xref: /dflybsd-src/sys/dev/drm/i915/intel_breadcrumbs.c (revision 872a09d51adf63b4bdae6adb1d96a53f76e161e2)
1 /*
2  * Copyright © 2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/kthread.h>
26 
27 #include "i915_drv.h"
28 
29 static void intel_breadcrumbs_fake_irq(unsigned long data)
30 {
31 	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
32 
33 	/*
34 	 * The timer persists in case we cannot enable interrupts,
35 	 * or if we have previously seen seqno/interrupt incoherency
36 	 * ("missed interrupt" syndrome). Here the worker will wake up
37 	 * every jiffie in order to kick the oldest waiter to do the
38 	 * coherent seqno check.
39 	 */
40 	rcu_read_lock();
41 	if (intel_engine_wakeup(engine))
42 		mod_timer(&engine->breadcrumbs.fake_irq, jiffies + 1);
43 	rcu_read_unlock();
44 }
45 
46 static void irq_enable(struct intel_engine_cs *engine)
47 {
48 	/* Enabling the IRQ may miss the generation of the interrupt, but
49 	 * we still need to force the barrier before reading the seqno,
50 	 * just in case.
51 	 */
52 	engine->breadcrumbs.irq_posted = true;
53 
54 	/* Make sure the current hangcheck doesn't falsely accuse a just
55 	 * started irq handler from missing an interrupt (because the
56 	 * interrupt count still matches the stale value from when
57 	 * the irq handler was disabled, many hangchecks ago).
58 	 */
59 	engine->breadcrumbs.irq_wakeups++;
60 
61 	spin_lock_irq(&engine->i915->irq_lock);
62 	engine->irq_enable(engine);
63 	spin_unlock_irq(&engine->i915->irq_lock);
64 }
65 
66 static void irq_disable(struct intel_engine_cs *engine)
67 {
68 	spin_lock_irq(&engine->i915->irq_lock);
69 	engine->irq_disable(engine);
70 	spin_unlock_irq(&engine->i915->irq_lock);
71 
72 	engine->breadcrumbs.irq_posted = false;
73 }
74 
75 static void __intel_breadcrumbs_enable_irq(struct intel_breadcrumbs *b)
76 {
77 	struct intel_engine_cs *engine =
78 		container_of(b, struct intel_engine_cs, breadcrumbs);
79 	struct drm_i915_private *i915 = engine->i915;
80 
81 	assert_spin_locked(&b->lock);
82 	if (b->rpm_wakelock)
83 		return;
84 
85 	/* Since we are waiting on a request, the GPU should be busy
86 	 * and should have its own rpm reference. For completeness,
87 	 * record an rpm reference for ourselves to cover the
88 	 * interrupt we unmask.
89 	 */
90 	intel_runtime_pm_get_noresume(i915);
91 	b->rpm_wakelock = true;
92 
93 	/* No interrupts? Kick the waiter every jiffie! */
94 	if (intel_irqs_enabled(i915)) {
95 		if (!test_bit(engine->id, &i915->gpu_error.test_irq_rings))
96 			irq_enable(engine);
97 		b->irq_enabled = true;
98 	}
99 
100 	if (!b->irq_enabled ||
101 	    test_bit(engine->id, &i915->gpu_error.missed_irq_rings))
102 		mod_timer(&b->fake_irq, jiffies + 1);
103 
104 	/* Ensure that even if the GPU hangs, we get woken up.
105 	 *
106 	 * However, note that if no one is waiting, we never notice
107 	 * a gpu hang. Eventually, we will have to wait for a resource
108 	 * held by the GPU and so trigger a hangcheck. In the most
109 	 * pathological case, this will be upon memory starvation!
110 	 */
111 	i915_queue_hangcheck(i915);
112 }
113 
114 static void __intel_breadcrumbs_disable_irq(struct intel_breadcrumbs *b)
115 {
116 	struct intel_engine_cs *engine =
117 		container_of(b, struct intel_engine_cs, breadcrumbs);
118 
119 	assert_spin_locked(&b->lock);
120 	if (!b->rpm_wakelock)
121 		return;
122 
123 	if (b->irq_enabled) {
124 		irq_disable(engine);
125 		b->irq_enabled = false;
126 	}
127 
128 	intel_runtime_pm_put(engine->i915);
129 	b->rpm_wakelock = false;
130 }
131 
132 static inline struct intel_wait *to_wait(struct rb_node *node)
133 {
134 	return container_of(node, struct intel_wait, node);
135 }
136 
137 static inline void __intel_breadcrumbs_finish(struct intel_breadcrumbs *b,
138 					      struct intel_wait *wait)
139 {
140 	assert_spin_locked(&b->lock);
141 
142 	/* This request is completed, so remove it from the tree, mark it as
143 	 * complete, and *then* wake up the associated task.
144 	 */
145 	rb_erase(&wait->node, &b->waiters);
146 	RB_CLEAR_NODE(&wait->node);
147 
148 	wake_up_process(wait->tsk); /* implicit smp_wmb() */
149 }
150 
151 static bool __intel_engine_add_wait(struct intel_engine_cs *engine,
152 				    struct intel_wait *wait)
153 {
154 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
155 	struct rb_node **p, *parent, *completed;
156 	bool first;
157 	u32 seqno;
158 
159 	/* Insert the request into the retirement ordered list
160 	 * of waiters by walking the rbtree. If we are the oldest
161 	 * seqno in the tree (the first to be retired), then
162 	 * set ourselves as the bottom-half.
163 	 *
164 	 * As we descend the tree, prune completed branches since we hold the
165 	 * spinlock we know that the first_waiter must be delayed and can
166 	 * reduce some of the sequential wake up latency if we take action
167 	 * ourselves and wake up the completed tasks in parallel. Also, by
168 	 * removing stale elements in the tree, we may be able to reduce the
169 	 * ping-pong between the old bottom-half and ourselves as first-waiter.
170 	 */
171 	first = true;
172 	parent = NULL;
173 	completed = NULL;
174 	seqno = intel_engine_get_seqno(engine);
175 
176 	 /* If the request completed before we managed to grab the spinlock,
177 	  * return now before adding ourselves to the rbtree. We let the
178 	  * current bottom-half handle any pending wakeups and instead
179 	  * try and get out of the way quickly.
180 	  */
181 	if (i915_seqno_passed(seqno, wait->seqno)) {
182 		RB_CLEAR_NODE(&wait->node);
183 		return first;
184 	}
185 
186 	p = &b->waiters.rb_node;
187 	while (*p) {
188 		parent = *p;
189 		if (wait->seqno == to_wait(parent)->seqno) {
190 			/* We have multiple waiters on the same seqno, select
191 			 * the highest priority task (that with the smallest
192 			 * task->prio) to serve as the bottom-half for this
193 			 * group.
194 			 */
195 			if (wait->tsk->prio > to_wait(parent)->tsk->prio) {
196 				p = &parent->rb_right;
197 				first = false;
198 			} else {
199 				p = &parent->rb_left;
200 			}
201 		} else if (i915_seqno_passed(wait->seqno,
202 					     to_wait(parent)->seqno)) {
203 			p = &parent->rb_right;
204 			if (i915_seqno_passed(seqno, to_wait(parent)->seqno))
205 				completed = parent;
206 			else
207 				first = false;
208 		} else {
209 			p = &parent->rb_left;
210 		}
211 	}
212 	rb_link_node(&wait->node, parent, p);
213 	rb_insert_color(&wait->node, &b->waiters);
214 	GEM_BUG_ON(!first && !b->irq_seqno_bh);
215 
216 	if (completed) {
217 		struct rb_node *next = rb_next(completed);
218 
219 		GEM_BUG_ON(!next && !first);
220 		if (next && next != &wait->node) {
221 			GEM_BUG_ON(first);
222 			b->first_wait = to_wait(next);
223 			smp_store_mb(b->irq_seqno_bh, b->first_wait->tsk);
224 			/* As there is a delay between reading the current
225 			 * seqno, processing the completed tasks and selecting
226 			 * the next waiter, we may have missed the interrupt
227 			 * and so need for the next bottom-half to wakeup.
228 			 *
229 			 * Also as we enable the IRQ, we may miss the
230 			 * interrupt for that seqno, so we have to wake up
231 			 * the next bottom-half in order to do a coherent check
232 			 * in case the seqno passed.
233 			 */
234 			__intel_breadcrumbs_enable_irq(b);
235 			if (READ_ONCE(b->irq_posted))
236 				wake_up_process(to_wait(next)->tsk);
237 		}
238 
239 		do {
240 			struct intel_wait *crumb = to_wait(completed);
241 			completed = rb_prev(completed);
242 			__intel_breadcrumbs_finish(b, crumb);
243 		} while (completed);
244 	}
245 
246 	if (first) {
247 		GEM_BUG_ON(rb_first(&b->waiters) != &wait->node);
248 		b->first_wait = wait;
249 		smp_store_mb(b->irq_seqno_bh, wait->tsk);
250 		/* After assigning ourselves as the new bottom-half, we must
251 		 * perform a cursory check to prevent a missed interrupt.
252 		 * Either we miss the interrupt whilst programming the hardware,
253 		 * or if there was a previous waiter (for a later seqno) they
254 		 * may be woken instead of us (due to the inherent race
255 		 * in the unlocked read of b->irq_seqno_bh in the irq handler)
256 		 * and so we miss the wake up.
257 		 */
258 		__intel_breadcrumbs_enable_irq(b);
259 	}
260 	GEM_BUG_ON(!b->irq_seqno_bh);
261 	GEM_BUG_ON(!b->first_wait);
262 	GEM_BUG_ON(rb_first(&b->waiters) != &b->first_wait->node);
263 
264 	return first;
265 }
266 
267 bool intel_engine_add_wait(struct intel_engine_cs *engine,
268 			   struct intel_wait *wait)
269 {
270 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
271 	bool first;
272 
273 	lockmgr(&b->lock, LK_EXCLUSIVE);
274 	first = __intel_engine_add_wait(engine, wait);
275 	lockmgr(&b->lock, LK_RELEASE);
276 
277 	return first;
278 }
279 
280 void intel_engine_enable_fake_irq(struct intel_engine_cs *engine)
281 {
282 	mod_timer(&engine->breadcrumbs.fake_irq, jiffies + 1);
283 }
284 
285 static inline bool chain_wakeup(struct rb_node *rb, int priority)
286 {
287 	return rb && to_wait(rb)->tsk->prio <= priority;
288 }
289 
290 static inline int wakeup_priority(struct intel_breadcrumbs *b,
291 				  struct task_struct *tsk)
292 {
293 	if (tsk == b->signaler)
294 		return INT_MIN;
295 	else
296 		return tsk->prio;
297 }
298 
299 void intel_engine_remove_wait(struct intel_engine_cs *engine,
300 			      struct intel_wait *wait)
301 {
302 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
303 
304 	/* Quick check to see if this waiter was already decoupled from
305 	 * the tree by the bottom-half to avoid contention on the spinlock
306 	 * by the herd.
307 	 */
308 	if (RB_EMPTY_NODE(&wait->node))
309 		return;
310 
311 	lockmgr(&b->lock, LK_EXCLUSIVE);
312 
313 	if (RB_EMPTY_NODE(&wait->node))
314 		goto out_unlock;
315 
316 	if (b->first_wait == wait) {
317 		const int priority = wakeup_priority(b, wait->tsk);
318 		struct rb_node *next;
319 
320 		GEM_BUG_ON(b->irq_seqno_bh != wait->tsk);
321 
322 		/* We are the current bottom-half. Find the next candidate,
323 		 * the first waiter in the queue on the remaining oldest
324 		 * request. As multiple seqnos may complete in the time it
325 		 * takes us to wake up and find the next waiter, we have to
326 		 * wake up that waiter for it to perform its own coherent
327 		 * completion check.
328 		 */
329 		next = rb_next(&wait->node);
330 		if (chain_wakeup(next, priority)) {
331 			/* If the next waiter is already complete,
332 			 * wake it up and continue onto the next waiter. So
333 			 * if have a small herd, they will wake up in parallel
334 			 * rather than sequentially, which should reduce
335 			 * the overall latency in waking all the completed
336 			 * clients.
337 			 *
338 			 * However, waking up a chain adds extra latency to
339 			 * the first_waiter. This is undesirable if that
340 			 * waiter is a high priority task.
341 			 */
342 			u32 seqno = intel_engine_get_seqno(engine);
343 
344 			while (i915_seqno_passed(seqno, to_wait(next)->seqno)) {
345 				struct rb_node *n = rb_next(next);
346 
347 				__intel_breadcrumbs_finish(b, to_wait(next));
348 				next = n;
349 				if (!chain_wakeup(next, priority))
350 					break;
351 			}
352 		}
353 
354 		if (next) {
355 			/* In our haste, we may have completed the first waiter
356 			 * before we enabled the interrupt. Do so now as we
357 			 * have a second waiter for a future seqno. Afterwards,
358 			 * we have to wake up that waiter in case we missed
359 			 * the interrupt, or if we have to handle an
360 			 * exception rather than a seqno completion.
361 			 */
362 			b->first_wait = to_wait(next);
363 			smp_store_mb(b->irq_seqno_bh, b->first_wait->tsk);
364 			if (b->first_wait->seqno != wait->seqno)
365 				__intel_breadcrumbs_enable_irq(b);
366 			wake_up_process(b->irq_seqno_bh);
367 		} else {
368 			b->first_wait = NULL;
369 			WRITE_ONCE(b->irq_seqno_bh, NULL);
370 			__intel_breadcrumbs_disable_irq(b);
371 		}
372 	} else {
373 		GEM_BUG_ON(rb_first(&b->waiters) == &wait->node);
374 	}
375 
376 	GEM_BUG_ON(RB_EMPTY_NODE(&wait->node));
377 	rb_erase(&wait->node, &b->waiters);
378 
379 out_unlock:
380 	GEM_BUG_ON(b->first_wait == wait);
381 	GEM_BUG_ON(rb_first(&b->waiters) !=
382 		   (b->first_wait ? &b->first_wait->node : NULL));
383 	GEM_BUG_ON(!b->irq_seqno_bh ^ RB_EMPTY_ROOT(&b->waiters));
384 	lockmgr(&b->lock, LK_RELEASE);
385 }
386 
387 static bool signal_complete(struct drm_i915_gem_request *request)
388 {
389 	if (!request)
390 		return false;
391 
392 	/* If another process served as the bottom-half it may have already
393 	 * signalled that this wait is already completed.
394 	 */
395 	if (intel_wait_complete(&request->signaling.wait))
396 		return true;
397 
398 	/* Carefully check if the request is complete, giving time for the
399 	 * seqno to be visible or if the GPU hung.
400 	 */
401 	if (__i915_request_irq_complete(request))
402 		return true;
403 
404 	return false;
405 }
406 
407 static struct drm_i915_gem_request *to_signaler(struct rb_node *rb)
408 {
409 	return container_of(rb, struct drm_i915_gem_request, signaling.node);
410 }
411 
412 static void signaler_set_rtpriority(void)
413 {
414 	 struct sched_param param = { .sched_priority = 1 };
415 
416 	 sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
417 }
418 
419 static int intel_breadcrumbs_signaler(void *arg)
420 {
421 	struct intel_engine_cs *engine = arg;
422 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
423 	struct drm_i915_gem_request *request;
424 
425 	/* Install ourselves with high priority to reduce signalling latency */
426 	signaler_set_rtpriority();
427 
428 	do {
429 		set_current_state(TASK_INTERRUPTIBLE);
430 
431 		/* We are either woken up by the interrupt bottom-half,
432 		 * or by a client adding a new signaller. In both cases,
433 		 * the GPU seqno may have advanced beyond our oldest signal.
434 		 * If it has, propagate the signal, remove the waiter and
435 		 * check again with the next oldest signal. Otherwise we
436 		 * need to wait for a new interrupt from the GPU or for
437 		 * a new client.
438 		 */
439 		request = READ_ONCE(b->first_signal);
440 		if (signal_complete(request)) {
441 			/* Wake up all other completed waiters and select the
442 			 * next bottom-half for the next user interrupt.
443 			 */
444 			intel_engine_remove_wait(engine,
445 						 &request->signaling.wait);
446 			fence_signal(&request->fence);
447 
448 			/* Find the next oldest signal. Note that as we have
449 			 * not been holding the lock, another client may
450 			 * have installed an even older signal than the one
451 			 * we just completed - so double check we are still
452 			 * the oldest before picking the next one.
453 			 */
454 			lockmgr(&b->lock, LK_EXCLUSIVE);
455 			if (request == b->first_signal) {
456 				struct rb_node *rb =
457 					rb_next(&request->signaling.node);
458 				b->first_signal = rb ? to_signaler(rb) : NULL;
459 			}
460 			rb_erase(&request->signaling.node, &b->signals);
461 			lockmgr(&b->lock, LK_RELEASE);
462 
463 			i915_gem_request_put(request);
464 		} else {
465 			if (kthread_should_stop())
466 				break;
467 
468 			schedule();
469 		}
470 	} while (1);
471 	__set_current_state(TASK_RUNNING);
472 
473 	return 0;
474 }
475 
476 void intel_engine_enable_signaling(struct drm_i915_gem_request *request)
477 {
478 	struct intel_engine_cs *engine = request->engine;
479 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
480 	struct rb_node *parent, **p;
481 	bool first, wakeup;
482 
483 	/* locked by fence_enable_sw_signaling() */
484 	assert_spin_locked(&request->lock);
485 
486 	request->signaling.wait.tsk = b->signaler;
487 	request->signaling.wait.seqno = request->fence.seqno;
488 	i915_gem_request_get(request);
489 
490 	lockmgr(&b->lock, LK_EXCLUSIVE);
491 
492 	/* First add ourselves into the list of waiters, but register our
493 	 * bottom-half as the signaller thread. As per usual, only the oldest
494 	 * waiter (not just signaller) is tasked as the bottom-half waking
495 	 * up all completed waiters after the user interrupt.
496 	 *
497 	 * If we are the oldest waiter, enable the irq (after which we
498 	 * must double check that the seqno did not complete).
499 	 */
500 	wakeup = __intel_engine_add_wait(engine, &request->signaling.wait);
501 
502 	/* Now insert ourselves into the retirement ordered list of signals
503 	 * on this engine. We track the oldest seqno as that will be the
504 	 * first signal to complete.
505 	 */
506 	parent = NULL;
507 	first = true;
508 	p = &b->signals.rb_node;
509 	while (*p) {
510 		parent = *p;
511 		if (i915_seqno_passed(request->fence.seqno,
512 				      to_signaler(parent)->fence.seqno)) {
513 			p = &parent->rb_right;
514 			first = false;
515 		} else {
516 			p = &parent->rb_left;
517 		}
518 	}
519 	rb_link_node(&request->signaling.node, parent, p);
520 	rb_insert_color(&request->signaling.node, &b->signals);
521 	if (first)
522 		smp_store_mb(b->first_signal, request);
523 
524 	lockmgr(&b->lock, LK_RELEASE);
525 
526 	if (wakeup)
527 		wake_up_process(b->signaler);
528 }
529 
530 int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine)
531 {
532 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
533 	struct task_struct *tsk;
534 
535 	lockinit(&b->lock, "i915_bl", 0, 0);
536 	setup_timer(&b->fake_irq,
537 		    intel_breadcrumbs_fake_irq,
538 		    (unsigned long)engine);
539 
540 	/* Spawn a thread to provide a common bottom-half for all signals.
541 	 * As this is an asynchronous interface we cannot steal the current
542 	 * task for handling the bottom-half to the user interrupt, therefore
543 	 * we create a thread to do the coherent seqno dance after the
544 	 * interrupt and then signal the waitqueue (via the dma-buf/fence).
545 	 */
546 	tsk = kthread_run(intel_breadcrumbs_signaler, engine,
547 			  "i915/signal:%d", engine->id);
548 	if (IS_ERR(tsk))
549 		return PTR_ERR(tsk);
550 
551 	b->signaler = tsk;
552 
553 	return 0;
554 }
555 
556 void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine)
557 {
558 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
559 
560 	if (!IS_ERR_OR_NULL(b->signaler))
561 		kthread_stop(b->signaler);
562 
563 	del_timer_sync(&b->fake_irq);
564 }
565 
566 unsigned int intel_kick_waiters(struct drm_i915_private *i915)
567 {
568 	struct intel_engine_cs *engine;
569 	unsigned int mask = 0;
570 
571 	/* To avoid the task_struct disappearing beneath us as we wake up
572 	 * the process, we must first inspect the task_struct->state under the
573 	 * RCU lock, i.e. as we call wake_up_process() we must be holding the
574 	 * rcu_read_lock().
575 	 */
576 	rcu_read_lock();
577 	for_each_engine(engine, i915)
578 		if (unlikely(intel_engine_wakeup(engine)))
579 			mask |= intel_engine_flag(engine);
580 	rcu_read_unlock();
581 
582 	return mask;
583 }
584 
585 unsigned int intel_kick_signalers(struct drm_i915_private *i915)
586 {
587 	struct intel_engine_cs *engine;
588 	unsigned int mask = 0;
589 
590 	for_each_engine(engine, i915) {
591 		if (unlikely(READ_ONCE(engine->breadcrumbs.first_signal))) {
592 			wake_up_process(engine->breadcrumbs.signaler);
593 			mask |= intel_engine_flag(engine);
594 		}
595 	}
596 
597 	return mask;
598 }
599