xref: /dflybsd-src/sys/dev/drm/i915/i915_irq.c (revision 25ca8c794df06033ca37cb3fdf9b2992a7b5a9e6)
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #include <drm/drmP.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 
35 static const u32 hpd_ibx[] = {
36 	[HPD_CRT] = SDE_CRT_HOTPLUG,
37 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
38 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
39 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
40 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
41 };
42 
43 static const u32 hpd_cpt[] = {
44 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
45 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
46 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
47 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
48 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
49 };
50 
51 static const u32 hpd_mask_i915[] = {
52 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
53 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
54 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
55 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
56 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
57 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
58 };
59 
60 static const u32 hpd_status_g4x[] = {
61 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
62 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
63 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
64 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
65 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
66 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
67 };
68 
69 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
70 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
71 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
72 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
73 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
74 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
75 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
76 };
77 
78 /* For display hotplug interrupt */
79 static void
80 ironlake_enable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
81 {
82 	assert_spin_locked(&dev_priv->irq_lock);
83 
84 	if (dev_priv->pc8.irqs_disabled) {
85 		WARN(1, "IRQs disabled\n");
86 		dev_priv->pc8.regsave.deimr &= ~mask;
87 		return;
88 	}
89 
90 	if ((dev_priv->irq_mask & mask) != 0) {
91 		dev_priv->irq_mask &= ~mask;
92 		I915_WRITE(DEIMR, dev_priv->irq_mask);
93 		POSTING_READ(DEIMR);
94 	}
95 }
96 
97 static void
98 ironlake_disable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
99 {
100 	assert_spin_locked(&dev_priv->irq_lock);
101 
102 	if (dev_priv->pc8.irqs_disabled) {
103 		WARN(1, "IRQs disabled\n");
104 		dev_priv->pc8.regsave.deimr |= mask;
105 		return;
106 	}
107 
108 	if ((dev_priv->irq_mask & mask) != mask) {
109 		dev_priv->irq_mask |= mask;
110 		I915_WRITE(DEIMR, dev_priv->irq_mask);
111 		POSTING_READ(DEIMR);
112 	}
113 }
114 
115 /**
116  * ilk_update_gt_irq - update GTIMR
117  * @dev_priv: driver private
118  * @interrupt_mask: mask of interrupt bits to update
119  * @enabled_irq_mask: mask of interrupt bits to enable
120  */
121 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
122 			      uint32_t interrupt_mask,
123 			      uint32_t enabled_irq_mask)
124 {
125 	assert_spin_locked(&dev_priv->irq_lock);
126 
127 	if (dev_priv->pc8.irqs_disabled) {
128 		WARN(1, "IRQs disabled\n");
129 		dev_priv->pc8.regsave.gtimr &= ~interrupt_mask;
130 		dev_priv->pc8.regsave.gtimr |= (~enabled_irq_mask &
131 						interrupt_mask);
132 		return;
133 	}
134 
135 	dev_priv->gt_irq_mask &= ~interrupt_mask;
136 	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
137 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
138 	POSTING_READ(GTIMR);
139 }
140 
141 void ilk_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
142 {
143 	ilk_update_gt_irq(dev_priv, mask, mask);
144 }
145 
146 void ilk_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
147 {
148 	ilk_update_gt_irq(dev_priv, mask, 0);
149 }
150 
151 /**
152   * snb_update_pm_irq - update GEN6_PMIMR
153   * @dev_priv: driver private
154   * @interrupt_mask: mask of interrupt bits to update
155   * @enabled_irq_mask: mask of interrupt bits to enable
156   */
157 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
158 			      uint32_t interrupt_mask,
159 			      uint32_t enabled_irq_mask)
160 {
161 	uint32_t new_val;
162 
163 	assert_spin_locked(&dev_priv->irq_lock);
164 
165 	if (dev_priv->pc8.irqs_disabled) {
166 		WARN(1, "IRQs disabled\n");
167 		dev_priv->pc8.regsave.gen6_pmimr &= ~interrupt_mask;
168 		dev_priv->pc8.regsave.gen6_pmimr |= (~enabled_irq_mask &
169 						     interrupt_mask);
170 		return;
171 	}
172 
173 	new_val = dev_priv->pm_irq_mask;
174 	new_val &= ~interrupt_mask;
175 	new_val |= (~enabled_irq_mask & interrupt_mask);
176 
177 	if (new_val != dev_priv->pm_irq_mask) {
178 		dev_priv->pm_irq_mask = new_val;
179 		I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
180 		POSTING_READ(GEN6_PMIMR);
181 	}
182 }
183 
184 void snb_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
185 {
186 	snb_update_pm_irq(dev_priv, mask, mask);
187 }
188 
189 void snb_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
190 {
191 	snb_update_pm_irq(dev_priv, mask, 0);
192 }
193 
194 static bool ivb_can_enable_err_int(struct drm_device *dev)
195 {
196 	struct drm_i915_private *dev_priv = dev->dev_private;
197 	struct intel_crtc *crtc;
198 	enum i915_pipe pipe;
199 
200 	assert_spin_locked(&dev_priv->irq_lock);
201 
202 	for_each_pipe(pipe) {
203 		crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
204 
205 		if (crtc->cpu_fifo_underrun_disabled)
206 			return false;
207 	}
208 
209 	return true;
210 }
211 
212 static bool cpt_can_enable_serr_int(struct drm_device *dev)
213 {
214 	struct drm_i915_private *dev_priv = dev->dev_private;
215 	enum i915_pipe pipe;
216 	struct intel_crtc *crtc;
217 
218 	assert_spin_locked(&dev_priv->irq_lock);
219 
220 	for_each_pipe(pipe) {
221 		crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
222 
223 		if (crtc->pch_fifo_underrun_disabled)
224 			return false;
225 	}
226 
227 	return true;
228 }
229 
230 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
231 						 enum i915_pipe pipe, bool enable)
232 {
233 	struct drm_i915_private *dev_priv = dev->dev_private;
234 	uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
235 					  DE_PIPEB_FIFO_UNDERRUN;
236 
237 	if (enable)
238 		ironlake_enable_display_irq(dev_priv, bit);
239 	else
240 		ironlake_disable_display_irq(dev_priv, bit);
241 }
242 
243 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
244 						  enum i915_pipe pipe, bool enable)
245 {
246 	struct drm_i915_private *dev_priv = dev->dev_private;
247 	if (enable) {
248 		I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
249 
250 		if (!ivb_can_enable_err_int(dev))
251 			return;
252 
253 		ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
254 	} else {
255 		bool was_enabled = !(I915_READ(DEIMR) & DE_ERR_INT_IVB);
256 
257 		/* Change the state _after_ we've read out the current one. */
258 		ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
259 
260 		if (!was_enabled &&
261 		    (I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe))) {
262 			DRM_DEBUG_KMS("uncleared fifo underrun on pipe %c\n",
263 				      pipe_name(pipe));
264 		}
265 	}
266 }
267 
268 static void broadwell_set_fifo_underrun_reporting(struct drm_device *dev,
269 						  enum i915_pipe pipe, bool enable)
270 {
271 	struct drm_i915_private *dev_priv = dev->dev_private;
272 
273 	assert_spin_locked(&dev_priv->irq_lock);
274 
275 	if (enable)
276 		dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_FIFO_UNDERRUN;
277 	else
278 		dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_FIFO_UNDERRUN;
279 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
280 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
281 }
282 
283 /**
284  * ibx_display_interrupt_update - update SDEIMR
285  * @dev_priv: driver private
286  * @interrupt_mask: mask of interrupt bits to update
287  * @enabled_irq_mask: mask of interrupt bits to enable
288  */
289 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
290 					 uint32_t interrupt_mask,
291 					 uint32_t enabled_irq_mask)
292 {
293 	uint32_t sdeimr = I915_READ(SDEIMR);
294 	sdeimr &= ~interrupt_mask;
295 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
296 
297 	assert_spin_locked(&dev_priv->irq_lock);
298 
299 	if (dev_priv->pc8.irqs_disabled &&
300 	    (interrupt_mask & SDE_HOTPLUG_MASK_CPT)) {
301 		WARN(1, "IRQs disabled\n");
302 		dev_priv->pc8.regsave.sdeimr &= ~interrupt_mask;
303 		dev_priv->pc8.regsave.sdeimr |= (~enabled_irq_mask &
304 						 interrupt_mask);
305 		return;
306 	}
307 
308 	I915_WRITE(SDEIMR, sdeimr);
309 	POSTING_READ(SDEIMR);
310 }
311 #define ibx_enable_display_interrupt(dev_priv, bits) \
312 	ibx_display_interrupt_update((dev_priv), (bits), (bits))
313 #define ibx_disable_display_interrupt(dev_priv, bits) \
314 	ibx_display_interrupt_update((dev_priv), (bits), 0)
315 
316 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
317 					    enum transcoder pch_transcoder,
318 					    bool enable)
319 {
320 	struct drm_i915_private *dev_priv = dev->dev_private;
321 	uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
322 		       SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
323 
324 	if (enable)
325 		ibx_enable_display_interrupt(dev_priv, bit);
326 	else
327 		ibx_disable_display_interrupt(dev_priv, bit);
328 }
329 
330 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
331 					    enum transcoder pch_transcoder,
332 					    bool enable)
333 {
334 	struct drm_i915_private *dev_priv = dev->dev_private;
335 
336 	if (enable) {
337 		I915_WRITE(SERR_INT,
338 			   SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
339 
340 		if (!cpt_can_enable_serr_int(dev))
341 			return;
342 
343 		ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
344 	} else {
345 		uint32_t tmp = I915_READ(SERR_INT);
346 		bool was_enabled = !(I915_READ(SDEIMR) & SDE_ERROR_CPT);
347 
348 		/* Change the state _after_ we've read out the current one. */
349 		ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
350 
351 		if (!was_enabled &&
352 		    (tmp & SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder))) {
353 			DRM_DEBUG_KMS("uncleared pch fifo underrun on pch transcoder %c\n",
354 				      transcoder_name(pch_transcoder));
355 		}
356 	}
357 }
358 
359 /**
360  * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
361  * @dev: drm device
362  * @pipe: pipe
363  * @enable: true if we want to report FIFO underrun errors, false otherwise
364  *
365  * This function makes us disable or enable CPU fifo underruns for a specific
366  * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
367  * reporting for one pipe may also disable all the other CPU error interruts for
368  * the other pipes, due to the fact that there's just one interrupt mask/enable
369  * bit for all the pipes.
370  *
371  * Returns the previous state of underrun reporting.
372  */
373 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
374 					   enum i915_pipe pipe, bool enable)
375 {
376 	struct drm_i915_private *dev_priv = dev->dev_private;
377 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
378 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
379 	bool ret;
380 
381 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
382 
383 	ret = !intel_crtc->cpu_fifo_underrun_disabled;
384 
385 	if (enable == ret)
386 		goto done;
387 
388 	intel_crtc->cpu_fifo_underrun_disabled = !enable;
389 
390 	if (IS_GEN5(dev) || IS_GEN6(dev))
391 		ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
392 	else if (IS_GEN7(dev))
393 		ivybridge_set_fifo_underrun_reporting(dev, pipe, enable);
394 	else if (IS_GEN8(dev))
395 		broadwell_set_fifo_underrun_reporting(dev, pipe, enable);
396 
397 done:
398 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
399 	return ret;
400 }
401 
402 /**
403  * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
404  * @dev: drm device
405  * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
406  * @enable: true if we want to report FIFO underrun errors, false otherwise
407  *
408  * This function makes us disable or enable PCH fifo underruns for a specific
409  * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
410  * underrun reporting for one transcoder may also disable all the other PCH
411  * error interruts for the other transcoders, due to the fact that there's just
412  * one interrupt mask/enable bit for all the transcoders.
413  *
414  * Returns the previous state of underrun reporting.
415  */
416 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
417 					   enum transcoder pch_transcoder,
418 					   bool enable)
419 {
420 	struct drm_i915_private *dev_priv = dev->dev_private;
421 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
422 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
423 	bool ret;
424 
425 	/*
426 	 * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
427 	 * has only one pch transcoder A that all pipes can use. To avoid racy
428 	 * pch transcoder -> pipe lookups from interrupt code simply store the
429 	 * underrun statistics in crtc A. Since we never expose this anywhere
430 	 * nor use it outside of the fifo underrun code here using the "wrong"
431 	 * crtc on LPT won't cause issues.
432 	 */
433 
434 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
435 
436 	ret = !intel_crtc->pch_fifo_underrun_disabled;
437 
438 	if (enable == ret)
439 		goto done;
440 
441 	intel_crtc->pch_fifo_underrun_disabled = !enable;
442 
443 	if (HAS_PCH_IBX(dev))
444 		ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
445 	else
446 		cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
447 
448 done:
449 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
450 	return ret;
451 }
452 
453 
454 void
455 i915_enable_pipestat(drm_i915_private_t *dev_priv, enum i915_pipe pipe, u32 mask)
456 {
457 	u32 reg = PIPESTAT(pipe);
458 	u32 pipestat = I915_READ(reg) & 0x7fff0000;
459 
460 	assert_spin_locked(&dev_priv->irq_lock);
461 
462 	if ((pipestat & mask) == mask)
463 		return;
464 
465 	/* Enable the interrupt, clear any pending status */
466 	pipestat |= mask | (mask >> 16);
467 	I915_WRITE(reg, pipestat);
468 	POSTING_READ(reg);
469 }
470 
471 void
472 i915_disable_pipestat(drm_i915_private_t *dev_priv, enum i915_pipe pipe, u32 mask)
473 {
474 	u32 reg = PIPESTAT(pipe);
475 	u32 pipestat = I915_READ(reg) & 0x7fff0000;
476 
477 	assert_spin_locked(&dev_priv->irq_lock);
478 
479 	if ((pipestat & mask) == 0)
480 		return;
481 
482 	pipestat &= ~mask;
483 	I915_WRITE(reg, pipestat);
484 	POSTING_READ(reg);
485 }
486 
487 /**
488  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
489  */
490 static void i915_enable_asle_pipestat(struct drm_device *dev)
491 {
492 	drm_i915_private_t *dev_priv = dev->dev_private;
493 
494 	if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
495 		return;
496 
497 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
498 
499 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_ENABLE);
500 	if (INTEL_INFO(dev)->gen >= 4)
501 		i915_enable_pipestat(dev_priv, PIPE_A,
502 				     PIPE_LEGACY_BLC_EVENT_ENABLE);
503 
504 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
505 }
506 
507 /**
508  * i915_pipe_enabled - check if a pipe is enabled
509  * @dev: DRM device
510  * @pipe: pipe to check
511  *
512  * Reading certain registers when the pipe is disabled can hang the chip.
513  * Use this routine to make sure the PLL is running and the pipe is active
514  * before reading such registers if unsure.
515  */
516 static int
517 i915_pipe_enabled(struct drm_device *dev, int pipe)
518 {
519 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
520 
521 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
522 		/* Locking is horribly broken here, but whatever. */
523 		struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
524 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
525 
526 		return intel_crtc->active;
527 	} else {
528 		return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
529 	}
530 }
531 
532 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
533 {
534 	/* Gen2 doesn't have a hardware frame counter */
535 	return 0;
536 }
537 
538 /* Called from drm generic code, passed a 'crtc', which
539  * we use as a pipe index
540  */
541 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
542 {
543 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
544 	unsigned long high_frame;
545 	unsigned long low_frame;
546 	u32 high1, high2, low, pixel, vbl_start;
547 
548 	if (!i915_pipe_enabled(dev, pipe)) {
549 		DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
550 				"pipe %c\n", pipe_name(pipe));
551 		return 0;
552 	}
553 
554 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
555 		struct intel_crtc *intel_crtc =
556 			to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
557 		const struct drm_display_mode *mode =
558 			&intel_crtc->config.adjusted_mode;
559 
560 		vbl_start = mode->crtc_vblank_start * mode->crtc_htotal;
561 	} else {
562 		enum transcoder cpu_transcoder = (enum transcoder) pipe;
563 		u32 htotal;
564 
565 		htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
566 		vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
567 
568 		vbl_start *= htotal;
569 	}
570 
571 	high_frame = PIPEFRAME(pipe);
572 	low_frame = PIPEFRAMEPIXEL(pipe);
573 
574 	/*
575 	 * High & low register fields aren't synchronized, so make sure
576 	 * we get a low value that's stable across two reads of the high
577 	 * register.
578 	 */
579 	do {
580 		high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
581 		low   = I915_READ(low_frame);
582 		high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
583 	} while (high1 != high2);
584 
585 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
586 	pixel = low & PIPE_PIXEL_MASK;
587 	low >>= PIPE_FRAME_LOW_SHIFT;
588 
589 	/*
590 	 * The frame counter increments at beginning of active.
591 	 * Cook up a vblank counter by also checking the pixel
592 	 * counter against vblank start.
593 	 */
594 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
595 }
596 
597 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
598 {
599 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
600 	int reg = PIPE_FRMCOUNT_GM45(pipe);
601 
602 	if (!i915_pipe_enabled(dev, pipe)) {
603 		DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
604 				 "pipe %c\n", pipe_name(pipe));
605 		return 0;
606 	}
607 
608 	return I915_READ(reg);
609 }
610 
611 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
612 #define __raw_i915_read32(dev_priv__, reg__) DRM_READ32(dev_priv__->mmio_map, reg__)
613 
614 static bool ilk_pipe_in_vblank_locked(struct drm_device *dev, enum i915_pipe pipe)
615 {
616 	struct drm_i915_private *dev_priv = dev->dev_private;
617 	uint32_t status;
618 	int reg;
619 
620 	if (INTEL_INFO(dev)->gen >= 8) {
621 		status = GEN8_PIPE_VBLANK;
622 		reg = GEN8_DE_PIPE_ISR(pipe);
623 	} else if (INTEL_INFO(dev)->gen >= 7) {
624 		status = DE_PIPE_VBLANK_IVB(pipe);
625 		reg = DEISR;
626 	} else {
627 		status = DE_PIPE_VBLANK(pipe);
628 		reg = DEISR;
629 	}
630 
631 	return __raw_i915_read32(dev_priv, reg) & status;
632 }
633 
634 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
635 				    unsigned int flags, int *vpos, int *hpos,
636 				    ktime_t *stime, ktime_t *etime)
637 {
638 	struct drm_i915_private *dev_priv = dev->dev_private;
639 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
640 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
641 	const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
642 	int position;
643 	int vbl_start, vbl_end, htotal, vtotal;
644 	bool in_vbl = true;
645 	int ret = 0;
646 
647 	if (!intel_crtc->active) {
648 		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
649 				 "pipe %c\n", pipe_name(pipe));
650 		return 0;
651 	}
652 
653 	htotal = mode->crtc_htotal;
654 	vtotal = mode->crtc_vtotal;
655 	vbl_start = mode->crtc_vblank_start;
656 	vbl_end = mode->crtc_vblank_end;
657 
658 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
659 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
660 		vbl_end /= 2;
661 		vtotal /= 2;
662 	}
663 
664 	ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
665 
666 	/*
667 	 * Lock uncore.lock, as we will do multiple timing critical raw
668 	 * register reads, potentially with preemption disabled, so the
669 	 * following code must not block on uncore.lock.
670 	 */
671 	lockmgr(&dev_priv->uncore.lock, LK_EXCLUSIVE);
672 
673 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
674 
675 	/* Get optional system timestamp before query. */
676 	if (stime)
677 		*stime = ktime_get();
678 
679 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
680 		/* No obvious pixelcount register. Only query vertical
681 		 * scanout position from Display scan line register.
682 		 */
683 		if (IS_GEN2(dev))
684 			position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
685 		else
686 			position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
687 
688 		if (HAS_DDI(dev)) {
689 			/*
690 			 * On HSW HDMI outputs there seems to be a 2 line
691 			 * difference, whereas eDP has the normal 1 line
692 			 * difference that earlier platforms have. External
693 			 * DP is unknown. For now just check for the 2 line
694 			 * difference case on all output types on HSW+.
695 			 *
696 			 * This might misinterpret the scanline counter being
697 			 * one line too far along on eDP, but that's less
698 			 * dangerous than the alternative since that would lead
699 			 * the vblank timestamp code astray when it sees a
700 			 * scanline count before vblank_start during a vblank
701 			 * interrupt.
702 			 */
703 			in_vbl = ilk_pipe_in_vblank_locked(dev, pipe);
704 			if ((in_vbl && (position == vbl_start - 2 ||
705 					position == vbl_start - 1)) ||
706 			    (!in_vbl && (position == vbl_end - 2 ||
707 					 position == vbl_end - 1)))
708 				position = (position + 2) % vtotal;
709 		} else if (HAS_PCH_SPLIT(dev)) {
710 			/*
711 			 * The scanline counter increments at the leading edge
712 			 * of hsync, ie. it completely misses the active portion
713 			 * of the line. Fix up the counter at both edges of vblank
714 			 * to get a more accurate picture whether we're in vblank
715 			 * or not.
716 			 */
717 			in_vbl = ilk_pipe_in_vblank_locked(dev, pipe);
718 			if ((in_vbl && position == vbl_start - 1) ||
719 			    (!in_vbl && position == vbl_end - 1))
720 				position = (position + 1) % vtotal;
721 		} else {
722 			/*
723 			 * ISR vblank status bits don't work the way we'd want
724 			 * them to work on non-PCH platforms (for
725 			 * ilk_pipe_in_vblank_locked()), and there doesn't
726 			 * appear any other way to determine if we're currently
727 			 * in vblank.
728 			 *
729 			 * Instead let's assume that we're already in vblank if
730 			 * we got called from the vblank interrupt and the
731 			 * scanline counter value indicates that we're on the
732 			 * line just prior to vblank start. This should result
733 			 * in the correct answer, unless the vblank interrupt
734 			 * delivery really got delayed for almost exactly one
735 			 * full frame/field.
736 			 */
737 			if (flags & DRM_CALLED_FROM_VBLIRQ &&
738 			    position == vbl_start - 1) {
739 				position = (position + 1) % vtotal;
740 
741 				/* Signal this correction as "applied". */
742 				ret |= 0x8;
743 			}
744 		}
745 	} else {
746 		/* Have access to pixelcount since start of frame.
747 		 * We can split this into vertical and horizontal
748 		 * scanout position.
749 		 */
750 		position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
751 
752 		/* convert to pixel counts */
753 		vbl_start *= htotal;
754 		vbl_end *= htotal;
755 		vtotal *= htotal;
756 	}
757 
758 	/* Get optional system timestamp after query. */
759 	if (etime)
760 		*etime = ktime_get();
761 
762 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
763 
764 	lockmgr(&dev_priv->uncore.lock, LK_RELEASE);
765 
766 	in_vbl = position >= vbl_start && position < vbl_end;
767 
768 	/*
769 	 * While in vblank, position will be negative
770 	 * counting up towards 0 at vbl_end. And outside
771 	 * vblank, position will be positive counting
772 	 * up since vbl_end.
773 	 */
774 	if (position >= vbl_start)
775 		position -= vbl_end;
776 	else
777 		position += vtotal - vbl_end;
778 
779 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
780 		*vpos = position;
781 		*hpos = 0;
782 	} else {
783 		*vpos = position / htotal;
784 		*hpos = position - (*vpos * htotal);
785 	}
786 
787 	/* In vblank? */
788 	if (in_vbl)
789 		ret |= DRM_SCANOUTPOS_INVBL;
790 
791 	return ret;
792 }
793 
794 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
795 			      int *max_error,
796 			      struct timeval *vblank_time,
797 			      unsigned flags)
798 {
799 	struct drm_crtc *crtc;
800 
801 	if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
802 		DRM_ERROR("Invalid crtc %d\n", pipe);
803 		return -EINVAL;
804 	}
805 
806 	/* Get drm_crtc to timestamp: */
807 	crtc = intel_get_crtc_for_pipe(dev, pipe);
808 	if (crtc == NULL) {
809 		DRM_ERROR("Invalid crtc %d\n", pipe);
810 		return -EINVAL;
811 	}
812 
813 	if (!crtc->enabled) {
814 		DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
815 		return -EBUSY;
816 	}
817 
818 	/* Helper routine in DRM core does all the work: */
819 	return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
820 						     vblank_time, flags,
821 						     crtc,
822 						     &to_intel_crtc(crtc)->config.adjusted_mode);
823 }
824 
825 static bool intel_hpd_irq_event(struct drm_device *dev,
826 				struct drm_connector *connector)
827 {
828 	enum drm_connector_status old_status;
829 
830 	WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
831 	old_status = connector->status;
832 
833 	connector->status = connector->funcs->detect(connector, false);
834 	if (old_status == connector->status)
835 		return false;
836 
837 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
838 		      connector->base.id,
839 		      drm_get_connector_name(connector),
840 		      drm_get_connector_status_name(old_status),
841 		      drm_get_connector_status_name(connector->status));
842 
843 	return true;
844 }
845 
846 /*
847  * Handle hotplug events outside the interrupt handler proper.
848  */
849 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
850 
851 static void i915_hotplug_work_func(struct work_struct *work)
852 {
853 	drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
854 						    hotplug_work);
855 	struct drm_device *dev = dev_priv->dev;
856 	struct drm_mode_config *mode_config = &dev->mode_config;
857 	struct intel_connector *intel_connector;
858 	struct intel_encoder *intel_encoder;
859 	struct drm_connector *connector;
860 	bool hpd_disabled = false;
861 	bool changed = false;
862 	u32 hpd_event_bits;
863 
864 	/* HPD irq before everything is fully set up. */
865 	if (!dev_priv->enable_hotplug_processing)
866 		return;
867 
868 	mutex_lock(&mode_config->mutex);
869 	DRM_DEBUG_KMS("running encoder hotplug functions\n");
870 
871 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
872 
873 	hpd_event_bits = dev_priv->hpd_event_bits;
874 	dev_priv->hpd_event_bits = 0;
875 	list_for_each_entry(connector, &mode_config->connector_list, head) {
876 		intel_connector = to_intel_connector(connector);
877 		intel_encoder = intel_connector->encoder;
878 		if (intel_encoder->hpd_pin > HPD_NONE &&
879 		    dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
880 		    connector->polled == DRM_CONNECTOR_POLL_HPD) {
881 			DRM_INFO("HPD interrupt storm detected on connector %s: "
882 				 "switching from hotplug detection to polling\n",
883 				drm_get_connector_name(connector));
884 			dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
885 			connector->polled = DRM_CONNECTOR_POLL_CONNECT
886 				| DRM_CONNECTOR_POLL_DISCONNECT;
887 			hpd_disabled = true;
888 		}
889 		if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
890 			DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
891 				      drm_get_connector_name(connector), intel_encoder->hpd_pin);
892 		}
893 	}
894 	 /* if there were no outputs to poll, poll was disabled,
895 	  * therefore make sure it's enabled when disabling HPD on
896 	  * some connectors */
897 	if (hpd_disabled) {
898 		drm_kms_helper_poll_enable(dev);
899 		mod_timer(&dev_priv->hotplug_reenable_timer,
900 			  jiffies + msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
901 	}
902 
903 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
904 
905 	list_for_each_entry(connector, &mode_config->connector_list, head) {
906 		intel_connector = to_intel_connector(connector);
907 		intel_encoder = intel_connector->encoder;
908 		if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
909 			if (intel_encoder->hot_plug)
910 				intel_encoder->hot_plug(intel_encoder);
911 			if (intel_hpd_irq_event(dev, connector))
912 				changed = true;
913 		}
914 	}
915 	mutex_unlock(&mode_config->mutex);
916 
917 	if (changed)
918 		drm_kms_helper_hotplug_event(dev);
919 }
920 
921 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
922 {
923 	drm_i915_private_t *dev_priv = dev->dev_private;
924 	u32 busy_up, busy_down, max_avg, min_avg;
925 	u8 new_delay;
926 
927 	lockmgr(&mchdev_lock, LK_EXCLUSIVE);
928 
929 	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
930 
931 	new_delay = dev_priv->ips.cur_delay;
932 
933 	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
934 	busy_up = I915_READ(RCPREVBSYTUPAVG);
935 	busy_down = I915_READ(RCPREVBSYTDNAVG);
936 	max_avg = I915_READ(RCBMAXAVG);
937 	min_avg = I915_READ(RCBMINAVG);
938 
939 	/* Handle RCS change request from hw */
940 	if (busy_up > max_avg) {
941 		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
942 			new_delay = dev_priv->ips.cur_delay - 1;
943 		if (new_delay < dev_priv->ips.max_delay)
944 			new_delay = dev_priv->ips.max_delay;
945 	} else if (busy_down < min_avg) {
946 		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
947 			new_delay = dev_priv->ips.cur_delay + 1;
948 		if (new_delay > dev_priv->ips.min_delay)
949 			new_delay = dev_priv->ips.min_delay;
950 	}
951 
952 	if (ironlake_set_drps(dev, new_delay))
953 		dev_priv->ips.cur_delay = new_delay;
954 
955 	lockmgr(&mchdev_lock, LK_RELEASE);
956 
957 	return;
958 }
959 
960 static void notify_ring(struct drm_device *dev,
961 			struct intel_ring_buffer *ring)
962 {
963 	if (ring->obj == NULL)
964 		return;
965 
966 	trace_i915_gem_request_complete(ring);
967 
968 	wake_up_all(&ring->irq_queue);
969 	i915_queue_hangcheck(dev);
970 }
971 
972 static void gen6_pm_rps_work(struct work_struct *work)
973 {
974 	drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
975 						    rps.work);
976 	u32 pm_iir;
977 	int new_delay, adj;
978 
979 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
980 	pm_iir = dev_priv->rps.pm_iir;
981 	dev_priv->rps.pm_iir = 0;
982 	/* Make sure not to corrupt PMIMR state used by ringbuffer code */
983 	snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
984 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
985 
986 	/* Make sure we didn't queue anything we're not going to process. */
987 	WARN_ON(pm_iir & ~GEN6_PM_RPS_EVENTS);
988 
989 	if ((pm_iir & GEN6_PM_RPS_EVENTS) == 0)
990 		return;
991 
992 	mutex_lock(&dev_priv->rps.hw_lock);
993 
994 	adj = dev_priv->rps.last_adj;
995 	if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
996 		if (adj > 0)
997 			adj *= 2;
998 		else
999 			adj = 1;
1000 		new_delay = dev_priv->rps.cur_delay + adj;
1001 
1002 		/*
1003 		 * For better performance, jump directly
1004 		 * to RPe if we're below it.
1005 		 */
1006 		if (new_delay < dev_priv->rps.rpe_delay)
1007 			new_delay = dev_priv->rps.rpe_delay;
1008 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1009 		if (dev_priv->rps.cur_delay > dev_priv->rps.rpe_delay)
1010 			new_delay = dev_priv->rps.rpe_delay;
1011 		else
1012 			new_delay = dev_priv->rps.min_delay;
1013 		adj = 0;
1014 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1015 		if (adj < 0)
1016 			adj *= 2;
1017 		else
1018 			adj = -1;
1019 		new_delay = dev_priv->rps.cur_delay + adj;
1020 	} else { /* unknown event */
1021 		new_delay = dev_priv->rps.cur_delay;
1022 	}
1023 
1024 	/* sysfs frequency interfaces may have snuck in while servicing the
1025 	 * interrupt
1026 	 */
1027 	new_delay = clamp_t(int, new_delay,
1028 			    dev_priv->rps.min_delay, dev_priv->rps.max_delay);
1029 	dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_delay;
1030 
1031 	if (IS_VALLEYVIEW(dev_priv->dev))
1032 		valleyview_set_rps(dev_priv->dev, new_delay);
1033 	else
1034 		gen6_set_rps(dev_priv->dev, new_delay);
1035 
1036 	mutex_unlock(&dev_priv->rps.hw_lock);
1037 }
1038 
1039 
1040 /**
1041  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1042  * occurred.
1043  * @work: workqueue struct
1044  *
1045  * Doesn't actually do anything except notify userspace. As a consequence of
1046  * this event, userspace should try to remap the bad rows since statistically
1047  * it is likely the same row is more likely to go bad again.
1048  */
1049 static void ivybridge_parity_work(struct work_struct *work)
1050 {
1051 	drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
1052 						    l3_parity.error_work);
1053 	u32 error_status, row, bank, subbank;
1054 	char *parity_event[6];
1055 	uint32_t misccpctl;
1056 	uint8_t slice = 0;
1057 
1058 	/* We must turn off DOP level clock gating to access the L3 registers.
1059 	 * In order to prevent a get/put style interface, acquire struct mutex
1060 	 * any time we access those registers.
1061 	 */
1062 	mutex_lock(&dev_priv->dev->struct_mutex);
1063 
1064 	/* If we've screwed up tracking, just let the interrupt fire again */
1065 	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1066 		goto out;
1067 
1068 	misccpctl = I915_READ(GEN7_MISCCPCTL);
1069 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1070 	POSTING_READ(GEN7_MISCCPCTL);
1071 
1072 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1073 		u32 reg;
1074 
1075 		slice--;
1076 		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1077 			break;
1078 
1079 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1080 
1081 		reg = GEN7_L3CDERRST1 + (slice * 0x200);
1082 
1083 		error_status = I915_READ(reg);
1084 		row = GEN7_PARITY_ERROR_ROW(error_status);
1085 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1086 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1087 
1088 		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1089 		POSTING_READ(reg);
1090 
1091 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1092 		parity_event[5] = NULL;
1093 
1094 #if 0
1095 		kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1096 				   KOBJ_CHANGE, parity_event);
1097 #endif
1098 
1099 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1100 			  slice, row, bank, subbank);
1101 
1102 #if 0
1103 		kfree(parity_event[4]);
1104 		kfree(parity_event[3]);
1105 		kfree(parity_event[2]);
1106 		kfree(parity_event[1]);
1107 #endif
1108 	}
1109 
1110 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1111 
1112 out:
1113 	WARN_ON(dev_priv->l3_parity.which_slice);
1114 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1115 	ilk_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1116 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1117 
1118 	mutex_unlock(&dev_priv->dev->struct_mutex);
1119 }
1120 
1121 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1122 {
1123 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1124 
1125 	if (!HAS_L3_DPF(dev))
1126 		return;
1127 
1128 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1129 	ilk_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1130 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1131 
1132 	iir &= GT_PARITY_ERROR(dev);
1133 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1134 		dev_priv->l3_parity.which_slice |= 1 << 1;
1135 
1136 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1137 		dev_priv->l3_parity.which_slice |= 1 << 0;
1138 
1139 	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1140 }
1141 
1142 static void ilk_gt_irq_handler(struct drm_device *dev,
1143 			       struct drm_i915_private *dev_priv,
1144 			       u32 gt_iir)
1145 {
1146 	if (gt_iir &
1147 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1148 		notify_ring(dev, &dev_priv->ring[RCS]);
1149 	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1150 		notify_ring(dev, &dev_priv->ring[VCS]);
1151 }
1152 
1153 static void snb_gt_irq_handler(struct drm_device *dev,
1154 			       struct drm_i915_private *dev_priv,
1155 			       u32 gt_iir)
1156 {
1157 
1158 	if (gt_iir &
1159 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1160 		notify_ring(dev, &dev_priv->ring[RCS]);
1161 	if (gt_iir & GT_BSD_USER_INTERRUPT)
1162 		notify_ring(dev, &dev_priv->ring[VCS]);
1163 	if (gt_iir & GT_BLT_USER_INTERRUPT)
1164 		notify_ring(dev, &dev_priv->ring[BCS]);
1165 
1166 	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1167 		      GT_BSD_CS_ERROR_INTERRUPT |
1168 		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
1169 		DRM_ERROR("GT error interrupt 0x%08x\n", gt_iir);
1170 		i915_handle_error(dev, false);
1171 	}
1172 
1173 	if (gt_iir & GT_PARITY_ERROR(dev))
1174 		ivybridge_parity_error_irq_handler(dev, gt_iir);
1175 }
1176 
1177 static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1178 				       struct drm_i915_private *dev_priv,
1179 				       u32 master_ctl)
1180 {
1181 	u32 rcs, bcs, vcs;
1182 	uint32_t tmp = 0;
1183 
1184 	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1185 		tmp = I915_READ(GEN8_GT_IIR(0));
1186 		if (tmp) {
1187 			rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1188 			bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1189 			if (rcs & GT_RENDER_USER_INTERRUPT)
1190 				notify_ring(dev, &dev_priv->ring[RCS]);
1191 			if (bcs & GT_RENDER_USER_INTERRUPT)
1192 				notify_ring(dev, &dev_priv->ring[BCS]);
1193 			I915_WRITE(GEN8_GT_IIR(0), tmp);
1194 		} else
1195 			DRM_ERROR("The master control interrupt lied (GT0)!\n");
1196 	}
1197 
1198 	if (master_ctl & GEN8_GT_VCS1_IRQ) {
1199 		tmp = I915_READ(GEN8_GT_IIR(1));
1200 		if (tmp) {
1201 			vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1202 			if (vcs & GT_RENDER_USER_INTERRUPT)
1203 				notify_ring(dev, &dev_priv->ring[VCS]);
1204 			I915_WRITE(GEN8_GT_IIR(1), tmp);
1205 		} else
1206 			DRM_ERROR("The master control interrupt lied (GT1)!\n");
1207 	}
1208 
1209 	if (master_ctl & GEN8_GT_VECS_IRQ) {
1210 		tmp = I915_READ(GEN8_GT_IIR(3));
1211 		if (tmp) {
1212 			vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1213 			if (vcs & GT_RENDER_USER_INTERRUPT)
1214 				notify_ring(dev, &dev_priv->ring[VECS]);
1215 			I915_WRITE(GEN8_GT_IIR(3), tmp);
1216 		} else
1217 			DRM_ERROR("The master control interrupt lied (GT3)!\n");
1218 	}
1219 
1220 }
1221 
1222 #define HPD_STORM_DETECT_PERIOD 1000
1223 #define HPD_STORM_THRESHOLD 5
1224 
1225 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1226 					 u32 hotplug_trigger,
1227 					 const u32 *hpd)
1228 {
1229 	drm_i915_private_t *dev_priv = dev->dev_private;
1230 	int i;
1231 	bool storm_detected = false;
1232 
1233 	if (!hotplug_trigger)
1234 		return;
1235 
1236 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1237 	for (i = 1; i < HPD_NUM_PINS; i++) {
1238 
1239 		WARN_ONCE(hpd[i] & hotplug_trigger &&
1240 			  dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED,
1241 			  "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1242 			  hotplug_trigger, i, hpd[i]);
1243 
1244 		if (!(hpd[i] & hotplug_trigger) ||
1245 		    dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1246 			continue;
1247 
1248 		dev_priv->hpd_event_bits |= (1 << i);
1249 		if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1250 				   dev_priv->hpd_stats[i].hpd_last_jiffies
1251 				   + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1252 			dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1253 			dev_priv->hpd_stats[i].hpd_cnt = 0;
1254 			DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1255 		} else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1256 			dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1257 			dev_priv->hpd_event_bits &= ~(1 << i);
1258 			DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1259 			storm_detected = true;
1260 		} else {
1261 			dev_priv->hpd_stats[i].hpd_cnt++;
1262 			DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1263 				      dev_priv->hpd_stats[i].hpd_cnt);
1264 		}
1265 	}
1266 
1267 	if (storm_detected)
1268 		dev_priv->display.hpd_irq_setup(dev);
1269 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1270 
1271 	/*
1272 	 * Our hotplug handler can grab modeset locks (by calling down into the
1273 	 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1274 	 * queue for otherwise the flush_work in the pageflip code will
1275 	 * deadlock.
1276 	 */
1277 	schedule_work(&dev_priv->hotplug_work);
1278 }
1279 
1280 static void gmbus_irq_handler(struct drm_device *dev)
1281 {
1282 	struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
1283 
1284 	wake_up_all(&dev_priv->gmbus_wait_queue);
1285 }
1286 
1287 static void dp_aux_irq_handler(struct drm_device *dev)
1288 {
1289 	struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
1290 
1291 	wake_up_all(&dev_priv->gmbus_wait_queue);
1292 }
1293 
1294 #if defined(CONFIG_DEBUG_FS)
1295 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum i915_pipe pipe,
1296 					 uint32_t crc0, uint32_t crc1,
1297 					 uint32_t crc2, uint32_t crc3,
1298 					 uint32_t crc4)
1299 {
1300 	struct drm_i915_private *dev_priv = dev->dev_private;
1301 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1302 	struct intel_pipe_crc_entry *entry;
1303 	int head, tail;
1304 
1305 	spin_lock(&pipe_crc->lock);
1306 
1307 	if (!pipe_crc->entries) {
1308 		spin_unlock(&pipe_crc->lock);
1309 		DRM_ERROR("spurious interrupt\n");
1310 		return;
1311 	}
1312 
1313 	head = pipe_crc->head;
1314 	tail = pipe_crc->tail;
1315 
1316 	if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1317 		spin_unlock(&pipe_crc->lock);
1318 		DRM_ERROR("CRC buffer overflowing\n");
1319 		return;
1320 	}
1321 
1322 	entry = &pipe_crc->entries[head];
1323 
1324 	entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1325 	entry->crc[0] = crc0;
1326 	entry->crc[1] = crc1;
1327 	entry->crc[2] = crc2;
1328 	entry->crc[3] = crc3;
1329 	entry->crc[4] = crc4;
1330 
1331 	head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1332 	pipe_crc->head = head;
1333 
1334 	spin_unlock(&pipe_crc->lock);
1335 
1336 	wake_up_interruptible(&pipe_crc->wq);
1337 }
1338 #else
1339 static inline void
1340 display_pipe_crc_irq_handler(struct drm_device *dev, enum i915_pipe pipe,
1341 			     uint32_t crc0, uint32_t crc1,
1342 			     uint32_t crc2, uint32_t crc3,
1343 			     uint32_t crc4) {}
1344 #endif
1345 
1346 
1347 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum i915_pipe pipe)
1348 {
1349 	struct drm_i915_private *dev_priv = dev->dev_private;
1350 
1351 	display_pipe_crc_irq_handler(dev, pipe,
1352 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1353 				     0, 0, 0, 0);
1354 }
1355 
1356 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum i915_pipe pipe)
1357 {
1358 	struct drm_i915_private *dev_priv = dev->dev_private;
1359 
1360 	display_pipe_crc_irq_handler(dev, pipe,
1361 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1362 				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1363 				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1364 				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1365 				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1366 }
1367 
1368 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum i915_pipe pipe)
1369 {
1370 	struct drm_i915_private *dev_priv = dev->dev_private;
1371 	uint32_t res1, res2;
1372 
1373 	if (INTEL_INFO(dev)->gen >= 3)
1374 		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1375 	else
1376 		res1 = 0;
1377 
1378 	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1379 		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1380 	else
1381 		res2 = 0;
1382 
1383 	display_pipe_crc_irq_handler(dev, pipe,
1384 				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1385 				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1386 				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1387 				     res1, res2);
1388 }
1389 
1390 /* The RPS events need forcewake, so we add them to a work queue and mask their
1391  * IMR bits until the work is done. Other interrupts can be processed without
1392  * the work queue. */
1393 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1394 {
1395 	if (pm_iir & GEN6_PM_RPS_EVENTS) {
1396 		lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1397 		dev_priv->rps.pm_iir |= pm_iir & GEN6_PM_RPS_EVENTS;
1398 		snb_disable_pm_irq(dev_priv, pm_iir & GEN6_PM_RPS_EVENTS);
1399 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1400 
1401 		queue_work(dev_priv->wq, &dev_priv->rps.work);
1402 	}
1403 
1404 	if (HAS_VEBOX(dev_priv->dev)) {
1405 		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1406 			notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1407 
1408 		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
1409 			DRM_ERROR("VEBOX CS error interrupt 0x%08x\n", pm_iir);
1410 			i915_handle_error(dev_priv->dev, false);
1411 		}
1412 	}
1413 }
1414 
1415 static irqreturn_t valleyview_irq_handler(void *arg)
1416 {
1417 	struct drm_device *dev = (struct drm_device *) arg;
1418 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1419 	u32 iir, gt_iir, pm_iir;
1420 	int pipe;
1421 	u32 pipe_stats[I915_MAX_PIPES];
1422 
1423 	atomic_inc(&dev_priv->irq_received);
1424 
1425 	while (true) {
1426 		iir = I915_READ(VLV_IIR);
1427 		gt_iir = I915_READ(GTIIR);
1428 		pm_iir = I915_READ(GEN6_PMIIR);
1429 
1430 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1431 			goto out;
1432 
1433 
1434 		snb_gt_irq_handler(dev, dev_priv, gt_iir);
1435 
1436 		lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1437 		for_each_pipe(pipe) {
1438 			int reg = PIPESTAT(pipe);
1439 			pipe_stats[pipe] = I915_READ(reg);
1440 
1441 			/*
1442 			 * Clear the PIPE*STAT regs before the IIR
1443 			 */
1444 			if (pipe_stats[pipe] & 0x8000ffff) {
1445 				if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1446 					DRM_DEBUG_DRIVER("pipe %c underrun\n",
1447 							 pipe_name(pipe));
1448 				I915_WRITE(reg, pipe_stats[pipe]);
1449 			}
1450 		}
1451 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1452 
1453 		for_each_pipe(pipe) {
1454 			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1455 				drm_handle_vblank(dev, pipe);
1456 
1457 			if (pipe_stats[pipe] & PLANE_FLIPDONE_INT_STATUS_VLV) {
1458 				intel_prepare_page_flip(dev, pipe);
1459 				intel_finish_page_flip(dev, pipe);
1460 			}
1461 
1462 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1463 				i9xx_pipe_crc_irq_handler(dev, pipe);
1464 		}
1465 
1466 		/* Consume port.  Then clear IIR or we'll miss events */
1467 		if (iir & I915_DISPLAY_PORT_INTERRUPT) {
1468 			u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1469 			u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1470 
1471 			DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
1472 					 hotplug_status);
1473 
1474 			intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
1475 
1476 			if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1477 				dp_aux_irq_handler(dev);
1478 
1479 			I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1480 			I915_READ(PORT_HOTPLUG_STAT);
1481 		}
1482 
1483 		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1484 			gmbus_irq_handler(dev);
1485 
1486 		if (pm_iir)
1487 			gen6_rps_irq_handler(dev_priv, pm_iir);
1488 
1489 		I915_WRITE(GTIIR, gt_iir);
1490 		I915_WRITE(GEN6_PMIIR, pm_iir);
1491 		I915_WRITE(VLV_IIR, iir);
1492 	}
1493 
1494 out:
1495 	return;
1496 }
1497 
1498 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1499 {
1500 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1501 	int pipe;
1502 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1503 
1504 	intel_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1505 
1506 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
1507 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1508 			       SDE_AUDIO_POWER_SHIFT);
1509 		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1510 				 port_name(port));
1511 	}
1512 
1513 	if (pch_iir & SDE_AUX_MASK)
1514 		dp_aux_irq_handler(dev);
1515 
1516 	if (pch_iir & SDE_GMBUS)
1517 		gmbus_irq_handler(dev);
1518 
1519 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
1520 		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1521 
1522 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
1523 		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1524 
1525 	if (pch_iir & SDE_POISON)
1526 		DRM_ERROR("PCH poison interrupt\n");
1527 
1528 	if (pch_iir & SDE_FDI_MASK)
1529 		for_each_pipe(pipe)
1530 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1531 					 pipe_name(pipe),
1532 					 I915_READ(FDI_RX_IIR(pipe)));
1533 
1534 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1535 		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1536 
1537 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1538 		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1539 
1540 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1541 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1542 							  false))
1543 			DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
1544 
1545 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1546 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1547 							  false))
1548 			DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
1549 }
1550 
1551 static void ivb_err_int_handler(struct drm_device *dev)
1552 {
1553 	struct drm_i915_private *dev_priv = dev->dev_private;
1554 	u32 err_int = I915_READ(GEN7_ERR_INT);
1555 	enum i915_pipe pipe;
1556 
1557 	if (err_int & ERR_INT_POISON)
1558 		DRM_ERROR("Poison interrupt\n");
1559 
1560 	for_each_pipe(pipe) {
1561 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) {
1562 			if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
1563 								  false))
1564 				DRM_DEBUG_DRIVER("Pipe %c FIFO underrun\n",
1565 						 pipe_name(pipe));
1566 		}
1567 
1568 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1569 			if (IS_IVYBRIDGE(dev))
1570 				ivb_pipe_crc_irq_handler(dev, pipe);
1571 			else
1572 				hsw_pipe_crc_irq_handler(dev, pipe);
1573 		}
1574 	}
1575 
1576 	I915_WRITE(GEN7_ERR_INT, err_int);
1577 }
1578 
1579 static void cpt_serr_int_handler(struct drm_device *dev)
1580 {
1581 	struct drm_i915_private *dev_priv = dev->dev_private;
1582 	u32 serr_int = I915_READ(SERR_INT);
1583 
1584 	if (serr_int & SERR_INT_POISON)
1585 		DRM_ERROR("PCH poison interrupt\n");
1586 
1587 	if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1588 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1589 							  false))
1590 			DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
1591 
1592 	if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1593 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1594 							  false))
1595 			DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
1596 
1597 	if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1598 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
1599 							  false))
1600 			DRM_DEBUG_DRIVER("PCH transcoder C FIFO underrun\n");
1601 
1602 	I915_WRITE(SERR_INT, serr_int);
1603 }
1604 
1605 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1606 {
1607 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1608 	int pipe;
1609 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1610 
1611 	intel_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1612 
1613 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1614 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1615 			       SDE_AUDIO_POWER_SHIFT_CPT);
1616 		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1617 				 port_name(port));
1618 	}
1619 
1620 	if (pch_iir & SDE_AUX_MASK_CPT)
1621 		dp_aux_irq_handler(dev);
1622 
1623 	if (pch_iir & SDE_GMBUS_CPT)
1624 		gmbus_irq_handler(dev);
1625 
1626 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1627 		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1628 
1629 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1630 		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1631 
1632 	if (pch_iir & SDE_FDI_MASK_CPT)
1633 		for_each_pipe(pipe)
1634 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1635 					 pipe_name(pipe),
1636 					 I915_READ(FDI_RX_IIR(pipe)));
1637 
1638 	if (pch_iir & SDE_ERROR_CPT)
1639 		cpt_serr_int_handler(dev);
1640 }
1641 
1642 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
1643 {
1644 	struct drm_i915_private *dev_priv = dev->dev_private;
1645 	enum i915_pipe pipe;
1646 
1647 	if (de_iir & DE_AUX_CHANNEL_A)
1648 		dp_aux_irq_handler(dev);
1649 
1650 	if (de_iir & DE_GSE)
1651 		intel_opregion_asle_intr(dev);
1652 
1653 	if (de_iir & DE_POISON)
1654 		DRM_ERROR("Poison interrupt\n");
1655 
1656 	for_each_pipe(pipe) {
1657 		if (de_iir & DE_PIPE_VBLANK(pipe))
1658 			drm_handle_vblank(dev, pipe);
1659 
1660 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
1661 			if (intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
1662 				DRM_DEBUG_DRIVER("Pipe %c FIFO underrun\n",
1663 						 pipe_name(pipe));
1664 
1665 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
1666 			i9xx_pipe_crc_irq_handler(dev, pipe);
1667 
1668 		/* plane/pipes map 1:1 on ilk+ */
1669 		if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
1670 			intel_prepare_page_flip(dev, pipe);
1671 			intel_finish_page_flip_plane(dev, pipe);
1672 		}
1673 	}
1674 
1675 	/* check event from PCH */
1676 	if (de_iir & DE_PCH_EVENT) {
1677 		u32 pch_iir = I915_READ(SDEIIR);
1678 
1679 		if (HAS_PCH_CPT(dev))
1680 			cpt_irq_handler(dev, pch_iir);
1681 		else
1682 			ibx_irq_handler(dev, pch_iir);
1683 
1684 		/* should clear PCH hotplug event before clear CPU irq */
1685 		I915_WRITE(SDEIIR, pch_iir);
1686 	}
1687 
1688 	if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
1689 		ironlake_rps_change_irq_handler(dev);
1690 }
1691 
1692 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
1693 {
1694 	struct drm_i915_private *dev_priv = dev->dev_private;
1695 	enum i915_pipe i;
1696 
1697 	if (de_iir & DE_ERR_INT_IVB)
1698 		ivb_err_int_handler(dev);
1699 
1700 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
1701 		dp_aux_irq_handler(dev);
1702 
1703 	if (de_iir & DE_GSE_IVB)
1704 		intel_opregion_asle_intr(dev);
1705 
1706 	for_each_pipe(i) {
1707 		if (de_iir & (DE_PIPE_VBLANK_IVB(i)))
1708 			drm_handle_vblank(dev, i);
1709 
1710 		/* plane/pipes map 1:1 on ilk+ */
1711 		if (de_iir & DE_PLANE_FLIP_DONE_IVB(i)) {
1712 			intel_prepare_page_flip(dev, i);
1713 			intel_finish_page_flip_plane(dev, i);
1714 		}
1715 	}
1716 
1717 	/* check event from PCH */
1718 	if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
1719 		u32 pch_iir = I915_READ(SDEIIR);
1720 
1721 		cpt_irq_handler(dev, pch_iir);
1722 
1723 		/* clear PCH hotplug event before clear CPU irq */
1724 		I915_WRITE(SDEIIR, pch_iir);
1725 	}
1726 }
1727 
1728 static irqreturn_t ironlake_irq_handler(void *arg)
1729 {
1730 	struct drm_device *dev = (struct drm_device *) arg;
1731 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1732 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
1733 
1734 	atomic_inc(&dev_priv->irq_received);
1735 
1736 	/* We get interrupts on unclaimed registers, so check for this before we
1737 	 * do any I915_{READ,WRITE}. */
1738 	intel_uncore_check_errors(dev);
1739 
1740 	/* disable master interrupt before clearing iir  */
1741 	de_ier = I915_READ(DEIER);
1742 	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1743 	POSTING_READ(DEIER);
1744 
1745 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
1746 	 * interrupts will will be stored on its back queue, and then we'll be
1747 	 * able to process them after we restore SDEIER (as soon as we restore
1748 	 * it, we'll get an interrupt if SDEIIR still has something to process
1749 	 * due to its back queue). */
1750 	if (!HAS_PCH_NOP(dev)) {
1751 		sde_ier = I915_READ(SDEIER);
1752 		I915_WRITE(SDEIER, 0);
1753 		POSTING_READ(SDEIER);
1754 	}
1755 
1756 	gt_iir = I915_READ(GTIIR);
1757 	if (gt_iir) {
1758 		if (INTEL_INFO(dev)->gen >= 6)
1759 			snb_gt_irq_handler(dev, dev_priv, gt_iir);
1760 		else
1761 			ilk_gt_irq_handler(dev, dev_priv, gt_iir);
1762 		I915_WRITE(GTIIR, gt_iir);
1763 	}
1764 
1765 	de_iir = I915_READ(DEIIR);
1766 	if (de_iir) {
1767 		if (INTEL_INFO(dev)->gen >= 7)
1768 			ivb_display_irq_handler(dev, de_iir);
1769 		else
1770 			ilk_display_irq_handler(dev, de_iir);
1771 		I915_WRITE(DEIIR, de_iir);
1772 	}
1773 
1774 	if (INTEL_INFO(dev)->gen >= 6) {
1775 		u32 pm_iir = I915_READ(GEN6_PMIIR);
1776 		if (pm_iir) {
1777 			gen6_rps_irq_handler(dev_priv, pm_iir);
1778 			I915_WRITE(GEN6_PMIIR, pm_iir);
1779 		}
1780 	}
1781 
1782 	I915_WRITE(DEIER, de_ier);
1783 	POSTING_READ(DEIER);
1784 	if (!HAS_PCH_NOP(dev)) {
1785 		I915_WRITE(SDEIER, sde_ier);
1786 		POSTING_READ(SDEIER);
1787 	}
1788 
1789 }
1790 
1791 static irqreturn_t gen8_irq_handler(void *arg)
1792 {
1793 	struct drm_device *dev = arg;
1794 	struct drm_i915_private *dev_priv = dev->dev_private;
1795 	u32 master_ctl;
1796 	uint32_t tmp = 0;
1797 	enum i915_pipe pipe;
1798 
1799 	atomic_inc(&dev_priv->irq_received);
1800 
1801 	master_ctl = I915_READ(GEN8_MASTER_IRQ);
1802 	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
1803 	if (!master_ctl)
1804 		return;
1805 
1806 	I915_WRITE(GEN8_MASTER_IRQ, 0);
1807 	POSTING_READ(GEN8_MASTER_IRQ);
1808 
1809 	gen8_gt_irq_handler(dev, dev_priv, master_ctl);
1810 
1811 	if (master_ctl & GEN8_DE_MISC_IRQ) {
1812 		tmp = I915_READ(GEN8_DE_MISC_IIR);
1813 		if (tmp & GEN8_DE_MISC_GSE)
1814 			intel_opregion_asle_intr(dev);
1815 		else if (tmp)
1816 			DRM_ERROR("Unexpected DE Misc interrupt\n");
1817 		else
1818 			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
1819 
1820 		if (tmp) {
1821 			I915_WRITE(GEN8_DE_MISC_IIR, tmp);
1822 		}
1823 	}
1824 
1825 	if (master_ctl & GEN8_DE_PORT_IRQ) {
1826 		tmp = I915_READ(GEN8_DE_PORT_IIR);
1827 		if (tmp & GEN8_AUX_CHANNEL_A)
1828 			dp_aux_irq_handler(dev);
1829 		else if (tmp)
1830 			DRM_ERROR("Unexpected DE Port interrupt\n");
1831 		else
1832 			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
1833 
1834 		if (tmp) {
1835 			I915_WRITE(GEN8_DE_PORT_IIR, tmp);
1836 		}
1837 	}
1838 
1839 	for_each_pipe(pipe) {
1840 		uint32_t pipe_iir;
1841 
1842 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
1843 			continue;
1844 
1845 		pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
1846 		if (pipe_iir & GEN8_PIPE_VBLANK)
1847 			drm_handle_vblank(dev, pipe);
1848 
1849 		if (pipe_iir & GEN8_PIPE_FLIP_DONE) {
1850 			intel_prepare_page_flip(dev, pipe);
1851 			intel_finish_page_flip_plane(dev, pipe);
1852 		}
1853 
1854 		if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
1855 			hsw_pipe_crc_irq_handler(dev, pipe);
1856 
1857 		if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN) {
1858 			if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
1859 								  false))
1860 				DRM_DEBUG_DRIVER("Pipe %c FIFO underrun\n",
1861 						 pipe_name(pipe));
1862 		}
1863 
1864 		if (pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS) {
1865 			DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
1866 				  pipe_name(pipe),
1867 				  pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
1868 		}
1869 
1870 		if (pipe_iir) {
1871 			I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
1872 		} else
1873 			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
1874 	}
1875 
1876 	if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
1877 		/*
1878 		 * FIXME(BDW): Assume for now that the new interrupt handling
1879 		 * scheme also closed the SDE interrupt handling race we've seen
1880 		 * on older pch-split platforms. But this needs testing.
1881 		 */
1882 		u32 pch_iir = I915_READ(SDEIIR);
1883 
1884 		cpt_irq_handler(dev, pch_iir);
1885 
1886 		if (pch_iir) {
1887 			I915_WRITE(SDEIIR, pch_iir);
1888 		}
1889 	}
1890 
1891 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1892 	POSTING_READ(GEN8_MASTER_IRQ);
1893 
1894 }
1895 
1896 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
1897 			       bool reset_completed)
1898 {
1899 	struct intel_ring_buffer *ring;
1900 	int i;
1901 
1902 	/*
1903 	 * Notify all waiters for GPU completion events that reset state has
1904 	 * been changed, and that they need to restart their wait after
1905 	 * checking for potential errors (and bail out to drop locks if there is
1906 	 * a gpu reset pending so that i915_error_work_func can acquire them).
1907 	 */
1908 
1909 	/* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
1910 	for_each_ring(ring, dev_priv, i)
1911 		wake_up_all(&ring->irq_queue);
1912 
1913 	/* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
1914 	wake_up_all(&dev_priv->pending_flip_queue);
1915 
1916 	/*
1917 	 * Signal tasks blocked in i915_gem_wait_for_error that the pending
1918 	 * reset state is cleared.
1919 	 */
1920 	if (reset_completed)
1921 		wake_up_all(&dev_priv->gpu_error.reset_queue);
1922 }
1923 
1924 /**
1925  * i915_error_work_func - do process context error handling work
1926  * @work: work struct
1927  *
1928  * Fire an error uevent so userspace can see that a hang or error
1929  * was detected.
1930  */
1931 static void i915_error_work_func(struct work_struct *work)
1932 {
1933 	struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
1934 						    work);
1935 	drm_i915_private_t *dev_priv = container_of(error, drm_i915_private_t,
1936 						    gpu_error);
1937 	struct drm_device *dev = dev_priv->dev;
1938 #if 0
1939 	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
1940 	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
1941 	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
1942 #endif
1943 	int ret;
1944 
1945 	/* kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event); */
1946 
1947 	/*
1948 	 * Note that there's only one work item which does gpu resets, so we
1949 	 * need not worry about concurrent gpu resets potentially incrementing
1950 	 * error->reset_counter twice. We only need to take care of another
1951 	 * racing irq/hangcheck declaring the gpu dead for a second time. A
1952 	 * quick check for that is good enough: schedule_work ensures the
1953 	 * correct ordering between hang detection and this work item, and since
1954 	 * the reset in-progress bit is only ever set by code outside of this
1955 	 * work we don't need to worry about any other races.
1956 	 */
1957 	if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
1958 		DRM_DEBUG_DRIVER("resetting chip\n");
1959 #if 0
1960 		kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
1961 				   reset_event);
1962 #endif
1963 
1964 		/*
1965 		 * All state reset _must_ be completed before we update the
1966 		 * reset counter, for otherwise waiters might miss the reset
1967 		 * pending state and not properly drop locks, resulting in
1968 		 * deadlocks with the reset work.
1969 		 */
1970 		ret = i915_reset(dev);
1971 
1972 		intel_display_handle_reset(dev);
1973 
1974 		if (ret == 0) {
1975 			/*
1976 			 * After all the gem state is reset, increment the reset
1977 			 * counter and wake up everyone waiting for the reset to
1978 			 * complete.
1979 			 *
1980 			 * Since unlock operations are a one-sided barrier only,
1981 			 * we need to insert a barrier here to order any seqno
1982 			 * updates before
1983 			 * the counter increment.
1984 			 */
1985 			cpu_sfence();
1986 			atomic_inc(&dev_priv->gpu_error.reset_counter);
1987 
1988 #if 0
1989 			kobject_uevent_env(&dev->primary->kdev->kobj,
1990 					   KOBJ_CHANGE, reset_done_event);
1991 #endif
1992 		} else {
1993 			atomic_set_mask(I915_WEDGED, &error->reset_counter);
1994 		}
1995 
1996 		/*
1997 		 * Note: The wake_up also serves as a memory barrier so that
1998 		 * waiters see the update value of the reset counter atomic_t.
1999 		 */
2000 		i915_error_wake_up(dev_priv, true);
2001 	}
2002 }
2003 
2004 static void i915_report_and_clear_eir(struct drm_device *dev)
2005 {
2006 	struct drm_i915_private *dev_priv = dev->dev_private;
2007 	uint32_t instdone[I915_NUM_INSTDONE_REG];
2008 	u32 eir = I915_READ(EIR);
2009 	int pipe, i;
2010 
2011 	if (!eir)
2012 		return;
2013 
2014 	pr_err("render error detected, EIR: 0x%08x\n", eir);
2015 
2016 #if 0
2017 	i915_get_extra_instdone(dev, instdone);
2018 #endif
2019 
2020 	if (IS_G4X(dev)) {
2021 		if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2022 			u32 ipeir = I915_READ(IPEIR_I965);
2023 
2024 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2025 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2026 			for (i = 0; i < ARRAY_SIZE(instdone); i++)
2027 				pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2028 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2029 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2030 			I915_WRITE(IPEIR_I965, ipeir);
2031 			POSTING_READ(IPEIR_I965);
2032 		}
2033 		if (eir & GM45_ERROR_PAGE_TABLE) {
2034 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2035 			pr_err("page table error\n");
2036 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2037 			I915_WRITE(PGTBL_ER, pgtbl_err);
2038 			POSTING_READ(PGTBL_ER);
2039 		}
2040 	}
2041 
2042 	if (!IS_GEN2(dev)) {
2043 		if (eir & I915_ERROR_PAGE_TABLE) {
2044 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2045 			pr_err("page table error\n");
2046 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2047 			I915_WRITE(PGTBL_ER, pgtbl_err);
2048 			POSTING_READ(PGTBL_ER);
2049 		}
2050 	}
2051 
2052 	if (eir & I915_ERROR_MEMORY_REFRESH) {
2053 		pr_err("memory refresh error:\n");
2054 		for_each_pipe(pipe)
2055 			pr_err("pipe %c stat: 0x%08x\n",
2056 			       pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2057 		/* pipestat has already been acked */
2058 	}
2059 	if (eir & I915_ERROR_INSTRUCTION) {
2060 		pr_err("instruction error\n");
2061 		pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2062 		for (i = 0; i < ARRAY_SIZE(instdone); i++)
2063 			pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2064 		if (INTEL_INFO(dev)->gen < 4) {
2065 			u32 ipeir = I915_READ(IPEIR);
2066 
2067 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2068 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2069 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2070 			I915_WRITE(IPEIR, ipeir);
2071 			POSTING_READ(IPEIR);
2072 		} else {
2073 			u32 ipeir = I915_READ(IPEIR_I965);
2074 
2075 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2076 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2077 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2078 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2079 			I915_WRITE(IPEIR_I965, ipeir);
2080 			POSTING_READ(IPEIR_I965);
2081 		}
2082 	}
2083 
2084 	I915_WRITE(EIR, eir);
2085 	POSTING_READ(EIR);
2086 	eir = I915_READ(EIR);
2087 	if (eir) {
2088 		/*
2089 		 * some errors might have become stuck,
2090 		 * mask them.
2091 		 */
2092 		DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2093 		I915_WRITE(EMR, I915_READ(EMR) | eir);
2094 		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2095 	}
2096 }
2097 
2098 /**
2099  * i915_handle_error - handle an error interrupt
2100  * @dev: drm device
2101  *
2102  * Do some basic checking of regsiter state at error interrupt time and
2103  * dump it to the syslog.  Also call i915_capture_error_state() to make
2104  * sure we get a record and make it available in debugfs.  Fire a uevent
2105  * so userspace knows something bad happened (should trigger collection
2106  * of a ring dump etc.).
2107  */
2108 void i915_handle_error(struct drm_device *dev, bool wedged)
2109 {
2110 	struct drm_i915_private *dev_priv = dev->dev_private;
2111 
2112 #if 0
2113 	i915_capture_error_state(dev);
2114 #endif
2115 	i915_report_and_clear_eir(dev);
2116 
2117 	if (wedged) {
2118 		atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2119 				&dev_priv->gpu_error.reset_counter);
2120 
2121 		/*
2122 		 * Wakeup waiting processes so that the reset work function
2123 		 * i915_error_work_func doesn't deadlock trying to grab various
2124 		 * locks. By bumping the reset counter first, the woken
2125 		 * processes will see a reset in progress and back off,
2126 		 * releasing their locks and then wait for the reset completion.
2127 		 * We must do this for _all_ gpu waiters that might hold locks
2128 		 * that the reset work needs to acquire.
2129 		 *
2130 		 * Note: The wake_up serves as the required memory barrier to
2131 		 * ensure that the waiters see the updated value of the reset
2132 		 * counter atomic_t.
2133 		 */
2134 		i915_error_wake_up(dev_priv, false);
2135 	}
2136 
2137 	/*
2138 	 * Our reset work can grab modeset locks (since it needs to reset the
2139 	 * state of outstanding pagelips). Hence it must not be run on our own
2140 	 * dev-priv->wq work queue for otherwise the flush_work in the pageflip
2141 	 * code will deadlock.
2142 	 */
2143 	schedule_work(&dev_priv->gpu_error.work);
2144 }
2145 
2146 static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
2147 {
2148 	drm_i915_private_t *dev_priv = dev->dev_private;
2149 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2150 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2151 	struct drm_i915_gem_object *obj;
2152 	struct intel_unpin_work *work;
2153 	bool stall_detected;
2154 
2155 	/* Ignore early vblank irqs */
2156 	if (intel_crtc == NULL)
2157 		return;
2158 
2159 	lockmgr(&dev->event_lock, LK_EXCLUSIVE);
2160 	work = intel_crtc->unpin_work;
2161 
2162 	if (work == NULL ||
2163 	    atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
2164 	    !work->enable_stall_check) {
2165 		/* Either the pending flip IRQ arrived, or we're too early. Don't check */
2166 		lockmgr(&dev->event_lock, LK_RELEASE);
2167 		return;
2168 	}
2169 
2170 	/* Potential stall - if we see that the flip has happened, assume a missed interrupt */
2171 	obj = work->pending_flip_obj;
2172 	if (INTEL_INFO(dev)->gen >= 4) {
2173 		int dspsurf = DSPSURF(intel_crtc->plane);
2174 		stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
2175 					i915_gem_obj_ggtt_offset(obj);
2176 	} else {
2177 		int dspaddr = DSPADDR(intel_crtc->plane);
2178 		stall_detected = I915_READ(dspaddr) == (i915_gem_obj_ggtt_offset(obj) +
2179 							crtc->y * crtc->fb->pitches[0] +
2180 							crtc->x * crtc->fb->bits_per_pixel/8);
2181 	}
2182 
2183 	lockmgr(&dev->event_lock, LK_RELEASE);
2184 
2185 	if (stall_detected) {
2186 		DRM_DEBUG_DRIVER("Pageflip stall detected\n");
2187 		intel_prepare_page_flip(dev, intel_crtc->plane);
2188 	}
2189 }
2190 
2191 /* Called from drm generic code, passed 'crtc' which
2192  * we use as a pipe index
2193  */
2194 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2195 {
2196 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2197 
2198 	if (!i915_pipe_enabled(dev, pipe))
2199 		return -EINVAL;
2200 
2201 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2202 	if (INTEL_INFO(dev)->gen >= 4)
2203 		i915_enable_pipestat(dev_priv, pipe,
2204 				     PIPE_START_VBLANK_INTERRUPT_ENABLE);
2205 	else
2206 		i915_enable_pipestat(dev_priv, pipe,
2207 				     PIPE_VBLANK_INTERRUPT_ENABLE);
2208 
2209 	/* maintain vblank delivery even in deep C-states */
2210 	if (dev_priv->info->gen == 3)
2211 		I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_AGPBUSY_DIS));
2212 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2213 
2214 	return 0;
2215 }
2216 
2217 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2218 {
2219 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2220 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2221 						     DE_PIPE_VBLANK(pipe);
2222 
2223 	if (!i915_pipe_enabled(dev, pipe))
2224 		return -EINVAL;
2225 
2226 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2227 	ironlake_enable_display_irq(dev_priv, bit);
2228 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2229 
2230 	return 0;
2231 }
2232 
2233 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2234 {
2235 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2236 	u32 imr;
2237 
2238 	if (!i915_pipe_enabled(dev, pipe))
2239 		return -EINVAL;
2240 
2241 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2242 	imr = I915_READ(VLV_IMR);
2243 	if (pipe == PIPE_A)
2244 		imr &= ~I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
2245 	else
2246 		imr &= ~I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2247 	I915_WRITE(VLV_IMR, imr);
2248 	i915_enable_pipestat(dev_priv, pipe,
2249 			     PIPE_START_VBLANK_INTERRUPT_ENABLE);
2250 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2251 
2252 	return 0;
2253 }
2254 
2255 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2256 {
2257 	struct drm_i915_private *dev_priv = dev->dev_private;
2258 
2259 	if (!i915_pipe_enabled(dev, pipe))
2260 		return -EINVAL;
2261 
2262 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2263 	dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2264 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2265 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2266 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2267 	return 0;
2268 }
2269 
2270 /* Called from drm generic code, passed 'crtc' which
2271  * we use as a pipe index
2272  */
2273 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2274 {
2275 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2276 
2277 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2278 	if (dev_priv->info->gen == 3)
2279 		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_DIS));
2280 
2281 	i915_disable_pipestat(dev_priv, pipe,
2282 			      PIPE_VBLANK_INTERRUPT_ENABLE |
2283 			      PIPE_START_VBLANK_INTERRUPT_ENABLE);
2284 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2285 }
2286 
2287 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2288 {
2289 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2290 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2291 						     DE_PIPE_VBLANK(pipe);
2292 
2293 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2294 	ironlake_disable_display_irq(dev_priv, bit);
2295 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2296 }
2297 
2298 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2299 {
2300 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2301 	u32 imr;
2302 
2303 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2304 	i915_disable_pipestat(dev_priv, pipe,
2305 			      PIPE_START_VBLANK_INTERRUPT_ENABLE);
2306 	imr = I915_READ(VLV_IMR);
2307 	if (pipe == PIPE_A)
2308 		imr |= I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
2309 	else
2310 		imr |= I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2311 	I915_WRITE(VLV_IMR, imr);
2312 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2313 }
2314 
2315 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2316 {
2317 	struct drm_i915_private *dev_priv = dev->dev_private;
2318 
2319 	if (!i915_pipe_enabled(dev, pipe))
2320 		return;
2321 
2322 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2323 	dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2324 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2325 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2326 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2327 }
2328 
2329 static u32
2330 ring_last_seqno(struct intel_ring_buffer *ring)
2331 {
2332 	return list_entry(ring->request_list.prev,
2333 			  struct drm_i915_gem_request, list)->seqno;
2334 }
2335 
2336 static bool
2337 ring_idle(struct intel_ring_buffer *ring, u32 seqno)
2338 {
2339 	return (list_empty(&ring->request_list) ||
2340 		i915_seqno_passed(seqno, ring_last_seqno(ring)));
2341 }
2342 
2343 static struct intel_ring_buffer *
2344 semaphore_waits_for(struct intel_ring_buffer *ring, u32 *seqno)
2345 {
2346 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2347 	u32 cmd, ipehr, acthd, acthd_min;
2348 
2349 	ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2350 	if ((ipehr & ~(0x3 << 16)) !=
2351 	    (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE | MI_SEMAPHORE_REGISTER))
2352 		return NULL;
2353 
2354 	/* ACTHD is likely pointing to the dword after the actual command,
2355 	 * so scan backwards until we find the MBOX.
2356 	 */
2357 	acthd = intel_ring_get_active_head(ring) & HEAD_ADDR;
2358 	acthd_min = max((int)acthd - 3 * 4, 0);
2359 	do {
2360 		cmd = ioread32(ring->virtual_start + acthd);
2361 		if (cmd == ipehr)
2362 			break;
2363 
2364 		acthd -= 4;
2365 		if (acthd < acthd_min)
2366 			return NULL;
2367 	} while (1);
2368 
2369 	*seqno = ioread32(ring->virtual_start+acthd+4)+1;
2370 	return &dev_priv->ring[(ring->id + (((ipehr >> 17) & 1) + 1)) % 3];
2371 }
2372 
2373 static int semaphore_passed(struct intel_ring_buffer *ring)
2374 {
2375 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2376 	struct intel_ring_buffer *signaller;
2377 	u32 seqno, ctl;
2378 
2379 	ring->hangcheck.deadlock = true;
2380 
2381 	signaller = semaphore_waits_for(ring, &seqno);
2382 	if (signaller == NULL || signaller->hangcheck.deadlock)
2383 		return -1;
2384 
2385 	/* cursory check for an unkickable deadlock */
2386 	ctl = I915_READ_CTL(signaller);
2387 	if (ctl & RING_WAIT_SEMAPHORE && semaphore_passed(signaller) < 0)
2388 		return -1;
2389 
2390 	return i915_seqno_passed(signaller->get_seqno(signaller, false), seqno);
2391 }
2392 
2393 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2394 {
2395 	struct intel_ring_buffer *ring;
2396 	int i;
2397 
2398 	for_each_ring(ring, dev_priv, i)
2399 		ring->hangcheck.deadlock = false;
2400 }
2401 
2402 static enum intel_ring_hangcheck_action
2403 ring_stuck(struct intel_ring_buffer *ring, u32 acthd)
2404 {
2405 	struct drm_device *dev = ring->dev;
2406 	struct drm_i915_private *dev_priv = dev->dev_private;
2407 	u32 tmp;
2408 
2409 	if (ring->hangcheck.acthd != acthd)
2410 		return HANGCHECK_ACTIVE;
2411 
2412 	if (IS_GEN2(dev))
2413 		return HANGCHECK_HUNG;
2414 
2415 	/* Is the chip hanging on a WAIT_FOR_EVENT?
2416 	 * If so we can simply poke the RB_WAIT bit
2417 	 * and break the hang. This should work on
2418 	 * all but the second generation chipsets.
2419 	 */
2420 	tmp = I915_READ_CTL(ring);
2421 	if (tmp & RING_WAIT) {
2422 		DRM_ERROR("Kicking stuck wait on %s\n",
2423 			  ring->name);
2424 		i915_handle_error(dev, false);
2425 		I915_WRITE_CTL(ring, tmp);
2426 		return HANGCHECK_KICK;
2427 	}
2428 
2429 	if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2430 		switch (semaphore_passed(ring)) {
2431 		default:
2432 			return HANGCHECK_HUNG;
2433 		case 1:
2434 			DRM_ERROR("Kicking stuck semaphore on %s\n",
2435 				  ring->name);
2436 			i915_handle_error(dev, false);
2437 			I915_WRITE_CTL(ring, tmp);
2438 			return HANGCHECK_KICK;
2439 		case 0:
2440 			return HANGCHECK_WAIT;
2441 		}
2442 	}
2443 
2444 	return HANGCHECK_HUNG;
2445 }
2446 
2447 /**
2448  * This is called when the chip hasn't reported back with completed
2449  * batchbuffers in a long time. We keep track per ring seqno progress and
2450  * if there are no progress, hangcheck score for that ring is increased.
2451  * Further, acthd is inspected to see if the ring is stuck. On stuck case
2452  * we kick the ring. If we see no progress on three subsequent calls
2453  * we assume chip is wedged and try to fix it by resetting the chip.
2454  */
2455 static void i915_hangcheck_elapsed(unsigned long data)
2456 {
2457 	struct drm_device *dev = (struct drm_device *)data;
2458 	drm_i915_private_t *dev_priv = dev->dev_private;
2459 	struct intel_ring_buffer *ring;
2460 	int i;
2461 	int busy_count = 0, rings_hung = 0;
2462 	bool stuck[I915_NUM_RINGS] = { 0 };
2463 #define BUSY 1
2464 #define KICK 5
2465 #define HUNG 20
2466 #define FIRE 30
2467 
2468 	if (!i915_enable_hangcheck)
2469 		return;
2470 
2471 	for_each_ring(ring, dev_priv, i) {
2472 		u32 seqno, acthd;
2473 		bool busy = true;
2474 
2475 		semaphore_clear_deadlocks(dev_priv);
2476 
2477 		seqno = ring->get_seqno(ring, false);
2478 		acthd = intel_ring_get_active_head(ring);
2479 
2480 		if (ring->hangcheck.seqno == seqno) {
2481 			if (ring_idle(ring, seqno)) {
2482 				ring->hangcheck.action = HANGCHECK_IDLE;
2483 
2484 				if (waitqueue_active(&ring->irq_queue)) {
2485 					/* Issue a wake-up to catch stuck h/w. */
2486 					if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2487 						if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2488 							DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2489 								  ring->name);
2490 						else
2491 							DRM_INFO("Fake missed irq on %s\n",
2492 								 ring->name);
2493 						wake_up_all(&ring->irq_queue);
2494 					}
2495 					/* Safeguard against driver failure */
2496 					ring->hangcheck.score += BUSY;
2497 				} else
2498 					busy = false;
2499 			} else {
2500 				/* We always increment the hangcheck score
2501 				 * if the ring is busy and still processing
2502 				 * the same request, so that no single request
2503 				 * can run indefinitely (such as a chain of
2504 				 * batches). The only time we do not increment
2505 				 * the hangcheck score on this ring, if this
2506 				 * ring is in a legitimate wait for another
2507 				 * ring. In that case the waiting ring is a
2508 				 * victim and we want to be sure we catch the
2509 				 * right culprit. Then every time we do kick
2510 				 * the ring, add a small increment to the
2511 				 * score so that we can catch a batch that is
2512 				 * being repeatedly kicked and so responsible
2513 				 * for stalling the machine.
2514 				 */
2515 				ring->hangcheck.action = ring_stuck(ring,
2516 								    acthd);
2517 
2518 				switch (ring->hangcheck.action) {
2519 				case HANGCHECK_IDLE:
2520 				case HANGCHECK_WAIT:
2521 					break;
2522 				case HANGCHECK_ACTIVE:
2523 					ring->hangcheck.score += BUSY;
2524 					break;
2525 				case HANGCHECK_KICK:
2526 					ring->hangcheck.score += KICK;
2527 					break;
2528 				case HANGCHECK_HUNG:
2529 					ring->hangcheck.score += HUNG;
2530 					stuck[i] = true;
2531 					break;
2532 				}
2533 			}
2534 		} else {
2535 			ring->hangcheck.action = HANGCHECK_ACTIVE;
2536 
2537 			/* Gradually reduce the count so that we catch DoS
2538 			 * attempts across multiple batches.
2539 			 */
2540 			if (ring->hangcheck.score > 0)
2541 				ring->hangcheck.score--;
2542 		}
2543 
2544 		ring->hangcheck.seqno = seqno;
2545 		ring->hangcheck.acthd = acthd;
2546 		busy_count += busy;
2547 	}
2548 
2549 	for_each_ring(ring, dev_priv, i) {
2550 		if (ring->hangcheck.score > FIRE) {
2551 			DRM_INFO("%s on %s\n",
2552 				 stuck[i] ? "stuck" : "no progress",
2553 				 ring->name);
2554 			rings_hung++;
2555 		}
2556 	}
2557 
2558 	if (rings_hung)
2559 		return i915_handle_error(dev, true);
2560 
2561 	if (busy_count)
2562 		/* Reset timer case chip hangs without another request
2563 		 * being added */
2564 		i915_queue_hangcheck(dev);
2565 }
2566 
2567 void i915_queue_hangcheck(struct drm_device *dev)
2568 {
2569 	struct drm_i915_private *dev_priv = dev->dev_private;
2570 	if (!i915_enable_hangcheck)
2571 		return;
2572 
2573 	mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2574 		  round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2575 }
2576 
2577 static void ibx_irq_preinstall(struct drm_device *dev)
2578 {
2579 	struct drm_i915_private *dev_priv = dev->dev_private;
2580 
2581 	if (HAS_PCH_NOP(dev))
2582 		return;
2583 
2584 	/* south display irq */
2585 	I915_WRITE(SDEIMR, 0xffffffff);
2586 	/*
2587 	 * SDEIER is also touched by the interrupt handler to work around missed
2588 	 * PCH interrupts. Hence we can't update it after the interrupt handler
2589 	 * is enabled - instead we unconditionally enable all PCH interrupt
2590 	 * sources here, but then only unmask them as needed with SDEIMR.
2591 	 */
2592 	I915_WRITE(SDEIER, 0xffffffff);
2593 	POSTING_READ(SDEIER);
2594 }
2595 
2596 static void gen5_gt_irq_preinstall(struct drm_device *dev)
2597 {
2598 	struct drm_i915_private *dev_priv = dev->dev_private;
2599 
2600 	/* and GT */
2601 	I915_WRITE(GTIMR, 0xffffffff);
2602 	I915_WRITE(GTIER, 0x0);
2603 	POSTING_READ(GTIER);
2604 
2605 	if (INTEL_INFO(dev)->gen >= 6) {
2606 		/* and PM */
2607 		I915_WRITE(GEN6_PMIMR, 0xffffffff);
2608 		I915_WRITE(GEN6_PMIER, 0x0);
2609 		POSTING_READ(GEN6_PMIER);
2610 	}
2611 }
2612 
2613 /* drm_dma.h hooks
2614 */
2615 static void ironlake_irq_preinstall(struct drm_device *dev)
2616 {
2617 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2618 
2619 	atomic_set(&dev_priv->irq_received, 0);
2620 
2621 	I915_WRITE(HWSTAM, 0xeffe);
2622 
2623 	I915_WRITE(DEIMR, 0xffffffff);
2624 	I915_WRITE(DEIER, 0x0);
2625 	POSTING_READ(DEIER);
2626 
2627 	gen5_gt_irq_preinstall(dev);
2628 
2629 	ibx_irq_preinstall(dev);
2630 }
2631 
2632 static void valleyview_irq_preinstall(struct drm_device *dev)
2633 {
2634 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2635 	int pipe;
2636 
2637 	atomic_set(&dev_priv->irq_received, 0);
2638 
2639 	/* VLV magic */
2640 	I915_WRITE(VLV_IMR, 0);
2641 	I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
2642 	I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
2643 	I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
2644 
2645 	/* and GT */
2646 	I915_WRITE(GTIIR, I915_READ(GTIIR));
2647 	I915_WRITE(GTIIR, I915_READ(GTIIR));
2648 
2649 	gen5_gt_irq_preinstall(dev);
2650 
2651 	I915_WRITE(DPINVGTT, 0xff);
2652 
2653 	I915_WRITE(PORT_HOTPLUG_EN, 0);
2654 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2655 	for_each_pipe(pipe)
2656 		I915_WRITE(PIPESTAT(pipe), 0xffff);
2657 	I915_WRITE(VLV_IIR, 0xffffffff);
2658 	I915_WRITE(VLV_IMR, 0xffffffff);
2659 	I915_WRITE(VLV_IER, 0x0);
2660 	POSTING_READ(VLV_IER);
2661 }
2662 
2663 static void gen8_irq_preinstall(struct drm_device *dev)
2664 {
2665 	struct drm_i915_private *dev_priv = dev->dev_private;
2666 	int pipe;
2667 
2668 	atomic_set(&dev_priv->irq_received, 0);
2669 
2670 	I915_WRITE(GEN8_MASTER_IRQ, 0);
2671 	POSTING_READ(GEN8_MASTER_IRQ);
2672 
2673 	/* IIR can theoretically queue up two events. Be paranoid */
2674 #define GEN8_IRQ_INIT_NDX(type, which) do { \
2675 		I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
2676 		POSTING_READ(GEN8_##type##_IMR(which)); \
2677 		I915_WRITE(GEN8_##type##_IER(which), 0); \
2678 		I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
2679 		POSTING_READ(GEN8_##type##_IIR(which)); \
2680 		I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
2681 	} while (0)
2682 
2683 #define GEN8_IRQ_INIT(type) do { \
2684 		I915_WRITE(GEN8_##type##_IMR, 0xffffffff); \
2685 		POSTING_READ(GEN8_##type##_IMR); \
2686 		I915_WRITE(GEN8_##type##_IER, 0); \
2687 		I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
2688 		POSTING_READ(GEN8_##type##_IIR); \
2689 		I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
2690 	} while (0)
2691 
2692 	GEN8_IRQ_INIT_NDX(GT, 0);
2693 	GEN8_IRQ_INIT_NDX(GT, 1);
2694 	GEN8_IRQ_INIT_NDX(GT, 2);
2695 	GEN8_IRQ_INIT_NDX(GT, 3);
2696 
2697 	for_each_pipe(pipe) {
2698 		GEN8_IRQ_INIT_NDX(DE_PIPE, pipe);
2699 	}
2700 
2701 	GEN8_IRQ_INIT(DE_PORT);
2702 	GEN8_IRQ_INIT(DE_MISC);
2703 	GEN8_IRQ_INIT(PCU);
2704 #undef GEN8_IRQ_INIT
2705 #undef GEN8_IRQ_INIT_NDX
2706 
2707 	POSTING_READ(GEN8_PCU_IIR);
2708 
2709 	ibx_irq_preinstall(dev);
2710 }
2711 
2712 static void ibx_hpd_irq_setup(struct drm_device *dev)
2713 {
2714 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2715 	struct drm_mode_config *mode_config = &dev->mode_config;
2716 	struct intel_encoder *intel_encoder;
2717 	u32 hotplug_irqs, hotplug, enabled_irqs = 0;
2718 
2719 	if (HAS_PCH_IBX(dev)) {
2720 		hotplug_irqs = SDE_HOTPLUG_MASK;
2721 		list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2722 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2723 				enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
2724 	} else {
2725 		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
2726 		list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2727 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2728 				enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
2729 	}
2730 
2731 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
2732 
2733 	/*
2734 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
2735 	 * duration to 2ms (which is the minimum in the Display Port spec)
2736 	 *
2737 	 * This register is the same on all known PCH chips.
2738 	 */
2739 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
2740 	hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
2741 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
2742 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
2743 	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
2744 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
2745 }
2746 
2747 static void ibx_irq_postinstall(struct drm_device *dev)
2748 {
2749 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2750 	u32 mask;
2751 
2752 	if (HAS_PCH_NOP(dev))
2753 		return;
2754 
2755 	if (HAS_PCH_IBX(dev)) {
2756 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
2757 	} else {
2758 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
2759 
2760 		I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2761 	}
2762 
2763 	I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2764 	I915_WRITE(SDEIMR, ~mask);
2765 }
2766 
2767 static void gen5_gt_irq_postinstall(struct drm_device *dev)
2768 {
2769 	struct drm_i915_private *dev_priv = dev->dev_private;
2770 	u32 pm_irqs, gt_irqs;
2771 
2772 	pm_irqs = gt_irqs = 0;
2773 
2774 	dev_priv->gt_irq_mask = ~0;
2775 	if (HAS_L3_DPF(dev)) {
2776 		/* L3 parity interrupt is always unmasked. */
2777 		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
2778 		gt_irqs |= GT_PARITY_ERROR(dev);
2779 	}
2780 
2781 	gt_irqs |= GT_RENDER_USER_INTERRUPT;
2782 	if (IS_GEN5(dev)) {
2783 		gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
2784 			   ILK_BSD_USER_INTERRUPT;
2785 	} else {
2786 		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
2787 	}
2788 
2789 	I915_WRITE(GTIIR, I915_READ(GTIIR));
2790 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
2791 	I915_WRITE(GTIER, gt_irqs);
2792 	POSTING_READ(GTIER);
2793 
2794 	if (INTEL_INFO(dev)->gen >= 6) {
2795 		pm_irqs |= GEN6_PM_RPS_EVENTS;
2796 
2797 		if (HAS_VEBOX(dev))
2798 			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
2799 
2800 		dev_priv->pm_irq_mask = 0xffffffff;
2801 		I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2802 		I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
2803 		I915_WRITE(GEN6_PMIER, pm_irqs);
2804 		POSTING_READ(GEN6_PMIER);
2805 	}
2806 }
2807 
2808 static int ironlake_irq_postinstall(struct drm_device *dev)
2809 {
2810 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2811 	u32 display_mask, extra_mask;
2812 
2813 	if (INTEL_INFO(dev)->gen >= 7) {
2814 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
2815 				DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
2816 				DE_PLANEB_FLIP_DONE_IVB |
2817 				DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
2818 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
2819 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
2820 
2821 		I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
2822 	} else {
2823 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
2824 				DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
2825 				DE_AUX_CHANNEL_A |
2826 				DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
2827 				DE_POISON);
2828 		extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
2829 				DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
2830 	}
2831 
2832 	dev_priv->irq_mask = ~display_mask;
2833 
2834 	/* should always can generate irq */
2835 	I915_WRITE(DEIIR, I915_READ(DEIIR));
2836 	I915_WRITE(DEIMR, dev_priv->irq_mask);
2837 	I915_WRITE(DEIER, display_mask | extra_mask);
2838 	POSTING_READ(DEIER);
2839 
2840 	gen5_gt_irq_postinstall(dev);
2841 
2842 	ibx_irq_postinstall(dev);
2843 
2844 	if (IS_IRONLAKE_M(dev)) {
2845 		/* Enable PCU event interrupts
2846 		 *
2847 		 * spinlocking not required here for correctness since interrupt
2848 		 * setup is guaranteed to run in single-threaded context. But we
2849 		 * need it to make the assert_spin_locked happy. */
2850 		lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2851 		ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
2852 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2853 	}
2854 
2855 	return 0;
2856 }
2857 
2858 static int valleyview_irq_postinstall(struct drm_device *dev)
2859 {
2860 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2861 	u32 enable_mask;
2862 	u32 pipestat_enable = PLANE_FLIP_DONE_INT_EN_VLV |
2863 		PIPE_CRC_DONE_ENABLE;
2864 
2865 	enable_mask = I915_DISPLAY_PORT_INTERRUPT;
2866 	enable_mask |= I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2867 		I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
2868 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2869 		I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2870 
2871 	/*
2872 	 *Leave vblank interrupts masked initially.  enable/disable will
2873 	 * toggle them based on usage.
2874 	 */
2875 	dev_priv->irq_mask = (~enable_mask) |
2876 		I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
2877 		I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2878 
2879 	I915_WRITE(PORT_HOTPLUG_EN, 0);
2880 	POSTING_READ(PORT_HOTPLUG_EN);
2881 
2882 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
2883 	I915_WRITE(VLV_IER, enable_mask);
2884 	I915_WRITE(VLV_IIR, 0xffffffff);
2885 	I915_WRITE(PIPESTAT(0), 0xffff);
2886 	I915_WRITE(PIPESTAT(1), 0xffff);
2887 	POSTING_READ(VLV_IER);
2888 
2889 	/* Interrupt setup is already guaranteed to be single-threaded, this is
2890 	 * just to make the assert_spin_locked check happy. */
2891 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
2892 	i915_enable_pipestat(dev_priv, PIPE_A, pipestat_enable);
2893 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_EVENT_ENABLE);
2894 	i915_enable_pipestat(dev_priv, PIPE_B, pipestat_enable);
2895 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
2896 
2897 	I915_WRITE(VLV_IIR, 0xffffffff);
2898 	I915_WRITE(VLV_IIR, 0xffffffff);
2899 
2900 	gen5_gt_irq_postinstall(dev);
2901 
2902 	/* ack & enable invalid PTE error interrupts */
2903 #if 0 /* FIXME: add support to irq handler for checking these bits */
2904 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2905 	I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
2906 #endif
2907 
2908 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2909 
2910 	return 0;
2911 }
2912 
2913 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
2914 {
2915 	int i;
2916 
2917 	/* These are interrupts we'll toggle with the ring mask register */
2918 	uint32_t gt_interrupts[] = {
2919 		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
2920 			GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
2921 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
2922 		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
2923 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
2924 		0,
2925 		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT
2926 		};
2927 
2928 	for (i = 0; i < ARRAY_SIZE(gt_interrupts); i++) {
2929 		u32 tmp = I915_READ(GEN8_GT_IIR(i));
2930 		if (tmp)
2931 			DRM_ERROR("Interrupt (%d) should have been masked in pre-install 0x%08x\n",
2932 				  i, tmp);
2933 		I915_WRITE(GEN8_GT_IMR(i), ~gt_interrupts[i]);
2934 		I915_WRITE(GEN8_GT_IER(i), gt_interrupts[i]);
2935 	}
2936 	POSTING_READ(GEN8_GT_IER(0));
2937 }
2938 
2939 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
2940 {
2941 	struct drm_device *dev = dev_priv->dev;
2942 	uint32_t de_pipe_masked = GEN8_PIPE_FLIP_DONE |
2943 		GEN8_PIPE_CDCLK_CRC_DONE |
2944 		GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2945 	uint32_t de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
2946 		GEN8_PIPE_FIFO_UNDERRUN;
2947 	int pipe;
2948 	dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
2949 	dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
2950 	dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
2951 
2952 	for_each_pipe(pipe) {
2953 		u32 tmp = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2954 		if (tmp)
2955 			DRM_ERROR("Interrupt (%d) should have been masked in pre-install 0x%08x\n",
2956 				  pipe, tmp);
2957 		I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2958 		I915_WRITE(GEN8_DE_PIPE_IER(pipe), de_pipe_enables);
2959 	}
2960 	POSTING_READ(GEN8_DE_PIPE_ISR(0));
2961 
2962 	I915_WRITE(GEN8_DE_PORT_IMR, ~GEN8_AUX_CHANNEL_A);
2963 	I915_WRITE(GEN8_DE_PORT_IER, GEN8_AUX_CHANNEL_A);
2964 	POSTING_READ(GEN8_DE_PORT_IER);
2965 }
2966 
2967 static int gen8_irq_postinstall(struct drm_device *dev)
2968 {
2969 	struct drm_i915_private *dev_priv = dev->dev_private;
2970 
2971 	gen8_gt_irq_postinstall(dev_priv);
2972 	gen8_de_irq_postinstall(dev_priv);
2973 
2974 	ibx_irq_postinstall(dev);
2975 
2976 	I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
2977 	POSTING_READ(GEN8_MASTER_IRQ);
2978 
2979 	return 0;
2980 }
2981 
2982 static void gen8_irq_uninstall(struct drm_device *dev)
2983 {
2984 	struct drm_i915_private *dev_priv = dev->dev_private;
2985 	int pipe;
2986 
2987 	if (!dev_priv)
2988 		return;
2989 
2990 	atomic_set(&dev_priv->irq_received, 0);
2991 
2992 	I915_WRITE(GEN8_MASTER_IRQ, 0);
2993 
2994 #define GEN8_IRQ_FINI_NDX(type, which) do { \
2995 		I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
2996 		I915_WRITE(GEN8_##type##_IER(which), 0); \
2997 		I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
2998 	} while (0)
2999 
3000 #define GEN8_IRQ_FINI(type) do { \
3001 		I915_WRITE(GEN8_##type##_IMR, 0xffffffff); \
3002 		I915_WRITE(GEN8_##type##_IER, 0); \
3003 		I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
3004 	} while (0)
3005 
3006 	GEN8_IRQ_FINI_NDX(GT, 0);
3007 	GEN8_IRQ_FINI_NDX(GT, 1);
3008 	GEN8_IRQ_FINI_NDX(GT, 2);
3009 	GEN8_IRQ_FINI_NDX(GT, 3);
3010 
3011 	for_each_pipe(pipe) {
3012 		GEN8_IRQ_FINI_NDX(DE_PIPE, pipe);
3013 	}
3014 
3015 	GEN8_IRQ_FINI(DE_PORT);
3016 	GEN8_IRQ_FINI(DE_MISC);
3017 	GEN8_IRQ_FINI(PCU);
3018 #undef GEN8_IRQ_FINI
3019 #undef GEN8_IRQ_FINI_NDX
3020 
3021 	POSTING_READ(GEN8_PCU_IIR);
3022 }
3023 
3024 static void valleyview_irq_uninstall(struct drm_device *dev)
3025 {
3026 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3027 	int pipe;
3028 
3029 	if (!dev_priv)
3030 		return;
3031 
3032 	del_timer_sync(&dev_priv->hotplug_reenable_timer);
3033 
3034 	for_each_pipe(pipe)
3035 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3036 
3037 	I915_WRITE(HWSTAM, 0xffffffff);
3038 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3039 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3040 	for_each_pipe(pipe)
3041 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3042 	I915_WRITE(VLV_IIR, 0xffffffff);
3043 	I915_WRITE(VLV_IMR, 0xffffffff);
3044 	I915_WRITE(VLV_IER, 0x0);
3045 	POSTING_READ(VLV_IER);
3046 }
3047 
3048 static void ironlake_irq_uninstall(struct drm_device *dev)
3049 {
3050 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3051 
3052 	if (!dev_priv)
3053 		return;
3054 
3055 	del_timer_sync(&dev_priv->hotplug_reenable_timer);
3056 
3057 	I915_WRITE(HWSTAM, 0xffffffff);
3058 
3059 	I915_WRITE(DEIMR, 0xffffffff);
3060 	I915_WRITE(DEIER, 0x0);
3061 	I915_WRITE(DEIIR, I915_READ(DEIIR));
3062 	if (IS_GEN7(dev))
3063 		I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
3064 
3065 	I915_WRITE(GTIMR, 0xffffffff);
3066 	I915_WRITE(GTIER, 0x0);
3067 	I915_WRITE(GTIIR, I915_READ(GTIIR));
3068 
3069 	if (HAS_PCH_NOP(dev))
3070 		return;
3071 
3072 	I915_WRITE(SDEIMR, 0xffffffff);
3073 	I915_WRITE(SDEIER, 0x0);
3074 	I915_WRITE(SDEIIR, I915_READ(SDEIIR));
3075 	if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3076 		I915_WRITE(SERR_INT, I915_READ(SERR_INT));
3077 }
3078 
3079 static void i8xx_irq_preinstall(struct drm_device * dev)
3080 {
3081 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3082 	int pipe;
3083 
3084 	atomic_set(&dev_priv->irq_received, 0);
3085 
3086 	for_each_pipe(pipe)
3087 		I915_WRITE(PIPESTAT(pipe), 0);
3088 	I915_WRITE16(IMR, 0xffff);
3089 	I915_WRITE16(IER, 0x0);
3090 	POSTING_READ16(IER);
3091 }
3092 
3093 static int i8xx_irq_postinstall(struct drm_device *dev)
3094 {
3095 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3096 
3097 	I915_WRITE16(EMR,
3098 		     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3099 
3100 	/* Unmask the interrupts that we always want on. */
3101 	dev_priv->irq_mask =
3102 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3103 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3104 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3105 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3106 		  I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3107 	I915_WRITE16(IMR, dev_priv->irq_mask);
3108 
3109 	I915_WRITE16(IER,
3110 		     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3111 		     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3112 		     I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3113 		     I915_USER_INTERRUPT);
3114 	POSTING_READ16(IER);
3115 
3116 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3117 	 * just to make the assert_spin_locked check happy. */
3118 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3119 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_ENABLE);
3120 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_ENABLE);
3121 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3122 
3123 	return 0;
3124 }
3125 
3126 /*
3127  * Returns true when a page flip has completed.
3128  */
3129 static bool i8xx_handle_vblank(struct drm_device *dev,
3130 			       int plane, int pipe, u32 iir)
3131 {
3132 	drm_i915_private_t *dev_priv = dev->dev_private;
3133 	u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3134 
3135 	if (!drm_handle_vblank(dev, pipe))
3136 		return false;
3137 
3138 	if ((iir & flip_pending) == 0)
3139 		return false;
3140 
3141 	intel_prepare_page_flip(dev, plane);
3142 
3143 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3144 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3145 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3146 	 * the flip is completed (no longer pending). Since this doesn't raise
3147 	 * an interrupt per se, we watch for the change at vblank.
3148 	 */
3149 	if (I915_READ16(ISR) & flip_pending)
3150 		return false;
3151 
3152 	intel_finish_page_flip(dev, pipe);
3153 
3154 	return true;
3155 }
3156 
3157 static irqreturn_t i8xx_irq_handler(void *arg)
3158 {
3159 	struct drm_device *dev = (struct drm_device *) arg;
3160 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3161 	u16 iir, new_iir;
3162 	u32 pipe_stats[2];
3163 	int pipe;
3164 	u16 flip_mask =
3165 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3166 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3167 
3168 	atomic_inc(&dev_priv->irq_received);
3169 
3170 	iir = I915_READ16(IIR);
3171 	if (iir == 0)
3172 		return;
3173 
3174 	while (iir & ~flip_mask) {
3175 		/* Can't rely on pipestat interrupt bit in iir as it might
3176 		 * have been cleared after the pipestat interrupt was received.
3177 		 * It doesn't set the bit in iir again, but it still produces
3178 		 * interrupts (for non-MSI).
3179 		 */
3180 		lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3181 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3182 			i915_handle_error(dev, false);
3183 
3184 		for_each_pipe(pipe) {
3185 			int reg = PIPESTAT(pipe);
3186 			pipe_stats[pipe] = I915_READ(reg);
3187 
3188 			/*
3189 			 * Clear the PIPE*STAT regs before the IIR
3190 			 */
3191 			if (pipe_stats[pipe] & 0x8000ffff) {
3192 				if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3193 					DRM_DEBUG_DRIVER("pipe %c underrun\n",
3194 							 pipe_name(pipe));
3195 				I915_WRITE(reg, pipe_stats[pipe]);
3196 			}
3197 		}
3198 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3199 
3200 		I915_WRITE16(IIR, iir & ~flip_mask);
3201 		new_iir = I915_READ16(IIR); /* Flush posted writes */
3202 
3203 		i915_update_dri1_breadcrumb(dev);
3204 
3205 		if (iir & I915_USER_INTERRUPT)
3206 			notify_ring(dev, &dev_priv->ring[RCS]);
3207 
3208 		for_each_pipe(pipe) {
3209 			int plane = pipe;
3210 			if (HAS_FBC(dev))
3211 				plane = !plane;
3212 
3213 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3214 			    i8xx_handle_vblank(dev, plane, pipe, iir))
3215 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3216 
3217 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3218 				i9xx_pipe_crc_irq_handler(dev, pipe);
3219 		}
3220 
3221 		iir = new_iir;
3222 	}
3223 
3224 }
3225 
3226 static void i8xx_irq_uninstall(struct drm_device * dev)
3227 {
3228 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3229 	int pipe;
3230 
3231 	for_each_pipe(pipe) {
3232 		/* Clear enable bits; then clear status bits */
3233 		I915_WRITE(PIPESTAT(pipe), 0);
3234 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3235 	}
3236 	I915_WRITE16(IMR, 0xffff);
3237 	I915_WRITE16(IER, 0x0);
3238 	I915_WRITE16(IIR, I915_READ16(IIR));
3239 }
3240 
3241 static void i915_irq_preinstall(struct drm_device * dev)
3242 {
3243 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3244 	int pipe;
3245 
3246 	atomic_set(&dev_priv->irq_received, 0);
3247 
3248 	if (I915_HAS_HOTPLUG(dev)) {
3249 		I915_WRITE(PORT_HOTPLUG_EN, 0);
3250 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3251 	}
3252 
3253 	I915_WRITE16(HWSTAM, 0xeffe);
3254 	for_each_pipe(pipe)
3255 		I915_WRITE(PIPESTAT(pipe), 0);
3256 	I915_WRITE(IMR, 0xffffffff);
3257 	I915_WRITE(IER, 0x0);
3258 	POSTING_READ(IER);
3259 }
3260 
3261 static int i915_irq_postinstall(struct drm_device *dev)
3262 {
3263 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3264 	u32 enable_mask;
3265 
3266 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3267 
3268 	/* Unmask the interrupts that we always want on. */
3269 	dev_priv->irq_mask =
3270 		~(I915_ASLE_INTERRUPT |
3271 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3272 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3273 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3274 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3275 		  I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3276 
3277 	enable_mask =
3278 		I915_ASLE_INTERRUPT |
3279 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3280 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3281 		I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3282 		I915_USER_INTERRUPT;
3283 
3284 	if (I915_HAS_HOTPLUG(dev)) {
3285 		I915_WRITE(PORT_HOTPLUG_EN, 0);
3286 		POSTING_READ(PORT_HOTPLUG_EN);
3287 
3288 		/* Enable in IER... */
3289 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3290 		/* and unmask in IMR */
3291 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3292 	}
3293 
3294 	I915_WRITE(IMR, dev_priv->irq_mask);
3295 	I915_WRITE(IER, enable_mask);
3296 	POSTING_READ(IER);
3297 
3298 	i915_enable_asle_pipestat(dev);
3299 
3300 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3301 	 * just to make the assert_spin_locked check happy. */
3302 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3303 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_ENABLE);
3304 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_ENABLE);
3305 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3306 
3307 	return 0;
3308 }
3309 
3310 /*
3311  * Returns true when a page flip has completed.
3312  */
3313 static bool i915_handle_vblank(struct drm_device *dev,
3314 			       int plane, int pipe, u32 iir)
3315 {
3316 	drm_i915_private_t *dev_priv = dev->dev_private;
3317 	u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3318 
3319 	if (!drm_handle_vblank(dev, pipe))
3320 		return false;
3321 
3322 	if ((iir & flip_pending) == 0)
3323 		return false;
3324 
3325 	intel_prepare_page_flip(dev, plane);
3326 
3327 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3328 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3329 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3330 	 * the flip is completed (no longer pending). Since this doesn't raise
3331 	 * an interrupt per se, we watch for the change at vblank.
3332 	 */
3333 	if (I915_READ(ISR) & flip_pending)
3334 		return false;
3335 
3336 	intel_finish_page_flip(dev, pipe);
3337 
3338 	return true;
3339 }
3340 
3341 static irqreturn_t i915_irq_handler(void *arg)
3342 {
3343 	struct drm_device *dev = (struct drm_device *) arg;
3344 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3345 	u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3346 	u32 flip_mask =
3347 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3348 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3349 	int pipe;
3350 
3351 	atomic_inc(&dev_priv->irq_received);
3352 
3353 	iir = I915_READ(IIR);
3354 	do {
3355 		bool irq_received = (iir & ~flip_mask) != 0;
3356 		bool blc_event = false;
3357 
3358 		/* Can't rely on pipestat interrupt bit in iir as it might
3359 		 * have been cleared after the pipestat interrupt was received.
3360 		 * It doesn't set the bit in iir again, but it still produces
3361 		 * interrupts (for non-MSI).
3362 		 */
3363 		lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3364 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3365 			i915_handle_error(dev, false);
3366 
3367 		for_each_pipe(pipe) {
3368 			int reg = PIPESTAT(pipe);
3369 			pipe_stats[pipe] = I915_READ(reg);
3370 
3371 			/* Clear the PIPE*STAT regs before the IIR */
3372 			if (pipe_stats[pipe] & 0x8000ffff) {
3373 				if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3374 					DRM_DEBUG_DRIVER("pipe %c underrun\n",
3375 							 pipe_name(pipe));
3376 				I915_WRITE(reg, pipe_stats[pipe]);
3377 				irq_received = true;
3378 			}
3379 		}
3380 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3381 
3382 		if (!irq_received)
3383 			break;
3384 
3385 		/* Consume port.  Then clear IIR or we'll miss events */
3386 		if ((I915_HAS_HOTPLUG(dev)) &&
3387 		    (iir & I915_DISPLAY_PORT_INTERRUPT)) {
3388 			u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
3389 			u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
3390 
3391 			DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
3392 				  hotplug_status);
3393 
3394 			intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
3395 
3396 			I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
3397 			POSTING_READ(PORT_HOTPLUG_STAT);
3398 		}
3399 
3400 		I915_WRITE(IIR, iir & ~flip_mask);
3401 		new_iir = I915_READ(IIR); /* Flush posted writes */
3402 
3403 		if (iir & I915_USER_INTERRUPT)
3404 			notify_ring(dev, &dev_priv->ring[RCS]);
3405 
3406 		for_each_pipe(pipe) {
3407 			int plane = pipe;
3408 			if (HAS_FBC(dev))
3409 				plane = !plane;
3410 
3411 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3412 			    i915_handle_vblank(dev, plane, pipe, iir))
3413 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3414 
3415 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3416 				blc_event = true;
3417 
3418 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3419 				i9xx_pipe_crc_irq_handler(dev, pipe);
3420 		}
3421 
3422 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
3423 			intel_opregion_asle_intr(dev);
3424 
3425 		/* With MSI, interrupts are only generated when iir
3426 		 * transitions from zero to nonzero.  If another bit got
3427 		 * set while we were handling the existing iir bits, then
3428 		 * we would never get another interrupt.
3429 		 *
3430 		 * This is fine on non-MSI as well, as if we hit this path
3431 		 * we avoid exiting the interrupt handler only to generate
3432 		 * another one.
3433 		 *
3434 		 * Note that for MSI this could cause a stray interrupt report
3435 		 * if an interrupt landed in the time between writing IIR and
3436 		 * the posting read.  This should be rare enough to never
3437 		 * trigger the 99% of 100,000 interrupts test for disabling
3438 		 * stray interrupts.
3439 		 */
3440 		iir = new_iir;
3441 	} while (iir & ~flip_mask);
3442 
3443 	i915_update_dri1_breadcrumb(dev);
3444 
3445 }
3446 
3447 static void i915_irq_uninstall(struct drm_device * dev)
3448 {
3449 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3450 	int pipe;
3451 
3452 	del_timer_sync(&dev_priv->hotplug_reenable_timer);
3453 
3454 	if (I915_HAS_HOTPLUG(dev)) {
3455 		I915_WRITE(PORT_HOTPLUG_EN, 0);
3456 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3457 	}
3458 
3459 	I915_WRITE16(HWSTAM, 0xffff);
3460 	for_each_pipe(pipe) {
3461 		/* Clear enable bits; then clear status bits */
3462 		I915_WRITE(PIPESTAT(pipe), 0);
3463 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3464 	}
3465 	I915_WRITE(IMR, 0xffffffff);
3466 	I915_WRITE(IER, 0x0);
3467 
3468 	I915_WRITE(IIR, I915_READ(IIR));
3469 }
3470 
3471 static void i965_irq_preinstall(struct drm_device * dev)
3472 {
3473 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3474 	int pipe;
3475 
3476 	atomic_set(&dev_priv->irq_received, 0);
3477 
3478 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3479 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3480 
3481 	I915_WRITE(HWSTAM, 0xeffe);
3482 	for_each_pipe(pipe)
3483 		I915_WRITE(PIPESTAT(pipe), 0);
3484 	I915_WRITE(IMR, 0xffffffff);
3485 	I915_WRITE(IER, 0x0);
3486 	POSTING_READ(IER);
3487 }
3488 
3489 static int i965_irq_postinstall(struct drm_device *dev)
3490 {
3491 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3492 	u32 enable_mask;
3493 	u32 error_mask;
3494 
3495 	/* Unmask the interrupts that we always want on. */
3496 	dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3497 			       I915_DISPLAY_PORT_INTERRUPT |
3498 			       I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3499 			       I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3500 			       I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3501 			       I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3502 			       I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3503 
3504 	enable_mask = ~dev_priv->irq_mask;
3505 	enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3506 			 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3507 	enable_mask |= I915_USER_INTERRUPT;
3508 
3509 	if (IS_G4X(dev))
3510 		enable_mask |= I915_BSD_USER_INTERRUPT;
3511 
3512 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3513 	 * just to make the assert_spin_locked check happy. */
3514 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3515 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_EVENT_ENABLE);
3516 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_ENABLE);
3517 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_ENABLE);
3518 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3519 
3520 	/*
3521 	 * Enable some error detection, note the instruction error mask
3522 	 * bit is reserved, so we leave it masked.
3523 	 */
3524 	if (IS_G4X(dev)) {
3525 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
3526 			       GM45_ERROR_MEM_PRIV |
3527 			       GM45_ERROR_CP_PRIV |
3528 			       I915_ERROR_MEMORY_REFRESH);
3529 	} else {
3530 		error_mask = ~(I915_ERROR_PAGE_TABLE |
3531 			       I915_ERROR_MEMORY_REFRESH);
3532 	}
3533 	I915_WRITE(EMR, error_mask);
3534 
3535 	I915_WRITE(IMR, dev_priv->irq_mask);
3536 	I915_WRITE(IER, enable_mask);
3537 	POSTING_READ(IER);
3538 
3539 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3540 	POSTING_READ(PORT_HOTPLUG_EN);
3541 
3542 	i915_enable_asle_pipestat(dev);
3543 
3544 	return 0;
3545 }
3546 
3547 static void i915_hpd_irq_setup(struct drm_device *dev)
3548 {
3549 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3550 	struct drm_mode_config *mode_config = &dev->mode_config;
3551 	struct intel_encoder *intel_encoder;
3552 	u32 hotplug_en;
3553 
3554 	assert_spin_locked(&dev_priv->irq_lock);
3555 
3556 	if (I915_HAS_HOTPLUG(dev)) {
3557 		hotplug_en = I915_READ(PORT_HOTPLUG_EN);
3558 		hotplug_en &= ~HOTPLUG_INT_EN_MASK;
3559 		/* Note HDMI and DP share hotplug bits */
3560 		/* enable bits are the same for all generations */
3561 		list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
3562 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3563 				hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
3564 		/* Programming the CRT detection parameters tends
3565 		   to generate a spurious hotplug event about three
3566 		   seconds later.  So just do it once.
3567 		*/
3568 		if (IS_G4X(dev))
3569 			hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3570 		hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
3571 		hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3572 
3573 		/* Ignore TV since it's buggy */
3574 		I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
3575 	}
3576 }
3577 
3578 static irqreturn_t i965_irq_handler(void *arg)
3579 {
3580 	struct drm_device *dev = (struct drm_device *) arg;
3581 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3582 	u32 iir, new_iir;
3583 	u32 pipe_stats[I915_MAX_PIPES];
3584 	int irq_received;
3585 	int pipe;
3586 	u32 flip_mask =
3587 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3588 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3589 
3590 	atomic_inc(&dev_priv->irq_received);
3591 
3592 	iir = I915_READ(IIR);
3593 
3594 	for (;;) {
3595 		bool blc_event = false;
3596 
3597 		irq_received = (iir & ~flip_mask) != 0;
3598 
3599 		/* Can't rely on pipestat interrupt bit in iir as it might
3600 		 * have been cleared after the pipestat interrupt was received.
3601 		 * It doesn't set the bit in iir again, but it still produces
3602 		 * interrupts (for non-MSI).
3603 		 */
3604 		lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3605 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3606 			i915_handle_error(dev, false);
3607 
3608 		for_each_pipe(pipe) {
3609 			int reg = PIPESTAT(pipe);
3610 			pipe_stats[pipe] = I915_READ(reg);
3611 
3612 			/*
3613 			 * Clear the PIPE*STAT regs before the IIR
3614 			 */
3615 			if (pipe_stats[pipe] & 0x8000ffff) {
3616 				if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3617 					DRM_DEBUG_DRIVER("pipe %c underrun\n",
3618 							 pipe_name(pipe));
3619 				I915_WRITE(reg, pipe_stats[pipe]);
3620 				irq_received = 1;
3621 			}
3622 		}
3623 		lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3624 
3625 		if (!irq_received)
3626 			break;
3627 
3628 
3629 		/* Consume port.  Then clear IIR or we'll miss events */
3630 		if (iir & I915_DISPLAY_PORT_INTERRUPT) {
3631 			u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
3632 			u32 hotplug_trigger = hotplug_status & (IS_G4X(dev) ?
3633 								  HOTPLUG_INT_STATUS_G4X :
3634 								  HOTPLUG_INT_STATUS_I915);
3635 
3636 			DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
3637 				  hotplug_status);
3638 
3639 			intel_hpd_irq_handler(dev, hotplug_trigger,
3640 					      IS_G4X(dev) ? hpd_status_g4x : hpd_status_i915);
3641 
3642 			if (IS_G4X(dev) &&
3643 			    (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X))
3644 				dp_aux_irq_handler(dev);
3645 
3646 			I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
3647 			I915_READ(PORT_HOTPLUG_STAT);
3648 		}
3649 
3650 		I915_WRITE(IIR, iir & ~flip_mask);
3651 		new_iir = I915_READ(IIR); /* Flush posted writes */
3652 
3653 		if (iir & I915_USER_INTERRUPT)
3654 			notify_ring(dev, &dev_priv->ring[RCS]);
3655 		if (iir & I915_BSD_USER_INTERRUPT)
3656 			notify_ring(dev, &dev_priv->ring[VCS]);
3657 
3658 		for_each_pipe(pipe) {
3659 			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
3660 			    i915_handle_vblank(dev, pipe, pipe, iir))
3661 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
3662 
3663 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3664 				blc_event = true;
3665 
3666 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3667 				i9xx_pipe_crc_irq_handler(dev, pipe);
3668 		}
3669 
3670 
3671 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
3672 			intel_opregion_asle_intr(dev);
3673 
3674 		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
3675 			gmbus_irq_handler(dev);
3676 
3677 		/* With MSI, interrupts are only generated when iir
3678 		 * transitions from zero to nonzero.  If another bit got
3679 		 * set while we were handling the existing iir bits, then
3680 		 * we would never get another interrupt.
3681 		 *
3682 		 * This is fine on non-MSI as well, as if we hit this path
3683 		 * we avoid exiting the interrupt handler only to generate
3684 		 * another one.
3685 		 *
3686 		 * Note that for MSI this could cause a stray interrupt report
3687 		 * if an interrupt landed in the time between writing IIR and
3688 		 * the posting read.  This should be rare enough to never
3689 		 * trigger the 99% of 100,000 interrupts test for disabling
3690 		 * stray interrupts.
3691 		 */
3692 		iir = new_iir;
3693 	}
3694 
3695 	i915_update_dri1_breadcrumb(dev);
3696 
3697 }
3698 
3699 static void i965_irq_uninstall(struct drm_device * dev)
3700 {
3701 	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3702 	int pipe;
3703 
3704 	if (!dev_priv)
3705 		return;
3706 
3707 	del_timer_sync(&dev_priv->hotplug_reenable_timer);
3708 
3709 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3710 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3711 
3712 	I915_WRITE(HWSTAM, 0xffffffff);
3713 	for_each_pipe(pipe)
3714 		I915_WRITE(PIPESTAT(pipe), 0);
3715 	I915_WRITE(IMR, 0xffffffff);
3716 	I915_WRITE(IER, 0x0);
3717 
3718 	for_each_pipe(pipe)
3719 		I915_WRITE(PIPESTAT(pipe),
3720 			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
3721 	I915_WRITE(IIR, I915_READ(IIR));
3722 }
3723 
3724 static void i915_reenable_hotplug_timer_func(unsigned long data)
3725 {
3726 	drm_i915_private_t *dev_priv = (drm_i915_private_t *)data;
3727 	struct drm_device *dev = dev_priv->dev;
3728 	struct drm_mode_config *mode_config = &dev->mode_config;
3729 	int i;
3730 
3731 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3732 	for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
3733 		struct drm_connector *connector;
3734 
3735 		if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
3736 			continue;
3737 
3738 		dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3739 
3740 		list_for_each_entry(connector, &mode_config->connector_list, head) {
3741 			struct intel_connector *intel_connector = to_intel_connector(connector);
3742 
3743 			if (intel_connector->encoder->hpd_pin == i) {
3744 				if (connector->polled != intel_connector->polled)
3745 					DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
3746 							 drm_get_connector_name(connector));
3747 				connector->polled = intel_connector->polled;
3748 				if (!connector->polled)
3749 					connector->polled = DRM_CONNECTOR_POLL_HPD;
3750 			}
3751 		}
3752 	}
3753 	if (dev_priv->display.hpd_irq_setup)
3754 		dev_priv->display.hpd_irq_setup(dev);
3755 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3756 }
3757 
3758 void intel_irq_init(struct drm_device *dev)
3759 {
3760 	struct drm_i915_private *dev_priv = dev->dev_private;
3761 
3762 	INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
3763 	INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
3764 	INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
3765 	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
3766 
3767 	setup_timer(&dev_priv->gpu_error.hangcheck_timer,
3768 		    i915_hangcheck_elapsed,
3769 		    (unsigned long) dev);
3770 	setup_timer(&dev_priv->hotplug_reenable_timer, i915_reenable_hotplug_timer_func,
3771 		    (unsigned long) dev_priv);
3772 
3773 	pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
3774 
3775 	if (IS_GEN2(dev)) {
3776 		dev->max_vblank_count = 0;
3777 		dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
3778 	} else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
3779 		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
3780 		dev->driver->get_vblank_counter = gm45_get_vblank_counter;
3781 	} else {
3782 		dev->driver->get_vblank_counter = i915_get_vblank_counter;
3783 		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
3784 	}
3785 
3786 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
3787 		dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
3788 		dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
3789 	}
3790 
3791 	if (IS_VALLEYVIEW(dev)) {
3792 		dev->driver->irq_handler = valleyview_irq_handler;
3793 		dev->driver->irq_preinstall = valleyview_irq_preinstall;
3794 		dev->driver->irq_postinstall = valleyview_irq_postinstall;
3795 		dev->driver->irq_uninstall = valleyview_irq_uninstall;
3796 		dev->driver->enable_vblank = valleyview_enable_vblank;
3797 		dev->driver->disable_vblank = valleyview_disable_vblank;
3798 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3799 	} else if (IS_GEN8(dev)) {
3800 		dev->driver->irq_handler = gen8_irq_handler;
3801 		dev->driver->irq_preinstall = gen8_irq_preinstall;
3802 		dev->driver->irq_postinstall = gen8_irq_postinstall;
3803 		dev->driver->irq_uninstall = gen8_irq_uninstall;
3804 		dev->driver->enable_vblank = gen8_enable_vblank;
3805 		dev->driver->disable_vblank = gen8_disable_vblank;
3806 		dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
3807 	} else if (HAS_PCH_SPLIT(dev)) {
3808 		dev->driver->irq_handler = ironlake_irq_handler;
3809 		dev->driver->irq_preinstall = ironlake_irq_preinstall;
3810 		dev->driver->irq_postinstall = ironlake_irq_postinstall;
3811 		dev->driver->irq_uninstall = ironlake_irq_uninstall;
3812 		dev->driver->enable_vblank = ironlake_enable_vblank;
3813 		dev->driver->disable_vblank = ironlake_disable_vblank;
3814 		dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
3815 	} else {
3816 		if (INTEL_INFO(dev)->gen == 2) {
3817 			dev->driver->irq_preinstall = i8xx_irq_preinstall;
3818 			dev->driver->irq_postinstall = i8xx_irq_postinstall;
3819 			dev->driver->irq_handler = i8xx_irq_handler;
3820 			dev->driver->irq_uninstall = i8xx_irq_uninstall;
3821 		} else if (INTEL_INFO(dev)->gen == 3) {
3822 			dev->driver->irq_preinstall = i915_irq_preinstall;
3823 			dev->driver->irq_postinstall = i915_irq_postinstall;
3824 			dev->driver->irq_uninstall = i915_irq_uninstall;
3825 			dev->driver->irq_handler = i915_irq_handler;
3826 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3827 		} else {
3828 			dev->driver->irq_preinstall = i965_irq_preinstall;
3829 			dev->driver->irq_postinstall = i965_irq_postinstall;
3830 			dev->driver->irq_uninstall = i965_irq_uninstall;
3831 			dev->driver->irq_handler = i965_irq_handler;
3832 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3833 		}
3834 		dev->driver->enable_vblank = i915_enable_vblank;
3835 		dev->driver->disable_vblank = i915_disable_vblank;
3836 	}
3837 }
3838 
3839 void intel_hpd_init(struct drm_device *dev)
3840 {
3841 	struct drm_i915_private *dev_priv = dev->dev_private;
3842 	struct drm_mode_config *mode_config = &dev->mode_config;
3843 	struct drm_connector *connector;
3844 	int i;
3845 
3846 	for (i = 1; i < HPD_NUM_PINS; i++) {
3847 		dev_priv->hpd_stats[i].hpd_cnt = 0;
3848 		dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3849 	}
3850 	list_for_each_entry(connector, &mode_config->connector_list, head) {
3851 		struct intel_connector *intel_connector = to_intel_connector(connector);
3852 		connector->polled = intel_connector->polled;
3853 		if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
3854 			connector->polled = DRM_CONNECTOR_POLL_HPD;
3855 	}
3856 
3857 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3858 	 * just to make the assert_spin_locked checks happy. */
3859 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3860 	if (dev_priv->display.hpd_irq_setup)
3861 		dev_priv->display.hpd_irq_setup(dev);
3862 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3863 }
3864 
3865 /* Disable interrupts so we can allow Package C8+. */
3866 void hsw_pc8_disable_interrupts(struct drm_device *dev)
3867 {
3868 	struct drm_i915_private *dev_priv = dev->dev_private;
3869 
3870 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3871 
3872 	dev_priv->pc8.regsave.deimr = I915_READ(DEIMR);
3873 	dev_priv->pc8.regsave.sdeimr = I915_READ(SDEIMR);
3874 	dev_priv->pc8.regsave.gtimr = I915_READ(GTIMR);
3875 	dev_priv->pc8.regsave.gtier = I915_READ(GTIER);
3876 	dev_priv->pc8.regsave.gen6_pmimr = I915_READ(GEN6_PMIMR);
3877 
3878 	ironlake_disable_display_irq(dev_priv, 0xffffffff);
3879 	ibx_disable_display_interrupt(dev_priv, 0xffffffff);
3880 	ilk_disable_gt_irq(dev_priv, 0xffffffff);
3881 	snb_disable_pm_irq(dev_priv, 0xffffffff);
3882 
3883 	dev_priv->pc8.irqs_disabled = true;
3884 
3885 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3886 }
3887 
3888 /* Restore interrupts so we can recover from Package C8+. */
3889 void hsw_pc8_restore_interrupts(struct drm_device *dev)
3890 {
3891 	struct drm_i915_private *dev_priv = dev->dev_private;
3892 	uint32_t val;
3893 
3894 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3895 
3896 	val = I915_READ(DEIMR);
3897 	WARN(val != 0xffffffff, "DEIMR is 0x%08x\n", val);
3898 
3899 	val = I915_READ(SDEIMR);
3900 	WARN(val != 0xffffffff, "SDEIMR is 0x%08x\n", val);
3901 
3902 	val = I915_READ(GTIMR);
3903 	WARN(val != 0xffffffff, "GTIMR is 0x%08x\n", val);
3904 
3905 	val = I915_READ(GEN6_PMIMR);
3906 	WARN(val != 0xffffffff, "GEN6_PMIMR is 0x%08x\n", val);
3907 
3908 	dev_priv->pc8.irqs_disabled = false;
3909 
3910 	ironlake_enable_display_irq(dev_priv, ~dev_priv->pc8.regsave.deimr);
3911 	ibx_enable_display_interrupt(dev_priv, ~dev_priv->pc8.regsave.sdeimr);
3912 	ilk_enable_gt_irq(dev_priv, ~dev_priv->pc8.regsave.gtimr);
3913 	snb_enable_pm_irq(dev_priv, ~dev_priv->pc8.regsave.gen6_pmimr);
3914 	I915_WRITE(GTIER, dev_priv->pc8.regsave.gtier);
3915 
3916 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3917 }
3918