xref: /dflybsd-src/sys/dev/drm/i915/i915_gem_gtt.c (revision 872a09d51adf63b4bdae6adb1d96a53f76e161e2)
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/seq_file.h>
27 #include <linux/stop_machine.h>
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_vgpu.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 
35 /**
36  * DOC: Global GTT views
37  *
38  * Background and previous state
39  *
40  * Historically objects could exists (be bound) in global GTT space only as
41  * singular instances with a view representing all of the object's backing pages
42  * in a linear fashion. This view will be called a normal view.
43  *
44  * To support multiple views of the same object, where the number of mapped
45  * pages is not equal to the backing store, or where the layout of the pages
46  * is not linear, concept of a GGTT view was added.
47  *
48  * One example of an alternative view is a stereo display driven by a single
49  * image. In this case we would have a framebuffer looking like this
50  * (2x2 pages):
51  *
52  *    12
53  *    34
54  *
55  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
56  * rendering. In contrast, fed to the display engine would be an alternative
57  * view which could look something like this:
58  *
59  *   1212
60  *   3434
61  *
62  * In this example both the size and layout of pages in the alternative view is
63  * different from the normal view.
64  *
65  * Implementation and usage
66  *
67  * GGTT views are implemented using VMAs and are distinguished via enum
68  * i915_ggtt_view_type and struct i915_ggtt_view.
69  *
70  * A new flavour of core GEM functions which work with GGTT bound objects were
71  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
72  * renaming  in large amounts of code. They take the struct i915_ggtt_view
73  * parameter encapsulating all metadata required to implement a view.
74  *
75  * As a helper for callers which are only interested in the normal view,
76  * globally const i915_ggtt_view_normal singleton instance exists. All old core
77  * GEM API functions, the ones not taking the view parameter, are operating on,
78  * or with the normal GGTT view.
79  *
80  * Code wanting to add or use a new GGTT view needs to:
81  *
82  * 1. Add a new enum with a suitable name.
83  * 2. Extend the metadata in the i915_ggtt_view structure if required.
84  * 3. Add support to i915_get_vma_pages().
85  *
86  * New views are required to build a scatter-gather table from within the
87  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
88  * exists for the lifetime of an VMA.
89  *
90  * Core API is designed to have copy semantics which means that passed in
91  * struct i915_ggtt_view does not need to be persistent (left around after
92  * calling the core API functions).
93  *
94  */
95 
96 static inline struct i915_ggtt *
97 i915_vm_to_ggtt(struct i915_address_space *vm)
98 {
99 	GEM_BUG_ON(!i915_is_ggtt(vm));
100 	return container_of(vm, struct i915_ggtt, base);
101 }
102 
103 static int
104 i915_get_ggtt_vma_pages(struct i915_vma *vma);
105 
106 const struct i915_ggtt_view i915_ggtt_view_normal = {
107 	.type = I915_GGTT_VIEW_NORMAL,
108 };
109 const struct i915_ggtt_view i915_ggtt_view_rotated = {
110 	.type = I915_GGTT_VIEW_ROTATED,
111 };
112 
113 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
114 			       	int enable_ppgtt)
115 {
116 	bool has_aliasing_ppgtt;
117 	bool has_full_ppgtt;
118 	bool has_full_48bit_ppgtt;
119 
120 	has_aliasing_ppgtt = INTEL_GEN(dev_priv) >= 6;
121 	has_full_ppgtt = INTEL_GEN(dev_priv) >= 7;
122 	has_full_48bit_ppgtt =
123 	       	IS_BROADWELL(dev_priv) || INTEL_GEN(dev_priv) >= 9;
124 
125 	if (intel_vgpu_active(dev_priv))
126 		has_full_ppgtt = false; /* emulation is too hard */
127 
128 	if (!has_aliasing_ppgtt)
129 		return 0;
130 
131 	/*
132 	 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
133 	 * execlists, the sole mechanism available to submit work.
134 	 */
135 	if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
136 		return 0;
137 
138 	if (enable_ppgtt == 1)
139 		return 1;
140 
141 	if (enable_ppgtt == 2 && has_full_ppgtt)
142 		return 2;
143 
144 	if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
145 		return 3;
146 
147 #ifdef CONFIG_INTEL_IOMMU
148 	/* Disable ppgtt on SNB if VT-d is on. */
149 	if (IS_GEN6(dev_priv) && intel_iommu_gfx_mapped) {
150 		DRM_INFO("Disabling PPGTT because VT-d is on\n");
151 		return 0;
152 	}
153 #endif
154 
155 	/* Early VLV doesn't have this */
156 	if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
157 		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
158 		return 0;
159 	}
160 
161 	if (INTEL_GEN(dev_priv) >= 8 && i915.enable_execlists)
162 		return has_full_48bit_ppgtt ? 3 : 2;
163 	else
164 		return has_aliasing_ppgtt ? 1 : 0;
165 }
166 
167 static int ppgtt_bind_vma(struct i915_vma *vma,
168 			  enum i915_cache_level cache_level,
169 			  u32 unused)
170 {
171 	u32 pte_flags = 0;
172 
173 	/* Currently applicable only to VLV */
174 	if (vma->obj->gt_ro)
175 		pte_flags |= PTE_READ_ONLY;
176 
177 	vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
178 				cache_level, pte_flags);
179 
180 	return 0;
181 }
182 
183 static void ppgtt_unbind_vma(struct i915_vma *vma)
184 {
185 	vma->vm->clear_range(vma->vm,
186 			     vma->node.start,
187 			     vma->size,
188 			     true);
189 }
190 
191 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
192 				  enum i915_cache_level level,
193 				  bool valid)
194 {
195 	gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
196 	pte |= addr;
197 
198 	switch (level) {
199 	case I915_CACHE_NONE:
200 		pte |= PPAT_UNCACHED_INDEX;
201 		break;
202 	case I915_CACHE_WT:
203 		pte |= PPAT_DISPLAY_ELLC_INDEX;
204 		break;
205 	default:
206 		pte |= PPAT_CACHED_INDEX;
207 		break;
208 	}
209 
210 	return pte;
211 }
212 
213 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
214 				  const enum i915_cache_level level)
215 {
216 	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
217 	pde |= addr;
218 	if (level != I915_CACHE_NONE)
219 		pde |= PPAT_CACHED_PDE_INDEX;
220 	else
221 		pde |= PPAT_UNCACHED_INDEX;
222 	return pde;
223 }
224 
225 #define gen8_pdpe_encode gen8_pde_encode
226 #define gen8_pml4e_encode gen8_pde_encode
227 
228 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
229 				 enum i915_cache_level level,
230 				 bool valid, u32 unused)
231 {
232 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
233 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
234 
235 	switch (level) {
236 	case I915_CACHE_L3_LLC:
237 	case I915_CACHE_LLC:
238 		pte |= GEN6_PTE_CACHE_LLC;
239 		break;
240 	case I915_CACHE_NONE:
241 		pte |= GEN6_PTE_UNCACHED;
242 		break;
243 	default:
244 		MISSING_CASE(level);
245 	}
246 
247 	return pte;
248 }
249 
250 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
251 				 enum i915_cache_level level,
252 				 bool valid, u32 unused)
253 {
254 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
255 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
256 
257 	switch (level) {
258 	case I915_CACHE_L3_LLC:
259 		pte |= GEN7_PTE_CACHE_L3_LLC;
260 		break;
261 	case I915_CACHE_LLC:
262 		pte |= GEN6_PTE_CACHE_LLC;
263 		break;
264 	case I915_CACHE_NONE:
265 		pte |= GEN6_PTE_UNCACHED;
266 		break;
267 	default:
268 		MISSING_CASE(level);
269 	}
270 
271 	return pte;
272 }
273 
274 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
275 				 enum i915_cache_level level,
276 				 bool valid, u32 flags)
277 {
278 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
279 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
280 
281 	if (!(flags & PTE_READ_ONLY))
282 		pte |= BYT_PTE_WRITEABLE;
283 
284 	if (level != I915_CACHE_NONE)
285 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
286 
287 	return pte;
288 }
289 
290 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
291 				 enum i915_cache_level level,
292 				 bool valid, u32 unused)
293 {
294 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
295 	pte |= HSW_PTE_ADDR_ENCODE(addr);
296 
297 	if (level != I915_CACHE_NONE)
298 		pte |= HSW_WB_LLC_AGE3;
299 
300 	return pte;
301 }
302 
303 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
304 				  enum i915_cache_level level,
305 				  bool valid, u32 unused)
306 {
307 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
308 	pte |= HSW_PTE_ADDR_ENCODE(addr);
309 
310 	switch (level) {
311 	case I915_CACHE_NONE:
312 		break;
313 	case I915_CACHE_WT:
314 		pte |= HSW_WT_ELLC_LLC_AGE3;
315 		break;
316 	default:
317 		pte |= HSW_WB_ELLC_LLC_AGE3;
318 		break;
319 	}
320 
321 	return pte;
322 }
323 
324 static int __setup_page_dma(struct drm_device *dev,
325 			    struct i915_page_dma *p, gfp_t flags)
326 {
327 	struct device *device = &dev->pdev->dev;
328 
329 	p->page = alloc_page(flags);
330 	if (!p->page)
331 		return -ENOMEM;
332 
333 	p->daddr = dma_map_page(device,
334 				p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
335 
336 	if (dma_mapping_error(device, p->daddr)) {
337 		__free_page(p->page);
338 		return -EINVAL;
339 	}
340 
341 	return 0;
342 }
343 
344 static int setup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
345 {
346 	return __setup_page_dma(dev, p, GFP_KERNEL);
347 }
348 
349 static void cleanup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
350 {
351 	if (WARN_ON(!p->page))
352 		return;
353 
354 	dma_unmap_page(&dev->pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
355 	__free_page(p->page);
356 	memset(p, 0, sizeof(*p));
357 }
358 
359 static void *kmap_page_dma(struct i915_page_dma *p)
360 {
361 	return kmap_atomic(p->page);
362 }
363 
364 /* We use the flushing unmap only with ppgtt structures:
365  * page directories, page tables and scratch pages.
366  */
367 static void kunmap_page_dma(struct drm_device *dev, void *vaddr)
368 {
369 	/* There are only few exceptions for gen >=6. chv and bxt.
370 	 * And we are not sure about the latter so play safe for now.
371 	 */
372 	if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
373 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
374 
375 	kunmap_atomic(vaddr);
376 }
377 
378 #define kmap_px(px) kmap_page_dma(px_base(px))
379 #define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr))
380 
381 #define setup_px(dev, px) setup_page_dma((dev), px_base(px))
382 #define cleanup_px(dev, px) cleanup_page_dma((dev), px_base(px))
383 #define fill_px(dev, px, v) fill_page_dma((dev), px_base(px), (v))
384 #define fill32_px(dev, px, v) fill_page_dma_32((dev), px_base(px), (v))
385 
386 static void fill_page_dma(struct drm_device *dev, struct i915_page_dma *p,
387 			  const uint64_t val)
388 {
389 	int i;
390 	uint64_t * const vaddr = kmap_page_dma(p);
391 
392 	for (i = 0; i < 512; i++)
393 		vaddr[i] = val;
394 
395 	kunmap_page_dma(dev, vaddr);
396 }
397 
398 static void fill_page_dma_32(struct drm_device *dev, struct i915_page_dma *p,
399 			     const uint32_t val32)
400 {
401 	uint64_t v = val32;
402 
403 	v = v << 32 | val32;
404 
405 	fill_page_dma(dev, p, v);
406 }
407 
408 static struct i915_page_scratch *alloc_scratch_page(struct drm_device *dev)
409 {
410 	struct i915_page_scratch *sp;
411 	int ret;
412 
413 	sp = kzalloc(sizeof(*sp), GFP_KERNEL);
414 	if (sp == NULL)
415 		return ERR_PTR(-ENOMEM);
416 
417 	ret = __setup_page_dma(dev, px_base(sp), GFP_DMA32 | __GFP_ZERO);
418 	if (ret) {
419 		kfree(sp);
420 		return ERR_PTR(ret);
421 	}
422 
423 	set_pages_uc(px_page(sp), 1);
424 
425 	return sp;
426 }
427 
428 static void free_scratch_page(struct drm_device *dev,
429 			      struct i915_page_scratch *sp)
430 {
431 	set_pages_wb(px_page(sp), 1);
432 
433 	cleanup_px(dev, sp);
434 	kfree(sp);
435 }
436 
437 static struct i915_page_table *alloc_pt(struct drm_device *dev)
438 {
439 	struct i915_page_table *pt;
440 	const size_t count = INTEL_INFO(dev)->gen >= 8 ?
441 		GEN8_PTES : GEN6_PTES;
442 	int ret = -ENOMEM;
443 
444 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
445 	if (!pt)
446 		return ERR_PTR(-ENOMEM);
447 
448 	pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
449 				GFP_KERNEL);
450 
451 	if (!pt->used_ptes)
452 		goto fail_bitmap;
453 
454 	ret = setup_px(dev, pt);
455 	if (ret)
456 		goto fail_page_m;
457 
458 	return pt;
459 
460 fail_page_m:
461 	kfree(pt->used_ptes);
462 fail_bitmap:
463 	kfree(pt);
464 
465 	return ERR_PTR(ret);
466 }
467 
468 static void free_pt(struct drm_device *dev, struct i915_page_table *pt)
469 {
470 	cleanup_px(dev, pt);
471 	kfree(pt->used_ptes);
472 	kfree(pt);
473 }
474 
475 static void gen8_initialize_pt(struct i915_address_space *vm,
476 			       struct i915_page_table *pt)
477 {
478 	gen8_pte_t scratch_pte;
479 
480 	scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
481 				      I915_CACHE_LLC, true);
482 
483 	fill_px(vm->dev, pt, scratch_pte);
484 }
485 
486 static void gen6_initialize_pt(struct i915_address_space *vm,
487 			       struct i915_page_table *pt)
488 {
489 	gen6_pte_t scratch_pte;
490 
491 	WARN_ON(px_dma(vm->scratch_page) == 0);
492 
493 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
494 				     I915_CACHE_LLC, true, 0);
495 
496 	fill32_px(vm->dev, pt, scratch_pte);
497 }
498 
499 static struct i915_page_directory *alloc_pd(struct drm_device *dev)
500 {
501 	struct i915_page_directory *pd;
502 	int ret = -ENOMEM;
503 
504 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
505 	if (!pd)
506 		return ERR_PTR(-ENOMEM);
507 
508 	pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
509 				sizeof(*pd->used_pdes), GFP_KERNEL);
510 	if (!pd->used_pdes)
511 		goto fail_bitmap;
512 
513 	ret = setup_px(dev, pd);
514 	if (ret)
515 		goto fail_page_m;
516 
517 	return pd;
518 
519 fail_page_m:
520 	kfree(pd->used_pdes);
521 fail_bitmap:
522 	kfree(pd);
523 
524 	return ERR_PTR(ret);
525 }
526 
527 static void free_pd(struct drm_device *dev, struct i915_page_directory *pd)
528 {
529 	if (px_page(pd)) {
530 		cleanup_px(dev, pd);
531 		kfree(pd->used_pdes);
532 		kfree(pd);
533 	}
534 }
535 
536 static void gen8_initialize_pd(struct i915_address_space *vm,
537 			       struct i915_page_directory *pd)
538 {
539 	gen8_pde_t scratch_pde;
540 
541 	scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
542 
543 	fill_px(vm->dev, pd, scratch_pde);
544 }
545 
546 static int __pdp_init(struct drm_device *dev,
547 		      struct i915_page_directory_pointer *pdp)
548 {
549 	size_t pdpes = I915_PDPES_PER_PDP(dev);
550 
551 	pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes),
552 				  sizeof(unsigned long),
553 				  GFP_KERNEL);
554 	if (!pdp->used_pdpes)
555 		return -ENOMEM;
556 
557 	pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory),
558 				      GFP_KERNEL);
559 	if (!pdp->page_directory) {
560 		kfree(pdp->used_pdpes);
561 		/* the PDP might be the statically allocated top level. Keep it
562 		 * as clean as possible */
563 		pdp->used_pdpes = NULL;
564 		return -ENOMEM;
565 	}
566 
567 	return 0;
568 }
569 
570 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
571 {
572 	kfree(pdp->used_pdpes);
573 	kfree(pdp->page_directory);
574 	pdp->page_directory = NULL;
575 }
576 
577 static struct
578 i915_page_directory_pointer *alloc_pdp(struct drm_device *dev)
579 {
580 	struct i915_page_directory_pointer *pdp;
581 	int ret = -ENOMEM;
582 
583 	WARN_ON(!USES_FULL_48BIT_PPGTT(dev));
584 
585 	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
586 	if (!pdp)
587 		return ERR_PTR(-ENOMEM);
588 
589 	ret = __pdp_init(dev, pdp);
590 	if (ret)
591 		goto fail_bitmap;
592 
593 	ret = setup_px(dev, pdp);
594 	if (ret)
595 		goto fail_page_m;
596 
597 	return pdp;
598 
599 fail_page_m:
600 	__pdp_fini(pdp);
601 fail_bitmap:
602 	kfree(pdp);
603 
604 	return ERR_PTR(ret);
605 }
606 
607 static void free_pdp(struct drm_device *dev,
608 		     struct i915_page_directory_pointer *pdp)
609 {
610 	__pdp_fini(pdp);
611 	if (USES_FULL_48BIT_PPGTT(dev)) {
612 		cleanup_px(dev, pdp);
613 		kfree(pdp);
614 	}
615 }
616 
617 static void gen8_initialize_pdp(struct i915_address_space *vm,
618 				struct i915_page_directory_pointer *pdp)
619 {
620 	gen8_ppgtt_pdpe_t scratch_pdpe;
621 
622 	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
623 
624 	fill_px(vm->dev, pdp, scratch_pdpe);
625 }
626 
627 static void gen8_initialize_pml4(struct i915_address_space *vm,
628 				 struct i915_pml4 *pml4)
629 {
630 	gen8_ppgtt_pml4e_t scratch_pml4e;
631 
632 	scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp),
633 					  I915_CACHE_LLC);
634 
635 	fill_px(vm->dev, pml4, scratch_pml4e);
636 }
637 
638 static void
639 gen8_setup_page_directory(struct i915_hw_ppgtt *ppgtt,
640 			  struct i915_page_directory_pointer *pdp,
641 			  struct i915_page_directory *pd,
642 			  int index)
643 {
644 	gen8_ppgtt_pdpe_t *page_directorypo;
645 
646 	if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
647 		return;
648 
649 	page_directorypo = kmap_px(pdp);
650 	page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
651 	kunmap_px(ppgtt, page_directorypo);
652 }
653 
654 static void
655 gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt,
656 				  struct i915_pml4 *pml4,
657 				  struct i915_page_directory_pointer *pdp,
658 				  int index)
659 {
660 	gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4);
661 
662 	WARN_ON(!USES_FULL_48BIT_PPGTT(ppgtt->base.dev));
663 	pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
664 	kunmap_px(ppgtt, pagemap);
665 }
666 
667 /* Broadwell Page Directory Pointer Descriptors */
668 static int gen8_write_pdp(struct drm_i915_gem_request *req,
669 			  unsigned entry,
670 			  dma_addr_t addr)
671 {
672 	struct intel_ring *ring = req->ring;
673 	struct intel_engine_cs *engine = req->engine;
674 	int ret;
675 
676 	BUG_ON(entry >= 4);
677 
678 	ret = intel_ring_begin(req, 6);
679 	if (ret)
680 		return ret;
681 
682 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
683 	intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, entry));
684 	intel_ring_emit(ring, upper_32_bits(addr));
685 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
686 	intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, entry));
687 	intel_ring_emit(ring, lower_32_bits(addr));
688 	intel_ring_advance(ring);
689 
690 	return 0;
691 }
692 
693 static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt,
694 				 struct drm_i915_gem_request *req)
695 {
696 	int i, ret;
697 
698 	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
699 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
700 
701 		ret = gen8_write_pdp(req, i, pd_daddr);
702 		if (ret)
703 			return ret;
704 	}
705 
706 	return 0;
707 }
708 
709 static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt,
710 			      struct drm_i915_gem_request *req)
711 {
712 	return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
713 }
714 
715 static void gen8_ppgtt_clear_pte_range(struct i915_address_space *vm,
716 				       struct i915_page_directory_pointer *pdp,
717 				       uint64_t start,
718 				       uint64_t length,
719 				       gen8_pte_t scratch_pte)
720 {
721 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
722 	gen8_pte_t *pt_vaddr;
723 	unsigned pdpe = gen8_pdpe_index(start);
724 	unsigned pde = gen8_pde_index(start);
725 	unsigned pte = gen8_pte_index(start);
726 	unsigned num_entries = length >> PAGE_SHIFT;
727 	unsigned last_pte, i;
728 
729 	if (WARN_ON(!pdp))
730 		return;
731 
732 	while (num_entries) {
733 		struct i915_page_directory *pd;
734 		struct i915_page_table *pt;
735 
736 		if (WARN_ON(!pdp->page_directory[pdpe]))
737 			break;
738 
739 		pd = pdp->page_directory[pdpe];
740 
741 		if (WARN_ON(!pd->page_table[pde]))
742 			break;
743 
744 		pt = pd->page_table[pde];
745 
746 		if (WARN_ON(!px_page(pt)))
747 			break;
748 
749 		last_pte = pte + num_entries;
750 		if (last_pte > GEN8_PTES)
751 			last_pte = GEN8_PTES;
752 
753 		pt_vaddr = kmap_px(pt);
754 
755 		for (i = pte; i < last_pte; i++) {
756 			pt_vaddr[i] = scratch_pte;
757 			num_entries--;
758 		}
759 
760 		kunmap_px(ppgtt, pt_vaddr);
761 
762 		pte = 0;
763 		if (++pde == I915_PDES) {
764 			if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
765 				break;
766 			pde = 0;
767 		}
768 	}
769 }
770 
771 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
772 				   uint64_t start,
773 				   uint64_t length,
774 				   bool use_scratch)
775 {
776 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
777 	gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
778 						 I915_CACHE_LLC, use_scratch);
779 
780 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
781 		gen8_ppgtt_clear_pte_range(vm, &ppgtt->pdp, start, length,
782 					   scratch_pte);
783 	} else {
784 		uint64_t pml4e;
785 		struct i915_page_directory_pointer *pdp;
786 
787 		gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
788 			gen8_ppgtt_clear_pte_range(vm, pdp, start, length,
789 						   scratch_pte);
790 		}
791 	}
792 }
793 
794 static void
795 gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
796 			      struct i915_page_directory_pointer *pdp,
797 			      struct sg_page_iter *sg_iter,
798 			      uint64_t start,
799 			      enum i915_cache_level cache_level)
800 {
801 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
802 	gen8_pte_t *pt_vaddr;
803 	unsigned pdpe = gen8_pdpe_index(start);
804 	unsigned pde = gen8_pde_index(start);
805 	unsigned pte = gen8_pte_index(start);
806 
807 	pt_vaddr = NULL;
808 
809 	while (__sg_page_iter_next(sg_iter)) {
810 		if (pt_vaddr == NULL) {
811 			struct i915_page_directory *pd = pdp->page_directory[pdpe];
812 			struct i915_page_table *pt = pd->page_table[pde];
813 			pt_vaddr = kmap_px(pt);
814 		}
815 
816 		pt_vaddr[pte] =
817 			gen8_pte_encode(sg_page_iter_dma_address(sg_iter),
818 					cache_level, true);
819 		if (++pte == GEN8_PTES) {
820 			kunmap_px(ppgtt, pt_vaddr);
821 			pt_vaddr = NULL;
822 			if (++pde == I915_PDES) {
823 				if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
824 					break;
825 				pde = 0;
826 			}
827 			pte = 0;
828 		}
829 	}
830 
831 	if (pt_vaddr)
832 		kunmap_px(ppgtt, pt_vaddr);
833 }
834 
835 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
836 				      struct sg_table *pages,
837 				      uint64_t start,
838 				      enum i915_cache_level cache_level,
839 				      u32 unused)
840 {
841 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
842 	struct sg_page_iter sg_iter;
843 
844 	__sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0);
845 
846 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
847 		gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start,
848 					      cache_level);
849 	} else {
850 		struct i915_page_directory_pointer *pdp;
851 		uint64_t pml4e;
852 		uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT;
853 
854 		gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
855 			gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter,
856 						      start, cache_level);
857 		}
858 	}
859 }
860 
861 static void gen8_free_page_tables(struct drm_device *dev,
862 				  struct i915_page_directory *pd)
863 {
864 	int i;
865 
866 	if (!px_page(pd))
867 		return;
868 
869 	for_each_set_bit(i, pd->used_pdes, I915_PDES) {
870 		if (WARN_ON(!pd->page_table[i]))
871 			continue;
872 
873 		free_pt(dev, pd->page_table[i]);
874 		pd->page_table[i] = NULL;
875 	}
876 }
877 
878 static int gen8_init_scratch(struct i915_address_space *vm)
879 {
880 	struct drm_device *dev = vm->dev;
881 	int ret;
882 
883 	vm->scratch_page = alloc_scratch_page(dev);
884 	if (IS_ERR(vm->scratch_page))
885 		return PTR_ERR(vm->scratch_page);
886 
887 	vm->scratch_pt = alloc_pt(dev);
888 	if (IS_ERR(vm->scratch_pt)) {
889 		ret = PTR_ERR(vm->scratch_pt);
890 		goto free_scratch_page;
891 	}
892 
893 	vm->scratch_pd = alloc_pd(dev);
894 	if (IS_ERR(vm->scratch_pd)) {
895 		ret = PTR_ERR(vm->scratch_pd);
896 		goto free_pt;
897 	}
898 
899 	if (USES_FULL_48BIT_PPGTT(dev)) {
900 		vm->scratch_pdp = alloc_pdp(dev);
901 		if (IS_ERR(vm->scratch_pdp)) {
902 			ret = PTR_ERR(vm->scratch_pdp);
903 			goto free_pd;
904 		}
905 	}
906 
907 	gen8_initialize_pt(vm, vm->scratch_pt);
908 	gen8_initialize_pd(vm, vm->scratch_pd);
909 	if (USES_FULL_48BIT_PPGTT(dev))
910 		gen8_initialize_pdp(vm, vm->scratch_pdp);
911 
912 	return 0;
913 
914 free_pd:
915 	free_pd(dev, vm->scratch_pd);
916 free_pt:
917 	free_pt(dev, vm->scratch_pt);
918 free_scratch_page:
919 	free_scratch_page(dev, vm->scratch_page);
920 
921 	return ret;
922 }
923 
924 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
925 {
926 	enum vgt_g2v_type msg;
927 	struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
928 	int i;
929 
930 	if (USES_FULL_48BIT_PPGTT(dev_priv)) {
931 		u64 daddr = px_dma(&ppgtt->pml4);
932 
933 		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
934 		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
935 
936 		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
937 				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
938 	} else {
939 		for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
940 			u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
941 
942 			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
943 			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
944 		}
945 
946 		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
947 				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
948 	}
949 
950 	I915_WRITE(vgtif_reg(g2v_notify), msg);
951 
952 	return 0;
953 }
954 
955 static void gen8_free_scratch(struct i915_address_space *vm)
956 {
957 	struct drm_device *dev = vm->dev;
958 
959 	if (USES_FULL_48BIT_PPGTT(dev))
960 		free_pdp(dev, vm->scratch_pdp);
961 	free_pd(dev, vm->scratch_pd);
962 	free_pt(dev, vm->scratch_pt);
963 	free_scratch_page(dev, vm->scratch_page);
964 }
965 
966 static void gen8_ppgtt_cleanup_3lvl(struct drm_device *dev,
967 				    struct i915_page_directory_pointer *pdp)
968 {
969 	int i;
970 
971 	for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev)) {
972 		if (WARN_ON(!pdp->page_directory[i]))
973 			continue;
974 
975 		gen8_free_page_tables(dev, pdp->page_directory[i]);
976 		free_pd(dev, pdp->page_directory[i]);
977 	}
978 
979 	free_pdp(dev, pdp);
980 }
981 
982 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
983 {
984 	int i;
985 
986 	for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) {
987 		if (WARN_ON(!ppgtt->pml4.pdps[i]))
988 			continue;
989 
990 		gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, ppgtt->pml4.pdps[i]);
991 	}
992 
993 	cleanup_px(ppgtt->base.dev, &ppgtt->pml4);
994 }
995 
996 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
997 {
998 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
999 
1000 	if (intel_vgpu_active(to_i915(vm->dev)))
1001 		gen8_ppgtt_notify_vgt(ppgtt, false);
1002 
1003 	if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
1004 		gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, &ppgtt->pdp);
1005 	else
1006 		gen8_ppgtt_cleanup_4lvl(ppgtt);
1007 
1008 	gen8_free_scratch(vm);
1009 }
1010 
1011 /**
1012  * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
1013  * @vm:	Master vm structure.
1014  * @pd:	Page directory for this address range.
1015  * @start:	Starting virtual address to begin allocations.
1016  * @length:	Size of the allocations.
1017  * @new_pts:	Bitmap set by function with new allocations. Likely used by the
1018  *		caller to free on error.
1019  *
1020  * Allocate the required number of page tables. Extremely similar to
1021  * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
1022  * the page directory boundary (instead of the page directory pointer). That
1023  * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
1024  * possible, and likely that the caller will need to use multiple calls of this
1025  * function to achieve the appropriate allocation.
1026  *
1027  * Return: 0 if success; negative error code otherwise.
1028  */
1029 static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm,
1030 				     struct i915_page_directory *pd,
1031 				     uint64_t start,
1032 				     uint64_t length,
1033 				     unsigned long *new_pts)
1034 {
1035 	struct drm_device *dev = vm->dev;
1036 	struct i915_page_table *pt;
1037 	uint32_t pde;
1038 
1039 	gen8_for_each_pde(pt, pd, start, length, pde) {
1040 		/* Don't reallocate page tables */
1041 		if (test_bit(pde, pd->used_pdes)) {
1042 			/* Scratch is never allocated this way */
1043 			WARN_ON(pt == vm->scratch_pt);
1044 			continue;
1045 		}
1046 
1047 		pt = alloc_pt(dev);
1048 		if (IS_ERR(pt))
1049 			goto unwind_out;
1050 
1051 		gen8_initialize_pt(vm, pt);
1052 		pd->page_table[pde] = pt;
1053 		__set_bit(pde, new_pts);
1054 		trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT);
1055 	}
1056 
1057 	return 0;
1058 
1059 unwind_out:
1060 	for_each_set_bit(pde, new_pts, I915_PDES)
1061 		free_pt(dev, pd->page_table[pde]);
1062 
1063 	return -ENOMEM;
1064 }
1065 
1066 /**
1067  * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
1068  * @vm:	Master vm structure.
1069  * @pdp:	Page directory pointer for this address range.
1070  * @start:	Starting virtual address to begin allocations.
1071  * @length:	Size of the allocations.
1072  * @new_pds:	Bitmap set by function with new allocations. Likely used by the
1073  *		caller to free on error.
1074  *
1075  * Allocate the required number of page directories starting at the pde index of
1076  * @start, and ending at the pde index @start + @length. This function will skip
1077  * over already allocated page directories within the range, and only allocate
1078  * new ones, setting the appropriate pointer within the pdp as well as the
1079  * correct position in the bitmap @new_pds.
1080  *
1081  * The function will only allocate the pages within the range for a give page
1082  * directory pointer. In other words, if @start + @length straddles a virtually
1083  * addressed PDP boundary (512GB for 4k pages), there will be more allocations
1084  * required by the caller, This is not currently possible, and the BUG in the
1085  * code will prevent it.
1086  *
1087  * Return: 0 if success; negative error code otherwise.
1088  */
1089 static int
1090 gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm,
1091 				  struct i915_page_directory_pointer *pdp,
1092 				  uint64_t start,
1093 				  uint64_t length,
1094 				  unsigned long *new_pds)
1095 {
1096 	struct drm_device *dev = vm->dev;
1097 	struct i915_page_directory *pd;
1098 	uint32_t pdpe;
1099 	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1100 
1101 	WARN_ON(!bitmap_empty(new_pds, pdpes));
1102 
1103 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1104 		if (test_bit(pdpe, pdp->used_pdpes))
1105 			continue;
1106 
1107 		pd = alloc_pd(dev);
1108 		if (IS_ERR(pd))
1109 			goto unwind_out;
1110 
1111 		gen8_initialize_pd(vm, pd);
1112 		pdp->page_directory[pdpe] = pd;
1113 		__set_bit(pdpe, new_pds);
1114 		trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT);
1115 	}
1116 
1117 	return 0;
1118 
1119 unwind_out:
1120 	for_each_set_bit(pdpe, new_pds, pdpes)
1121 		free_pd(dev, pdp->page_directory[pdpe]);
1122 
1123 	return -ENOMEM;
1124 }
1125 
1126 /**
1127  * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
1128  * @vm:	Master vm structure.
1129  * @pml4:	Page map level 4 for this address range.
1130  * @start:	Starting virtual address to begin allocations.
1131  * @length:	Size of the allocations.
1132  * @new_pdps:	Bitmap set by function with new allocations. Likely used by the
1133  *		caller to free on error.
1134  *
1135  * Allocate the required number of page directory pointers. Extremely similar to
1136  * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
1137  * The main difference is here we are limited by the pml4 boundary (instead of
1138  * the page directory pointer).
1139  *
1140  * Return: 0 if success; negative error code otherwise.
1141  */
1142 static int
1143 gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm,
1144 				  struct i915_pml4 *pml4,
1145 				  uint64_t start,
1146 				  uint64_t length,
1147 				  unsigned long *new_pdps)
1148 {
1149 	struct drm_device *dev = vm->dev;
1150 	struct i915_page_directory_pointer *pdp;
1151 	uint32_t pml4e;
1152 
1153 	WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4));
1154 
1155 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1156 		if (!test_bit(pml4e, pml4->used_pml4es)) {
1157 			pdp = alloc_pdp(dev);
1158 			if (IS_ERR(pdp))
1159 				goto unwind_out;
1160 
1161 			gen8_initialize_pdp(vm, pdp);
1162 			pml4->pdps[pml4e] = pdp;
1163 			__set_bit(pml4e, new_pdps);
1164 			trace_i915_page_directory_pointer_entry_alloc(vm,
1165 								      pml4e,
1166 								      start,
1167 								      GEN8_PML4E_SHIFT);
1168 		}
1169 	}
1170 
1171 	return 0;
1172 
1173 unwind_out:
1174 	for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1175 		free_pdp(dev, pml4->pdps[pml4e]);
1176 
1177 	return -ENOMEM;
1178 }
1179 
1180 static void
1181 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts)
1182 {
1183 	kfree(new_pts);
1184 	kfree(new_pds);
1185 }
1186 
1187 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
1188  * of these are based on the number of PDPEs in the system.
1189  */
1190 static
1191 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
1192 					 unsigned long **new_pts,
1193 					 uint32_t pdpes)
1194 {
1195 	unsigned long *pds;
1196 	unsigned long *pts;
1197 
1198 	pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY);
1199 	if (!pds)
1200 		return -ENOMEM;
1201 
1202 	pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long),
1203 		      GFP_TEMPORARY);
1204 	if (!pts)
1205 		goto err_out;
1206 
1207 	*new_pds = pds;
1208 	*new_pts = pts;
1209 
1210 	return 0;
1211 
1212 err_out:
1213 	free_gen8_temp_bitmaps(pds, pts);
1214 	return -ENOMEM;
1215 }
1216 
1217 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
1218  * the page table structures, we mark them dirty so that
1219  * context switching/execlist queuing code takes extra steps
1220  * to ensure that tlbs are flushed.
1221  */
1222 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
1223 {
1224 	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
1225 }
1226 
1227 static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm,
1228 				    struct i915_page_directory_pointer *pdp,
1229 				    uint64_t start,
1230 				    uint64_t length)
1231 {
1232 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1233 	unsigned long *new_page_dirs, *new_page_tables;
1234 	struct drm_device *dev = vm->dev;
1235 	struct i915_page_directory *pd;
1236 	const uint64_t orig_start = start;
1237 	const uint64_t orig_length = length;
1238 	uint32_t pdpe;
1239 	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1240 	int ret;
1241 
1242 	/* Wrap is never okay since we can only represent 48b, and we don't
1243 	 * actually use the other side of the canonical address space.
1244 	 */
1245 	if (WARN_ON(start + length < start))
1246 		return -ENODEV;
1247 
1248 	if (WARN_ON(start + length > vm->total))
1249 		return -ENODEV;
1250 
1251 	ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1252 	if (ret)
1253 		return ret;
1254 
1255 	/* Do the allocations first so we can easily bail out */
1256 	ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length,
1257 						new_page_dirs);
1258 	if (ret) {
1259 		free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1260 		return ret;
1261 	}
1262 
1263 	/* For every page directory referenced, allocate page tables */
1264 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1265 		ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length,
1266 						new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES));
1267 		if (ret)
1268 			goto err_out;
1269 	}
1270 
1271 	start = orig_start;
1272 	length = orig_length;
1273 
1274 	/* Allocations have completed successfully, so set the bitmaps, and do
1275 	 * the mappings. */
1276 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1277 		gen8_pde_t *const page_directory = kmap_px(pd);
1278 		struct i915_page_table *pt;
1279 		uint64_t pd_len = length;
1280 		uint64_t pd_start = start;
1281 		uint32_t pde;
1282 
1283 		/* Every pd should be allocated, we just did that above. */
1284 		WARN_ON(!pd);
1285 
1286 		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1287 			/* Same reasoning as pd */
1288 			WARN_ON(!pt);
1289 			WARN_ON(!pd_len);
1290 			WARN_ON(!gen8_pte_count(pd_start, pd_len));
1291 
1292 			/* Set our used ptes within the page table */
1293 			bitmap_set(pt->used_ptes,
1294 				   gen8_pte_index(pd_start),
1295 				   gen8_pte_count(pd_start, pd_len));
1296 
1297 			/* Our pde is now pointing to the pagetable, pt */
1298 			__set_bit(pde, pd->used_pdes);
1299 
1300 			/* Map the PDE to the page table */
1301 			page_directory[pde] = gen8_pde_encode(px_dma(pt),
1302 							      I915_CACHE_LLC);
1303 			trace_i915_page_table_entry_map(&ppgtt->base, pde, pt,
1304 							gen8_pte_index(start),
1305 							gen8_pte_count(start, length),
1306 							GEN8_PTES);
1307 
1308 			/* NB: We haven't yet mapped ptes to pages. At this
1309 			 * point we're still relying on insert_entries() */
1310 		}
1311 
1312 		kunmap_px(ppgtt, page_directory);
1313 		__set_bit(pdpe, pdp->used_pdpes);
1314 		gen8_setup_page_directory(ppgtt, pdp, pd, pdpe);
1315 	}
1316 
1317 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1318 	mark_tlbs_dirty(ppgtt);
1319 	return 0;
1320 
1321 err_out:
1322 	while (pdpe--) {
1323 		unsigned long temp;
1324 
1325 		for_each_set_bit(temp, new_page_tables + pdpe *
1326 				BITS_TO_LONGS(I915_PDES), I915_PDES)
1327 			free_pt(dev, pdp->page_directory[pdpe]->page_table[temp]);
1328 	}
1329 
1330 	for_each_set_bit(pdpe, new_page_dirs, pdpes)
1331 		free_pd(dev, pdp->page_directory[pdpe]);
1332 
1333 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1334 	mark_tlbs_dirty(ppgtt);
1335 	return ret;
1336 }
1337 
1338 static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm,
1339 				    struct i915_pml4 *pml4,
1340 				    uint64_t start,
1341 				    uint64_t length)
1342 {
1343 	DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4);
1344 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1345 	struct i915_page_directory_pointer *pdp;
1346 	uint64_t pml4e;
1347 	int ret = 0;
1348 
1349 	/* Do the pml4 allocations first, so we don't need to track the newly
1350 	 * allocated tables below the pdp */
1351 	bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4);
1352 
1353 	/* The pagedirectory and pagetable allocations are done in the shared 3
1354 	 * and 4 level code. Just allocate the pdps.
1355 	 */
1356 	ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length,
1357 						new_pdps);
1358 	if (ret)
1359 		return ret;
1360 
1361 	WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2,
1362 	     "The allocation has spanned more than 512GB. "
1363 	     "It is highly likely this is incorrect.");
1364 
1365 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1366 		WARN_ON(!pdp);
1367 
1368 		ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length);
1369 		if (ret)
1370 			goto err_out;
1371 
1372 		gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e);
1373 	}
1374 
1375 	bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es,
1376 		  GEN8_PML4ES_PER_PML4);
1377 
1378 	return 0;
1379 
1380 err_out:
1381 	for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1382 		gen8_ppgtt_cleanup_3lvl(vm->dev, pml4->pdps[pml4e]);
1383 
1384 	return ret;
1385 }
1386 
1387 static int gen8_alloc_va_range(struct i915_address_space *vm,
1388 			       uint64_t start, uint64_t length)
1389 {
1390 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1391 
1392 	if (USES_FULL_48BIT_PPGTT(vm->dev))
1393 		return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length);
1394 	else
1395 		return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length);
1396 }
1397 
1398 static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp,
1399 			  uint64_t start, uint64_t length,
1400 			  gen8_pte_t scratch_pte,
1401 			  struct seq_file *m)
1402 {
1403 	struct i915_page_directory *pd;
1404 	uint32_t pdpe;
1405 
1406 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1407 		struct i915_page_table *pt;
1408 		uint64_t pd_len = length;
1409 		uint64_t pd_start = start;
1410 		uint32_t pde;
1411 
1412 		if (!test_bit(pdpe, pdp->used_pdpes))
1413 			continue;
1414 
1415 		seq_printf(m, "\tPDPE #%d\n", pdpe);
1416 		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1417 			uint32_t  pte;
1418 			gen8_pte_t *pt_vaddr;
1419 
1420 			if (!test_bit(pde, pd->used_pdes))
1421 				continue;
1422 
1423 			pt_vaddr = kmap_px(pt);
1424 			for (pte = 0; pte < GEN8_PTES; pte += 4) {
1425 				uint64_t va =
1426 					(pdpe << GEN8_PDPE_SHIFT) |
1427 					(pde << GEN8_PDE_SHIFT) |
1428 					(pte << GEN8_PTE_SHIFT);
1429 				int i;
1430 				bool found = false;
1431 
1432 				for (i = 0; i < 4; i++)
1433 					if (pt_vaddr[pte + i] != scratch_pte)
1434 						found = true;
1435 				if (!found)
1436 					continue;
1437 
1438 				seq_printf(m, "\t\t0x%lx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1439 				for (i = 0; i < 4; i++) {
1440 					if (pt_vaddr[pte + i] != scratch_pte)
1441 						seq_printf(m, " %lx", pt_vaddr[pte + i]);
1442 					else
1443 						seq_puts(m, "  SCRATCH ");
1444 				}
1445 				seq_puts(m, "\n");
1446 			}
1447 			/* don't use kunmap_px, it could trigger
1448 			 * an unnecessary flush.
1449 			 */
1450 			kunmap_atomic(pt_vaddr);
1451 		}
1452 	}
1453 }
1454 
1455 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1456 {
1457 	struct i915_address_space *vm = &ppgtt->base;
1458 	uint64_t start = ppgtt->base.start;
1459 	uint64_t length = ppgtt->base.total;
1460 	gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
1461 						 I915_CACHE_LLC, true);
1462 
1463 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
1464 		gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m);
1465 	} else {
1466 		uint64_t pml4e;
1467 		struct i915_pml4 *pml4 = &ppgtt->pml4;
1468 		struct i915_page_directory_pointer *pdp;
1469 
1470 		gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1471 			if (!test_bit(pml4e, pml4->used_pml4es))
1472 				continue;
1473 
1474 			seq_printf(m, "    PML4E #%lu\n", pml4e);
1475 			gen8_dump_pdp(pdp, start, length, scratch_pte, m);
1476 		}
1477 	}
1478 }
1479 
1480 static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt)
1481 {
1482 	unsigned long *new_page_dirs, *new_page_tables;
1483 	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1484 	int ret;
1485 
1486 	/* We allocate temp bitmap for page tables for no gain
1487 	 * but as this is for init only, lets keep the things simple
1488 	 */
1489 	ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1490 	if (ret)
1491 		return ret;
1492 
1493 	/* Allocate for all pdps regardless of how the ppgtt
1494 	 * was defined.
1495 	 */
1496 	ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp,
1497 						0, 1ULL << 32,
1498 						new_page_dirs);
1499 	if (!ret)
1500 		*ppgtt->pdp.used_pdpes = *new_page_dirs;
1501 
1502 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1503 
1504 	return ret;
1505 }
1506 
1507 /*
1508  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1509  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1510  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1511  * space.
1512  *
1513  */
1514 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1515 {
1516 	int ret;
1517 
1518 	ret = gen8_init_scratch(&ppgtt->base);
1519 	if (ret)
1520 		return ret;
1521 
1522 	ppgtt->base.start = 0;
1523 	ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1524 	ppgtt->base.allocate_va_range = gen8_alloc_va_range;
1525 	ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
1526 	ppgtt->base.clear_range = gen8_ppgtt_clear_range;
1527 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1528 	ppgtt->base.bind_vma = ppgtt_bind_vma;
1529 	ppgtt->debug_dump = gen8_dump_ppgtt;
1530 
1531 	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
1532 		ret = setup_px(ppgtt->base.dev, &ppgtt->pml4);
1533 		if (ret)
1534 			goto free_scratch;
1535 
1536 		gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1537 
1538 		ppgtt->base.total = 1ULL << 48;
1539 		ppgtt->switch_mm = gen8_48b_mm_switch;
1540 	} else {
1541 		ret = __pdp_init(ppgtt->base.dev, &ppgtt->pdp);
1542 		if (ret)
1543 			goto free_scratch;
1544 
1545 		ppgtt->base.total = 1ULL << 32;
1546 		ppgtt->switch_mm = gen8_legacy_mm_switch;
1547 		trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base,
1548 							      0, 0,
1549 							      GEN8_PML4E_SHIFT);
1550 
1551 		if (intel_vgpu_active(to_i915(ppgtt->base.dev))) {
1552 			ret = gen8_preallocate_top_level_pdps(ppgtt);
1553 			if (ret)
1554 				goto free_scratch;
1555 		}
1556 	}
1557 
1558 	if (intel_vgpu_active(to_i915(ppgtt->base.dev)))
1559 		gen8_ppgtt_notify_vgt(ppgtt, true);
1560 
1561 	return 0;
1562 
1563 free_scratch:
1564 	gen8_free_scratch(&ppgtt->base);
1565 	return ret;
1566 }
1567 
1568 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1569 {
1570 	struct i915_address_space *vm = &ppgtt->base;
1571 	struct i915_page_table *unused;
1572 	gen6_pte_t scratch_pte;
1573 	uint32_t pd_entry;
1574 	uint32_t  pte, pde;
1575 	uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
1576 
1577 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1578 				     I915_CACHE_LLC, true, 0);
1579 
1580 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) {
1581 		u32 expected;
1582 		gen6_pte_t *pt_vaddr;
1583 		const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1584 		pd_entry = readl(ppgtt->pd_addr + pde);
1585 		expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1586 
1587 		if (pd_entry != expected)
1588 			seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1589 				   pde,
1590 				   pd_entry,
1591 				   expected);
1592 		seq_printf(m, "\tPDE: %x\n", pd_entry);
1593 
1594 		pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
1595 
1596 		for (pte = 0; pte < GEN6_PTES; pte+=4) {
1597 			unsigned long va =
1598 				(pde * PAGE_SIZE * GEN6_PTES) +
1599 				(pte * PAGE_SIZE);
1600 			int i;
1601 			bool found = false;
1602 			for (i = 0; i < 4; i++)
1603 				if (pt_vaddr[pte + i] != scratch_pte)
1604 					found = true;
1605 			if (!found)
1606 				continue;
1607 
1608 			seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1609 			for (i = 0; i < 4; i++) {
1610 				if (pt_vaddr[pte + i] != scratch_pte)
1611 					seq_printf(m, " %08x", pt_vaddr[pte + i]);
1612 				else
1613 					seq_puts(m, "  SCRATCH ");
1614 			}
1615 			seq_puts(m, "\n");
1616 		}
1617 		kunmap_px(ppgtt, pt_vaddr);
1618 	}
1619 }
1620 
1621 /* Write pde (index) from the page directory @pd to the page table @pt */
1622 static void gen6_write_pde(struct i915_page_directory *pd,
1623 			    const int pde, struct i915_page_table *pt)
1624 {
1625 	/* Caller needs to make sure the write completes if necessary */
1626 	struct i915_hw_ppgtt *ppgtt =
1627 		container_of(pd, struct i915_hw_ppgtt, pd);
1628 	u32 pd_entry;
1629 
1630 	pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
1631 	pd_entry |= GEN6_PDE_VALID;
1632 
1633 	writel(pd_entry, ppgtt->pd_addr + pde);
1634 }
1635 
1636 /* Write all the page tables found in the ppgtt structure to incrementing page
1637  * directories. */
1638 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1639 				  struct i915_page_directory *pd,
1640 				  uint32_t start, uint32_t length)
1641 {
1642 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1643 	struct i915_page_table *pt;
1644 	uint32_t pde;
1645 
1646 	gen6_for_each_pde(pt, pd, start, length, pde)
1647 		gen6_write_pde(pd, pde, pt);
1648 
1649 	/* Make sure write is complete before other code can use this page
1650 	 * table. Also require for WC mapped PTEs */
1651 	readl(ggtt->gsm);
1652 }
1653 
1654 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1655 {
1656 	BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1657 
1658 	return (ppgtt->pd.base.ggtt_offset / 64) << 16;
1659 }
1660 
1661 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1662 			 struct drm_i915_gem_request *req)
1663 {
1664 	struct intel_ring *ring = req->ring;
1665 	struct intel_engine_cs *engine = req->engine;
1666 	int ret;
1667 
1668 	/* NB: TLBs must be flushed and invalidated before a switch */
1669 	ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
1670 	if (ret)
1671 		return ret;
1672 
1673 	ret = intel_ring_begin(req, 6);
1674 	if (ret)
1675 		return ret;
1676 
1677 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1678 	intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(engine));
1679 	intel_ring_emit(ring, PP_DIR_DCLV_2G);
1680 	intel_ring_emit_reg(ring, RING_PP_DIR_BASE(engine));
1681 	intel_ring_emit(ring, get_pd_offset(ppgtt));
1682 	intel_ring_emit(ring, MI_NOOP);
1683 	intel_ring_advance(ring);
1684 
1685 	return 0;
1686 }
1687 
1688 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1689 			  struct drm_i915_gem_request *req)
1690 {
1691 	struct intel_ring *ring = req->ring;
1692 	struct intel_engine_cs *engine = req->engine;
1693 	int ret;
1694 
1695 	/* NB: TLBs must be flushed and invalidated before a switch */
1696 	ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
1697 	if (ret)
1698 		return ret;
1699 
1700 	ret = intel_ring_begin(req, 6);
1701 	if (ret)
1702 		return ret;
1703 
1704 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1705 	intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(engine));
1706 	intel_ring_emit(ring, PP_DIR_DCLV_2G);
1707 	intel_ring_emit_reg(ring, RING_PP_DIR_BASE(engine));
1708 	intel_ring_emit(ring, get_pd_offset(ppgtt));
1709 	intel_ring_emit(ring, MI_NOOP);
1710 	intel_ring_advance(ring);
1711 
1712 	/* XXX: RCS is the only one to auto invalidate the TLBs? */
1713 	if (engine->id != RCS) {
1714 		ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
1715 		if (ret)
1716 			return ret;
1717 	}
1718 
1719 	return 0;
1720 }
1721 
1722 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1723 			  struct drm_i915_gem_request *req)
1724 {
1725 	struct intel_engine_cs *engine = req->engine;
1726 	struct drm_i915_private *dev_priv = req->i915;
1727 
1728 	I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1729 	I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1730 	return 0;
1731 }
1732 
1733 static void gen8_ppgtt_enable(struct drm_device *dev)
1734 {
1735 	struct drm_i915_private *dev_priv = to_i915(dev);
1736 	struct intel_engine_cs *engine;
1737 
1738 	for_each_engine(engine, dev_priv) {
1739 		u32 four_level = USES_FULL_48BIT_PPGTT(dev) ? GEN8_GFX_PPGTT_48B : 0;
1740 		I915_WRITE(RING_MODE_GEN7(engine),
1741 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1742 	}
1743 }
1744 
1745 static void gen7_ppgtt_enable(struct drm_device *dev)
1746 {
1747 	struct drm_i915_private *dev_priv = to_i915(dev);
1748 	struct intel_engine_cs *engine;
1749 	uint32_t ecochk, ecobits;
1750 
1751 	ecobits = I915_READ(GAC_ECO_BITS);
1752 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1753 
1754 	ecochk = I915_READ(GAM_ECOCHK);
1755 	if (IS_HASWELL(dev)) {
1756 		ecochk |= ECOCHK_PPGTT_WB_HSW;
1757 	} else {
1758 		ecochk |= ECOCHK_PPGTT_LLC_IVB;
1759 		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1760 	}
1761 	I915_WRITE(GAM_ECOCHK, ecochk);
1762 
1763 	for_each_engine(engine, dev_priv) {
1764 		/* GFX_MODE is per-ring on gen7+ */
1765 		I915_WRITE(RING_MODE_GEN7(engine),
1766 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1767 	}
1768 }
1769 
1770 static void gen6_ppgtt_enable(struct drm_device *dev)
1771 {
1772 	struct drm_i915_private *dev_priv = to_i915(dev);
1773 	uint32_t ecochk, gab_ctl, ecobits;
1774 
1775 	ecobits = I915_READ(GAC_ECO_BITS);
1776 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1777 		   ECOBITS_PPGTT_CACHE64B);
1778 
1779 	gab_ctl = I915_READ(GAB_CTL);
1780 	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1781 
1782 	ecochk = I915_READ(GAM_ECOCHK);
1783 	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1784 
1785 	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1786 }
1787 
1788 /* PPGTT support for Sandybdrige/Gen6 and later */
1789 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1790 				   uint64_t start,
1791 				   uint64_t length,
1792 				   bool use_scratch)
1793 {
1794 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1795 	gen6_pte_t *pt_vaddr, scratch_pte;
1796 	unsigned first_entry = start >> PAGE_SHIFT;
1797 	unsigned num_entries = length >> PAGE_SHIFT;
1798 	unsigned act_pt = first_entry / GEN6_PTES;
1799 	unsigned first_pte = first_entry % GEN6_PTES;
1800 	unsigned last_pte, i;
1801 
1802 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1803 				     I915_CACHE_LLC, true, 0);
1804 
1805 	while (num_entries) {
1806 		last_pte = first_pte + num_entries;
1807 		if (last_pte > GEN6_PTES)
1808 			last_pte = GEN6_PTES;
1809 
1810 		pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1811 
1812 		for (i = first_pte; i < last_pte; i++)
1813 			pt_vaddr[i] = scratch_pte;
1814 
1815 		kunmap_px(ppgtt, pt_vaddr);
1816 
1817 		num_entries -= last_pte - first_pte;
1818 		first_pte = 0;
1819 		act_pt++;
1820 	}
1821 }
1822 
1823 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1824 				      struct sg_table *pages,
1825 				      uint64_t start,
1826 				      enum i915_cache_level cache_level, u32 flags)
1827 {
1828 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1829 	unsigned first_entry = start >> PAGE_SHIFT;
1830 	unsigned act_pt = first_entry / GEN6_PTES;
1831 	unsigned act_pte = first_entry % GEN6_PTES;
1832 	gen6_pte_t *pt_vaddr = NULL;
1833 	struct sgt_iter sgt_iter;
1834 	dma_addr_t addr;
1835 
1836 	for_each_sgt_dma(addr, sgt_iter, pages) {
1837 		if (pt_vaddr == NULL)
1838 			pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1839 
1840 		pt_vaddr[act_pte] =
1841 			vm->pte_encode(addr, cache_level, true, flags);
1842 
1843 		if (++act_pte == GEN6_PTES) {
1844 			kunmap_px(ppgtt, pt_vaddr);
1845 			pt_vaddr = NULL;
1846 			act_pt++;
1847 			act_pte = 0;
1848 		}
1849 	}
1850 
1851 	if (pt_vaddr)
1852 		kunmap_px(ppgtt, pt_vaddr);
1853 }
1854 
1855 static int gen6_alloc_va_range(struct i915_address_space *vm,
1856 			       uint64_t start_in, uint64_t length_in)
1857 {
1858 	DECLARE_BITMAP(new_page_tables, I915_PDES);
1859 	struct drm_device *dev = vm->dev;
1860 	struct drm_i915_private *dev_priv = to_i915(dev);
1861 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1862 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1863 	struct i915_page_table *pt;
1864 	uint32_t start, length, start_save, length_save;
1865 	uint32_t pde;
1866 	int ret;
1867 
1868 	if (WARN_ON(start_in + length_in > ppgtt->base.total))
1869 		return -ENODEV;
1870 
1871 	start = start_save = start_in;
1872 	length = length_save = length_in;
1873 
1874 	bitmap_zero(new_page_tables, I915_PDES);
1875 
1876 	/* The allocation is done in two stages so that we can bail out with
1877 	 * minimal amount of pain. The first stage finds new page tables that
1878 	 * need allocation. The second stage marks use ptes within the page
1879 	 * tables.
1880 	 */
1881 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1882 		if (pt != vm->scratch_pt) {
1883 			WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1884 			continue;
1885 		}
1886 
1887 		/* We've already allocated a page table */
1888 		WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1889 
1890 		pt = alloc_pt(dev);
1891 		if (IS_ERR(pt)) {
1892 			ret = PTR_ERR(pt);
1893 			goto unwind_out;
1894 		}
1895 
1896 		gen6_initialize_pt(vm, pt);
1897 
1898 		ppgtt->pd.page_table[pde] = pt;
1899 		__set_bit(pde, new_page_tables);
1900 		trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1901 	}
1902 
1903 	start = start_save;
1904 	length = length_save;
1905 
1906 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1907 		DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1908 
1909 		bitmap_zero(tmp_bitmap, GEN6_PTES);
1910 		bitmap_set(tmp_bitmap, gen6_pte_index(start),
1911 			   gen6_pte_count(start, length));
1912 
1913 		if (__test_and_clear_bit(pde, new_page_tables))
1914 			gen6_write_pde(&ppgtt->pd, pde, pt);
1915 
1916 		trace_i915_page_table_entry_map(vm, pde, pt,
1917 					 gen6_pte_index(start),
1918 					 gen6_pte_count(start, length),
1919 					 GEN6_PTES);
1920 		bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1921 				GEN6_PTES);
1922 	}
1923 
1924 	WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1925 
1926 	/* Make sure write is complete before other code can use this page
1927 	 * table. Also require for WC mapped PTEs */
1928 	readl(ggtt->gsm);
1929 
1930 	mark_tlbs_dirty(ppgtt);
1931 	return 0;
1932 
1933 unwind_out:
1934 	for_each_set_bit(pde, new_page_tables, I915_PDES) {
1935 		struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1936 
1937 		ppgtt->pd.page_table[pde] = vm->scratch_pt;
1938 		free_pt(vm->dev, pt);
1939 	}
1940 
1941 	mark_tlbs_dirty(ppgtt);
1942 	return ret;
1943 }
1944 
1945 static int gen6_init_scratch(struct i915_address_space *vm)
1946 {
1947 	struct drm_device *dev = vm->dev;
1948 
1949 	vm->scratch_page = alloc_scratch_page(dev);
1950 	if (IS_ERR(vm->scratch_page))
1951 		return PTR_ERR(vm->scratch_page);
1952 
1953 	vm->scratch_pt = alloc_pt(dev);
1954 	if (IS_ERR(vm->scratch_pt)) {
1955 		free_scratch_page(dev, vm->scratch_page);
1956 		return PTR_ERR(vm->scratch_pt);
1957 	}
1958 
1959 	gen6_initialize_pt(vm, vm->scratch_pt);
1960 
1961 	return 0;
1962 }
1963 
1964 static void gen6_free_scratch(struct i915_address_space *vm)
1965 {
1966 	struct drm_device *dev = vm->dev;
1967 
1968 	free_pt(dev, vm->scratch_pt);
1969 	free_scratch_page(dev, vm->scratch_page);
1970 }
1971 
1972 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1973 {
1974 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1975 	struct i915_page_directory *pd = &ppgtt->pd;
1976 	struct drm_device *dev = vm->dev;
1977 	struct i915_page_table *pt;
1978 	uint32_t pde;
1979 
1980 	drm_mm_remove_node(&ppgtt->node);
1981 
1982 	gen6_for_all_pdes(pt, pd, pde)
1983 		if (pt != vm->scratch_pt)
1984 			free_pt(dev, pt);
1985 
1986 	gen6_free_scratch(vm);
1987 }
1988 
1989 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1990 {
1991 	struct i915_address_space *vm = &ppgtt->base;
1992 	struct drm_device *dev = ppgtt->base.dev;
1993 	struct drm_i915_private *dev_priv = to_i915(dev);
1994 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1995 	bool retried = false;
1996 	int ret;
1997 
1998 	/* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1999 	 * allocator works in address space sizes, so it's multiplied by page
2000 	 * size. We allocate at the top of the GTT to avoid fragmentation.
2001 	 */
2002 	BUG_ON(!drm_mm_initialized(&ggtt->base.mm));
2003 
2004 	ret = gen6_init_scratch(vm);
2005 	if (ret)
2006 		return ret;
2007 
2008 alloc:
2009 	ret = drm_mm_insert_node_in_range_generic(&ggtt->base.mm,
2010 						  &ppgtt->node, GEN6_PD_SIZE,
2011 						  GEN6_PD_ALIGN, 0,
2012 						  0, ggtt->base.total,
2013 						  DRM_MM_TOPDOWN);
2014 	if (ret == -ENOSPC && !retried) {
2015 		ret = i915_gem_evict_something(&ggtt->base,
2016 					       GEN6_PD_SIZE, GEN6_PD_ALIGN,
2017 					       I915_CACHE_NONE,
2018 					       0, ggtt->base.total,
2019 					       0);
2020 		if (ret)
2021 			goto err_out;
2022 
2023 		retried = true;
2024 		goto alloc;
2025 	}
2026 
2027 	if (ret)
2028 		goto err_out;
2029 
2030 
2031 	if (ppgtt->node.start < ggtt->mappable_end)
2032 		DRM_DEBUG("Forced to use aperture for PDEs\n");
2033 
2034 	return 0;
2035 
2036 err_out:
2037 	gen6_free_scratch(vm);
2038 	return ret;
2039 }
2040 
2041 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2042 {
2043 	return gen6_ppgtt_allocate_page_directories(ppgtt);
2044 }
2045 
2046 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2047 				  uint64_t start, uint64_t length)
2048 {
2049 	struct i915_page_table *unused;
2050 	uint32_t pde;
2051 
2052 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde)
2053 		ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2054 }
2055 
2056 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2057 {
2058 	struct drm_device *dev = ppgtt->base.dev;
2059 	struct drm_i915_private *dev_priv = to_i915(dev);
2060 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2061 	int ret;
2062 
2063 	ppgtt->base.pte_encode = ggtt->base.pte_encode;
2064 	if (intel_vgpu_active(dev_priv) || IS_GEN6(dev))
2065 		ppgtt->switch_mm = gen6_mm_switch;
2066 	else if (IS_HASWELL(dev))
2067 		ppgtt->switch_mm = hsw_mm_switch;
2068 	else if (IS_GEN7(dev))
2069 		ppgtt->switch_mm = gen7_mm_switch;
2070 	else
2071 		BUG();
2072 
2073 	ret = gen6_ppgtt_alloc(ppgtt);
2074 	if (ret)
2075 		return ret;
2076 
2077 	ppgtt->base.allocate_va_range = gen6_alloc_va_range;
2078 	ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2079 	ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2080 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2081 	ppgtt->base.bind_vma = ppgtt_bind_vma;
2082 	ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2083 	ppgtt->base.start = 0;
2084 	ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2085 	ppgtt->debug_dump = gen6_dump_ppgtt;
2086 
2087 	ppgtt->pd.base.ggtt_offset =
2088 		ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2089 
2090 	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm +
2091 		ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2092 
2093 	gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2094 
2095 	gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
2096 
2097 	DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
2098 			 ppgtt->node.size >> 20,
2099 			 ppgtt->node.start / PAGE_SIZE);
2100 
2101 	DRM_DEBUG("Adding PPGTT at offset %x\n",
2102 		  ppgtt->pd.base.ggtt_offset << 10);
2103 
2104 	return 0;
2105 }
2106 
2107 static int __hw_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
2108 			   struct drm_i915_private *dev_priv)
2109 {
2110 	ppgtt->base.dev = &dev_priv->drm;
2111 
2112 	if (INTEL_INFO(dev_priv)->gen < 8)
2113 		return gen6_ppgtt_init(ppgtt);
2114 	else
2115 		return gen8_ppgtt_init(ppgtt);
2116 }
2117 
2118 static void i915_address_space_init(struct i915_address_space *vm,
2119 				    struct drm_i915_private *dev_priv)
2120 {
2121 	drm_mm_init(&vm->mm, vm->start, vm->total);
2122 	INIT_LIST_HEAD(&vm->active_list);
2123 	INIT_LIST_HEAD(&vm->inactive_list);
2124 	INIT_LIST_HEAD(&vm->unbound_list);
2125 	list_add_tail(&vm->global_link, &dev_priv->vm_list);
2126 }
2127 
2128 static void gtt_write_workarounds(struct drm_device *dev)
2129 {
2130 	struct drm_i915_private *dev_priv = to_i915(dev);
2131 
2132 	/* This function is for gtt related workarounds. This function is
2133 	 * called on driver load and after a GPU reset, so you can place
2134 	 * workarounds here even if they get overwritten by GPU reset.
2135 	 */
2136 	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt */
2137 	if (IS_BROADWELL(dev))
2138 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2139 	else if (IS_CHERRYVIEW(dev))
2140 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2141 	else if (IS_SKYLAKE(dev))
2142 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2143 	else if (IS_BROXTON(dev))
2144 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2145 }
2146 
2147 static int i915_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
2148 			   struct drm_i915_private *dev_priv,
2149 			   struct drm_i915_file_private *file_priv)
2150 {
2151 	int ret;
2152 
2153 	ret = __hw_ppgtt_init(ppgtt, dev_priv);
2154 	if (ret == 0) {
2155 		kref_init(&ppgtt->ref);
2156 		i915_address_space_init(&ppgtt->base, dev_priv);
2157 		ppgtt->base.file = file_priv;
2158 	}
2159 
2160 	return ret;
2161 }
2162 
2163 int i915_ppgtt_init_hw(struct drm_device *dev)
2164 {
2165 	gtt_write_workarounds(dev);
2166 
2167 	/* In the case of execlists, PPGTT is enabled by the context descriptor
2168 	 * and the PDPs are contained within the context itself.  We don't
2169 	 * need to do anything here. */
2170 	if (i915.enable_execlists)
2171 		return 0;
2172 
2173 	if (!USES_PPGTT(dev))
2174 		return 0;
2175 
2176 	if (IS_GEN6(dev))
2177 		gen6_ppgtt_enable(dev);
2178 	else if (IS_GEN7(dev))
2179 		gen7_ppgtt_enable(dev);
2180 	else if (INTEL_INFO(dev)->gen >= 8)
2181 		gen8_ppgtt_enable(dev);
2182 	else
2183 		MISSING_CASE(INTEL_INFO(dev)->gen);
2184 
2185 	return 0;
2186 }
2187 
2188 struct i915_hw_ppgtt *
2189 i915_ppgtt_create(struct drm_i915_private *dev_priv,
2190 		  struct drm_i915_file_private *fpriv)
2191 {
2192 	struct i915_hw_ppgtt *ppgtt;
2193 	int ret;
2194 
2195 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2196 	if (!ppgtt)
2197 		return ERR_PTR(-ENOMEM);
2198 
2199 	ret = i915_ppgtt_init(ppgtt, dev_priv, fpriv);
2200 	if (ret) {
2201 		kfree(ppgtt);
2202 		return ERR_PTR(ret);
2203 	}
2204 
2205 	trace_i915_ppgtt_create(&ppgtt->base);
2206 
2207 	return ppgtt;
2208 }
2209 
2210 void  i915_ppgtt_release(struct kref *kref)
2211 {
2212 	struct i915_hw_ppgtt *ppgtt =
2213 		container_of(kref, struct i915_hw_ppgtt, ref);
2214 
2215 	trace_i915_ppgtt_release(&ppgtt->base);
2216 
2217 	/* vmas should already be unbound and destroyed */
2218 	WARN_ON(!list_empty(&ppgtt->base.active_list));
2219 	WARN_ON(!list_empty(&ppgtt->base.inactive_list));
2220 	WARN_ON(!list_empty(&ppgtt->base.unbound_list));
2221 
2222 	list_del(&ppgtt->base.global_link);
2223 	drm_mm_takedown(&ppgtt->base.mm);
2224 
2225 	ppgtt->base.cleanup(&ppgtt->base);
2226 	kfree(ppgtt);
2227 }
2228 
2229 /* Certain Gen5 chipsets require require idling the GPU before
2230  * unmapping anything from the GTT when VT-d is enabled.
2231  */
2232 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2233 {
2234 #ifdef CONFIG_INTEL_IOMMU
2235 	/* Query intel_iommu to see if we need the workaround. Presumably that
2236 	 * was loaded first.
2237 	 */
2238 	if (IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_iommu_gfx_mapped)
2239 		return true;
2240 #endif
2241 	return false;
2242 }
2243 
2244 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2245 {
2246 	struct intel_engine_cs *engine;
2247 
2248 	if (INTEL_INFO(dev_priv)->gen < 6)
2249 		return;
2250 
2251 	for_each_engine(engine, dev_priv) {
2252 		u32 fault_reg;
2253 		fault_reg = I915_READ(RING_FAULT_REG(engine));
2254 		if (fault_reg & RING_FAULT_VALID) {
2255 			DRM_DEBUG_DRIVER("Unexpected fault\n"
2256 					 "\tAddr: 0x%08ux\n"
2257 					 "\tAddress space: %s\n"
2258 					 "\tSource ID: %d\n"
2259 					 "\tType: %d\n",
2260 					 fault_reg & LINUX_PAGE_MASK,
2261 					 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2262 					 RING_FAULT_SRCID(fault_reg),
2263 					 RING_FAULT_FAULT_TYPE(fault_reg));
2264 			I915_WRITE(RING_FAULT_REG(engine),
2265 				   fault_reg & ~RING_FAULT_VALID);
2266 		}
2267 	}
2268 	POSTING_READ(RING_FAULT_REG(&dev_priv->engine[RCS]));
2269 }
2270 
2271 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
2272 {
2273 	if (INTEL_INFO(dev_priv)->gen < 6) {
2274 		intel_gtt_chipset_flush();
2275 	} else {
2276 		I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2277 		POSTING_READ(GFX_FLSH_CNTL_GEN6);
2278 	}
2279 }
2280 
2281 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
2282 {
2283 	struct drm_i915_private *dev_priv = to_i915(dev);
2284 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2285 
2286 	/* Don't bother messing with faults pre GEN6 as we have little
2287 	 * documentation supporting that it's a good idea.
2288 	 */
2289 	if (INTEL_INFO(dev)->gen < 6)
2290 		return;
2291 
2292 	i915_check_and_clear_faults(dev_priv);
2293 
2294 	ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total,
2295 			     true);
2296 
2297 	i915_ggtt_flush(dev_priv);
2298 }
2299 
2300 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
2301 {
2302 	if (!dma_map_sg(&obj->base.dev->pdev->dev,
2303 			obj->pages->sgl, obj->pages->nents,
2304 			PCI_DMA_BIDIRECTIONAL))
2305 		return -ENOSPC;
2306 
2307 	return 0;
2308 }
2309 
2310 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2311 {
2312 #ifdef writeq
2313 	writeq(pte, addr);
2314 #else
2315 	iowrite32((u32)pte, addr);
2316 	iowrite32(pte >> 32, addr + 4);
2317 #endif
2318 }
2319 
2320 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2321 				  dma_addr_t addr,
2322 				  uint64_t offset,
2323 				  enum i915_cache_level level,
2324 				  u32 unused)
2325 {
2326 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2327 	gen8_pte_t __iomem *pte =
2328 		(gen8_pte_t __iomem *)dev_priv->ggtt.gsm +
2329 		(offset >> PAGE_SHIFT);
2330 	int rpm_atomic_seq;
2331 
2332 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2333 
2334 	gen8_set_pte(pte, gen8_pte_encode(addr, level, true));
2335 
2336 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2337 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2338 
2339 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2340 }
2341 
2342 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2343 				     struct sg_table *st,
2344 				     uint64_t start,
2345 				     enum i915_cache_level level, u32 unused)
2346 {
2347 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2348 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2349 	struct sgt_iter sgt_iter;
2350 	gen8_pte_t __iomem *gtt_entries;
2351 	gen8_pte_t gtt_entry;
2352 	dma_addr_t addr;
2353 	int rpm_atomic_seq;
2354 	int i = 0;
2355 
2356 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2357 
2358 	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT);
2359 
2360 	for_each_sgt_dma(addr, sgt_iter, st) {
2361 		gtt_entry = gen8_pte_encode(addr, level, true);
2362 		gen8_set_pte(&gtt_entries[i++], gtt_entry);
2363 	}
2364 
2365 	/*
2366 	 * XXX: This serves as a posting read to make sure that the PTE has
2367 	 * actually been updated. There is some concern that even though
2368 	 * registers and PTEs are within the same BAR that they are potentially
2369 	 * of NUMA access patterns. Therefore, even with the way we assume
2370 	 * hardware should work, we must keep this posting read for paranoia.
2371 	 */
2372 	if (i != 0)
2373 		WARN_ON(readq(&gtt_entries[i-1]) != gtt_entry);
2374 
2375 	/* This next bit makes the above posting read even more important. We
2376 	 * want to flush the TLBs only after we're certain all the PTE updates
2377 	 * have finished.
2378 	 */
2379 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2380 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2381 
2382 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2383 }
2384 
2385 struct insert_entries {
2386 	struct i915_address_space *vm;
2387 	struct sg_table *st;
2388 	uint64_t start;
2389 	enum i915_cache_level level;
2390 	u32 flags;
2391 };
2392 
2393 static int gen8_ggtt_insert_entries__cb(void *_arg)
2394 {
2395 	struct insert_entries *arg = _arg;
2396 	gen8_ggtt_insert_entries(arg->vm, arg->st,
2397 				 arg->start, arg->level, arg->flags);
2398 	return 0;
2399 }
2400 
2401 static void gen8_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2402 					  struct sg_table *st,
2403 					  uint64_t start,
2404 					  enum i915_cache_level level,
2405 					  u32 flags)
2406 {
2407 	struct insert_entries arg = { vm, st, start, level, flags };
2408 	stop_machine(gen8_ggtt_insert_entries__cb, &arg, NULL);
2409 }
2410 
2411 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2412 				  dma_addr_t addr,
2413 				  uint64_t offset,
2414 				  enum i915_cache_level level,
2415 				  u32 flags)
2416 {
2417 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2418 	gen6_pte_t __iomem *pte =
2419 		(gen6_pte_t __iomem *)dev_priv->ggtt.gsm +
2420 		(offset >> PAGE_SHIFT);
2421 	int rpm_atomic_seq;
2422 
2423 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2424 
2425 	iowrite32(vm->pte_encode(addr, level, true, flags), pte);
2426 
2427 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2428 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2429 
2430 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2431 }
2432 
2433 /*
2434  * Binds an object into the global gtt with the specified cache level. The object
2435  * will be accessible to the GPU via commands whose operands reference offsets
2436  * within the global GTT as well as accessible by the GPU through the GMADR
2437  * mapped BAR (dev_priv->mm.gtt->gtt).
2438  */
2439 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2440 				     struct sg_table *st,
2441 				     uint64_t start,
2442 				     enum i915_cache_level level, u32 flags)
2443 {
2444 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2445 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2446 	struct sgt_iter sgt_iter;
2447 	gen6_pte_t __iomem *gtt_entries;
2448 	gen6_pte_t gtt_entry;
2449 	dma_addr_t addr;
2450 	int rpm_atomic_seq;
2451 	int i = 0;
2452 
2453 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2454 
2455 	gtt_entries = (gen6_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT);
2456 
2457 	for_each_sgt_dma(addr, sgt_iter, st) {
2458 		gtt_entry = vm->pte_encode(addr, level, true, flags);
2459 		iowrite32(gtt_entry, &gtt_entries[i++]);
2460 	}
2461 
2462 	/* XXX: This serves as a posting read to make sure that the PTE has
2463 	 * actually been updated. There is some concern that even though
2464 	 * registers and PTEs are within the same BAR that they are potentially
2465 	 * of NUMA access patterns. Therefore, even with the way we assume
2466 	 * hardware should work, we must keep this posting read for paranoia.
2467 	 */
2468 	if (i != 0)
2469 		WARN_ON(readl(&gtt_entries[i-1]) != gtt_entry);
2470 
2471 	/* This next bit makes the above posting read even more important. We
2472 	 * want to flush the TLBs only after we're certain all the PTE updates
2473 	 * have finished.
2474 	 */
2475 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2476 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2477 
2478 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2479 }
2480 
2481 static void nop_clear_range(struct i915_address_space *vm,
2482 			    uint64_t start,
2483 			    uint64_t length,
2484 			    bool use_scratch)
2485 {
2486 }
2487 
2488 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2489 				  uint64_t start,
2490 				  uint64_t length,
2491 				  bool use_scratch)
2492 {
2493 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2494 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2495 	unsigned first_entry = start >> PAGE_SHIFT;
2496 	unsigned num_entries = length >> PAGE_SHIFT;
2497 	gen8_pte_t scratch_pte, __iomem *gtt_base =
2498 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2499 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2500 	int i;
2501 	int rpm_atomic_seq;
2502 
2503 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2504 
2505 	if (WARN(num_entries > max_entries,
2506 		 "First entry = %d; Num entries = %d (max=%d)\n",
2507 		 first_entry, num_entries, max_entries))
2508 		num_entries = max_entries;
2509 
2510 	scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
2511 				      I915_CACHE_LLC,
2512 				      use_scratch);
2513 	for (i = 0; i < num_entries; i++)
2514 		gen8_set_pte(&gtt_base[i], scratch_pte);
2515 	readl(gtt_base);
2516 
2517 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2518 }
2519 
2520 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2521 				  uint64_t start,
2522 				  uint64_t length,
2523 				  bool use_scratch)
2524 {
2525 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2526 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2527 	unsigned first_entry = start >> PAGE_SHIFT;
2528 	unsigned num_entries = length >> PAGE_SHIFT;
2529 	gen6_pte_t scratch_pte, __iomem *gtt_base =
2530 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2531 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2532 	int i;
2533 	int rpm_atomic_seq;
2534 
2535 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2536 
2537 	if (WARN(num_entries > max_entries,
2538 		 "First entry = %d; Num entries = %d (max=%d)\n",
2539 		 first_entry, num_entries, max_entries))
2540 		num_entries = max_entries;
2541 
2542 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
2543 				     I915_CACHE_LLC, use_scratch, 0);
2544 
2545 	for (i = 0; i < num_entries; i++)
2546 		iowrite32(scratch_pte, &gtt_base[i]);
2547 	readl(gtt_base);
2548 
2549 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2550 }
2551 
2552 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2553 				  dma_addr_t addr,
2554 				  uint64_t offset,
2555 				  enum i915_cache_level cache_level,
2556 				  u32 unused)
2557 {
2558 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2559 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2560 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2561 	int rpm_atomic_seq;
2562 
2563 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2564 
2565 	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2566 
2567 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2568 }
2569 
2570 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2571 				     struct sg_table *pages,
2572 				     uint64_t start,
2573 				     enum i915_cache_level cache_level, u32 unused)
2574 {
2575 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2576 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2577 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2578 	int rpm_atomic_seq;
2579 
2580 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2581 
2582 	intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2583 
2584 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2585 
2586 }
2587 
2588 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2589 				  uint64_t start,
2590 				  uint64_t length,
2591 				  bool unused)
2592 {
2593 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2594 	unsigned first_entry = start >> PAGE_SHIFT;
2595 	unsigned num_entries = length >> PAGE_SHIFT;
2596 	int rpm_atomic_seq;
2597 
2598 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2599 
2600 	intel_gtt_clear_range(first_entry, num_entries);
2601 
2602 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2603 }
2604 
2605 static int ggtt_bind_vma(struct i915_vma *vma,
2606 			 enum i915_cache_level cache_level,
2607 			 u32 flags)
2608 {
2609 	struct drm_i915_gem_object *obj = vma->obj;
2610 	u32 pte_flags = 0;
2611 	int ret;
2612 
2613 	ret = i915_get_ggtt_vma_pages(vma);
2614 	if (ret)
2615 		return ret;
2616 
2617 	/* Currently applicable only to VLV */
2618 	if (obj->gt_ro)
2619 		pte_flags |= PTE_READ_ONLY;
2620 
2621 	vma->vm->insert_entries(vma->vm, vma->ggtt_view.pages,
2622 				vma->node.start,
2623 				cache_level, pte_flags);
2624 
2625 	/*
2626 	 * Without aliasing PPGTT there's no difference between
2627 	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2628 	 * upgrade to both bound if we bind either to avoid double-binding.
2629 	 */
2630 	vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2631 
2632 	return 0;
2633 }
2634 
2635 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2636 				 enum i915_cache_level cache_level,
2637 				 u32 flags)
2638 {
2639 	u32 pte_flags;
2640 	int ret;
2641 
2642 	ret = i915_get_ggtt_vma_pages(vma);
2643 	if (ret)
2644 		return ret;
2645 
2646 	/* Currently applicable only to VLV */
2647 	pte_flags = 0;
2648 	if (vma->obj->gt_ro)
2649 		pte_flags |= PTE_READ_ONLY;
2650 
2651 
2652 	if (flags & I915_VMA_GLOBAL_BIND) {
2653 		vma->vm->insert_entries(vma->vm,
2654 					vma->ggtt_view.pages,
2655 					vma->node.start,
2656 					cache_level, pte_flags);
2657 	}
2658 
2659 	if (flags & I915_VMA_LOCAL_BIND) {
2660 		struct i915_hw_ppgtt *appgtt =
2661 			to_i915(vma->vm->dev)->mm.aliasing_ppgtt;
2662 		appgtt->base.insert_entries(&appgtt->base,
2663 					    vma->ggtt_view.pages,
2664 					    vma->node.start,
2665 					    cache_level, pte_flags);
2666 	}
2667 
2668 	return 0;
2669 }
2670 
2671 static void ggtt_unbind_vma(struct i915_vma *vma)
2672 {
2673 	struct i915_hw_ppgtt *appgtt = to_i915(vma->vm->dev)->mm.aliasing_ppgtt;
2674 	const u64 size = min(vma->size, vma->node.size);
2675 
2676 	if (vma->flags & I915_VMA_GLOBAL_BIND)
2677 		vma->vm->clear_range(vma->vm,
2678 				     vma->node.start, size,
2679 				     true);
2680 
2681 	if (vma->flags & I915_VMA_LOCAL_BIND && appgtt)
2682 		appgtt->base.clear_range(&appgtt->base,
2683 					 vma->node.start, size,
2684 					 true);
2685 }
2686 
2687 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
2688 {
2689 	struct drm_device *dev = obj->base.dev;
2690 	struct drm_i915_private *dev_priv = to_i915(dev);
2691 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2692 
2693 	if (unlikely(ggtt->do_idle_maps)) {
2694 		if (i915_gem_wait_for_idle(dev_priv, false)) {
2695 			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2696 			/* Wait a bit, in hopes it avoids the hang */
2697 			udelay(10);
2698 		}
2699 	}
2700 
2701 	dma_unmap_sg(&dev->pdev->dev, obj->pages->sgl, obj->pages->nents,
2702 		     PCI_DMA_BIDIRECTIONAL);
2703 }
2704 
2705 static void i915_gtt_color_adjust(struct drm_mm_node *node,
2706 				  unsigned long color,
2707 				  u64 *start,
2708 				  u64 *end)
2709 {
2710 	if (node->color != color)
2711 		*start += 4096;
2712 
2713 	node = list_first_entry_or_null(&node->node_list,
2714 					struct drm_mm_node,
2715 					node_list);
2716 	if (node && node->allocated && node->color != color)
2717 		*end -= 4096;
2718 }
2719 
2720 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2721 {
2722 	/* Let GEM Manage all of the aperture.
2723 	 *
2724 	 * However, leave one page at the end still bound to the scratch page.
2725 	 * There are a number of places where the hardware apparently prefetches
2726 	 * past the end of the object, and we've seen multiple hangs with the
2727 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2728 	 * aperture.  One page should be enough to keep any prefetching inside
2729 	 * of the aperture.
2730 	 */
2731 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2732 	unsigned long hole_start, hole_end;
2733 	struct drm_mm_node *entry;
2734 	int ret;
2735 	unsigned long mappable = min(ggtt->base.total, ggtt->mappable_end);
2736 
2737 	ret = intel_vgt_balloon(dev_priv);
2738 	if (ret)
2739 		return ret;
2740 
2741 	/* Clear any non-preallocated blocks */
2742 	drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) {
2743 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2744 			      hole_start, hole_end);
2745 		ggtt->base.clear_range(&ggtt->base, hole_start,
2746 				     hole_end - hole_start, true);
2747 	}
2748 
2749 #ifdef __DragonFly__
2750 	DRM_INFO("taking over the fictitious range 0x%llx-0x%llx\n",
2751 	    dev_priv->ggtt.mappable_base, dev_priv->ggtt.mappable_end);
2752 	vm_phys_fictitious_reg_range(dev_priv->ggtt.mappable_base,
2753 	     dev_priv->ggtt.mappable_base + mappable, VM_MEMATTR_WRITE_COMBINING);
2754 #endif
2755 
2756 	/* And finally clear the reserved guard page */
2757 	ggtt->base.clear_range(&ggtt->base,
2758 			       ggtt->base.total - PAGE_SIZE, PAGE_SIZE,
2759 			       true);
2760 
2761 	if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2762 		struct i915_hw_ppgtt *ppgtt;
2763 
2764 		ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2765 		if (!ppgtt)
2766 			return -ENOMEM;
2767 
2768 		ret = __hw_ppgtt_init(ppgtt, dev_priv);
2769 		if (ret) {
2770 			kfree(ppgtt);
2771 			return ret;
2772 		}
2773 
2774 		if (ppgtt->base.allocate_va_range)
2775 			ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2776 							    ppgtt->base.total);
2777 		if (ret) {
2778 			ppgtt->base.cleanup(&ppgtt->base);
2779 			kfree(ppgtt);
2780 			return ret;
2781 		}
2782 
2783 		ppgtt->base.clear_range(&ppgtt->base,
2784 					ppgtt->base.start,
2785 					ppgtt->base.total,
2786 					true);
2787 
2788 		dev_priv->mm.aliasing_ppgtt = ppgtt;
2789 		WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma);
2790 		ggtt->base.bind_vma = aliasing_gtt_bind_vma;
2791 	}
2792 
2793 	return 0;
2794 }
2795 
2796 /**
2797  * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2798  * @dev_priv: i915 device
2799  */
2800 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2801 {
2802 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2803 
2804 	if (dev_priv->mm.aliasing_ppgtt) {
2805 		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2806 
2807 		ppgtt->base.cleanup(&ppgtt->base);
2808 		kfree(ppgtt);
2809 	}
2810 
2811 	i915_gem_cleanup_stolen(&dev_priv->drm);
2812 
2813 	if (drm_mm_initialized(&ggtt->base.mm)) {
2814 		intel_vgt_deballoon(dev_priv);
2815 
2816 		drm_mm_takedown(&ggtt->base.mm);
2817 		list_del(&ggtt->base.global_link);
2818 	}
2819 
2820 	ggtt->base.cleanup(&ggtt->base);
2821 
2822 	arch_phys_wc_del(ggtt->mtrr);
2823 	io_mapping_free(ggtt->mappable);
2824 }
2825 
2826 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2827 {
2828 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2829 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2830 	return snb_gmch_ctl << 20;
2831 }
2832 
2833 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2834 {
2835 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2836 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2837 	if (bdw_gmch_ctl)
2838 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2839 
2840 #ifdef CONFIG_X86_32
2841 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2842 	if (bdw_gmch_ctl > 4)
2843 		bdw_gmch_ctl = 4;
2844 #endif
2845 
2846 	return bdw_gmch_ctl << 20;
2847 }
2848 
2849 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2850 {
2851 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2852 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2853 
2854 	if (gmch_ctrl)
2855 		return 1 << (20 + gmch_ctrl);
2856 
2857 	return 0;
2858 }
2859 
2860 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2861 {
2862 	snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2863 	snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2864 	return snb_gmch_ctl << 25; /* 32 MB units */
2865 }
2866 
2867 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2868 {
2869 	bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2870 	bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2871 	return bdw_gmch_ctl << 25; /* 32 MB units */
2872 }
2873 
2874 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2875 {
2876 	gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2877 	gmch_ctrl &= SNB_GMCH_GMS_MASK;
2878 
2879 	/*
2880 	 * 0x0  to 0x10: 32MB increments starting at 0MB
2881 	 * 0x11 to 0x16: 4MB increments starting at 8MB
2882 	 * 0x17 to 0x1d: 4MB increments start at 36MB
2883 	 */
2884 	if (gmch_ctrl < 0x11)
2885 		return gmch_ctrl << 25;
2886 	else if (gmch_ctrl < 0x17)
2887 		return (gmch_ctrl - 0x11 + 2) << 22;
2888 	else
2889 		return (gmch_ctrl - 0x17 + 9) << 22;
2890 }
2891 
2892 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2893 {
2894 	gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2895 	gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2896 
2897 	if (gen9_gmch_ctl < 0xf0)
2898 		return gen9_gmch_ctl << 25; /* 32 MB units */
2899 	else
2900 		/* 4MB increments starting at 0xf0 for 4MB */
2901 		return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2902 }
2903 
2904 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2905 {
2906 	struct pci_dev *pdev = ggtt->base.dev->pdev;
2907 	struct i915_page_scratch *scratch_page;
2908 	phys_addr_t phys_addr;
2909 
2910 	/* For Modern GENs the PTEs and register space are split in the BAR */
2911 	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
2912 
2913 	/*
2914 	 * On BXT writes larger than 64 bit to the GTT pagetable range will be
2915 	 * dropped. For WC mappings in general we have 64 byte burst writes
2916 	 * when the WC buffer is flushed, so we can't use it, but have to
2917 	 * resort to an uncached mapping. The WC issue is easily caught by the
2918 	 * readback check when writing GTT PTE entries.
2919 	 */
2920 	if (IS_BROXTON(ggtt->base.dev))
2921 		ggtt->gsm = ioremap_nocache(phys_addr, size);
2922 	else
2923 		ggtt->gsm = ioremap_wc(phys_addr, size);
2924 	if (!ggtt->gsm) {
2925 		DRM_ERROR("Failed to map the ggtt page table\n");
2926 		return -ENOMEM;
2927 	}
2928 
2929 	scratch_page = alloc_scratch_page(ggtt->base.dev);
2930 	if (IS_ERR(scratch_page)) {
2931 		DRM_ERROR("Scratch setup failed\n");
2932 		/* iounmap will also get called at remove, but meh */
2933 		iounmap(ggtt->gsm);
2934 		return PTR_ERR(scratch_page);
2935 	}
2936 
2937 	ggtt->base.scratch_page = scratch_page;
2938 
2939 	return 0;
2940 }
2941 
2942 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2943  * bits. When using advanced contexts each context stores its own PAT, but
2944  * writing this data shouldn't be harmful even in those cases. */
2945 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2946 {
2947 	uint64_t pat;
2948 
2949 	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
2950 	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2951 	      GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2952 	      GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
2953 	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2954 	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2955 	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2956 	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2957 
2958 	if (!USES_PPGTT(dev_priv))
2959 		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2960 		 * so RTL will always use the value corresponding to
2961 		 * pat_sel = 000".
2962 		 * So let's disable cache for GGTT to avoid screen corruptions.
2963 		 * MOCS still can be used though.
2964 		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2965 		 * before this patch, i.e. the same uncached + snooping access
2966 		 * like on gen6/7 seems to be in effect.
2967 		 * - So this just fixes blitter/render access. Again it looks
2968 		 * like it's not just uncached access, but uncached + snooping.
2969 		 * So we can still hold onto all our assumptions wrt cpu
2970 		 * clflushing on LLC machines.
2971 		 */
2972 		pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2973 
2974 	/* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2975 	 * write would work. */
2976 	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2977 	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2978 }
2979 
2980 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2981 {
2982 	uint64_t pat;
2983 
2984 	/*
2985 	 * Map WB on BDW to snooped on CHV.
2986 	 *
2987 	 * Only the snoop bit has meaning for CHV, the rest is
2988 	 * ignored.
2989 	 *
2990 	 * The hardware will never snoop for certain types of accesses:
2991 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
2992 	 * - PPGTT page tables
2993 	 * - some other special cycles
2994 	 *
2995 	 * As with BDW, we also need to consider the following for GT accesses:
2996 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
2997 	 * so RTL will always use the value corresponding to
2998 	 * pat_sel = 000".
2999 	 * Which means we must set the snoop bit in PAT entry 0
3000 	 * in order to keep the global status page working.
3001 	 */
3002 	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
3003 	      GEN8_PPAT(1, 0) |
3004 	      GEN8_PPAT(2, 0) |
3005 	      GEN8_PPAT(3, 0) |
3006 	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
3007 	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
3008 	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
3009 	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
3010 
3011 	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
3012 	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
3013 }
3014 
3015 static void gen6_gmch_remove(struct i915_address_space *vm)
3016 {
3017 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
3018 
3019 	iounmap(ggtt->gsm);
3020 	free_scratch_page(vm->dev, vm->scratch_page);
3021 }
3022 
3023 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3024 {
3025 	struct drm_i915_private *dev_priv = to_i915(ggtt->base.dev);
3026 	struct pci_dev *pdev = dev_priv->drm.pdev;
3027 	unsigned int size;
3028 	u16 snb_gmch_ctl;
3029 
3030 	/* TODO: We're not aware of mappable constraints on gen8 yet */
3031 	ggtt->mappable_base = pci_resource_start(pdev, 2);
3032 	ggtt->mappable_end = pci_resource_len(pdev, 2);
3033 
3034 #if 0
3035 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(39)))
3036 		pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
3037 #endif
3038 
3039 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3040 
3041 	if (INTEL_GEN(dev_priv) >= 9) {
3042 		ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl);
3043 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
3044 	} else if (IS_CHERRYVIEW(dev_priv)) {
3045 		ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl);
3046 		size = chv_get_total_gtt_size(snb_gmch_ctl);
3047 	} else {
3048 		ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl);
3049 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
3050 	}
3051 
3052 	ggtt->base.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3053 
3054 	if (IS_CHERRYVIEW(dev_priv) || IS_BROXTON(dev_priv))
3055 		chv_setup_private_ppat(dev_priv);
3056 	else
3057 		bdw_setup_private_ppat(dev_priv);
3058 
3059 	ggtt->base.cleanup = gen6_gmch_remove;
3060 	ggtt->base.bind_vma = ggtt_bind_vma;
3061 	ggtt->base.unbind_vma = ggtt_unbind_vma;
3062 	ggtt->base.insert_page = gen8_ggtt_insert_page;
3063 	ggtt->base.clear_range = nop_clear_range;
3064 	if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3065 		ggtt->base.clear_range = gen8_ggtt_clear_range;
3066 
3067 	ggtt->base.insert_entries = gen8_ggtt_insert_entries;
3068 	if (IS_CHERRYVIEW(dev_priv))
3069 		ggtt->base.insert_entries = gen8_ggtt_insert_entries__BKL;
3070 
3071 	return ggtt_probe_common(ggtt, size);
3072 }
3073 
3074 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3075 {
3076 	struct drm_i915_private *dev_priv = to_i915(ggtt->base.dev);
3077 	struct pci_dev *pdev = dev_priv->drm.pdev;
3078 	unsigned int size;
3079 	u16 snb_gmch_ctl;
3080 
3081 	ggtt->mappable_base = pci_resource_start(pdev, 2);
3082 	ggtt->mappable_end = pci_resource_len(pdev, 2);
3083 
3084 	/* 64/512MB is the current min/max we actually know of, but this is just
3085 	 * a coarse sanity check.
3086 	 */
3087 	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3088 		DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end);
3089 		return -ENXIO;
3090 	}
3091 
3092 #if 0
3093 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(40)))
3094 		pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
3095 #endif
3096 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3097 
3098 	ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl);
3099 
3100 	size = gen6_get_total_gtt_size(snb_gmch_ctl);
3101 	ggtt->base.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3102 
3103 	ggtt->base.clear_range = gen6_ggtt_clear_range;
3104 	ggtt->base.insert_page = gen6_ggtt_insert_page;
3105 	ggtt->base.insert_entries = gen6_ggtt_insert_entries;
3106 	ggtt->base.bind_vma = ggtt_bind_vma;
3107 	ggtt->base.unbind_vma = ggtt_unbind_vma;
3108 	ggtt->base.cleanup = gen6_gmch_remove;
3109 
3110 	if (HAS_EDRAM(dev_priv))
3111 		ggtt->base.pte_encode = iris_pte_encode;
3112 	else if (IS_HASWELL(dev_priv))
3113 		ggtt->base.pte_encode = hsw_pte_encode;
3114 	else if (IS_VALLEYVIEW(dev_priv))
3115 		ggtt->base.pte_encode = byt_pte_encode;
3116 	else if (INTEL_GEN(dev_priv) >= 7)
3117 		ggtt->base.pte_encode = ivb_pte_encode;
3118 	else
3119 		ggtt->base.pte_encode = snb_pte_encode;
3120 
3121 	return ggtt_probe_common(ggtt, size);
3122 }
3123 
3124 static void i915_gmch_remove(struct i915_address_space *vm)
3125 {
3126 	intel_gmch_remove();
3127 }
3128 
3129 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3130 {
3131 	struct drm_i915_private *dev_priv = to_i915(ggtt->base.dev);
3132 #if 0
3133 	int ret;
3134 
3135 	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3136 	if (!ret) {
3137 		DRM_ERROR("failed to set up gmch\n");
3138 		return -EIO;
3139 	}
3140 #endif
3141 
3142 	intel_gtt_get(&ggtt->base.total, &ggtt->stolen_size,
3143 		      &ggtt->mappable_base, &ggtt->mappable_end);
3144 
3145 	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3146 	ggtt->base.insert_page = i915_ggtt_insert_page;
3147 	ggtt->base.insert_entries = i915_ggtt_insert_entries;
3148 	ggtt->base.clear_range = i915_ggtt_clear_range;
3149 	ggtt->base.bind_vma = ggtt_bind_vma;
3150 	ggtt->base.unbind_vma = ggtt_unbind_vma;
3151 	ggtt->base.cleanup = i915_gmch_remove;
3152 
3153 	if (unlikely(ggtt->do_idle_maps))
3154 		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3155 
3156 	return 0;
3157 }
3158 
3159 /**
3160  * i915_ggtt_probe_hw - Probe GGTT hardware location
3161  * @dev_priv: i915 device
3162  */
3163 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3164 {
3165 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3166 	int ret;
3167 
3168 	ggtt->base.dev = &dev_priv->drm;
3169 
3170 	if (INTEL_GEN(dev_priv) <= 5)
3171 		ret = i915_gmch_probe(ggtt);
3172 	else if (INTEL_GEN(dev_priv) < 8)
3173 		ret = gen6_gmch_probe(ggtt);
3174 	else
3175 		ret = gen8_gmch_probe(ggtt);
3176 	if (ret)
3177 		return ret;
3178 
3179 	if ((ggtt->base.total - 1) >> 32) {
3180 		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3181 			  " of address space! Found %lldM!\n",
3182 			  ggtt->base.total >> 20);
3183 		ggtt->base.total = 1ULL << 32;
3184 		ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
3185 	}
3186 
3187 	if (ggtt->mappable_end > ggtt->base.total) {
3188 		DRM_ERROR("mappable aperture extends past end of GGTT,"
3189 			  " aperture=%llx, total=%llx\n",
3190 			  ggtt->mappable_end, ggtt->base.total);
3191 		ggtt->mappable_end = ggtt->base.total;
3192 	}
3193 
3194 	/* GMADR is the PCI mmio aperture into the global GTT. */
3195 	DRM_INFO("Memory usable by graphics device = %lluM\n",
3196 		 ggtt->base.total >> 20);
3197 	DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20);
3198 	DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", ggtt->stolen_size >> 20);
3199 #ifdef CONFIG_INTEL_IOMMU
3200 	if (intel_iommu_gfx_mapped)
3201 		DRM_INFO("VT-d active for gfx access\n");
3202 #endif
3203 
3204 	return 0;
3205 }
3206 
3207 /**
3208  * i915_ggtt_init_hw - Initialize GGTT hardware
3209  * @dev_priv: i915 device
3210  */
3211 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3212 {
3213 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3214 	int ret;
3215 
3216 	INIT_LIST_HEAD(&dev_priv->vm_list);
3217 
3218 	/* Subtract the guard page before address space initialization to
3219 	 * shrink the range used by drm_mm.
3220 	 */
3221 	ggtt->base.total -= PAGE_SIZE;
3222 	i915_address_space_init(&ggtt->base, dev_priv);
3223 	ggtt->base.total += PAGE_SIZE;
3224 	if (!HAS_LLC(dev_priv))
3225 		ggtt->base.mm.color_adjust = i915_gtt_color_adjust;
3226 
3227 	ggtt->mappable =
3228 		io_mapping_create_wc(ggtt->mappable_base, ggtt->mappable_end);
3229 	if (!ggtt->mappable) {
3230 		ret = -EIO;
3231 		goto out_gtt_cleanup;
3232 	}
3233 
3234 	ggtt->mtrr = arch_phys_wc_add(ggtt->mappable_base, ggtt->mappable_end);
3235 
3236 	/*
3237 	 * Initialise stolen early so that we may reserve preallocated
3238 	 * objects for the BIOS to KMS transition.
3239 	 */
3240 	ret = i915_gem_init_stolen(&dev_priv->drm);
3241 	if (ret)
3242 		goto out_gtt_cleanup;
3243 
3244 	return 0;
3245 
3246 out_gtt_cleanup:
3247 	ggtt->base.cleanup(&ggtt->base);
3248 	return ret;
3249 }
3250 
3251 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3252 {
3253 	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3254 		return -EIO;
3255 
3256 	return 0;
3257 }
3258 
3259 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
3260 {
3261 	struct drm_i915_private *dev_priv = to_i915(dev);
3262 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3263 	struct drm_i915_gem_object *obj;
3264 	struct i915_vma *vma;
3265 
3266 	i915_check_and_clear_faults(dev_priv);
3267 
3268 	/* First fill our portion of the GTT with scratch pages */
3269 	ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total,
3270 			       true);
3271 
3272 	/* Cache flush objects bound into GGTT and rebind them. */
3273 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
3274 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3275 			if (vma->vm != &ggtt->base)
3276 				continue;
3277 
3278 			WARN_ON(i915_vma_bind(vma, obj->cache_level,
3279 					      PIN_UPDATE));
3280 		}
3281 
3282 		if (obj->pin_display)
3283 			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3284 	}
3285 
3286 	if (INTEL_INFO(dev)->gen >= 8) {
3287 		if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3288 			chv_setup_private_ppat(dev_priv);
3289 		else
3290 			bdw_setup_private_ppat(dev_priv);
3291 
3292 		return;
3293 	}
3294 
3295 	if (USES_PPGTT(dev)) {
3296 		struct i915_address_space *vm;
3297 
3298 		list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3299 			/* TODO: Perhaps it shouldn't be gen6 specific */
3300 
3301 			struct i915_hw_ppgtt *ppgtt;
3302 
3303 			if (i915_is_ggtt(vm))
3304 				ppgtt = dev_priv->mm.aliasing_ppgtt;
3305 			else
3306 				ppgtt = i915_vm_to_ppgtt(vm);
3307 
3308 			gen6_write_page_range(dev_priv, &ppgtt->pd,
3309 					      0, ppgtt->base.total);
3310 		}
3311 	}
3312 
3313 	i915_ggtt_flush(dev_priv);
3314 }
3315 
3316 static void
3317 i915_vma_retire(struct i915_gem_active *active,
3318 		struct drm_i915_gem_request *rq)
3319 {
3320 	const unsigned int idx = rq->engine->id;
3321 	struct i915_vma *vma =
3322 		container_of(active, struct i915_vma, last_read[idx]);
3323 
3324 	GEM_BUG_ON(!i915_vma_has_active_engine(vma, idx));
3325 
3326 	i915_vma_clear_active(vma, idx);
3327 	if (i915_vma_is_active(vma))
3328 		return;
3329 
3330 	list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3331 	if (unlikely(i915_vma_is_closed(vma) && !i915_vma_is_pinned(vma)))
3332 		WARN_ON(i915_vma_unbind(vma));
3333 }
3334 
3335 void i915_vma_destroy(struct i915_vma *vma)
3336 {
3337 	GEM_BUG_ON(vma->node.allocated);
3338 	GEM_BUG_ON(i915_vma_is_active(vma));
3339 	GEM_BUG_ON(!i915_vma_is_closed(vma));
3340 
3341 	list_del(&vma->vm_link);
3342 	if (!i915_vma_is_ggtt(vma))
3343 		i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
3344 
3345 	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
3346 }
3347 
3348 void i915_vma_close(struct i915_vma *vma)
3349 {
3350 	GEM_BUG_ON(i915_vma_is_closed(vma));
3351 	vma->flags |= I915_VMA_CLOSED;
3352 
3353 	list_del_init(&vma->obj_link);
3354 	if (!i915_vma_is_active(vma) && !i915_vma_is_pinned(vma))
3355 		WARN_ON(i915_vma_unbind(vma));
3356 }
3357 
3358 static struct i915_vma *
3359 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
3360 		      struct i915_address_space *vm,
3361 		      const struct i915_ggtt_view *view)
3362 {
3363 	struct i915_vma *vma;
3364 	int i;
3365 
3366 	GEM_BUG_ON(vm->closed);
3367 
3368 	if (WARN_ON(i915_is_ggtt(vm) != !!view))
3369 		return ERR_PTR(-EINVAL);
3370 
3371 	vma = kzalloc(sizeof(*vma), GFP_KERNEL);
3372 	if (vma == NULL)
3373 		return ERR_PTR(-ENOMEM);
3374 
3375 	INIT_LIST_HEAD(&vma->obj_link);
3376 	INIT_LIST_HEAD(&vma->exec_list);
3377 	for (i = 0; i < ARRAY_SIZE(vma->last_read); i++)
3378 		init_request_active(&vma->last_read[i], i915_vma_retire);
3379 	list_add(&vma->vm_link, &vm->unbound_list);
3380 	vma->vm = vm;
3381 	vma->obj = obj;
3382 	vma->size = obj->base.size;
3383 
3384 	if (i915_is_ggtt(vm)) {
3385 		vma->flags |= I915_VMA_GGTT;
3386 		vma->ggtt_view = *view;
3387 		if (view->type == I915_GGTT_VIEW_PARTIAL) {
3388 			vma->size = view->params.partial.size;
3389 			vma->size <<= PAGE_SHIFT;
3390 		} else if (view->type == I915_GGTT_VIEW_ROTATED) {
3391 			vma->size =
3392 				intel_rotation_info_size(&view->params.rotated);
3393 			vma->size <<= PAGE_SHIFT;
3394 		}
3395 	} else {
3396 		i915_ppgtt_get(i915_vm_to_ppgtt(vm));
3397 	}
3398 
3399 	list_add_tail(&vma->obj_link, &obj->vma_list);
3400 
3401 	return vma;
3402 }
3403 
3404 struct i915_vma *
3405 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3406 				  struct i915_address_space *vm)
3407 {
3408 	struct i915_vma *vma;
3409 
3410 	vma = i915_gem_obj_to_vma(obj, vm);
3411 	if (!vma)
3412 		vma = __i915_gem_vma_create(obj, vm,
3413 					    i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
3414 
3415 	return vma;
3416 }
3417 
3418 struct i915_vma *
3419 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
3420 				       const struct i915_ggtt_view *view)
3421 {
3422 	struct drm_device *dev = obj->base.dev;
3423 	struct drm_i915_private *dev_priv = to_i915(dev);
3424 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3425 	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
3426 
3427 	GEM_BUG_ON(!view);
3428 
3429 	if (!vma)
3430 		vma = __i915_gem_vma_create(obj, &ggtt->base, view);
3431 
3432 	GEM_BUG_ON(i915_vma_is_closed(vma));
3433 	return vma;
3434 
3435 }
3436 
3437 static struct scatterlist *
3438 rotate_pages(const dma_addr_t *in, unsigned int offset,
3439 	     unsigned int width, unsigned int height,
3440 	     unsigned int stride,
3441 	     struct sg_table *st, struct scatterlist *sg)
3442 {
3443 	unsigned int column, row;
3444 	unsigned int src_idx;
3445 
3446 	for (column = 0; column < width; column++) {
3447 		src_idx = stride * (height - 1) + column;
3448 		for (row = 0; row < height; row++) {
3449 			st->nents++;
3450 			/* We don't need the pages, but need to initialize
3451 			 * the entries so the sg list can be happily traversed.
3452 			 * The only thing we need are DMA addresses.
3453 			 */
3454 			sg_set_page(sg, NULL, PAGE_SIZE, 0);
3455 			sg_dma_address(sg) = in[offset + src_idx];
3456 			sg_dma_len(sg) = PAGE_SIZE;
3457 			sg = sg_next(sg);
3458 			src_idx -= stride;
3459 		}
3460 	}
3461 
3462 	return sg;
3463 }
3464 
3465 static struct sg_table *
3466 intel_rotate_fb_obj_pages(struct intel_rotation_info *rot_info,
3467 			  struct drm_i915_gem_object *obj)
3468 {
3469 	const size_t n_pages = obj->base.size / PAGE_SIZE;
3470 	unsigned int size_pages = rot_info->plane[0].width * rot_info->plane[0].height;
3471 	unsigned int size_pages_uv;
3472 	struct sgt_iter sgt_iter;
3473 	dma_addr_t dma_addr;
3474 	unsigned long i;
3475 	dma_addr_t *page_addr_list;
3476 	struct sg_table *st;
3477 	unsigned int uv_start_page;
3478 	struct scatterlist *sg;
3479 	int ret = -ENOMEM;
3480 
3481 	/* Allocate a temporary list of source pages for random access. */
3482 	page_addr_list = drm_malloc_gfp(n_pages,
3483 					sizeof(dma_addr_t),
3484 					GFP_TEMPORARY);
3485 	if (!page_addr_list)
3486 		return ERR_PTR(ret);
3487 
3488 	/* Account for UV plane with NV12. */
3489 	if (rot_info->pixel_format == DRM_FORMAT_NV12)
3490 		size_pages_uv = rot_info->plane[1].width * rot_info->plane[1].height;
3491 	else
3492 		size_pages_uv = 0;
3493 
3494 	/* Allocate target SG list. */
3495 	st = kmalloc(sizeof(*st), M_DRM, GFP_KERNEL);
3496 	if (!st)
3497 		goto err_st_alloc;
3498 
3499 	ret = sg_alloc_table(st, size_pages + size_pages_uv, GFP_KERNEL);
3500 	if (ret)
3501 		goto err_sg_alloc;
3502 
3503 	/* Populate source page list from the object. */
3504 	i = 0;
3505 	for_each_sgt_dma(dma_addr, sgt_iter, obj->pages)
3506 		page_addr_list[i++] = dma_addr;
3507 
3508 	GEM_BUG_ON(i != n_pages);
3509 	st->nents = 0;
3510 	sg = st->sgl;
3511 
3512 	/* Rotate the pages. */
3513 	sg = rotate_pages(page_addr_list, 0,
3514 			  rot_info->plane[0].width, rot_info->plane[0].height,
3515 			  rot_info->plane[0].width,
3516 			  st, sg);
3517 
3518 	/* Append the UV plane if NV12. */
3519 	if (rot_info->pixel_format == DRM_FORMAT_NV12) {
3520 		uv_start_page = size_pages;
3521 
3522 		/* Check for tile-row un-alignment. */
3523 		if (offset_in_page(rot_info->uv_offset))
3524 			uv_start_page--;
3525 
3526 		rot_info->uv_start_page = uv_start_page;
3527 
3528 		sg = rotate_pages(page_addr_list, rot_info->uv_start_page,
3529 				  rot_info->plane[1].width, rot_info->plane[1].height,
3530 				  rot_info->plane[1].width,
3531 				  st, sg);
3532 	}
3533 
3534 	DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages (%u plane 0)).\n",
3535 		      obj->base.size, rot_info->plane[0].width,
3536 		      rot_info->plane[0].height, size_pages + size_pages_uv,
3537 		      size_pages);
3538 
3539 	drm_free_large(page_addr_list);
3540 
3541 	return st;
3542 
3543 err_sg_alloc:
3544 	kfree(st);
3545 err_st_alloc:
3546 	drm_free_large(page_addr_list);
3547 
3548 	DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%d) (%ux%u tiles, %u pages (%u plane 0))\n",
3549 		      obj->base.size, ret, rot_info->plane[0].width,
3550 		      rot_info->plane[0].height, size_pages + size_pages_uv,
3551 		      size_pages);
3552 	return ERR_PTR(ret);
3553 }
3554 
3555 static struct sg_table *
3556 intel_partial_pages(const struct i915_ggtt_view *view,
3557 		    struct drm_i915_gem_object *obj)
3558 {
3559 	struct sg_table *st;
3560 	struct scatterlist *sg;
3561 	struct sg_page_iter obj_sg_iter;
3562 	int ret = -ENOMEM;
3563 
3564 	st = kmalloc(sizeof(*st), M_DRM, GFP_KERNEL);
3565 	if (!st)
3566 		goto err_st_alloc;
3567 
3568 	ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
3569 	if (ret)
3570 		goto err_sg_alloc;
3571 
3572 	sg = st->sgl;
3573 	st->nents = 0;
3574 	for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
3575 		view->params.partial.offset)
3576 	{
3577 		if (st->nents >= view->params.partial.size)
3578 			break;
3579 
3580 		sg_set_page(sg, NULL, PAGE_SIZE, 0);
3581 		sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
3582 		sg_dma_len(sg) = PAGE_SIZE;
3583 
3584 		sg = sg_next(sg);
3585 		st->nents++;
3586 	}
3587 
3588 	return st;
3589 
3590 err_sg_alloc:
3591 	kfree(st);
3592 err_st_alloc:
3593 	return ERR_PTR(ret);
3594 }
3595 
3596 static int
3597 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3598 {
3599 	int ret = 0;
3600 
3601 	if (vma->ggtt_view.pages)
3602 		return 0;
3603 
3604 	if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
3605 		vma->ggtt_view.pages = vma->obj->pages;
3606 	else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
3607 		vma->ggtt_view.pages =
3608 			intel_rotate_fb_obj_pages(&vma->ggtt_view.params.rotated, vma->obj);
3609 	else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
3610 		vma->ggtt_view.pages =
3611 			intel_partial_pages(&vma->ggtt_view, vma->obj);
3612 	else
3613 		WARN_ONCE(1, "GGTT view %u not implemented!\n",
3614 			  vma->ggtt_view.type);
3615 
3616 	if (!vma->ggtt_view.pages) {
3617 		DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
3618 			  vma->ggtt_view.type);
3619 		ret = -EINVAL;
3620 	} else if (IS_ERR(vma->ggtt_view.pages)) {
3621 		ret = PTR_ERR(vma->ggtt_view.pages);
3622 		vma->ggtt_view.pages = NULL;
3623 		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3624 			  vma->ggtt_view.type, ret);
3625 	}
3626 
3627 	return ret;
3628 }
3629 
3630 /**
3631  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
3632  * @vma: VMA to map
3633  * @cache_level: mapping cache level
3634  * @flags: flags like global or local mapping
3635  *
3636  * DMA addresses are taken from the scatter-gather table of this object (or of
3637  * this VMA in case of non-default GGTT views) and PTE entries set up.
3638  * Note that DMA addresses are also the only part of the SG table we care about.
3639  */
3640 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3641 		  u32 flags)
3642 {
3643 	u32 bind_flags;
3644 	u32 vma_flags;
3645 	int ret;
3646 
3647 	if (WARN_ON(flags == 0))
3648 		return -EINVAL;
3649 
3650 	bind_flags = 0;
3651 	if (flags & PIN_GLOBAL)
3652 		bind_flags |= I915_VMA_GLOBAL_BIND;
3653 	if (flags & PIN_USER)
3654 		bind_flags |= I915_VMA_LOCAL_BIND;
3655 
3656 	vma_flags = vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
3657 	if (flags & PIN_UPDATE)
3658 		bind_flags |= vma_flags;
3659 	else
3660 		bind_flags &= ~vma_flags;
3661 	if (bind_flags == 0)
3662 		return 0;
3663 
3664 	if (vma_flags == 0 && vma->vm->allocate_va_range) {
3665 		trace_i915_va_alloc(vma);
3666 		ret = vma->vm->allocate_va_range(vma->vm,
3667 						 vma->node.start,
3668 						 vma->node.size);
3669 		if (ret)
3670 			return ret;
3671 	}
3672 
3673 	ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
3674 	if (ret)
3675 		return ret;
3676 
3677 	vma->flags |= bind_flags;
3678 	return 0;
3679 }
3680 
3681 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma)
3682 {
3683 	void __iomem *ptr;
3684 
3685 	lockdep_assert_held(&vma->vm->dev->struct_mutex);
3686 	if (WARN_ON(!vma->obj->map_and_fenceable))
3687 		return IO_ERR_PTR(-ENODEV);
3688 
3689 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
3690 	GEM_BUG_ON((vma->flags & I915_VMA_GLOBAL_BIND) == 0);
3691 
3692 	ptr = vma->iomap;
3693 	if (ptr == NULL) {
3694 		ptr = io_mapping_map_wc(i915_vm_to_ggtt(vma->vm)->mappable,
3695 					vma->node.start,
3696 					vma->node.size);
3697 		if (ptr == NULL)
3698 			return IO_ERR_PTR(-ENOMEM);
3699 
3700 		vma->iomap = ptr;
3701 	}
3702 
3703 	__i915_vma_pin(vma);
3704 	return ptr;
3705 }
3706