xref: /dflybsd-src/sys/dev/drm/i915/i915_irq.c (revision b0a72a1d269b3c353ad01bef62856e2b14005e6b)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #include <drm/drmP.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 
35 static const u32 hpd_ibx[] = {
36 	[HPD_CRT] = SDE_CRT_HOTPLUG,
37 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
38 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
39 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
40 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
41 };
42 
43 static const u32 hpd_cpt[] = {
44 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
45 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
46 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
47 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
48 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
49 };
50 
51 static const u32 hpd_mask_i915[] = {
52 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
53 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
54 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
55 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
56 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
57 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
58 };
59 
60 static const u32 hpd_status_g4x[] = {
61 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
62 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
63 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
64 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
65 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
66 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
67 };
68 
69 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
70 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
71 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
72 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
73 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
74 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
75 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
76 };
77 
78 /* IIR can theoretically queue up two events. Be paranoid. */
79 #define GEN8_IRQ_RESET_NDX(type, which) do { \
80 	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
81 	POSTING_READ(GEN8_##type##_IMR(which)); \
82 	I915_WRITE(GEN8_##type##_IER(which), 0); \
83 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
84 	POSTING_READ(GEN8_##type##_IIR(which)); \
85 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
86 	POSTING_READ(GEN8_##type##_IIR(which)); \
87 } while (0)
88 
89 #define GEN5_IRQ_RESET(type) do { \
90 	I915_WRITE(type##IMR, 0xffffffff); \
91 	POSTING_READ(type##IMR); \
92 	I915_WRITE(type##IER, 0); \
93 	I915_WRITE(type##IIR, 0xffffffff); \
94 	POSTING_READ(type##IIR); \
95 	I915_WRITE(type##IIR, 0xffffffff); \
96 	POSTING_READ(type##IIR); \
97 } while (0)
98 
99 /*
100  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
101  */
102 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
103 	u32 val = I915_READ(reg); \
104 	if (val) { \
105 		WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
106 		     (reg), val); \
107 		I915_WRITE((reg), 0xffffffff); \
108 		POSTING_READ(reg); \
109 		I915_WRITE((reg), 0xffffffff); \
110 		POSTING_READ(reg); \
111 	} \
112 } while (0)
113 
114 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
115 	GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
116 	I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
117 	I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
118 	POSTING_READ(GEN8_##type##_IER(which)); \
119 } while (0)
120 
121 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
122 	GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
123 	I915_WRITE(type##IMR, (imr_val)); \
124 	I915_WRITE(type##IER, (ier_val)); \
125 	POSTING_READ(type##IER); \
126 } while (0)
127 
128 /* For display hotplug interrupt */
129 static void
130 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
131 {
132 	assert_spin_locked(&dev_priv->irq_lock);
133 
134 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
135 		return;
136 
137 	if ((dev_priv->irq_mask & mask) != 0) {
138 		dev_priv->irq_mask &= ~mask;
139 		I915_WRITE(DEIMR, dev_priv->irq_mask);
140 		POSTING_READ(DEIMR);
141 	}
142 }
143 
144 static void
145 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
146 {
147 	assert_spin_locked(&dev_priv->irq_lock);
148 
149 	if (!intel_irqs_enabled(dev_priv))
150 		return;
151 
152 	if ((dev_priv->irq_mask & mask) != mask) {
153 		dev_priv->irq_mask |= mask;
154 		I915_WRITE(DEIMR, dev_priv->irq_mask);
155 		POSTING_READ(DEIMR);
156 	}
157 }
158 
159 /**
160  * ilk_update_gt_irq - update GTIMR
161  * @dev_priv: driver private
162  * @interrupt_mask: mask of interrupt bits to update
163  * @enabled_irq_mask: mask of interrupt bits to enable
164  */
165 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
166 			      uint32_t interrupt_mask,
167 			      uint32_t enabled_irq_mask)
168 {
169 	assert_spin_locked(&dev_priv->irq_lock);
170 
171 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
172 		return;
173 
174 	dev_priv->gt_irq_mask &= ~interrupt_mask;
175 	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
176 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
177 	POSTING_READ(GTIMR);
178 }
179 
180 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
181 {
182 	ilk_update_gt_irq(dev_priv, mask, mask);
183 }
184 
185 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
186 {
187 	ilk_update_gt_irq(dev_priv, mask, 0);
188 }
189 
190 /**
191   * snb_update_pm_irq - update GEN6_PMIMR
192   * @dev_priv: driver private
193   * @interrupt_mask: mask of interrupt bits to update
194   * @enabled_irq_mask: mask of interrupt bits to enable
195   */
196 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
197 			      uint32_t interrupt_mask,
198 			      uint32_t enabled_irq_mask)
199 {
200 	uint32_t new_val;
201 
202 	assert_spin_locked(&dev_priv->irq_lock);
203 
204 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
205 		return;
206 
207 	new_val = dev_priv->pm_irq_mask;
208 	new_val &= ~interrupt_mask;
209 	new_val |= (~enabled_irq_mask & interrupt_mask);
210 
211 	if (new_val != dev_priv->pm_irq_mask) {
212 		dev_priv->pm_irq_mask = new_val;
213 		I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
214 		POSTING_READ(GEN6_PMIMR);
215 	}
216 }
217 
218 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
219 {
220 	snb_update_pm_irq(dev_priv, mask, mask);
221 }
222 
223 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
224 {
225 	snb_update_pm_irq(dev_priv, mask, 0);
226 }
227 
228 static bool ivb_can_enable_err_int(struct drm_device *dev)
229 {
230 	struct drm_i915_private *dev_priv = dev->dev_private;
231 	struct intel_crtc *crtc;
232 	enum i915_pipe pipe;
233 
234 	assert_spin_locked(&dev_priv->irq_lock);
235 
236 	for_each_pipe(pipe) {
237 		crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
238 
239 		if (crtc->cpu_fifo_underrun_disabled)
240 			return false;
241 	}
242 
243 	return true;
244 }
245 
246 /**
247   * bdw_update_pm_irq - update GT interrupt 2
248   * @dev_priv: driver private
249   * @interrupt_mask: mask of interrupt bits to update
250   * @enabled_irq_mask: mask of interrupt bits to enable
251   *
252   * Copied from the snb function, updated with relevant register offsets
253   */
254 static void bdw_update_pm_irq(struct drm_i915_private *dev_priv,
255 			      uint32_t interrupt_mask,
256 			      uint32_t enabled_irq_mask)
257 {
258 	uint32_t new_val;
259 
260 	assert_spin_locked(&dev_priv->irq_lock);
261 
262 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
263 		return;
264 
265 	new_val = dev_priv->pm_irq_mask;
266 	new_val &= ~interrupt_mask;
267 	new_val |= (~enabled_irq_mask & interrupt_mask);
268 
269 	if (new_val != dev_priv->pm_irq_mask) {
270 		dev_priv->pm_irq_mask = new_val;
271 		I915_WRITE(GEN8_GT_IMR(2), dev_priv->pm_irq_mask);
272 		POSTING_READ(GEN8_GT_IMR(2));
273 	}
274 }
275 
276 void gen8_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
277 {
278 	bdw_update_pm_irq(dev_priv, mask, mask);
279 }
280 
281 void gen8_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
282 {
283 	bdw_update_pm_irq(dev_priv, mask, 0);
284 }
285 
286 static bool cpt_can_enable_serr_int(struct drm_device *dev)
287 {
288 	struct drm_i915_private *dev_priv = dev->dev_private;
289 	enum i915_pipe pipe;
290 	struct intel_crtc *crtc;
291 
292 	assert_spin_locked(&dev_priv->irq_lock);
293 
294 	for_each_pipe(pipe) {
295 		crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
296 
297 		if (crtc->pch_fifo_underrun_disabled)
298 			return false;
299 	}
300 
301 	return true;
302 }
303 
304 void i9xx_check_fifo_underruns(struct drm_device *dev)
305 {
306 	struct drm_i915_private *dev_priv = dev->dev_private;
307 	struct intel_crtc *crtc;
308 
309 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
310 
311 	for_each_intel_crtc(dev, crtc) {
312 		u32 reg = PIPESTAT(crtc->pipe);
313 		u32 pipestat;
314 
315 		if (crtc->cpu_fifo_underrun_disabled)
316 			continue;
317 
318 		pipestat = I915_READ(reg) & 0xffff0000;
319 		if ((pipestat & PIPE_FIFO_UNDERRUN_STATUS) == 0)
320 			continue;
321 
322 		I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
323 		POSTING_READ(reg);
324 
325 		DRM_ERROR("pipe %c underrun\n", pipe_name(crtc->pipe));
326 	}
327 
328 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
329 }
330 
331 static void i9xx_set_fifo_underrun_reporting(struct drm_device *dev,
332 					     enum i915_pipe pipe,
333 					     bool enable, bool old)
334 {
335 	struct drm_i915_private *dev_priv = dev->dev_private;
336 	u32 reg = PIPESTAT(pipe);
337 	u32 pipestat = I915_READ(reg) & 0xffff0000;
338 
339 	assert_spin_locked(&dev_priv->irq_lock);
340 
341 	if (enable) {
342 		I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
343 		POSTING_READ(reg);
344 	} else {
345 		if (old && pipestat & PIPE_FIFO_UNDERRUN_STATUS)
346 			DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
347 	}
348 }
349 
350 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
351 						 enum i915_pipe pipe, bool enable)
352 {
353 	struct drm_i915_private *dev_priv = dev->dev_private;
354 	uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
355 					  DE_PIPEB_FIFO_UNDERRUN;
356 
357 	if (enable)
358 		ironlake_enable_display_irq(dev_priv, bit);
359 	else
360 		ironlake_disable_display_irq(dev_priv, bit);
361 }
362 
363 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
364 						  enum i915_pipe pipe,
365 						  bool enable, bool old)
366 {
367 	struct drm_i915_private *dev_priv = dev->dev_private;
368 	if (enable) {
369 		I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
370 
371 		if (!ivb_can_enable_err_int(dev))
372 			return;
373 
374 		ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
375 	} else {
376 		ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
377 
378 		if (old &&
379 		    I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe)) {
380 			DRM_ERROR("uncleared fifo underrun on pipe %c\n",
381 				  pipe_name(pipe));
382 		}
383 	}
384 }
385 
386 static void broadwell_set_fifo_underrun_reporting(struct drm_device *dev,
387 						  enum i915_pipe pipe, bool enable)
388 {
389 	struct drm_i915_private *dev_priv = dev->dev_private;
390 
391 	assert_spin_locked(&dev_priv->irq_lock);
392 
393 	if (enable)
394 		dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_FIFO_UNDERRUN;
395 	else
396 		dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_FIFO_UNDERRUN;
397 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
398 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
399 }
400 
401 /**
402  * ibx_display_interrupt_update - update SDEIMR
403  * @dev_priv: driver private
404  * @interrupt_mask: mask of interrupt bits to update
405  * @enabled_irq_mask: mask of interrupt bits to enable
406  */
407 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
408 					 uint32_t interrupt_mask,
409 					 uint32_t enabled_irq_mask)
410 {
411 	uint32_t sdeimr = I915_READ(SDEIMR);
412 	sdeimr &= ~interrupt_mask;
413 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
414 
415 	assert_spin_locked(&dev_priv->irq_lock);
416 
417 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
418 		return;
419 
420 	I915_WRITE(SDEIMR, sdeimr);
421 	POSTING_READ(SDEIMR);
422 }
423 #define ibx_enable_display_interrupt(dev_priv, bits) \
424 	ibx_display_interrupt_update((dev_priv), (bits), (bits))
425 #define ibx_disable_display_interrupt(dev_priv, bits) \
426 	ibx_display_interrupt_update((dev_priv), (bits), 0)
427 
428 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
429 					    enum transcoder pch_transcoder,
430 					    bool enable)
431 {
432 	struct drm_i915_private *dev_priv = dev->dev_private;
433 	uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
434 		       SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
435 
436 	if (enable)
437 		ibx_enable_display_interrupt(dev_priv, bit);
438 	else
439 		ibx_disable_display_interrupt(dev_priv, bit);
440 }
441 
442 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
443 					    enum transcoder pch_transcoder,
444 					    bool enable, bool old)
445 {
446 	struct drm_i915_private *dev_priv = dev->dev_private;
447 
448 	if (enable) {
449 		I915_WRITE(SERR_INT,
450 			   SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
451 
452 		if (!cpt_can_enable_serr_int(dev))
453 			return;
454 
455 		ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
456 	} else {
457 		ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
458 
459 		if (old && I915_READ(SERR_INT) &
460 		    SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder)) {
461 			DRM_ERROR("uncleared pch fifo underrun on pch transcoder %c\n",
462 				  transcoder_name(pch_transcoder));
463 		}
464 	}
465 }
466 
467 /**
468  * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
469  * @dev: drm device
470  * @pipe: pipe
471  * @enable: true if we want to report FIFO underrun errors, false otherwise
472  *
473  * This function makes us disable or enable CPU fifo underruns for a specific
474  * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
475  * reporting for one pipe may also disable all the other CPU error interruts for
476  * the other pipes, due to the fact that there's just one interrupt mask/enable
477  * bit for all the pipes.
478  *
479  * Returns the previous state of underrun reporting.
480  */
481 static bool __intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
482 						    enum i915_pipe pipe, bool enable)
483 {
484 	struct drm_i915_private *dev_priv = dev->dev_private;
485 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
486 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
487 	bool old;
488 
489 	assert_spin_locked(&dev_priv->irq_lock);
490 
491 	old = !intel_crtc->cpu_fifo_underrun_disabled;
492 	intel_crtc->cpu_fifo_underrun_disabled = !enable;
493 
494 	if (INTEL_INFO(dev)->gen < 5 || IS_VALLEYVIEW(dev))
495 		i9xx_set_fifo_underrun_reporting(dev, pipe, enable, old);
496 	else if (IS_GEN5(dev) || IS_GEN6(dev))
497 		ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
498 	else if (IS_GEN7(dev))
499 		ivybridge_set_fifo_underrun_reporting(dev, pipe, enable, old);
500 	else if (IS_GEN8(dev))
501 		broadwell_set_fifo_underrun_reporting(dev, pipe, enable);
502 
503 	return old;
504 }
505 
506 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
507 					   enum i915_pipe pipe, bool enable)
508 {
509 	struct drm_i915_private *dev_priv = dev->dev_private;
510 	bool ret;
511 
512 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
513 	ret = __intel_set_cpu_fifo_underrun_reporting(dev, pipe, enable);
514 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
515 
516 	return ret;
517 }
518 
519 static bool __cpu_fifo_underrun_reporting_enabled(struct drm_device *dev,
520 						  enum i915_pipe pipe)
521 {
522 	struct drm_i915_private *dev_priv = dev->dev_private;
523 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
524 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
525 
526 	return !intel_crtc->cpu_fifo_underrun_disabled;
527 }
528 
529 /**
530  * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
531  * @dev: drm device
532  * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
533  * @enable: true if we want to report FIFO underrun errors, false otherwise
534  *
535  * This function makes us disable or enable PCH fifo underruns for a specific
536  * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
537  * underrun reporting for one transcoder may also disable all the other PCH
538  * error interruts for the other transcoders, due to the fact that there's just
539  * one interrupt mask/enable bit for all the transcoders.
540  *
541  * Returns the previous state of underrun reporting.
542  */
543 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
544 					   enum transcoder pch_transcoder,
545 					   bool enable)
546 {
547 	struct drm_i915_private *dev_priv = dev->dev_private;
548 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
549 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
550 	bool old;
551 
552 	/*
553 	 * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
554 	 * has only one pch transcoder A that all pipes can use. To avoid racy
555 	 * pch transcoder -> pipe lookups from interrupt code simply store the
556 	 * underrun statistics in crtc A. Since we never expose this anywhere
557 	 * nor use it outside of the fifo underrun code here using the "wrong"
558 	 * crtc on LPT won't cause issues.
559 	 */
560 
561 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
562 
563 	old = !intel_crtc->pch_fifo_underrun_disabled;
564 	intel_crtc->pch_fifo_underrun_disabled = !enable;
565 
566 	if (HAS_PCH_IBX(dev))
567 		ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
568 	else
569 		cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable, old);
570 
571 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
572 	return old;
573 }
574 
575 static void
576 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum i915_pipe pipe,
577 		       u32 enable_mask, u32 status_mask)
578 {
579 	u32 reg = PIPESTAT(pipe);
580 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
581 
582 	assert_spin_locked(&dev_priv->irq_lock);
583 
584 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
585 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
586 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
587 		      pipe_name(pipe), enable_mask, status_mask))
588 		return;
589 
590 	if ((pipestat & enable_mask) == enable_mask)
591 		return;
592 
593 	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
594 
595 	/* Enable the interrupt, clear any pending status */
596 	pipestat |= enable_mask | status_mask;
597 	I915_WRITE(reg, pipestat);
598 	POSTING_READ(reg);
599 }
600 
601 static void
602 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum i915_pipe pipe,
603 		        u32 enable_mask, u32 status_mask)
604 {
605 	u32 reg = PIPESTAT(pipe);
606 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
607 
608 	assert_spin_locked(&dev_priv->irq_lock);
609 
610 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
611 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
612 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
613 		      pipe_name(pipe), enable_mask, status_mask))
614 		return;
615 
616 	if ((pipestat & enable_mask) == 0)
617 		return;
618 
619 	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
620 
621 	pipestat &= ~enable_mask;
622 	I915_WRITE(reg, pipestat);
623 	POSTING_READ(reg);
624 }
625 
626 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
627 {
628 	u32 enable_mask = status_mask << 16;
629 
630 	/*
631 	 * On pipe A we don't support the PSR interrupt yet,
632 	 * on pipe B and C the same bit MBZ.
633 	 */
634 	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
635 		return 0;
636 	/*
637 	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
638 	 * A the same bit is for perf counters which we don't use either.
639 	 */
640 	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
641 		return 0;
642 
643 	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
644 			 SPRITE0_FLIP_DONE_INT_EN_VLV |
645 			 SPRITE1_FLIP_DONE_INT_EN_VLV);
646 	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
647 		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
648 	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
649 		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
650 
651 	return enable_mask;
652 }
653 
654 void
655 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum i915_pipe pipe,
656 		     u32 status_mask)
657 {
658 	u32 enable_mask;
659 
660 	if (IS_VALLEYVIEW(dev_priv->dev))
661 		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
662 							   status_mask);
663 	else
664 		enable_mask = status_mask << 16;
665 	__i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
666 }
667 
668 void
669 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum i915_pipe pipe,
670 		      u32 status_mask)
671 {
672 	u32 enable_mask;
673 
674 	if (IS_VALLEYVIEW(dev_priv->dev))
675 		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
676 							   status_mask);
677 	else
678 		enable_mask = status_mask << 16;
679 	__i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
680 }
681 
682 /**
683  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
684  */
685 static void i915_enable_asle_pipestat(struct drm_device *dev)
686 {
687 	struct drm_i915_private *dev_priv = dev->dev_private;
688 
689 	if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
690 		return;
691 
692 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
693 
694 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
695 	if (INTEL_INFO(dev)->gen >= 4)
696 		i915_enable_pipestat(dev_priv, PIPE_A,
697 				     PIPE_LEGACY_BLC_EVENT_STATUS);
698 
699 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
700 }
701 
702 /**
703  * i915_pipe_enabled - check if a pipe is enabled
704  * @dev: DRM device
705  * @pipe: pipe to check
706  *
707  * Reading certain registers when the pipe is disabled can hang the chip.
708  * Use this routine to make sure the PLL is running and the pipe is active
709  * before reading such registers if unsure.
710  */
711 static int
712 i915_pipe_enabled(struct drm_device *dev, int pipe)
713 {
714 	struct drm_i915_private *dev_priv = dev->dev_private;
715 
716 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
717 		/* Locking is horribly broken here, but whatever. */
718 		struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
719 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
720 
721 		return intel_crtc->active;
722 	} else {
723 		return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
724 	}
725 }
726 
727 /*
728  * This timing diagram depicts the video signal in and
729  * around the vertical blanking period.
730  *
731  * Assumptions about the fictitious mode used in this example:
732  *  vblank_start >= 3
733  *  vsync_start = vblank_start + 1
734  *  vsync_end = vblank_start + 2
735  *  vtotal = vblank_start + 3
736  *
737  *           start of vblank:
738  *           latch double buffered registers
739  *           increment frame counter (ctg+)
740  *           generate start of vblank interrupt (gen4+)
741  *           |
742  *           |          frame start:
743  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
744  *           |          may be shifted forward 1-3 extra lines via PIPECONF
745  *           |          |
746  *           |          |  start of vsync:
747  *           |          |  generate vsync interrupt
748  *           |          |  |
749  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
750  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
751  * ----va---> <-----------------vb--------------------> <--------va-------------
752  *       |          |       <----vs----->                     |
753  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
754  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
755  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
756  *       |          |                                         |
757  *       last visible pixel                                   first visible pixel
758  *                  |                                         increment frame counter (gen3/4)
759  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
760  *
761  * x  = horizontal active
762  * _  = horizontal blanking
763  * hs = horizontal sync
764  * va = vertical active
765  * vb = vertical blanking
766  * vs = vertical sync
767  * vbs = vblank_start (number)
768  *
769  * Summary:
770  * - most events happen at the start of horizontal sync
771  * - frame start happens at the start of horizontal blank, 1-4 lines
772  *   (depending on PIPECONF settings) after the start of vblank
773  * - gen3/4 pixel and frame counter are synchronized with the start
774  *   of horizontal active on the first line of vertical active
775  */
776 
777 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
778 {
779 	/* Gen2 doesn't have a hardware frame counter */
780 	return 0;
781 }
782 
783 /* Called from drm generic code, passed a 'crtc', which
784  * we use as a pipe index
785  */
786 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
787 {
788 	struct drm_i915_private *dev_priv = dev->dev_private;
789 	unsigned long high_frame;
790 	unsigned long low_frame;
791 	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
792 
793 	if (!i915_pipe_enabled(dev, pipe)) {
794 		DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
795 				"pipe %c\n", pipe_name(pipe));
796 		return 0;
797 	}
798 
799 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
800 		struct intel_crtc *intel_crtc =
801 			to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
802 		const struct drm_display_mode *mode =
803 			&intel_crtc->config.adjusted_mode;
804 
805 		htotal = mode->crtc_htotal;
806 		hsync_start = mode->crtc_hsync_start;
807 		vbl_start = mode->crtc_vblank_start;
808 		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
809 			vbl_start = DIV_ROUND_UP(vbl_start, 2);
810 	} else {
811 		enum transcoder cpu_transcoder = (enum transcoder) pipe;
812 
813 		htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
814 		hsync_start = (I915_READ(HSYNC(cpu_transcoder))  & 0x1fff) + 1;
815 		vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
816 		if ((I915_READ(PIPECONF(cpu_transcoder)) &
817 		     PIPECONF_INTERLACE_MASK) != PIPECONF_PROGRESSIVE)
818 			vbl_start = DIV_ROUND_UP(vbl_start, 2);
819 	}
820 
821 	/* Convert to pixel count */
822 	vbl_start *= htotal;
823 
824 	/* Start of vblank event occurs at start of hsync */
825 	vbl_start -= htotal - hsync_start;
826 
827 	high_frame = PIPEFRAME(pipe);
828 	low_frame = PIPEFRAMEPIXEL(pipe);
829 
830 	/*
831 	 * High & low register fields aren't synchronized, so make sure
832 	 * we get a low value that's stable across two reads of the high
833 	 * register.
834 	 */
835 	do {
836 		high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
837 		low   = I915_READ(low_frame);
838 		high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
839 	} while (high1 != high2);
840 
841 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
842 	pixel = low & PIPE_PIXEL_MASK;
843 	low >>= PIPE_FRAME_LOW_SHIFT;
844 
845 	/*
846 	 * The frame counter increments at beginning of active.
847 	 * Cook up a vblank counter by also checking the pixel
848 	 * counter against vblank start.
849 	 */
850 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
851 }
852 
853 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
854 {
855 	struct drm_i915_private *dev_priv = dev->dev_private;
856 	int reg = PIPE_FRMCOUNT_GM45(pipe);
857 
858 	if (!i915_pipe_enabled(dev, pipe)) {
859 		DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
860 				 "pipe %c\n", pipe_name(pipe));
861 		return 0;
862 	}
863 
864 	return I915_READ(reg);
865 }
866 
867 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
868 #define __raw_i915_read32(dev_priv__, reg__) DRM_READ32(dev_priv__->mmio_map, reg__)
869 
870 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
871 {
872 	struct drm_device *dev = crtc->base.dev;
873 	struct drm_i915_private *dev_priv = dev->dev_private;
874 	const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
875 	enum i915_pipe pipe = crtc->pipe;
876 	int position, vtotal;
877 
878 	vtotal = mode->crtc_vtotal;
879 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
880 		vtotal /= 2;
881 
882 	if (IS_GEN2(dev))
883 		position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
884 	else
885 		position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
886 
887 	/*
888 	 * See update_scanline_offset() for the details on the
889 	 * scanline_offset adjustment.
890 	 */
891 	return (position + crtc->scanline_offset) % vtotal;
892 }
893 
894 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
895 				    unsigned int flags, int *vpos, int *hpos,
896 				    ktime_t *stime, ktime_t *etime)
897 {
898 	struct drm_i915_private *dev_priv = dev->dev_private;
899 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
900 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
901 	const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
902 	int position;
903 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
904 	bool in_vbl = true;
905 	int ret = 0;
906 
907 	if (!intel_crtc->active) {
908 		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
909 				 "pipe %c\n", pipe_name(pipe));
910 		return 0;
911 	}
912 
913 	htotal = mode->crtc_htotal;
914 	hsync_start = mode->crtc_hsync_start;
915 	vtotal = mode->crtc_vtotal;
916 	vbl_start = mode->crtc_vblank_start;
917 	vbl_end = mode->crtc_vblank_end;
918 
919 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
920 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
921 		vbl_end /= 2;
922 		vtotal /= 2;
923 	}
924 
925 	ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
926 
927 	/*
928 	 * Lock uncore.lock, as we will do multiple timing critical raw
929 	 * register reads, potentially with preemption disabled, so the
930 	 * following code must not block on uncore.lock.
931 	 */
932 	lockmgr(&dev_priv->uncore.lock, LK_EXCLUSIVE);
933 
934 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
935 
936 	/* Get optional system timestamp before query. */
937 	if (stime)
938 		*stime = ktime_get();
939 
940 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
941 		/* No obvious pixelcount register. Only query vertical
942 		 * scanout position from Display scan line register.
943 		 */
944 		position = __intel_get_crtc_scanline(intel_crtc);
945 	} else {
946 		/* Have access to pixelcount since start of frame.
947 		 * We can split this into vertical and horizontal
948 		 * scanout position.
949 		 */
950 		position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
951 
952 		/* convert to pixel counts */
953 		vbl_start *= htotal;
954 		vbl_end *= htotal;
955 		vtotal *= htotal;
956 
957 		/*
958 		 * In interlaced modes, the pixel counter counts all pixels,
959 		 * so one field will have htotal more pixels. In order to avoid
960 		 * the reported position from jumping backwards when the pixel
961 		 * counter is beyond the length of the shorter field, just
962 		 * clamp the position the length of the shorter field. This
963 		 * matches how the scanline counter based position works since
964 		 * the scanline counter doesn't count the two half lines.
965 		 */
966 		if (position >= vtotal)
967 			position = vtotal - 1;
968 
969 		/*
970 		 * Start of vblank interrupt is triggered at start of hsync,
971 		 * just prior to the first active line of vblank. However we
972 		 * consider lines to start at the leading edge of horizontal
973 		 * active. So, should we get here before we've crossed into
974 		 * the horizontal active of the first line in vblank, we would
975 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
976 		 * always add htotal-hsync_start to the current pixel position.
977 		 */
978 		position = (position + htotal - hsync_start) % vtotal;
979 	}
980 
981 	/* Get optional system timestamp after query. */
982 	if (etime)
983 		*etime = ktime_get();
984 
985 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
986 
987 	lockmgr(&dev_priv->uncore.lock, LK_RELEASE);
988 
989 	in_vbl = position >= vbl_start && position < vbl_end;
990 
991 	/*
992 	 * While in vblank, position will be negative
993 	 * counting up towards 0 at vbl_end. And outside
994 	 * vblank, position will be positive counting
995 	 * up since vbl_end.
996 	 */
997 	if (position >= vbl_start)
998 		position -= vbl_end;
999 	else
1000 		position += vtotal - vbl_end;
1001 
1002 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
1003 		*vpos = position;
1004 		*hpos = 0;
1005 	} else {
1006 		*vpos = position / htotal;
1007 		*hpos = position - (*vpos * htotal);
1008 	}
1009 
1010 	/* In vblank? */
1011 	if (in_vbl)
1012 		ret |= DRM_SCANOUTPOS_INVBL;
1013 
1014 	return ret;
1015 }
1016 
1017 int intel_get_crtc_scanline(struct intel_crtc *crtc)
1018 {
1019 	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1020 	int position;
1021 
1022 	lockmgr(&dev_priv->uncore.lock, LK_EXCLUSIVE);
1023 	position = __intel_get_crtc_scanline(crtc);
1024 	lockmgr(&dev_priv->uncore.lock, LK_RELEASE);
1025 
1026 	return position;
1027 }
1028 
1029 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
1030 			      int *max_error,
1031 			      struct timeval *vblank_time,
1032 			      unsigned flags)
1033 {
1034 	struct drm_crtc *crtc;
1035 
1036 	if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
1037 		DRM_ERROR("Invalid crtc %d\n", pipe);
1038 		return -EINVAL;
1039 	}
1040 
1041 	/* Get drm_crtc to timestamp: */
1042 	crtc = intel_get_crtc_for_pipe(dev, pipe);
1043 	if (crtc == NULL) {
1044 		DRM_ERROR("Invalid crtc %d\n", pipe);
1045 		return -EINVAL;
1046 	}
1047 
1048 	if (!crtc->enabled) {
1049 		DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
1050 		return -EBUSY;
1051 	}
1052 
1053 	/* Helper routine in DRM core does all the work: */
1054 	return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
1055 						     vblank_time, flags,
1056 						     crtc,
1057 						     &to_intel_crtc(crtc)->config.adjusted_mode);
1058 }
1059 
1060 static bool intel_hpd_irq_event(struct drm_device *dev,
1061 				struct drm_connector *connector)
1062 {
1063 	enum drm_connector_status old_status;
1064 
1065 	WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1066 	old_status = connector->status;
1067 
1068 	connector->status = connector->funcs->detect(connector, false);
1069 	if (old_status == connector->status)
1070 		return false;
1071 
1072 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
1073 		      connector->base.id,
1074 		      connector->name,
1075 		      drm_get_connector_status_name(old_status),
1076 		      drm_get_connector_status_name(connector->status));
1077 
1078 	return true;
1079 }
1080 
1081 static void i915_digport_work_func(struct work_struct *work)
1082 {
1083 	struct drm_i915_private *dev_priv =
1084 		container_of(work, struct drm_i915_private, dig_port_work);
1085 	u32 long_port_mask, short_port_mask;
1086 	struct intel_digital_port *intel_dig_port;
1087 	int i, ret;
1088 	u32 old_bits = 0;
1089 
1090 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1091 	long_port_mask = dev_priv->long_hpd_port_mask;
1092 	dev_priv->long_hpd_port_mask = 0;
1093 	short_port_mask = dev_priv->short_hpd_port_mask;
1094 	dev_priv->short_hpd_port_mask = 0;
1095 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1096 
1097 	for (i = 0; i < I915_MAX_PORTS; i++) {
1098 		bool valid = false;
1099 		bool long_hpd = false;
1100 		intel_dig_port = dev_priv->hpd_irq_port[i];
1101 		if (!intel_dig_port || !intel_dig_port->hpd_pulse)
1102 			continue;
1103 
1104 		if (long_port_mask & (1 << i))  {
1105 			valid = true;
1106 			long_hpd = true;
1107 		} else if (short_port_mask & (1 << i))
1108 			valid = true;
1109 
1110 		if (valid) {
1111 			ret = intel_dig_port->hpd_pulse(intel_dig_port, long_hpd);
1112 			if (ret == true) {
1113 				/* if we get true fallback to old school hpd */
1114 				old_bits |= (1 << intel_dig_port->base.hpd_pin);
1115 			}
1116 		}
1117 	}
1118 
1119 	if (old_bits) {
1120 		lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1121 		dev_priv->hpd_event_bits |= old_bits;
1122 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1123 		schedule_work(&dev_priv->hotplug_work);
1124 	}
1125 }
1126 
1127 /*
1128  * Handle hotplug events outside the interrupt handler proper.
1129  */
1130 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
1131 
1132 static void i915_hotplug_work_func(struct work_struct *work)
1133 {
1134 	struct drm_i915_private *dev_priv =
1135 		container_of(work, struct drm_i915_private, hotplug_work);
1136 	struct drm_device *dev = dev_priv->dev;
1137 	struct drm_mode_config *mode_config = &dev->mode_config;
1138 	struct intel_connector *intel_connector;
1139 	struct intel_encoder *intel_encoder;
1140 	struct drm_connector *connector;
1141 	bool hpd_disabled = false;
1142 	bool changed = false;
1143 	u32 hpd_event_bits;
1144 
1145 	mutex_lock(&mode_config->mutex);
1146 	DRM_DEBUG_KMS("running encoder hotplug functions\n");
1147 
1148 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1149 
1150 	hpd_event_bits = dev_priv->hpd_event_bits;
1151 	dev_priv->hpd_event_bits = 0;
1152 	list_for_each_entry(connector, &mode_config->connector_list, head) {
1153 		intel_connector = to_intel_connector(connector);
1154 		if (!intel_connector->encoder)
1155 			continue;
1156 		intel_encoder = intel_connector->encoder;
1157 		if (intel_encoder->hpd_pin > HPD_NONE &&
1158 		    dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
1159 		    connector->polled == DRM_CONNECTOR_POLL_HPD) {
1160 			DRM_INFO("HPD interrupt storm detected on connector %s: "
1161 				 "switching from hotplug detection to polling\n",
1162 				connector->name);
1163 			dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
1164 			connector->polled = DRM_CONNECTOR_POLL_CONNECT
1165 				| DRM_CONNECTOR_POLL_DISCONNECT;
1166 			hpd_disabled = true;
1167 		}
1168 		if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1169 			DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
1170 				      connector->name, intel_encoder->hpd_pin);
1171 		}
1172 	}
1173 	 /* if there were no outputs to poll, poll was disabled,
1174 	  * therefore make sure it's enabled when disabling HPD on
1175 	  * some connectors */
1176 	if (hpd_disabled) {
1177 		drm_kms_helper_poll_enable(dev);
1178 		mod_delayed_work(system_wq, &dev_priv->hotplug_reenable_work,
1179 				 msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
1180 	}
1181 
1182 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1183 
1184 	list_for_each_entry(connector, &mode_config->connector_list, head) {
1185 		intel_connector = to_intel_connector(connector);
1186 		if (!intel_connector->encoder)
1187 			continue;
1188 		intel_encoder = intel_connector->encoder;
1189 		if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1190 			if (intel_encoder->hot_plug)
1191 				intel_encoder->hot_plug(intel_encoder);
1192 			if (intel_hpd_irq_event(dev, connector))
1193 				changed = true;
1194 		}
1195 	}
1196 	mutex_unlock(&mode_config->mutex);
1197 
1198 	if (changed)
1199 		drm_kms_helper_hotplug_event(dev);
1200 }
1201 
1202 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
1203 {
1204 	struct drm_i915_private *dev_priv = dev->dev_private;
1205 	u32 busy_up, busy_down, max_avg, min_avg;
1206 	u8 new_delay;
1207 
1208 	lockmgr(&mchdev_lock, LK_EXCLUSIVE);
1209 
1210 	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1211 
1212 	new_delay = dev_priv->ips.cur_delay;
1213 
1214 	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1215 	busy_up = I915_READ(RCPREVBSYTUPAVG);
1216 	busy_down = I915_READ(RCPREVBSYTDNAVG);
1217 	max_avg = I915_READ(RCBMAXAVG);
1218 	min_avg = I915_READ(RCBMINAVG);
1219 
1220 	/* Handle RCS change request from hw */
1221 	if (busy_up > max_avg) {
1222 		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1223 			new_delay = dev_priv->ips.cur_delay - 1;
1224 		if (new_delay < dev_priv->ips.max_delay)
1225 			new_delay = dev_priv->ips.max_delay;
1226 	} else if (busy_down < min_avg) {
1227 		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1228 			new_delay = dev_priv->ips.cur_delay + 1;
1229 		if (new_delay > dev_priv->ips.min_delay)
1230 			new_delay = dev_priv->ips.min_delay;
1231 	}
1232 
1233 	if (ironlake_set_drps(dev, new_delay))
1234 		dev_priv->ips.cur_delay = new_delay;
1235 
1236 	lockmgr(&mchdev_lock, LK_RELEASE);
1237 
1238 	return;
1239 }
1240 
1241 static void notify_ring(struct drm_device *dev,
1242 			struct intel_engine_cs *ring)
1243 {
1244 	if (!intel_ring_initialized(ring))
1245 		return;
1246 
1247 	trace_i915_gem_request_complete(ring);
1248 
1249 	if (drm_core_check_feature(dev, DRIVER_MODESET))
1250 		intel_notify_mmio_flip(ring);
1251 
1252 	wake_up_all(&ring->irq_queue);
1253 	i915_queue_hangcheck(dev);
1254 }
1255 
1256 static u32 vlv_c0_residency(struct drm_i915_private *dev_priv,
1257 			    struct intel_rps_ei *rps_ei)
1258 {
1259 	u32 cz_ts, cz_freq_khz;
1260 	u32 render_count, media_count;
1261 	u32 elapsed_render, elapsed_media, elapsed_time;
1262 	u32 residency = 0;
1263 
1264 	cz_ts = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1265 	cz_freq_khz = DIV_ROUND_CLOSEST(dev_priv->mem_freq * 1000, 4);
1266 
1267 	render_count = I915_READ(VLV_RENDER_C0_COUNT_REG);
1268 	media_count = I915_READ(VLV_MEDIA_C0_COUNT_REG);
1269 
1270 	if (rps_ei->cz_clock == 0) {
1271 		rps_ei->cz_clock = cz_ts;
1272 		rps_ei->render_c0 = render_count;
1273 		rps_ei->media_c0 = media_count;
1274 
1275 		return dev_priv->rps.cur_freq;
1276 	}
1277 
1278 	elapsed_time = cz_ts - rps_ei->cz_clock;
1279 	rps_ei->cz_clock = cz_ts;
1280 
1281 	elapsed_render = render_count - rps_ei->render_c0;
1282 	rps_ei->render_c0 = render_count;
1283 
1284 	elapsed_media = media_count - rps_ei->media_c0;
1285 	rps_ei->media_c0 = media_count;
1286 
1287 	/* Convert all the counters into common unit of milli sec */
1288 	elapsed_time /= VLV_CZ_CLOCK_TO_MILLI_SEC;
1289 	elapsed_render /=  cz_freq_khz;
1290 	elapsed_media /= cz_freq_khz;
1291 
1292 	/*
1293 	 * Calculate overall C0 residency percentage
1294 	 * only if elapsed time is non zero
1295 	 */
1296 	if (elapsed_time) {
1297 		residency =
1298 			((max(elapsed_render, elapsed_media) * 100)
1299 				/ elapsed_time);
1300 	}
1301 
1302 	return residency;
1303 }
1304 
1305 /**
1306  * vlv_calc_delay_from_C0_counters - Increase/Decrease freq based on GPU
1307  * busy-ness calculated from C0 counters of render & media power wells
1308  * @dev_priv: DRM device private
1309  *
1310  */
1311 static u32 vlv_calc_delay_from_C0_counters(struct drm_i915_private *dev_priv)
1312 {
1313 	u32 residency_C0_up = 0, residency_C0_down = 0;
1314 	u8 new_delay, adj;
1315 
1316 	dev_priv->rps.ei_interrupt_count++;
1317 
1318 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
1319 
1320 
1321 	if (dev_priv->rps.up_ei.cz_clock == 0) {
1322 		vlv_c0_residency(dev_priv, &dev_priv->rps.up_ei);
1323 		vlv_c0_residency(dev_priv, &dev_priv->rps.down_ei);
1324 		return dev_priv->rps.cur_freq;
1325 	}
1326 
1327 
1328 	/*
1329 	 * To down throttle, C0 residency should be less than down threshold
1330 	 * for continous EI intervals. So calculate down EI counters
1331 	 * once in VLV_INT_COUNT_FOR_DOWN_EI
1332 	 */
1333 	if (dev_priv->rps.ei_interrupt_count == VLV_INT_COUNT_FOR_DOWN_EI) {
1334 
1335 		dev_priv->rps.ei_interrupt_count = 0;
1336 
1337 		residency_C0_down = vlv_c0_residency(dev_priv,
1338 						     &dev_priv->rps.down_ei);
1339 	} else {
1340 		residency_C0_up = vlv_c0_residency(dev_priv,
1341 						   &dev_priv->rps.up_ei);
1342 	}
1343 
1344 	new_delay = dev_priv->rps.cur_freq;
1345 
1346 	adj = dev_priv->rps.last_adj;
1347 	/* C0 residency is greater than UP threshold. Increase Frequency */
1348 	if (residency_C0_up >= VLV_RP_UP_EI_THRESHOLD) {
1349 		if (adj > 0)
1350 			adj *= 2;
1351 		else
1352 			adj = 1;
1353 
1354 		if (dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit)
1355 			new_delay = dev_priv->rps.cur_freq + adj;
1356 
1357 		/*
1358 		 * For better performance, jump directly
1359 		 * to RPe if we're below it.
1360 		 */
1361 		if (new_delay < dev_priv->rps.efficient_freq)
1362 			new_delay = dev_priv->rps.efficient_freq;
1363 
1364 	} else if (!dev_priv->rps.ei_interrupt_count &&
1365 			(residency_C0_down < VLV_RP_DOWN_EI_THRESHOLD)) {
1366 		if (adj < 0)
1367 			adj *= 2;
1368 		else
1369 			adj = -1;
1370 		/*
1371 		 * This means, C0 residency is less than down threshold over
1372 		 * a period of VLV_INT_COUNT_FOR_DOWN_EI. So, reduce the freq
1373 		 */
1374 		if (dev_priv->rps.cur_freq > dev_priv->rps.min_freq_softlimit)
1375 			new_delay = dev_priv->rps.cur_freq + adj;
1376 	}
1377 
1378 	return new_delay;
1379 }
1380 
1381 static void gen6_pm_rps_work(struct work_struct *work)
1382 {
1383 	struct drm_i915_private *dev_priv =
1384 		container_of(work, struct drm_i915_private, rps.work);
1385 	u32 pm_iir;
1386 	int new_delay, adj;
1387 
1388 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1389 	pm_iir = dev_priv->rps.pm_iir;
1390 	dev_priv->rps.pm_iir = 0;
1391 	if (INTEL_INFO(dev_priv->dev)->gen >= 8)
1392 		gen8_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1393 	else {
1394 		/* Make sure not to corrupt PMIMR state used by ringbuffer */
1395 		gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1396 	}
1397 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1398 
1399 	/* Make sure we didn't queue anything we're not going to process. */
1400 	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1401 
1402 	if ((pm_iir & dev_priv->pm_rps_events) == 0)
1403 		return;
1404 
1405 	mutex_lock(&dev_priv->rps.hw_lock);
1406 
1407 	adj = dev_priv->rps.last_adj;
1408 	if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1409 		if (adj > 0)
1410 			adj *= 2;
1411 		else {
1412 			/* CHV needs even encode values */
1413 			adj = IS_CHERRYVIEW(dev_priv->dev) ? 2 : 1;
1414 		}
1415 		new_delay = dev_priv->rps.cur_freq + adj;
1416 
1417 		/*
1418 		 * For better performance, jump directly
1419 		 * to RPe if we're below it.
1420 		 */
1421 		if (new_delay < dev_priv->rps.efficient_freq)
1422 			new_delay = dev_priv->rps.efficient_freq;
1423 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1424 		if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1425 			new_delay = dev_priv->rps.efficient_freq;
1426 		else
1427 			new_delay = dev_priv->rps.min_freq_softlimit;
1428 		adj = 0;
1429 	} else if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1430 		new_delay = vlv_calc_delay_from_C0_counters(dev_priv);
1431 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1432 		if (adj < 0)
1433 			adj *= 2;
1434 		else {
1435 			/* CHV needs even encode values */
1436 			adj = IS_CHERRYVIEW(dev_priv->dev) ? -2 : -1;
1437 		}
1438 		new_delay = dev_priv->rps.cur_freq + adj;
1439 	} else { /* unknown event */
1440 		new_delay = dev_priv->rps.cur_freq;
1441 	}
1442 
1443 	/* sysfs frequency interfaces may have snuck in while servicing the
1444 	 * interrupt
1445 	 */
1446 	new_delay = clamp_t(int, new_delay,
1447 			    dev_priv->rps.min_freq_softlimit,
1448 			    dev_priv->rps.max_freq_softlimit);
1449 
1450 	dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_freq;
1451 
1452 	if (IS_VALLEYVIEW(dev_priv->dev))
1453 		valleyview_set_rps(dev_priv->dev, new_delay);
1454 	else
1455 		gen6_set_rps(dev_priv->dev, new_delay);
1456 
1457 	mutex_unlock(&dev_priv->rps.hw_lock);
1458 }
1459 
1460 
1461 /**
1462  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1463  * occurred.
1464  * @work: workqueue struct
1465  *
1466  * Doesn't actually do anything except notify userspace. As a consequence of
1467  * this event, userspace should try to remap the bad rows since statistically
1468  * it is likely the same row is more likely to go bad again.
1469  */
1470 static void ivybridge_parity_work(struct work_struct *work)
1471 {
1472 	struct drm_i915_private *dev_priv =
1473 		container_of(work, struct drm_i915_private, l3_parity.error_work);
1474 	u32 error_status, row, bank, subbank;
1475 	char *parity_event[6];
1476 	uint32_t misccpctl;
1477 	uint8_t slice = 0;
1478 
1479 	/* We must turn off DOP level clock gating to access the L3 registers.
1480 	 * In order to prevent a get/put style interface, acquire struct mutex
1481 	 * any time we access those registers.
1482 	 */
1483 	mutex_lock(&dev_priv->dev->struct_mutex);
1484 
1485 	/* If we've screwed up tracking, just let the interrupt fire again */
1486 	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1487 		goto out;
1488 
1489 	misccpctl = I915_READ(GEN7_MISCCPCTL);
1490 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1491 	POSTING_READ(GEN7_MISCCPCTL);
1492 
1493 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1494 		u32 reg;
1495 
1496 		slice--;
1497 		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1498 			break;
1499 
1500 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1501 
1502 		reg = GEN7_L3CDERRST1 + (slice * 0x200);
1503 
1504 		error_status = I915_READ(reg);
1505 		row = GEN7_PARITY_ERROR_ROW(error_status);
1506 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1507 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1508 
1509 		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1510 		POSTING_READ(reg);
1511 
1512 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1513 		parity_event[1] = drm_asprintf(GFP_KERNEL, "ROW=%d", row);
1514 		parity_event[2] = drm_asprintf(GFP_KERNEL, "BANK=%d", bank);
1515 		parity_event[3] = drm_asprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1516 		parity_event[4] = drm_asprintf(GFP_KERNEL, "SLICE=%d", slice);
1517 		parity_event[5] = NULL;
1518 
1519 #if 0
1520 		kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1521 				   KOBJ_CHANGE, parity_event);
1522 #endif
1523 
1524 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1525 			  slice, row, bank, subbank);
1526 
1527 		kfree(parity_event[4]);
1528 		kfree(parity_event[3]);
1529 		kfree(parity_event[2]);
1530 		kfree(parity_event[1]);
1531 	}
1532 
1533 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1534 
1535 out:
1536 	WARN_ON(dev_priv->l3_parity.which_slice);
1537 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1538 	gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1539 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1540 
1541 	mutex_unlock(&dev_priv->dev->struct_mutex);
1542 }
1543 
1544 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1545 {
1546 	struct drm_i915_private *dev_priv = dev->dev_private;
1547 
1548 	if (!HAS_L3_DPF(dev))
1549 		return;
1550 
1551 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1552 	gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1553 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1554 
1555 	iir &= GT_PARITY_ERROR(dev);
1556 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1557 		dev_priv->l3_parity.which_slice |= 1 << 1;
1558 
1559 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1560 		dev_priv->l3_parity.which_slice |= 1 << 0;
1561 
1562 	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1563 }
1564 
1565 static void ilk_gt_irq_handler(struct drm_device *dev,
1566 			       struct drm_i915_private *dev_priv,
1567 			       u32 gt_iir)
1568 {
1569 	if (gt_iir &
1570 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1571 		notify_ring(dev, &dev_priv->ring[RCS]);
1572 	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1573 		notify_ring(dev, &dev_priv->ring[VCS]);
1574 }
1575 
1576 static void snb_gt_irq_handler(struct drm_device *dev,
1577 			       struct drm_i915_private *dev_priv,
1578 			       u32 gt_iir)
1579 {
1580 
1581 	if (gt_iir &
1582 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1583 		notify_ring(dev, &dev_priv->ring[RCS]);
1584 	if (gt_iir & GT_BSD_USER_INTERRUPT)
1585 		notify_ring(dev, &dev_priv->ring[VCS]);
1586 	if (gt_iir & GT_BLT_USER_INTERRUPT)
1587 		notify_ring(dev, &dev_priv->ring[BCS]);
1588 
1589 	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1590 		      GT_BSD_CS_ERROR_INTERRUPT |
1591 		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
1592 		i915_handle_error(dev, false, "GT error interrupt 0x%08x",
1593 				  gt_iir);
1594 	}
1595 
1596 	if (gt_iir & GT_PARITY_ERROR(dev))
1597 		ivybridge_parity_error_irq_handler(dev, gt_iir);
1598 }
1599 
1600 static void gen8_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1601 {
1602 	if ((pm_iir & dev_priv->pm_rps_events) == 0)
1603 		return;
1604 
1605 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1606 	dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1607 	gen8_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1608 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1609 
1610 	queue_work(dev_priv->wq, &dev_priv->rps.work);
1611 }
1612 
1613 static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1614 				       struct drm_i915_private *dev_priv,
1615 				       u32 master_ctl)
1616 {
1617 	u32 rcs, bcs, vcs;
1618 	uint32_t tmp = 0;
1619 
1620 	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1621 		tmp = I915_READ(GEN8_GT_IIR(0));
1622 		if (tmp) {
1623 			I915_WRITE(GEN8_GT_IIR(0), tmp);
1624 			rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1625 			bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1626 			if (rcs & GT_RENDER_USER_INTERRUPT)
1627 				notify_ring(dev, &dev_priv->ring[RCS]);
1628 			if (bcs & GT_RENDER_USER_INTERRUPT)
1629 				notify_ring(dev, &dev_priv->ring[BCS]);
1630 		} else
1631 			DRM_ERROR("The master control interrupt lied (GT0)!\n");
1632 	}
1633 
1634 	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1635 		tmp = I915_READ(GEN8_GT_IIR(1));
1636 		if (tmp) {
1637 			I915_WRITE(GEN8_GT_IIR(1), tmp);
1638 			vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1639 			if (vcs & GT_RENDER_USER_INTERRUPT)
1640 				notify_ring(dev, &dev_priv->ring[VCS]);
1641 			vcs = tmp >> GEN8_VCS2_IRQ_SHIFT;
1642 			if (vcs & GT_RENDER_USER_INTERRUPT)
1643 				notify_ring(dev, &dev_priv->ring[VCS2]);
1644 		} else
1645 			DRM_ERROR("The master control interrupt lied (GT1)!\n");
1646 	}
1647 
1648 	if (master_ctl & GEN8_GT_PM_IRQ) {
1649 		tmp = I915_READ(GEN8_GT_IIR(2));
1650 		if (tmp & dev_priv->pm_rps_events) {
1651 			I915_WRITE(GEN8_GT_IIR(2),
1652 				   tmp & dev_priv->pm_rps_events);
1653 			gen8_rps_irq_handler(dev_priv, tmp);
1654 		} else
1655 			DRM_ERROR("The master control interrupt lied (PM)!\n");
1656 	}
1657 
1658 	if (master_ctl & GEN8_GT_VECS_IRQ) {
1659 		tmp = I915_READ(GEN8_GT_IIR(3));
1660 		if (tmp) {
1661 			I915_WRITE(GEN8_GT_IIR(3), tmp);
1662 			vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1663 			if (vcs & GT_RENDER_USER_INTERRUPT)
1664 				notify_ring(dev, &dev_priv->ring[VECS]);
1665 		} else
1666 			DRM_ERROR("The master control interrupt lied (GT3)!\n");
1667 	}
1668 
1669 }
1670 
1671 #define HPD_STORM_DETECT_PERIOD 1000
1672 #define HPD_STORM_THRESHOLD 5
1673 
1674 static int ilk_port_to_hotplug_shift(enum port port)
1675 {
1676 	switch (port) {
1677 	case PORT_A:
1678 	case PORT_E:
1679 	default:
1680 		return -1;
1681 	case PORT_B:
1682 		return 0;
1683 	case PORT_C:
1684 		return 8;
1685 	case PORT_D:
1686 		return 16;
1687 	}
1688 }
1689 
1690 static int g4x_port_to_hotplug_shift(enum port port)
1691 {
1692 	switch (port) {
1693 	case PORT_A:
1694 	case PORT_E:
1695 	default:
1696 		return -1;
1697 	case PORT_B:
1698 		return 17;
1699 	case PORT_C:
1700 		return 19;
1701 	case PORT_D:
1702 		return 21;
1703 	}
1704 }
1705 
1706 static inline enum port get_port_from_pin(enum hpd_pin pin)
1707 {
1708 	switch (pin) {
1709 	case HPD_PORT_B:
1710 		return PORT_B;
1711 	case HPD_PORT_C:
1712 		return PORT_C;
1713 	case HPD_PORT_D:
1714 		return PORT_D;
1715 	default:
1716 		return PORT_A; /* no hpd */
1717 	}
1718 }
1719 
1720 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1721 					 u32 hotplug_trigger,
1722 					 u32 dig_hotplug_reg,
1723 					 const u32 *hpd)
1724 {
1725 	struct drm_i915_private *dev_priv = dev->dev_private;
1726 	int i;
1727 	enum port port;
1728 	bool storm_detected = false;
1729 	bool queue_dig = false, queue_hp = false;
1730 	u32 dig_shift;
1731 	u32 dig_port_mask = 0;
1732 
1733 	if (!hotplug_trigger)
1734 		return;
1735 
1736 	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x\n",
1737 			 hotplug_trigger, dig_hotplug_reg);
1738 
1739 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1740 	for (i = 1; i < HPD_NUM_PINS; i++) {
1741 		if (!(hpd[i] & hotplug_trigger))
1742 			continue;
1743 
1744 		port = get_port_from_pin(i);
1745 		if (port && dev_priv->hpd_irq_port[port]) {
1746 			bool long_hpd;
1747 
1748 			if (IS_G4X(dev)) {
1749 				dig_shift = g4x_port_to_hotplug_shift(port);
1750 				long_hpd = (hotplug_trigger >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1751 			} else {
1752 				dig_shift = ilk_port_to_hotplug_shift(port);
1753 				long_hpd = (dig_hotplug_reg >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1754 			}
1755 
1756 			DRM_DEBUG_DRIVER("digital hpd port %d %d\n", port, long_hpd);
1757 			/* for long HPD pulses we want to have the digital queue happen,
1758 			   but we still want HPD storm detection to function. */
1759 			if (long_hpd) {
1760 				dev_priv->long_hpd_port_mask |= (1 << port);
1761 				dig_port_mask |= hpd[i];
1762 			} else {
1763 				/* for short HPD just trigger the digital queue */
1764 				dev_priv->short_hpd_port_mask |= (1 << port);
1765 				hotplug_trigger &= ~hpd[i];
1766 			}
1767 			queue_dig = true;
1768 		}
1769 	}
1770 
1771 	for (i = 1; i < HPD_NUM_PINS; i++) {
1772 		if (hpd[i] & hotplug_trigger &&
1773 		    dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED) {
1774 			/*
1775 			 * On GMCH platforms the interrupt mask bits only
1776 			 * prevent irq generation, not the setting of the
1777 			 * hotplug bits itself. So only WARN about unexpected
1778 			 * interrupts on saner platforms.
1779 			 */
1780 			WARN_ONCE(INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev),
1781 				  "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1782 				  hotplug_trigger, i, hpd[i]);
1783 
1784 			continue;
1785 		}
1786 
1787 		if (!(hpd[i] & hotplug_trigger) ||
1788 		    dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1789 			continue;
1790 
1791 		if (!(dig_port_mask & hpd[i])) {
1792 			dev_priv->hpd_event_bits |= (1 << i);
1793 			queue_hp = true;
1794 		}
1795 
1796 		if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1797 				   dev_priv->hpd_stats[i].hpd_last_jiffies
1798 				   + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1799 			dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1800 			dev_priv->hpd_stats[i].hpd_cnt = 0;
1801 			DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1802 		} else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1803 			dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1804 			dev_priv->hpd_event_bits &= ~(1 << i);
1805 			DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1806 			storm_detected = true;
1807 		} else {
1808 			dev_priv->hpd_stats[i].hpd_cnt++;
1809 			DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1810 				      dev_priv->hpd_stats[i].hpd_cnt);
1811 		}
1812 	}
1813 
1814 	if (storm_detected)
1815 		dev_priv->display.hpd_irq_setup(dev);
1816 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1817 
1818 	/*
1819 	 * Our hotplug handler can grab modeset locks (by calling down into the
1820 	 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1821 	 * queue for otherwise the flush_work in the pageflip code will
1822 	 * deadlock.
1823 	 */
1824 	if (queue_dig)
1825 		schedule_work(&dev_priv->dig_port_work);
1826 	if (queue_hp)
1827 		schedule_work(&dev_priv->hotplug_work);
1828 }
1829 
1830 static void gmbus_irq_handler(struct drm_device *dev)
1831 {
1832 	struct drm_i915_private *dev_priv = dev->dev_private;
1833 
1834 	wake_up_all(&dev_priv->gmbus_wait_queue);
1835 }
1836 
1837 static void dp_aux_irq_handler(struct drm_device *dev)
1838 {
1839 	struct drm_i915_private *dev_priv = dev->dev_private;
1840 
1841 	wake_up_all(&dev_priv->gmbus_wait_queue);
1842 }
1843 
1844 #if defined(CONFIG_DEBUG_FS)
1845 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum i915_pipe pipe,
1846 					 uint32_t crc0, uint32_t crc1,
1847 					 uint32_t crc2, uint32_t crc3,
1848 					 uint32_t crc4)
1849 {
1850 	struct drm_i915_private *dev_priv = dev->dev_private;
1851 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1852 	struct intel_pipe_crc_entry *entry;
1853 	int head, tail;
1854 
1855 	spin_lock(&pipe_crc->lock);
1856 
1857 	if (!pipe_crc->entries) {
1858 		spin_unlock(&pipe_crc->lock);
1859 		DRM_ERROR("spurious interrupt\n");
1860 		return;
1861 	}
1862 
1863 	head = pipe_crc->head;
1864 	tail = pipe_crc->tail;
1865 
1866 	if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1867 		spin_unlock(&pipe_crc->lock);
1868 		DRM_ERROR("CRC buffer overflowing\n");
1869 		return;
1870 	}
1871 
1872 	entry = &pipe_crc->entries[head];
1873 
1874 	entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1875 	entry->crc[0] = crc0;
1876 	entry->crc[1] = crc1;
1877 	entry->crc[2] = crc2;
1878 	entry->crc[3] = crc3;
1879 	entry->crc[4] = crc4;
1880 
1881 	head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1882 	pipe_crc->head = head;
1883 
1884 	spin_unlock(&pipe_crc->lock);
1885 
1886 	wake_up_interruptible(&pipe_crc->wq);
1887 }
1888 #else
1889 static inline void
1890 display_pipe_crc_irq_handler(struct drm_device *dev, enum i915_pipe pipe,
1891 			     uint32_t crc0, uint32_t crc1,
1892 			     uint32_t crc2, uint32_t crc3,
1893 			     uint32_t crc4) {}
1894 #endif
1895 
1896 
1897 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum i915_pipe pipe)
1898 {
1899 	struct drm_i915_private *dev_priv = dev->dev_private;
1900 
1901 	display_pipe_crc_irq_handler(dev, pipe,
1902 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1903 				     0, 0, 0, 0);
1904 }
1905 
1906 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum i915_pipe pipe)
1907 {
1908 	struct drm_i915_private *dev_priv = dev->dev_private;
1909 
1910 	display_pipe_crc_irq_handler(dev, pipe,
1911 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1912 				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1913 				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1914 				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1915 				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1916 }
1917 
1918 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum i915_pipe pipe)
1919 {
1920 	struct drm_i915_private *dev_priv = dev->dev_private;
1921 	uint32_t res1, res2;
1922 
1923 	if (INTEL_INFO(dev)->gen >= 3)
1924 		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1925 	else
1926 		res1 = 0;
1927 
1928 	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1929 		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1930 	else
1931 		res2 = 0;
1932 
1933 	display_pipe_crc_irq_handler(dev, pipe,
1934 				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1935 				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1936 				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1937 				     res1, res2);
1938 }
1939 
1940 /* The RPS events need forcewake, so we add them to a work queue and mask their
1941  * IMR bits until the work is done. Other interrupts can be processed without
1942  * the work queue. */
1943 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1944 {
1945 	if (pm_iir & dev_priv->pm_rps_events) {
1946 		lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1947 		dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1948 		gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1949 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1950 
1951 		queue_work(dev_priv->wq, &dev_priv->rps.work);
1952 	}
1953 
1954 	if (HAS_VEBOX(dev_priv->dev)) {
1955 		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1956 			notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1957 
1958 		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
1959 			i915_handle_error(dev_priv->dev, false,
1960 					  "VEBOX CS error interrupt 0x%08x",
1961 					  pm_iir);
1962 		}
1963 	}
1964 }
1965 
1966 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum i915_pipe pipe)
1967 {
1968 	struct intel_crtc *crtc;
1969 
1970 	if (!drm_handle_vblank(dev, pipe))
1971 		return false;
1972 
1973 	crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
1974 	wake_up(&crtc->vbl_wait);
1975 
1976 	return true;
1977 }
1978 
1979 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1980 {
1981 	struct drm_i915_private *dev_priv = dev->dev_private;
1982 	u32 pipe_stats[I915_MAX_PIPES] = { };
1983 	int pipe;
1984 
1985 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1986 	for_each_pipe(pipe) {
1987 		int reg;
1988 		u32 mask, iir_bit = 0;
1989 
1990 		/*
1991 		 * PIPESTAT bits get signalled even when the interrupt is
1992 		 * disabled with the mask bits, and some of the status bits do
1993 		 * not generate interrupts at all (like the underrun bit). Hence
1994 		 * we need to be careful that we only handle what we want to
1995 		 * handle.
1996 		 */
1997 		mask = 0;
1998 		if (__cpu_fifo_underrun_reporting_enabled(dev, pipe))
1999 			mask |= PIPE_FIFO_UNDERRUN_STATUS;
2000 
2001 		switch (pipe) {
2002 		case PIPE_A:
2003 			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
2004 			break;
2005 		case PIPE_B:
2006 			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
2007 			break;
2008 		case PIPE_C:
2009 			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
2010 			break;
2011 		}
2012 		if (iir & iir_bit)
2013 			mask |= dev_priv->pipestat_irq_mask[pipe];
2014 
2015 		if (!mask)
2016 			continue;
2017 
2018 		reg = PIPESTAT(pipe);
2019 		mask |= PIPESTAT_INT_ENABLE_MASK;
2020 		pipe_stats[pipe] = I915_READ(reg) & mask;
2021 
2022 		/*
2023 		 * Clear the PIPE*STAT regs before the IIR
2024 		 */
2025 		if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
2026 					PIPESTAT_INT_STATUS_MASK))
2027 			I915_WRITE(reg, pipe_stats[pipe]);
2028 	}
2029 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2030 
2031 	for_each_pipe(pipe) {
2032 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
2033 			intel_pipe_handle_vblank(dev, pipe);
2034 
2035 		if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
2036 			intel_prepare_page_flip(dev, pipe);
2037 			intel_finish_page_flip(dev, pipe);
2038 		}
2039 
2040 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
2041 			i9xx_pipe_crc_irq_handler(dev, pipe);
2042 
2043 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
2044 		    intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
2045 			DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
2046 	}
2047 
2048 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
2049 		gmbus_irq_handler(dev);
2050 }
2051 
2052 static void i9xx_hpd_irq_handler(struct drm_device *dev)
2053 {
2054 	struct drm_i915_private *dev_priv = dev->dev_private;
2055 	u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
2056 
2057 	if (hotplug_status) {
2058 		I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2059 		/*
2060 		 * Make sure hotplug status is cleared before we clear IIR, or else we
2061 		 * may miss hotplug events.
2062 		 */
2063 		POSTING_READ(PORT_HOTPLUG_STAT);
2064 
2065 		if (IS_G4X(dev)) {
2066 			u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
2067 
2068 			intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_g4x);
2069 		} else {
2070 			u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
2071 
2072 			intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_i915);
2073 		}
2074 
2075 		if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) &&
2076 		    hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
2077 			dp_aux_irq_handler(dev);
2078 	}
2079 }
2080 
2081 static irqreturn_t valleyview_irq_handler(void *arg)
2082 {
2083 	struct drm_device *dev = arg;
2084 	struct drm_i915_private *dev_priv = dev->dev_private;
2085 	u32 iir, gt_iir, pm_iir;
2086 
2087 	while (true) {
2088 		/* Find, clear, then process each source of interrupt */
2089 
2090 		gt_iir = I915_READ(GTIIR);
2091 		if (gt_iir)
2092 			I915_WRITE(GTIIR, gt_iir);
2093 
2094 		pm_iir = I915_READ(GEN6_PMIIR);
2095 		if (pm_iir)
2096 			I915_WRITE(GEN6_PMIIR, pm_iir);
2097 
2098 		iir = I915_READ(VLV_IIR);
2099 		if (iir) {
2100 			/* Consume port before clearing IIR or we'll miss events */
2101 			if (iir & I915_DISPLAY_PORT_INTERRUPT)
2102 				i9xx_hpd_irq_handler(dev);
2103 			I915_WRITE(VLV_IIR, iir);
2104 		}
2105 
2106 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
2107 			goto out;
2108 
2109 		if (gt_iir)
2110 			snb_gt_irq_handler(dev, dev_priv, gt_iir);
2111 		if (pm_iir)
2112 			gen6_rps_irq_handler(dev_priv, pm_iir);
2113 		/* Call regardless, as some status bits might not be
2114 		 * signalled in iir */
2115 		valleyview_pipestat_irq_handler(dev, iir);
2116 	}
2117 
2118 out:
2119 	return;
2120 }
2121 
2122 static irqreturn_t cherryview_irq_handler(void *arg)
2123 {
2124 	struct drm_device *dev = arg;
2125 	struct drm_i915_private *dev_priv = dev->dev_private;
2126 	u32 master_ctl, iir;
2127 
2128 	for (;;) {
2129 		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
2130 		iir = I915_READ(VLV_IIR);
2131 
2132 		if (master_ctl == 0 && iir == 0)
2133 			break;
2134 
2135 
2136 		I915_WRITE(GEN8_MASTER_IRQ, 0);
2137 
2138 		/* Find, clear, then process each source of interrupt */
2139 
2140 		if (iir) {
2141 			/* Consume port before clearing IIR or we'll miss events */
2142 			if (iir & I915_DISPLAY_PORT_INTERRUPT)
2143 				i9xx_hpd_irq_handler(dev);
2144 			I915_WRITE(VLV_IIR, iir);
2145 		}
2146 
2147 		gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2148 
2149 		/* Call regardless, as some status bits might not be
2150 		 * signalled in iir */
2151 		valleyview_pipestat_irq_handler(dev, iir);
2152 
2153 		I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
2154 		POSTING_READ(GEN8_MASTER_IRQ);
2155 	}
2156 
2157 }
2158 
2159 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
2160 {
2161 	struct drm_i915_private *dev_priv = dev->dev_private;
2162 	int pipe;
2163 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2164 	u32 dig_hotplug_reg;
2165 
2166 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2167 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2168 
2169 	intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_ibx);
2170 
2171 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
2172 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2173 			       SDE_AUDIO_POWER_SHIFT);
2174 		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2175 				 port_name(port));
2176 	}
2177 
2178 	if (pch_iir & SDE_AUX_MASK)
2179 		dp_aux_irq_handler(dev);
2180 
2181 	if (pch_iir & SDE_GMBUS)
2182 		gmbus_irq_handler(dev);
2183 
2184 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
2185 		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2186 
2187 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
2188 		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2189 
2190 	if (pch_iir & SDE_POISON)
2191 		DRM_ERROR("PCH poison interrupt\n");
2192 
2193 	if (pch_iir & SDE_FDI_MASK)
2194 		for_each_pipe(pipe)
2195 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2196 					 pipe_name(pipe),
2197 					 I915_READ(FDI_RX_IIR(pipe)));
2198 
2199 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2200 		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2201 
2202 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2203 		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2204 
2205 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2206 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
2207 							  false))
2208 			DRM_ERROR("PCH transcoder A FIFO underrun\n");
2209 
2210 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2211 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
2212 							  false))
2213 			DRM_ERROR("PCH transcoder B FIFO underrun\n");
2214 }
2215 
2216 static void ivb_err_int_handler(struct drm_device *dev)
2217 {
2218 	struct drm_i915_private *dev_priv = dev->dev_private;
2219 	u32 err_int = I915_READ(GEN7_ERR_INT);
2220 	enum i915_pipe pipe;
2221 
2222 	if (err_int & ERR_INT_POISON)
2223 		DRM_ERROR("Poison interrupt\n");
2224 
2225 	for_each_pipe(pipe) {
2226 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) {
2227 			if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
2228 								  false))
2229 				DRM_ERROR("Pipe %c FIFO underrun\n",
2230 					  pipe_name(pipe));
2231 		}
2232 
2233 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2234 			if (IS_IVYBRIDGE(dev))
2235 				ivb_pipe_crc_irq_handler(dev, pipe);
2236 			else
2237 				hsw_pipe_crc_irq_handler(dev, pipe);
2238 		}
2239 	}
2240 
2241 	I915_WRITE(GEN7_ERR_INT, err_int);
2242 }
2243 
2244 static void cpt_serr_int_handler(struct drm_device *dev)
2245 {
2246 	struct drm_i915_private *dev_priv = dev->dev_private;
2247 	u32 serr_int = I915_READ(SERR_INT);
2248 
2249 	if (serr_int & SERR_INT_POISON)
2250 		DRM_ERROR("PCH poison interrupt\n");
2251 
2252 	if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2253 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
2254 							  false))
2255 			DRM_ERROR("PCH transcoder A FIFO underrun\n");
2256 
2257 	if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2258 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
2259 							  false))
2260 			DRM_ERROR("PCH transcoder B FIFO underrun\n");
2261 
2262 	if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2263 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
2264 							  false))
2265 			DRM_ERROR("PCH transcoder C FIFO underrun\n");
2266 
2267 	I915_WRITE(SERR_INT, serr_int);
2268 }
2269 
2270 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
2271 {
2272 	struct drm_i915_private *dev_priv = dev->dev_private;
2273 	int pipe;
2274 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2275 	u32 dig_hotplug_reg;
2276 
2277 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2278 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2279 
2280 	intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_cpt);
2281 
2282 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2283 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2284 			       SDE_AUDIO_POWER_SHIFT_CPT);
2285 		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2286 				 port_name(port));
2287 	}
2288 
2289 	if (pch_iir & SDE_AUX_MASK_CPT)
2290 		dp_aux_irq_handler(dev);
2291 
2292 	if (pch_iir & SDE_GMBUS_CPT)
2293 		gmbus_irq_handler(dev);
2294 
2295 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2296 		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2297 
2298 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2299 		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2300 
2301 	if (pch_iir & SDE_FDI_MASK_CPT)
2302 		for_each_pipe(pipe)
2303 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2304 					 pipe_name(pipe),
2305 					 I915_READ(FDI_RX_IIR(pipe)));
2306 
2307 	if (pch_iir & SDE_ERROR_CPT)
2308 		cpt_serr_int_handler(dev);
2309 }
2310 
2311 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2312 {
2313 	struct drm_i915_private *dev_priv = dev->dev_private;
2314 	enum i915_pipe pipe;
2315 
2316 	if (de_iir & DE_AUX_CHANNEL_A)
2317 		dp_aux_irq_handler(dev);
2318 
2319 	if (de_iir & DE_GSE)
2320 		intel_opregion_asle_intr(dev);
2321 
2322 	if (de_iir & DE_POISON)
2323 		DRM_ERROR("Poison interrupt\n");
2324 
2325 	for_each_pipe(pipe) {
2326 		if (de_iir & DE_PIPE_VBLANK(pipe))
2327 			intel_pipe_handle_vblank(dev, pipe);
2328 
2329 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2330 			if (intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
2331 				DRM_ERROR("Pipe %c FIFO underrun\n",
2332 					  pipe_name(pipe));
2333 
2334 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2335 			i9xx_pipe_crc_irq_handler(dev, pipe);
2336 
2337 		/* plane/pipes map 1:1 on ilk+ */
2338 		if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2339 			intel_prepare_page_flip(dev, pipe);
2340 			intel_finish_page_flip_plane(dev, pipe);
2341 		}
2342 	}
2343 
2344 	/* check event from PCH */
2345 	if (de_iir & DE_PCH_EVENT) {
2346 		u32 pch_iir = I915_READ(SDEIIR);
2347 
2348 		if (HAS_PCH_CPT(dev))
2349 			cpt_irq_handler(dev, pch_iir);
2350 		else
2351 			ibx_irq_handler(dev, pch_iir);
2352 
2353 		/* should clear PCH hotplug event before clear CPU irq */
2354 		I915_WRITE(SDEIIR, pch_iir);
2355 	}
2356 
2357 	if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2358 		ironlake_rps_change_irq_handler(dev);
2359 }
2360 
2361 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2362 {
2363 	struct drm_i915_private *dev_priv = dev->dev_private;
2364 	enum i915_pipe pipe;
2365 
2366 	if (de_iir & DE_ERR_INT_IVB)
2367 		ivb_err_int_handler(dev);
2368 
2369 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2370 		dp_aux_irq_handler(dev);
2371 
2372 	if (de_iir & DE_GSE_IVB)
2373 		intel_opregion_asle_intr(dev);
2374 
2375 	for_each_pipe(pipe) {
2376 		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2377 			intel_pipe_handle_vblank(dev, pipe);
2378 
2379 		/* plane/pipes map 1:1 on ilk+ */
2380 		if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2381 			intel_prepare_page_flip(dev, pipe);
2382 			intel_finish_page_flip_plane(dev, pipe);
2383 		}
2384 	}
2385 
2386 	/* check event from PCH */
2387 	if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2388 		u32 pch_iir = I915_READ(SDEIIR);
2389 
2390 		cpt_irq_handler(dev, pch_iir);
2391 
2392 		/* clear PCH hotplug event before clear CPU irq */
2393 		I915_WRITE(SDEIIR, pch_iir);
2394 	}
2395 }
2396 
2397 /*
2398  * To handle irqs with the minimum potential races with fresh interrupts, we:
2399  * 1 - Disable Master Interrupt Control.
2400  * 2 - Find the source(s) of the interrupt.
2401  * 3 - Clear the Interrupt Identity bits (IIR).
2402  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2403  * 5 - Re-enable Master Interrupt Control.
2404  */
2405 static irqreturn_t ironlake_irq_handler(void *arg)
2406 {
2407 	struct drm_device *dev = arg;
2408 	struct drm_i915_private *dev_priv = dev->dev_private;
2409 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2410 
2411 	/* We get interrupts on unclaimed registers, so check for this before we
2412 	 * do any I915_{READ,WRITE}. */
2413 	intel_uncore_check_errors(dev);
2414 
2415 	/* disable master interrupt before clearing iir  */
2416 	de_ier = I915_READ(DEIER);
2417 	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2418 	POSTING_READ(DEIER);
2419 
2420 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2421 	 * interrupts will will be stored on its back queue, and then we'll be
2422 	 * able to process them after we restore SDEIER (as soon as we restore
2423 	 * it, we'll get an interrupt if SDEIIR still has something to process
2424 	 * due to its back queue). */
2425 	if (!HAS_PCH_NOP(dev)) {
2426 		sde_ier = I915_READ(SDEIER);
2427 		I915_WRITE(SDEIER, 0);
2428 		POSTING_READ(SDEIER);
2429 	}
2430 
2431 	/* Find, clear, then process each source of interrupt */
2432 
2433 	gt_iir = I915_READ(GTIIR);
2434 	if (gt_iir) {
2435 		I915_WRITE(GTIIR, gt_iir);
2436 		if (INTEL_INFO(dev)->gen >= 6)
2437 			snb_gt_irq_handler(dev, dev_priv, gt_iir);
2438 		else
2439 			ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2440 	}
2441 
2442 	de_iir = I915_READ(DEIIR);
2443 	if (de_iir) {
2444 		I915_WRITE(DEIIR, de_iir);
2445 		if (INTEL_INFO(dev)->gen >= 7)
2446 			ivb_display_irq_handler(dev, de_iir);
2447 		else
2448 			ilk_display_irq_handler(dev, de_iir);
2449 	}
2450 
2451 	if (INTEL_INFO(dev)->gen >= 6) {
2452 		u32 pm_iir = I915_READ(GEN6_PMIIR);
2453 		if (pm_iir) {
2454 			I915_WRITE(GEN6_PMIIR, pm_iir);
2455 			gen6_rps_irq_handler(dev_priv, pm_iir);
2456 		}
2457 	}
2458 
2459 	I915_WRITE(DEIER, de_ier);
2460 	POSTING_READ(DEIER);
2461 	if (!HAS_PCH_NOP(dev)) {
2462 		I915_WRITE(SDEIER, sde_ier);
2463 		POSTING_READ(SDEIER);
2464 	}
2465 
2466 }
2467 
2468 static irqreturn_t gen8_irq_handler(void *arg)
2469 {
2470 	struct drm_device *dev = arg;
2471 	struct drm_i915_private *dev_priv = dev->dev_private;
2472 	u32 master_ctl;
2473 	uint32_t tmp = 0;
2474 	enum i915_pipe pipe;
2475 
2476 	master_ctl = I915_READ(GEN8_MASTER_IRQ);
2477 	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2478 	if (!master_ctl)
2479 		return;
2480 
2481 	I915_WRITE(GEN8_MASTER_IRQ, 0);
2482 	POSTING_READ(GEN8_MASTER_IRQ);
2483 
2484 	/* Find, clear, then process each source of interrupt */
2485 
2486 	gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2487 
2488 	if (master_ctl & GEN8_DE_MISC_IRQ) {
2489 		tmp = I915_READ(GEN8_DE_MISC_IIR);
2490 		if (tmp) {
2491 			I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2492 			if (tmp & GEN8_DE_MISC_GSE)
2493 				intel_opregion_asle_intr(dev);
2494 			else
2495 				DRM_ERROR("Unexpected DE Misc interrupt\n");
2496 		}
2497 		else
2498 			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2499 	}
2500 
2501 	if (master_ctl & GEN8_DE_PORT_IRQ) {
2502 		tmp = I915_READ(GEN8_DE_PORT_IIR);
2503 		if (tmp) {
2504 			I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2505 			if (tmp & GEN8_AUX_CHANNEL_A)
2506 				dp_aux_irq_handler(dev);
2507 			else
2508 				DRM_ERROR("Unexpected DE Port interrupt\n");
2509 		}
2510 		else
2511 			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2512 	}
2513 
2514 	for_each_pipe(pipe) {
2515 		uint32_t pipe_iir;
2516 
2517 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2518 			continue;
2519 
2520 		pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2521 		if (pipe_iir) {
2522 			I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2523 			if (pipe_iir & GEN8_PIPE_VBLANK)
2524 				intel_pipe_handle_vblank(dev, pipe);
2525 
2526 			if (pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE) {
2527 				intel_prepare_page_flip(dev, pipe);
2528 				intel_finish_page_flip_plane(dev, pipe);
2529 			}
2530 
2531 			if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2532 				hsw_pipe_crc_irq_handler(dev, pipe);
2533 
2534 			if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN) {
2535 				if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
2536 									  false))
2537 					DRM_ERROR("Pipe %c FIFO underrun\n",
2538 						  pipe_name(pipe));
2539 			}
2540 
2541 			if (pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS) {
2542 				DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2543 					  pipe_name(pipe),
2544 					  pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2545 			}
2546 		} else
2547 			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2548 	}
2549 
2550 	if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
2551 		/*
2552 		 * FIXME(BDW): Assume for now that the new interrupt handling
2553 		 * scheme also closed the SDE interrupt handling race we've seen
2554 		 * on older pch-split platforms. But this needs testing.
2555 		 */
2556 		u32 pch_iir = I915_READ(SDEIIR);
2557 		if (pch_iir) {
2558 			I915_WRITE(SDEIIR, pch_iir);
2559 			cpt_irq_handler(dev, pch_iir);
2560 		} else
2561 			DRM_ERROR("The master control interrupt lied (SDE)!\n");
2562 
2563 	}
2564 
2565 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2566 	POSTING_READ(GEN8_MASTER_IRQ);
2567 
2568 }
2569 
2570 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2571 			       bool reset_completed)
2572 {
2573 	struct intel_engine_cs *ring;
2574 	int i;
2575 
2576 	/*
2577 	 * Notify all waiters for GPU completion events that reset state has
2578 	 * been changed, and that they need to restart their wait after
2579 	 * checking for potential errors (and bail out to drop locks if there is
2580 	 * a gpu reset pending so that i915_error_work_func can acquire them).
2581 	 */
2582 
2583 	/* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2584 	for_each_ring(ring, dev_priv, i)
2585 		wake_up_all(&ring->irq_queue);
2586 
2587 	/* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2588 	wake_up_all(&dev_priv->pending_flip_queue);
2589 
2590 	/*
2591 	 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2592 	 * reset state is cleared.
2593 	 */
2594 	if (reset_completed)
2595 		wake_up_all(&dev_priv->gpu_error.reset_queue);
2596 }
2597 
2598 /**
2599  * i915_error_work_func - do process context error handling work
2600  * @work: work struct
2601  *
2602  * Fire an error uevent so userspace can see that a hang or error
2603  * was detected.
2604  */
2605 static void i915_error_work_func(struct work_struct *work)
2606 {
2607 	struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
2608 						    work);
2609 	struct drm_i915_private *dev_priv =
2610 		container_of(error, struct drm_i915_private, gpu_error);
2611 	struct drm_device *dev = dev_priv->dev;
2612 #if 0
2613 	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2614 	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2615 	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2616 #endif
2617 	int ret;
2618 
2619 	/* kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event); */
2620 
2621 	/*
2622 	 * Note that there's only one work item which does gpu resets, so we
2623 	 * need not worry about concurrent gpu resets potentially incrementing
2624 	 * error->reset_counter twice. We only need to take care of another
2625 	 * racing irq/hangcheck declaring the gpu dead for a second time. A
2626 	 * quick check for that is good enough: schedule_work ensures the
2627 	 * correct ordering between hang detection and this work item, and since
2628 	 * the reset in-progress bit is only ever set by code outside of this
2629 	 * work we don't need to worry about any other races.
2630 	 */
2631 	if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2632 		DRM_DEBUG_DRIVER("resetting chip\n");
2633 #if 0
2634 		kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2635 				   reset_event);
2636 #endif
2637 
2638 		/*
2639 		 * In most cases it's guaranteed that we get here with an RPM
2640 		 * reference held, for example because there is a pending GPU
2641 		 * request that won't finish until the reset is done. This
2642 		 * isn't the case at least when we get here by doing a
2643 		 * simulated reset via debugs, so get an RPM reference.
2644 		 */
2645 		intel_runtime_pm_get(dev_priv);
2646 		/*
2647 		 * All state reset _must_ be completed before we update the
2648 		 * reset counter, for otherwise waiters might miss the reset
2649 		 * pending state and not properly drop locks, resulting in
2650 		 * deadlocks with the reset work.
2651 		 */
2652 		ret = i915_reset(dev);
2653 
2654 		intel_display_handle_reset(dev);
2655 
2656 		intel_runtime_pm_put(dev_priv);
2657 
2658 		if (ret == 0) {
2659 			/*
2660 			 * After all the gem state is reset, increment the reset
2661 			 * counter and wake up everyone waiting for the reset to
2662 			 * complete.
2663 			 *
2664 			 * Since unlock operations are a one-sided barrier only,
2665 			 * we need to insert a barrier here to order any seqno
2666 			 * updates before
2667 			 * the counter increment.
2668 			 */
2669 			smp_mb__before_atomic();
2670 			atomic_inc(&dev_priv->gpu_error.reset_counter);
2671 
2672 #if 0
2673 			kobject_uevent_env(&dev->primary->kdev->kobj,
2674 					   KOBJ_CHANGE, reset_done_event);
2675 #endif
2676 		} else {
2677 			atomic_set_mask(I915_WEDGED, &error->reset_counter);
2678 		}
2679 
2680 		/*
2681 		 * Note: The wake_up also serves as a memory barrier so that
2682 		 * waiters see the update value of the reset counter atomic_t.
2683 		 */
2684 		i915_error_wake_up(dev_priv, true);
2685 	}
2686 }
2687 
2688 static void i915_report_and_clear_eir(struct drm_device *dev)
2689 {
2690 	struct drm_i915_private *dev_priv = dev->dev_private;
2691 	uint32_t instdone[I915_NUM_INSTDONE_REG];
2692 	u32 eir = I915_READ(EIR);
2693 	int pipe, i;
2694 
2695 	if (!eir)
2696 		return;
2697 
2698 	pr_err("render error detected, EIR: 0x%08x\n", eir);
2699 
2700 #if 0
2701 	i915_get_extra_instdone(dev, instdone);
2702 #endif
2703 
2704 	if (IS_G4X(dev)) {
2705 		if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2706 			u32 ipeir = I915_READ(IPEIR_I965);
2707 
2708 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2709 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2710 			for (i = 0; i < ARRAY_SIZE(instdone); i++)
2711 				pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2712 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2713 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2714 			I915_WRITE(IPEIR_I965, ipeir);
2715 			POSTING_READ(IPEIR_I965);
2716 		}
2717 		if (eir & GM45_ERROR_PAGE_TABLE) {
2718 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2719 			pr_err("page table error\n");
2720 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2721 			I915_WRITE(PGTBL_ER, pgtbl_err);
2722 			POSTING_READ(PGTBL_ER);
2723 		}
2724 	}
2725 
2726 	if (!IS_GEN2(dev)) {
2727 		if (eir & I915_ERROR_PAGE_TABLE) {
2728 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2729 			pr_err("page table error\n");
2730 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2731 			I915_WRITE(PGTBL_ER, pgtbl_err);
2732 			POSTING_READ(PGTBL_ER);
2733 		}
2734 	}
2735 
2736 	if (eir & I915_ERROR_MEMORY_REFRESH) {
2737 		pr_err("memory refresh error:\n");
2738 		for_each_pipe(pipe)
2739 			pr_err("pipe %c stat: 0x%08x\n",
2740 			       pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2741 		/* pipestat has already been acked */
2742 	}
2743 	if (eir & I915_ERROR_INSTRUCTION) {
2744 		pr_err("instruction error\n");
2745 		pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2746 		for (i = 0; i < ARRAY_SIZE(instdone); i++)
2747 			pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2748 		if (INTEL_INFO(dev)->gen < 4) {
2749 			u32 ipeir = I915_READ(IPEIR);
2750 
2751 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2752 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2753 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2754 			I915_WRITE(IPEIR, ipeir);
2755 			POSTING_READ(IPEIR);
2756 		} else {
2757 			u32 ipeir = I915_READ(IPEIR_I965);
2758 
2759 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2760 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2761 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2762 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2763 			I915_WRITE(IPEIR_I965, ipeir);
2764 			POSTING_READ(IPEIR_I965);
2765 		}
2766 	}
2767 
2768 	I915_WRITE(EIR, eir);
2769 	POSTING_READ(EIR);
2770 	eir = I915_READ(EIR);
2771 	if (eir) {
2772 		/*
2773 		 * some errors might have become stuck,
2774 		 * mask them.
2775 		 */
2776 		DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2777 		I915_WRITE(EMR, I915_READ(EMR) | eir);
2778 		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2779 	}
2780 }
2781 
2782 /**
2783  * i915_handle_error - handle an error interrupt
2784  * @dev: drm device
2785  *
2786  * Do some basic checking of regsiter state at error interrupt time and
2787  * dump it to the syslog.  Also call i915_capture_error_state() to make
2788  * sure we get a record and make it available in debugfs.  Fire a uevent
2789  * so userspace knows something bad happened (should trigger collection
2790  * of a ring dump etc.).
2791  */
2792 void i915_handle_error(struct drm_device *dev, bool wedged,
2793 		       const char *fmt, ...)
2794 {
2795 	struct drm_i915_private *dev_priv = dev->dev_private;
2796 #if 0
2797 	va_list args;
2798 	char error_msg[80];
2799 
2800 	va_start(args, fmt);
2801 	vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2802 	va_end(args);
2803 
2804 	i915_capture_error_state(dev, wedged, error_msg);
2805 #endif
2806 	i915_report_and_clear_eir(dev);
2807 
2808 	if (wedged) {
2809 		atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2810 				&dev_priv->gpu_error.reset_counter);
2811 
2812 		/*
2813 		 * Wakeup waiting processes so that the reset work function
2814 		 * i915_error_work_func doesn't deadlock trying to grab various
2815 		 * locks. By bumping the reset counter first, the woken
2816 		 * processes will see a reset in progress and back off,
2817 		 * releasing their locks and then wait for the reset completion.
2818 		 * We must do this for _all_ gpu waiters that might hold locks
2819 		 * that the reset work needs to acquire.
2820 		 *
2821 		 * Note: The wake_up serves as the required memory barrier to
2822 		 * ensure that the waiters see the updated value of the reset
2823 		 * counter atomic_t.
2824 		 */
2825 		i915_error_wake_up(dev_priv, false);
2826 	}
2827 
2828 	/*
2829 	 * Our reset work can grab modeset locks (since it needs to reset the
2830 	 * state of outstanding pagelips). Hence it must not be run on our own
2831 	 * dev-priv->wq work queue for otherwise the flush_work in the pageflip
2832 	 * code will deadlock.
2833 	 */
2834 	schedule_work(&dev_priv->gpu_error.work);
2835 }
2836 
2837 static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
2838 {
2839 	struct drm_i915_private *dev_priv = dev->dev_private;
2840 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2841 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2842 	struct drm_i915_gem_object *obj;
2843 	struct intel_unpin_work *work;
2844 	bool stall_detected;
2845 
2846 	/* Ignore early vblank irqs */
2847 	if (intel_crtc == NULL)
2848 		return;
2849 
2850 	lockmgr(&dev->event_lock, LK_EXCLUSIVE);
2851 	work = intel_crtc->unpin_work;
2852 
2853 	if (work == NULL ||
2854 	    atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
2855 	    !work->enable_stall_check) {
2856 		/* Either the pending flip IRQ arrived, or we're too early. Don't check */
2857 		lockmgr(&dev->event_lock, LK_RELEASE);
2858 		return;
2859 	}
2860 
2861 	/* Potential stall - if we see that the flip has happened, assume a missed interrupt */
2862 	obj = work->pending_flip_obj;
2863 	if (INTEL_INFO(dev)->gen >= 4) {
2864 		int dspsurf = DSPSURF(intel_crtc->plane);
2865 		stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
2866 					i915_gem_obj_ggtt_offset(obj);
2867 	} else {
2868 		int dspaddr = DSPADDR(intel_crtc->plane);
2869 		stall_detected = I915_READ(dspaddr) == (i915_gem_obj_ggtt_offset(obj) +
2870 							crtc->y * crtc->primary->fb->pitches[0] +
2871 							crtc->x * crtc->primary->fb->bits_per_pixel/8);
2872 	}
2873 
2874 	lockmgr(&dev->event_lock, LK_RELEASE);
2875 
2876 	if (stall_detected) {
2877 		DRM_DEBUG_DRIVER("Pageflip stall detected\n");
2878 		intel_prepare_page_flip(dev, intel_crtc->plane);
2879 	}
2880 }
2881 
2882 /* Called from drm generic code, passed 'crtc' which
2883  * we use as a pipe index
2884  */
2885 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2886 {
2887 	struct drm_i915_private *dev_priv = dev->dev_private;
2888 
2889 	if (!i915_pipe_enabled(dev, pipe))
2890 		return -EINVAL;
2891 
2892 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2893 	if (INTEL_INFO(dev)->gen >= 4)
2894 		i915_enable_pipestat(dev_priv, pipe,
2895 				     PIPE_START_VBLANK_INTERRUPT_STATUS);
2896 	else
2897 		i915_enable_pipestat(dev_priv, pipe,
2898 				     PIPE_VBLANK_INTERRUPT_STATUS);
2899 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2900 
2901 	return 0;
2902 }
2903 
2904 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2905 {
2906 	struct drm_i915_private *dev_priv = dev->dev_private;
2907 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2908 						     DE_PIPE_VBLANK(pipe);
2909 
2910 	if (!i915_pipe_enabled(dev, pipe))
2911 		return -EINVAL;
2912 
2913 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2914 	ironlake_enable_display_irq(dev_priv, bit);
2915 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2916 
2917 	return 0;
2918 }
2919 
2920 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2921 {
2922 	struct drm_i915_private *dev_priv = dev->dev_private;
2923 
2924 	if (!i915_pipe_enabled(dev, pipe))
2925 		return -EINVAL;
2926 
2927 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2928 	i915_enable_pipestat(dev_priv, pipe,
2929 			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2930 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2931 
2932 	return 0;
2933 }
2934 
2935 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2936 {
2937 	struct drm_i915_private *dev_priv = dev->dev_private;
2938 
2939 	if (!i915_pipe_enabled(dev, pipe))
2940 		return -EINVAL;
2941 
2942 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2943 	dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2944 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2945 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2946 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2947 	return 0;
2948 }
2949 
2950 /* Called from drm generic code, passed 'crtc' which
2951  * we use as a pipe index
2952  */
2953 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2954 {
2955 	struct drm_i915_private *dev_priv = dev->dev_private;
2956 
2957 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2958 	i915_disable_pipestat(dev_priv, pipe,
2959 			      PIPE_VBLANK_INTERRUPT_STATUS |
2960 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2961 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2962 }
2963 
2964 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2965 {
2966 	struct drm_i915_private *dev_priv = dev->dev_private;
2967 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2968 						     DE_PIPE_VBLANK(pipe);
2969 
2970 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2971 	ironlake_disable_display_irq(dev_priv, bit);
2972 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2973 }
2974 
2975 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2976 {
2977 	struct drm_i915_private *dev_priv = dev->dev_private;
2978 
2979 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2980 	i915_disable_pipestat(dev_priv, pipe,
2981 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2982 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2983 }
2984 
2985 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2986 {
2987 	struct drm_i915_private *dev_priv = dev->dev_private;
2988 
2989 	if (!i915_pipe_enabled(dev, pipe))
2990 		return;
2991 
2992 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2993 	dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2994 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2995 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2996 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2997 }
2998 
2999 static u32
3000 ring_last_seqno(struct intel_engine_cs *ring)
3001 {
3002 	return list_entry(ring->request_list.prev,
3003 			  struct drm_i915_gem_request, list)->seqno;
3004 }
3005 
3006 static bool
3007 ring_idle(struct intel_engine_cs *ring, u32 seqno)
3008 {
3009 	return (list_empty(&ring->request_list) ||
3010 		i915_seqno_passed(seqno, ring_last_seqno(ring)));
3011 }
3012 
3013 static bool
3014 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
3015 {
3016 	if (INTEL_INFO(dev)->gen >= 8) {
3017 		return (ipehr >> 23) == 0x1c;
3018 	} else {
3019 		ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
3020 		return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
3021 				 MI_SEMAPHORE_REGISTER);
3022 	}
3023 }
3024 
3025 static struct intel_engine_cs *
3026 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
3027 {
3028 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
3029 	struct intel_engine_cs *signaller;
3030 	int i;
3031 
3032 	if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
3033 		for_each_ring(signaller, dev_priv, i) {
3034 			if (ring == signaller)
3035 				continue;
3036 
3037 			if (offset == signaller->semaphore.signal_ggtt[ring->id])
3038 				return signaller;
3039 		}
3040 	} else {
3041 		u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
3042 
3043 		for_each_ring(signaller, dev_priv, i) {
3044 			if(ring == signaller)
3045 				continue;
3046 
3047 			if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
3048 				return signaller;
3049 		}
3050 	}
3051 
3052 	DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016lx\n",
3053 		  ring->id, ipehr, offset);
3054 
3055 	return NULL;
3056 }
3057 
3058 static struct intel_engine_cs *
3059 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
3060 {
3061 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
3062 	u32 cmd, ipehr, head;
3063 	u64 offset = 0;
3064 	int i, backwards;
3065 
3066 	ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
3067 	if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
3068 		return NULL;
3069 
3070 	/*
3071 	 * HEAD is likely pointing to the dword after the actual command,
3072 	 * so scan backwards until we find the MBOX. But limit it to just 3
3073 	 * or 4 dwords depending on the semaphore wait command size.
3074 	 * Note that we don't care about ACTHD here since that might
3075 	 * point at at batch, and semaphores are always emitted into the
3076 	 * ringbuffer itself.
3077 	 */
3078 	head = I915_READ_HEAD(ring) & HEAD_ADDR;
3079 	backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
3080 
3081 	for (i = backwards; i; --i) {
3082 		/*
3083 		 * Be paranoid and presume the hw has gone off into the wild -
3084 		 * our ring is smaller than what the hardware (and hence
3085 		 * HEAD_ADDR) allows. Also handles wrap-around.
3086 		 */
3087 		head &= ring->buffer->size - 1;
3088 
3089 		/* This here seems to blow up */
3090 		cmd = ioread32(ring->buffer->virtual_start + head);
3091 		if (cmd == ipehr)
3092 			break;
3093 
3094 		head -= 4;
3095 	}
3096 
3097 	if (!i)
3098 		return NULL;
3099 
3100 	*seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
3101 	if (INTEL_INFO(ring->dev)->gen >= 8) {
3102 		offset = ioread32(ring->buffer->virtual_start + head + 12);
3103 		offset <<= 32;
3104 		offset = ioread32(ring->buffer->virtual_start + head + 8);
3105 	}
3106 	return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
3107 }
3108 
3109 static int semaphore_passed(struct intel_engine_cs *ring)
3110 {
3111 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
3112 	struct intel_engine_cs *signaller;
3113 	u32 seqno;
3114 
3115 	ring->hangcheck.deadlock++;
3116 
3117 	signaller = semaphore_waits_for(ring, &seqno);
3118 	if (signaller == NULL)
3119 		return -1;
3120 
3121 	/* Prevent pathological recursion due to driver bugs */
3122 	if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
3123 		return -1;
3124 
3125 	if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
3126 		return 1;
3127 
3128 	/* cursory check for an unkickable deadlock */
3129 	if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
3130 	    semaphore_passed(signaller) < 0)
3131 		return -1;
3132 
3133 	return 0;
3134 }
3135 
3136 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
3137 {
3138 	struct intel_engine_cs *ring;
3139 	int i;
3140 
3141 	for_each_ring(ring, dev_priv, i)
3142 		ring->hangcheck.deadlock = 0;
3143 }
3144 
3145 static enum intel_ring_hangcheck_action
3146 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
3147 {
3148 	struct drm_device *dev = ring->dev;
3149 	struct drm_i915_private *dev_priv = dev->dev_private;
3150 	u32 tmp;
3151 
3152 	if (acthd != ring->hangcheck.acthd) {
3153 		if (acthd > ring->hangcheck.max_acthd) {
3154 			ring->hangcheck.max_acthd = acthd;
3155 			return HANGCHECK_ACTIVE;
3156 		}
3157 
3158 		return HANGCHECK_ACTIVE_LOOP;
3159 	}
3160 
3161 	if (IS_GEN2(dev))
3162 		return HANGCHECK_HUNG;
3163 
3164 	/* Is the chip hanging on a WAIT_FOR_EVENT?
3165 	 * If so we can simply poke the RB_WAIT bit
3166 	 * and break the hang. This should work on
3167 	 * all but the second generation chipsets.
3168 	 */
3169 	tmp = I915_READ_CTL(ring);
3170 	if (tmp & RING_WAIT) {
3171 		i915_handle_error(dev, false,
3172 				  "Kicking stuck wait on %s",
3173 				  ring->name);
3174 		I915_WRITE_CTL(ring, tmp);
3175 		return HANGCHECK_KICK;
3176 	}
3177 
3178 	if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
3179 		switch (semaphore_passed(ring)) {
3180 		default:
3181 			return HANGCHECK_HUNG;
3182 		case 1:
3183 			i915_handle_error(dev, false,
3184 					  "Kicking stuck semaphore on %s",
3185 					  ring->name);
3186 			I915_WRITE_CTL(ring, tmp);
3187 			return HANGCHECK_KICK;
3188 		case 0:
3189 			return HANGCHECK_WAIT;
3190 		}
3191 	}
3192 
3193 	return HANGCHECK_HUNG;
3194 }
3195 
3196 /**
3197  * This is called when the chip hasn't reported back with completed
3198  * batchbuffers in a long time. We keep track per ring seqno progress and
3199  * if there are no progress, hangcheck score for that ring is increased.
3200  * Further, acthd is inspected to see if the ring is stuck. On stuck case
3201  * we kick the ring. If we see no progress on three subsequent calls
3202  * we assume chip is wedged and try to fix it by resetting the chip.
3203  */
3204 static void i915_hangcheck_elapsed(unsigned long data)
3205 {
3206 	struct drm_device *dev = (struct drm_device *)data;
3207 	struct drm_i915_private *dev_priv = dev->dev_private;
3208 	struct intel_engine_cs *ring;
3209 	int i;
3210 	int busy_count = 0, rings_hung = 0;
3211 	bool stuck[I915_NUM_RINGS] = { 0 };
3212 #define BUSY 1
3213 #define KICK 5
3214 #define HUNG 20
3215 
3216 	if (!i915.enable_hangcheck)
3217 		return;
3218 
3219 	for_each_ring(ring, dev_priv, i) {
3220 		u64 acthd;
3221 		u32 seqno;
3222 		bool busy = true;
3223 
3224 		semaphore_clear_deadlocks(dev_priv);
3225 
3226 		seqno = ring->get_seqno(ring, false);
3227 		acthd = intel_ring_get_active_head(ring);
3228 
3229 		if (ring->hangcheck.seqno == seqno) {
3230 			if (ring_idle(ring, seqno)) {
3231 				ring->hangcheck.action = HANGCHECK_IDLE;
3232 
3233 				if (waitqueue_active(&ring->irq_queue)) {
3234 					/* Issue a wake-up to catch stuck h/w. */
3235 					if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
3236 						if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
3237 							DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3238 								  ring->name);
3239 						else
3240 							DRM_INFO("Fake missed irq on %s\n",
3241 								 ring->name);
3242 						wake_up_all(&ring->irq_queue);
3243 					}
3244 					/* Safeguard against driver failure */
3245 					ring->hangcheck.score += BUSY;
3246 				} else
3247 					busy = false;
3248 			} else {
3249 				/* We always increment the hangcheck score
3250 				 * if the ring is busy and still processing
3251 				 * the same request, so that no single request
3252 				 * can run indefinitely (such as a chain of
3253 				 * batches). The only time we do not increment
3254 				 * the hangcheck score on this ring, if this
3255 				 * ring is in a legitimate wait for another
3256 				 * ring. In that case the waiting ring is a
3257 				 * victim and we want to be sure we catch the
3258 				 * right culprit. Then every time we do kick
3259 				 * the ring, add a small increment to the
3260 				 * score so that we can catch a batch that is
3261 				 * being repeatedly kicked and so responsible
3262 				 * for stalling the machine.
3263 				 */
3264 				ring->hangcheck.action = ring_stuck(ring,
3265 								    acthd);
3266 
3267 				switch (ring->hangcheck.action) {
3268 				case HANGCHECK_IDLE:
3269 				case HANGCHECK_WAIT:
3270 				case HANGCHECK_ACTIVE:
3271 					break;
3272 				case HANGCHECK_ACTIVE_LOOP:
3273 					ring->hangcheck.score += BUSY;
3274 					break;
3275 				case HANGCHECK_KICK:
3276 					ring->hangcheck.score += KICK;
3277 					break;
3278 				case HANGCHECK_HUNG:
3279 					ring->hangcheck.score += HUNG;
3280 					stuck[i] = true;
3281 					break;
3282 				}
3283 			}
3284 		} else {
3285 			ring->hangcheck.action = HANGCHECK_ACTIVE;
3286 
3287 			/* Gradually reduce the count so that we catch DoS
3288 			 * attempts across multiple batches.
3289 			 */
3290 			if (ring->hangcheck.score > 0)
3291 				ring->hangcheck.score--;
3292 
3293 			ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
3294 		}
3295 
3296 		ring->hangcheck.seqno = seqno;
3297 		ring->hangcheck.acthd = acthd;
3298 		busy_count += busy;
3299 	}
3300 
3301 	for_each_ring(ring, dev_priv, i) {
3302 		if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3303 			DRM_INFO("%s on %s\n",
3304 				 stuck[i] ? "stuck" : "no progress",
3305 				 ring->name);
3306 			rings_hung++;
3307 		}
3308 	}
3309 
3310 	if (rings_hung)
3311 		return i915_handle_error(dev, true, "Ring hung");
3312 
3313 	if (busy_count)
3314 		/* Reset timer case chip hangs without another request
3315 		 * being added */
3316 		i915_queue_hangcheck(dev);
3317 }
3318 
3319 void i915_queue_hangcheck(struct drm_device *dev)
3320 {
3321 	struct drm_i915_private *dev_priv = dev->dev_private;
3322 	if (!i915.enable_hangcheck)
3323 		return;
3324 
3325 	mod_timer(&dev_priv->gpu_error.hangcheck_timer,
3326 		  round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
3327 }
3328 
3329 static void ibx_irq_reset(struct drm_device *dev)
3330 {
3331 	struct drm_i915_private *dev_priv = dev->dev_private;
3332 
3333 	if (HAS_PCH_NOP(dev))
3334 		return;
3335 
3336 	GEN5_IRQ_RESET(SDE);
3337 
3338 	if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3339 		I915_WRITE(SERR_INT, 0xffffffff);
3340 }
3341 
3342 /*
3343  * SDEIER is also touched by the interrupt handler to work around missed PCH
3344  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3345  * instead we unconditionally enable all PCH interrupt sources here, but then
3346  * only unmask them as needed with SDEIMR.
3347  *
3348  * This function needs to be called before interrupts are enabled.
3349  */
3350 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3351 {
3352 	struct drm_i915_private *dev_priv = dev->dev_private;
3353 
3354 	if (HAS_PCH_NOP(dev))
3355 		return;
3356 
3357 	WARN_ON(I915_READ(SDEIER) != 0);
3358 	I915_WRITE(SDEIER, 0xffffffff);
3359 	POSTING_READ(SDEIER);
3360 }
3361 
3362 static void gen5_gt_irq_reset(struct drm_device *dev)
3363 {
3364 	struct drm_i915_private *dev_priv = dev->dev_private;
3365 
3366 	GEN5_IRQ_RESET(GT);
3367 	if (INTEL_INFO(dev)->gen >= 6)
3368 		GEN5_IRQ_RESET(GEN6_PM);
3369 }
3370 
3371 /* drm_dma.h hooks
3372 */
3373 static void ironlake_irq_reset(struct drm_device *dev)
3374 {
3375 	struct drm_i915_private *dev_priv = dev->dev_private;
3376 
3377 	I915_WRITE(HWSTAM, 0xffffffff);
3378 
3379 	GEN5_IRQ_RESET(DE);
3380 	if (IS_GEN7(dev))
3381 		I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3382 
3383 	gen5_gt_irq_reset(dev);
3384 
3385 	ibx_irq_reset(dev);
3386 }
3387 
3388 static void valleyview_irq_preinstall(struct drm_device *dev)
3389 {
3390 	struct drm_i915_private *dev_priv = dev->dev_private;
3391 	int pipe;
3392 
3393 	/* VLV magic */
3394 	I915_WRITE(VLV_IMR, 0);
3395 	I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3396 	I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3397 	I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3398 
3399 	/* and GT */
3400 	I915_WRITE(GTIIR, I915_READ(GTIIR));
3401 	I915_WRITE(GTIIR, I915_READ(GTIIR));
3402 
3403 	gen5_gt_irq_reset(dev);
3404 
3405 	I915_WRITE(DPINVGTT, 0xff);
3406 
3407 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3408 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3409 	for_each_pipe(pipe)
3410 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3411 	I915_WRITE(VLV_IIR, 0xffffffff);
3412 	I915_WRITE(VLV_IMR, 0xffffffff);
3413 	I915_WRITE(VLV_IER, 0x0);
3414 	POSTING_READ(VLV_IER);
3415 }
3416 
3417 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3418 {
3419 	GEN8_IRQ_RESET_NDX(GT, 0);
3420 	GEN8_IRQ_RESET_NDX(GT, 1);
3421 	GEN8_IRQ_RESET_NDX(GT, 2);
3422 	GEN8_IRQ_RESET_NDX(GT, 3);
3423 }
3424 
3425 static void gen8_irq_reset(struct drm_device *dev)
3426 {
3427 	struct drm_i915_private *dev_priv = dev->dev_private;
3428 	int pipe;
3429 
3430 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3431 	POSTING_READ(GEN8_MASTER_IRQ);
3432 
3433 	gen8_gt_irq_reset(dev_priv);
3434 
3435 	for_each_pipe(pipe)
3436 		if (intel_display_power_enabled(dev_priv,
3437 						POWER_DOMAIN_PIPE(pipe)))
3438 			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3439 
3440 	GEN5_IRQ_RESET(GEN8_DE_PORT_);
3441 	GEN5_IRQ_RESET(GEN8_DE_MISC_);
3442 	GEN5_IRQ_RESET(GEN8_PCU_);
3443 
3444 	ibx_irq_reset(dev);
3445 }
3446 
3447 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv)
3448 {
3449 
3450 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3451 	GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B, dev_priv->de_irq_mask[PIPE_B],
3452 			  ~dev_priv->de_irq_mask[PIPE_B]);
3453 	GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C, dev_priv->de_irq_mask[PIPE_C],
3454 			  ~dev_priv->de_irq_mask[PIPE_C]);
3455 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3456 }
3457 
3458 static void cherryview_irq_preinstall(struct drm_device *dev)
3459 {
3460 	struct drm_i915_private *dev_priv = dev->dev_private;
3461 	int pipe;
3462 
3463 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3464 	POSTING_READ(GEN8_MASTER_IRQ);
3465 
3466 	gen8_gt_irq_reset(dev_priv);
3467 
3468 	GEN5_IRQ_RESET(GEN8_PCU_);
3469 
3470 	POSTING_READ(GEN8_PCU_IIR);
3471 
3472 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3473 
3474 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3475 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3476 
3477 	for_each_pipe(pipe)
3478 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3479 
3480 	I915_WRITE(VLV_IMR, 0xffffffff);
3481 	I915_WRITE(VLV_IER, 0x0);
3482 	I915_WRITE(VLV_IIR, 0xffffffff);
3483 	POSTING_READ(VLV_IIR);
3484 }
3485 
3486 static void ibx_hpd_irq_setup(struct drm_device *dev)
3487 {
3488 	struct drm_i915_private *dev_priv = dev->dev_private;
3489 	struct drm_mode_config *mode_config = &dev->mode_config;
3490 	struct intel_encoder *intel_encoder;
3491 	u32 hotplug_irqs, hotplug, enabled_irqs = 0;
3492 
3493 	if (HAS_PCH_IBX(dev)) {
3494 		hotplug_irqs = SDE_HOTPLUG_MASK;
3495 		list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
3496 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3497 				enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
3498 	} else {
3499 		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3500 		list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
3501 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3502 				enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
3503 	}
3504 
3505 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3506 
3507 	/*
3508 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3509 	 * duration to 2ms (which is the minimum in the Display Port spec)
3510 	 *
3511 	 * This register is the same on all known PCH chips.
3512 	 */
3513 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3514 	hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3515 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3516 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3517 	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3518 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3519 }
3520 
3521 static void ibx_irq_postinstall(struct drm_device *dev)
3522 {
3523 	struct drm_i915_private *dev_priv = dev->dev_private;
3524 	u32 mask;
3525 
3526 	if (HAS_PCH_NOP(dev))
3527 		return;
3528 
3529 	if (HAS_PCH_IBX(dev))
3530 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3531 	else
3532 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3533 
3534 	GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3535 	I915_WRITE(SDEIMR, ~mask);
3536 }
3537 
3538 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3539 {
3540 	struct drm_i915_private *dev_priv = dev->dev_private;
3541 	u32 pm_irqs, gt_irqs;
3542 
3543 	pm_irqs = gt_irqs = 0;
3544 
3545 	dev_priv->gt_irq_mask = ~0;
3546 	if (HAS_L3_DPF(dev)) {
3547 		/* L3 parity interrupt is always unmasked. */
3548 		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3549 		gt_irqs |= GT_PARITY_ERROR(dev);
3550 	}
3551 
3552 	gt_irqs |= GT_RENDER_USER_INTERRUPT;
3553 	if (IS_GEN5(dev)) {
3554 		gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3555 			   ILK_BSD_USER_INTERRUPT;
3556 	} else {
3557 		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3558 	}
3559 
3560 	GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3561 
3562 	if (INTEL_INFO(dev)->gen >= 6) {
3563 		pm_irqs |= dev_priv->pm_rps_events;
3564 
3565 		if (HAS_VEBOX(dev))
3566 			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3567 
3568 		dev_priv->pm_irq_mask = 0xffffffff;
3569 		GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3570 	}
3571 }
3572 
3573 static int ironlake_irq_postinstall(struct drm_device *dev)
3574 {
3575 	struct drm_i915_private *dev_priv = dev->dev_private;
3576 	u32 display_mask, extra_mask;
3577 
3578 	if (INTEL_INFO(dev)->gen >= 7) {
3579 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3580 				DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3581 				DE_PLANEB_FLIP_DONE_IVB |
3582 				DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3583 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3584 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3585 	} else {
3586 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3587 				DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3588 				DE_AUX_CHANNEL_A |
3589 				DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3590 				DE_POISON);
3591 		extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3592 				DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3593 	}
3594 
3595 	dev_priv->irq_mask = ~display_mask;
3596 
3597 	I915_WRITE(HWSTAM, 0xeffe);
3598 
3599 	ibx_irq_pre_postinstall(dev);
3600 
3601 	GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3602 
3603 	gen5_gt_irq_postinstall(dev);
3604 
3605 	ibx_irq_postinstall(dev);
3606 
3607 	if (IS_IRONLAKE_M(dev)) {
3608 		/* Enable PCU event interrupts
3609 		 *
3610 		 * spinlocking not required here for correctness since interrupt
3611 		 * setup is guaranteed to run in single-threaded context. But we
3612 		 * need it to make the assert_spin_locked happy. */
3613 		lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3614 		ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3615 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3616 	}
3617 
3618 	return 0;
3619 }
3620 
3621 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3622 {
3623 	u32 pipestat_mask;
3624 	u32 iir_mask;
3625 
3626 	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3627 			PIPE_FIFO_UNDERRUN_STATUS;
3628 
3629 	I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3630 	I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3631 	POSTING_READ(PIPESTAT(PIPE_A));
3632 
3633 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3634 			PIPE_CRC_DONE_INTERRUPT_STATUS;
3635 
3636 	i915_enable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3637 					       PIPE_GMBUS_INTERRUPT_STATUS);
3638 	i915_enable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3639 
3640 	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3641 		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3642 		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3643 	dev_priv->irq_mask &= ~iir_mask;
3644 
3645 	I915_WRITE(VLV_IIR, iir_mask);
3646 	I915_WRITE(VLV_IIR, iir_mask);
3647 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3648 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3649 	POSTING_READ(VLV_IER);
3650 }
3651 
3652 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3653 {
3654 	u32 pipestat_mask;
3655 	u32 iir_mask;
3656 
3657 	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3658 		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3659 		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3660 
3661 	dev_priv->irq_mask |= iir_mask;
3662 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3663 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3664 	I915_WRITE(VLV_IIR, iir_mask);
3665 	I915_WRITE(VLV_IIR, iir_mask);
3666 	POSTING_READ(VLV_IIR);
3667 
3668 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3669 			PIPE_CRC_DONE_INTERRUPT_STATUS;
3670 
3671 	i915_disable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3672 					        PIPE_GMBUS_INTERRUPT_STATUS);
3673 	i915_disable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3674 
3675 	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3676 			PIPE_FIFO_UNDERRUN_STATUS;
3677 	I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3678 	I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3679 	POSTING_READ(PIPESTAT(PIPE_A));
3680 }
3681 
3682 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3683 {
3684 	assert_spin_locked(&dev_priv->irq_lock);
3685 
3686 	if (dev_priv->display_irqs_enabled)
3687 		return;
3688 
3689 	dev_priv->display_irqs_enabled = true;
3690 
3691 	if (dev_priv->dev->irq_enabled)
3692 		valleyview_display_irqs_install(dev_priv);
3693 }
3694 
3695 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3696 {
3697 	assert_spin_locked(&dev_priv->irq_lock);
3698 
3699 	if (!dev_priv->display_irqs_enabled)
3700 		return;
3701 
3702 	dev_priv->display_irqs_enabled = false;
3703 
3704 	if (dev_priv->dev->irq_enabled)
3705 		valleyview_display_irqs_uninstall(dev_priv);
3706 }
3707 
3708 static int valleyview_irq_postinstall(struct drm_device *dev)
3709 {
3710 	struct drm_i915_private *dev_priv = dev->dev_private;
3711 
3712 	dev_priv->irq_mask = ~0;
3713 
3714 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3715 	POSTING_READ(PORT_HOTPLUG_EN);
3716 
3717 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3718 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3719 	I915_WRITE(VLV_IIR, 0xffffffff);
3720 	POSTING_READ(VLV_IER);
3721 
3722 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3723 	 * just to make the assert_spin_locked check happy. */
3724 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3725 	if (dev_priv->display_irqs_enabled)
3726 		valleyview_display_irqs_install(dev_priv);
3727 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3728 
3729 	I915_WRITE(VLV_IIR, 0xffffffff);
3730 	I915_WRITE(VLV_IIR, 0xffffffff);
3731 
3732 	gen5_gt_irq_postinstall(dev);
3733 
3734 	/* ack & enable invalid PTE error interrupts */
3735 #if 0 /* FIXME: add support to irq handler for checking these bits */
3736 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3737 	I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3738 #endif
3739 
3740 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3741 
3742 	return 0;
3743 }
3744 
3745 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3746 {
3747 	int i;
3748 
3749 	/* These are interrupts we'll toggle with the ring mask register */
3750 	uint32_t gt_interrupts[] = {
3751 		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3752 			GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3753 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3754 		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3755 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3756 		0,
3757 		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3758 		};
3759 
3760 	for (i = 0; i < ARRAY_SIZE(gt_interrupts); i++)
3761 		GEN8_IRQ_INIT_NDX(GT, i, ~gt_interrupts[i], gt_interrupts[i]);
3762 
3763 	dev_priv->pm_irq_mask = 0xffffffff;
3764 }
3765 
3766 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3767 {
3768 	struct drm_device *dev = dev_priv->dev;
3769 	uint32_t de_pipe_masked = GEN8_PIPE_PRIMARY_FLIP_DONE |
3770 		GEN8_PIPE_CDCLK_CRC_DONE |
3771 		GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3772 	uint32_t de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3773 		GEN8_PIPE_FIFO_UNDERRUN;
3774 	int pipe;
3775 	dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3776 	dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3777 	dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3778 
3779 	for_each_pipe(pipe)
3780 		if (intel_display_power_enabled(dev_priv,
3781 				POWER_DOMAIN_PIPE(pipe)))
3782 			GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3783 					  dev_priv->de_irq_mask[pipe],
3784 					  de_pipe_enables);
3785 
3786 	GEN5_IRQ_INIT(GEN8_DE_PORT_, ~GEN8_AUX_CHANNEL_A, GEN8_AUX_CHANNEL_A);
3787 }
3788 
3789 static int gen8_irq_postinstall(struct drm_device *dev)
3790 {
3791 	struct drm_i915_private *dev_priv = dev->dev_private;
3792 
3793 	ibx_irq_pre_postinstall(dev);
3794 
3795 	gen8_gt_irq_postinstall(dev_priv);
3796 	gen8_de_irq_postinstall(dev_priv);
3797 
3798 	ibx_irq_postinstall(dev);
3799 
3800 	I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3801 	POSTING_READ(GEN8_MASTER_IRQ);
3802 
3803 	return 0;
3804 }
3805 
3806 static int cherryview_irq_postinstall(struct drm_device *dev)
3807 {
3808 	struct drm_i915_private *dev_priv = dev->dev_private;
3809 	u32 enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3810 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3811 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3812 		I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3813 	u32 pipestat_enable = PLANE_FLIP_DONE_INT_STATUS_VLV |
3814 		PIPE_CRC_DONE_INTERRUPT_STATUS;
3815 	int pipe;
3816 
3817 	/*
3818 	 * Leave vblank interrupts masked initially.  enable/disable will
3819 	 * toggle them based on usage.
3820 	 */
3821 	dev_priv->irq_mask = ~enable_mask;
3822 
3823 	for_each_pipe(pipe)
3824 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3825 
3826 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3827 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3828 	for_each_pipe(pipe)
3829 		i915_enable_pipestat(dev_priv, pipe, pipestat_enable);
3830 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3831 
3832 	I915_WRITE(VLV_IIR, 0xffffffff);
3833 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3834 	I915_WRITE(VLV_IER, enable_mask);
3835 
3836 	gen8_gt_irq_postinstall(dev_priv);
3837 
3838 	I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3839 	POSTING_READ(GEN8_MASTER_IRQ);
3840 
3841 	return 0;
3842 }
3843 
3844 static void gen8_irq_uninstall(struct drm_device *dev)
3845 {
3846 	struct drm_i915_private *dev_priv = dev->dev_private;
3847 
3848 	if (!dev_priv)
3849 		return;
3850 
3851 	gen8_irq_reset(dev);
3852 }
3853 
3854 static void valleyview_irq_uninstall(struct drm_device *dev)
3855 {
3856 	struct drm_i915_private *dev_priv = dev->dev_private;
3857 	int pipe;
3858 
3859 	if (!dev_priv)
3860 		return;
3861 
3862 	I915_WRITE(VLV_MASTER_IER, 0);
3863 
3864 	for_each_pipe(pipe)
3865 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3866 
3867 	I915_WRITE(HWSTAM, 0xffffffff);
3868 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3869 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3870 
3871 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3872 	if (dev_priv->display_irqs_enabled)
3873 		valleyview_display_irqs_uninstall(dev_priv);
3874 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3875 
3876 	dev_priv->irq_mask = 0;
3877 
3878 	I915_WRITE(VLV_IIR, 0xffffffff);
3879 	I915_WRITE(VLV_IMR, 0xffffffff);
3880 	I915_WRITE(VLV_IER, 0x0);
3881 	POSTING_READ(VLV_IER);
3882 }
3883 
3884 static void cherryview_irq_uninstall(struct drm_device *dev)
3885 {
3886 	struct drm_i915_private *dev_priv = dev->dev_private;
3887 	int pipe;
3888 
3889 	if (!dev_priv)
3890 		return;
3891 
3892 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3893 	POSTING_READ(GEN8_MASTER_IRQ);
3894 
3895 #define GEN8_IRQ_FINI_NDX(type, which)				\
3896 do {								\
3897 	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff);	\
3898 	I915_WRITE(GEN8_##type##_IER(which), 0);		\
3899 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff);	\
3900 	POSTING_READ(GEN8_##type##_IIR(which));			\
3901 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff);	\
3902 } while (0)
3903 
3904 #define GEN8_IRQ_FINI(type)				\
3905 do {							\
3906 	I915_WRITE(GEN8_##type##_IMR, 0xffffffff);	\
3907 	I915_WRITE(GEN8_##type##_IER, 0);		\
3908 	I915_WRITE(GEN8_##type##_IIR, 0xffffffff);	\
3909 	POSTING_READ(GEN8_##type##_IIR);		\
3910 	I915_WRITE(GEN8_##type##_IIR, 0xffffffff);	\
3911 } while (0)
3912 
3913 	GEN8_IRQ_FINI_NDX(GT, 0);
3914 	GEN8_IRQ_FINI_NDX(GT, 1);
3915 	GEN8_IRQ_FINI_NDX(GT, 2);
3916 	GEN8_IRQ_FINI_NDX(GT, 3);
3917 
3918 	GEN8_IRQ_FINI(PCU);
3919 
3920 #undef GEN8_IRQ_FINI
3921 #undef GEN8_IRQ_FINI_NDX
3922 
3923 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3924 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3925 
3926 	for_each_pipe(pipe)
3927 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3928 
3929 	I915_WRITE(VLV_IMR, 0xffffffff);
3930 	I915_WRITE(VLV_IER, 0x0);
3931 	I915_WRITE(VLV_IIR, 0xffffffff);
3932 	POSTING_READ(VLV_IIR);
3933 }
3934 
3935 static void ironlake_irq_uninstall(struct drm_device *dev)
3936 {
3937 	struct drm_i915_private *dev_priv = dev->dev_private;
3938 
3939 	if (!dev_priv)
3940 		return;
3941 
3942 	ironlake_irq_reset(dev);
3943 }
3944 
3945 static void i8xx_irq_preinstall(struct drm_device * dev)
3946 {
3947 	struct drm_i915_private *dev_priv = dev->dev_private;
3948 	int pipe;
3949 
3950 	for_each_pipe(pipe)
3951 		I915_WRITE(PIPESTAT(pipe), 0);
3952 	I915_WRITE16(IMR, 0xffff);
3953 	I915_WRITE16(IER, 0x0);
3954 	POSTING_READ16(IER);
3955 }
3956 
3957 static int i8xx_irq_postinstall(struct drm_device *dev)
3958 {
3959 	struct drm_i915_private *dev_priv = dev->dev_private;
3960 
3961 	I915_WRITE16(EMR,
3962 		     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3963 
3964 	/* Unmask the interrupts that we always want on. */
3965 	dev_priv->irq_mask =
3966 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3967 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3968 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3969 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3970 		  I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3971 	I915_WRITE16(IMR, dev_priv->irq_mask);
3972 
3973 	I915_WRITE16(IER,
3974 		     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3975 		     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3976 		     I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3977 		     I915_USER_INTERRUPT);
3978 	POSTING_READ16(IER);
3979 
3980 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3981 	 * just to make the assert_spin_locked check happy. */
3982 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3983 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3984 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3985 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3986 
3987 	return 0;
3988 }
3989 
3990 /*
3991  * Returns true when a page flip has completed.
3992  */
3993 static bool i8xx_handle_vblank(struct drm_device *dev,
3994 			       int plane, int pipe, u32 iir)
3995 {
3996 	struct drm_i915_private *dev_priv = dev->dev_private;
3997 	u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3998 
3999 	if (!intel_pipe_handle_vblank(dev, pipe))
4000 		return false;
4001 
4002 	if ((iir & flip_pending) == 0)
4003 		return false;
4004 
4005 	intel_prepare_page_flip(dev, plane);
4006 
4007 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
4008 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4009 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4010 	 * the flip is completed (no longer pending). Since this doesn't raise
4011 	 * an interrupt per se, we watch for the change at vblank.
4012 	 */
4013 	if (I915_READ16(ISR) & flip_pending)
4014 		return false;
4015 
4016 	intel_finish_page_flip(dev, pipe);
4017 
4018 	return true;
4019 }
4020 
4021 static irqreturn_t i8xx_irq_handler(void *arg)
4022 {
4023 	struct drm_device *dev = arg;
4024 	struct drm_i915_private *dev_priv = dev->dev_private;
4025 	u16 iir, new_iir;
4026 	u32 pipe_stats[2];
4027 	int pipe;
4028 	u16 flip_mask =
4029 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4030 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4031 
4032 	iir = I915_READ16(IIR);
4033 	if (iir == 0)
4034 		return;
4035 
4036 	while (iir & ~flip_mask) {
4037 		/* Can't rely on pipestat interrupt bit in iir as it might
4038 		 * have been cleared after the pipestat interrupt was received.
4039 		 * It doesn't set the bit in iir again, but it still produces
4040 		 * interrupts (for non-MSI).
4041 		 */
4042 		lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
4043 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4044 			i915_handle_error(dev, false,
4045 					  "Command parser error, iir 0x%08x",
4046 					  iir);
4047 
4048 		for_each_pipe(pipe) {
4049 			int reg = PIPESTAT(pipe);
4050 			pipe_stats[pipe] = I915_READ(reg);
4051 
4052 			/*
4053 			 * Clear the PIPE*STAT regs before the IIR
4054 			 */
4055 			if (pipe_stats[pipe] & 0x8000ffff)
4056 				I915_WRITE(reg, pipe_stats[pipe]);
4057 		}
4058 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
4059 
4060 		I915_WRITE16(IIR, iir & ~flip_mask);
4061 		new_iir = I915_READ16(IIR); /* Flush posted writes */
4062 
4063 		i915_update_dri1_breadcrumb(dev);
4064 
4065 		if (iir & I915_USER_INTERRUPT)
4066 			notify_ring(dev, &dev_priv->ring[RCS]);
4067 
4068 		for_each_pipe(pipe) {
4069 			int plane = pipe;
4070 			if (HAS_FBC(dev))
4071 				plane = !plane;
4072 
4073 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4074 			    i8xx_handle_vblank(dev, plane, pipe, iir))
4075 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4076 
4077 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4078 				i9xx_pipe_crc_irq_handler(dev, pipe);
4079 
4080 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
4081 			    intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
4082 				DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
4083 		}
4084 
4085 		iir = new_iir;
4086 	}
4087 
4088 }
4089 
4090 static void i8xx_irq_uninstall(struct drm_device * dev)
4091 {
4092 	struct drm_i915_private *dev_priv = dev->dev_private;
4093 	int pipe;
4094 
4095 	for_each_pipe(pipe) {
4096 		/* Clear enable bits; then clear status bits */
4097 		I915_WRITE(PIPESTAT(pipe), 0);
4098 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4099 	}
4100 	I915_WRITE16(IMR, 0xffff);
4101 	I915_WRITE16(IER, 0x0);
4102 	I915_WRITE16(IIR, I915_READ16(IIR));
4103 }
4104 
4105 static void i915_irq_preinstall(struct drm_device * dev)
4106 {
4107 	struct drm_i915_private *dev_priv = dev->dev_private;
4108 	int pipe;
4109 
4110 	if (I915_HAS_HOTPLUG(dev)) {
4111 		I915_WRITE(PORT_HOTPLUG_EN, 0);
4112 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4113 	}
4114 
4115 	I915_WRITE16(HWSTAM, 0xeffe);
4116 	for_each_pipe(pipe)
4117 		I915_WRITE(PIPESTAT(pipe), 0);
4118 	I915_WRITE(IMR, 0xffffffff);
4119 	I915_WRITE(IER, 0x0);
4120 	POSTING_READ(IER);
4121 }
4122 
4123 static int i915_irq_postinstall(struct drm_device *dev)
4124 {
4125 	struct drm_i915_private *dev_priv = dev->dev_private;
4126 	u32 enable_mask;
4127 
4128 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4129 
4130 	/* Unmask the interrupts that we always want on. */
4131 	dev_priv->irq_mask =
4132 		~(I915_ASLE_INTERRUPT |
4133 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4134 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4135 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4136 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4137 		  I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4138 
4139 	enable_mask =
4140 		I915_ASLE_INTERRUPT |
4141 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4142 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4143 		I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
4144 		I915_USER_INTERRUPT;
4145 
4146 	if (I915_HAS_HOTPLUG(dev)) {
4147 		I915_WRITE(PORT_HOTPLUG_EN, 0);
4148 		POSTING_READ(PORT_HOTPLUG_EN);
4149 
4150 		/* Enable in IER... */
4151 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4152 		/* and unmask in IMR */
4153 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4154 	}
4155 
4156 	I915_WRITE(IMR, dev_priv->irq_mask);
4157 	I915_WRITE(IER, enable_mask);
4158 	POSTING_READ(IER);
4159 
4160 	i915_enable_asle_pipestat(dev);
4161 
4162 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4163 	 * just to make the assert_spin_locked check happy. */
4164 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
4165 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4166 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4167 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
4168 
4169 	return 0;
4170 }
4171 
4172 /*
4173  * Returns true when a page flip has completed.
4174  */
4175 static bool i915_handle_vblank(struct drm_device *dev,
4176 			       int plane, int pipe, u32 iir)
4177 {
4178 	struct drm_i915_private *dev_priv = dev->dev_private;
4179 	u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4180 
4181 	if (!intel_pipe_handle_vblank(dev, pipe))
4182 		return false;
4183 
4184 	if ((iir & flip_pending) == 0)
4185 		return false;
4186 
4187 	intel_prepare_page_flip(dev, plane);
4188 
4189 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
4190 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4191 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4192 	 * the flip is completed (no longer pending). Since this doesn't raise
4193 	 * an interrupt per se, we watch for the change at vblank.
4194 	 */
4195 	if (I915_READ(ISR) & flip_pending)
4196 		return false;
4197 
4198 	intel_finish_page_flip(dev, pipe);
4199 
4200 	return true;
4201 }
4202 
4203 static irqreturn_t i915_irq_handler(void *arg)
4204 {
4205 	struct drm_device *dev = arg;
4206 	struct drm_i915_private *dev_priv = dev->dev_private;
4207 	u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4208 	u32 flip_mask =
4209 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4210 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4211 	int pipe;
4212 
4213 	iir = I915_READ(IIR);
4214 	do {
4215 		bool irq_received = (iir & ~flip_mask) != 0;
4216 		bool blc_event = false;
4217 
4218 		/* Can't rely on pipestat interrupt bit in iir as it might
4219 		 * have been cleared after the pipestat interrupt was received.
4220 		 * It doesn't set the bit in iir again, but it still produces
4221 		 * interrupts (for non-MSI).
4222 		 */
4223 		lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
4224 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4225 			i915_handle_error(dev, false,
4226 					  "Command parser error, iir 0x%08x",
4227 					  iir);
4228 
4229 		for_each_pipe(pipe) {
4230 			int reg = PIPESTAT(pipe);
4231 			pipe_stats[pipe] = I915_READ(reg);
4232 
4233 			/* Clear the PIPE*STAT regs before the IIR */
4234 			if (pipe_stats[pipe] & 0x8000ffff) {
4235 				I915_WRITE(reg, pipe_stats[pipe]);
4236 				irq_received = true;
4237 			}
4238 		}
4239 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
4240 
4241 		if (!irq_received)
4242 			break;
4243 
4244 		/* Consume port.  Then clear IIR or we'll miss events */
4245 		if (I915_HAS_HOTPLUG(dev) &&
4246 		    iir & I915_DISPLAY_PORT_INTERRUPT)
4247 			i9xx_hpd_irq_handler(dev);
4248 
4249 		I915_WRITE(IIR, iir & ~flip_mask);
4250 		new_iir = I915_READ(IIR); /* Flush posted writes */
4251 
4252 		if (iir & I915_USER_INTERRUPT)
4253 			notify_ring(dev, &dev_priv->ring[RCS]);
4254 
4255 		for_each_pipe(pipe) {
4256 			int plane = pipe;
4257 			if (HAS_FBC(dev))
4258 				plane = !plane;
4259 
4260 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4261 			    i915_handle_vblank(dev, plane, pipe, iir))
4262 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4263 
4264 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4265 				blc_event = true;
4266 
4267 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4268 				i9xx_pipe_crc_irq_handler(dev, pipe);
4269 
4270 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
4271 			    intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
4272 				DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
4273 		}
4274 
4275 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4276 			intel_opregion_asle_intr(dev);
4277 
4278 		/* With MSI, interrupts are only generated when iir
4279 		 * transitions from zero to nonzero.  If another bit got
4280 		 * set while we were handling the existing iir bits, then
4281 		 * we would never get another interrupt.
4282 		 *
4283 		 * This is fine on non-MSI as well, as if we hit this path
4284 		 * we avoid exiting the interrupt handler only to generate
4285 		 * another one.
4286 		 *
4287 		 * Note that for MSI this could cause a stray interrupt report
4288 		 * if an interrupt landed in the time between writing IIR and
4289 		 * the posting read.  This should be rare enough to never
4290 		 * trigger the 99% of 100,000 interrupts test for disabling
4291 		 * stray interrupts.
4292 		 */
4293 		iir = new_iir;
4294 	} while (iir & ~flip_mask);
4295 
4296 	i915_update_dri1_breadcrumb(dev);
4297 
4298 }
4299 
4300 static void i915_irq_uninstall(struct drm_device * dev)
4301 {
4302 	struct drm_i915_private *dev_priv = dev->dev_private;
4303 	int pipe;
4304 
4305 	if (I915_HAS_HOTPLUG(dev)) {
4306 		I915_WRITE(PORT_HOTPLUG_EN, 0);
4307 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4308 	}
4309 
4310 	I915_WRITE16(HWSTAM, 0xffff);
4311 	for_each_pipe(pipe) {
4312 		/* Clear enable bits; then clear status bits */
4313 		I915_WRITE(PIPESTAT(pipe), 0);
4314 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4315 	}
4316 	I915_WRITE(IMR, 0xffffffff);
4317 	I915_WRITE(IER, 0x0);
4318 
4319 	I915_WRITE(IIR, I915_READ(IIR));
4320 }
4321 
4322 static void i965_irq_preinstall(struct drm_device * dev)
4323 {
4324 	struct drm_i915_private *dev_priv = dev->dev_private;
4325 	int pipe;
4326 
4327 	I915_WRITE(PORT_HOTPLUG_EN, 0);
4328 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4329 
4330 	I915_WRITE(HWSTAM, 0xeffe);
4331 	for_each_pipe(pipe)
4332 		I915_WRITE(PIPESTAT(pipe), 0);
4333 	I915_WRITE(IMR, 0xffffffff);
4334 	I915_WRITE(IER, 0x0);
4335 	POSTING_READ(IER);
4336 }
4337 
4338 static int i965_irq_postinstall(struct drm_device *dev)
4339 {
4340 	struct drm_i915_private *dev_priv = dev->dev_private;
4341 	u32 enable_mask;
4342 	u32 error_mask;
4343 
4344 	/* Unmask the interrupts that we always want on. */
4345 	dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4346 			       I915_DISPLAY_PORT_INTERRUPT |
4347 			       I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4348 			       I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4349 			       I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4350 			       I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4351 			       I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4352 
4353 	enable_mask = ~dev_priv->irq_mask;
4354 	enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4355 			 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4356 	enable_mask |= I915_USER_INTERRUPT;
4357 
4358 	if (IS_G4X(dev))
4359 		enable_mask |= I915_BSD_USER_INTERRUPT;
4360 
4361 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4362 	 * just to make the assert_spin_locked check happy. */
4363 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
4364 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4365 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4366 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4367 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
4368 
4369 	/*
4370 	 * Enable some error detection, note the instruction error mask
4371 	 * bit is reserved, so we leave it masked.
4372 	 */
4373 	if (IS_G4X(dev)) {
4374 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4375 			       GM45_ERROR_MEM_PRIV |
4376 			       GM45_ERROR_CP_PRIV |
4377 			       I915_ERROR_MEMORY_REFRESH);
4378 	} else {
4379 		error_mask = ~(I915_ERROR_PAGE_TABLE |
4380 			       I915_ERROR_MEMORY_REFRESH);
4381 	}
4382 	I915_WRITE(EMR, error_mask);
4383 
4384 	I915_WRITE(IMR, dev_priv->irq_mask);
4385 	I915_WRITE(IER, enable_mask);
4386 	POSTING_READ(IER);
4387 
4388 	I915_WRITE(PORT_HOTPLUG_EN, 0);
4389 	POSTING_READ(PORT_HOTPLUG_EN);
4390 
4391 	i915_enable_asle_pipestat(dev);
4392 
4393 	return 0;
4394 }
4395 
4396 static void i915_hpd_irq_setup(struct drm_device *dev)
4397 {
4398 	struct drm_i915_private *dev_priv = dev->dev_private;
4399 	struct drm_mode_config *mode_config = &dev->mode_config;
4400 	struct intel_encoder *intel_encoder;
4401 	u32 hotplug_en;
4402 
4403 	assert_spin_locked(&dev_priv->irq_lock);
4404 
4405 	if (I915_HAS_HOTPLUG(dev)) {
4406 		hotplug_en = I915_READ(PORT_HOTPLUG_EN);
4407 		hotplug_en &= ~HOTPLUG_INT_EN_MASK;
4408 		/* Note HDMI and DP share hotplug bits */
4409 		/* enable bits are the same for all generations */
4410 		list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
4411 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
4412 				hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
4413 		/* Programming the CRT detection parameters tends
4414 		   to generate a spurious hotplug event about three
4415 		   seconds later.  So just do it once.
4416 		*/
4417 		if (IS_G4X(dev))
4418 			hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4419 		hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
4420 		hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4421 
4422 		/* Ignore TV since it's buggy */
4423 		I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
4424 	}
4425 }
4426 
4427 static irqreturn_t i965_irq_handler(void *arg)
4428 {
4429 	struct drm_device *dev = arg;
4430 	struct drm_i915_private *dev_priv = dev->dev_private;
4431 	u32 iir, new_iir;
4432 	u32 pipe_stats[I915_MAX_PIPES];
4433 	int pipe;
4434 	u32 flip_mask =
4435 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4436 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4437 
4438 	iir = I915_READ(IIR);
4439 
4440 	for (;;) {
4441 		bool irq_received = (iir & ~flip_mask) != 0;
4442 		bool blc_event = false;
4443 
4444 		/* Can't rely on pipestat interrupt bit in iir as it might
4445 		 * have been cleared after the pipestat interrupt was received.
4446 		 * It doesn't set the bit in iir again, but it still produces
4447 		 * interrupts (for non-MSI).
4448 		 */
4449 		lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
4450 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4451 			i915_handle_error(dev, false,
4452 					  "Command parser error, iir 0x%08x",
4453 					  iir);
4454 
4455 		for_each_pipe(pipe) {
4456 			int reg = PIPESTAT(pipe);
4457 			pipe_stats[pipe] = I915_READ(reg);
4458 
4459 			/*
4460 			 * Clear the PIPE*STAT regs before the IIR
4461 			 */
4462 			if (pipe_stats[pipe] & 0x8000ffff) {
4463 				I915_WRITE(reg, pipe_stats[pipe]);
4464 				irq_received = true;
4465 			}
4466 		}
4467 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
4468 
4469 		if (!irq_received)
4470 			break;
4471 
4472 		/* Consume port.  Then clear IIR or we'll miss events */
4473 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
4474 			i9xx_hpd_irq_handler(dev);
4475 
4476 		I915_WRITE(IIR, iir & ~flip_mask);
4477 		new_iir = I915_READ(IIR); /* Flush posted writes */
4478 
4479 		if (iir & I915_USER_INTERRUPT)
4480 			notify_ring(dev, &dev_priv->ring[RCS]);
4481 		if (iir & I915_BSD_USER_INTERRUPT)
4482 			notify_ring(dev, &dev_priv->ring[VCS]);
4483 
4484 		for_each_pipe(pipe) {
4485 			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4486 			    i915_handle_vblank(dev, pipe, pipe, iir))
4487 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4488 
4489 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4490 				blc_event = true;
4491 
4492 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4493 				i9xx_pipe_crc_irq_handler(dev, pipe);
4494 
4495 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
4496 			    intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
4497 				DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
4498 		}
4499 
4500 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4501 			intel_opregion_asle_intr(dev);
4502 
4503 		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4504 			gmbus_irq_handler(dev);
4505 
4506 		/* With MSI, interrupts are only generated when iir
4507 		 * transitions from zero to nonzero.  If another bit got
4508 		 * set while we were handling the existing iir bits, then
4509 		 * we would never get another interrupt.
4510 		 *
4511 		 * This is fine on non-MSI as well, as if we hit this path
4512 		 * we avoid exiting the interrupt handler only to generate
4513 		 * another one.
4514 		 *
4515 		 * Note that for MSI this could cause a stray interrupt report
4516 		 * if an interrupt landed in the time between writing IIR and
4517 		 * the posting read.  This should be rare enough to never
4518 		 * trigger the 99% of 100,000 interrupts test for disabling
4519 		 * stray interrupts.
4520 		 */
4521 		iir = new_iir;
4522 	}
4523 
4524 	i915_update_dri1_breadcrumb(dev);
4525 
4526 }
4527 
4528 static void i965_irq_uninstall(struct drm_device * dev)
4529 {
4530 	struct drm_i915_private *dev_priv = dev->dev_private;
4531 	int pipe;
4532 
4533 	if (!dev_priv)
4534 		return;
4535 
4536 	I915_WRITE(PORT_HOTPLUG_EN, 0);
4537 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4538 
4539 	I915_WRITE(HWSTAM, 0xffffffff);
4540 	for_each_pipe(pipe)
4541 		I915_WRITE(PIPESTAT(pipe), 0);
4542 	I915_WRITE(IMR, 0xffffffff);
4543 	I915_WRITE(IER, 0x0);
4544 
4545 	for_each_pipe(pipe)
4546 		I915_WRITE(PIPESTAT(pipe),
4547 			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4548 	I915_WRITE(IIR, I915_READ(IIR));
4549 }
4550 
4551 static void intel_hpd_irq_reenable(struct work_struct *work)
4552 {
4553 	struct drm_i915_private *dev_priv =
4554 		container_of(work, typeof(*dev_priv),
4555 			     hotplug_reenable_work.work);
4556 	struct drm_device *dev = dev_priv->dev;
4557 	struct drm_mode_config *mode_config = &dev->mode_config;
4558 	int i;
4559 
4560 	intel_runtime_pm_get(dev_priv);
4561 
4562 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
4563 	for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
4564 		struct drm_connector *connector;
4565 
4566 		if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
4567 			continue;
4568 
4569 		dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4570 
4571 		list_for_each_entry(connector, &mode_config->connector_list, head) {
4572 			struct intel_connector *intel_connector = to_intel_connector(connector);
4573 
4574 			if (intel_connector->encoder->hpd_pin == i) {
4575 				if (connector->polled != intel_connector->polled)
4576 					DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
4577 							 connector->name);
4578 				connector->polled = intel_connector->polled;
4579 				if (!connector->polled)
4580 					connector->polled = DRM_CONNECTOR_POLL_HPD;
4581 			}
4582 		}
4583 	}
4584 	if (dev_priv->display.hpd_irq_setup)
4585 		dev_priv->display.hpd_irq_setup(dev);
4586 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
4587 
4588 	intel_runtime_pm_put(dev_priv);
4589 }
4590 
4591 void intel_irq_init(struct drm_device *dev)
4592 {
4593 	struct drm_i915_private *dev_priv = dev->dev_private;
4594 
4595 	INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4596 	INIT_WORK(&dev_priv->dig_port_work, i915_digport_work_func);
4597 	INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
4598 	INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4599 	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4600 
4601 	/* Let's track the enabled rps events */
4602 	if (IS_VALLEYVIEW(dev))
4603 		/* WaGsvRC0ResidenncyMethod:VLV */
4604 		dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4605 	else
4606 		dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4607 
4608 	setup_timer(&dev_priv->gpu_error.hangcheck_timer,
4609 		    i915_hangcheck_elapsed,
4610 		    (unsigned long) dev);
4611 	INIT_DELAYED_WORK(&dev_priv->hotplug_reenable_work,
4612 			  intel_hpd_irq_reenable);
4613 
4614 	pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4615 
4616 	/* Haven't installed the IRQ handler yet */
4617 	dev_priv->pm._irqs_disabled = true;
4618 
4619 	if (IS_GEN2(dev)) {
4620 		dev->max_vblank_count = 0;
4621 		dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4622 	} else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
4623 		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4624 		dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4625 	} else {
4626 		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4627 		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4628 	}
4629 
4630 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
4631 		dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4632 		dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4633 	}
4634 
4635 	if (IS_CHERRYVIEW(dev)) {
4636 		dev->driver->irq_handler = cherryview_irq_handler;
4637 		dev->driver->irq_preinstall = cherryview_irq_preinstall;
4638 		dev->driver->irq_postinstall = cherryview_irq_postinstall;
4639 		dev->driver->irq_uninstall = cherryview_irq_uninstall;
4640 		dev->driver->enable_vblank = valleyview_enable_vblank;
4641 		dev->driver->disable_vblank = valleyview_disable_vblank;
4642 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4643 	} else if (IS_VALLEYVIEW(dev)) {
4644 		dev->driver->irq_handler = valleyview_irq_handler;
4645 		dev->driver->irq_preinstall = valleyview_irq_preinstall;
4646 		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4647 		dev->driver->irq_uninstall = valleyview_irq_uninstall;
4648 		dev->driver->enable_vblank = valleyview_enable_vblank;
4649 		dev->driver->disable_vblank = valleyview_disable_vblank;
4650 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4651 	} else if (IS_GEN8(dev)) {
4652 		dev->driver->irq_handler = gen8_irq_handler;
4653 		dev->driver->irq_preinstall = gen8_irq_reset;
4654 		dev->driver->irq_postinstall = gen8_irq_postinstall;
4655 		dev->driver->irq_uninstall = gen8_irq_uninstall;
4656 		dev->driver->enable_vblank = gen8_enable_vblank;
4657 		dev->driver->disable_vblank = gen8_disable_vblank;
4658 		dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4659 	} else if (HAS_PCH_SPLIT(dev)) {
4660 		dev->driver->irq_handler = ironlake_irq_handler;
4661 		dev->driver->irq_preinstall = ironlake_irq_reset;
4662 		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4663 		dev->driver->irq_uninstall = ironlake_irq_uninstall;
4664 		dev->driver->enable_vblank = ironlake_enable_vblank;
4665 		dev->driver->disable_vblank = ironlake_disable_vblank;
4666 		dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4667 	} else {
4668 		if (INTEL_INFO(dev)->gen == 2) {
4669 			dev->driver->irq_preinstall = i8xx_irq_preinstall;
4670 			dev->driver->irq_postinstall = i8xx_irq_postinstall;
4671 			dev->driver->irq_handler = i8xx_irq_handler;
4672 			dev->driver->irq_uninstall = i8xx_irq_uninstall;
4673 		} else if (INTEL_INFO(dev)->gen == 3) {
4674 			dev->driver->irq_preinstall = i915_irq_preinstall;
4675 			dev->driver->irq_postinstall = i915_irq_postinstall;
4676 			dev->driver->irq_uninstall = i915_irq_uninstall;
4677 			dev->driver->irq_handler = i915_irq_handler;
4678 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4679 		} else {
4680 			dev->driver->irq_preinstall = i965_irq_preinstall;
4681 			dev->driver->irq_postinstall = i965_irq_postinstall;
4682 			dev->driver->irq_uninstall = i965_irq_uninstall;
4683 			dev->driver->irq_handler = i965_irq_handler;
4684 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4685 		}
4686 		dev->driver->enable_vblank = i915_enable_vblank;
4687 		dev->driver->disable_vblank = i915_disable_vblank;
4688 	}
4689 }
4690 
4691 void intel_hpd_init(struct drm_device *dev)
4692 {
4693 	struct drm_i915_private *dev_priv = dev->dev_private;
4694 	struct drm_mode_config *mode_config = &dev->mode_config;
4695 	struct drm_connector *connector;
4696 	int i;
4697 
4698 	for (i = 1; i < HPD_NUM_PINS; i++) {
4699 		dev_priv->hpd_stats[i].hpd_cnt = 0;
4700 		dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4701 	}
4702 	list_for_each_entry(connector, &mode_config->connector_list, head) {
4703 		struct intel_connector *intel_connector = to_intel_connector(connector);
4704 		connector->polled = intel_connector->polled;
4705 		if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4706 			connector->polled = DRM_CONNECTOR_POLL_HPD;
4707 	}
4708 
4709 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4710 	 * just to make the assert_spin_locked checks happy. */
4711 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
4712 	if (dev_priv->display.hpd_irq_setup)
4713 		dev_priv->display.hpd_irq_setup(dev);
4714 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
4715 }
4716 
4717 /* Disable interrupts so we can allow runtime PM. */
4718 void intel_runtime_pm_disable_interrupts(struct drm_device *dev)
4719 {
4720 	struct drm_i915_private *dev_priv = dev->dev_private;
4721 
4722 	dev->driver->irq_uninstall(dev);
4723 	dev_priv->pm._irqs_disabled = true;
4724 }
4725 
4726 /* Restore interrupts so we can recover from runtime PM. */
4727 void intel_runtime_pm_restore_interrupts(struct drm_device *dev)
4728 {
4729 	struct drm_i915_private *dev_priv = dev->dev_private;
4730 
4731 	dev_priv->pm._irqs_disabled = false;
4732 	dev->driver->irq_preinstall(dev);
4733 	dev->driver->irq_postinstall(dev);
4734 }
4735