xref: /dflybsd-src/sys/dev/drm/i915/intel_breadcrumbs.c (revision 959366edc6ceee964a31f71baf4f38d75e0f167c)
1 /*
2  * Copyright © 2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/kthread.h>
26 #include <uapi/linux/sched/types.h>
27 
28 #include "i915_drv.h"
29 
30 static unsigned int __intel_breadcrumbs_wakeup(struct intel_breadcrumbs *b)
31 {
32 	struct intel_wait *wait;
33 	unsigned int result = 0;
34 
35 	lockdep_assert_held(&b->irq_lock);
36 
37 	wait = b->irq_wait;
38 	if (wait) {
39 		result = ENGINE_WAKEUP_WAITER;
40 		if (wake_up_process(wait->tsk))
41 			result |= ENGINE_WAKEUP_ASLEEP;
42 	}
43 
44 	return result;
45 }
46 
47 unsigned int intel_engine_wakeup(struct intel_engine_cs *engine)
48 {
49 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
50 	unsigned long flags;
51 	unsigned int result;
52 
53 	spin_lock_irqsave(&b->irq_lock, flags);
54 	result = __intel_breadcrumbs_wakeup(b);
55 	spin_unlock_irqrestore(&b->irq_lock, flags);
56 
57 	return result;
58 }
59 
60 static unsigned long wait_timeout(void)
61 {
62 	return round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES);
63 }
64 
65 static noinline void missed_breadcrumb(struct intel_engine_cs *engine)
66 {
67 	DRM_DEBUG_DRIVER("%s missed breadcrumb at %pF, irq posted? %s\n",
68 			 engine->name, __builtin_return_address(0),
69 			 yesno(test_bit(ENGINE_IRQ_BREADCRUMB,
70 					&engine->irq_posted)));
71 
72 	set_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
73 }
74 
75 static void intel_breadcrumbs_hangcheck(unsigned long data)
76 {
77 	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
78 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
79 
80 	if (!b->irq_armed)
81 		return;
82 
83 	if (b->hangcheck_interrupts != atomic_read(&engine->irq_count)) {
84 		b->hangcheck_interrupts = atomic_read(&engine->irq_count);
85 		mod_timer(&b->hangcheck, wait_timeout());
86 		return;
87 	}
88 
89 	/* We keep the hangcheck timer alive until we disarm the irq, even
90 	 * if there are no waiters at present.
91 	 *
92 	 * If the waiter was currently running, assume it hasn't had a chance
93 	 * to process the pending interrupt (e.g, low priority task on a loaded
94 	 * system) and wait until it sleeps before declaring a missed interrupt.
95 	 *
96 	 * If the waiter was asleep (and not even pending a wakeup), then we
97 	 * must have missed an interrupt as the GPU has stopped advancing
98 	 * but we still have a waiter. Assuming all batches complete within
99 	 * DRM_I915_HANGCHECK_JIFFIES [1.5s]!
100 	 */
101 	if (intel_engine_wakeup(engine) & ENGINE_WAKEUP_ASLEEP) {
102 		missed_breadcrumb(engine);
103 		mod_timer(&engine->breadcrumbs.fake_irq, jiffies + 1);
104 	} else {
105 		mod_timer(&b->hangcheck, wait_timeout());
106 	}
107 }
108 
109 static void intel_breadcrumbs_fake_irq(unsigned long data)
110 {
111 	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
112 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
113 
114 	/* The timer persists in case we cannot enable interrupts,
115 	 * or if we have previously seen seqno/interrupt incoherency
116 	 * ("missed interrupt" syndrome, better known as a "missed breadcrumb").
117 	 * Here the worker will wake up every jiffie in order to kick the
118 	 * oldest waiter to do the coherent seqno check.
119 	 */
120 
121 	spin_lock_irq(&b->irq_lock);
122 	if (!__intel_breadcrumbs_wakeup(b))
123 		__intel_engine_disarm_breadcrumbs(engine);
124 	spin_unlock_irq(&b->irq_lock);
125 	if (!b->irq_armed)
126 		return;
127 
128 	mod_timer(&b->fake_irq, jiffies + 1);
129 
130 	/* Ensure that even if the GPU hangs, we get woken up.
131 	 *
132 	 * However, note that if no one is waiting, we never notice
133 	 * a gpu hang. Eventually, we will have to wait for a resource
134 	 * held by the GPU and so trigger a hangcheck. In the most
135 	 * pathological case, this will be upon memory starvation! To
136 	 * prevent this, we also queue the hangcheck from the retire
137 	 * worker.
138 	 */
139 	i915_queue_hangcheck(engine->i915);
140 }
141 
142 static void irq_enable(struct intel_engine_cs *engine)
143 {
144 	/* Enabling the IRQ may miss the generation of the interrupt, but
145 	 * we still need to force the barrier before reading the seqno,
146 	 * just in case.
147 	 */
148 	set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
149 
150 	/* Caller disables interrupts */
151 	lockmgr(&engine->i915->irq_lock, LK_EXCLUSIVE);
152 	engine->irq_enable(engine);
153 	lockmgr(&engine->i915->irq_lock, LK_RELEASE);
154 }
155 
156 static void irq_disable(struct intel_engine_cs *engine)
157 {
158 	/* Caller disables interrupts */
159 	lockmgr(&engine->i915->irq_lock, LK_EXCLUSIVE);
160 	engine->irq_disable(engine);
161 	lockmgr(&engine->i915->irq_lock, LK_RELEASE);
162 }
163 
164 void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
165 {
166 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
167 
168 	lockdep_assert_held(&b->irq_lock);
169 	GEM_BUG_ON(b->irq_wait);
170 
171 	if (b->irq_enabled) {
172 		irq_disable(engine);
173 		b->irq_enabled = false;
174 	}
175 
176 	b->irq_armed = false;
177 }
178 
179 void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
180 {
181 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
182 	struct intel_wait *wait, *n, *first;
183 
184 	if (!b->irq_armed)
185 		return;
186 
187 	/* We only disarm the irq when we are idle (all requests completed),
188 	 * so if the bottom-half remains asleep, it missed the request
189 	 * completion.
190 	 */
191 
192 	spin_lock_irq(&b->rb_lock);
193 
194 	lockmgr(&b->irq_lock, LK_EXCLUSIVE);
195 	first = fetch_and_zero(&b->irq_wait);
196 	__intel_engine_disarm_breadcrumbs(engine);
197 	lockmgr(&b->irq_lock, LK_RELEASE);
198 
199 	rbtree_postorder_for_each_entry_safe(wait, n, &b->waiters, node) {
200 		RB_CLEAR_NODE(&wait->node);
201 		if (wake_up_process(wait->tsk) && wait == first)
202 			missed_breadcrumb(engine);
203 	}
204 	b->waiters = LINUX_RB_ROOT;
205 
206 	spin_unlock_irq(&b->rb_lock);
207 }
208 
209 static bool use_fake_irq(const struct intel_breadcrumbs *b)
210 {
211 	const struct intel_engine_cs *engine =
212 		container_of(b, struct intel_engine_cs, breadcrumbs);
213 
214 	if (!test_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings))
215 		return false;
216 
217 	/* Only start with the heavy weight fake irq timer if we have not
218 	 * seen any interrupts since enabling it the first time. If the
219 	 * interrupts are still arriving, it means we made a mistake in our
220 	 * engine->seqno_barrier(), a timing error that should be transient
221 	 * and unlikely to reoccur.
222 	 */
223 	return atomic_read(&engine->irq_count) == b->hangcheck_interrupts;
224 }
225 
226 static void enable_fake_irq(struct intel_breadcrumbs *b)
227 {
228 	/* Ensure we never sleep indefinitely */
229 	if (!b->irq_enabled || use_fake_irq(b))
230 		mod_timer(&b->fake_irq, jiffies + 1);
231 	else
232 		mod_timer(&b->hangcheck, wait_timeout());
233 }
234 
235 static void __intel_breadcrumbs_enable_irq(struct intel_breadcrumbs *b)
236 {
237 	struct intel_engine_cs *engine =
238 		container_of(b, struct intel_engine_cs, breadcrumbs);
239 	struct drm_i915_private *i915 = engine->i915;
240 
241 	lockdep_assert_held(&b->irq_lock);
242 	if (b->irq_armed)
243 		return;
244 
245 	/* The breadcrumb irq will be disarmed on the interrupt after the
246 	 * waiters are signaled. This gives us a single interrupt window in
247 	 * which we can add a new waiter and avoid the cost of re-enabling
248 	 * the irq.
249 	 */
250 	b->irq_armed = true;
251 	GEM_BUG_ON(b->irq_enabled);
252 
253 	if (I915_SELFTEST_ONLY(b->mock)) {
254 		/* For our mock objects we want to avoid interaction
255 		 * with the real hardware (which is not set up). So
256 		 * we simply pretend we have enabled the powerwell
257 		 * and the irq, and leave it up to the mock
258 		 * implementation to call intel_engine_wakeup()
259 		 * itself when it wants to simulate a user interrupt,
260 		 */
261 		return;
262 	}
263 
264 	/* Since we are waiting on a request, the GPU should be busy
265 	 * and should have its own rpm reference. This is tracked
266 	 * by i915->gt.awake, we can forgo holding our own wakref
267 	 * for the interrupt as before i915->gt.awake is released (when
268 	 * the driver is idle) we disarm the breadcrumbs.
269 	 */
270 
271 	/* No interrupts? Kick the waiter every jiffie! */
272 	if (intel_irqs_enabled(i915)) {
273 		if (!test_bit(engine->id, &i915->gpu_error.test_irq_rings))
274 			irq_enable(engine);
275 		b->irq_enabled = true;
276 	}
277 
278 	enable_fake_irq(b);
279 }
280 
281 static inline struct intel_wait *to_wait(struct rb_node *node)
282 {
283 	return rb_entry(node, struct intel_wait, node);
284 }
285 
286 static inline void __intel_breadcrumbs_finish(struct intel_breadcrumbs *b,
287 					      struct intel_wait *wait)
288 {
289 	lockdep_assert_held(&b->rb_lock);
290 	GEM_BUG_ON(b->irq_wait == wait);
291 
292 	/* This request is completed, so remove it from the tree, mark it as
293 	 * complete, and *then* wake up the associated task. N.B. when the
294 	 * task wakes up, it will find the empty rb_node, discern that it
295 	 * has already been removed from the tree and skip the serialisation
296 	 * of the b->rb_lock and b->irq_lock. This means that the destruction
297 	 * of the intel_wait is not serialised with the interrupt handler
298 	 * by the waiter - it must instead be serialised by the caller.
299 	 */
300 	rb_erase(&wait->node, &b->waiters);
301 	RB_CLEAR_NODE(&wait->node);
302 
303 	wake_up_process(wait->tsk); /* implicit smp_wmb() */
304 }
305 
306 static inline void __intel_breadcrumbs_next(struct intel_engine_cs *engine,
307 					    struct rb_node *next)
308 {
309 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
310 
311 	lockmgr(&b->irq_lock, LK_EXCLUSIVE);
312 	GEM_BUG_ON(!b->irq_armed);
313 	GEM_BUG_ON(!b->irq_wait);
314 	b->irq_wait = to_wait(next);
315 	lockmgr(&b->irq_lock, LK_RELEASE);
316 
317 	/* We always wake up the next waiter that takes over as the bottom-half
318 	 * as we may delegate not only the irq-seqno barrier to the next waiter
319 	 * but also the task of waking up concurrent waiters.
320 	 */
321 	if (next)
322 		wake_up_process(to_wait(next)->tsk);
323 }
324 
325 static bool __intel_engine_add_wait(struct intel_engine_cs *engine,
326 				    struct intel_wait *wait)
327 {
328 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
329 	struct rb_node **p, *parent, *completed;
330 	bool first;
331 	u32 seqno;
332 
333 	/* Insert the request into the retirement ordered list
334 	 * of waiters by walking the rbtree. If we are the oldest
335 	 * seqno in the tree (the first to be retired), then
336 	 * set ourselves as the bottom-half.
337 	 *
338 	 * As we descend the tree, prune completed branches since we hold the
339 	 * spinlock we know that the first_waiter must be delayed and can
340 	 * reduce some of the sequential wake up latency if we take action
341 	 * ourselves and wake up the completed tasks in parallel. Also, by
342 	 * removing stale elements in the tree, we may be able to reduce the
343 	 * ping-pong between the old bottom-half and ourselves as first-waiter.
344 	 */
345 	first = true;
346 	parent = NULL;
347 	completed = NULL;
348 	seqno = intel_engine_get_seqno(engine);
349 
350 	 /* If the request completed before we managed to grab the spinlock,
351 	  * return now before adding ourselves to the rbtree. We let the
352 	  * current bottom-half handle any pending wakeups and instead
353 	  * try and get out of the way quickly.
354 	  */
355 	if (i915_seqno_passed(seqno, wait->seqno)) {
356 		RB_CLEAR_NODE(&wait->node);
357 		return first;
358 	}
359 
360 	p = &b->waiters.rb_node;
361 	while (*p) {
362 		parent = *p;
363 		if (wait->seqno == to_wait(parent)->seqno) {
364 			/* We have multiple waiters on the same seqno, select
365 			 * the highest priority task (that with the smallest
366 			 * task->prio) to serve as the bottom-half for this
367 			 * group.
368 			 */
369 			if (wait->tsk->prio > to_wait(parent)->tsk->prio) {
370 				p = &parent->rb_right;
371 				first = false;
372 			} else {
373 				p = &parent->rb_left;
374 			}
375 		} else if (i915_seqno_passed(wait->seqno,
376 					     to_wait(parent)->seqno)) {
377 			p = &parent->rb_right;
378 			if (i915_seqno_passed(seqno, to_wait(parent)->seqno))
379 				completed = parent;
380 			else
381 				first = false;
382 		} else {
383 			p = &parent->rb_left;
384 		}
385 	}
386 	rb_link_node(&wait->node, parent, p);
387 	rb_insert_color(&wait->node, &b->waiters);
388 
389 	if (first) {
390 		lockmgr(&b->irq_lock, LK_EXCLUSIVE);
391 		b->irq_wait = wait;
392 		/* After assigning ourselves as the new bottom-half, we must
393 		 * perform a cursory check to prevent a missed interrupt.
394 		 * Either we miss the interrupt whilst programming the hardware,
395 		 * or if there was a previous waiter (for a later seqno) they
396 		 * may be woken instead of us (due to the inherent race
397 		 * in the unlocked read of b->irq_seqno_bh in the irq handler)
398 		 * and so we miss the wake up.
399 		 */
400 		__intel_breadcrumbs_enable_irq(b);
401 		lockmgr(&b->irq_lock, LK_RELEASE);
402 	}
403 
404 	if (completed) {
405 		/* Advance the bottom-half (b->irq_wait) before we wake up
406 		 * the waiters who may scribble over their intel_wait
407 		 * just as the interrupt handler is dereferencing it via
408 		 * b->irq_wait.
409 		 */
410 		if (!first) {
411 			struct rb_node *next = rb_next(completed);
412 			GEM_BUG_ON(next == &wait->node);
413 			__intel_breadcrumbs_next(engine, next);
414 		}
415 
416 		do {
417 			struct intel_wait *crumb = to_wait(completed);
418 			completed = rb_prev(completed);
419 			__intel_breadcrumbs_finish(b, crumb);
420 		} while (completed);
421 	}
422 
423 	GEM_BUG_ON(!b->irq_wait);
424 	GEM_BUG_ON(!b->irq_armed);
425 	GEM_BUG_ON(rb_first(&b->waiters) != &b->irq_wait->node);
426 
427 	return first;
428 }
429 
430 bool intel_engine_add_wait(struct intel_engine_cs *engine,
431 			   struct intel_wait *wait)
432 {
433 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
434 	bool first;
435 
436 	spin_lock_irq(&b->rb_lock);
437 	first = __intel_engine_add_wait(engine, wait);
438 	spin_unlock_irq(&b->rb_lock);
439 
440 	return first;
441 }
442 
443 static inline bool chain_wakeup(struct rb_node *rb, int priority)
444 {
445 	return rb && to_wait(rb)->tsk->prio <= priority;
446 }
447 
448 static inline int wakeup_priority(struct intel_breadcrumbs *b,
449 				  struct task_struct *tsk)
450 {
451 	if (tsk == b->signaler)
452 		return INT_MIN;
453 	else
454 		return tsk->prio;
455 }
456 
457 static void __intel_engine_remove_wait(struct intel_engine_cs *engine,
458 				       struct intel_wait *wait)
459 {
460 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
461 
462 	lockdep_assert_held(&b->rb_lock);
463 
464 	if (RB_EMPTY_NODE(&wait->node))
465 		goto out;
466 
467 	if (b->irq_wait == wait) {
468 		const int priority = wakeup_priority(b, wait->tsk);
469 		struct rb_node *next;
470 
471 		/* We are the current bottom-half. Find the next candidate,
472 		 * the first waiter in the queue on the remaining oldest
473 		 * request. As multiple seqnos may complete in the time it
474 		 * takes us to wake up and find the next waiter, we have to
475 		 * wake up that waiter for it to perform its own coherent
476 		 * completion check.
477 		 */
478 		next = rb_next(&wait->node);
479 		if (chain_wakeup(next, priority)) {
480 			/* If the next waiter is already complete,
481 			 * wake it up and continue onto the next waiter. So
482 			 * if have a small herd, they will wake up in parallel
483 			 * rather than sequentially, which should reduce
484 			 * the overall latency in waking all the completed
485 			 * clients.
486 			 *
487 			 * However, waking up a chain adds extra latency to
488 			 * the first_waiter. This is undesirable if that
489 			 * waiter is a high priority task.
490 			 */
491 			u32 seqno = intel_engine_get_seqno(engine);
492 
493 			while (i915_seqno_passed(seqno, to_wait(next)->seqno)) {
494 				struct rb_node *n = rb_next(next);
495 
496 				__intel_breadcrumbs_finish(b, to_wait(next));
497 				next = n;
498 				if (!chain_wakeup(next, priority))
499 					break;
500 			}
501 		}
502 
503 		__intel_breadcrumbs_next(engine, next);
504 	} else {
505 		GEM_BUG_ON(rb_first(&b->waiters) == &wait->node);
506 	}
507 
508 	GEM_BUG_ON(RB_EMPTY_NODE(&wait->node));
509 	rb_erase(&wait->node, &b->waiters);
510 
511 out:
512 	GEM_BUG_ON(b->irq_wait == wait);
513 	GEM_BUG_ON(rb_first(&b->waiters) !=
514 		   (b->irq_wait ? &b->irq_wait->node : NULL));
515 }
516 
517 void intel_engine_remove_wait(struct intel_engine_cs *engine,
518 			      struct intel_wait *wait)
519 {
520 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
521 
522 	/* Quick check to see if this waiter was already decoupled from
523 	 * the tree by the bottom-half to avoid contention on the spinlock
524 	 * by the herd.
525 	 */
526 	if (RB_EMPTY_NODE(&wait->node)) {
527 		GEM_BUG_ON(READ_ONCE(b->irq_wait) == wait);
528 		return;
529 	}
530 
531 	spin_lock_irq(&b->rb_lock);
532 	__intel_engine_remove_wait(engine, wait);
533 	spin_unlock_irq(&b->rb_lock);
534 }
535 
536 static bool signal_valid(const struct drm_i915_gem_request *request)
537 {
538 	return intel_wait_check_request(&request->signaling.wait, request);
539 }
540 
541 static bool signal_complete(const struct drm_i915_gem_request *request)
542 {
543 	if (!request)
544 		return false;
545 
546 	/* If another process served as the bottom-half it may have already
547 	 * signalled that this wait is already completed.
548 	 */
549 	if (intel_wait_complete(&request->signaling.wait))
550 		return signal_valid(request);
551 
552 	/* Carefully check if the request is complete, giving time for the
553 	 * seqno to be visible or if the GPU hung.
554 	 */
555 	if (__i915_request_irq_complete(request))
556 		return true;
557 
558 	return false;
559 }
560 
561 static struct drm_i915_gem_request *to_signaler(struct rb_node *rb)
562 {
563 	return rb_entry(rb, struct drm_i915_gem_request, signaling.node);
564 }
565 
566 static void signaler_set_rtpriority(void)
567 {
568 	 struct sched_param param = { .sched_priority = 1 };
569 
570 	 sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
571 }
572 
573 static int intel_breadcrumbs_signaler(void *arg)
574 {
575 	struct intel_engine_cs *engine = arg;
576 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
577 	struct drm_i915_gem_request *request;
578 
579 	/* Install ourselves with high priority to reduce signalling latency */
580 	signaler_set_rtpriority();
581 
582 	do {
583 		bool do_schedule = true;
584 
585 		set_current_state(TASK_INTERRUPTIBLE);
586 
587 		/* We are either woken up by the interrupt bottom-half,
588 		 * or by a client adding a new signaller. In both cases,
589 		 * the GPU seqno may have advanced beyond our oldest signal.
590 		 * If it has, propagate the signal, remove the waiter and
591 		 * check again with the next oldest signal. Otherwise we
592 		 * need to wait for a new interrupt from the GPU or for
593 		 * a new client.
594 		 */
595 		rcu_read_lock();
596 		request = rcu_dereference(b->first_signal);
597 		if (request)
598 			request = i915_gem_request_get_rcu(request);
599 		rcu_read_unlock();
600 		if (signal_complete(request)) {
601 			local_bh_disable();
602 			dma_fence_signal(&request->fence);
603 			local_bh_enable(); /* kick start the tasklets */
604 
605 			spin_lock_irq(&b->rb_lock);
606 
607 			/* Wake up all other completed waiters and select the
608 			 * next bottom-half for the next user interrupt.
609 			 */
610 			__intel_engine_remove_wait(engine,
611 						   &request->signaling.wait);
612 
613 			/* Find the next oldest signal. Note that as we have
614 			 * not been holding the lock, another client may
615 			 * have installed an even older signal than the one
616 			 * we just completed - so double check we are still
617 			 * the oldest before picking the next one.
618 			 */
619 			if (request == rcu_access_pointer(b->first_signal)) {
620 				struct rb_node *rb =
621 					rb_next(&request->signaling.node);
622 				rcu_assign_pointer(b->first_signal,
623 						   rb ? to_signaler(rb) : NULL);
624 			}
625 			rb_erase(&request->signaling.node, &b->signals);
626 			RB_CLEAR_NODE(&request->signaling.node);
627 
628 			spin_unlock_irq(&b->rb_lock);
629 
630 			i915_gem_request_put(request);
631 
632 			/* If the engine is saturated we may be continually
633 			 * processing completed requests. This angers the
634 			 * NMI watchdog if we never let anything else
635 			 * have access to the CPU. Let's pretend to be nice
636 			 * and relinquish the CPU if we burn through the
637 			 * entire RT timeslice!
638 			 */
639 			do_schedule = need_resched();
640 		}
641 
642 		if (unlikely(do_schedule)) {
643 			DEFINE_WAIT(exec);
644 
645 			if (kthread_should_park())
646 				kthread_parkme();
647 
648 			if (kthread_should_stop()) {
649 				GEM_BUG_ON(request);
650 				break;
651 			}
652 
653 			if (request)
654 				add_wait_queue(&request->execute, &exec);
655 
656 			schedule();
657 
658 			if (request)
659 				remove_wait_queue(&request->execute, &exec);
660 		}
661 		i915_gem_request_put(request);
662 	} while (1);
663 	__set_current_state(TASK_RUNNING);
664 
665 	return 0;
666 }
667 
668 void intel_engine_enable_signaling(struct drm_i915_gem_request *request)
669 {
670 	struct intel_engine_cs *engine = request->engine;
671 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
672 	struct rb_node *parent, **p;
673 	bool first, wakeup;
674 	u32 seqno;
675 
676 	/* Note that we may be called from an interrupt handler on another
677 	 * device (e.g. nouveau signaling a fence completion causing us
678 	 * to submit a request, and so enable signaling). As such,
679 	 * we need to make sure that all other users of b->rb_lock protect
680 	 * against interrupts, i.e. use spin_lock_irqsave.
681 	 */
682 
683 	/* locked by dma_fence_enable_sw_signaling() (irqsafe fence->lock) */
684 //	GEM_BUG_ON(!irqs_disabled());
685 	lockdep_assert_held(&request->lock);
686 
687 	seqno = i915_gem_request_global_seqno(request);
688 	if (!seqno)
689 		return;
690 
691 	request->signaling.wait.tsk = b->signaler;
692 	request->signaling.wait.request = request;
693 	request->signaling.wait.seqno = seqno;
694 	i915_gem_request_get(request);
695 
696 	lockmgr(&b->rb_lock, LK_EXCLUSIVE);
697 
698 	/* First add ourselves into the list of waiters, but register our
699 	 * bottom-half as the signaller thread. As per usual, only the oldest
700 	 * waiter (not just signaller) is tasked as the bottom-half waking
701 	 * up all completed waiters after the user interrupt.
702 	 *
703 	 * If we are the oldest waiter, enable the irq (after which we
704 	 * must double check that the seqno did not complete).
705 	 */
706 	wakeup = __intel_engine_add_wait(engine, &request->signaling.wait);
707 
708 	/* Now insert ourselves into the retirement ordered list of signals
709 	 * on this engine. We track the oldest seqno as that will be the
710 	 * first signal to complete.
711 	 */
712 	parent = NULL;
713 	first = true;
714 	p = &b->signals.rb_node;
715 	while (*p) {
716 		parent = *p;
717 		if (i915_seqno_passed(seqno,
718 				      to_signaler(parent)->signaling.wait.seqno)) {
719 			p = &parent->rb_right;
720 			first = false;
721 		} else {
722 			p = &parent->rb_left;
723 		}
724 	}
725 	rb_link_node(&request->signaling.node, parent, p);
726 	rb_insert_color(&request->signaling.node, &b->signals);
727 	if (first)
728 		rcu_assign_pointer(b->first_signal, request);
729 
730 	lockmgr(&b->rb_lock, LK_RELEASE);
731 
732 	if (wakeup)
733 		wake_up_process(b->signaler);
734 }
735 
736 void intel_engine_cancel_signaling(struct drm_i915_gem_request *request)
737 {
738 	struct intel_engine_cs *engine = request->engine;
739 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
740 
741 	GEM_BUG_ON(!irqs_disabled());
742 	lockdep_assert_held(&request->lock);
743 	GEM_BUG_ON(!request->signaling.wait.seqno);
744 
745 	lockmgr(&b->rb_lock, LK_EXCLUSIVE);
746 
747 	if (!RB_EMPTY_NODE(&request->signaling.node)) {
748 		if (request == rcu_access_pointer(b->first_signal)) {
749 			struct rb_node *rb =
750 				rb_next(&request->signaling.node);
751 			rcu_assign_pointer(b->first_signal,
752 					   rb ? to_signaler(rb) : NULL);
753 		}
754 		rb_erase(&request->signaling.node, &b->signals);
755 		RB_CLEAR_NODE(&request->signaling.node);
756 		i915_gem_request_put(request);
757 	}
758 
759 	__intel_engine_remove_wait(engine, &request->signaling.wait);
760 
761 	lockmgr(&b->rb_lock, LK_RELEASE);
762 
763 	request->signaling.wait.seqno = 0;
764 }
765 
766 int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine)
767 {
768 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
769 	struct task_struct *tsk;
770 
771 	lockinit(&b->rb_lock, "i9brbl", 0, 0);
772 	lockinit(&b->irq_lock, "i91bil", 0, 0);
773 
774 	setup_timer(&b->fake_irq,
775 		    intel_breadcrumbs_fake_irq,
776 		    (unsigned long)engine);
777 	setup_timer(&b->hangcheck,
778 		    intel_breadcrumbs_hangcheck,
779 		    (unsigned long)engine);
780 
781 	/* Spawn a thread to provide a common bottom-half for all signals.
782 	 * As this is an asynchronous interface we cannot steal the current
783 	 * task for handling the bottom-half to the user interrupt, therefore
784 	 * we create a thread to do the coherent seqno dance after the
785 	 * interrupt and then signal the waitqueue (via the dma-buf/fence).
786 	 */
787 	tsk = kthread_run(intel_breadcrumbs_signaler, engine,
788 			  "i915/signal:%d", engine->id);
789 	if (IS_ERR(tsk))
790 		return PTR_ERR(tsk);
791 
792 	b->signaler = tsk;
793 
794 	return 0;
795 }
796 
797 static void cancel_fake_irq(struct intel_engine_cs *engine)
798 {
799 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
800 
801 	del_timer_sync(&b->hangcheck);
802 	del_timer_sync(&b->fake_irq);
803 	clear_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
804 }
805 
806 void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine)
807 {
808 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
809 
810 	cancel_fake_irq(engine);
811 	spin_lock_irq(&b->irq_lock);
812 
813 	if (b->irq_enabled)
814 		irq_enable(engine);
815 	else
816 		irq_disable(engine);
817 
818 	/* We set the IRQ_BREADCRUMB bit when we enable the irq presuming the
819 	 * GPU is active and may have already executed the MI_USER_INTERRUPT
820 	 * before the CPU is ready to receive. However, the engine is currently
821 	 * idle (we haven't started it yet), there is no possibility for a
822 	 * missed interrupt as we enabled the irq and so we can clear the
823 	 * immediate wakeup (until a real interrupt arrives for the waiter).
824 	 */
825 	clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
826 
827 	if (b->irq_armed)
828 		enable_fake_irq(b);
829 
830 	spin_unlock_irq(&b->irq_lock);
831 }
832 
833 void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine)
834 {
835 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
836 
837 	/* The engines should be idle and all requests accounted for! */
838 	WARN_ON(READ_ONCE(b->irq_wait));
839 	WARN_ON(!RB_EMPTY_ROOT(&b->waiters));
840 	WARN_ON(rcu_access_pointer(b->first_signal));
841 	WARN_ON(!RB_EMPTY_ROOT(&b->signals));
842 
843 	if (!IS_ERR_OR_NULL(b->signaler))
844 		kthread_stop(b->signaler);
845 
846 	cancel_fake_irq(engine);
847 }
848 
849 bool intel_breadcrumbs_busy(struct intel_engine_cs *engine)
850 {
851 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
852 	bool busy = false;
853 
854 	spin_lock_irq(&b->rb_lock);
855 
856 	if (b->irq_wait) {
857 		wake_up_process(b->irq_wait->tsk);
858 		busy = true;
859 	}
860 
861 	if (rcu_access_pointer(b->first_signal)) {
862 		wake_up_process(b->signaler);
863 		busy = true;
864 	}
865 
866 	spin_unlock_irq(&b->rb_lock);
867 
868 	return busy;
869 }
870 
871 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
872 #include "selftests/intel_breadcrumbs.c"
873 #endif
874