1 /* 2 * Copyright © 2008,2010 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * Chris Wilson <chris@chris-wilson.co.uk> 26 * 27 * $FreeBSD: src/sys/dev/drm2/i915/i915_gem_execbuffer.c,v 1.3 2012/05/28 13:58:08 kib Exp $ 28 */ 29 30 #include <sys/limits.h> 31 #include <sys/sfbuf.h> 32 33 #include <drm/drmP.h> 34 #include <drm/i915_drm.h> 35 #include "i915_drv.h" 36 #include "intel_drv.h" 37 38 struct change_domains { 39 uint32_t invalidate_domains; 40 uint32_t flush_domains; 41 uint32_t flush_rings; 42 uint32_t flips; 43 }; 44 45 /* 46 * Set the next domain for the specified object. This 47 * may not actually perform the necessary flushing/invaliding though, 48 * as that may want to be batched with other set_domain operations 49 * 50 * This is (we hope) the only really tricky part of gem. The goal 51 * is fairly simple -- track which caches hold bits of the object 52 * and make sure they remain coherent. A few concrete examples may 53 * help to explain how it works. For shorthand, we use the notation 54 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the 55 * a pair of read and write domain masks. 56 * 57 * Case 1: the batch buffer 58 * 59 * 1. Allocated 60 * 2. Written by CPU 61 * 3. Mapped to GTT 62 * 4. Read by GPU 63 * 5. Unmapped from GTT 64 * 6. Freed 65 * 66 * Let's take these a step at a time 67 * 68 * 1. Allocated 69 * Pages allocated from the kernel may still have 70 * cache contents, so we set them to (CPU, CPU) always. 71 * 2. Written by CPU (using pwrite) 72 * The pwrite function calls set_domain (CPU, CPU) and 73 * this function does nothing (as nothing changes) 74 * 3. Mapped by GTT 75 * This function asserts that the object is not 76 * currently in any GPU-based read or write domains 77 * 4. Read by GPU 78 * i915_gem_execbuffer calls set_domain (COMMAND, 0). 79 * As write_domain is zero, this function adds in the 80 * current read domains (CPU+COMMAND, 0). 81 * flush_domains is set to CPU. 82 * invalidate_domains is set to COMMAND 83 * clflush is run to get data out of the CPU caches 84 * then i915_dev_set_domain calls i915_gem_flush to 85 * emit an MI_FLUSH and drm_agp_chipset_flush 86 * 5. Unmapped from GTT 87 * i915_gem_object_unbind calls set_domain (CPU, CPU) 88 * flush_domains and invalidate_domains end up both zero 89 * so no flushing/invalidating happens 90 * 6. Freed 91 * yay, done 92 * 93 * Case 2: The shared render buffer 94 * 95 * 1. Allocated 96 * 2. Mapped to GTT 97 * 3. Read/written by GPU 98 * 4. set_domain to (CPU,CPU) 99 * 5. Read/written by CPU 100 * 6. Read/written by GPU 101 * 102 * 1. Allocated 103 * Same as last example, (CPU, CPU) 104 * 2. Mapped to GTT 105 * Nothing changes (assertions find that it is not in the GPU) 106 * 3. Read/written by GPU 107 * execbuffer calls set_domain (RENDER, RENDER) 108 * flush_domains gets CPU 109 * invalidate_domains gets GPU 110 * clflush (obj) 111 * MI_FLUSH and drm_agp_chipset_flush 112 * 4. set_domain (CPU, CPU) 113 * flush_domains gets GPU 114 * invalidate_domains gets CPU 115 * wait_rendering (obj) to make sure all drawing is complete. 116 * This will include an MI_FLUSH to get the data from GPU 117 * to memory 118 * clflush (obj) to invalidate the CPU cache 119 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?) 120 * 5. Read/written by CPU 121 * cache lines are loaded and dirtied 122 * 6. Read written by GPU 123 * Same as last GPU access 124 * 125 * Case 3: The constant buffer 126 * 127 * 1. Allocated 128 * 2. Written by CPU 129 * 3. Read by GPU 130 * 4. Updated (written) by CPU again 131 * 5. Read by GPU 132 * 133 * 1. Allocated 134 * (CPU, CPU) 135 * 2. Written by CPU 136 * (CPU, CPU) 137 * 3. Read by GPU 138 * (CPU+RENDER, 0) 139 * flush_domains = CPU 140 * invalidate_domains = RENDER 141 * clflush (obj) 142 * MI_FLUSH 143 * drm_agp_chipset_flush 144 * 4. Updated (written) by CPU again 145 * (CPU, CPU) 146 * flush_domains = 0 (no previous write domain) 147 * invalidate_domains = 0 (no new read domains) 148 * 5. Read by GPU 149 * (CPU+RENDER, 0) 150 * flush_domains = CPU 151 * invalidate_domains = RENDER 152 * clflush (obj) 153 * MI_FLUSH 154 * drm_agp_chipset_flush 155 */ 156 static void 157 i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj, 158 struct intel_ring_buffer *ring, 159 struct change_domains *cd) 160 { 161 uint32_t invalidate_domains = 0, flush_domains = 0; 162 163 /* 164 * If the object isn't moving to a new write domain, 165 * let the object stay in multiple read domains 166 */ 167 if (obj->base.pending_write_domain == 0) 168 obj->base.pending_read_domains |= obj->base.read_domains; 169 170 /* 171 * Flush the current write domain if 172 * the new read domains don't match. Invalidate 173 * any read domains which differ from the old 174 * write domain 175 */ 176 if (obj->base.write_domain && 177 (((obj->base.write_domain != obj->base.pending_read_domains || 178 obj->ring != ring)) || 179 (obj->fenced_gpu_access && !obj->pending_fenced_gpu_access))) { 180 flush_domains |= obj->base.write_domain; 181 invalidate_domains |= 182 obj->base.pending_read_domains & ~obj->base.write_domain; 183 } 184 /* 185 * Invalidate any read caches which may have 186 * stale data. That is, any new read domains. 187 */ 188 invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains; 189 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) 190 i915_gem_clflush_object(obj); 191 192 if (obj->base.pending_write_domain) 193 cd->flips |= atomic_read(&obj->pending_flip); 194 195 /* The actual obj->write_domain will be updated with 196 * pending_write_domain after we emit the accumulated flush for all 197 * of our domain changes in execbuffers (which clears objects' 198 * write_domains). So if we have a current write domain that we 199 * aren't changing, set pending_write_domain to that. 200 */ 201 if (flush_domains == 0 && obj->base.pending_write_domain == 0) 202 obj->base.pending_write_domain = obj->base.write_domain; 203 204 cd->invalidate_domains |= invalidate_domains; 205 cd->flush_domains |= flush_domains; 206 if (flush_domains & I915_GEM_GPU_DOMAINS) 207 cd->flush_rings |= intel_ring_flag(obj->ring); 208 if (invalidate_domains & I915_GEM_GPU_DOMAINS) 209 cd->flush_rings |= intel_ring_flag(ring); 210 } 211 212 struct eb_objects { 213 int and; 214 struct hlist_head buckets[0]; 215 }; 216 217 static struct eb_objects * 218 eb_create(int size) 219 { 220 struct eb_objects *eb; 221 int count = PAGE_SIZE / sizeof(struct hlist_head) / 2; 222 while (count > size) 223 count >>= 1; 224 #if 0 225 eb = kzalloc(count*sizeof(struct hlist_head) + 226 sizeof(struct eb_objects), 227 GFP_KERNEL); 228 #else 229 eb = kmalloc(count*sizeof(struct hlist_head) + 230 sizeof(struct eb_objects), 231 DRM_I915_GEM, M_WAITOK | M_ZERO); 232 #endif 233 if (eb == NULL) 234 return eb; 235 236 eb->and = count - 1; 237 return eb; 238 } 239 240 static void 241 eb_reset(struct eb_objects *eb) 242 { 243 memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head)); 244 } 245 246 static void 247 eb_add_object(struct eb_objects *eb, struct drm_i915_gem_object *obj) 248 { 249 hlist_add_head(&obj->exec_node, 250 &eb->buckets[obj->exec_handle & eb->and]); 251 } 252 253 static struct drm_i915_gem_object * 254 eb_get_object(struct eb_objects *eb, unsigned long handle) 255 { 256 struct hlist_head *head; 257 struct hlist_node *node; 258 struct drm_i915_gem_object *obj; 259 260 head = &eb->buckets[handle & eb->and]; 261 hlist_for_each(node, head) { 262 obj = hlist_entry(node, struct drm_i915_gem_object, exec_node); 263 if (obj->exec_handle == handle) 264 return obj; 265 } 266 267 return NULL; 268 } 269 270 static void 271 eb_destroy(struct eb_objects *eb) 272 { 273 drm_free(eb, DRM_I915_GEM); 274 } 275 276 static int 277 i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj, 278 struct eb_objects *eb, 279 struct drm_i915_gem_relocation_entry *reloc) 280 { 281 struct drm_device *dev = obj->base.dev; 282 struct drm_gem_object *target_obj; 283 uint32_t target_offset; 284 int ret = -EINVAL; 285 286 /* we've already hold a reference to all valid objects */ 287 target_obj = &eb_get_object(eb, reloc->target_handle)->base; 288 if (unlikely(target_obj == NULL)) 289 return -ENOENT; 290 291 target_offset = to_intel_bo(target_obj)->gtt_offset; 292 293 #if WATCH_RELOC 294 DRM_INFO("%s: obj %p offset %08x target %d " 295 "read %08x write %08x gtt %08x " 296 "presumed %08x delta %08x\n", 297 __func__, 298 obj, 299 (int) reloc->offset, 300 (int) reloc->target_handle, 301 (int) reloc->read_domains, 302 (int) reloc->write_domain, 303 (int) target_offset, 304 (int) reloc->presumed_offset, 305 reloc->delta); 306 #endif 307 308 /* The target buffer should have appeared before us in the 309 * exec_object list, so it should have a GTT space bound by now. 310 */ 311 if (unlikely(target_offset == 0)) { 312 DRM_DEBUG("No GTT space found for object %d\n", 313 reloc->target_handle); 314 return ret; 315 } 316 317 /* Validate that the target is in a valid r/w GPU domain */ 318 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) { 319 DRM_DEBUG("reloc with multiple write domains: " 320 "obj %p target %d offset %d " 321 "read %08x write %08x", 322 obj, reloc->target_handle, 323 (int) reloc->offset, 324 reloc->read_domains, 325 reloc->write_domain); 326 return ret; 327 } 328 if (unlikely((reloc->write_domain | reloc->read_domains) 329 & ~I915_GEM_GPU_DOMAINS)) { 330 DRM_DEBUG("reloc with read/write non-GPU domains: " 331 "obj %p target %d offset %d " 332 "read %08x write %08x", 333 obj, reloc->target_handle, 334 (int) reloc->offset, 335 reloc->read_domains, 336 reloc->write_domain); 337 return ret; 338 } 339 if (unlikely(reloc->write_domain && target_obj->pending_write_domain && 340 reloc->write_domain != target_obj->pending_write_domain)) { 341 DRM_DEBUG("Write domain conflict: " 342 "obj %p target %d offset %d " 343 "new %08x old %08x\n", 344 obj, reloc->target_handle, 345 (int) reloc->offset, 346 reloc->write_domain, 347 target_obj->pending_write_domain); 348 return ret; 349 } 350 351 target_obj->pending_read_domains |= reloc->read_domains; 352 target_obj->pending_write_domain |= reloc->write_domain; 353 354 /* If the relocation already has the right value in it, no 355 * more work needs to be done. 356 */ 357 if (target_offset == reloc->presumed_offset) 358 return 0; 359 360 /* Check that the relocation address is valid... */ 361 if (unlikely(reloc->offset > obj->base.size - 4)) { 362 DRM_DEBUG("Relocation beyond object bounds: " 363 "obj %p target %d offset %d size %d.\n", 364 obj, reloc->target_handle, 365 (int) reloc->offset, 366 (int) obj->base.size); 367 return ret; 368 } 369 if (unlikely(reloc->offset & 3)) { 370 DRM_DEBUG("Relocation not 4-byte aligned: " 371 "obj %p target %d offset %d.\n", 372 obj, reloc->target_handle, 373 (int) reloc->offset); 374 return ret; 375 } 376 377 /* We can't wait for rendering with pagefaults disabled */ 378 if (obj->active && (curthread->td_flags & TDF_NOFAULT)) 379 return -EFAULT; 380 381 reloc->delta += target_offset; 382 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) { 383 uint32_t page_offset = reloc->offset & PAGE_MASK; 384 char *vaddr; 385 struct sf_buf *sf; 386 387 ret = i915_gem_object_set_to_cpu_domain(obj, 1); 388 if (ret) 389 return ret; 390 391 sf = sf_buf_alloc(obj->pages[OFF_TO_IDX(reloc->offset)]); 392 if (sf == NULL) 393 return (-ENOMEM); 394 vaddr = (void *)sf_buf_kva(sf); 395 396 *(uint32_t *)(vaddr + page_offset) = reloc->delta; 397 sf_buf_free(sf); 398 } else { 399 uint32_t *reloc_entry; 400 char *reloc_page; 401 402 ret = i915_gem_object_set_to_gtt_domain(obj, 1); 403 if (ret) 404 return ret; 405 406 /* 407 * Map the page containing the relocation we're going 408 * to perform. 409 */ 410 reloc->offset += obj->gtt_offset; 411 reloc_page = pmap_mapdev_attr(dev->agp->base + (reloc->offset & 412 ~PAGE_MASK), PAGE_SIZE, PAT_WRITE_COMBINING); 413 reloc_entry = (uint32_t *)(reloc_page + (reloc->offset & 414 PAGE_MASK)); 415 *(volatile uint32_t *)reloc_entry = reloc->delta; 416 pmap_unmapdev((vm_offset_t)reloc_page, PAGE_SIZE); 417 } 418 419 /* and update the user's relocation entry */ 420 reloc->presumed_offset = target_offset; 421 422 return 0; 423 } 424 425 static int 426 i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj, 427 struct eb_objects *eb) 428 { 429 struct drm_i915_gem_relocation_entry *user_relocs; 430 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry; 431 struct drm_i915_gem_relocation_entry reloc; 432 int i, ret; 433 434 user_relocs = (void *)(uintptr_t)entry->relocs_ptr; 435 for (i = 0; i < entry->relocation_count; i++) { 436 ret = -copyin_nofault(user_relocs + i, &reloc, sizeof(reloc)); 437 if (ret != 0) 438 return (ret); 439 440 ret = i915_gem_execbuffer_relocate_entry(obj, eb, &reloc); 441 if (ret != 0) 442 return (ret); 443 444 ret = -copyout_nofault(&reloc.presumed_offset, 445 &user_relocs[i].presumed_offset, 446 sizeof(reloc.presumed_offset)); 447 if (ret != 0) 448 return (ret); 449 } 450 451 return (0); 452 } 453 454 static int 455 i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj, 456 struct eb_objects *eb, struct drm_i915_gem_relocation_entry *relocs) 457 { 458 const struct drm_i915_gem_exec_object2 *entry = obj->exec_entry; 459 int i, ret; 460 461 for (i = 0; i < entry->relocation_count; i++) { 462 ret = i915_gem_execbuffer_relocate_entry(obj, eb, &relocs[i]); 463 if (ret) 464 return ret; 465 } 466 467 return 0; 468 } 469 470 static int 471 i915_gem_execbuffer_relocate(struct drm_device *dev, 472 struct eb_objects *eb, 473 struct list_head *objects) 474 { 475 struct drm_i915_gem_object *obj; 476 thread_t td = curthread; 477 int ret; 478 int pflags; 479 480 /* Try to move as many of the relocation targets off the active list 481 * to avoid unnecessary fallbacks to the slow path, as we cannot wait 482 * for the retirement with pagefaults disabled. 483 */ 484 i915_gem_retire_requests(dev); 485 486 ret = 0; 487 pflags = td->td_flags & TDF_NOFAULT; 488 atomic_set_int(&td->td_flags, TDF_NOFAULT); 489 490 /* This is the fast path and we cannot handle a pagefault whilst 491 * holding the device lock lest the user pass in the relocations 492 * contained within a mmaped bo. For in such a case we, the page 493 * fault handler would call i915_gem_fault() and we would try to 494 * acquire the device lock again. Obviously this is bad. 495 */ 496 497 list_for_each_entry(obj, objects, exec_list) { 498 ret = i915_gem_execbuffer_relocate_object(obj, eb); 499 if (ret != 0) 500 break; 501 } 502 503 if ((pflags & TDF_NOFAULT) == 0) 504 atomic_clear_int(&td->td_flags, TDF_NOFAULT); 505 506 return (ret); 507 } 508 509 #define __EXEC_OBJECT_HAS_FENCE (1<<31) 510 511 static int 512 pin_and_fence_object(struct drm_i915_gem_object *obj, 513 struct intel_ring_buffer *ring) 514 { 515 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry; 516 bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4; 517 bool need_fence, need_mappable; 518 int ret; 519 520 need_fence = 521 has_fenced_gpu_access && 522 entry->flags & EXEC_OBJECT_NEEDS_FENCE && 523 obj->tiling_mode != I915_TILING_NONE; 524 need_mappable = 525 entry->relocation_count ? true : need_fence; 526 527 ret = i915_gem_object_pin(obj, entry->alignment, need_mappable); 528 if (ret) 529 return ret; 530 531 if (has_fenced_gpu_access) { 532 if (entry->flags & EXEC_OBJECT_NEEDS_FENCE) { 533 if (obj->tiling_mode) { 534 ret = i915_gem_object_get_fence(obj, ring); 535 if (ret) 536 goto err_unpin; 537 538 entry->flags |= __EXEC_OBJECT_HAS_FENCE; 539 i915_gem_object_pin_fence(obj); 540 } else { 541 ret = i915_gem_object_put_fence(obj); 542 if (ret) 543 goto err_unpin; 544 } 545 obj->pending_fenced_gpu_access = true; 546 } 547 } 548 549 entry->offset = obj->gtt_offset; 550 return 0; 551 552 err_unpin: 553 i915_gem_object_unpin(obj); 554 return ret; 555 } 556 557 static int 558 i915_gem_execbuffer_reserve(struct intel_ring_buffer *ring, 559 struct drm_file *file, 560 struct list_head *objects) 561 { 562 drm_i915_private_t *dev_priv; 563 struct drm_i915_gem_object *obj; 564 int ret, retry; 565 bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4; 566 struct list_head ordered_objects; 567 568 dev_priv = ring->dev->dev_private; 569 INIT_LIST_HEAD(&ordered_objects); 570 while (!list_empty(objects)) { 571 struct drm_i915_gem_exec_object2 *entry; 572 bool need_fence, need_mappable; 573 574 obj = list_first_entry(objects, 575 struct drm_i915_gem_object, 576 exec_list); 577 entry = obj->exec_entry; 578 579 need_fence = 580 has_fenced_gpu_access && 581 entry->flags & EXEC_OBJECT_NEEDS_FENCE && 582 obj->tiling_mode != I915_TILING_NONE; 583 need_mappable = 584 entry->relocation_count ? true : need_fence; 585 586 if (need_mappable) 587 list_move(&obj->exec_list, &ordered_objects); 588 else 589 list_move_tail(&obj->exec_list, &ordered_objects); 590 591 obj->base.pending_read_domains = 0; 592 obj->base.pending_write_domain = 0; 593 } 594 list_splice(&ordered_objects, objects); 595 596 /* Attempt to pin all of the buffers into the GTT. 597 * This is done in 3 phases: 598 * 599 * 1a. Unbind all objects that do not match the GTT constraints for 600 * the execbuffer (fenceable, mappable, alignment etc). 601 * 1b. Increment pin count for already bound objects and obtain 602 * a fence register if required. 603 * 2. Bind new objects. 604 * 3. Decrement pin count. 605 * 606 * This avoid unnecessary unbinding of later objects in order to makr 607 * room for the earlier objects *unless* we need to defragment. 608 */ 609 retry = 0; 610 do { 611 ret = 0; 612 613 /* Unbind any ill-fitting objects or pin. */ 614 list_for_each_entry(obj, objects, exec_list) { 615 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry; 616 bool need_fence, need_mappable; 617 618 if (!obj->gtt_space) 619 continue; 620 621 need_fence = 622 has_fenced_gpu_access && 623 entry->flags & EXEC_OBJECT_NEEDS_FENCE && 624 obj->tiling_mode != I915_TILING_NONE; 625 need_mappable = 626 entry->relocation_count ? true : need_fence; 627 628 if ((entry->alignment && obj->gtt_offset & (entry->alignment - 1)) || 629 (need_mappable && !obj->map_and_fenceable)) 630 ret = i915_gem_object_unbind(obj); 631 else 632 ret = pin_and_fence_object(obj, ring); 633 if (ret) 634 goto err; 635 } 636 637 /* Bind fresh objects */ 638 list_for_each_entry(obj, objects, exec_list) { 639 if (obj->gtt_space) 640 continue; 641 642 ret = pin_and_fence_object(obj, ring); 643 if (ret) { 644 int ret_ignore; 645 646 /* This can potentially raise a harmless 647 * -EINVAL if we failed to bind in the above 648 * call. It cannot raise -EINTR since we know 649 * that the bo is freshly bound and so will 650 * not need to be flushed or waited upon. 651 */ 652 ret_ignore = i915_gem_object_unbind(obj); 653 (void)ret_ignore; 654 if (obj->gtt_space != NULL) 655 kprintf("%s: gtt_space\n", __func__); 656 break; 657 } 658 } 659 660 /* Decrement pin count for bound objects */ 661 list_for_each_entry(obj, objects, exec_list) { 662 struct drm_i915_gem_exec_object2 *entry; 663 664 if (!obj->gtt_space) 665 continue; 666 667 entry = obj->exec_entry; 668 if (entry->flags & __EXEC_OBJECT_HAS_FENCE) { 669 i915_gem_object_unpin_fence(obj); 670 entry->flags &= ~__EXEC_OBJECT_HAS_FENCE; 671 } 672 673 i915_gem_object_unpin(obj); 674 675 /* ... and ensure ppgtt mapping exist if needed. */ 676 if (dev_priv->mm.aliasing_ppgtt && !obj->has_aliasing_ppgtt_mapping) { 677 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt, 678 obj, obj->cache_level); 679 680 obj->has_aliasing_ppgtt_mapping = 1; 681 } 682 } 683 684 if (ret != -ENOSPC || retry > 1) 685 return ret; 686 687 /* First attempt, just clear anything that is purgeable. 688 * Second attempt, clear the entire GTT. 689 */ 690 ret = i915_gem_evict_everything(ring->dev, retry == 0); 691 if (ret) 692 return ret; 693 694 retry++; 695 } while (1); 696 697 err: 698 list_for_each_entry_continue_reverse(obj, objects, exec_list) { 699 struct drm_i915_gem_exec_object2 *entry; 700 701 if (!obj->gtt_space) 702 continue; 703 704 entry = obj->exec_entry; 705 if (entry->flags & __EXEC_OBJECT_HAS_FENCE) { 706 i915_gem_object_unpin_fence(obj); 707 entry->flags &= ~__EXEC_OBJECT_HAS_FENCE; 708 } 709 710 i915_gem_object_unpin(obj); 711 } 712 713 return ret; 714 } 715 716 static int 717 i915_gem_execbuffer_relocate_slow(struct drm_device *dev, 718 struct drm_file *file, struct intel_ring_buffer *ring, 719 struct list_head *objects, struct eb_objects *eb, 720 struct drm_i915_gem_exec_object2 *exec, int count) 721 { 722 struct drm_i915_gem_relocation_entry *reloc; 723 struct drm_i915_gem_object *obj; 724 int *reloc_offset; 725 int i, total, ret; 726 727 /* We may process another execbuffer during the unlock... */ 728 while (!list_empty(objects)) { 729 obj = list_first_entry(objects, 730 struct drm_i915_gem_object, 731 exec_list); 732 list_del_init(&obj->exec_list); 733 drm_gem_object_unreference(&obj->base); 734 } 735 736 DRM_UNLOCK(dev); 737 738 total = 0; 739 for (i = 0; i < count; i++) 740 total += exec[i].relocation_count; 741 742 reloc_offset = kmalloc(count * sizeof(*reloc_offset), DRM_I915_GEM, 743 M_WAITOK | M_ZERO); 744 reloc = kmalloc(total * sizeof(*reloc), DRM_I915_GEM, M_WAITOK | M_ZERO); 745 746 total = 0; 747 for (i = 0; i < count; i++) { 748 struct drm_i915_gem_relocation_entry *user_relocs; 749 750 user_relocs = (void *)(uintptr_t)exec[i].relocs_ptr; 751 ret = -copyin(user_relocs, reloc + total, 752 exec[i].relocation_count * sizeof(*reloc)); 753 if (ret != 0) { 754 DRM_LOCK(dev); 755 goto err; 756 } 757 758 reloc_offset[i] = total; 759 total += exec[i].relocation_count; 760 } 761 762 ret = i915_mutex_lock_interruptible(dev); 763 if (ret) { 764 DRM_LOCK(dev); 765 goto err; 766 } 767 768 /* reacquire the objects */ 769 eb_reset(eb); 770 for (i = 0; i < count; i++) { 771 struct drm_i915_gem_object *obj; 772 773 obj = to_intel_bo(drm_gem_object_lookup(dev, file, 774 exec[i].handle)); 775 if (&obj->base == NULL) { 776 DRM_DEBUG("Invalid object handle %d at index %d\n", 777 exec[i].handle, i); 778 ret = -ENOENT; 779 goto err; 780 } 781 782 list_add_tail(&obj->exec_list, objects); 783 obj->exec_handle = exec[i].handle; 784 obj->exec_entry = &exec[i]; 785 eb_add_object(eb, obj); 786 } 787 788 ret = i915_gem_execbuffer_reserve(ring, file, objects); 789 if (ret) 790 goto err; 791 792 list_for_each_entry(obj, objects, exec_list) { 793 int offset = obj->exec_entry - exec; 794 ret = i915_gem_execbuffer_relocate_object_slow(obj, eb, 795 reloc + reloc_offset[offset]); 796 if (ret) 797 goto err; 798 } 799 800 /* Leave the user relocations as are, this is the painfully slow path, 801 * and we want to avoid the complication of dropping the lock whilst 802 * having buffers reserved in the aperture and so causing spurious 803 * ENOSPC for random operations. 804 */ 805 806 err: 807 drm_free(reloc, DRM_I915_GEM); 808 drm_free(reloc_offset, DRM_I915_GEM); 809 return ret; 810 } 811 812 static int 813 i915_gem_execbuffer_flush(struct drm_device *dev, 814 uint32_t invalidate_domains, 815 uint32_t flush_domains, 816 uint32_t flush_rings) 817 { 818 drm_i915_private_t *dev_priv = dev->dev_private; 819 int i, ret; 820 821 if (flush_domains & I915_GEM_DOMAIN_CPU) 822 intel_gtt_chipset_flush(); 823 824 if (flush_domains & I915_GEM_DOMAIN_GTT) 825 cpu_sfence(); 826 827 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) { 828 for (i = 0; i < I915_NUM_RINGS; i++) 829 if (flush_rings & (1 << i)) { 830 ret = i915_gem_flush_ring(&dev_priv->ring[i], 831 invalidate_domains, flush_domains); 832 if (ret) 833 return ret; 834 } 835 } 836 837 return 0; 838 } 839 840 static int 841 i915_gem_execbuffer_wait_for_flips(struct intel_ring_buffer *ring, u32 flips) 842 { 843 u32 plane, flip_mask; 844 int ret; 845 846 /* Check for any pending flips. As we only maintain a flip queue depth 847 * of 1, we can simply insert a WAIT for the next display flip prior 848 * to executing the batch and avoid stalling the CPU. 849 */ 850 851 for (plane = 0; flips >> plane; plane++) { 852 if (((flips >> plane) & 1) == 0) 853 continue; 854 855 if (plane) 856 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP; 857 else 858 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP; 859 860 ret = intel_ring_begin(ring, 2); 861 if (ret) 862 return ret; 863 864 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask); 865 intel_ring_emit(ring, MI_NOOP); 866 intel_ring_advance(ring); 867 } 868 869 return 0; 870 } 871 872 static int 873 i915_gem_execbuffer_move_to_gpu(struct intel_ring_buffer *ring, 874 struct list_head *objects) 875 { 876 struct drm_i915_gem_object *obj; 877 struct change_domains cd; 878 int ret; 879 880 memset(&cd, 0, sizeof(cd)); 881 list_for_each_entry(obj, objects, exec_list) 882 i915_gem_object_set_to_gpu_domain(obj, ring, &cd); 883 884 if (cd.invalidate_domains | cd.flush_domains) { 885 #if WATCH_EXEC 886 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n", 887 __func__, 888 cd.invalidate_domains, 889 cd.flush_domains); 890 #endif 891 ret = i915_gem_execbuffer_flush(ring->dev, 892 cd.invalidate_domains, 893 cd.flush_domains, 894 cd.flush_rings); 895 if (ret) 896 return ret; 897 } 898 899 if (cd.flips) { 900 ret = i915_gem_execbuffer_wait_for_flips(ring, cd.flips); 901 if (ret) 902 return ret; 903 } 904 905 list_for_each_entry(obj, objects, exec_list) { 906 ret = i915_gem_object_sync(obj, ring); 907 if (ret) 908 return ret; 909 } 910 911 return 0; 912 } 913 914 static bool 915 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec) 916 { 917 return ((exec->batch_start_offset | exec->batch_len) & 0x7) == 0; 918 } 919 920 static int 921 validate_exec_list(struct drm_i915_gem_exec_object2 *exec, int count, 922 vm_page_t ***map) 923 { 924 vm_page_t *ma; 925 int i, length, page_count; 926 927 /* XXXKIB various limits checking is missing there */ 928 *map = kmalloc(count * sizeof(*ma), DRM_I915_GEM, M_WAITOK | M_ZERO); 929 for (i = 0; i < count; i++) { 930 /* First check for malicious input causing overflow */ 931 if (exec[i].relocation_count > 932 INT_MAX / sizeof(struct drm_i915_gem_relocation_entry)) 933 return -EINVAL; 934 935 length = exec[i].relocation_count * 936 sizeof(struct drm_i915_gem_relocation_entry); 937 if (length == 0) { 938 (*map)[i] = NULL; 939 continue; 940 } 941 /* 942 * Since both start and end of the relocation region 943 * may be not aligned on the page boundary, be 944 * conservative and request a page slot for each 945 * partial page. Thus +2. 946 */ 947 page_count = howmany(length, PAGE_SIZE) + 2; 948 ma = (*map)[i] = kmalloc(page_count * sizeof(vm_page_t), 949 DRM_I915_GEM, M_WAITOK | M_ZERO); 950 if (vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map, 951 exec[i].relocs_ptr, length, VM_PROT_READ | VM_PROT_WRITE, 952 ma, page_count) == -1) { 953 drm_free(ma, DRM_I915_GEM); 954 (*map)[i] = NULL; 955 return (-EFAULT); 956 } 957 } 958 959 return 0; 960 } 961 962 static void 963 i915_gem_execbuffer_move_to_active(struct list_head *objects, 964 struct intel_ring_buffer *ring, 965 u32 seqno) 966 { 967 struct drm_i915_gem_object *obj; 968 uint32_t old_read, old_write; 969 970 list_for_each_entry(obj, objects, exec_list) { 971 old_read = obj->base.read_domains; 972 old_write = obj->base.write_domain; 973 974 obj->base.read_domains = obj->base.pending_read_domains; 975 obj->base.write_domain = obj->base.pending_write_domain; 976 obj->fenced_gpu_access = obj->pending_fenced_gpu_access; 977 978 i915_gem_object_move_to_active(obj, ring, seqno); 979 if (obj->base.write_domain) { 980 obj->dirty = 1; 981 obj->pending_gpu_write = true; 982 list_move_tail(&obj->gpu_write_list, 983 &ring->gpu_write_list); 984 intel_mark_busy(ring->dev); 985 } 986 } 987 } 988 989 int i915_gem_sync_exec_requests; 990 991 static void 992 i915_gem_execbuffer_retire_commands(struct drm_device *dev, 993 struct drm_file *file, 994 struct intel_ring_buffer *ring) 995 { 996 struct drm_i915_gem_request *request; 997 u32 invalidate; 998 999 /* 1000 * Ensure that the commands in the batch buffer are 1001 * finished before the interrupt fires. 1002 * 1003 * The sampler always gets flushed on i965 (sigh). 1004 */ 1005 invalidate = I915_GEM_DOMAIN_COMMAND; 1006 if (INTEL_INFO(dev)->gen >= 4) 1007 invalidate |= I915_GEM_DOMAIN_SAMPLER; 1008 if (ring->flush(ring, invalidate, 0)) { 1009 i915_gem_next_request_seqno(ring); 1010 return; 1011 } 1012 1013 /* Add a breadcrumb for the completion of the batch buffer */ 1014 request = kmalloc(sizeof(*request), DRM_I915_GEM, M_WAITOK | M_ZERO); 1015 if (request == NULL || i915_add_request(ring, file, request)) { 1016 i915_gem_next_request_seqno(ring); 1017 drm_free(request, DRM_I915_GEM); 1018 } else if (i915_gem_sync_exec_requests) 1019 i915_wait_seqno(ring, request->seqno); 1020 } 1021 1022 static void 1023 i915_gem_fix_mi_batchbuffer_end(struct drm_i915_gem_object *batch_obj, 1024 uint32_t batch_start_offset, uint32_t batch_len) 1025 { 1026 char *mkva; 1027 uint64_t po_r, po_w; 1028 uint32_t cmd; 1029 1030 po_r = batch_obj->base.dev->agp->base + batch_obj->gtt_offset + 1031 batch_start_offset + batch_len; 1032 if (batch_len > 0) 1033 po_r -= 4; 1034 mkva = pmap_mapdev_attr(trunc_page(po_r), 2 * PAGE_SIZE, 1035 PAT_WRITE_COMBINING); 1036 po_r &= PAGE_MASK; 1037 cmd = *(uint32_t *)(mkva + po_r); 1038 1039 if (cmd != MI_BATCH_BUFFER_END) { 1040 /* 1041 * batch_len != 0 due to the check at the start of 1042 * i915_gem_do_execbuffer 1043 */ 1044 if (batch_obj->base.size > batch_start_offset + batch_len) { 1045 po_w = po_r + 4; 1046 /* DRM_DEBUG("batchbuffer does not end by MI_BATCH_BUFFER_END !\n"); */ 1047 } else { 1048 po_w = po_r; 1049 DRM_DEBUG("batchbuffer does not end by MI_BATCH_BUFFER_END, overwriting last bo cmd !\n"); 1050 } 1051 *(uint32_t *)(mkva + po_w) = MI_BATCH_BUFFER_END; 1052 } 1053 1054 pmap_unmapdev((vm_offset_t)mkva, 2 * PAGE_SIZE); 1055 } 1056 1057 int i915_fix_mi_batchbuffer_end = 0; 1058 1059 static int 1060 i915_reset_gen7_sol_offsets(struct drm_device *dev, 1061 struct intel_ring_buffer *ring) 1062 { 1063 drm_i915_private_t *dev_priv = dev->dev_private; 1064 int ret, i; 1065 1066 if (!IS_GEN7(dev) || ring != &dev_priv->ring[RCS]) 1067 return 0; 1068 1069 ret = intel_ring_begin(ring, 4 * 3); 1070 if (ret) 1071 return ret; 1072 1073 for (i = 0; i < 4; i++) { 1074 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1)); 1075 intel_ring_emit(ring, GEN7_SO_WRITE_OFFSET(i)); 1076 intel_ring_emit(ring, 0); 1077 } 1078 1079 intel_ring_advance(ring); 1080 1081 return 0; 1082 } 1083 1084 static int 1085 i915_gem_do_execbuffer(struct drm_device *dev, void *data, 1086 struct drm_file *file, 1087 struct drm_i915_gem_execbuffer2 *args, 1088 struct drm_i915_gem_exec_object2 *exec) 1089 { 1090 drm_i915_private_t *dev_priv = dev->dev_private; 1091 struct list_head objects; 1092 struct eb_objects *eb; 1093 struct drm_i915_gem_object *batch_obj; 1094 struct drm_clip_rect *cliprects = NULL; 1095 struct intel_ring_buffer *ring; 1096 vm_page_t **relocs_ma; 1097 u32 exec_start, exec_len; 1098 u32 seqno; 1099 u32 mask; 1100 u32 flags; 1101 int ret, mode, i; 1102 1103 if (!i915_gem_check_execbuffer(args)) { 1104 DRM_DEBUG("execbuf with invalid offset/length\n"); 1105 return -EINVAL; 1106 } 1107 1108 if (args->batch_len == 0) 1109 return (0); 1110 1111 ret = validate_exec_list(exec, args->buffer_count, &relocs_ma); 1112 if (ret) 1113 return ret; 1114 1115 flags = 0; 1116 if (args->flags & I915_EXEC_SECURE) { 1117 flags |= I915_DISPATCH_SECURE; 1118 } 1119 if (args->flags & I915_EXEC_IS_PINNED) 1120 flags |= I915_DISPATCH_PINNED; 1121 1122 switch (args->flags & I915_EXEC_RING_MASK) { 1123 case I915_EXEC_DEFAULT: 1124 case I915_EXEC_RENDER: 1125 ring = &dev_priv->ring[RCS]; 1126 break; 1127 case I915_EXEC_BSD: 1128 if (!HAS_BSD(dev)) { 1129 DRM_DEBUG("execbuf with invalid ring (BSD)\n"); 1130 return -EINVAL; 1131 } 1132 ring = &dev_priv->ring[VCS]; 1133 break; 1134 case I915_EXEC_BLT: 1135 if (!HAS_BLT(dev)) { 1136 DRM_DEBUG("execbuf with invalid ring (BLT)\n"); 1137 return -EINVAL; 1138 } 1139 ring = &dev_priv->ring[BCS]; 1140 break; 1141 default: 1142 DRM_DEBUG("execbuf with unknown ring: %d\n", 1143 (int)(args->flags & I915_EXEC_RING_MASK)); 1144 ret = -EINVAL; 1145 goto pre_struct_lock_err; 1146 } 1147 1148 mode = args->flags & I915_EXEC_CONSTANTS_MASK; 1149 mask = I915_EXEC_CONSTANTS_MASK; 1150 switch (mode) { 1151 case I915_EXEC_CONSTANTS_REL_GENERAL: 1152 case I915_EXEC_CONSTANTS_ABSOLUTE: 1153 case I915_EXEC_CONSTANTS_REL_SURFACE: 1154 if (ring == &dev_priv->ring[RCS] && 1155 mode != dev_priv->relative_constants_mode) { 1156 if (INTEL_INFO(dev)->gen < 4) { 1157 ret = -EINVAL; 1158 goto pre_struct_lock_err; 1159 } 1160 1161 if (INTEL_INFO(dev)->gen > 5 && 1162 mode == I915_EXEC_CONSTANTS_REL_SURFACE) { 1163 ret = -EINVAL; 1164 goto pre_struct_lock_err; 1165 } 1166 1167 /* The HW changed the meaning on this bit on gen6 */ 1168 if (INTEL_INFO(dev)->gen >= 6) 1169 mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE; 1170 } 1171 break; 1172 default: 1173 DRM_DEBUG("execbuf with unknown constants: %d\n", mode); 1174 ret = -EINVAL; 1175 goto pre_struct_lock_err; 1176 } 1177 1178 if (args->buffer_count < 1) { 1179 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count); 1180 ret = -EINVAL; 1181 goto pre_struct_lock_err; 1182 } 1183 1184 if (args->num_cliprects != 0) { 1185 if (ring != &dev_priv->ring[RCS]) { 1186 DRM_DEBUG("clip rectangles are only valid with the render ring\n"); 1187 ret = -EINVAL; 1188 goto pre_struct_lock_err; 1189 } 1190 1191 if (args->num_cliprects > UINT_MAX / sizeof(*cliprects)) { 1192 DRM_DEBUG("execbuf with %u cliprects\n", 1193 args->num_cliprects); 1194 ret = -EINVAL; 1195 goto pre_struct_lock_err; 1196 } 1197 cliprects = kmalloc( sizeof(*cliprects) * args->num_cliprects, 1198 DRM_I915_GEM, M_WAITOK | M_ZERO); 1199 ret = -copyin((void *)(uintptr_t)args->cliprects_ptr, cliprects, 1200 sizeof(*cliprects) * args->num_cliprects); 1201 if (ret != 0) 1202 goto pre_struct_lock_err; 1203 } 1204 1205 ret = i915_mutex_lock_interruptible(dev); 1206 if (ret) 1207 goto pre_struct_lock_err; 1208 1209 if (dev_priv->mm.suspended) { 1210 ret = -EBUSY; 1211 goto struct_lock_err; 1212 } 1213 1214 eb = eb_create(args->buffer_count); 1215 if (eb == NULL) { 1216 ret = -ENOMEM; 1217 goto struct_lock_err; 1218 } 1219 1220 /* Look up object handles */ 1221 INIT_LIST_HEAD(&objects); 1222 for (i = 0; i < args->buffer_count; i++) { 1223 struct drm_i915_gem_object *obj; 1224 obj = to_intel_bo(drm_gem_object_lookup(dev, file, 1225 exec[i].handle)); 1226 if (&obj->base == NULL) { 1227 DRM_DEBUG("Invalid object handle %d at index %d\n", 1228 exec[i].handle, i); 1229 /* prevent error path from reading uninitialized data */ 1230 ret = -ENOENT; 1231 goto err; 1232 } 1233 1234 if (!list_empty(&obj->exec_list)) { 1235 DRM_DEBUG("Object %p [handle %d, index %d] appears more than once in object list\n", 1236 obj, exec[i].handle, i); 1237 ret = -EINVAL; 1238 goto err; 1239 } 1240 1241 list_add_tail(&obj->exec_list, &objects); 1242 obj->exec_handle = exec[i].handle; 1243 obj->exec_entry = &exec[i]; 1244 eb_add_object(eb, obj); 1245 } 1246 1247 /* take note of the batch buffer before we might reorder the lists */ 1248 batch_obj = list_entry(objects.prev, 1249 struct drm_i915_gem_object, 1250 exec_list); 1251 1252 /* Move the objects en-masse into the GTT, evicting if necessary. */ 1253 ret = i915_gem_execbuffer_reserve(ring, file, &objects); 1254 if (ret) 1255 goto err; 1256 1257 /* The objects are in their final locations, apply the relocations. */ 1258 ret = i915_gem_execbuffer_relocate(dev, eb, &objects); 1259 if (ret) { 1260 if (ret == -EFAULT) { 1261 ret = i915_gem_execbuffer_relocate_slow(dev, file, ring, 1262 &objects, eb, exec, args->buffer_count); 1263 DRM_LOCK_ASSERT(dev); 1264 } 1265 if (ret) 1266 goto err; 1267 } 1268 1269 /* Set the pending read domains for the batch buffer to COMMAND */ 1270 if (batch_obj->base.pending_write_domain) { 1271 DRM_DEBUG("Attempting to use self-modifying batch buffer\n"); 1272 ret = -EINVAL; 1273 goto err; 1274 } 1275 batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND; 1276 1277 /* snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure 1278 * batch" bit. Hence we need to pin secure batches into the global gtt. 1279 * hsw should have this fixed, but let's be paranoid and do it 1280 * unconditionally for now. */ 1281 if (flags & I915_DISPATCH_SECURE && !batch_obj->has_global_gtt_mapping) 1282 i915_gem_gtt_bind_object(batch_obj, batch_obj->cache_level); 1283 1284 ret = i915_gem_execbuffer_move_to_gpu(ring, &objects); 1285 if (ret) 1286 goto err; 1287 1288 seqno = i915_gem_next_request_seqno(ring); 1289 for (i = 0; i < I915_NUM_RINGS - 1; i++) { 1290 if (seqno < ring->sync_seqno[i]) { 1291 /* The GPU can not handle its semaphore value wrapping, 1292 * so every billion or so execbuffers, we need to stall 1293 * the GPU in order to reset the counters. 1294 */ 1295 ret = i915_gpu_idle(dev); 1296 if (ret) 1297 goto err; 1298 1299 KASSERT(ring->sync_seqno[i] == 0, ("Non-zero sync_seqno")); 1300 } 1301 } 1302 1303 if (ring == &dev_priv->ring[RCS] && 1304 mode != dev_priv->relative_constants_mode) { 1305 ret = intel_ring_begin(ring, 4); 1306 if (ret) 1307 goto err; 1308 1309 intel_ring_emit(ring, MI_NOOP); 1310 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1)); 1311 intel_ring_emit(ring, INSTPM); 1312 intel_ring_emit(ring, mask << 16 | mode); 1313 intel_ring_advance(ring); 1314 1315 dev_priv->relative_constants_mode = mode; 1316 } 1317 1318 if (args->flags & I915_EXEC_GEN7_SOL_RESET) { 1319 ret = i915_reset_gen7_sol_offsets(dev, ring); 1320 if (ret) 1321 goto err; 1322 } 1323 1324 exec_start = batch_obj->gtt_offset + args->batch_start_offset; 1325 exec_len = args->batch_len; 1326 1327 if (i915_fix_mi_batchbuffer_end) { 1328 i915_gem_fix_mi_batchbuffer_end(batch_obj, 1329 args->batch_start_offset, args->batch_len); 1330 } 1331 1332 if (cliprects) { 1333 for (i = 0; i < args->num_cliprects; i++) { 1334 ret = i915_emit_box_p(dev, &cliprects[i], 1335 args->DR1, args->DR4); 1336 if (ret) 1337 goto err; 1338 1339 ret = ring->dispatch_execbuffer(ring, 1340 exec_start, exec_len); 1341 if (ret) 1342 goto err; 1343 } 1344 } else { 1345 ret = ring->dispatch_execbuffer(ring, 1346 exec_start, exec_len); 1347 if (ret) 1348 goto err; 1349 } 1350 1351 i915_gem_execbuffer_move_to_active(&objects, ring, seqno); 1352 i915_gem_execbuffer_retire_commands(dev, file, ring); 1353 1354 err: 1355 eb_destroy(eb); 1356 while (!list_empty(&objects)) { 1357 struct drm_i915_gem_object *obj; 1358 1359 obj = list_first_entry(&objects, struct drm_i915_gem_object, 1360 exec_list); 1361 list_del_init(&obj->exec_list); 1362 drm_gem_object_unreference(&obj->base); 1363 } 1364 struct_lock_err: 1365 DRM_UNLOCK(dev); 1366 1367 pre_struct_lock_err: 1368 for (i = 0; i < args->buffer_count; i++) { 1369 if (relocs_ma[i] != NULL) { 1370 vm_page_unhold_pages(relocs_ma[i], howmany( 1371 exec[i].relocation_count * 1372 sizeof(struct drm_i915_gem_relocation_entry), 1373 PAGE_SIZE)); 1374 drm_free(relocs_ma[i], DRM_I915_GEM); 1375 } 1376 } 1377 drm_free(relocs_ma, DRM_I915_GEM); 1378 drm_free(cliprects, DRM_I915_GEM); 1379 return ret; 1380 } 1381 1382 /* 1383 * Legacy execbuffer just creates an exec2 list from the original exec object 1384 * list array and passes it to the real function. 1385 */ 1386 int 1387 i915_gem_execbuffer(struct drm_device *dev, void *data, 1388 struct drm_file *file) 1389 { 1390 struct drm_i915_gem_execbuffer *args = data; 1391 struct drm_i915_gem_execbuffer2 exec2; 1392 struct drm_i915_gem_exec_object *exec_list = NULL; 1393 struct drm_i915_gem_exec_object2 *exec2_list = NULL; 1394 int ret, i; 1395 1396 DRM_DEBUG("buffers_ptr %d buffer_count %d len %08x\n", 1397 (int) args->buffers_ptr, args->buffer_count, args->batch_len); 1398 1399 if (args->buffer_count < 1) { 1400 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count); 1401 return -EINVAL; 1402 } 1403 1404 /* Copy in the exec list from userland */ 1405 /* XXXKIB user-controlled malloc size */ 1406 exec_list = kmalloc(sizeof(*exec_list) * args->buffer_count, 1407 DRM_I915_GEM, M_WAITOK); 1408 exec2_list = kmalloc(sizeof(*exec2_list) * args->buffer_count, 1409 DRM_I915_GEM, M_WAITOK); 1410 ret = -copyin((void *)(uintptr_t)args->buffers_ptr, exec_list, 1411 sizeof(*exec_list) * args->buffer_count); 1412 if (ret != 0) { 1413 DRM_DEBUG("copy %d exec entries failed %d\n", 1414 args->buffer_count, ret); 1415 drm_free(exec_list, DRM_I915_GEM); 1416 drm_free(exec2_list, DRM_I915_GEM); 1417 return (ret); 1418 } 1419 1420 for (i = 0; i < args->buffer_count; i++) { 1421 exec2_list[i].handle = exec_list[i].handle; 1422 exec2_list[i].relocation_count = exec_list[i].relocation_count; 1423 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr; 1424 exec2_list[i].alignment = exec_list[i].alignment; 1425 exec2_list[i].offset = exec_list[i].offset; 1426 if (INTEL_INFO(dev)->gen < 4) 1427 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE; 1428 else 1429 exec2_list[i].flags = 0; 1430 } 1431 1432 exec2.buffers_ptr = args->buffers_ptr; 1433 exec2.buffer_count = args->buffer_count; 1434 exec2.batch_start_offset = args->batch_start_offset; 1435 exec2.batch_len = args->batch_len; 1436 exec2.DR1 = args->DR1; 1437 exec2.DR4 = args->DR4; 1438 exec2.num_cliprects = args->num_cliprects; 1439 exec2.cliprects_ptr = args->cliprects_ptr; 1440 exec2.flags = I915_EXEC_RENDER; 1441 1442 ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list); 1443 if (!ret) { 1444 /* Copy the new buffer offsets back to the user's exec list. */ 1445 for (i = 0; i < args->buffer_count; i++) 1446 exec_list[i].offset = exec2_list[i].offset; 1447 /* ... and back out to userspace */ 1448 ret = -copyout(exec_list, (void *)(uintptr_t)args->buffers_ptr, 1449 sizeof(*exec_list) * args->buffer_count); 1450 if (ret != 0) { 1451 DRM_DEBUG("failed to copy %d exec entries " 1452 "back to user (%d)\n", 1453 args->buffer_count, ret); 1454 } 1455 } 1456 1457 drm_free(exec_list, DRM_I915_GEM); 1458 drm_free(exec2_list, DRM_I915_GEM); 1459 return ret; 1460 } 1461 1462 int 1463 i915_gem_execbuffer2(struct drm_device *dev, void *data, 1464 struct drm_file *file) 1465 { 1466 struct drm_i915_gem_execbuffer2 *args = data; 1467 struct drm_i915_gem_exec_object2 *exec2_list = NULL; 1468 int ret; 1469 1470 DRM_DEBUG("buffers_ptr %jx buffer_count %d len %08x\n", 1471 (uintmax_t)args->buffers_ptr, args->buffer_count, args->batch_len); 1472 1473 if (args->buffer_count < 1 || 1474 args->buffer_count > UINT_MAX / sizeof(*exec2_list)) { 1475 DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count); 1476 return -EINVAL; 1477 } 1478 1479 /* XXXKIB user-controllable kmalloc size */ 1480 exec2_list = kmalloc(sizeof(*exec2_list) * args->buffer_count, 1481 DRM_I915_GEM, M_WAITOK); 1482 ret = -copyin((void *)(uintptr_t)args->buffers_ptr, exec2_list, 1483 sizeof(*exec2_list) * args->buffer_count); 1484 if (ret != 0) { 1485 DRM_DEBUG("copy %d exec entries failed %d\n", 1486 args->buffer_count, ret); 1487 drm_free(exec2_list, DRM_I915_GEM); 1488 return (ret); 1489 } 1490 1491 ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list); 1492 if (!ret) { 1493 /* Copy the new buffer offsets back to the user's exec list. */ 1494 ret = -copyout(exec2_list, (void *)(uintptr_t)args->buffers_ptr, 1495 sizeof(*exec2_list) * args->buffer_count); 1496 if (ret) { 1497 DRM_DEBUG("failed to copy %d exec entries " 1498 "back to user (%d)\n", 1499 args->buffer_count, ret); 1500 } 1501 } 1502 1503 drm_free(exec2_list, DRM_I915_GEM); 1504 return ret; 1505 } 1506