* Power gating */
2003 	mask = OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG;
2004 	ok &= _CHK(BXT_PORT_CL1CM_DW28(phy), mask, mask,
2005 		    "BXT_PORT_CL1CM_DW28(%d)", phy);
2006 
2007 	if (phy == DPIO_PHY0)
2008 		ok &= _CHK(BXT_PORT_CL2CM_DW6_BC,
2009 			   DW6_OLDO_DYN_PWR_DOWN_EN, DW6_OLDO_DYN_PWR_DOWN_EN,
2010 			   "BXT_PORT_CL2CM_DW6_BC");
2011 
2012 	/*
2013 	 * TODO: Verify BXT_PORT_CL1CM_DW30 bit OCL2_LDOFUSE_PWR_DIS,
2014 	 * at least on stepping A this bit is read-only and fixed at 0.
2015 	 */
2016 
2017 	if (phy == DPIO_PHY0) {
2018 		u32 grc_code = dev_priv->bxt_phy_grc;
2019 
2020 		grc_code = grc_code << GRC_CODE_FAST_SHIFT |
2021 			   grc_code << GRC_CODE_SLOW_SHIFT |
2022 			   grc_code;
2023 		mask = GRC_CODE_FAST_MASK | GRC_CODE_SLOW_MASK |
2024 		       GRC_CODE_NOM_MASK;
2025 		ok &= _CHK(BXT_PORT_REF_DW6(DPIO_PHY0), mask, grc_code,
2026 			    "BXT_PORT_REF_DW6(%d)", DPIO_PHY0);
2027 
2028 		mask = GRC_DIS | GRC_RDY_OVRD;
2029 		ok &= _CHK(BXT_PORT_REF_DW8(DPIO_PHY0), mask, mask,
2030 			    "BXT_PORT_REF_DW8(%d)", DPIO_PHY0);
2031 	}
2032 
2033 	return ok;
2034 #undef _CHK
2035 }
2036 
2037 static uint8_t
2038 bxt_ddi_phy_calc_lane_lat_optim_mask(struct intel_encoder *encoder,
2039 				     struct intel_crtc_state *pipe_config)
2040 {
2041 	switch (pipe_config->lane_count) {
2042 	case 1:
2043 		return 0;
2044 	case 2:
2045 		return BIT(2) | BIT(0);
2046 	case 4:
2047 		return BIT(3) | BIT(2) | BIT(0);
2048 	default:
2049 		MISSING_CASE(pipe_config->lane_count);
2050 
2051 		return 0;
2052 	}
2053 }
2054 
2055 static void bxt_ddi_pre_pll_enable(struct intel_encoder *encoder)
2056 {
2057 	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2058 	struct drm_i915_private *dev_priv = to_i915(dport->base.base.dev);
2059 	enum port port = dport->port;
2060 	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2061 	int lane;
2062 
2063 	for (lane = 0; lane < 4; lane++) {
2064 		u32 val = I915_READ(BXT_PORT_TX_DW14_LN(port, lane));
2065 
2066 		/*
2067 		 * Note that on CHV this flag is called UPAR, but has
2068 		 * the same function.
2069 		 */
2070 		val &= ~LATENCY_OPTIM;
2071 		if (intel_crtc->config->lane_lat_optim_mask & BIT(lane))
2072 			val |= LATENCY_OPTIM;
2073 
2074 		I915_WRITE(BXT_PORT_TX_DW14_LN(port, lane), val);
2075 	}
2076 }
2077 
2078 static uint8_t
2079 bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder)
2080 {
2081 	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2082 	struct drm_i915_private *dev_priv = to_i915(dport->base.base.dev);
2083 	enum port port = dport->port;
2084 	int lane;
2085 	uint8_t mask;
2086 
2087 	mask = 0;
2088 	for (lane = 0; lane < 4; lane++) {
2089 		u32 val = I915_READ(BXT_PORT_TX_DW14_LN(port, lane));
2090 
2091 		if (val & LATENCY_OPTIM)
2092 			mask |= BIT(lane);
2093 	}
2094 
2095 	return mask;
2096 }
2097 
2098 void intel_ddi_prepare_link_retrain(struct intel_dp *intel_dp)
2099 {
2100 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2101 	struct drm_i915_private *dev_priv =
2102 		to_i915(intel_dig_port->base.base.dev);
2103 	enum port port = intel_dig_port->port;
2104 	uint32_t val;
2105 	bool wait = false;
2106 
2107 	if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
2108 		val = I915_READ(DDI_BUF_CTL(port));
2109 		if (val & DDI_BUF_CTL_ENABLE) {
2110 			val &= ~DDI_BUF_CTL_ENABLE;
2111 			I915_WRITE(DDI_BUF_CTL(port), val);
2112 			wait = true;
2113 		}
2114 
2115 		val = I915_READ(DP_TP_CTL(port));
2116 		val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
2117 		val |= DP_TP_CTL_LINK_TRAIN_PAT1;
2118 		I915_WRITE(DP_TP_CTL(port), val);
2119 		POSTING_READ(DP_TP_CTL(port));
2120 
2121 		if (wait)
2122 			intel_wait_ddi_buf_idle(dev_priv, port);
2123 	}
2124 
2125 	val = DP_TP_CTL_ENABLE |
2126 	      DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
2127 	if (intel_dp->link_mst)
2128 		val |= DP_TP_CTL_MODE_MST;
2129 	else {
2130 		val |= DP_TP_CTL_MODE_SST;
2131 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2132 			val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
2133 	}
2134 	I915_WRITE(DP_TP_CTL(port), val);
2135 	POSTING_READ(DP_TP_CTL(port));
2136 
2137 	intel_dp->DP |= DDI_BUF_CTL_ENABLE;
2138 	I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
2139 	POSTING_READ(DDI_BUF_CTL(port));
2140 
2141 	udelay(600);
2142 }
2143 
2144 void intel_ddi_fdi_disable(struct drm_crtc *crtc)
2145 {
2146 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2147 	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
2148 	uint32_t val;
2149 
2150 	/*
2151 	 * Bspec lists this as both step 13 (before DDI_BUF_CTL disable)
2152 	 * and step 18 (after clearing PORT_CLK_SEL). Based on a BUN,
2153 	 * step 13 is the correct place for it. Step 18 is where it was
2154 	 * originally before the BUN.
2155 	 */
2156 	val = I915_READ(FDI_RX_CTL(PIPE_A));
2157 	val &= ~FDI_RX_ENABLE;
2158 	I915_WRITE(FDI_RX_CTL(PIPE_A), val);
2159 
2160 	intel_ddi_post_disable(intel_encoder);
2161 
2162 	val = I915_READ(FDI_RX_MISC(PIPE_A));
2163 	val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
2164 	val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
2165 	I915_WRITE(FDI_RX_MISC(PIPE_A), val);
2166 
2167 	val = I915_READ(FDI_RX_CTL(PIPE_A));
2168 	val &= ~FDI_PCDCLK;
2169 	I915_WRITE(FDI_RX_CTL(PIPE_A), val);
2170 
2171 	val = I915_READ(FDI_RX_CTL(PIPE_A));
2172 	val &= ~FDI_RX_PLL_ENABLE;
2173 	I915_WRITE(FDI_RX_CTL(PIPE_A), val);
2174 }
2175 
2176 void intel_ddi_get_config(struct intel_encoder *encoder,
2177 			  struct intel_crtc_state *pipe_config)
2178 {
2179 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2180 	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2181 	enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
2182 	struct intel_hdmi *intel_hdmi;
2183 	u32 temp, flags = 0;
2184 
2185 	/* XXX: DSI transcoder paranoia */
2186 	if (WARN_ON(transcoder_is_dsi(cpu_transcoder)))
2187 		return;
2188 
2189 	temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
2190 	if (temp & TRANS_DDI_PHSYNC)
2191 		flags |= DRM_MODE_FLAG_PHSYNC;
2192 	else
2193 		flags |= DRM_MODE_FLAG_NHSYNC;
2194 	if (temp & TRANS_DDI_PVSYNC)
2195 		flags |= DRM_MODE_FLAG_PVSYNC;
2196 	else
2197 		flags |= DRM_MODE_FLAG_NVSYNC;
2198 
2199 	pipe_config->base.adjusted_mode.flags |= flags;
2200 
2201 	switch (temp & TRANS_DDI_BPC_MASK) {
2202 	case TRANS_DDI_BPC_6:
2203 		pipe_config->pipe_bpp = 18;
2204 		break;
2205 	case TRANS_DDI_BPC_8:
2206 		pipe_config->pipe_bpp = 24;
2207 		break;
2208 	case TRANS_DDI_BPC_10:
2209 		pipe_config->pipe_bpp = 30;
2210 		break;
2211 	case TRANS_DDI_BPC_12:
2212 		pipe_config->pipe_bpp = 36;
2213 		break;
2214 	default:
2215 		break;
2216 	}
2217 
2218 	switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
2219 	case TRANS_DDI_MODE_SELECT_HDMI:
2220 		pipe_config->has_hdmi_sink = true;
2221 		intel_hdmi = enc_to_intel_hdmi(&encoder->base);
2222 
2223 		if (intel_hdmi->infoframe_enabled(&encoder->base, pipe_config))
2224 			pipe_config->has_infoframe = true;
2225 		/* fall through */
2226 	case TRANS_DDI_MODE_SELECT_DVI:
2227 		pipe_config->lane_count = 4;
2228 		break;
2229 	case TRANS_DDI_MODE_SELECT_FDI:
2230 		break;
2231 	case TRANS_DDI_MODE_SELECT_DP_SST:
2232 	case TRANS_DDI_MODE_SELECT_DP_MST:
2233 		pipe_config->lane_count =
2234 			((temp & DDI_PORT_WIDTH_MASK) >> DDI_PORT_WIDTH_SHIFT) + 1;
2235 		intel_dp_get_m_n(intel_crtc, pipe_config);
2236 		break;
2237 	default:
2238 		break;
2239 	}
2240 
2241 	if (intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_AUDIO)) {
2242 		temp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
2243 		if (temp & AUDIO_OUTPUT_ENABLE(intel_crtc->pipe))
2244 			pipe_config->has_audio = true;
2245 	}
2246 
2247 	if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp.bpp &&
2248 	    pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
2249 		/*
2250 		 * This is a big fat ugly hack.
2251 		 *
2252 		 * Some machines in UEFI boot mode provide us a VBT that has 18
2253 		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2254 		 * unknown we fail to light up. Yet the same BIOS boots up with
2255 		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2256 		 * max, not what it tells us to use.
2257 		 *
2258 		 * Note: This will still be broken if the eDP panel is not lit
2259 		 * up by the BIOS, and thus we can't get the mode at module
2260 		 * load.
2261 		 */
2262 		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2263 			      pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
2264 		dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
2265 	}
2266 
2267 	intel_ddi_clock_get(encoder, pipe_config);
2268 
2269 	if (IS_BROXTON(dev_priv))
2270 		pipe_config->lane_lat_optim_mask =
2271 			bxt_ddi_phy_get_lane_lat_optim_mask(encoder);
2272 }
2273 
2274 static bool intel_ddi_compute_config(struct intel_encoder *encoder,
2275 				     struct intel_crtc_state *pipe_config)
2276 {
2277 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2278 	int type = encoder->type;
2279 	int port = intel_ddi_get_encoder_port(encoder);
2280 	int ret;
2281 
2282 	WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n");
2283 
2284 	if (port == PORT_A)
2285 		pipe_config->cpu_transcoder = TRANSCODER_EDP;
2286 
2287 	if (type == INTEL_OUTPUT_HDMI)
2288 		ret = intel_hdmi_compute_config(encoder, pipe_config);
2289 	else
2290 		ret = intel_dp_compute_config(encoder, pipe_config);
2291 
2292 	if (IS_BROXTON(dev_priv) && ret)
2293 		pipe_config->lane_lat_optim_mask =
2294 			bxt_ddi_phy_calc_lane_lat_optim_mask(encoder,
2295 							     pipe_config);
2296 
2297 	return ret;
2298 
2299 }
2300 
2301 static const struct drm_encoder_funcs intel_ddi_funcs = {
2302 	.reset = intel_dp_encoder_reset,
2303 	.destroy = intel_dp_encoder_destroy,
2304 };
2305 
2306 static struct intel_connector *
2307 intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
2308 {
2309 	struct intel_connector *connector;
2310 	enum port port = intel_dig_port->port;
2311 
2312 	connector = intel_connector_alloc();
2313 	if (!connector)
2314 		return NULL;
2315 
2316 	intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
2317 	if (!intel_dp_init_connector(intel_dig_port, connector)) {
2318 		kfree(connector);
2319 		return NULL;
2320 	}
2321 
2322 	return connector;
2323 }
2324 
2325 static struct intel_connector *
2326 intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
2327 {
2328 	struct intel_connector *connector;
2329 	enum port port = intel_dig_port->port;
2330 
2331 	connector = intel_connector_alloc();
2332 	if (!connector)
2333 		return NULL;
2334 
2335 	intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
2336 	intel_hdmi_init_connector(intel_dig_port, connector);
2337 
2338 	return connector;
2339 }
2340 
2341 void intel_ddi_init(struct drm_device *dev, enum port port)
2342 {
2343 	struct drm_i915_private *dev_priv = to_i915(dev);
2344 	struct intel_digital_port *intel_dig_port;
2345 	struct intel_encoder *intel_encoder;
2346 	struct drm_encoder *encoder;
2347 	bool init_hdmi, init_dp;
2348 	int max_lanes;
2349 
2350 	if (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES) {
2351 		switch (port) {
2352 		case PORT_A:
2353 			max_lanes = 4;
2354 			break;
2355 		case PORT_E:
2356 			max_lanes = 0;
2357 			break;
2358 		default:
2359 			max_lanes = 4;
2360 			break;
2361 		}
2362 	} else {
2363 		switch (port) {
2364 		case PORT_A:
2365 			max_lanes = 2;
2366 			break;
2367 		case PORT_E:
2368 			max_lanes = 2;
2369 			break;
2370 		default:
2371 			max_lanes = 4;
2372 			break;
2373 		}
2374 	}
2375 
2376 	init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi ||
2377 		     dev_priv->vbt.ddi_port_info[port].supports_hdmi);
2378 	init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
2379 	if (!init_dp && !init_hdmi) {
2380 		DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, respect it\n",
2381 			      port_name(port));
2382 		return;
2383 	}
2384 
2385 	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
2386 	if (!intel_dig_port)
2387 		return;
2388 
2389 	intel_encoder = &intel_dig_port->base;
2390 	encoder = &intel_encoder->base;
2391 
2392 	drm_encoder_init(dev, encoder, &intel_ddi_funcs,
2393 			 DRM_MODE_ENCODER_TMDS, "DDI %c", port_name(port));
2394 
2395 	intel_encoder->compute_config = intel_ddi_compute_config;
2396 	intel_encoder->enable = intel_enable_ddi;
2397 	if (IS_BROXTON(dev_priv))
2398 		intel_encoder->pre_pll_enable = bxt_ddi_pre_pll_enable;
2399 	intel_encoder->pre_enable = intel_ddi_pre_enable;
2400 	intel_encoder->disable = intel_disable_ddi;
2401 	intel_encoder->post_disable = intel_ddi_post_disable;
2402 	intel_encoder->get_hw_state = intel_ddi_get_hw_state;
2403 	intel_encoder->get_config = intel_ddi_get_config;
2404 	intel_encoder->suspend = intel_dp_encoder_suspend;
2405 
2406 	intel_dig_port->port = port;
2407 	intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
2408 					  (DDI_BUF_PORT_REVERSAL |
2409 					   DDI_A_4_LANES);
2410 
2411 	/*
2412 	 * Bspec says that DDI_A_4_LANES is the only supported configuration
2413 	 * for Broxton.  Yet some BIOS fail to set this bit on port A if eDP
2414 	 * wasn't lit up at boot.  Force this bit on in our internal
2415 	 * configuration so that we use the proper lane count for our
2416 	 * calculations.
2417 	 */
2418 	if (IS_BROXTON(dev) && port == PORT_A) {
2419 		if (!(intel_dig_port->saved_port_bits & DDI_A_4_LANES)) {
2420 			DRM_DEBUG_KMS("BXT BIOS forgot to set DDI_A_4_LANES for port A; fixing\n");
2421 			intel_dig_port->saved_port_bits |= DDI_A_4_LANES;
2422 			max_lanes = 4;
2423 		}
2424 	}
2425 
2426 	intel_dig_port->max_lanes = max_lanes;
2427 
2428 	intel_encoder->type = INTEL_OUTPUT_UNKNOWN;
2429 	intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2430 	intel_encoder->cloneable = 0;
2431 
2432 	if (init_dp) {
2433 		if (!intel_ddi_init_dp_connector(intel_dig_port))
2434 			goto err;
2435 
2436 		intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
2437 		/*
2438 		 * On BXT A0/A1, sw needs to activate DDIA HPD logic and
2439 		 * interrupts to check the external panel connection.
2440 		 */
2441 		if (IS_BXT_REVID(dev, 0, BXT_REVID_A1) && port == PORT_B)
2442 			dev_priv->hotplug.irq_port[PORT_A] = intel_dig_port;
2443 		else
2444 			dev_priv->hotplug.irq_port[port] = intel_dig_port;
2445 	}
2446 
2447 	/* In theory we don't need the encoder->type check, but leave it just in
2448 	 * case we have some really bad VBTs... */
2449 	if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) {
2450 		if (!intel_ddi_init_hdmi_connector(intel_dig_port))
2451 			goto err;
2452 	}
2453 
2454 	return;
2455 
2456 err:
2457 	drm_encoder_cleanup(encoder);
2458 	kfree(intel_dig_port);
2459 }
2460