1 /* 2 * Copyright © 2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/kthread.h> 26 #include <uapi/linux/sched/types.h> 27 28 #include "i915_drv.h" 29 30 static unsigned int __intel_breadcrumbs_wakeup(struct intel_breadcrumbs *b) 31 { 32 struct intel_wait *wait; 33 unsigned int result = 0; 34 35 lockdep_assert_held(&b->irq_lock); 36 37 wait = b->irq_wait; 38 if (wait) { 39 result = ENGINE_WAKEUP_WAITER; 40 if (wake_up_process(wait->tsk)) 41 result |= ENGINE_WAKEUP_ASLEEP; 42 } 43 44 return result; 45 } 46 47 unsigned int intel_engine_wakeup(struct intel_engine_cs *engine) 48 { 49 struct intel_breadcrumbs *b = &engine->breadcrumbs; 50 unsigned long flags; 51 unsigned int result; 52 53 spin_lock_irqsave(&b->irq_lock, flags); 54 result = __intel_breadcrumbs_wakeup(b); 55 spin_unlock_irqrestore(&b->irq_lock, flags); 56 57 return result; 58 } 59 60 static unsigned long wait_timeout(void) 61 { 62 return round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES); 63 } 64 65 static noinline void missed_breadcrumb(struct intel_engine_cs *engine) 66 { 67 DRM_DEBUG_DRIVER("%s missed breadcrumb at %pF, irq posted? %s\n", 68 engine->name, __builtin_return_address(0), 69 yesno(test_bit(ENGINE_IRQ_BREADCRUMB, 70 &engine->irq_posted))); 71 72 set_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings); 73 } 74 75 static void intel_breadcrumbs_hangcheck(unsigned long data) 76 { 77 struct intel_engine_cs *engine = (struct intel_engine_cs *)data; 78 struct intel_breadcrumbs *b = &engine->breadcrumbs; 79 80 if (!b->irq_armed) 81 return; 82 83 if (b->hangcheck_interrupts != atomic_read(&engine->irq_count)) { 84 b->hangcheck_interrupts = atomic_read(&engine->irq_count); 85 mod_timer(&b->hangcheck, wait_timeout()); 86 return; 87 } 88 89 /* We keep the hangcheck timer alive until we disarm the irq, even 90 * if there are no waiters at present. 91 * 92 * If the waiter was currently running, assume it hasn't had a chance 93 * to process the pending interrupt (e.g, low priority task on a loaded 94 * system) and wait until it sleeps before declaring a missed interrupt. 95 * 96 * If the waiter was asleep (and not even pending a wakeup), then we 97 * must have missed an interrupt as the GPU has stopped advancing 98 * but we still have a waiter. Assuming all batches complete within 99 * DRM_I915_HANGCHECK_JIFFIES [1.5s]! 100 */ 101 if (intel_engine_wakeup(engine) & ENGINE_WAKEUP_ASLEEP) { 102 missed_breadcrumb(engine); 103 mod_timer(&engine->breadcrumbs.fake_irq, jiffies + 1); 104 } else { 105 mod_timer(&b->hangcheck, wait_timeout()); 106 } 107 } 108 109 static void intel_breadcrumbs_fake_irq(unsigned long data) 110 { 111 struct intel_engine_cs *engine = (struct intel_engine_cs *)data; 112 struct intel_breadcrumbs *b = &engine->breadcrumbs; 113 114 /* The timer persists in case we cannot enable interrupts, 115 * or if we have previously seen seqno/interrupt incoherency 116 * ("missed interrupt" syndrome, better known as a "missed breadcrumb"). 117 * Here the worker will wake up every jiffie in order to kick the 118 * oldest waiter to do the coherent seqno check. 119 */ 120 121 spin_lock_irq(&b->irq_lock); 122 if (!__intel_breadcrumbs_wakeup(b)) 123 __intel_engine_disarm_breadcrumbs(engine); 124 spin_unlock_irq(&b->irq_lock); 125 if (!b->irq_armed) 126 return; 127 128 mod_timer(&b->fake_irq, jiffies + 1); 129 130 /* Ensure that even if the GPU hangs, we get woken up. 131 * 132 * However, note that if no one is waiting, we never notice 133 * a gpu hang. Eventually, we will have to wait for a resource 134 * held by the GPU and so trigger a hangcheck. In the most 135 * pathological case, this will be upon memory starvation! To 136 * prevent this, we also queue the hangcheck from the retire 137 * worker. 138 */ 139 i915_queue_hangcheck(engine->i915); 140 } 141 142 static void irq_enable(struct intel_engine_cs *engine) 143 { 144 /* Enabling the IRQ may miss the generation of the interrupt, but 145 * we still need to force the barrier before reading the seqno, 146 * just in case. 147 */ 148 set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted); 149 150 /* Caller disables interrupts */ 151 lockmgr(&engine->i915->irq_lock, LK_EXCLUSIVE); 152 engine->irq_enable(engine); 153 lockmgr(&engine->i915->irq_lock, LK_RELEASE); 154 } 155 156 static void irq_disable(struct intel_engine_cs *engine) 157 { 158 /* Caller disables interrupts */ 159 lockmgr(&engine->i915->irq_lock, LK_EXCLUSIVE); 160 engine->irq_disable(engine); 161 lockmgr(&engine->i915->irq_lock, LK_RELEASE); 162 } 163 164 void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine) 165 { 166 struct intel_breadcrumbs *b = &engine->breadcrumbs; 167 168 lockdep_assert_held(&b->irq_lock); 169 GEM_BUG_ON(b->irq_wait); 170 171 if (b->irq_enabled) { 172 irq_disable(engine); 173 b->irq_enabled = false; 174 } 175 176 b->irq_armed = false; 177 } 178 179 void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine) 180 { 181 struct intel_breadcrumbs *b = &engine->breadcrumbs; 182 struct intel_wait *wait, *n, *first; 183 184 if (!b->irq_armed) 185 return; 186 187 /* We only disarm the irq when we are idle (all requests completed), 188 * so if the bottom-half remains asleep, it missed the request 189 * completion. 190 */ 191 192 spin_lock_irq(&b->rb_lock); 193 194 lockmgr(&b->irq_lock, LK_EXCLUSIVE); 195 first = fetch_and_zero(&b->irq_wait); 196 __intel_engine_disarm_breadcrumbs(engine); 197 lockmgr(&b->irq_lock, LK_RELEASE); 198 199 rbtree_postorder_for_each_entry_safe(wait, n, &b->waiters, node) { 200 RB_CLEAR_NODE(&wait->node); 201 if (wake_up_process(wait->tsk) && wait == first) 202 missed_breadcrumb(engine); 203 } 204 b->waiters = LINUX_RB_ROOT; 205 206 spin_unlock_irq(&b->rb_lock); 207 } 208 209 static bool use_fake_irq(const struct intel_breadcrumbs *b) 210 { 211 const struct intel_engine_cs *engine = 212 container_of(b, struct intel_engine_cs, breadcrumbs); 213 214 if (!test_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings)) 215 return false; 216 217 /* Only start with the heavy weight fake irq timer if we have not 218 * seen any interrupts since enabling it the first time. If the 219 * interrupts are still arriving, it means we made a mistake in our 220 * engine->seqno_barrier(), a timing error that should be transient 221 * and unlikely to reoccur. 222 */ 223 return atomic_read(&engine->irq_count) == b->hangcheck_interrupts; 224 } 225 226 static void enable_fake_irq(struct intel_breadcrumbs *b) 227 { 228 /* Ensure we never sleep indefinitely */ 229 if (!b->irq_enabled || use_fake_irq(b)) 230 mod_timer(&b->fake_irq, jiffies + 1); 231 else 232 mod_timer(&b->hangcheck, wait_timeout()); 233 } 234 235 static void __intel_breadcrumbs_enable_irq(struct intel_breadcrumbs *b) 236 { 237 struct intel_engine_cs *engine = 238 container_of(b, struct intel_engine_cs, breadcrumbs); 239 struct drm_i915_private *i915 = engine->i915; 240 241 lockdep_assert_held(&b->irq_lock); 242 if (b->irq_armed) 243 return; 244 245 /* The breadcrumb irq will be disarmed on the interrupt after the 246 * waiters are signaled. This gives us a single interrupt window in 247 * which we can add a new waiter and avoid the cost of re-enabling 248 * the irq. 249 */ 250 b->irq_armed = true; 251 GEM_BUG_ON(b->irq_enabled); 252 253 if (I915_SELFTEST_ONLY(b->mock)) { 254 /* For our mock objects we want to avoid interaction 255 * with the real hardware (which is not set up). So 256 * we simply pretend we have enabled the powerwell 257 * and the irq, and leave it up to the mock 258 * implementation to call intel_engine_wakeup() 259 * itself when it wants to simulate a user interrupt, 260 */ 261 return; 262 } 263 264 /* Since we are waiting on a request, the GPU should be busy 265 * and should have its own rpm reference. This is tracked 266 * by i915->gt.awake, we can forgo holding our own wakref 267 * for the interrupt as before i915->gt.awake is released (when 268 * the driver is idle) we disarm the breadcrumbs. 269 */ 270 271 /* No interrupts? Kick the waiter every jiffie! */ 272 if (intel_irqs_enabled(i915)) { 273 if (!test_bit(engine->id, &i915->gpu_error.test_irq_rings)) 274 irq_enable(engine); 275 b->irq_enabled = true; 276 } 277 278 enable_fake_irq(b); 279 } 280 281 static inline struct intel_wait *to_wait(struct rb_node *node) 282 { 283 return rb_entry(node, struct intel_wait, node); 284 } 285 286 static inline void __intel_breadcrumbs_finish(struct intel_breadcrumbs *b, 287 struct intel_wait *wait) 288 { 289 lockdep_assert_held(&b->rb_lock); 290 GEM_BUG_ON(b->irq_wait == wait); 291 292 /* This request is completed, so remove it from the tree, mark it as 293 * complete, and *then* wake up the associated task. N.B. when the 294 * task wakes up, it will find the empty rb_node, discern that it 295 * has already been removed from the tree and skip the serialisation 296 * of the b->rb_lock and b->irq_lock. This means that the destruction 297 * of the intel_wait is not serialised with the interrupt handler 298 * by the waiter - it must instead be serialised by the caller. 299 */ 300 rb_erase(&wait->node, &b->waiters); 301 RB_CLEAR_NODE(&wait->node); 302 303 wake_up_process(wait->tsk); /* implicit smp_wmb() */ 304 } 305 306 static inline void __intel_breadcrumbs_next(struct intel_engine_cs *engine, 307 struct rb_node *next) 308 { 309 struct intel_breadcrumbs *b = &engine->breadcrumbs; 310 311 lockmgr(&b->irq_lock, LK_EXCLUSIVE); 312 GEM_BUG_ON(!b->irq_armed); 313 GEM_BUG_ON(!b->irq_wait); 314 b->irq_wait = to_wait(next); 315 lockmgr(&b->irq_lock, LK_RELEASE); 316 317 /* We always wake up the next waiter that takes over as the bottom-half 318 * as we may delegate not only the irq-seqno barrier to the next waiter 319 * but also the task of waking up concurrent waiters. 320 */ 321 if (next) 322 wake_up_process(to_wait(next)->tsk); 323 } 324 325 static bool __intel_engine_add_wait(struct intel_engine_cs *engine, 326 struct intel_wait *wait) 327 { 328 struct intel_breadcrumbs *b = &engine->breadcrumbs; 329 struct rb_node **p, *parent, *completed; 330 bool first; 331 u32 seqno; 332 333 /* Insert the request into the retirement ordered list 334 * of waiters by walking the rbtree. If we are the oldest 335 * seqno in the tree (the first to be retired), then 336 * set ourselves as the bottom-half. 337 * 338 * As we descend the tree, prune completed branches since we hold the 339 * spinlock we know that the first_waiter must be delayed and can 340 * reduce some of the sequential wake up latency if we take action 341 * ourselves and wake up the completed tasks in parallel. Also, by 342 * removing stale elements in the tree, we may be able to reduce the 343 * ping-pong between the old bottom-half and ourselves as first-waiter. 344 */ 345 first = true; 346 parent = NULL; 347 completed = NULL; 348 seqno = intel_engine_get_seqno(engine); 349 350 /* If the request completed before we managed to grab the spinlock, 351 * return now before adding ourselves to the rbtree. We let the 352 * current bottom-half handle any pending wakeups and instead 353 * try and get out of the way quickly. 354 */ 355 if (i915_seqno_passed(seqno, wait->seqno)) { 356 RB_CLEAR_NODE(&wait->node); 357 return first; 358 } 359 360 p = &b->waiters.rb_node; 361 while (*p) { 362 parent = *p; 363 if (wait->seqno == to_wait(parent)->seqno) { 364 /* We have multiple waiters on the same seqno, select 365 * the highest priority task (that with the smallest 366 * task->prio) to serve as the bottom-half for this 367 * group. 368 */ 369 if (wait->tsk->prio > to_wait(parent)->tsk->prio) { 370 p = &parent->rb_right; 371 first = false; 372 } else { 373 p = &parent->rb_left; 374 } 375 } else if (i915_seqno_passed(wait->seqno, 376 to_wait(parent)->seqno)) { 377 p = &parent->rb_right; 378 if (i915_seqno_passed(seqno, to_wait(parent)->seqno)) 379 completed = parent; 380 else 381 first = false; 382 } else { 383 p = &parent->rb_left; 384 } 385 } 386 rb_link_node(&wait->node, parent, p); 387 rb_insert_color(&wait->node, &b->waiters); 388 389 if (first) { 390 lockmgr(&b->irq_lock, LK_EXCLUSIVE); 391 b->irq_wait = wait; 392 /* After assigning ourselves as the new bottom-half, we must 393 * perform a cursory check to prevent a missed interrupt. 394 * Either we miss the interrupt whilst programming the hardware, 395 * or if there was a previous waiter (for a later seqno) they 396 * may be woken instead of us (due to the inherent race 397 * in the unlocked read of b->irq_seqno_bh in the irq handler) 398 * and so we miss the wake up. 399 */ 400 __intel_breadcrumbs_enable_irq(b); 401 lockmgr(&b->irq_lock, LK_RELEASE); 402 } 403 404 if (completed) { 405 /* Advance the bottom-half (b->irq_wait) before we wake up 406 * the waiters who may scribble over their intel_wait 407 * just as the interrupt handler is dereferencing it via 408 * b->irq_wait. 409 */ 410 if (!first) { 411 struct rb_node *next = rb_next(completed); 412 GEM_BUG_ON(next == &wait->node); 413 __intel_breadcrumbs_next(engine, next); 414 } 415 416 do { 417 struct intel_wait *crumb = to_wait(completed); 418 completed = rb_prev(completed); 419 __intel_breadcrumbs_finish(b, crumb); 420 } while (completed); 421 } 422 423 GEM_BUG_ON(!b->irq_wait); 424 GEM_BUG_ON(!b->irq_armed); 425 GEM_BUG_ON(rb_first(&b->waiters) != &b->irq_wait->node); 426 427 return first; 428 } 429 430 bool intel_engine_add_wait(struct intel_engine_cs *engine, 431 struct intel_wait *wait) 432 { 433 struct intel_breadcrumbs *b = &engine->breadcrumbs; 434 bool first; 435 436 spin_lock_irq(&b->rb_lock); 437 first = __intel_engine_add_wait(engine, wait); 438 spin_unlock_irq(&b->rb_lock); 439 440 return first; 441 } 442 443 static inline bool chain_wakeup(struct rb_node *rb, int priority) 444 { 445 return rb && to_wait(rb)->tsk->prio <= priority; 446 } 447 448 static inline int wakeup_priority(struct intel_breadcrumbs *b, 449 struct task_struct *tsk) 450 { 451 if (tsk == b->signaler) 452 return INT_MIN; 453 else 454 return tsk->prio; 455 } 456 457 static void __intel_engine_remove_wait(struct intel_engine_cs *engine, 458 struct intel_wait *wait) 459 { 460 struct intel_breadcrumbs *b = &engine->breadcrumbs; 461 462 lockdep_assert_held(&b->rb_lock); 463 464 if (RB_EMPTY_NODE(&wait->node)) 465 goto out; 466 467 if (b->irq_wait == wait) { 468 const int priority = wakeup_priority(b, wait->tsk); 469 struct rb_node *next; 470 471 /* We are the current bottom-half. Find the next candidate, 472 * the first waiter in the queue on the remaining oldest 473 * request. As multiple seqnos may complete in the time it 474 * takes us to wake up and find the next waiter, we have to 475 * wake up that waiter for it to perform its own coherent 476 * completion check. 477 */ 478 next = rb_next(&wait->node); 479 if (chain_wakeup(next, priority)) { 480 /* If the next waiter is already complete, 481 * wake it up and continue onto the next waiter. So 482 * if have a small herd, they will wake up in parallel 483 * rather than sequentially, which should reduce 484 * the overall latency in waking all the completed 485 * clients. 486 * 487 * However, waking up a chain adds extra latency to 488 * the first_waiter. This is undesirable if that 489 * waiter is a high priority task. 490 */ 491 u32 seqno = intel_engine_get_seqno(engine); 492 493 while (i915_seqno_passed(seqno, to_wait(next)->seqno)) { 494 struct rb_node *n = rb_next(next); 495 496 __intel_breadcrumbs_finish(b, to_wait(next)); 497 next = n; 498 if (!chain_wakeup(next, priority)) 499 break; 500 } 501 } 502 503 __intel_breadcrumbs_next(engine, next); 504 } else { 505 GEM_BUG_ON(rb_first(&b->waiters) == &wait->node); 506 } 507 508 GEM_BUG_ON(RB_EMPTY_NODE(&wait->node)); 509 rb_erase(&wait->node, &b->waiters); 510 511 out: 512 GEM_BUG_ON(b->irq_wait == wait); 513 GEM_BUG_ON(rb_first(&b->waiters) != 514 (b->irq_wait ? &b->irq_wait->node : NULL)); 515 } 516 517 void intel_engine_remove_wait(struct intel_engine_cs *engine, 518 struct intel_wait *wait) 519 { 520 struct intel_breadcrumbs *b = &engine->breadcrumbs; 521 522 /* Quick check to see if this waiter was already decoupled from 523 * the tree by the bottom-half to avoid contention on the spinlock 524 * by the herd. 525 */ 526 if (RB_EMPTY_NODE(&wait->node)) { 527 GEM_BUG_ON(READ_ONCE(b->irq_wait) == wait); 528 return; 529 } 530 531 spin_lock_irq(&b->rb_lock); 532 __intel_engine_remove_wait(engine, wait); 533 spin_unlock_irq(&b->rb_lock); 534 } 535 536 static bool signal_valid(const struct drm_i915_gem_request *request) 537 { 538 return intel_wait_check_request(&request->signaling.wait, request); 539 } 540 541 static bool signal_complete(const struct drm_i915_gem_request *request) 542 { 543 if (!request) 544 return false; 545 546 /* If another process served as the bottom-half it may have already 547 * signalled that this wait is already completed. 548 */ 549 if (intel_wait_complete(&request->signaling.wait)) 550 return signal_valid(request); 551 552 /* Carefully check if the request is complete, giving time for the 553 * seqno to be visible or if the GPU hung. 554 */ 555 if (__i915_request_irq_complete(request)) 556 return true; 557 558 return false; 559 } 560 561 static struct drm_i915_gem_request *to_signaler(struct rb_node *rb) 562 { 563 return rb_entry(rb, struct drm_i915_gem_request, signaling.node); 564 } 565 566 static void signaler_set_rtpriority(void) 567 { 568 struct sched_param param = { .sched_priority = 1 }; 569 570 sched_setscheduler_nocheck(current, SCHED_FIFO, ¶m); 571 } 572 573 static int intel_breadcrumbs_signaler(void *arg) 574 { 575 struct intel_engine_cs *engine = arg; 576 struct intel_breadcrumbs *b = &engine->breadcrumbs; 577 struct drm_i915_gem_request *request; 578 579 /* Install ourselves with high priority to reduce signalling latency */ 580 signaler_set_rtpriority(); 581 582 do { 583 bool do_schedule = true; 584 585 set_current_state(TASK_INTERRUPTIBLE); 586 587 /* We are either woken up by the interrupt bottom-half, 588 * or by a client adding a new signaller. In both cases, 589 * the GPU seqno may have advanced beyond our oldest signal. 590 * If it has, propagate the signal, remove the waiter and 591 * check again with the next oldest signal. Otherwise we 592 * need to wait for a new interrupt from the GPU or for 593 * a new client. 594 */ 595 rcu_read_lock(); 596 request = rcu_dereference(b->first_signal); 597 if (request) 598 request = i915_gem_request_get_rcu(request); 599 rcu_read_unlock(); 600 if (signal_complete(request)) { 601 local_bh_disable(); 602 dma_fence_signal(&request->fence); 603 local_bh_enable(); /* kick start the tasklets */ 604 605 spin_lock_irq(&b->rb_lock); 606 607 /* Wake up all other completed waiters and select the 608 * next bottom-half for the next user interrupt. 609 */ 610 __intel_engine_remove_wait(engine, 611 &request->signaling.wait); 612 613 /* Find the next oldest signal. Note that as we have 614 * not been holding the lock, another client may 615 * have installed an even older signal than the one 616 * we just completed - so double check we are still 617 * the oldest before picking the next one. 618 */ 619 if (request == rcu_access_pointer(b->first_signal)) { 620 struct rb_node *rb = 621 rb_next(&request->signaling.node); 622 rcu_assign_pointer(b->first_signal, 623 rb ? to_signaler(rb) : NULL); 624 } 625 rb_erase(&request->signaling.node, &b->signals); 626 RB_CLEAR_NODE(&request->signaling.node); 627 628 spin_unlock_irq(&b->rb_lock); 629 630 i915_gem_request_put(request); 631 632 /* If the engine is saturated we may be continually 633 * processing completed requests. This angers the 634 * NMI watchdog if we never let anything else 635 * have access to the CPU. Let's pretend to be nice 636 * and relinquish the CPU if we burn through the 637 * entire RT timeslice! 638 */ 639 do_schedule = need_resched(); 640 } 641 642 if (unlikely(do_schedule)) { 643 DEFINE_WAIT(exec); 644 645 if (kthread_should_park()) 646 kthread_parkme(); 647 648 if (kthread_should_stop()) { 649 GEM_BUG_ON(request); 650 break; 651 } 652 653 if (request) 654 add_wait_queue(&request->execute, &exec); 655 656 schedule(); 657 658 if (request) 659 remove_wait_queue(&request->execute, &exec); 660 } 661 i915_gem_request_put(request); 662 } while (1); 663 __set_current_state(TASK_RUNNING); 664 665 return 0; 666 } 667 668 void intel_engine_enable_signaling(struct drm_i915_gem_request *request) 669 { 670 struct intel_engine_cs *engine = request->engine; 671 struct intel_breadcrumbs *b = &engine->breadcrumbs; 672 struct rb_node *parent, **p; 673 bool first, wakeup; 674 u32 seqno; 675 676 /* Note that we may be called from an interrupt handler on another 677 * device (e.g. nouveau signaling a fence completion causing us 678 * to submit a request, and so enable signaling). As such, 679 * we need to make sure that all other users of b->rb_lock protect 680 * against interrupts, i.e. use spin_lock_irqsave. 681 */ 682 683 /* locked by dma_fence_enable_sw_signaling() (irqsafe fence->lock) */ 684 // GEM_BUG_ON(!irqs_disabled()); 685 lockdep_assert_held(&request->lock); 686 687 seqno = i915_gem_request_global_seqno(request); 688 if (!seqno) 689 return; 690 691 request->signaling.wait.tsk = b->signaler; 692 request->signaling.wait.request = request; 693 request->signaling.wait.seqno = seqno; 694 i915_gem_request_get(request); 695 696 lockmgr(&b->rb_lock, LK_EXCLUSIVE); 697 698 /* First add ourselves into the list of waiters, but register our 699 * bottom-half as the signaller thread. As per usual, only the oldest 700 * waiter (not just signaller) is tasked as the bottom-half waking 701 * up all completed waiters after the user interrupt. 702 * 703 * If we are the oldest waiter, enable the irq (after which we 704 * must double check that the seqno did not complete). 705 */ 706 wakeup = __intel_engine_add_wait(engine, &request->signaling.wait); 707 708 /* Now insert ourselves into the retirement ordered list of signals 709 * on this engine. We track the oldest seqno as that will be the 710 * first signal to complete. 711 */ 712 parent = NULL; 713 first = true; 714 p = &b->signals.rb_node; 715 while (*p) { 716 parent = *p; 717 if (i915_seqno_passed(seqno, 718 to_signaler(parent)->signaling.wait.seqno)) { 719 p = &parent->rb_right; 720 first = false; 721 } else { 722 p = &parent->rb_left; 723 } 724 } 725 rb_link_node(&request->signaling.node, parent, p); 726 rb_insert_color(&request->signaling.node, &b->signals); 727 if (first) 728 rcu_assign_pointer(b->first_signal, request); 729 730 lockmgr(&b->rb_lock, LK_RELEASE); 731 732 if (wakeup) 733 wake_up_process(b->signaler); 734 } 735 736 void intel_engine_cancel_signaling(struct drm_i915_gem_request *request) 737 { 738 struct intel_engine_cs *engine = request->engine; 739 struct intel_breadcrumbs *b = &engine->breadcrumbs; 740 741 GEM_BUG_ON(!irqs_disabled()); 742 lockdep_assert_held(&request->lock); 743 GEM_BUG_ON(!request->signaling.wait.seqno); 744 745 lockmgr(&b->rb_lock, LK_EXCLUSIVE); 746 747 if (!RB_EMPTY_NODE(&request->signaling.node)) { 748 if (request == rcu_access_pointer(b->first_signal)) { 749 struct rb_node *rb = 750 rb_next(&request->signaling.node); 751 rcu_assign_pointer(b->first_signal, 752 rb ? to_signaler(rb) : NULL); 753 } 754 rb_erase(&request->signaling.node, &b->signals); 755 RB_CLEAR_NODE(&request->signaling.node); 756 i915_gem_request_put(request); 757 } 758 759 __intel_engine_remove_wait(engine, &request->signaling.wait); 760 761 lockmgr(&b->rb_lock, LK_RELEASE); 762 763 request->signaling.wait.seqno = 0; 764 } 765 766 int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine) 767 { 768 struct intel_breadcrumbs *b = &engine->breadcrumbs; 769 struct task_struct *tsk; 770 771 lockinit(&b->rb_lock, "i9brbl", 0, 0); 772 lockinit(&b->irq_lock, "i91bil", 0, 0); 773 774 setup_timer(&b->fake_irq, 775 intel_breadcrumbs_fake_irq, 776 (unsigned long)engine); 777 setup_timer(&b->hangcheck, 778 intel_breadcrumbs_hangcheck, 779 (unsigned long)engine); 780 781 /* Spawn a thread to provide a common bottom-half for all signals. 782 * As this is an asynchronous interface we cannot steal the current 783 * task for handling the bottom-half to the user interrupt, therefore 784 * we create a thread to do the coherent seqno dance after the 785 * interrupt and then signal the waitqueue (via the dma-buf/fence). 786 */ 787 tsk = kthread_run(intel_breadcrumbs_signaler, engine, 788 "i915/signal:%d", engine->id); 789 if (IS_ERR(tsk)) 790 return PTR_ERR(tsk); 791 792 b->signaler = tsk; 793 794 return 0; 795 } 796 797 static void cancel_fake_irq(struct intel_engine_cs *engine) 798 { 799 struct intel_breadcrumbs *b = &engine->breadcrumbs; 800 801 del_timer_sync(&b->hangcheck); 802 del_timer_sync(&b->fake_irq); 803 clear_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings); 804 } 805 806 void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine) 807 { 808 struct intel_breadcrumbs *b = &engine->breadcrumbs; 809 810 cancel_fake_irq(engine); 811 spin_lock_irq(&b->irq_lock); 812 813 if (b->irq_enabled) 814 irq_enable(engine); 815 else 816 irq_disable(engine); 817 818 /* We set the IRQ_BREADCRUMB bit when we enable the irq presuming the 819 * GPU is active and may have already executed the MI_USER_INTERRUPT 820 * before the CPU is ready to receive. However, the engine is currently 821 * idle (we haven't started it yet), there is no possibility for a 822 * missed interrupt as we enabled the irq and so we can clear the 823 * immediate wakeup (until a real interrupt arrives for the waiter). 824 */ 825 clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted); 826 827 if (b->irq_armed) 828 enable_fake_irq(b); 829 830 spin_unlock_irq(&b->irq_lock); 831 } 832 833 void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine) 834 { 835 struct intel_breadcrumbs *b = &engine->breadcrumbs; 836 837 /* The engines should be idle and all requests accounted for! */ 838 WARN_ON(READ_ONCE(b->irq_wait)); 839 WARN_ON(!RB_EMPTY_ROOT(&b->waiters)); 840 WARN_ON(rcu_access_pointer(b->first_signal)); 841 WARN_ON(!RB_EMPTY_ROOT(&b->signals)); 842 843 if (!IS_ERR_OR_NULL(b->signaler)) 844 kthread_stop(b->signaler); 845 846 cancel_fake_irq(engine); 847 } 848 849 bool intel_breadcrumbs_busy(struct intel_engine_cs *engine) 850 { 851 struct intel_breadcrumbs *b = &engine->breadcrumbs; 852 bool busy = false; 853 854 spin_lock_irq(&b->rb_lock); 855 856 if (b->irq_wait) { 857 wake_up_process(b->irq_wait->tsk); 858 busy = true; 859 } 860 861 if (rcu_access_pointer(b->first_signal)) { 862 wake_up_process(b->signaler); 863 busy = true; 864 } 865 866 spin_unlock_irq(&b->rb_lock); 867 868 return busy; 869 } 870 871 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 872 #include "selftests/intel_breadcrumbs.c" 873 #endif 874