xref: /dflybsd-src/sys/dev/drm/i915/i915_gem.c (revision 7c47e3df7ea7245cae581c4798828b020ae4af9f)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include "intel_frontbuffer.h"
36 #include "intel_mocs.h"
37 #include <linux/dma-fence-array.h>
38 #include <linux/reservation.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/slab.h>
41 #include <linux/swap.h>
42 #include <linux/pci.h>
43 #include <linux/dma-buf.h>
44 
45 #include <sys/mman.h>
46 #include <vm/vm_map.h>
47 #include <vm/vm_param.h>
48 
49 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
50 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
51 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
52 
53 static bool cpu_cache_is_coherent(struct drm_device *dev,
54 				  enum i915_cache_level level)
55 {
56 	return HAS_LLC(to_i915(dev)) || level != I915_CACHE_NONE;
57 }
58 
59 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
60 {
61 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
62 		return false;
63 
64 	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
65 		return true;
66 
67 	return obj->pin_display;
68 }
69 
70 static int
71 insert_mappable_node(struct i915_ggtt *ggtt,
72                      struct drm_mm_node *node, u32 size)
73 {
74 	memset(node, 0, sizeof(*node));
75 	return drm_mm_insert_node_in_range_generic(&ggtt->base.mm, node,
76 						   size, 0, -1,
77 						   0, ggtt->mappable_end,
78 						   DRM_MM_SEARCH_DEFAULT,
79 						   DRM_MM_CREATE_DEFAULT);
80 }
81 
82 static void
83 remove_mappable_node(struct drm_mm_node *node)
84 {
85 	drm_mm_remove_node(node);
86 }
87 
88 /* some bookkeeping */
89 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
90 				  u64 size)
91 {
92 	lockmgr(&dev_priv->mm.object_stat_lock, LK_EXCLUSIVE);
93 	dev_priv->mm.object_count++;
94 	dev_priv->mm.object_memory += size;
95 	lockmgr(&dev_priv->mm.object_stat_lock, LK_RELEASE);
96 }
97 
98 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
99 				     u64 size)
100 {
101 	lockmgr(&dev_priv->mm.object_stat_lock, LK_EXCLUSIVE);
102 	dev_priv->mm.object_count--;
103 	dev_priv->mm.object_memory -= size;
104 	lockmgr(&dev_priv->mm.object_stat_lock, LK_RELEASE);
105 }
106 
107 static int
108 i915_gem_wait_for_error(struct i915_gpu_error *error)
109 {
110 	int ret;
111 
112 	might_sleep();
113 
114 	if (!i915_reset_in_progress(error))
115 		return 0;
116 
117 	/*
118 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
119 	 * userspace. If it takes that long something really bad is going on and
120 	 * we should simply try to bail out and fail as gracefully as possible.
121 	 */
122 	ret = wait_event_interruptible_timeout(error->reset_queue,
123 					       !i915_reset_in_progress(error),
124 					       I915_RESET_TIMEOUT);
125 	if (ret == 0) {
126 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
127 		return -EIO;
128 	} else if (ret < 0) {
129 		return ret;
130 	} else {
131 		return 0;
132 	}
133 }
134 
135 int i915_mutex_lock_interruptible(struct drm_device *dev)
136 {
137 	struct drm_i915_private *dev_priv = to_i915(dev);
138 	int ret;
139 
140 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
141 	if (ret)
142 		return ret;
143 
144 	ret = mutex_lock_interruptible(&dev->struct_mutex);
145 	if (ret)
146 		return ret;
147 
148 	return 0;
149 }
150 
151 int
152 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
153 			    struct drm_file *file)
154 {
155 	struct drm_i915_private *dev_priv = to_i915(dev);
156 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
157 	struct drm_i915_gem_get_aperture *args = data;
158 	struct i915_vma *vma;
159 	size_t pinned;
160 
161 	pinned = 0;
162 	mutex_lock(&dev->struct_mutex);
163 	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
164 		if (i915_vma_is_pinned(vma))
165 			pinned += vma->node.size;
166 	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
167 		if (i915_vma_is_pinned(vma))
168 			pinned += vma->node.size;
169 	mutex_unlock(&dev->struct_mutex);
170 
171 	args->aper_size = ggtt->base.total;
172 	args->aper_available_size = args->aper_size - pinned;
173 
174 	return 0;
175 }
176 
177 static struct sg_table *
178 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
179 {
180 #if 0
181 	struct address_space *mapping = obj->base.filp->f_mapping;
182 #else
183 	vm_object_t vm_obj = obj->base.filp;
184 #endif
185 	drm_dma_handle_t *phys;
186 	struct sg_table *st;
187 	struct scatterlist *sg;
188 	char *vaddr;
189 	int i;
190 
191 	/* Always aligning to the object size, allows a single allocation
192 	 * to handle all possible callers, and given typical object sizes,
193 	 * the alignment of the buddy allocation will naturally match.
194 	 */
195 	phys = drm_pci_alloc(obj->base.dev,
196 			     obj->base.size,
197 			     roundup_pow_of_two(obj->base.size));
198 	if (!phys)
199 		return ERR_PTR(-ENOMEM);
200 
201 	vaddr = phys->vaddr;
202 	VM_OBJECT_LOCK(vm_obj);
203 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
204 		struct page *page;
205 		char *src;
206 
207 #if 0
208 		page = shmem_read_mapping_page(mapping, i);
209 #else
210 		page = shmem_read_mapping_page(vm_obj, i);
211 #endif
212 		if (IS_ERR(page)) {
213 				st = ERR_CAST(page);
214 			goto err_phys;
215 		}
216 
217 		src = kmap_atomic(page);
218 		memcpy(vaddr, src, PAGE_SIZE);
219 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
220 		kunmap_atomic(src);
221 
222 		put_page(page);
223 		vaddr += PAGE_SIZE;
224 	}
225 	VM_OBJECT_UNLOCK(vm_obj);
226 
227 	i915_gem_chipset_flush(to_i915(obj->base.dev));
228 
229 	st = kmalloc(sizeof(*st), M_DRM, GFP_KERNEL);
230 	if (!st) {
231 		st = ERR_PTR(-ENOMEM);
232 		goto err_phys;
233 	}
234 
235 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
236 		kfree(st);
237 		st = ERR_PTR(-ENOMEM);
238 		goto err_phys;
239 	}
240 
241 	sg = st->sgl;
242 	sg->offset = 0;
243 	sg->length = obj->base.size;
244 
245 	sg_dma_address(sg) = phys->busaddr;
246 	sg_dma_len(sg) = obj->base.size;
247 
248 obj->phys_handle = phys;
249 	return st;
250 
251 err_phys:
252 	drm_pci_free(obj->base.dev, phys);
253 	return st;
254 }
255 
256 static void
257 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
258 				struct sg_table *pages,
259 				bool needs_clflush)
260 {
261 	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
262 
263 	if (obj->mm.madv == I915_MADV_DONTNEED)
264 		obj->mm.dirty = false;
265 
266 	if (needs_clflush &&
267 	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
268 	    !cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
269 		drm_clflush_sg(pages);
270 
271 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
272 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
273 }
274 
275 static void
276 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
277 			       struct sg_table *pages)
278 {
279 	__i915_gem_object_release_shmem(obj, pages, false);
280 
281 	if (obj->mm.dirty) {
282 #if 0
283 		struct address_space *mapping = obj->base.filp->f_mapping;
284 #else
285 		vm_object_t mapping = obj->base.filp;
286 #endif
287 		char *vaddr = obj->phys_handle->vaddr;
288 		int i;
289 
290 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
291 			struct page *page;
292 			char *dst;
293 
294 			page = shmem_read_mapping_page(mapping, i);
295 			if (IS_ERR(page))
296 				continue;
297 
298 			dst = kmap_atomic(page);
299 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
300 			memcpy(dst, vaddr, PAGE_SIZE);
301 			kunmap_atomic(dst);
302 
303 			set_page_dirty(page);
304 			if (obj->mm.madv == I915_MADV_WILLNEED)
305 				mark_page_accessed(page);
306 			put_page(page);
307 			vaddr += PAGE_SIZE;
308 		}
309 		obj->mm.dirty = false;
310 	}
311 
312 	sg_free_table(pages);
313 	kfree(pages);
314 
315 	drm_pci_free(obj->base.dev, obj->phys_handle);
316 }
317 
318 static void
319 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
320 {
321 	i915_gem_object_unpin_pages(obj);
322 }
323 
324 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
325 	.get_pages = i915_gem_object_get_pages_phys,
326 	.put_pages = i915_gem_object_put_pages_phys,
327 	.release = i915_gem_object_release_phys,
328 };
329 
330 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
331 {
332 	struct i915_vma *vma;
333 	LINUX_LIST_HEAD(still_in_list);
334 	int ret;
335 
336 	lockdep_assert_held(&obj->base.dev->struct_mutex);
337 
338 	/* Closed vma are removed from the obj->vma_list - but they may
339 	 * still have an active binding on the object. To remove those we
340 	 * must wait for all rendering to complete to the object (as unbinding
341 	 * must anyway), and retire the requests.
342 	 */
343 	ret = i915_gem_object_wait(obj,
344 				   I915_WAIT_INTERRUPTIBLE |
345 				   I915_WAIT_LOCKED |
346 				   I915_WAIT_ALL,
347 				   MAX_SCHEDULE_TIMEOUT,
348 				   NULL);
349 	if (ret)
350 		return ret;
351 
352 	i915_gem_retire_requests(to_i915(obj->base.dev));
353 
354 	while ((vma = list_first_entry_or_null(&obj->vma_list,
355 					       struct i915_vma,
356 					       obj_link))) {
357 		list_move_tail(&vma->obj_link, &still_in_list);
358 		ret = i915_vma_unbind(vma);
359 		if (ret)
360 			break;
361 	}
362 	list_splice(&still_in_list, &obj->vma_list);
363 
364 	return ret;
365 }
366 
367 static long
368 i915_gem_object_wait_fence(struct dma_fence *fence,
369 			   unsigned int flags,
370 			   long timeout,
371 			   struct intel_rps_client *rps)
372 {
373 	struct drm_i915_gem_request *rq;
374 
375 	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
376 
377 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
378 		return timeout;
379 
380 	if (!dma_fence_is_i915(fence))
381 		return dma_fence_wait_timeout(fence,
382 					      flags & I915_WAIT_INTERRUPTIBLE,
383 					      timeout);
384 
385 	rq = to_request(fence);
386 	if (i915_gem_request_completed(rq))
387 		goto out;
388 
389 	/* This client is about to stall waiting for the GPU. In many cases
390 	 * this is undesirable and limits the throughput of the system, as
391 	 * many clients cannot continue processing user input/output whilst
392 	 * blocked. RPS autotuning may take tens of milliseconds to respond
393 	 * to the GPU load and thus incurs additional latency for the client.
394 	 * We can circumvent that by promoting the GPU frequency to maximum
395 	 * before we wait. This makes the GPU throttle up much more quickly
396 	 * (good for benchmarks and user experience, e.g. window animations),
397 	 * but at a cost of spending more power processing the workload
398 	 * (bad for battery). Not all clients even want their results
399 	 * immediately and for them we should just let the GPU select its own
400 	 * frequency to maximise efficiency. To prevent a single client from
401 	 * forcing the clocks too high for the whole system, we only allow
402 	 * each client to waitboost once in a busy period.
403 	 */
404 	if (rps) {
405 		if (INTEL_GEN(rq->i915) >= 6)
406 			gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
407 		else
408 			rps = NULL;
409 	}
410 
411 	timeout = i915_wait_request(rq, flags, timeout);
412 
413 out:
414 	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
415 		i915_gem_request_retire_upto(rq);
416 
417 	if (rps && rq->global_seqno == intel_engine_last_submit(rq->engine)) {
418 		/* The GPU is now idle and this client has stalled.
419 		 * Since no other client has submitted a request in the
420 		 * meantime, assume that this client is the only one
421 		 * supplying work to the GPU but is unable to keep that
422 		 * work supplied because it is waiting. Since the GPU is
423 		 * then never kept fully busy, RPS autoclocking will
424 		 * keep the clocks relatively low, causing further delays.
425 		 * Compensate by giving the synchronous client credit for
426 		 * a waitboost next time.
427 		 */
428 		lockmgr(&rq->i915->rps.client_lock, LK_EXCLUSIVE);
429 		list_del_init(&rps->link);
430 		lockmgr(&rq->i915->rps.client_lock, LK_RELEASE);
431 	}
432 
433 	return timeout;
434 }
435 
436 static long
437 i915_gem_object_wait_reservation(struct reservation_object *resv,
438 				 unsigned int flags,
439 				 long timeout,
440 				 struct intel_rps_client *rps)
441 {
442 	struct dma_fence *excl;
443 
444 	if (flags & I915_WAIT_ALL) {
445 		struct dma_fence **shared;
446 		unsigned int count, i;
447 		int ret;
448 
449 		ret = reservation_object_get_fences_rcu(resv,
450 							&excl, &count, &shared);
451 		if (ret)
452 			return ret;
453 
454 		for (i = 0; i < count; i++) {
455 			timeout = i915_gem_object_wait_fence(shared[i],
456 							     flags, timeout,
457 							     rps);
458 			if (timeout < 0)
459 				break;
460 
461 			dma_fence_put(shared[i]);
462 		}
463 
464 		for (; i < count; i++)
465 			dma_fence_put(shared[i]);
466 		kfree(shared);
467 	} else {
468 		excl = reservation_object_get_excl_rcu(resv);
469 	}
470 
471 	if (excl && timeout >= 0)
472 		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
473 
474 	dma_fence_put(excl);
475 
476 	return timeout;
477 }
478 
479 static void __fence_set_priority(struct dma_fence *fence, int prio)
480 {
481 	struct drm_i915_gem_request *rq;
482 	struct intel_engine_cs *engine;
483 
484 	if (!dma_fence_is_i915(fence))
485 		return;
486 
487 	rq = to_request(fence);
488 	engine = rq->engine;
489 	if (!engine->schedule)
490 		return;
491 
492 	engine->schedule(rq, prio);
493 }
494 
495 static void fence_set_priority(struct dma_fence *fence, int prio)
496 {
497 	/* Recurse once into a fence-array */
498 	if (dma_fence_is_array(fence)) {
499 		struct dma_fence_array *array = to_dma_fence_array(fence);
500 		int i;
501 
502 		for (i = 0; i < array->num_fences; i++)
503 			__fence_set_priority(array->fences[i], prio);
504 	} else {
505 		__fence_set_priority(fence, prio);
506 	}
507 }
508 
509 int
510 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
511 			      unsigned int flags,
512 			      int prio)
513 {
514 	struct dma_fence *excl;
515 
516 	if (flags & I915_WAIT_ALL) {
517 		struct dma_fence **shared;
518 		unsigned int count, i;
519 		int ret;
520 
521 		ret = reservation_object_get_fences_rcu(obj->resv,
522 							&excl, &count, &shared);
523 		if (ret)
524 			return ret;
525 
526 		for (i = 0; i < count; i++) {
527 			fence_set_priority(shared[i], prio);
528 			dma_fence_put(shared[i]);
529 		}
530 
531 		kfree(shared);
532 	} else {
533 		excl = reservation_object_get_excl_rcu(obj->resv);
534 	}
535 
536 	if (excl) {
537 		fence_set_priority(excl, prio);
538 		dma_fence_put(excl);
539 	}
540 	return 0;
541 }
542 
543 /**
544  * Waits for rendering to the object to be completed
545  * @obj: i915 gem object
546  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
547  * @timeout: how long to wait
548  * @rps: client (user process) to charge for any waitboosting
549  */
550 int
551 i915_gem_object_wait(struct drm_i915_gem_object *obj,
552 		     unsigned int flags,
553 		     long timeout,
554 		     struct intel_rps_client *rps)
555 {
556 	might_sleep();
557 #if IS_ENABLED(CONFIG_LOCKDEP)
558 	GEM_BUG_ON(debug_locks &&
559 		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
560 		   !!(flags & I915_WAIT_LOCKED));
561 #endif
562 	GEM_BUG_ON(timeout < 0);
563 
564 	timeout = i915_gem_object_wait_reservation(obj->resv,
565 						   flags, timeout,
566 						   rps);
567 	return timeout < 0 ? timeout : 0;
568 }
569 
570 static struct intel_rps_client *to_rps_client(struct drm_file *file)
571 {
572 	struct drm_i915_file_private *fpriv = file->driver_priv;
573 
574 	return &fpriv->rps;
575 }
576 
577 int
578 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
579 			    int align)
580 {
581 	int ret;
582 
583 	if (align > obj->base.size)
584 		return -EINVAL;
585 
586 	if (obj->ops == &i915_gem_phys_ops)
587 		return 0;
588 
589 	if (obj->mm.madv != I915_MADV_WILLNEED)
590 		return -EFAULT;
591 
592 	if (obj->base.filp == NULL)
593 		return -EINVAL;
594 
595 	ret = i915_gem_object_unbind(obj);
596 	if (ret)
597 		return ret;
598 
599 	__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
600 	if (obj->mm.pages)
601 		return -EBUSY;
602 
603 	obj->ops = &i915_gem_phys_ops;
604 
605 	return i915_gem_object_pin_pages(obj);
606 }
607 
608 static int
609 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
610 		     struct drm_i915_gem_pwrite *args,
611 		     struct drm_file *file)
612 {
613 	void *vaddr = obj->phys_handle->vaddr + args->offset;
614 	char __user *user_data = u64_to_user_ptr(args->data_ptr);
615 
616 	/* We manually control the domain here and pretend that it
617 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
618 	 */
619 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
620 	if (copy_from_user(vaddr, user_data, args->size))
621 		return -EFAULT;
622 
623 	drm_clflush_virt_range(vaddr, args->size);
624 	i915_gem_chipset_flush(to_i915(obj->base.dev));
625 
626 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
627 	return 0;
628 }
629 
630 void *i915_gem_object_alloc(struct drm_device *dev)
631 {
632 	struct drm_i915_private *dev_priv = to_i915(dev);
633 	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
634 }
635 
636 void i915_gem_object_free(struct drm_i915_gem_object *obj)
637 {
638 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
639 	kmem_cache_free(dev_priv->objects, obj);
640 }
641 
642 static int
643 i915_gem_create(struct drm_file *file,
644 		struct drm_device *dev,
645 		uint64_t size,
646 		uint32_t *handle_p)
647 {
648 	struct drm_i915_gem_object *obj;
649 	int ret;
650 	u32 handle;
651 
652 	size = roundup(size, PAGE_SIZE);
653 	if (size == 0)
654 		return -EINVAL;
655 
656 	/* Allocate the new object */
657 	obj = i915_gem_object_create(dev, size);
658 	if (IS_ERR(obj))
659 		return PTR_ERR(obj);
660 
661 	ret = drm_gem_handle_create(file, &obj->base, &handle);
662 	/* drop reference from allocate - handle holds it now */
663 	i915_gem_object_put(obj);
664 	if (ret)
665 		return ret;
666 
667 	*handle_p = handle;
668 	return 0;
669 }
670 
671 int
672 i915_gem_dumb_create(struct drm_file *file,
673 		     struct drm_device *dev,
674 		     struct drm_mode_create_dumb *args)
675 {
676 	/* have to work out size/pitch and return them */
677 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
678 	args->size = args->pitch * args->height;
679 	return i915_gem_create(file, dev,
680 			       args->size, &args->handle);
681 }
682 
683 /**
684  * Creates a new mm object and returns a handle to it.
685  * @dev: drm device pointer
686  * @data: ioctl data blob
687  * @file: drm file pointer
688  */
689 int
690 i915_gem_create_ioctl(struct drm_device *dev, void *data,
691 		      struct drm_file *file)
692 {
693 	struct drm_i915_gem_create *args = data;
694 
695 	i915_gem_flush_free_objects(to_i915(dev));
696 
697 	return i915_gem_create(file, dev,
698 			       args->size, &args->handle);
699 }
700 
701 static inline int
702 __copy_to_user_swizzled(char __user *cpu_vaddr,
703 			const char *gpu_vaddr, int gpu_offset,
704 			int length)
705 {
706 	int ret, cpu_offset = 0;
707 
708 	while (length > 0) {
709 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
710 		int this_length = min(cacheline_end - gpu_offset, length);
711 		int swizzled_gpu_offset = gpu_offset ^ 64;
712 
713 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
714 				     gpu_vaddr + swizzled_gpu_offset,
715 				     this_length);
716 		if (ret)
717 			return ret + length;
718 
719 		cpu_offset += this_length;
720 		gpu_offset += this_length;
721 		length -= this_length;
722 	}
723 
724 	return 0;
725 }
726 
727 static inline int
728 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
729 			  const char __user *cpu_vaddr,
730 			  int length)
731 {
732 	int ret, cpu_offset = 0;
733 
734 	while (length > 0) {
735 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
736 		int this_length = min(cacheline_end - gpu_offset, length);
737 		int swizzled_gpu_offset = gpu_offset ^ 64;
738 
739 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
740 				       cpu_vaddr + cpu_offset,
741 				       this_length);
742 		if (ret)
743 			return ret + length;
744 
745 		cpu_offset += this_length;
746 		gpu_offset += this_length;
747 		length -= this_length;
748 	}
749 
750 	return 0;
751 }
752 
753 /*
754  * Pins the specified object's pages and synchronizes the object with
755  * GPU accesses. Sets needs_clflush to non-zero if the caller should
756  * flush the object from the CPU cache.
757  */
758 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
759 				    unsigned int *needs_clflush)
760 {
761 	int ret;
762 
763 	lockdep_assert_held(&obj->base.dev->struct_mutex);
764 
765 	*needs_clflush = 0;
766 	if (!i915_gem_object_has_struct_page(obj))
767 		return -ENODEV;
768 
769 	ret = i915_gem_object_wait(obj,
770 				   I915_WAIT_INTERRUPTIBLE |
771 				   I915_WAIT_LOCKED,
772 				   MAX_SCHEDULE_TIMEOUT,
773 				   NULL);
774 	if (ret)
775 		return ret;
776 
777 	ret = i915_gem_object_pin_pages(obj);
778 	if (ret)
779 		return ret;
780 
781 	i915_gem_object_flush_gtt_write_domain(obj);
782 
783 	/* If we're not in the cpu read domain, set ourself into the gtt
784 	 * read domain and manually flush cachelines (if required). This
785 	 * optimizes for the case when the gpu will dirty the data
786 	 * anyway again before the next pread happens.
787 	 */
788 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
789 		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
790 							obj->cache_level);
791 
792 	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
793 		ret = i915_gem_object_set_to_cpu_domain(obj, false);
794 		if (ret)
795 			goto err_unpin;
796 
797 		*needs_clflush = 0;
798 	}
799 
800 	/* return with the pages pinned */
801 	return 0;
802 
803 err_unpin:
804 	i915_gem_object_unpin_pages(obj);
805 	return ret;
806 }
807 
808 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
809 				     unsigned int *needs_clflush)
810 {
811 	int ret;
812 
813 	lockdep_assert_held(&obj->base.dev->struct_mutex);
814 
815 	*needs_clflush = 0;
816 	if (!i915_gem_object_has_struct_page(obj))
817 		return -ENODEV;
818 
819 	ret = i915_gem_object_wait(obj,
820 				   I915_WAIT_INTERRUPTIBLE |
821 				   I915_WAIT_LOCKED |
822 				   I915_WAIT_ALL,
823 				   MAX_SCHEDULE_TIMEOUT,
824 				   NULL);
825 	if (ret)
826 		return ret;
827 
828 	ret = i915_gem_object_pin_pages(obj);
829 	if (ret)
830 		return ret;
831 
832 	i915_gem_object_flush_gtt_write_domain(obj);
833 
834 	/* If we're not in the cpu write domain, set ourself into the
835 	 * gtt write domain and manually flush cachelines (as required).
836 	 * This optimizes for the case when the gpu will use the data
837 	 * right away and we therefore have to clflush anyway.
838 	 */
839 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
840 		*needs_clflush |= cpu_write_needs_clflush(obj) << 1;
841 
842 	/* Same trick applies to invalidate partially written cachelines read
843 	 * before writing.
844 	 */
845 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
846 		*needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
847 							 obj->cache_level);
848 
849 	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
850 		ret = i915_gem_object_set_to_cpu_domain(obj, true);
851 		if (ret)
852 			goto err_unpin;
853 
854 		*needs_clflush = 0;
855 	}
856 
857 	if ((*needs_clflush & CLFLUSH_AFTER) == 0)
858 		obj->cache_dirty = true;
859 
860 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
861 	obj->mm.dirty = true;
862 	/* return with the pages pinned */
863 	return 0;
864 
865 err_unpin:
866 	i915_gem_object_unpin_pages(obj);
867 	return ret;
868 }
869 
870 static void
871 shmem_clflush_swizzled_range(char *addr, unsigned long length,
872 			     bool swizzled)
873 {
874 	if (unlikely(swizzled)) {
875 		unsigned long start = (unsigned long) addr;
876 		unsigned long end = (unsigned long) addr + length;
877 
878 		/* For swizzling simply ensure that we always flush both
879 		 * channels. Lame, but simple and it works. Swizzled
880 		 * pwrite/pread is far from a hotpath - current userspace
881 		 * doesn't use it at all. */
882 		start = round_down(start, 128);
883 		end = round_up(end, 128);
884 
885 		drm_clflush_virt_range((void *)start, end - start);
886 	} else {
887 		drm_clflush_virt_range(addr, length);
888 	}
889 
890 }
891 
892 /* Only difference to the fast-path function is that this can handle bit17
893  * and uses non-atomic copy and kmap functions. */
894 static int
895 shmem_pread_slow(struct page *page, int offset, int length,
896 		 char __user *user_data,
897 		 bool page_do_bit17_swizzling, bool needs_clflush)
898 {
899 	char *vaddr;
900 	int ret;
901 
902 	vaddr = kmap(page);
903 	if (needs_clflush)
904 		shmem_clflush_swizzled_range(vaddr + offset, length,
905 					     page_do_bit17_swizzling);
906 
907 	if (page_do_bit17_swizzling)
908 		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
909 	else
910 		ret = __copy_to_user(user_data, vaddr + offset, length);
911 	kunmap(page);
912 
913 	return ret ? - EFAULT : 0;
914 }
915 
916 static int
917 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
918 	    bool page_do_bit17_swizzling, bool needs_clflush)
919 {
920 	int ret;
921 
922 	ret = -ENODEV;
923 	if (!page_do_bit17_swizzling) {
924 		char *vaddr = kmap_atomic(page);
925 
926 		if (needs_clflush)
927 			drm_clflush_virt_range(vaddr + offset, length);
928 		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
929 		kunmap_atomic(vaddr);
930 	}
931 	if (ret == 0)
932 		return 0;
933 
934 	return shmem_pread_slow(page, offset, length, user_data,
935 				page_do_bit17_swizzling, needs_clflush);
936 }
937 
938 static int
939 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
940 		     struct drm_i915_gem_pread *args)
941 {
942 	char __user *user_data;
943 	u64 remain;
944 	unsigned int obj_do_bit17_swizzling;
945 	unsigned int needs_clflush;
946 	unsigned int idx, offset;
947 	int ret;
948 
949 	obj_do_bit17_swizzling = 0;
950 	if (i915_gem_object_needs_bit17_swizzle(obj))
951 		obj_do_bit17_swizzling = BIT(17);
952 
953 	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
954 	if (ret)
955 		return ret;
956 
957 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
958 	mutex_unlock(&obj->base.dev->struct_mutex);
959 	if (ret)
960 		return ret;
961 
962 	remain = args->size;
963 	user_data = u64_to_user_ptr(args->data_ptr);
964 	offset = offset_in_page(args->offset);
965 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
966 		struct page *page = i915_gem_object_get_page(obj, idx);
967 		int length;
968 
969 		length = remain;
970 		if (offset + length > PAGE_SIZE)
971 			length = PAGE_SIZE - offset;
972 
973 		ret = shmem_pread(page, offset, length, user_data,
974 				  page_to_phys(page) & obj_do_bit17_swizzling,
975 				  needs_clflush);
976 		if (ret)
977 			break;
978 
979 		remain -= length;
980 		user_data += length;
981 		offset = 0;
982 	}
983 
984 	i915_gem_obj_finish_shmem_access(obj);
985 	return ret;
986 }
987 
988 static inline bool
989 gtt_user_read(struct io_mapping *mapping,
990 	      loff_t base, int offset,
991 	      char __user *user_data, int length)
992 {
993 	void *vaddr;
994 	unsigned long unwritten;
995 
996 	/* We can use the cpu mem copy function because this is X86. */
997 	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
998 	unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
999 	io_mapping_unmap_atomic(vaddr);
1000 	if (unwritten) {
1001 		vaddr = (void __force *)
1002 			io_mapping_map_wc(mapping, base, PAGE_SIZE);
1003 		unwritten = copy_to_user(user_data, vaddr + offset, length);
1004 		io_mapping_unmap(vaddr);
1005 	}
1006 	return unwritten;
1007 }
1008 
1009 static int
1010 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1011 		   const struct drm_i915_gem_pread *args)
1012 {
1013 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1014 	struct i915_ggtt *ggtt = &i915->ggtt;
1015 	struct drm_mm_node node;
1016 	struct i915_vma *vma;
1017 	void __user *user_data;
1018 	u64 remain, offset;
1019 	int ret;
1020 
1021 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1022 	if (ret)
1023 		return ret;
1024 
1025 	intel_runtime_pm_get(i915);
1026 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1027 				       PIN_MAPPABLE | PIN_NONBLOCK);
1028 	if (!IS_ERR(vma)) {
1029 		node.start = i915_ggtt_offset(vma);
1030 		node.allocated = false;
1031 		ret = i915_vma_put_fence(vma);
1032 		if (ret) {
1033 			i915_vma_unpin(vma);
1034 			vma = ERR_PTR(ret);
1035 		}
1036 	}
1037 	if (IS_ERR(vma)) {
1038 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1039 		if (ret)
1040 			goto out_unlock;
1041 		GEM_BUG_ON(!node.allocated);
1042 	}
1043 
1044 	ret = i915_gem_object_set_to_gtt_domain(obj, false);
1045 	if (ret)
1046 		goto out_unpin;
1047 
1048 	mutex_unlock(&i915->drm.struct_mutex);
1049 
1050 	user_data = u64_to_user_ptr(args->data_ptr);
1051 	remain = args->size;
1052 	offset = args->offset;
1053 
1054 	while (remain > 0) {
1055 		/* Operation in this page
1056 		 *
1057 		 * page_base = page offset within aperture
1058 		 * page_offset = offset within page
1059 		 * page_length = bytes to copy for this page
1060 		 */
1061 		u32 page_base = node.start;
1062 		unsigned page_offset = offset_in_page(offset);
1063 		unsigned page_length = PAGE_SIZE - page_offset;
1064 		page_length = remain < page_length ? remain : page_length;
1065 		if (node.allocated) {
1066 			wmb();
1067 			ggtt->base.insert_page(&ggtt->base,
1068 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1069 					       node.start, I915_CACHE_NONE, 0);
1070 			wmb();
1071 		} else {
1072 			page_base += offset & LINUX_PAGE_MASK;
1073 		}
1074 
1075 		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1076 				  user_data, page_length)) {
1077 			ret = -EFAULT;
1078 			break;
1079 		}
1080 
1081 		remain -= page_length;
1082 		user_data += page_length;
1083 		offset += page_length;
1084 	}
1085 
1086 	mutex_lock(&i915->drm.struct_mutex);
1087 out_unpin:
1088 	if (node.allocated) {
1089 		wmb();
1090 		ggtt->base.clear_range(&ggtt->base,
1091 				       node.start, node.size);
1092 		remove_mappable_node(&node);
1093 	} else {
1094 		i915_vma_unpin(vma);
1095 	}
1096 out_unlock:
1097 	intel_runtime_pm_put(i915);
1098 	mutex_unlock(&i915->drm.struct_mutex);
1099 
1100 	return ret;
1101 }
1102 
1103 /**
1104  * Reads data from the object referenced by handle.
1105  * @dev: drm device pointer
1106  * @data: ioctl data blob
1107  * @file: drm file pointer
1108  *
1109  * On error, the contents of *data are undefined.
1110  */
1111 int
1112 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1113 		     struct drm_file *file)
1114 {
1115 	struct drm_i915_gem_pread *args = data;
1116 	struct drm_i915_gem_object *obj;
1117 	int ret;
1118 
1119 	if (args->size == 0)
1120 		return 0;
1121 
1122 #if 0
1123 	if (!access_ok(VERIFY_WRITE,
1124 		       u64_to_user_ptr(args->data_ptr),
1125 		       args->size))
1126 		return -EFAULT;
1127 #endif
1128 
1129 	obj = i915_gem_object_lookup(file, args->handle);
1130 	if (!obj)
1131 		return -ENOENT;
1132 
1133 	/* Bounds check source.  */
1134 	if (args->offset > obj->base.size ||
1135 	    args->size > obj->base.size - args->offset) {
1136 		ret = -EINVAL;
1137 		goto out;
1138 	}
1139 
1140 	trace_i915_gem_object_pread(obj, args->offset, args->size);
1141 
1142 	ret = i915_gem_object_wait(obj,
1143 				   I915_WAIT_INTERRUPTIBLE,
1144 				   MAX_SCHEDULE_TIMEOUT,
1145 				   to_rps_client(file));
1146 	if (ret)
1147 		goto out;
1148 
1149 	ret = i915_gem_object_pin_pages(obj);
1150 	if (ret)
1151 		goto out;
1152 
1153 	ret = i915_gem_shmem_pread(obj, args);
1154 	if (ret == -EFAULT || ret == -ENODEV)
1155 		ret = i915_gem_gtt_pread(obj, args);
1156 
1157 	i915_gem_object_unpin_pages(obj);
1158 out:
1159 	i915_gem_object_put(obj);
1160 	return ret;
1161 }
1162 
1163 /* This is the fast write path which cannot handle
1164  * page faults in the source data
1165  */
1166 
1167 static inline bool
1168 ggtt_write(struct io_mapping *mapping,
1169 	   loff_t base, int offset,
1170 	   char __user *user_data, int length)
1171 {
1172 	void *vaddr;
1173 	unsigned long unwritten;
1174 
1175 	/* We can use the cpu mem copy function because this is X86. */
1176 	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1177 	unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1178 						      user_data, length);
1179 	io_mapping_unmap_atomic(vaddr);
1180 	if (unwritten) {
1181 		vaddr = (void __force *)
1182 			io_mapping_map_wc(mapping, base, PAGE_SIZE);
1183 		unwritten = copy_from_user(vaddr + offset, user_data, length);
1184 		io_mapping_unmap(vaddr);
1185 	}
1186 
1187 	return unwritten;
1188 }
1189 
1190 /**
1191  * This is the fast pwrite path, where we copy the data directly from the
1192  * user into the GTT, uncached.
1193  * @obj: i915 GEM object
1194  * @args: pwrite arguments structure
1195  */
1196 static int
1197 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1198 			 const struct drm_i915_gem_pwrite *args)
1199 {
1200 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1201 	struct i915_ggtt *ggtt = &i915->ggtt;
1202 	struct drm_mm_node node;
1203 	struct i915_vma *vma;
1204 	u64 remain, offset;
1205 	void __user *user_data;
1206 	int ret;
1207 
1208 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1209 	if (ret)
1210 		return ret;
1211 
1212 	intel_runtime_pm_get(i915);
1213 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1214 				       PIN_MAPPABLE | PIN_NONBLOCK);
1215 	if (!IS_ERR(vma)) {
1216 		node.start = i915_ggtt_offset(vma);
1217 		node.allocated = false;
1218 		ret = i915_vma_put_fence(vma);
1219 		if (ret) {
1220 			i915_vma_unpin(vma);
1221 			vma = ERR_PTR(ret);
1222 		}
1223 	}
1224 	if (IS_ERR(vma)) {
1225 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1226 		if (ret)
1227 			goto out_unlock;
1228 		GEM_BUG_ON(!node.allocated);
1229 	}
1230 
1231 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1232 	if (ret)
1233 		goto out_unpin;
1234 
1235 	mutex_unlock(&i915->drm.struct_mutex);
1236 
1237 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1238 
1239 	user_data = u64_to_user_ptr(args->data_ptr);
1240 	offset = args->offset;
1241 	remain = args->size;
1242 	while (remain) {
1243 		/* Operation in this page
1244 		 *
1245 		 * page_base = page offset within aperture
1246 		 * page_offset = offset within page
1247 		 * page_length = bytes to copy for this page
1248 		 */
1249 		u32 page_base = node.start;
1250 		unsigned int page_offset = offset_in_page(offset);
1251 		unsigned int page_length = PAGE_SIZE - page_offset;
1252 		page_length = remain < page_length ? remain : page_length;
1253 		if (node.allocated) {
1254 			wmb(); /* flush the write before we modify the GGTT */
1255 			ggtt->base.insert_page(&ggtt->base,
1256 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1257 					       node.start, I915_CACHE_NONE, 0);
1258 			wmb(); /* flush modifications to the GGTT (insert_page) */
1259 		} else {
1260 			page_base += offset & LINUX_PAGE_MASK;
1261 		}
1262 		/* If we get a fault while copying data, then (presumably) our
1263 		 * source page isn't available.  Return the error and we'll
1264 		 * retry in the slow path.
1265 		 * If the object is non-shmem backed, we retry again with the
1266 		 * path that handles page fault.
1267 		 */
1268 		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1269 			       user_data, page_length)) {
1270 			ret = -EFAULT;
1271 			break;
1272 		}
1273 
1274 		remain -= page_length;
1275 		user_data += page_length;
1276 		offset += page_length;
1277 	}
1278 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1279 
1280 	mutex_lock(&i915->drm.struct_mutex);
1281 out_unpin:
1282 	if (node.allocated) {
1283 		wmb();
1284 		ggtt->base.clear_range(&ggtt->base,
1285 				       node.start, node.size);
1286 		remove_mappable_node(&node);
1287 	} else {
1288 		i915_vma_unpin(vma);
1289 	}
1290 out_unlock:
1291 	intel_runtime_pm_put(i915);
1292 	mutex_unlock(&i915->drm.struct_mutex);
1293 	return ret;
1294 }
1295 
1296 static int
1297 shmem_pwrite_slow(struct page *page, int offset, int length,
1298 		  char __user *user_data,
1299 		  bool page_do_bit17_swizzling,
1300 		  bool needs_clflush_before,
1301 		  bool needs_clflush_after)
1302 {
1303 	char *vaddr;
1304 	int ret;
1305 
1306 	vaddr = kmap(page);
1307 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1308 		shmem_clflush_swizzled_range(vaddr + offset, length,
1309 					     page_do_bit17_swizzling);
1310 	if (page_do_bit17_swizzling)
1311 		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1312 						length);
1313 	else
1314 		ret = __copy_from_user(vaddr + offset, user_data, length);
1315 	if (needs_clflush_after)
1316 		shmem_clflush_swizzled_range(vaddr + offset, length,
1317 					     page_do_bit17_swizzling);
1318 	kunmap(page);
1319 
1320 	return ret ? -EFAULT : 0;
1321 }
1322 
1323 /* Per-page copy function for the shmem pwrite fastpath.
1324  * Flushes invalid cachelines before writing to the target if
1325  * needs_clflush_before is set and flushes out any written cachelines after
1326  * writing if needs_clflush is set.
1327  */
1328 static int
1329 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1330 	     bool page_do_bit17_swizzling,
1331 	     bool needs_clflush_before,
1332 	     bool needs_clflush_after)
1333 {
1334 	int ret;
1335 
1336 	ret = -ENODEV;
1337 	if (!page_do_bit17_swizzling) {
1338 		char *vaddr = kmap_atomic(page);
1339 
1340 		if (needs_clflush_before)
1341 			drm_clflush_virt_range(vaddr + offset, len);
1342 		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1343 		if (needs_clflush_after)
1344 			drm_clflush_virt_range(vaddr + offset, len);
1345 
1346 		kunmap_atomic(vaddr);
1347 	}
1348 	if (ret == 0)
1349 		return ret;
1350 
1351 	return shmem_pwrite_slow(page, offset, len, user_data,
1352 				 page_do_bit17_swizzling,
1353 				 needs_clflush_before,
1354 				 needs_clflush_after);
1355 }
1356 
1357 static int
1358 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1359 		      const struct drm_i915_gem_pwrite *args)
1360 {
1361 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1362 	void __user *user_data;
1363 	u64 remain;
1364 	unsigned int obj_do_bit17_swizzling;
1365 	unsigned int partial_cacheline_write;
1366 	unsigned int needs_clflush;
1367 	unsigned int offset, idx;
1368 	int ret;
1369 
1370 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1371 	if (ret)
1372 		return ret;
1373 
1374 	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1375 	mutex_unlock(&i915->drm.struct_mutex);
1376 	if (ret)
1377 		return ret;
1378 
1379 	obj_do_bit17_swizzling = 0;
1380 	if (i915_gem_object_needs_bit17_swizzle(obj))
1381 		obj_do_bit17_swizzling = BIT(17);
1382 
1383 	/* If we don't overwrite a cacheline completely we need to be
1384 	 * careful to have up-to-date data by first clflushing. Don't
1385 	 * overcomplicate things and flush the entire patch.
1386 	 */
1387 	partial_cacheline_write = 0;
1388 	if (needs_clflush & CLFLUSH_BEFORE)
1389 		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1390 
1391 	user_data = u64_to_user_ptr(args->data_ptr);
1392 	remain = args->size;
1393 	offset = offset_in_page(args->offset);
1394 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1395 		struct page *page = i915_gem_object_get_page(obj, idx);
1396 		int length;
1397 
1398 		length = remain;
1399 		if (offset + length > PAGE_SIZE)
1400 			length = PAGE_SIZE - offset;
1401 
1402 		ret = shmem_pwrite(page, offset, length, user_data,
1403 				   page_to_phys(page) & obj_do_bit17_swizzling,
1404 				   (offset | length) & partial_cacheline_write,
1405 				   needs_clflush & CLFLUSH_AFTER);
1406 		if (ret)
1407 			break;
1408 
1409 		remain -= length;
1410 		user_data += length;
1411 		offset = 0;
1412 	}
1413 
1414 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1415 	i915_gem_obj_finish_shmem_access(obj);
1416 	return ret;
1417 }
1418 
1419 /**
1420  * Writes data to the object referenced by handle.
1421  * @dev: drm device
1422  * @data: ioctl data blob
1423  * @file: drm file
1424  *
1425  * On error, the contents of the buffer that were to be modified are undefined.
1426  */
1427 int
1428 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1429 		      struct drm_file *file)
1430 {
1431 	struct drm_i915_gem_pwrite *args = data;
1432 	struct drm_i915_gem_object *obj;
1433 	int ret;
1434 
1435 	if (args->size == 0)
1436 		return 0;
1437 
1438 #if 0
1439 	if (!access_ok(VERIFY_READ,
1440 		       u64_to_user_ptr(args->data_ptr),
1441 		       args->size))
1442 		return -EFAULT;
1443 #endif
1444 
1445 	obj = i915_gem_object_lookup(file, args->handle);
1446 	if (!obj)
1447 		return -ENOENT;
1448 
1449 	/* Bounds check destination. */
1450 	if (args->offset > obj->base.size ||
1451 	    args->size > obj->base.size - args->offset) {
1452 		ret = -EINVAL;
1453 		goto err;
1454 	}
1455 
1456 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1457 
1458 	ret = i915_gem_object_wait(obj,
1459 				   I915_WAIT_INTERRUPTIBLE |
1460 				   I915_WAIT_ALL,
1461 				   MAX_SCHEDULE_TIMEOUT,
1462 				   to_rps_client(file));
1463 	if (ret)
1464 		goto err;
1465 
1466 	ret = i915_gem_object_pin_pages(obj);
1467 	if (ret)
1468 		goto err;
1469 
1470 	ret = -EFAULT;
1471 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1472 	 * it would end up going through the fenced access, and we'll get
1473 	 * different detiling behavior between reading and writing.
1474 	 * pread/pwrite currently are reading and writing from the CPU
1475 	 * perspective, requiring manual detiling by the client.
1476 	 */
1477 	if (!i915_gem_object_has_struct_page(obj) ||
1478 	    cpu_write_needs_clflush(obj))
1479 		/* Note that the gtt paths might fail with non-page-backed user
1480 		 * pointers (e.g. gtt mappings when moving data between
1481 		 * textures). Fallback to the shmem path in that case.
1482 		 */
1483 		ret = i915_gem_gtt_pwrite_fast(obj, args);
1484 
1485 	if (ret == -EFAULT || ret == -ENOSPC) {
1486 		if (obj->phys_handle)
1487 			ret = i915_gem_phys_pwrite(obj, args, file);
1488 		else
1489 			ret = i915_gem_shmem_pwrite(obj, args);
1490 	}
1491 
1492 	i915_gem_object_unpin_pages(obj);
1493 err:
1494 	i915_gem_object_put(obj);
1495 	return ret;
1496 }
1497 
1498 static inline enum fb_op_origin
1499 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1500 {
1501 	return (domain == I915_GEM_DOMAIN_GTT ?
1502 		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1503 }
1504 
1505 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1506 {
1507 	struct drm_i915_private *i915;
1508 	struct list_head *list;
1509 	struct i915_vma *vma;
1510 
1511 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
1512 		if (!i915_vma_is_ggtt(vma))
1513 			continue;
1514 
1515 		if (i915_vma_is_active(vma))
1516 			continue;
1517 
1518 		if (!drm_mm_node_allocated(&vma->node))
1519 			continue;
1520 
1521 		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1522 	}
1523 
1524 	i915 = to_i915(obj->base.dev);
1525 	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1526 	list_move_tail(&obj->global_link, list);
1527 }
1528 
1529 /**
1530  * Called when user space prepares to use an object with the CPU, either
1531  * through the mmap ioctl's mapping or a GTT mapping.
1532  * @dev: drm device
1533  * @data: ioctl data blob
1534  * @file: drm file
1535  */
1536 int
1537 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1538 			  struct drm_file *file)
1539 {
1540 	struct drm_i915_gem_set_domain *args = data;
1541 	struct drm_i915_gem_object *obj;
1542 	uint32_t read_domains = args->read_domains;
1543 	uint32_t write_domain = args->write_domain;
1544 	int err;
1545 
1546 	/* Only handle setting domains to types used by the CPU. */
1547 	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1548 		return -EINVAL;
1549 
1550 	/* Having something in the write domain implies it's in the read
1551 	 * domain, and only that read domain.  Enforce that in the request.
1552 	 */
1553 	if (write_domain != 0 && read_domains != write_domain)
1554 		return -EINVAL;
1555 
1556 	obj = i915_gem_object_lookup(file, args->handle);
1557 	if (!obj)
1558 		return -ENOENT;
1559 
1560 	/* Try to flush the object off the GPU without holding the lock.
1561 	 * We will repeat the flush holding the lock in the normal manner
1562 	 * to catch cases where we are gazumped.
1563 	 */
1564 	err = i915_gem_object_wait(obj,
1565 				   I915_WAIT_INTERRUPTIBLE |
1566 				   (write_domain ? I915_WAIT_ALL : 0),
1567 				   MAX_SCHEDULE_TIMEOUT,
1568 				   to_rps_client(file));
1569 	if (err)
1570 		goto out;
1571 
1572 	/* Flush and acquire obj->pages so that we are coherent through
1573 	 * direct access in memory with previous cached writes through
1574 	 * shmemfs and that our cache domain tracking remains valid.
1575 	 * For example, if the obj->filp was moved to swap without us
1576 	 * being notified and releasing the pages, we would mistakenly
1577 	 * continue to assume that the obj remained out of the CPU cached
1578 	 * domain.
1579 	 */
1580 	err = i915_gem_object_pin_pages(obj);
1581 	if (err)
1582 		goto out;
1583 
1584 	err = i915_mutex_lock_interruptible(dev);
1585 	if (err)
1586 		goto out_unpin;
1587 
1588 	if (read_domains & I915_GEM_DOMAIN_GTT)
1589 		err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1590 	else
1591 		err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1592 
1593 	/* And bump the LRU for this access */
1594 	i915_gem_object_bump_inactive_ggtt(obj);
1595 
1596 	mutex_unlock(&dev->struct_mutex);
1597 
1598 	if (write_domain != 0)
1599 		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1600 
1601 out_unpin:
1602 	i915_gem_object_unpin_pages(obj);
1603 out:
1604 	i915_gem_object_put(obj);
1605 	return err;
1606 }
1607 
1608 /**
1609  * Called when user space has done writes to this buffer
1610  * @dev: drm device
1611  * @data: ioctl data blob
1612  * @file: drm file
1613  */
1614 int
1615 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1616 			 struct drm_file *file)
1617 {
1618 	struct drm_i915_gem_sw_finish *args = data;
1619 	struct drm_i915_gem_object *obj;
1620 	int err = 0;
1621 
1622 	obj = i915_gem_object_lookup(file, args->handle);
1623 	if (!obj)
1624 		return -ENOENT;
1625 
1626 	/* Pinned buffers may be scanout, so flush the cache */
1627 	if (READ_ONCE(obj->pin_display)) {
1628 		err = i915_mutex_lock_interruptible(dev);
1629 		if (!err) {
1630 			i915_gem_object_flush_cpu_write_domain(obj);
1631 			mutex_unlock(&dev->struct_mutex);
1632 		}
1633 	}
1634 
1635 	i915_gem_object_put(obj);
1636 	return err;
1637 }
1638 
1639 /**
1640  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1641  *			 it is mapped to.
1642  * @dev: drm device
1643  * @data: ioctl data blob
1644  * @file: drm file
1645  *
1646  * While the mapping holds a reference on the contents of the object, it doesn't
1647  * imply a ref on the object itself.
1648  *
1649  * IMPORTANT:
1650  *
1651  * DRM driver writers who look a this function as an example for how to do GEM
1652  * mmap support, please don't implement mmap support like here. The modern way
1653  * to implement DRM mmap support is with an mmap offset ioctl (like
1654  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1655  * That way debug tooling like valgrind will understand what's going on, hiding
1656  * the mmap call in a driver private ioctl will break that. The i915 driver only
1657  * does cpu mmaps this way because we didn't know better.
1658  */
1659 int
1660 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1661 		    struct drm_file *file)
1662 {
1663 	struct drm_i915_gem_mmap *args = data;
1664 	struct drm_i915_gem_object *obj;
1665 	unsigned long addr;
1666 	struct proc *p = curproc;
1667 	vm_map_t map = &p->p_vmspace->vm_map;
1668 	vm_size_t size;
1669 	int error = 0, rv;
1670 
1671 	if (args->flags & ~(I915_MMAP_WC))
1672 		return -EINVAL;
1673 
1674 	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1675 		return -ENODEV;
1676 
1677 	obj = i915_gem_object_lookup(file, args->handle);
1678 	if (!obj)
1679 		return -ENOENT;
1680 
1681 	/* prime objects have no backing filp to GEM mmap
1682 	 * pages from.
1683 	 */
1684 	if (!obj->base.filp) {
1685 		i915_gem_object_put(obj);
1686 		return -EINVAL;
1687 	}
1688 
1689 	if (args->size == 0)
1690 		goto out;
1691 
1692 	size = round_page(args->size);
1693 	if (map->size + size > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
1694 		error = -ENOMEM;
1695 		goto out;
1696 	}
1697 
1698 	/*
1699 	 * Call hint to ensure that NULL is not returned as a valid address
1700 	 * and to reduce vm_map traversals. XXX causes instability, use a
1701 	 * fixed low address as the start point instead to avoid the NULL
1702 	 * return issue.
1703 	 */
1704 	addr = PAGE_SIZE;
1705 
1706 	/*
1707 	 * Use 256KB alignment.  It is unclear why this matters for a
1708 	 * virtual address but it appears to fix a number of application/X
1709 	 * crashes and kms console switching is much faster.
1710 	 */
1711 	vm_object_hold(obj->base.filp);
1712 	vm_object_reference_locked(obj->base.filp);
1713 	vm_object_drop(obj->base.filp);
1714 
1715 	/* Something gets wrong here: fails to mmap 4096 */
1716 	rv = vm_map_find(map, obj->base.filp, NULL,
1717 			 args->offset, &addr, args->size,
1718 			 256 * 1024, /* align */
1719 			 TRUE, /* fitit */
1720 			 VM_MAPTYPE_NORMAL, VM_SUBSYS_DRM_GEM,
1721 			 VM_PROT_READ | VM_PROT_WRITE, /* prot */
1722 			 VM_PROT_READ | VM_PROT_WRITE, /* max */
1723 			 MAP_SHARED /* cow */);
1724 	if (rv != KERN_SUCCESS) {
1725 		vm_object_deallocate(obj->base.filp);
1726 		error = -vm_mmap_to_errno(rv);
1727 	} else {
1728 		args->addr_ptr = (uint64_t)addr;
1729 	}
1730 
1731 	if (args->flags & I915_MMAP_WC) {	/* I915_PARAM_MMAP_VERSION */
1732 #if 0
1733 		struct mm_struct *mm = current->mm;
1734 		struct vm_area_struct *vma;
1735 
1736 		if (down_write_killable(&mm->mmap_sem)) {
1737 			i915_gem_object_put(obj);
1738 			return -EINTR;
1739 		}
1740 		vma = find_vma(mm, addr);
1741 		if (vma)
1742 			vma->vm_page_prot =
1743 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1744 		else
1745 			addr = -ENOMEM;
1746 		up_write(&mm->mmap_sem);
1747 #endif
1748 
1749 		/* This may race, but that's ok, it only gets set */
1750 		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1751 	}
1752 
1753 out:
1754 	i915_gem_object_put(obj);
1755 	if (error != 0)
1756 		return error;
1757 
1758 	args->addr_ptr = (uint64_t) addr;
1759 
1760 	return 0;
1761 }
1762 
1763 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1764 {
1765 	u64 size;
1766 
1767 	size = i915_gem_object_get_stride(obj);
1768 	size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;
1769 
1770 	return size >> PAGE_SHIFT;
1771 }
1772 
1773 /**
1774  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1775  *
1776  * A history of the GTT mmap interface:
1777  *
1778  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1779  *     aligned and suitable for fencing, and still fit into the available
1780  *     mappable space left by the pinned display objects. A classic problem
1781  *     we called the page-fault-of-doom where we would ping-pong between
1782  *     two objects that could not fit inside the GTT and so the memcpy
1783  *     would page one object in at the expense of the other between every
1784  *     single byte.
1785  *
1786  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1787  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1788  *     object is too large for the available space (or simply too large
1789  *     for the mappable aperture!), a view is created instead and faulted
1790  *     into userspace. (This view is aligned and sized appropriately for
1791  *     fenced access.)
1792  *
1793  * Restrictions:
1794  *
1795  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1796  *    hangs on some architectures, corruption on others. An attempt to service
1797  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1798  *
1799  *  * the object must be able to fit into RAM (physical memory, though no
1800  *    limited to the mappable aperture).
1801  *
1802  *
1803  * Caveats:
1804  *
1805  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1806  *    all data to system memory. Subsequent access will not be synchronized.
1807  *
1808  *  * all mappings are revoked on runtime device suspend.
1809  *
1810  *  * there are only 8, 16 or 32 fence registers to share between all users
1811  *    (older machines require fence register for display and blitter access
1812  *    as well). Contention of the fence registers will cause the previous users
1813  *    to be unmapped and any new access will generate new page faults.
1814  *
1815  *  * running out of memory while servicing a fault may generate a SIGBUS,
1816  *    rather than the expected SIGSEGV.
1817  */
1818 int i915_gem_mmap_gtt_version(void)
1819 {
1820 	return 1;
1821 }
1822 
1823 /**
1824  * i915_gem_fault - fault a page into the GTT
1825  *
1826  * vm_obj is locked on entry and expected to be locked on return.
1827  *
1828  * The vm_pager has placemarked the object with an anonymous memory page
1829  * which we must replace atomically to avoid races against concurrent faults
1830  * on the same page.  XXX we currently are unable to do this atomically.
1831  *
1832  * If we are to return an error we should not touch the anonymous page,
1833  * the caller will deallocate it.
1834  *
1835  * XXX Most GEM calls appear to be interruptable, but we can't hard loop
1836  * in that case.  Release all resources and wait 1 tick before retrying.
1837  * This is a huge problem which needs to be fixed by getting rid of most
1838  * of the interruptability.  The linux code does not retry but does appear
1839  * to have some sort of mechanism (VM_FAULT_NOPAGE ?) for the higher level
1840  * to be able to retry.
1841  *
1842  * --
1843  * @area: CPU VMA in question
1844  * @vmf: fault info
1845  *
1846  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1847  * from userspace.  The fault handler takes care of binding the object to
1848  * the GTT (if needed), allocating and programming a fence register (again,
1849  * only if needed based on whether the old reg is still valid or the object
1850  * is tiled) and inserting a new PTE into the faulting process.
1851  *
1852  * Note that the faulting process may involve evicting existing objects
1853  * from the GTT and/or fence registers to make room.  So performance may
1854  * suffer if the GTT working set is large or there are few fence registers
1855  * left.
1856  *
1857  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1858  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1859  * vm_obj is locked on entry and expected to be locked on return.  The VM
1860  * pager has placed an anonymous memory page at (obj,offset) which we have
1861  * to replace.
1862  */
1863 int i915_gem_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot, vm_page_t *mres)
1864 {
1865 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1866 	struct drm_i915_gem_object *obj = to_intel_bo(vm_obj->handle);
1867 	struct drm_device *dev = obj->base.dev;
1868 	struct drm_i915_private *dev_priv = to_i915(dev);
1869 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1870 	bool write = !!(prot & VM_PROT_WRITE);
1871 	struct i915_vma *vma;
1872 	unsigned long page_offset;
1873 	unsigned int flags;
1874 	int ret;
1875 #ifdef __DragonFly__
1876 	int didref = 0;
1877 	vm_page_t m;
1878 	struct vm_area_struct tmp_vm_area;
1879 	struct vm_area_struct *area = &tmp_vm_area;
1880 
1881 	/* Fill-in vm_area_struct */
1882 	area->vm_private_data = vm_obj->handle;
1883 	/* These values are bogus, but effectively limit view sizes to 8MB */
1884 	area->vm_start = 0;
1885 	area->vm_end = 8*1024*1024;
1886 #endif
1887 
1888 	/* We don't use vmf->pgoff since that has the fake offset */
1889 	page_offset = offset;
1890 
1891 	/*
1892 	 * vm_fault() has supplied us with a busied page placeholding
1893 	 * the operation.  This presents a lock order reversal issue
1894 	 * again i915_gem_release_mmap() for our device mutex.
1895 	 *
1896 	 * Deal with the problem by getting rid of the placeholder now,
1897 	 * and then dealing with the potential for a new placeholder when
1898 	 * we try to insert later.
1899 	 */
1900 	if (*mres != NULL) {
1901 		m = *mres;
1902 		*mres = NULL;
1903 		if ((m->busy_count & PBUSY_LOCKED) == 0)
1904 			kprintf("i915_gem_fault: Page was not busy\n");
1905 		else
1906 			vm_page_remove(m);
1907 		vm_page_free(m);
1908 	}
1909 	m = NULL;
1910 
1911 retry:
1912 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1913 
1914 	/* Try to flush the object off the GPU first without holding the lock.
1915 	 * Upon acquiring the lock, we will perform our sanity checks and then
1916 	 * repeat the flush holding the lock in the normal manner to catch cases
1917 	 * where we are gazumped.
1918 	 */
1919 	ret = i915_gem_object_wait(obj,
1920 				   I915_WAIT_INTERRUPTIBLE,
1921 				   MAX_SCHEDULE_TIMEOUT,
1922 				   NULL);
1923 	if (ret) {
1924 		kprintf("i915: caught bug(%d) (unsafe_wait_rend)\n", ret);
1925 	}
1926 
1927 	ret = i915_gem_object_pin_pages(obj);
1928 	if (ret)
1929 		goto err;
1930 
1931 	intel_runtime_pm_get(dev_priv);
1932 
1933 	ret = i915_mutex_lock_interruptible(dev);
1934 	if (ret) {
1935 		if (ret != -EINTR)
1936 		    kprintf("i915: caught bug(%d) (mutex_lock_inter)\n", ret);
1937 		goto err_rpm;
1938 	}
1939 
1940 	/* Access to snoopable pages through the GTT is incoherent. */
1941 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1942 		kprintf("i915: caught bug() (cache_level %d %d)\n",
1943 			(obj->cache_level), !HAS_LLC(dev_priv));
1944 		ret = -EFAULT;
1945 		goto err_unlock;
1946 	}
1947 
1948 	/* If the object is smaller than a couple of partial vma, it is
1949 	 * not worth only creating a single partial vma - we may as well
1950 	 * clear enough space for the full object.
1951 	 */
1952 	flags = PIN_MAPPABLE;
1953 	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1954 		flags |= PIN_NONBLOCK | PIN_NONFAULT;
1955 
1956 	/* Now pin it into the GTT as needed */
1957 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1958 	if (IS_ERR(vma)) {
1959 		struct i915_ggtt_view view;
1960 		unsigned int chunk_size;
1961 
1962 		/* Use a partial view if it is bigger than available space */
1963 		chunk_size = MIN_CHUNK_PAGES;
1964 		if (i915_gem_object_is_tiled(obj))
1965 			chunk_size = roundup(chunk_size, tile_row_pages(obj));
1966 
1967 		memset(&view, 0, sizeof(view));
1968 		view.type = I915_GGTT_VIEW_PARTIAL;
1969 		view.params.partial.offset = rounddown(page_offset, chunk_size);
1970 		view.params.partial.size =
1971 			min_t(unsigned int, chunk_size,
1972 			      vma_pages(area) - view.params.partial.offset);
1973 
1974 		/* If the partial covers the entire object, just create a
1975 		 * normal VMA.
1976 		 */
1977 		if (chunk_size >= obj->base.size >> PAGE_SHIFT)
1978 			view.type = I915_GGTT_VIEW_NORMAL;
1979 
1980 		/* Userspace is now writing through an untracked VMA, abandon
1981 		 * all hope that the hardware is able to track future writes.
1982 		 */
1983 		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1984 
1985 		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1986 	}
1987 	if (IS_ERR(vma)) {
1988 		kprintf("i915: caught bug() (VMA error %ld objsize %ld)\n",
1989 			PTR_ERR(vma), obj->base.size);
1990 		ret = PTR_ERR(vma);
1991 		goto err_unlock;
1992 	}
1993 
1994 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1995 	if (ret) {
1996 		kprintf("i915: caught bug(%d) (set_to_gtt_dom)\n", ret);
1997 		goto err_unpin;
1998 	}
1999 
2000 	ret = i915_vma_get_fence(vma);
2001 	if (ret) {
2002 		kprintf("i915: caught bug(%d) (vma_get_fence)\n", ret);
2003 		goto err_unpin;
2004 	}
2005 
2006 	/*
2007 	 * START FREEBSD MAGIC
2008 	 *
2009 	 * Add a pip count to avoid destruction and certain other
2010 	 * complex operations (such as collapses?) while unlocked.
2011 	 */
2012 	vm_object_pip_add(vm_obj, 1);
2013 	didref = 1;
2014 
2015 	ret = 0;
2016 	m = NULL;
2017 
2018 	/*
2019 	 * Since the object lock was dropped, another thread might have
2020 	 * faulted on the same GTT address and instantiated the mapping.
2021 	 * Recheck.
2022 	 */
2023 	m = vm_page_lookup(vm_obj, OFF_TO_IDX(offset));
2024 	if (m != NULL) {
2025 		/*
2026 		 * Try to busy the page, retry on failure (non-zero ret).
2027 		 */
2028 		if (vm_page_busy_try(m, false)) {
2029 			kprintf("i915_gem_fault: BUSY\n");
2030 			ret = -EINTR;
2031 			goto err_unpin;
2032 		}
2033 		goto have_page;
2034 	}
2035 	/* END FREEBSD MAGIC */
2036 
2037 	/* Mark as being mmapped into userspace for later revocation */
2038 	assert_rpm_wakelock_held(dev_priv);
2039 	if (list_empty(&obj->userfault_link))
2040 		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
2041 
2042 	/* Finally, remap it using the new GTT offset */
2043 #if 0
2044 	ret = remap_io_mapping(area,
2045 			       area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT),
2046 			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
2047 			       min_t(u64, vma->size, area->vm_end - area->vm_start),
2048 			       &ggtt->mappable);
2049 #else
2050 	m = vm_phys_fictitious_to_vm_page(ggtt->mappable_base +
2051 			i915_ggtt_offset(vma) + offset);
2052 	if (m == NULL) {
2053 		kprintf("i915: caught bug() (phys_fict_to_vm)\n");
2054 		ret = -EFAULT;
2055 		goto err_unpin;
2056 	}
2057 	KASSERT((m->flags & PG_FICTITIOUS) != 0, ("not fictitious %p", m));
2058 	KASSERT(m->wire_count == 1, ("wire_count not 1 %p", m));
2059 
2060 	/*
2061 	 * Try to busy the page.  Fails on non-zero return.
2062 	 */
2063 	if (vm_page_busy_try(m, false)) {
2064 		kprintf("i915_gem_fault: BUSY(2)\n");
2065 		ret = -EINTR;
2066 		goto err_unpin;
2067 	}
2068 	m->valid = VM_PAGE_BITS_ALL;
2069 
2070 	/*
2071 	 * This should always work since we already checked via a lookup
2072 	 * above.
2073 	 */
2074 	if (vm_page_insert(m, vm_obj, OFF_TO_IDX(offset)) == FALSE) {
2075 		kprintf("i915:gem_fault: page %p,%jd already in object\n",
2076 			vm_obj,
2077 			OFF_TO_IDX(offset));
2078 		vm_page_wakeup(m);
2079 		ret = -EINTR;
2080 		goto err_unpin;
2081 	}
2082 #endif
2083 
2084 have_page:
2085 	*mres = m;
2086 
2087 	__i915_vma_unpin(vma);
2088 	mutex_unlock(&dev->struct_mutex);
2089 	ret = VM_PAGER_OK;
2090 	goto done;
2091 
2092 	/*
2093 	 * ALTERNATIVE ERROR RETURN.
2094 	 *
2095 	 * OBJECT EXPECTED TO BE LOCKED.
2096 	 */
2097 err_unpin:
2098 	__i915_vma_unpin(vma);
2099 err_unlock:
2100 	mutex_unlock(&dev->struct_mutex);
2101 err_rpm:
2102 	intel_runtime_pm_put(dev_priv);
2103 	i915_gem_object_unpin_pages(obj);
2104 err:
2105 	switch (ret) {
2106 	case -EIO:
2107 		/*
2108 		 * We eat errors when the gpu is terminally wedged to avoid
2109 		 * userspace unduly crashing (gl has no provisions for mmaps to
2110 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2111 		 * and so needs to be reported.
2112 		 */
2113 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2114 //			ret = VM_FAULT_SIGBUS;
2115 			break;
2116 		}
2117 	case -EAGAIN:
2118 		/*
2119 		 * EAGAIN means the gpu is hung and we'll wait for the error
2120 		 * handler to reset everything when re-faulting in
2121 		 * i915_mutex_lock_interruptible.
2122 		 */
2123 	case -ERESTARTSYS:
2124 	case -EINTR:
2125 		if (didref) {
2126 			kprintf("i915: caught bug(%d) (retry)\n", ret);
2127 			vm_object_pip_wakeup(vm_obj);
2128 			didref = 0;
2129 		}
2130 		VM_OBJECT_UNLOCK(vm_obj);
2131 		int dummy;
2132 		tsleep(&dummy, 0, "delay", 1); /* XXX */
2133 		VM_OBJECT_LOCK(vm_obj);
2134 		goto retry;
2135 	default:
2136 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2137 		ret = VM_PAGER_ERROR;
2138 		break;
2139 	}
2140 
2141 done:
2142 	if (didref)
2143 		vm_object_pip_wakeup(vm_obj);
2144 	else
2145 		kprintf("i915: caught bug(%d)\n", ret);
2146 
2147 	return ret;
2148 }
2149 
2150 #ifdef __DragonFly__
2151 static inline void drm_vma_node_unmap(struct drm_vma_offset_node *node,
2152 				      struct address_space *file_mapping)
2153 {
2154 	struct drm_i915_gem_object *obj = container_of(
2155 		node,struct drm_i915_gem_object, base.vma_node);
2156 	vm_object_t devobj;
2157 	vm_page_t m;
2158 	int i, page_count;
2159 
2160 	devobj = cdev_pager_lookup(obj);
2161 	if (devobj != NULL) {
2162 		page_count = OFF_TO_IDX(obj->base.size);
2163 
2164 		VM_OBJECT_LOCK(devobj);
2165 		for (i = 0; i < page_count; i++) {
2166 			m = vm_page_lookup_busy_wait(devobj, i, TRUE, "915unm");
2167 			if (m == NULL)
2168 				continue;
2169 			cdev_pager_free_page(devobj, m);
2170 		}
2171 		VM_OBJECT_UNLOCK(devobj);
2172 		vm_object_deallocate(devobj);
2173 	}
2174 }
2175 #endif
2176 
2177 /**
2178  * i915_gem_release_mmap - remove physical page mappings
2179  * @obj: obj in question
2180  *
2181  * Preserve the reservation of the mmapping with the DRM core code, but
2182  * relinquish ownership of the pages back to the system.
2183  *
2184  * It is vital that we remove the page mapping if we have mapped a tiled
2185  * object through the GTT and then lose the fence register due to
2186  * resource pressure. Similarly if the object has been moved out of the
2187  * aperture, than pages mapped into userspace must be revoked. Removing the
2188  * mapping will then trigger a page fault on the next user access, allowing
2189  * fixup by i915_gem_fault().
2190  */
2191 void
2192 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2193 {
2194 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2195 
2196 	/* Serialisation between user GTT access and our code depends upon
2197 	 * revoking the CPU's PTE whilst the mutex is held. The next user
2198 	 * pagefault then has to wait until we release the mutex.
2199 	 *
2200 	 * Note that RPM complicates somewhat by adding an additional
2201 	 * requirement that operations to the GGTT be made holding the RPM
2202 	 * wakeref.
2203 	 */
2204 	lockdep_assert_held(&i915->drm.struct_mutex);
2205 	intel_runtime_pm_get(i915);
2206 
2207 	if (list_empty(&obj->userfault_link))
2208 		goto out;
2209 
2210 	list_del_init(&obj->userfault_link);
2211 #ifndef __DragonFly__
2212  	drm_vma_node_unmap(&obj->base.vma_node,
2213 			   obj->base.dev->anon_inode->i_mapping);
2214 #else
2215 	drm_vma_node_unmap(&obj->base.vma_node, NULL);
2216 #endif
2217 
2218 	/* Ensure that the CPU's PTE are revoked and there are not outstanding
2219 	 * memory transactions from userspace before we return. The TLB
2220 	 * flushing implied above by changing the PTE above *should* be
2221 	 * sufficient, an extra barrier here just provides us with a bit
2222 	 * of paranoid documentation about our requirement to serialise
2223 	 * memory writes before touching registers / GSM.
2224 	 */
2225 	wmb();
2226 
2227 out:
2228 	intel_runtime_pm_put(i915);
2229 }
2230 
2231 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2232 {
2233 	struct drm_i915_gem_object *obj, *on;
2234 	int i;
2235 
2236 	/*
2237 	 * Only called during RPM suspend. All users of the userfault_list
2238 	 * must be holding an RPM wakeref to ensure that this can not
2239 	 * run concurrently with themselves (and use the struct_mutex for
2240 	 * protection between themselves).
2241 	 */
2242 
2243 	list_for_each_entry_safe(obj, on,
2244 				 &dev_priv->mm.userfault_list, userfault_link) {
2245 		list_del_init(&obj->userfault_link);
2246 #ifndef __DragonFly__
2247 		drm_vma_node_unmap(&obj->base.vma_node,
2248 				   obj->base.dev->anon_inode->i_mapping);
2249 #else
2250 		drm_vma_node_unmap(&obj->base.vma_node, NULL);
2251 #endif
2252 	}
2253 
2254 	/* The fence will be lost when the device powers down. If any were
2255 	 * in use by hardware (i.e. they are pinned), we should not be powering
2256 	 * down! All other fences will be reacquired by the user upon waking.
2257 	 */
2258 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2259 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2260 
2261 		/* Ideally we want to assert that the fence register is not
2262 		 * live at this point (i.e. that no piece of code will be
2263 		 * trying to write through fence + GTT, as that both violates
2264 		 * our tracking of activity and associated locking/barriers,
2265 		 * but also is illegal given that the hw is powered down).
2266 		 *
2267 		 * Previously we used reg->pin_count as a "liveness" indicator.
2268 		 * That is not sufficient, and we need a more fine-grained
2269 		 * tool if we want to have a sanity check here.
2270 		 */
2271 
2272 		if (!reg->vma)
2273 			continue;
2274 
2275 		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2276 		reg->dirty = true;
2277 	}
2278 }
2279 
2280 /**
2281  * i915_gem_get_ggtt_size - return required global GTT size for an object
2282  * @dev_priv: i915 device
2283  * @size: object size
2284  * @tiling_mode: tiling mode
2285  *
2286  * Return the required global GTT size for an object, taking into account
2287  * potential fence register mapping.
2288  */
2289 u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
2290 			   u64 size, int tiling_mode)
2291 {
2292 	u64 ggtt_size;
2293 
2294 	GEM_BUG_ON(size == 0);
2295 
2296 	if (INTEL_GEN(dev_priv) >= 4 ||
2297 	    tiling_mode == I915_TILING_NONE)
2298 		return size;
2299 
2300 	/* Previous chips need a power-of-two fence region when tiling */
2301 	if (IS_GEN3(dev_priv))
2302 		ggtt_size = 1024*1024;
2303 	else
2304 		ggtt_size = 512*1024;
2305 
2306 	while (ggtt_size < size)
2307 		ggtt_size <<= 1;
2308 
2309 	return ggtt_size;
2310 }
2311 
2312 /**
2313  * i915_gem_get_ggtt_alignment - return required global GTT alignment
2314  * @dev_priv: i915 device
2315  * @size: object size
2316  * @tiling_mode: tiling mode
2317  * @fenced: is fenced alignment required or not
2318  *
2319  * Return the required global GTT alignment for an object, taking into account
2320  * potential fence register mapping.
2321  */
2322 u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
2323 				int tiling_mode, bool fenced)
2324 {
2325 	GEM_BUG_ON(size == 0);
2326 
2327 	/*
2328 	 * Minimum alignment is 4k (GTT page size), but might be greater
2329 	 * if a fence register is needed for the object.
2330 	 */
2331 	if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
2332 	    tiling_mode == I915_TILING_NONE)
2333 		return 4096;
2334 
2335 	/*
2336 	 * Previous chips need to be aligned to the size of the smallest
2337 	 * fence register that can contain the object.
2338 	 */
2339 	return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
2340 }
2341 
2342 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2343 {
2344 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2345 	int err;
2346 
2347 	err = drm_gem_create_mmap_offset(&obj->base);
2348 	if (!err)
2349 		return 0;
2350 
2351 	/* We can idle the GPU locklessly to flush stale objects, but in order
2352 	 * to claim that space for ourselves, we need to take the big
2353 	 * struct_mutex to free the requests+objects and allocate our slot.
2354 	 */
2355 	err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2356 	if (err)
2357 		return err;
2358 
2359 	err = i915_mutex_lock_interruptible(&dev_priv->drm);
2360 	if (!err) {
2361 		i915_gem_retire_requests(dev_priv);
2362 		err = drm_gem_create_mmap_offset(&obj->base);
2363 		mutex_unlock(&dev_priv->drm.struct_mutex);
2364 	}
2365 
2366 	return err;
2367 }
2368 
2369 #if 0
2370 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2371 {
2372 	drm_gem_free_mmap_offset(&obj->base);
2373 }
2374 #endif
2375 
2376 int
2377 i915_gem_mmap_gtt(struct drm_file *file,
2378 		  struct drm_device *dev,
2379 		  uint32_t handle,
2380 		  uint64_t *offset)
2381 {
2382 	struct drm_i915_gem_object *obj;
2383 	int ret;
2384 
2385 	obj = i915_gem_object_lookup(file, handle);
2386 	if (!obj)
2387 		return -ENOENT;
2388 
2389 	ret = i915_gem_object_create_mmap_offset(obj);
2390 	if (ret == 0)
2391 #if 0
2392 		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2393 #endif
2394 		*offset = DRM_GEM_MAPPING_OFF(obj->base.map_list.key) |
2395 		    DRM_GEM_MAPPING_KEY;
2396 
2397 	i915_gem_object_put(obj);
2398 	return ret;
2399 }
2400 
2401 /**
2402  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2403  * @dev: DRM device
2404  * @data: GTT mapping ioctl data
2405  * @file: GEM object info
2406  *
2407  * Simply returns the fake offset to userspace so it can mmap it.
2408  * The mmap call will end up in drm_gem_mmap(), which will set things
2409  * up so we can get faults in the handler above.
2410  *
2411  * The fault handler will take care of binding the object into the GTT
2412  * (since it may have been evicted to make room for something), allocating
2413  * a fence register, and mapping the appropriate aperture address into
2414  * userspace.
2415  */
2416 int
2417 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2418 			struct drm_file *file)
2419 {
2420 	struct drm_i915_gem_mmap_gtt *args = data;
2421 
2422 	return i915_gem_mmap_gtt(file, dev, args->handle, (uint64_t *)&args->offset);
2423 }
2424 
2425 /* Immediately discard the backing storage */
2426 static void
2427 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2428 {
2429 	vm_object_t vm_obj = obj->base.filp;
2430 
2431 	if (obj->base.filp == NULL)
2432 		return;
2433 
2434 	VM_OBJECT_LOCK(vm_obj);
2435 	vm_object_page_remove(vm_obj, 0, 0, false);
2436 	VM_OBJECT_UNLOCK(vm_obj);
2437 
2438 	/* Our goal here is to return as much of the memory as
2439 	 * is possible back to the system as we are called from OOM.
2440 	 * To do this we must instruct the shmfs to drop all of its
2441 	 * backing pages, *now*.
2442 	 */
2443 #if 0
2444 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2445 #endif
2446 	obj->mm.madv = __I915_MADV_PURGED;
2447 	obj->mm.pages = ERR_PTR(-EFAULT);
2448 }
2449 
2450 /* Try to discard unwanted pages */
2451 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2452 {
2453 #if 0
2454 	struct address_space *mapping;
2455 #endif
2456 
2457 	lockdep_assert_held(&obj->mm.lock);
2458 	GEM_BUG_ON(obj->mm.pages);
2459 
2460 	switch (obj->mm.madv) {
2461 	case I915_MADV_DONTNEED:
2462 		i915_gem_object_truncate(obj);
2463 	case __I915_MADV_PURGED:
2464 		return;
2465 	}
2466 
2467 	if (obj->base.filp == NULL)
2468 		return;
2469 
2470 #if 0
2471 	mapping = file_inode(obj->base.filp)->i_mapping,
2472 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2473 #else
2474 	invalidate_mapping_pages(obj->base.filp, 0, (loff_t)-1);
2475 #endif
2476 }
2477 
2478 static void
2479 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2480 			      struct sg_table *pages)
2481 {
2482 	struct sgt_iter sgt_iter;
2483 	struct page *page;
2484 
2485 #ifdef __DragonFly__
2486 	if (pages == NULL)
2487 		return;
2488 #endif
2489 
2490 	__i915_gem_object_release_shmem(obj, pages, true);
2491 
2492 	i915_gem_gtt_finish_pages(obj, pages);
2493 
2494 	if (i915_gem_object_needs_bit17_swizzle(obj))
2495 		i915_gem_object_save_bit_17_swizzle(obj, pages);
2496 
2497 	for_each_sgt_page(page, sgt_iter, pages) {
2498 		if (obj->mm.dirty)
2499 			set_page_dirty(page);
2500 
2501 		if (obj->mm.madv == I915_MADV_WILLNEED)
2502 			mark_page_accessed(page);
2503 
2504 		vm_page_busy_wait((struct vm_page *)page, FALSE, "i915gem");
2505 		vm_page_unwire((struct vm_page *)page, 1);
2506 		vm_page_wakeup((struct vm_page *)page);
2507 	}
2508 	obj->mm.dirty = false;
2509 
2510 	sg_free_table(pages);
2511 	kfree(pages);
2512 }
2513 
2514 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2515 {
2516 	struct radix_tree_iter iter;
2517 	void **slot;
2518 
2519 	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2520 		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2521 }
2522 
2523 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2524 				 enum i915_mm_subclass subclass)
2525 {
2526 	struct sg_table *pages;
2527 
2528 	if (i915_gem_object_has_pinned_pages(obj))
2529 		return;
2530 
2531 	GEM_BUG_ON(obj->bind_count);
2532 	if (!READ_ONCE(obj->mm.pages))
2533 		return;
2534 
2535 	/* May be called by shrinker from within get_pages() (on another bo) */
2536 	mutex_lock_nested(&obj->mm.lock, subclass);
2537 	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2538 		goto unlock;
2539 
2540 	/* ->put_pages might need to allocate memory for the bit17 swizzle
2541 	 * array, hence protect them from being reaped by removing them from gtt
2542 	 * lists early. */
2543 	pages = fetch_and_zero(&obj->mm.pages);
2544 	GEM_BUG_ON(!pages);
2545 
2546 	if (obj->mm.mapping) {
2547 		void *ptr;
2548 
2549 		ptr = ptr_mask_bits(obj->mm.mapping);
2550 		if (is_vmalloc_addr(ptr))
2551 			vunmap(ptr);
2552 		else
2553 			kunmap(kmap_to_page(ptr));
2554 
2555 		obj->mm.mapping = NULL;
2556 	}
2557 
2558 	__i915_gem_object_reset_page_iter(obj);
2559 
2560 	if (!IS_ERR(pages))
2561 		obj->ops->put_pages(obj, pages);
2562 
2563 unlock:
2564 	mutex_unlock(&obj->mm.lock);
2565 }
2566 
2567 static void i915_sg_trim(struct sg_table *orig_st)
2568 {
2569 	struct sg_table new_st;
2570 	struct scatterlist *sg, *new_sg;
2571 	unsigned int i;
2572 
2573 	if (orig_st->nents == orig_st->orig_nents)
2574 		return;
2575 
2576 	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2577 		return;
2578 
2579 	new_sg = new_st.sgl;
2580 	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2581 		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2582 		/* called before being DMA mapped, no need to copy sg->dma_* */
2583 		new_sg = sg_next(new_sg);
2584 	}
2585 
2586 	sg_free_table(orig_st);
2587 
2588 	*orig_st = new_st;
2589 }
2590 
2591 static struct sg_table *
2592 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2593 {
2594 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2595 	const unsigned long page_count = obj->base.size / PAGE_SIZE;
2596 	unsigned long i;
2597 	vm_object_t vm_obj;
2598 	struct sg_table *st;
2599 	struct scatterlist *sg;
2600 	struct sgt_iter sgt_iter;
2601 	struct page *page;
2602 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2603 	unsigned int max_segment;
2604 	int ret;
2605 
2606 	/* Assert that the object is not currently in any GPU domain. As it
2607 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2608 	 * a GPU cache
2609 	 */
2610 	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2611 	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2612 
2613 	max_segment = swiotlb_max_segment();
2614 	if (!max_segment)
2615 		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2616 
2617 	st = kmalloc(sizeof(*st), M_DRM, GFP_KERNEL);
2618 	if (st == NULL)
2619 		return ERR_PTR(-ENOMEM);
2620 
2621 rebuild_st:
2622 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2623 		kfree(st);
2624 		return ERR_PTR(-ENOMEM);
2625 	}
2626 
2627 	/* Get the list of pages out of our struct file.  They'll be pinned
2628 	 * at this point until we release them.
2629 	 *
2630 	 * Fail silently without starting the shrinker
2631 	 */
2632 	vm_obj = obj->base.filp;
2633 	VM_OBJECT_LOCK(vm_obj);
2634 	sg = st->sgl;
2635 	st->nents = 0;
2636 	for (i = 0; i < page_count; i++) {
2637 		page = shmem_read_mapping_page(vm_obj, i);
2638 		if (IS_ERR(page)) {
2639 			i915_gem_shrink(dev_priv,
2640 					page_count,
2641 					I915_SHRINK_BOUND |
2642 					I915_SHRINK_UNBOUND |
2643 					I915_SHRINK_PURGEABLE);
2644 			page = shmem_read_mapping_page(vm_obj, i);
2645 		}
2646 		if (IS_ERR(page)) {
2647 			/* We've tried hard to allocate the memory by reaping
2648 			 * our own buffer, now let the real VM do its job and
2649 			 * go down in flames if truly OOM.
2650 			 */
2651 			page = shmem_read_mapping_page(vm_obj, i);
2652 			if (IS_ERR(page)) {
2653 				ret = PTR_ERR(page);
2654 				goto err_sg;
2655 			}
2656 		}
2657 		if (!i ||
2658 		    sg->length >= max_segment ||
2659 		    page_to_pfn(page) != last_pfn + 1) {
2660 			if (i)
2661 				sg = sg_next(sg);
2662 			st->nents++;
2663 			sg_set_page(sg, page, PAGE_SIZE, 0);
2664 		} else {
2665 			sg->length += PAGE_SIZE;
2666 		}
2667 		last_pfn = page_to_pfn(page);
2668 
2669 		/* Check that the i965g/gm workaround works. */
2670 	}
2671 	if (sg) /* loop terminated early; short sg table */
2672 		sg_mark_end(sg);
2673 	VM_OBJECT_UNLOCK(vm_obj);
2674 
2675 	/* Trim unused sg entries to avoid wasting memory. */
2676 	i915_sg_trim(st);
2677 
2678 	ret = i915_gem_gtt_prepare_pages(obj, st);
2679 	if (ret) {
2680 		/* DMA remapping failed? One possible cause is that
2681 		 * it could not reserve enough large entries, asking
2682 		 * for PAGE_SIZE chunks instead may be helpful.
2683 		 */
2684 		if (max_segment > PAGE_SIZE) {
2685 			for_each_sgt_page(page, sgt_iter, st)
2686 				put_page(page);
2687 			sg_free_table(st);
2688 
2689 			max_segment = PAGE_SIZE;
2690 			goto rebuild_st;
2691 		} else {
2692 			dev_warn(&dev_priv->drm.pdev->dev,
2693 				 "Failed to DMA remap %lu pages\n",
2694 				 page_count);
2695 			goto err_pages;
2696 		}
2697 	}
2698 
2699 	if (i915_gem_object_needs_bit17_swizzle(obj))
2700 		i915_gem_object_do_bit_17_swizzle(obj, st);
2701 
2702 	return st;
2703 
2704 err_sg:
2705 	sg_mark_end(sg);
2706 err_pages:
2707 	for_each_sgt_page(page, sgt_iter, st)
2708 	{
2709 		/*
2710 			XXX DragonFly: using put_page() causes problems here
2711 			it currently always uses vm_page_unwire(vmp, 1);
2712 		*/
2713 		struct vm_page *vmp = (struct vm_page *)page;
2714 		vm_page_busy_wait(vmp, FALSE, "i915gem");
2715 		vm_page_unwire(vmp, 0);
2716 		vm_page_wakeup(vmp);
2717 	}
2718 	VM_OBJECT_UNLOCK(vm_obj);
2719 	sg_free_table(st);
2720 	kfree(st);
2721 
2722 	/* shmemfs first checks if there is enough memory to allocate the page
2723 	 * and reports ENOSPC should there be insufficient, along with the usual
2724 	 * ENOMEM for a genuine allocation failure.
2725 	 *
2726 	 * We use ENOSPC in our driver to mean that we have run out of aperture
2727 	 * space and so want to translate the error from shmemfs back to our
2728 	 * usual understanding of ENOMEM.
2729 	 */
2730 	if (ret == -ENOSPC)
2731 		ret = -ENOMEM;
2732 
2733 	return ERR_PTR(ret);
2734 }
2735 
2736 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2737 				 struct sg_table *pages)
2738 {
2739 	lockdep_assert_held(&obj->mm.lock);
2740 
2741 	obj->mm.get_page.sg_pos = pages->sgl;
2742 	obj->mm.get_page.sg_idx = 0;
2743 
2744 	obj->mm.pages = pages;
2745 
2746 	if (i915_gem_object_is_tiled(obj) &&
2747 	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2748 		GEM_BUG_ON(obj->mm.quirked);
2749 		__i915_gem_object_pin_pages(obj);
2750 		obj->mm.quirked = true;
2751 	}
2752 }
2753 
2754 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2755 {
2756 	struct sg_table *pages;
2757 
2758 	GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2759 
2760 	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2761 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2762 		return -EFAULT;
2763 	}
2764 
2765 	pages = obj->ops->get_pages(obj);
2766 	if (unlikely(IS_ERR(pages)))
2767 		return PTR_ERR(pages);
2768 
2769 	__i915_gem_object_set_pages(obj, pages);
2770 	return 0;
2771 }
2772 
2773 /* Ensure that the associated pages are gathered from the backing storage
2774  * and pinned into our object. i915_gem_object_pin_pages() may be called
2775  * multiple times before they are released by a single call to
2776  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2777  * either as a result of memory pressure (reaping pages under the shrinker)
2778  * or as the object is itself released.
2779  */
2780 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2781 {
2782 	int err;
2783 
2784 	err = mutex_lock_interruptible(&obj->mm.lock);
2785 	if (err)
2786 		return err;
2787 
2788 	if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2789 		err = ____i915_gem_object_get_pages(obj);
2790 		if (err)
2791 			goto unlock;
2792 
2793 		smp_mb__before_atomic();
2794 	}
2795 	atomic_inc(&obj->mm.pages_pin_count);
2796 
2797 unlock:
2798 	mutex_unlock(&obj->mm.lock);
2799 	return err;
2800 }
2801 
2802 /* The 'mapping' part of i915_gem_object_pin_map() below */
2803 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2804 				 enum i915_map_type type)
2805 {
2806 	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2807 	struct sg_table *sgt = obj->mm.pages;
2808 	struct sgt_iter sgt_iter;
2809 	struct page *page;
2810 	struct page *stack_pages[32];
2811 	struct page **pages = stack_pages;
2812 	unsigned long i = 0;
2813 	pgprot_t pgprot;
2814 	void *addr;
2815 
2816 	/* A single page can always be kmapped */
2817 	if (n_pages == 1 && type == I915_MAP_WB)
2818 		return kmap(sg_page(sgt->sgl));
2819 
2820 	if (n_pages > ARRAY_SIZE(stack_pages)) {
2821 		/* Too big for stack -- allocate temporary array instead */
2822 		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2823 		if (!pages)
2824 			return NULL;
2825 	}
2826 
2827 	for_each_sgt_page(page, sgt_iter, sgt)
2828 		pages[i++] = page;
2829 
2830 	/* Check that we have the expected number of pages */
2831 	GEM_BUG_ON(i != n_pages);
2832 
2833 	switch (type) {
2834 	case I915_MAP_WB:
2835 		pgprot = PAGE_KERNEL;
2836 		break;
2837 	case I915_MAP_WC:
2838 		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2839 		break;
2840 	}
2841 	addr = vmap(pages, n_pages, 0, pgprot);
2842 
2843 	if (pages != stack_pages)
2844 		drm_free_large(pages);
2845 
2846 	return addr;
2847 }
2848 
2849 /* get, pin, and map the pages of the object into kernel space */
2850 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2851 			      enum i915_map_type type)
2852 {
2853 	enum i915_map_type has_type;
2854 	bool pinned;
2855 	void *ptr;
2856 	int ret;
2857 
2858 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2859 
2860 	ret = mutex_lock_interruptible(&obj->mm.lock);
2861 	if (ret)
2862 		return ERR_PTR(ret);
2863 
2864 	pinned = true;
2865 	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2866 		if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2867 			ret = ____i915_gem_object_get_pages(obj);
2868 			if (ret)
2869 				goto err_unlock;
2870 
2871 			smp_mb__before_atomic();
2872 		}
2873 		atomic_inc(&obj->mm.pages_pin_count);
2874 		pinned = false;
2875 	}
2876 	GEM_BUG_ON(!obj->mm.pages);
2877 
2878 	ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2879 	if (ptr && has_type != type) {
2880 		if (pinned) {
2881 			ret = -EBUSY;
2882 			goto err_unpin;
2883 		}
2884 
2885 		if (is_vmalloc_addr(ptr))
2886 			vunmap(ptr);
2887 		else
2888 			kunmap(kmap_to_page(ptr));
2889 
2890 		ptr = obj->mm.mapping = NULL;
2891 	}
2892 
2893 	if (!ptr) {
2894 		ptr = i915_gem_object_map(obj, type);
2895 		if (!ptr) {
2896 			ret = -ENOMEM;
2897 			goto err_unpin;
2898 		}
2899 
2900 		obj->mm.mapping = ptr_pack_bits(ptr, type);
2901 	}
2902 
2903 out_unlock:
2904 	mutex_unlock(&obj->mm.lock);
2905 	return ptr;
2906 
2907 err_unpin:
2908 	atomic_dec(&obj->mm.pages_pin_count);
2909 err_unlock:
2910 	ptr = ERR_PTR(ret);
2911 	goto out_unlock;
2912 }
2913 
2914 static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2915 {
2916 	unsigned long elapsed;
2917 
2918 	if (ctx->hang_stats.banned)
2919 		return true;
2920 
2921 	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2922 	if (ctx->hang_stats.ban_period_seconds &&
2923 	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2924 		DRM_DEBUG("context hanging too fast, banning!\n");
2925 		return true;
2926 	}
2927 
2928 	return false;
2929 }
2930 
2931 static void i915_set_reset_status(struct i915_gem_context *ctx,
2932 				  const bool guilty)
2933 {
2934 	struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2935 
2936 	if (guilty) {
2937 		hs->banned = i915_context_is_banned(ctx);
2938 		hs->batch_active++;
2939 		hs->guilty_ts = get_seconds();
2940 	} else {
2941 		hs->batch_pending++;
2942 	}
2943 }
2944 
2945 struct drm_i915_gem_request *
2946 i915_gem_find_active_request(struct intel_engine_cs *engine)
2947 {
2948 	struct drm_i915_gem_request *request;
2949 
2950 	/* We are called by the error capture and reset at a random
2951 	 * point in time. In particular, note that neither is crucially
2952 	 * ordered with an interrupt. After a hang, the GPU is dead and we
2953 	 * assume that no more writes can happen (we waited long enough for
2954 	 * all writes that were in transaction to be flushed) - adding an
2955 	 * extra delay for a recent interrupt is pointless. Hence, we do
2956 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
2957 	 */
2958 	list_for_each_entry(request, &engine->timeline->requests, link) {
2959 		if (__i915_gem_request_completed(request))
2960 			continue;
2961 
2962 		return request;
2963 	}
2964 
2965 	return NULL;
2966 }
2967 
2968 static void reset_request(struct drm_i915_gem_request *request)
2969 {
2970 	void *vaddr = request->ring->vaddr;
2971 	u32 head;
2972 
2973 	/* As this request likely depends on state from the lost
2974 	 * context, clear out all the user operations leaving the
2975 	 * breadcrumb at the end (so we get the fence notifications).
2976 	 */
2977 	head = request->head;
2978 	if (request->postfix < head) {
2979 		memset(vaddr + head, 0, request->ring->size - head);
2980 		head = 0;
2981 	}
2982 	memset(vaddr + head, 0, request->postfix - head);
2983 }
2984 
2985 static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2986 {
2987 	struct drm_i915_gem_request *request;
2988 	struct i915_gem_context *incomplete_ctx;
2989 	struct intel_timeline *timeline;
2990 	unsigned long flags;
2991 	bool ring_hung;
2992 
2993 	if (engine->irq_seqno_barrier)
2994 		engine->irq_seqno_barrier(engine);
2995 
2996 	request = i915_gem_find_active_request(engine);
2997 	if (!request)
2998 		return;
2999 
3000 	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
3001 	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine))
3002 		ring_hung = false;
3003 
3004 	i915_set_reset_status(request->ctx, ring_hung);
3005 	if (!ring_hung)
3006 		return;
3007 
3008 	DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
3009 			 engine->name, request->global_seqno);
3010 
3011 	/* Setup the CS to resume from the breadcrumb of the hung request */
3012 	engine->reset_hw(engine, request);
3013 
3014 	/* Users of the default context do not rely on logical state
3015 	 * preserved between batches. They have to emit full state on
3016 	 * every batch and so it is safe to execute queued requests following
3017 	 * the hang.
3018 	 *
3019 	 * Other contexts preserve state, now corrupt. We want to skip all
3020 	 * queued requests that reference the corrupt context.
3021 	 */
3022 	incomplete_ctx = request->ctx;
3023 	if (i915_gem_context_is_default(incomplete_ctx))
3024 		return;
3025 
3026 	timeline = i915_gem_context_lookup_timeline(incomplete_ctx, engine);
3027 
3028 	spin_lock_irqsave(&engine->timeline->lock, flags);
3029 	lockmgr(&timeline->lock, LK_EXCLUSIVE);
3030 
3031 	list_for_each_entry_continue(request, &engine->timeline->requests, link)
3032 		if (request->ctx == incomplete_ctx)
3033 			reset_request(request);
3034 
3035 	list_for_each_entry(request, &timeline->requests, link)
3036 		reset_request(request);
3037 
3038 	lockmgr(&timeline->lock, LK_RELEASE);
3039 	spin_unlock_irqrestore(&engine->timeline->lock, flags);
3040 }
3041 
3042 void i915_gem_reset(struct drm_i915_private *dev_priv)
3043 {
3044 	struct intel_engine_cs *engine;
3045 	enum intel_engine_id id;
3046 
3047 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3048 
3049 	i915_gem_retire_requests(dev_priv);
3050 
3051 	for_each_engine(engine, dev_priv, id)
3052 		i915_gem_reset_engine(engine);
3053 
3054 	i915_gem_restore_fences(dev_priv);
3055 
3056 	if (dev_priv->gt.awake) {
3057 		intel_sanitize_gt_powersave(dev_priv);
3058 		intel_enable_gt_powersave(dev_priv);
3059 		if (INTEL_GEN(dev_priv) >= 6)
3060 			gen6_rps_busy(dev_priv);
3061 	}
3062 }
3063 
3064 static void nop_submit_request(struct drm_i915_gem_request *request)
3065 {
3066 	i915_gem_request_submit(request);
3067 	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3068 }
3069 
3070 static void i915_gem_cleanup_engine(struct intel_engine_cs *engine)
3071 {
3072 	engine->submit_request = nop_submit_request;
3073 
3074 	/* Mark all pending requests as complete so that any concurrent
3075 	 * (lockless) lookup doesn't try and wait upon the request as we
3076 	 * reset it.
3077 	 */
3078 	intel_engine_init_global_seqno(engine,
3079 				       intel_engine_last_submit(engine));
3080 
3081 	/*
3082 	 * Clear the execlists queue up before freeing the requests, as those
3083 	 * are the ones that keep the context and ringbuffer backing objects
3084 	 * pinned in place.
3085 	 */
3086 
3087 	if (i915.enable_execlists) {
3088 		unsigned long flags;
3089 
3090 		spin_lock_irqsave(&engine->timeline->lock, flags);
3091 
3092 		i915_gem_request_put(engine->execlist_port[0].request);
3093 		i915_gem_request_put(engine->execlist_port[1].request);
3094 		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
3095 		engine->execlist_queue = LINUX_RB_ROOT;
3096 		engine->execlist_first = NULL;
3097 
3098  		spin_unlock_irqrestore(&engine->timeline->lock, flags);
3099 	}
3100 }
3101 
3102 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
3103 {
3104 	struct intel_engine_cs *engine;
3105 	enum intel_engine_id id;
3106 
3107 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3108 	set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
3109 
3110 	i915_gem_context_lost(dev_priv);
3111 	for_each_engine(engine, dev_priv, id)
3112 		i915_gem_cleanup_engine(engine);
3113 	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
3114 
3115 	i915_gem_retire_requests(dev_priv);
3116 }
3117 
3118 static void
3119 i915_gem_retire_work_handler(struct work_struct *work)
3120 {
3121 	struct drm_i915_private *dev_priv =
3122 		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3123 	struct drm_device *dev = &dev_priv->drm;
3124 
3125 	/* Come back later if the device is busy... */
3126 	if (mutex_trylock(&dev->struct_mutex)) {
3127 		i915_gem_retire_requests(dev_priv);
3128 		mutex_unlock(&dev->struct_mutex);
3129 	}
3130 
3131 	/* Keep the retire handler running until we are finally idle.
3132 	 * We do not need to do this test under locking as in the worst-case
3133 	 * we queue the retire worker once too often.
3134 	 */
3135 	if (READ_ONCE(dev_priv->gt.awake)) {
3136 		i915_queue_hangcheck(dev_priv);
3137 		queue_delayed_work(dev_priv->wq,
3138 				   &dev_priv->gt.retire_work,
3139 				   round_jiffies_up_relative(HZ));
3140 	}
3141 }
3142 
3143 static void
3144 i915_gem_idle_work_handler(struct work_struct *work)
3145 {
3146 	struct drm_i915_private *dev_priv =
3147 		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3148 	struct drm_device *dev = &dev_priv->drm;
3149 	struct intel_engine_cs *engine;
3150 	enum intel_engine_id id;
3151 	bool rearm_hangcheck;
3152 
3153 	if (!READ_ONCE(dev_priv->gt.awake))
3154 		return;
3155 
3156 	/*
3157 	 * Wait for last execlists context complete, but bail out in case a
3158 	 * new request is submitted.
3159 	 */
3160 	wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
3161 		 intel_execlists_idle(dev_priv), 10);
3162 
3163 	if (READ_ONCE(dev_priv->gt.active_requests))
3164 		return;
3165 
3166 	rearm_hangcheck =
3167 		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3168 
3169 	if (!mutex_trylock(&dev->struct_mutex)) {
3170 		/* Currently busy, come back later */
3171 		mod_delayed_work(dev_priv->wq,
3172 				 &dev_priv->gt.idle_work,
3173 				 msecs_to_jiffies(50));
3174 		goto out_rearm;
3175 	}
3176 
3177 	/*
3178 	 * New request retired after this work handler started, extend active
3179 	 * period until next instance of the work.
3180 	 */
3181 	if (work_pending(work))
3182 		goto out_unlock;
3183 
3184 	if (dev_priv->gt.active_requests)
3185 		goto out_unlock;
3186 
3187 	if (wait_for(intel_execlists_idle(dev_priv), 10))
3188 		DRM_ERROR("Timeout waiting for engines to idle\n");
3189 
3190 	for_each_engine(engine, dev_priv, id)
3191 		i915_gem_batch_pool_fini(&engine->batch_pool);
3192 
3193 	GEM_BUG_ON(!dev_priv->gt.awake);
3194 	dev_priv->gt.awake = false;
3195 	rearm_hangcheck = false;
3196 
3197 	if (INTEL_GEN(dev_priv) >= 6)
3198 		gen6_rps_idle(dev_priv);
3199 	intel_runtime_pm_put(dev_priv);
3200 out_unlock:
3201 	mutex_unlock(&dev->struct_mutex);
3202 
3203 out_rearm:
3204 	if (rearm_hangcheck) {
3205 		GEM_BUG_ON(!dev_priv->gt.awake);
3206 		i915_queue_hangcheck(dev_priv);
3207 	}
3208 }
3209 
3210 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3211 {
3212 	struct drm_i915_gem_object *obj = to_intel_bo(gem);
3213 	struct drm_i915_file_private *fpriv = file->driver_priv;
3214 	struct i915_vma *vma, *vn;
3215 
3216 	mutex_lock(&obj->base.dev->struct_mutex);
3217 	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
3218 		if (vma->vm->file == fpriv)
3219 			i915_vma_close(vma);
3220 
3221 	if (i915_gem_object_is_active(obj) &&
3222 	    !i915_gem_object_has_active_reference(obj)) {
3223 		i915_gem_object_set_active_reference(obj);
3224 		i915_gem_object_get(obj);
3225 	}
3226 	mutex_unlock(&obj->base.dev->struct_mutex);
3227 }
3228 
3229 static unsigned long to_wait_timeout(s64 timeout_ns)
3230 {
3231 	if (timeout_ns < 0)
3232 		return MAX_SCHEDULE_TIMEOUT;
3233 
3234 	if (timeout_ns == 0)
3235 		return 0;
3236 
3237 	return nsecs_to_jiffies_timeout(timeout_ns);
3238 }
3239 
3240 /**
3241  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3242  * @dev: drm device pointer
3243  * @data: ioctl data blob
3244  * @file: drm file pointer
3245  *
3246  * Returns 0 if successful, else an error is returned with the remaining time in
3247  * the timeout parameter.
3248  *  -ETIME: object is still busy after timeout
3249  *  -ERESTARTSYS: signal interrupted the wait
3250  *  -ENONENT: object doesn't exist
3251  * Also possible, but rare:
3252  *  -EAGAIN: GPU wedged
3253  *  -ENOMEM: damn
3254  *  -ENODEV: Internal IRQ fail
3255  *  -E?: The add request failed
3256  *
3257  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3258  * non-zero timeout parameter the wait ioctl will wait for the given number of
3259  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3260  * without holding struct_mutex the object may become re-busied before this
3261  * function completes. A similar but shorter * race condition exists in the busy
3262  * ioctl
3263  */
3264 int
3265 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3266 {
3267 	struct drm_i915_gem_wait *args = data;
3268 	struct drm_i915_gem_object *obj;
3269 	ktime_t start;
3270 	long ret;
3271 
3272 	if (args->flags != 0)
3273 		return -EINVAL;
3274 
3275 	obj = i915_gem_object_lookup(file, args->bo_handle);
3276 	if (!obj)
3277 		return -ENOENT;
3278 
3279 	start = ktime_get();
3280 
3281 	ret = i915_gem_object_wait(obj,
3282 				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3283 				   to_wait_timeout(args->timeout_ns),
3284 				   to_rps_client(file));
3285 
3286 	if (args->timeout_ns > 0) {
3287 		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3288 		if (args->timeout_ns < 0)
3289 			args->timeout_ns = 0;
3290 
3291 		/*
3292 		 * Apparently ktime isn't accurate enough and occasionally has a
3293 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3294 		 * things up to make the test happy. We allow up to 1 jiffy.
3295 		 *
3296 		 * This is a regression from the timespec->ktime conversion.
3297 		 */
3298 		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3299 			args->timeout_ns = 0;
3300 	}
3301 
3302 	i915_gem_object_put(obj);
3303 	return ret;
3304 }
3305 
3306 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3307 {
3308 	int ret, i;
3309 
3310 	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3311 		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3312 		if (ret)
3313 			return ret;
3314 	}
3315 
3316 	return 0;
3317 }
3318 
3319 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3320 {
3321 	int ret;
3322 
3323 	if (flags & I915_WAIT_LOCKED) {
3324 		struct i915_gem_timeline *tl;
3325 
3326 		lockdep_assert_held(&i915->drm.struct_mutex);
3327 
3328 		list_for_each_entry(tl, &i915->gt.timelines, link) {
3329 			ret = wait_for_timeline(tl, flags);
3330 			if (ret)
3331 				return ret;
3332 		}
3333 	} else {
3334 		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3335 		if (ret)
3336 			return ret;
3337 	}
3338 
3339 	return 0;
3340 }
3341 
3342 void i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3343 			     bool force)
3344 {
3345 	/* If we don't have a page list set up, then we're not pinned
3346 	 * to GPU, and we can ignore the cache flush because it'll happen
3347 	 * again at bind time.
3348 	 */
3349 	if (!obj->mm.pages)
3350 		return;
3351 
3352 	/*
3353 	 * Stolen memory is always coherent with the GPU as it is explicitly
3354 	 * marked as wc by the system, or the system is cache-coherent.
3355 	 */
3356 	if (obj->stolen || obj->phys_handle)
3357 		return;
3358 
3359 	/* If the GPU is snooping the contents of the CPU cache,
3360 	 * we do not need to manually clear the CPU cache lines.  However,
3361 	 * the caches are only snooped when the render cache is
3362 	 * flushed/invalidated.  As we always have to emit invalidations
3363 	 * and flushes when moving into and out of the RENDER domain, correct
3364 	 * snooping behaviour occurs naturally as the result of our domain
3365 	 * tracking.
3366 	 */
3367 	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3368 		obj->cache_dirty = true;
3369 		return;
3370 	}
3371 
3372 	trace_i915_gem_object_clflush(obj);
3373 	drm_clflush_sg(obj->mm.pages);
3374 	obj->cache_dirty = false;
3375 }
3376 
3377 /** Flushes the GTT write domain for the object if it's dirty. */
3378 static void
3379 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3380 {
3381 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3382 
3383 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3384 		return;
3385 
3386 	/* No actual flushing is required for the GTT write domain.  Writes
3387 	 * to it "immediately" go to main memory as far as we know, so there's
3388 	 * no chipset flush.  It also doesn't land in render cache.
3389 	 *
3390 	 * However, we do have to enforce the order so that all writes through
3391 	 * the GTT land before any writes to the device, such as updates to
3392 	 * the GATT itself.
3393 	 *
3394 	 * We also have to wait a bit for the writes to land from the GTT.
3395 	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3396 	 * timing. This issue has only been observed when switching quickly
3397 	 * between GTT writes and CPU reads from inside the kernel on recent hw,
3398 	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
3399 	 * system agents we cannot reproduce this behaviour).
3400 	 */
3401 	wmb();
3402 	if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3403 		POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3404 
3405 	intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3406 
3407 	obj->base.write_domain = 0;
3408 	trace_i915_gem_object_change_domain(obj,
3409 					    obj->base.read_domains,
3410 					    I915_GEM_DOMAIN_GTT);
3411 }
3412 
3413 /** Flushes the CPU write domain for the object if it's dirty. */
3414 static void
3415 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3416 {
3417 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3418 		return;
3419 
3420 	i915_gem_clflush_object(obj, obj->pin_display);
3421 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3422 
3423 	obj->base.write_domain = 0;
3424 	trace_i915_gem_object_change_domain(obj,
3425 					    obj->base.read_domains,
3426 					    I915_GEM_DOMAIN_CPU);
3427 }
3428 
3429 /**
3430  * Moves a single object to the GTT read, and possibly write domain.
3431  * @obj: object to act on
3432  * @write: ask for write access or read only
3433  *
3434  * This function returns when the move is complete, including waiting on
3435  * flushes to occur.
3436  */
3437 int
3438 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3439 {
3440 	uint32_t old_write_domain, old_read_domains;
3441 	int ret;
3442 
3443 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3444 
3445 	ret = i915_gem_object_wait(obj,
3446 				   I915_WAIT_INTERRUPTIBLE |
3447 				   I915_WAIT_LOCKED |
3448 				   (write ? I915_WAIT_ALL : 0),
3449 				   MAX_SCHEDULE_TIMEOUT,
3450 				   NULL);
3451 	if (ret)
3452 		return ret;
3453 
3454 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3455 		return 0;
3456 
3457 	/* Flush and acquire obj->pages so that we are coherent through
3458 	 * direct access in memory with previous cached writes through
3459 	 * shmemfs and that our cache domain tracking remains valid.
3460 	 * For example, if the obj->filp was moved to swap without us
3461 	 * being notified and releasing the pages, we would mistakenly
3462 	 * continue to assume that the obj remained out of the CPU cached
3463 	 * domain.
3464 	 */
3465 	ret = i915_gem_object_pin_pages(obj);
3466 	if (ret)
3467 		return ret;
3468 
3469 	i915_gem_object_flush_cpu_write_domain(obj);
3470 
3471 	/* Serialise direct access to this object with the barriers for
3472 	 * coherent writes from the GPU, by effectively invalidating the
3473 	 * GTT domain upon first access.
3474 	 */
3475 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3476 		mb();
3477 
3478 	old_write_domain = obj->base.write_domain;
3479 	old_read_domains = obj->base.read_domains;
3480 
3481 	/* It should now be out of any other write domains, and we can update
3482 	 * the domain values for our changes.
3483 	 */
3484 	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3485 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3486 	if (write) {
3487 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3488 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3489 		obj->mm.dirty = true;
3490 	}
3491 
3492 	trace_i915_gem_object_change_domain(obj,
3493 					    old_read_domains,
3494 					    old_write_domain);
3495 
3496 	i915_gem_object_unpin_pages(obj);
3497 	return 0;
3498 }
3499 
3500 /**
3501  * Changes the cache-level of an object across all VMA.
3502  * @obj: object to act on
3503  * @cache_level: new cache level to set for the object
3504  *
3505  * After this function returns, the object will be in the new cache-level
3506  * across all GTT and the contents of the backing storage will be coherent,
3507  * with respect to the new cache-level. In order to keep the backing storage
3508  * coherent for all users, we only allow a single cache level to be set
3509  * globally on the object and prevent it from being changed whilst the
3510  * hardware is reading from the object. That is if the object is currently
3511  * on the scanout it will be set to uncached (or equivalent display
3512  * cache coherency) and all non-MOCS GPU access will also be uncached so
3513  * that all direct access to the scanout remains coherent.
3514  */
3515 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3516 				    enum i915_cache_level cache_level)
3517 {
3518 	struct i915_vma *vma;
3519 	int ret;
3520 
3521 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3522 
3523 	if (obj->cache_level == cache_level)
3524 		return 0;
3525 
3526 	/* Inspect the list of currently bound VMA and unbind any that would
3527 	 * be invalid given the new cache-level. This is principally to
3528 	 * catch the issue of the CS prefetch crossing page boundaries and
3529 	 * reading an invalid PTE on older architectures.
3530 	 */
3531 restart:
3532 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3533 		if (!drm_mm_node_allocated(&vma->node))
3534 			continue;
3535 
3536 		if (i915_vma_is_pinned(vma)) {
3537 			DRM_DEBUG("can not change the cache level of pinned objects\n");
3538 			return -EBUSY;
3539 		}
3540 
3541 		if (i915_gem_valid_gtt_space(vma, cache_level))
3542 			continue;
3543 
3544 		ret = i915_vma_unbind(vma);
3545 		if (ret)
3546 			return ret;
3547 
3548 		/* As unbinding may affect other elements in the
3549 		 * obj->vma_list (due to side-effects from retiring
3550 		 * an active vma), play safe and restart the iterator.
3551 		 */
3552 		goto restart;
3553 	}
3554 
3555 	/* We can reuse the existing drm_mm nodes but need to change the
3556 	 * cache-level on the PTE. We could simply unbind them all and
3557 	 * rebind with the correct cache-level on next use. However since
3558 	 * we already have a valid slot, dma mapping, pages etc, we may as
3559 	 * rewrite the PTE in the belief that doing so tramples upon less
3560 	 * state and so involves less work.
3561 	 */
3562 	if (obj->bind_count) {
3563 		/* Before we change the PTE, the GPU must not be accessing it.
3564 		 * If we wait upon the object, we know that all the bound
3565 		 * VMA are no longer active.
3566 		 */
3567 		ret = i915_gem_object_wait(obj,
3568 					   I915_WAIT_INTERRUPTIBLE |
3569 					   I915_WAIT_LOCKED |
3570 					   I915_WAIT_ALL,
3571 					   MAX_SCHEDULE_TIMEOUT,
3572 					   NULL);
3573 		if (ret)
3574 			return ret;
3575 
3576 		if (!HAS_LLC(to_i915(obj->base.dev)) &&
3577 		    cache_level != I915_CACHE_NONE) {
3578 			/* Access to snoopable pages through the GTT is
3579 			 * incoherent and on some machines causes a hard
3580 			 * lockup. Relinquish the CPU mmaping to force
3581 			 * userspace to refault in the pages and we can
3582 			 * then double check if the GTT mapping is still
3583 			 * valid for that pointer access.
3584 			 */
3585 			i915_gem_release_mmap(obj);
3586 
3587 			/* As we no longer need a fence for GTT access,
3588 			 * we can relinquish it now (and so prevent having
3589 			 * to steal a fence from someone else on the next
3590 			 * fence request). Note GPU activity would have
3591 			 * dropped the fence as all snoopable access is
3592 			 * supposed to be linear.
3593 			 */
3594 			list_for_each_entry(vma, &obj->vma_list, obj_link) {
3595 				ret = i915_vma_put_fence(vma);
3596 				if (ret)
3597 					return ret;
3598 			}
3599 		} else {
3600 			/* We either have incoherent backing store and
3601 			 * so no GTT access or the architecture is fully
3602 			 * coherent. In such cases, existing GTT mmaps
3603 			 * ignore the cache bit in the PTE and we can
3604 			 * rewrite it without confusing the GPU or having
3605 			 * to force userspace to fault back in its mmaps.
3606 			 */
3607 		}
3608 
3609 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3610 			if (!drm_mm_node_allocated(&vma->node))
3611 				continue;
3612 
3613 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3614 			if (ret)
3615 				return ret;
3616 		}
3617 	}
3618 
3619 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
3620 	    cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3621 		obj->cache_dirty = true;
3622 
3623 	list_for_each_entry(vma, &obj->vma_list, obj_link)
3624 		vma->node.color = cache_level;
3625 	obj->cache_level = cache_level;
3626 
3627 	return 0;
3628 }
3629 
3630 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3631 			       struct drm_file *file)
3632 {
3633 	struct drm_i915_gem_caching *args = data;
3634 	struct drm_i915_gem_object *obj;
3635 	int err = 0;
3636 
3637 	rcu_read_lock();
3638 	obj = i915_gem_object_lookup_rcu(file, args->handle);
3639 	if (!obj) {
3640 		err = -ENOENT;
3641 		goto out;
3642 	}
3643 
3644 	switch (obj->cache_level) {
3645 	case I915_CACHE_LLC:
3646 	case I915_CACHE_L3_LLC:
3647 		args->caching = I915_CACHING_CACHED;
3648 		break;
3649 
3650 	case I915_CACHE_WT:
3651 		args->caching = I915_CACHING_DISPLAY;
3652 		break;
3653 
3654 	default:
3655 		args->caching = I915_CACHING_NONE;
3656 		break;
3657 	}
3658 out:
3659 	rcu_read_unlock();
3660 	return err;
3661 }
3662 
3663 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3664 			       struct drm_file *file)
3665 {
3666 	struct drm_i915_private *i915 = to_i915(dev);
3667 	struct drm_i915_gem_caching *args = data;
3668 	struct drm_i915_gem_object *obj;
3669 	enum i915_cache_level level;
3670 	int ret;
3671 
3672 	switch (args->caching) {
3673 	case I915_CACHING_NONE:
3674 		level = I915_CACHE_NONE;
3675 		break;
3676 	case I915_CACHING_CACHED:
3677 		/*
3678 		 * Due to a HW issue on BXT A stepping, GPU stores via a
3679 		 * snooped mapping may leave stale data in a corresponding CPU
3680 		 * cacheline, whereas normally such cachelines would get
3681 		 * invalidated.
3682 		 */
3683 		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3684 			return -ENODEV;
3685 
3686 		level = I915_CACHE_LLC;
3687 		break;
3688 	case I915_CACHING_DISPLAY:
3689 		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3690 		break;
3691 	default:
3692 		return -EINVAL;
3693 	}
3694 
3695 	ret = i915_mutex_lock_interruptible(dev);
3696 	if (ret)
3697 		return ret;
3698 
3699 	obj = i915_gem_object_lookup(file, args->handle);
3700 	if (!obj) {
3701 		ret = -ENOENT;
3702 		goto unlock;
3703 	}
3704 
3705 	ret = i915_gem_object_set_cache_level(obj, level);
3706 	i915_gem_object_put(obj);
3707 unlock:
3708 	mutex_unlock(&dev->struct_mutex);
3709 	return ret;
3710 }
3711 
3712 /*
3713  * Prepare buffer for display plane (scanout, cursors, etc).
3714  * Can be called from an uninterruptible phase (modesetting) and allows
3715  * any flushes to be pipelined (for pageflips).
3716  */
3717 struct i915_vma *
3718 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3719 				     u32 alignment,
3720 				     const struct i915_ggtt_view *view)
3721 {
3722 	struct i915_vma *vma;
3723 	u32 old_read_domains, old_write_domain;
3724 	int ret;
3725 
3726 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3727 
3728 	/* Mark the pin_display early so that we account for the
3729 	 * display coherency whilst setting up the cache domains.
3730 	 */
3731 	obj->pin_display++;
3732 
3733 	/* The display engine is not coherent with the LLC cache on gen6.  As
3734 	 * a result, we make sure that the pinning that is about to occur is
3735 	 * done with uncached PTEs. This is lowest common denominator for all
3736 	 * chipsets.
3737 	 *
3738 	 * However for gen6+, we could do better by using the GFDT bit instead
3739 	 * of uncaching, which would allow us to flush all the LLC-cached data
3740 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3741 	 */
3742 	ret = i915_gem_object_set_cache_level(obj,
3743 					      HAS_WT(to_i915(obj->base.dev)) ?
3744 					      I915_CACHE_WT : I915_CACHE_NONE);
3745 	if (ret) {
3746 		vma = ERR_PTR(ret);
3747 		goto err_unpin_display;
3748 	}
3749 
3750 	/* As the user may map the buffer once pinned in the display plane
3751 	 * (e.g. libkms for the bootup splash), we have to ensure that we
3752 	 * always use map_and_fenceable for all scanout buffers. However,
3753 	 * it may simply be too big to fit into mappable, in which case
3754 	 * put it anyway and hope that userspace can cope (but always first
3755 	 * try to preserve the existing ABI).
3756 	 */
3757 	vma = ERR_PTR(-ENOSPC);
3758 	if (view->type == I915_GGTT_VIEW_NORMAL)
3759 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3760 					       PIN_MAPPABLE | PIN_NONBLOCK);
3761 	if (IS_ERR(vma)) {
3762 		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3763 		unsigned int flags;
3764 
3765 		/* Valleyview is definitely limited to scanning out the first
3766 		 * 512MiB. Lets presume this behaviour was inherited from the
3767 		 * g4x display engine and that all earlier gen are similarly
3768 		 * limited. Testing suggests that it is a little more
3769 		 * complicated than this. For example, Cherryview appears quite
3770 		 * happy to scanout from anywhere within its global aperture.
3771 		 */
3772 		flags = 0;
3773 		if (HAS_GMCH_DISPLAY(i915))
3774 			flags = PIN_MAPPABLE;
3775 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3776 	}
3777 	if (IS_ERR(vma))
3778 		goto err_unpin_display;
3779 
3780 	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3781 
3782 	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3783 	if (obj->cache_dirty || obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
3784 		i915_gem_clflush_object(obj, true);
3785 		intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
3786 	}
3787 
3788 	old_write_domain = obj->base.write_domain;
3789 	old_read_domains = obj->base.read_domains;
3790 
3791 	/* It should now be out of any other write domains, and we can update
3792 	 * the domain values for our changes.
3793 	 */
3794 	obj->base.write_domain = 0;
3795 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3796 
3797 	trace_i915_gem_object_change_domain(obj,
3798 					    old_read_domains,
3799 					    old_write_domain);
3800 
3801 	return vma;
3802 
3803 err_unpin_display:
3804 	obj->pin_display--;
3805 	return vma;
3806 }
3807 
3808 void
3809 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3810 {
3811 	lockdep_assert_held(&vma->vm->dev->struct_mutex);
3812 
3813 	if (WARN_ON(vma->obj->pin_display == 0))
3814 		return;
3815 
3816 	if (--vma->obj->pin_display == 0)
3817 		vma->display_alignment = 0;
3818 
3819 	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3820 	if (!i915_vma_is_active(vma))
3821 		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3822 
3823 	i915_vma_unpin(vma);
3824 }
3825 
3826 /**
3827  * Moves a single object to the CPU read, and possibly write domain.
3828  * @obj: object to act on
3829  * @write: requesting write or read-only access
3830  *
3831  * This function returns when the move is complete, including waiting on
3832  * flushes to occur.
3833  */
3834 int
3835 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3836 {
3837 	uint32_t old_write_domain, old_read_domains;
3838 	int ret;
3839 
3840 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3841 
3842 	ret = i915_gem_object_wait(obj,
3843 				   I915_WAIT_INTERRUPTIBLE |
3844 				   I915_WAIT_LOCKED |
3845 				   (write ? I915_WAIT_ALL : 0),
3846 				   MAX_SCHEDULE_TIMEOUT,
3847 				   NULL);
3848 	if (ret)
3849 		return ret;
3850 
3851 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3852 		return 0;
3853 
3854 	i915_gem_object_flush_gtt_write_domain(obj);
3855 
3856 	old_write_domain = obj->base.write_domain;
3857 	old_read_domains = obj->base.read_domains;
3858 
3859 	/* Flush the CPU cache if it's still invalid. */
3860 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3861 		i915_gem_clflush_object(obj, false);
3862 
3863 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3864 	}
3865 
3866 	/* It should now be out of any other write domains, and we can update
3867 	 * the domain values for our changes.
3868 	 */
3869 	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3870 
3871 	/* If we're writing through the CPU, then the GPU read domains will
3872 	 * need to be invalidated at next use.
3873 	 */
3874 	if (write) {
3875 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3876 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3877 	}
3878 
3879 	trace_i915_gem_object_change_domain(obj,
3880 					    old_read_domains,
3881 					    old_write_domain);
3882 
3883 	return 0;
3884 }
3885 
3886 /* Throttle our rendering by waiting until the ring has completed our requests
3887  * emitted over 20 msec ago.
3888  *
3889  * Note that if we were to use the current jiffies each time around the loop,
3890  * we wouldn't escape the function with any frames outstanding if the time to
3891  * render a frame was over 20ms.
3892  *
3893  * This should get us reasonable parallelism between CPU and GPU but also
3894  * relatively low latency when blocking on a particular request to finish.
3895  */
3896 static int
3897 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3898 {
3899 	struct drm_i915_private *dev_priv = to_i915(dev);
3900 	struct drm_i915_file_private *file_priv = file->driver_priv;
3901 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3902 	struct drm_i915_gem_request *request, *target = NULL;
3903 	long ret;
3904 
3905 	/* ABI: return -EIO if already wedged */
3906 	if (i915_terminally_wedged(&dev_priv->gpu_error))
3907 		return -EIO;
3908 
3909 	lockmgr(&file_priv->mm.lock, LK_EXCLUSIVE);
3910 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3911 		if (time_after_eq(request->emitted_jiffies, recent_enough))
3912 			break;
3913 
3914 		/*
3915 		 * Note that the request might not have been submitted yet.
3916 		 * In which case emitted_jiffies will be zero.
3917 		 */
3918 		if (!request->emitted_jiffies)
3919 			continue;
3920 
3921 		target = request;
3922 	}
3923 	if (target)
3924 		i915_gem_request_get(target);
3925 	lockmgr(&file_priv->mm.lock, LK_RELEASE);
3926 
3927 	if (target == NULL)
3928 		return 0;
3929 
3930 	ret = i915_wait_request(target,
3931 				I915_WAIT_INTERRUPTIBLE,
3932 				MAX_SCHEDULE_TIMEOUT);
3933 	i915_gem_request_put(target);
3934 
3935 	return ret < 0 ? ret : 0;
3936 }
3937 
3938 struct i915_vma *
3939 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3940 			 const struct i915_ggtt_view *view,
3941 			 u64 size,
3942 			 u64 alignment,
3943 			 u64 flags)
3944 {
3945 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3946 	struct i915_address_space *vm = &dev_priv->ggtt.base;
3947 	struct i915_vma *vma;
3948 	int ret;
3949 
3950 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3951 
3952 	vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
3953 	if (IS_ERR(vma))
3954 		return vma;
3955 
3956 	if (i915_vma_misplaced(vma, size, alignment, flags)) {
3957 		if (flags & PIN_NONBLOCK &&
3958 		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
3959 			return ERR_PTR(-ENOSPC);
3960 
3961 		if (flags & PIN_MAPPABLE) {
3962 			u32 fence_size;
3963 
3964 			fence_size = i915_gem_get_ggtt_size(dev_priv, vma->size,
3965 							    i915_gem_object_get_tiling(obj));
3966 			/* If the required space is larger than the available
3967 			 * aperture, we will not able to find a slot for the
3968 			 * object and unbinding the object now will be in
3969 			 * vain. Worse, doing so may cause us to ping-pong
3970 			 * the object in and out of the Global GTT and
3971 			 * waste a lot of cycles under the mutex.
3972 			 */
3973 			if (fence_size > dev_priv->ggtt.mappable_end)
3974 				return ERR_PTR(-E2BIG);
3975 
3976 			/* If NONBLOCK is set the caller is optimistically
3977 			 * trying to cache the full object within the mappable
3978 			 * aperture, and *must* have a fallback in place for
3979 			 * situations where we cannot bind the object. We
3980 			 * can be a little more lax here and use the fallback
3981 			 * more often to avoid costly migrations of ourselves
3982 			 * and other objects within the aperture.
3983 			 *
3984 			 * Half-the-aperture is used as a simple heuristic.
3985 			 * More interesting would to do search for a free
3986 			 * block prior to making the commitment to unbind.
3987 			 * That caters for the self-harm case, and with a
3988 			 * little more heuristics (e.g. NOFAULT, NOEVICT)
3989 			 * we could try to minimise harm to others.
3990 			 */
3991 			if (flags & PIN_NONBLOCK &&
3992 			    fence_size > dev_priv->ggtt.mappable_end / 2)
3993 				return ERR_PTR(-ENOSPC);
3994 		}
3995 
3996 		WARN(i915_vma_is_pinned(vma),
3997 		     "bo is already pinned in ggtt with incorrect alignment:"
3998 		     " offset=%08x, req.alignment=%llx,"
3999 		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4000 		     i915_ggtt_offset(vma), alignment,
4001 		     !!(flags & PIN_MAPPABLE),
4002 		     i915_vma_is_map_and_fenceable(vma));
4003 		ret = i915_vma_unbind(vma);
4004 		if (ret)
4005 			return ERR_PTR(ret);
4006 	}
4007 
4008 	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4009 	if (ret)
4010 		return ERR_PTR(ret);
4011 
4012 	return vma;
4013 }
4014 
4015 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4016 {
4017 	/* Note that we could alias engines in the execbuf API, but
4018 	 * that would be very unwise as it prevents userspace from
4019 	 * fine control over engine selection. Ahem.
4020 	 *
4021 	 * This should be something like EXEC_MAX_ENGINE instead of
4022 	 * I915_NUM_ENGINES.
4023 	 */
4024 	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4025 	return 0x10000 << id;
4026 }
4027 
4028 static __always_inline unsigned int __busy_write_id(unsigned int id)
4029 {
4030 	/* The uABI guarantees an active writer is also amongst the read
4031 	 * engines. This would be true if we accessed the activity tracking
4032 	 * under the lock, but as we perform the lookup of the object and
4033 	 * its activity locklessly we can not guarantee that the last_write
4034 	 * being active implies that we have set the same engine flag from
4035 	 * last_read - hence we always set both read and write busy for
4036 	 * last_write.
4037 	 */
4038 	return id | __busy_read_flag(id);
4039 }
4040 
4041 static __always_inline unsigned int
4042 __busy_set_if_active(const struct dma_fence *fence,
4043 		     unsigned int (*flag)(unsigned int id))
4044 {
4045 	struct drm_i915_gem_request *rq;
4046 
4047 	/* We have to check the current hw status of the fence as the uABI
4048 	 * guarantees forward progress. We could rely on the idle worker
4049 	 * to eventually flush us, but to minimise latency just ask the
4050 	 * hardware.
4051 	 *
4052 	 * Note we only report on the status of native fences.
4053 	 */
4054 	if (!dma_fence_is_i915(fence))
4055 		return 0;
4056 
4057 	/* opencode to_request() in order to avoid const warnings */
4058 	rq = container_of(fence, struct drm_i915_gem_request, fence);
4059 	if (i915_gem_request_completed(rq))
4060 		return 0;
4061 
4062 	return flag(rq->engine->exec_id);
4063 }
4064 
4065 static __always_inline unsigned int
4066 busy_check_reader(const struct dma_fence *fence)
4067 {
4068 	return __busy_set_if_active(fence, __busy_read_flag);
4069 }
4070 
4071 static __always_inline unsigned int
4072 busy_check_writer(const struct dma_fence *fence)
4073 {
4074 	if (!fence)
4075 		return 0;
4076 
4077 	return __busy_set_if_active(fence, __busy_write_id);
4078 }
4079 
4080 int
4081 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4082 		    struct drm_file *file)
4083 {
4084 	struct drm_i915_gem_busy *args = data;
4085 	struct drm_i915_gem_object *obj;
4086 	struct reservation_object_list *list;
4087 	unsigned int seq;
4088 	int err;
4089 
4090 	err = -ENOENT;
4091 	rcu_read_lock();
4092 	obj = i915_gem_object_lookup_rcu(file, args->handle);
4093 	if (!obj)
4094 		goto out;
4095 
4096 	/* A discrepancy here is that we do not report the status of
4097 	 * non-i915 fences, i.e. even though we may report the object as idle,
4098 	 * a call to set-domain may still stall waiting for foreign rendering.
4099 	 * This also means that wait-ioctl may report an object as busy,
4100 	 * where busy-ioctl considers it idle.
4101 	 *
4102 	 * We trade the ability to warn of foreign fences to report on which
4103 	 * i915 engines are active for the object.
4104 	 *
4105 	 * Alternatively, we can trade that extra information on read/write
4106 	 * activity with
4107 	 *	args->busy =
4108 	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
4109 	 * to report the overall busyness. This is what the wait-ioctl does.
4110 	 *
4111 	 */
4112 retry:
4113 	seq = raw_read_seqcount(&obj->resv->seq);
4114 
4115 	/* Translate the exclusive fence to the READ *and* WRITE engine */
4116 	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4117 
4118 	/* Translate shared fences to READ set of engines */
4119 	list = rcu_dereference(obj->resv->fence);
4120 	if (list) {
4121 		unsigned int shared_count = list->shared_count, i;
4122 
4123 		for (i = 0; i < shared_count; ++i) {
4124 			struct dma_fence *fence =
4125 				rcu_dereference(list->shared[i]);
4126 
4127 			args->busy |= busy_check_reader(fence);
4128 		}
4129 	}
4130 
4131 	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4132 		goto retry;
4133 
4134 	err = 0;
4135 out:
4136 	rcu_read_unlock();
4137 	return err;
4138 }
4139 
4140 int
4141 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4142 			struct drm_file *file_priv)
4143 {
4144 	return i915_gem_ring_throttle(dev, file_priv);
4145 }
4146 
4147 int
4148 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4149 		       struct drm_file *file_priv)
4150 {
4151 	struct drm_i915_private *dev_priv = to_i915(dev);
4152 	struct drm_i915_gem_madvise *args = data;
4153 	struct drm_i915_gem_object *obj;
4154 	int err;
4155 
4156 	switch (args->madv) {
4157 	case I915_MADV_DONTNEED:
4158 	case I915_MADV_WILLNEED:
4159 	    break;
4160 	default:
4161 	    return -EINVAL;
4162 	}
4163 
4164 	obj = i915_gem_object_lookup(file_priv, args->handle);
4165 	if (!obj)
4166 		return -ENOENT;
4167 
4168 	err = mutex_lock_interruptible(&obj->mm.lock);
4169 	if (err)
4170 		goto out;
4171 
4172 	if (obj->mm.pages &&
4173 	    i915_gem_object_is_tiled(obj) &&
4174 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4175 		if (obj->mm.madv == I915_MADV_WILLNEED) {
4176 			GEM_BUG_ON(!obj->mm.quirked);
4177 			__i915_gem_object_unpin_pages(obj);
4178 			obj->mm.quirked = false;
4179 		}
4180 		if (args->madv == I915_MADV_WILLNEED) {
4181 			GEM_BUG_ON(obj->mm.quirked);
4182 			__i915_gem_object_pin_pages(obj);
4183 			obj->mm.quirked = true;
4184 		}
4185 	}
4186 
4187 	if (obj->mm.madv != __I915_MADV_PURGED)
4188 		obj->mm.madv = args->madv;
4189 
4190 	/* if the object is no longer attached, discard its backing storage */
4191 	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4192 		i915_gem_object_truncate(obj);
4193 
4194 	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4195 	mutex_unlock(&obj->mm.lock);
4196 
4197 out:
4198 	i915_gem_object_put(obj);
4199 	return err;
4200 }
4201 
4202 static void
4203 frontbuffer_retire(struct i915_gem_active *active,
4204 		   struct drm_i915_gem_request *request)
4205 {
4206 	struct drm_i915_gem_object *obj =
4207 		container_of(active, typeof(*obj), frontbuffer_write);
4208 
4209 	intel_fb_obj_flush(obj, true, ORIGIN_CS);
4210 }
4211 
4212 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4213 			  const struct drm_i915_gem_object_ops *ops)
4214 {
4215 	lockinit(&obj->mm.lock, "i9goml", 0, LK_CANRECURSE);
4216 
4217 	INIT_LIST_HEAD(&obj->global_link);
4218 	INIT_LIST_HEAD(&obj->userfault_link);
4219 	INIT_LIST_HEAD(&obj->obj_exec_link);
4220 	INIT_LIST_HEAD(&obj->vma_list);
4221 	INIT_LIST_HEAD(&obj->batch_pool_link);
4222 
4223 	obj->ops = ops;
4224 
4225 	reservation_object_init(&obj->__builtin_resv);
4226 	obj->resv = &obj->__builtin_resv;
4227 
4228 	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4229 	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4230 
4231 	obj->mm.madv = I915_MADV_WILLNEED;
4232 	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4233 	lockinit(&obj->mm.get_page.lock, "i915ogpl", 0, LK_CANRECURSE);
4234 
4235 	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4236 }
4237 
4238 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4239 	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4240 		 I915_GEM_OBJECT_IS_SHRINKABLE,
4241 	.get_pages = i915_gem_object_get_pages_gtt,
4242 	.put_pages = i915_gem_object_put_pages_gtt,
4243 };
4244 
4245 /* Note we don't consider signbits :| */
4246 #define overflows_type(x, T) \
4247 	(sizeof(x) > sizeof(T) && (x) >> (sizeof(T) * BITS_PER_BYTE))
4248 
4249 struct drm_i915_gem_object *
4250 i915_gem_object_create(struct drm_device *dev, u64 size)
4251 {
4252 	struct drm_i915_private *dev_priv = to_i915(dev);
4253 	struct drm_i915_gem_object *obj;
4254 #if 0
4255 	struct address_space *mapping;
4256 #endif
4257 	gfp_t mask;
4258 	int ret;
4259 
4260 	/* There is a prevalence of the assumption that we fit the object's
4261 	 * page count inside a 32bit _signed_ variable. Let's document this and
4262 	 * catch if we ever need to fix it. In the meantime, if you do spot
4263 	 * such a local variable, please consider fixing!
4264 	 */
4265 	if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
4266 		return ERR_PTR(-E2BIG);
4267 
4268 	if (overflows_type(size, obj->base.size))
4269 		return ERR_PTR(-E2BIG);
4270 
4271 	obj = i915_gem_object_alloc(dev);
4272 	if (obj == NULL)
4273 		return ERR_PTR(-ENOMEM);
4274 
4275 	ret = drm_gem_object_init(dev, &obj->base, size);
4276 	if (ret)
4277 		goto fail;
4278 
4279 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4280 	if (IS_CRESTLINE(dev_priv) || IS_BROADWATER(dev_priv)) {
4281 		/* 965gm cannot relocate objects above 4GiB. */
4282 		mask &= ~__GFP_HIGHMEM;
4283 		mask |= __GFP_DMA32;
4284 	}
4285 
4286 #if 0
4287 	mapping = obj->base.filp->f_mapping;
4288 	mapping_set_gfp_mask(mapping, mask);
4289 #endif
4290 
4291 	i915_gem_object_init(obj, &i915_gem_object_ops);
4292 
4293 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4294 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4295 
4296 	if (HAS_LLC(dev_priv)) {
4297 		/* On some devices, we can have the GPU use the LLC (the CPU
4298 		 * cache) for about a 10% performance improvement
4299 		 * compared to uncached.  Graphics requests other than
4300 		 * display scanout are coherent with the CPU in
4301 		 * accessing this cache.  This means in this mode we
4302 		 * don't need to clflush on the CPU side, and on the
4303 		 * GPU side we only need to flush internal caches to
4304 		 * get data visible to the CPU.
4305 		 *
4306 		 * However, we maintain the display planes as UC, and so
4307 		 * need to rebind when first used as such.
4308 		 */
4309 		obj->cache_level = I915_CACHE_LLC;
4310 	} else
4311 		obj->cache_level = I915_CACHE_NONE;
4312 
4313 	trace_i915_gem_object_create(obj);
4314 
4315 	return obj;
4316 
4317 fail:
4318 	i915_gem_object_free(obj);
4319 	return ERR_PTR(ret);
4320 }
4321 
4322 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4323 {
4324 	/* If we are the last user of the backing storage (be it shmemfs
4325 	 * pages or stolen etc), we know that the pages are going to be
4326 	 * immediately released. In this case, we can then skip copying
4327 	 * back the contents from the GPU.
4328 	 */
4329 
4330 	if (obj->mm.madv != I915_MADV_WILLNEED)
4331 		return false;
4332 
4333 	if (obj->base.filp == NULL)
4334 		return true;
4335 
4336 	/* At first glance, this looks racy, but then again so would be
4337 	 * userspace racing mmap against close. However, the first external
4338 	 * reference to the filp can only be obtained through the
4339 	 * i915_gem_mmap_ioctl() which safeguards us against the user
4340 	 * acquiring such a reference whilst we are in the middle of
4341 	 * freeing the object.
4342 	 */
4343 #if 0
4344  	return atomic_long_read(&obj->base.filp->f_count) == 1;
4345 #else
4346 	return false;
4347 #endif
4348 }
4349 
4350 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4351 				    struct llist_node *freed)
4352 {
4353 	struct drm_i915_gem_object *obj, *on;
4354 
4355 	mutex_lock(&i915->drm.struct_mutex);
4356 	intel_runtime_pm_get(i915);
4357 	llist_for_each_entry_safe(obj, on, freed, freed) {
4358 		struct i915_vma *vma, *vn;
4359 
4360 		trace_i915_gem_object_destroy(obj);
4361 
4362 		GEM_BUG_ON(i915_gem_object_is_active(obj));
4363 		list_for_each_entry_safe(vma, vn,
4364 					 &obj->vma_list, obj_link) {
4365 			GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4366 			GEM_BUG_ON(i915_vma_is_active(vma));
4367 			vma->flags &= ~I915_VMA_PIN_MASK;
4368 			i915_vma_close(vma);
4369 		}
4370 		GEM_BUG_ON(!list_empty(&obj->vma_list));
4371 		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4372 
4373 		list_del(&obj->global_link);
4374 	}
4375 	intel_runtime_pm_put(i915);
4376 	mutex_unlock(&i915->drm.struct_mutex);
4377 
4378 	llist_for_each_entry_safe(obj, on, freed, freed) {
4379 		GEM_BUG_ON(obj->bind_count);
4380 		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4381 
4382 		if (obj->ops->release)
4383 			obj->ops->release(obj);
4384 
4385 #if 0
4386 		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4387 #else
4388 		if (i915_gem_object_has_pinned_pages(obj))
4389 #endif
4390 			atomic_set(&obj->mm.pages_pin_count, 0);
4391 		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4392 		GEM_BUG_ON(obj->mm.pages);
4393 
4394 #if 0
4395 		if (obj->base.import_attach)
4396 			drm_prime_gem_destroy(&obj->base, NULL);
4397 #endif
4398 
4399 		reservation_object_fini(&obj->__builtin_resv);
4400 		drm_gem_object_release(&obj->base);
4401 		i915_gem_info_remove_obj(i915, obj->base.size);
4402 
4403 		kfree(obj->bit_17);
4404 		i915_gem_object_free(obj);
4405 	}
4406 }
4407 
4408 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4409 {
4410 	struct llist_node *freed;
4411 
4412 	freed = llist_del_all(&i915->mm.free_list);
4413 	if (unlikely(freed))
4414 		__i915_gem_free_objects(i915, freed);
4415 }
4416 
4417 static void __i915_gem_free_work(struct work_struct *work)
4418 {
4419 	struct drm_i915_private *i915 =
4420 		container_of(work, struct drm_i915_private, mm.free_work);
4421 	struct llist_node *freed;
4422 
4423 	/* All file-owned VMA should have been released by this point through
4424 	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4425 	 * However, the object may also be bound into the global GTT (e.g.
4426 	 * older GPUs without per-process support, or for direct access through
4427 	 * the GTT either for the user or for scanout). Those VMA still need to
4428 	 * unbound now.
4429 	 */
4430 
4431 	while ((freed = llist_del_all(&i915->mm.free_list)))
4432 		__i915_gem_free_objects(i915, freed);
4433 }
4434 
4435 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4436 {
4437 	struct drm_i915_gem_object *obj =
4438 		container_of(head, typeof(*obj), rcu);
4439 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
4440 
4441 	/* We can't simply use call_rcu() from i915_gem_free_object()
4442 	 * as we need to block whilst unbinding, and the call_rcu
4443 	 * task may be called from softirq context. So we take a
4444 	 * detour through a worker.
4445 	 */
4446 	if (llist_add(&obj->freed, &i915->mm.free_list))
4447 		schedule_work(&i915->mm.free_work);
4448 }
4449 
4450 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4451 {
4452 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4453 
4454 	if (obj->mm.quirked)
4455 		__i915_gem_object_unpin_pages(obj);
4456 
4457 	if (discard_backing_storage(obj))
4458 		obj->mm.madv = I915_MADV_DONTNEED;
4459 
4460 	/* Before we free the object, make sure any pure RCU-only
4461 	 * read-side critical sections are complete, e.g.
4462 	 * i915_gem_busy_ioctl(). For the corresponding synchronized
4463 	 * lookup see i915_gem_object_lookup_rcu().
4464 	 */
4465 	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4466 }
4467 
4468 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4469 {
4470 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4471 
4472 	GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4473 	if (i915_gem_object_is_active(obj))
4474 		i915_gem_object_set_active_reference(obj);
4475 	else
4476 		i915_gem_object_put(obj);
4477 }
4478 
4479 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4480 {
4481 	struct intel_engine_cs *engine;
4482 	enum intel_engine_id id;
4483 
4484 	for_each_engine(engine, dev_priv, id)
4485 		GEM_BUG_ON(engine->last_context != dev_priv->kernel_context);
4486 }
4487 
4488 int i915_gem_suspend(struct drm_device *dev)
4489 {
4490 	struct drm_i915_private *dev_priv = to_i915(dev);
4491 	int ret;
4492 
4493 	intel_suspend_gt_powersave(dev_priv);
4494 
4495 	mutex_lock(&dev->struct_mutex);
4496 
4497 	/* We have to flush all the executing contexts to main memory so
4498 	 * that they can saved in the hibernation image. To ensure the last
4499 	 * context image is coherent, we have to switch away from it. That
4500 	 * leaves the dev_priv->kernel_context still active when
4501 	 * we actually suspend, and its image in memory may not match the GPU
4502 	 * state. Fortunately, the kernel_context is disposable and we do
4503 	 * not rely on its state.
4504 	 */
4505 	ret = i915_gem_switch_to_kernel_context(dev_priv);
4506 	if (ret)
4507 		goto err;
4508 
4509 	ret = i915_gem_wait_for_idle(dev_priv,
4510 				     I915_WAIT_INTERRUPTIBLE |
4511 				     I915_WAIT_LOCKED);
4512 	if (ret)
4513 		goto err;
4514 
4515 	i915_gem_retire_requests(dev_priv);
4516 	GEM_BUG_ON(dev_priv->gt.active_requests);
4517 
4518 	assert_kernel_context_is_current(dev_priv);
4519 	i915_gem_context_lost(dev_priv);
4520 	mutex_unlock(&dev->struct_mutex);
4521 
4522 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4523 	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4524 	flush_delayed_work(&dev_priv->gt.idle_work);
4525 	flush_work(&dev_priv->mm.free_work);
4526 
4527 	/* Assert that we sucessfully flushed all the work and
4528 	 * reset the GPU back to its idle, low power state.
4529 	 */
4530 	WARN_ON(dev_priv->gt.awake);
4531 	WARN_ON(!intel_execlists_idle(dev_priv));
4532 
4533 	/*
4534 	 * Neither the BIOS, ourselves or any other kernel
4535 	 * expects the system to be in execlists mode on startup,
4536 	 * so we need to reset the GPU back to legacy mode. And the only
4537 	 * known way to disable logical contexts is through a GPU reset.
4538 	 *
4539 	 * So in order to leave the system in a known default configuration,
4540 	 * always reset the GPU upon unload and suspend. Afterwards we then
4541 	 * clean up the GEM state tracking, flushing off the requests and
4542 	 * leaving the system in a known idle state.
4543 	 *
4544 	 * Note that is of the upmost importance that the GPU is idle and
4545 	 * all stray writes are flushed *before* we dismantle the backing
4546 	 * storage for the pinned objects.
4547 	 *
4548 	 * However, since we are uncertain that resetting the GPU on older
4549 	 * machines is a good idea, we don't - just in case it leaves the
4550 	 * machine in an unusable condition.
4551 	 */
4552 	if (HAS_HW_CONTEXTS(dev_priv)) {
4553 		int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
4554 		WARN_ON(reset && reset != -ENODEV);
4555 	}
4556 
4557 	return 0;
4558 
4559 err:
4560 	mutex_unlock(&dev->struct_mutex);
4561 	return ret;
4562 }
4563 
4564 void i915_gem_resume(struct drm_device *dev)
4565 {
4566 	struct drm_i915_private *dev_priv = to_i915(dev);
4567 
4568 	WARN_ON(dev_priv->gt.awake);
4569 
4570 	mutex_lock(&dev->struct_mutex);
4571 	i915_gem_restore_gtt_mappings(dev_priv);
4572 
4573 	/* As we didn't flush the kernel context before suspend, we cannot
4574 	 * guarantee that the context image is complete. So let's just reset
4575 	 * it and start again.
4576 	 */
4577 	dev_priv->gt.resume(dev_priv);
4578 
4579 	mutex_unlock(&dev->struct_mutex);
4580 }
4581 
4582 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4583 {
4584 	if (INTEL_GEN(dev_priv) < 5 ||
4585 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4586 		return;
4587 
4588 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4589 				 DISP_TILE_SURFACE_SWIZZLING);
4590 
4591 	if (IS_GEN5(dev_priv))
4592 		return;
4593 
4594 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4595 	if (IS_GEN6(dev_priv))
4596 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4597 	else if (IS_GEN7(dev_priv))
4598 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4599 	else if (IS_GEN8(dev_priv))
4600 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4601 	else
4602 		BUG();
4603 }
4604 
4605 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4606 {
4607 	I915_WRITE(RING_CTL(base), 0);
4608 	I915_WRITE(RING_HEAD(base), 0);
4609 	I915_WRITE(RING_TAIL(base), 0);
4610 	I915_WRITE(RING_START(base), 0);
4611 }
4612 
4613 static void init_unused_rings(struct drm_i915_private *dev_priv)
4614 {
4615 	if (IS_I830(dev_priv)) {
4616 		init_unused_ring(dev_priv, PRB1_BASE);
4617 		init_unused_ring(dev_priv, SRB0_BASE);
4618 		init_unused_ring(dev_priv, SRB1_BASE);
4619 		init_unused_ring(dev_priv, SRB2_BASE);
4620 		init_unused_ring(dev_priv, SRB3_BASE);
4621 	} else if (IS_GEN2(dev_priv)) {
4622 		init_unused_ring(dev_priv, SRB0_BASE);
4623 		init_unused_ring(dev_priv, SRB1_BASE);
4624 	} else if (IS_GEN3(dev_priv)) {
4625 		init_unused_ring(dev_priv, PRB1_BASE);
4626 		init_unused_ring(dev_priv, PRB2_BASE);
4627 	}
4628 }
4629 
4630 int
4631 i915_gem_init_hw(struct drm_device *dev)
4632 {
4633 	struct drm_i915_private *dev_priv = to_i915(dev);
4634 	struct intel_engine_cs *engine;
4635 	enum intel_engine_id id;
4636 	int ret;
4637 
4638 	dev_priv->gt.last_init_time = ktime_get();
4639 
4640 	/* Double layer security blanket, see i915_gem_init() */
4641 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4642 
4643 	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4644 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4645 
4646 	if (IS_HASWELL(dev_priv))
4647 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4648 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4649 
4650 	if (HAS_PCH_NOP(dev_priv)) {
4651 		if (IS_IVYBRIDGE(dev_priv)) {
4652 			u32 temp = I915_READ(GEN7_MSG_CTL);
4653 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4654 			I915_WRITE(GEN7_MSG_CTL, temp);
4655 		} else if (INTEL_GEN(dev_priv) >= 7) {
4656 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4657 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4658 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4659 		}
4660 	}
4661 
4662 	i915_gem_init_swizzling(dev_priv);
4663 
4664 	/*
4665 	 * At least 830 can leave some of the unused rings
4666 	 * "active" (ie. head != tail) after resume which
4667 	 * will prevent c3 entry. Makes sure all unused rings
4668 	 * are totally idle.
4669 	 */
4670 	init_unused_rings(dev_priv);
4671 
4672 	BUG_ON(!dev_priv->kernel_context);
4673 
4674 	ret = i915_ppgtt_init_hw(dev_priv);
4675 	if (ret) {
4676 		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4677 		goto out;
4678 	}
4679 
4680 	/* Need to do basic initialisation of all rings first: */
4681 	for_each_engine(engine, dev_priv, id) {
4682 		ret = engine->init_hw(engine);
4683 		if (ret)
4684 			goto out;
4685 	}
4686 
4687 	intel_mocs_init_l3cc_table(dev);
4688 
4689 	/* We can't enable contexts until all firmware is loaded */
4690 	ret = intel_guc_setup(dev);
4691 	if (ret)
4692 		goto out;
4693 
4694 out:
4695 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4696 	return ret;
4697 }
4698 
4699 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4700 {
4701 	if (INTEL_INFO(dev_priv)->gen < 6)
4702 		return false;
4703 
4704 	/* TODO: make semaphores and Execlists play nicely together */
4705 	if (i915.enable_execlists)
4706 		return false;
4707 
4708 	if (value >= 0)
4709 		return value;
4710 
4711 #ifdef CONFIG_INTEL_IOMMU
4712 	/* Enable semaphores on SNB when IO remapping is off */
4713 	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4714 		return false;
4715 #endif
4716 
4717 	return true;
4718 }
4719 
4720 int i915_gem_init(struct drm_device *dev)
4721 {
4722 	struct drm_i915_private *dev_priv = to_i915(dev);
4723 	int ret;
4724 
4725 	mutex_lock(&dev->struct_mutex);
4726 
4727 	if (!i915.enable_execlists) {
4728 		dev_priv->gt.resume = intel_legacy_submission_resume;
4729 		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4730 	} else {
4731 		dev_priv->gt.resume = intel_lr_context_resume;
4732 		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4733 	}
4734 
4735 	/* This is just a security blanket to placate dragons.
4736 	 * On some systems, we very sporadically observe that the first TLBs
4737 	 * used by the CS may be stale, despite us poking the TLB reset. If
4738 	 * we hold the forcewake during initialisation these problems
4739 	 * just magically go away.
4740 	 */
4741 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4742 
4743 	i915_gem_init_userptr(dev_priv);
4744 
4745 	ret = i915_gem_init_ggtt(dev_priv);
4746 	if (ret)
4747 		goto out_unlock;
4748 
4749 	ret = i915_gem_context_init(dev);
4750 	if (ret)
4751 		goto out_unlock;
4752 
4753 	ret = intel_engines_init(dev);
4754 	if (ret)
4755 		goto out_unlock;
4756 
4757 	ret = i915_gem_init_hw(dev);
4758 	if (ret == -EIO) {
4759 		/* Allow engine initialisation to fail by marking the GPU as
4760 		 * wedged. But we only want to do this where the GPU is angry,
4761 		 * for all other failure, such as an allocation failure, bail.
4762 		 */
4763 		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4764 		i915_gem_set_wedged(dev_priv);
4765 		ret = 0;
4766 	}
4767 
4768 out_unlock:
4769 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4770 	mutex_unlock(&dev->struct_mutex);
4771 
4772 	return ret;
4773 }
4774 
4775 void
4776 i915_gem_cleanup_engines(struct drm_device *dev)
4777 {
4778 	struct drm_i915_private *dev_priv = to_i915(dev);
4779 	struct intel_engine_cs *engine;
4780 	enum intel_engine_id id;
4781 
4782 	for_each_engine(engine, dev_priv, id)
4783 		dev_priv->gt.cleanup_engine(engine);
4784 }
4785 
4786 void
4787 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4788 {
4789 	int i;
4790 
4791 	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4792 	    !IS_CHERRYVIEW(dev_priv))
4793 		dev_priv->num_fence_regs = 32;
4794 	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4795 		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
4796 		dev_priv->num_fence_regs = 16;
4797 	else
4798 		dev_priv->num_fence_regs = 8;
4799 
4800 	if (intel_vgpu_active(dev_priv))
4801 		dev_priv->num_fence_regs =
4802 				I915_READ(vgtif_reg(avail_rs.fence_num));
4803 
4804 	/* Initialize fence registers to zero */
4805 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
4806 		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4807 
4808 		fence->i915 = dev_priv;
4809 		fence->id = i;
4810 		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4811 	}
4812 	i915_gem_restore_fences(dev_priv);
4813 
4814 	i915_gem_detect_bit_6_swizzle(dev_priv);
4815 }
4816 
4817 int
4818 i915_gem_load_init(struct drm_device *dev)
4819 {
4820 	struct drm_i915_private *dev_priv = to_i915(dev);
4821 	int err;
4822 
4823 	dev_priv->objects =
4824 		kmem_cache_create("i915_gem_object",
4825 				  sizeof(struct drm_i915_gem_object), 0,
4826 				  SLAB_HWCACHE_ALIGN,
4827 				  NULL);
4828 	if (!dev_priv->objects) {
4829 		err = -ENOMEM;
4830 		goto err_out;
4831 	}
4832 
4833 	dev_priv->vmas =
4834 		kmem_cache_create("i915_gem_vma",
4835 				  sizeof(struct i915_vma), 0,
4836 				  SLAB_HWCACHE_ALIGN,
4837 				  NULL);
4838 	if (!dev_priv->vmas) {
4839 		err = -ENOMEM;
4840 		goto err_objects;
4841 	}
4842 
4843 	dev_priv->requests =
4844 		kmem_cache_create("i915_gem_request",
4845 				  sizeof(struct drm_i915_gem_request), 0,
4846 				  SLAB_HWCACHE_ALIGN |
4847 				  SLAB_RECLAIM_ACCOUNT |
4848 				  SLAB_DESTROY_BY_RCU,
4849 				  NULL);
4850 	if (!dev_priv->requests) {
4851 		err = -ENOMEM;
4852 		goto err_vmas;
4853 	}
4854 
4855 	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4856 					    SLAB_HWCACHE_ALIGN |
4857 					    SLAB_RECLAIM_ACCOUNT);
4858 	if (!dev_priv->dependencies)
4859 		goto err_requests;
4860 
4861 	mutex_lock(&dev_priv->drm.struct_mutex);
4862 	INIT_LIST_HEAD(&dev_priv->gt.timelines);
4863 	err = i915_gem_timeline_init__global(dev_priv);
4864 	mutex_unlock(&dev_priv->drm.struct_mutex);
4865 	if (err)
4866 		goto err_dependencies;
4867 
4868 	INIT_LIST_HEAD(&dev_priv->context_list);
4869 	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4870 	init_llist_head(&dev_priv->mm.free_list);
4871 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4872 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4873 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4874 	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4875 	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4876 			  i915_gem_retire_work_handler);
4877 	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4878 			  i915_gem_idle_work_handler);
4879 	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4880 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4881 
4882 	init_waitqueue_head(&dev_priv->pending_flip_queue);
4883 
4884 	dev_priv->mm.interruptible = true;
4885 
4886 	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4887 
4888 	lockinit(&dev_priv->fb_tracking.lock, "drmftl", 0, 0);
4889 
4890 	return 0;
4891 
4892 err_dependencies:
4893 	kmem_cache_destroy(dev_priv->dependencies);
4894 err_requests:
4895 	kmem_cache_destroy(dev_priv->requests);
4896 err_vmas:
4897 	kmem_cache_destroy(dev_priv->vmas);
4898 err_objects:
4899 	kmem_cache_destroy(dev_priv->objects);
4900 err_out:
4901 	return err;
4902 }
4903 
4904 void i915_gem_load_cleanup(struct drm_device *dev)
4905 {
4906 	struct drm_i915_private *dev_priv = to_i915(dev);
4907 
4908 	WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4909 
4910 	mutex_lock(&dev_priv->drm.struct_mutex);
4911 	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4912 	WARN_ON(!list_empty(&dev_priv->gt.timelines));
4913 	mutex_unlock(&dev_priv->drm.struct_mutex);
4914 
4915 	kmem_cache_destroy(dev_priv->dependencies);
4916 	kmem_cache_destroy(dev_priv->requests);
4917 	kmem_cache_destroy(dev_priv->vmas);
4918 	kmem_cache_destroy(dev_priv->objects);
4919 
4920 	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4921 	rcu_barrier();
4922 }
4923 
4924 int i915_gem_freeze(struct drm_i915_private *dev_priv)
4925 {
4926 	intel_runtime_pm_get(dev_priv);
4927 
4928 	mutex_lock(&dev_priv->drm.struct_mutex);
4929 	i915_gem_shrink_all(dev_priv);
4930 	mutex_unlock(&dev_priv->drm.struct_mutex);
4931 
4932 	intel_runtime_pm_put(dev_priv);
4933 
4934 	return 0;
4935 }
4936 
4937 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4938 {
4939 	struct drm_i915_gem_object *obj;
4940 	struct list_head *phases[] = {
4941 		&dev_priv->mm.unbound_list,
4942 		&dev_priv->mm.bound_list,
4943 		NULL
4944 	}, **p;
4945 
4946 	/* Called just before we write the hibernation image.
4947 	 *
4948 	 * We need to update the domain tracking to reflect that the CPU
4949 	 * will be accessing all the pages to create and restore from the
4950 	 * hibernation, and so upon restoration those pages will be in the
4951 	 * CPU domain.
4952 	 *
4953 	 * To make sure the hibernation image contains the latest state,
4954 	 * we update that state just before writing out the image.
4955 	 *
4956 	 * To try and reduce the hibernation image, we manually shrink
4957 	 * the objects as well.
4958 	 */
4959 
4960 	mutex_lock(&dev_priv->drm.struct_mutex);
4961 	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4962 
4963 	for (p = phases; *p; p++) {
4964 		list_for_each_entry(obj, *p, global_link) {
4965 			obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4966 			obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4967 		}
4968 	}
4969 	mutex_unlock(&dev_priv->drm.struct_mutex);
4970 
4971 	return 0;
4972 }
4973 
4974 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4975 {
4976 	struct drm_i915_file_private *file_priv = file->driver_priv;
4977 	struct drm_i915_gem_request *request;
4978 
4979 	/* Clean up our request list when the client is going away, so that
4980 	 * later retire_requests won't dereference our soon-to-be-gone
4981 	 * file_priv.
4982 	 */
4983 	lockmgr(&file_priv->mm.lock, LK_EXCLUSIVE);
4984 	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4985 		request->file_priv = NULL;
4986 	lockmgr(&file_priv->mm.lock, LK_RELEASE);
4987 
4988 	if (!list_empty(&file_priv->rps.link)) {
4989 		lockmgr(&to_i915(dev)->rps.client_lock, LK_EXCLUSIVE);
4990 		list_del(&file_priv->rps.link);
4991 		lockmgr(&to_i915(dev)->rps.client_lock, LK_RELEASE);
4992 	}
4993 }
4994 
4995 int
4996 i915_gem_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
4997     vm_ooffset_t foff, struct ucred *cred, u_short *color)
4998 {
4999 	*color = 0; /* XXXKIB */
5000 	return (0);
5001 }
5002 
5003 void
5004 i915_gem_pager_dtor(void *handle)
5005 {
5006 	struct drm_gem_object *obj = handle;
5007 	struct drm_device *dev = obj->dev;
5008 
5009 	mutex_lock(&dev->struct_mutex);
5010 	drm_gem_free_mmap_offset(obj);
5011 	i915_gem_release_mmap(to_intel_bo(obj));
5012 	drm_gem_object_unreference(obj);
5013 	mutex_unlock(&dev->struct_mutex);
5014 }
5015 
5016 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5017 {
5018 	struct drm_i915_file_private *file_priv;
5019 	int ret;
5020 
5021 	DRM_DEBUG("\n");
5022 
5023 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5024 	if (!file_priv)
5025 		return -ENOMEM;
5026 
5027 	file->driver_priv = file_priv;
5028 	file_priv->dev_priv = to_i915(dev);
5029 	file_priv->file = file;
5030 	INIT_LIST_HEAD(&file_priv->rps.link);
5031 
5032 	lockinit(&file_priv->mm.lock, "i915_priv", 0, 0);
5033 	INIT_LIST_HEAD(&file_priv->mm.request_list);
5034 
5035 	file_priv->bsd_engine = -1;
5036 
5037 	ret = i915_gem_context_open(dev, file);
5038 	if (ret)
5039 		kfree(file_priv);
5040 
5041 	return ret;
5042 }
5043 
5044 /**
5045  * i915_gem_track_fb - update frontbuffer tracking
5046  * @old: current GEM buffer for the frontbuffer slots
5047  * @new: new GEM buffer for the frontbuffer slots
5048  * @frontbuffer_bits: bitmask of frontbuffer slots
5049  *
5050  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5051  * from @old and setting them in @new. Both @old and @new can be NULL.
5052  */
5053 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5054 		       struct drm_i915_gem_object *new,
5055 		       unsigned frontbuffer_bits)
5056 {
5057 	/* Control of individual bits within the mask are guarded by
5058 	 * the owning plane->mutex, i.e. we can never see concurrent
5059 	 * manipulation of individual bits. But since the bitfield as a whole
5060 	 * is updated using RMW, we need to use atomics in order to update
5061 	 * the bits.
5062 	 */
5063 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5064 		     sizeof(atomic_t) * BITS_PER_BYTE);
5065 
5066 	if (old) {
5067 		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5068 		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5069 	}
5070 
5071 	if (new) {
5072 		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5073 		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5074 	}
5075 }
5076 
5077 /* Allocate a new GEM object and fill it with the supplied data */
5078 struct drm_i915_gem_object *
5079 i915_gem_object_create_from_data(struct drm_device *dev,
5080 			         const void *data, size_t size)
5081 {
5082 	struct drm_i915_gem_object *obj;
5083 	struct sg_table *sg;
5084 	size_t bytes;
5085 	int ret;
5086 
5087 	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
5088 	if (IS_ERR(obj))
5089 		return obj;
5090 
5091 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
5092 	if (ret)
5093 		goto fail;
5094 
5095 	ret = i915_gem_object_pin_pages(obj);
5096 	if (ret)
5097 		goto fail;
5098 
5099 	sg = obj->mm.pages;
5100 	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5101 	obj->mm.dirty = true; /* Backing store is now out of date */
5102 	i915_gem_object_unpin_pages(obj);
5103 
5104 	if (WARN_ON(bytes != size)) {
5105 		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5106 		ret = -EFAULT;
5107 		goto fail;
5108 	}
5109 
5110 	return obj;
5111 
5112 fail:
5113 	i915_gem_object_put(obj);
5114 	return ERR_PTR(ret);
5115 }
5116 
5117 struct scatterlist *
5118 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5119 		       unsigned int n,
5120 		       unsigned int *offset)
5121 {
5122 	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5123 	struct scatterlist *sg;
5124 	unsigned int idx, count;
5125 
5126 	might_sleep();
5127 	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
5128 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5129 
5130 	/* As we iterate forward through the sg, we record each entry in a
5131 	 * radixtree for quick repeated (backwards) lookups. If we have seen
5132 	 * this index previously, we will have an entry for it.
5133 	 *
5134 	 * Initial lookup is O(N), but this is amortized to O(1) for
5135 	 * sequential page access (where each new request is consecutive
5136 	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5137 	 * i.e. O(1) with a large constant!
5138 	 */
5139 	if (n < READ_ONCE(iter->sg_idx))
5140 		goto lookup;
5141 
5142 	mutex_lock(&iter->lock);
5143 
5144 	/* We prefer to reuse the last sg so that repeated lookup of this
5145 	 * (or the subsequent) sg are fast - comparing against the last
5146 	 * sg is faster than going through the radixtree.
5147 	 */
5148 
5149 	sg = iter->sg_pos;
5150 	idx = iter->sg_idx;
5151 	count = __sg_page_count(sg);
5152 
5153 	while (idx + count <= n) {
5154 		unsigned long exception, i;
5155 		int ret;
5156 
5157 		/* If we cannot allocate and insert this entry, or the
5158 		 * individual pages from this range, cancel updating the
5159 		 * sg_idx so that on this lookup we are forced to linearly
5160 		 * scan onwards, but on future lookups we will try the
5161 		 * insertion again (in which case we need to be careful of
5162 		 * the error return reporting that we have already inserted
5163 		 * this index).
5164 		 */
5165 		ret = radix_tree_insert(&iter->radix, idx, sg);
5166 		if (ret && ret != -EEXIST)
5167 			goto scan;
5168 
5169 		exception =
5170 			RADIX_TREE_EXCEPTIONAL_ENTRY |
5171 			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5172 		for (i = 1; i < count; i++) {
5173 			ret = radix_tree_insert(&iter->radix, idx + i,
5174 						(void *)exception);
5175 			if (ret && ret != -EEXIST)
5176 				goto scan;
5177 		}
5178 
5179 		idx += count;
5180 		sg = ____sg_next(sg);
5181 		count = __sg_page_count(sg);
5182 	}
5183 
5184 scan:
5185 	iter->sg_pos = sg;
5186 	iter->sg_idx = idx;
5187 
5188 	mutex_unlock(&iter->lock);
5189 
5190 	if (unlikely(n < idx)) /* insertion completed by another thread */
5191 		goto lookup;
5192 
5193 	/* In case we failed to insert the entry into the radixtree, we need
5194 	 * to look beyond the current sg.
5195 	 */
5196 	while (idx + count <= n) {
5197 		idx += count;
5198 		sg = ____sg_next(sg);
5199 		count = __sg_page_count(sg);
5200 	}
5201 
5202 	*offset = n - idx;
5203 	return sg;
5204 
5205 lookup:
5206 	rcu_read_lock();
5207 
5208 	sg = radix_tree_lookup(&iter->radix, n);
5209 	GEM_BUG_ON(!sg);
5210 
5211 	/* If this index is in the middle of multi-page sg entry,
5212 	 * the radixtree will contain an exceptional entry that points
5213 	 * to the start of that range. We will return the pointer to
5214 	 * the base page and the offset of this page within the
5215 	 * sg entry's range.
5216 	 */
5217 	*offset = 0;
5218 	if (unlikely(radix_tree_exception(sg))) {
5219 		unsigned long base =
5220 			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5221 
5222 		sg = radix_tree_lookup(&iter->radix, base);
5223 		GEM_BUG_ON(!sg);
5224 
5225 		*offset = n - base;
5226 	}
5227 
5228 	rcu_read_unlock();
5229 
5230 	return sg;
5231 }
5232 
5233 struct page *
5234 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5235 {
5236 	struct scatterlist *sg;
5237 	unsigned int offset;
5238 
5239 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5240 
5241 	sg = i915_gem_object_get_sg(obj, n, &offset);
5242 	return nth_page(sg_page(sg), offset);
5243 }
5244 
5245 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5246 struct page *
5247 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5248 			       unsigned int n)
5249 {
5250 	struct page *page;
5251 
5252 	page = i915_gem_object_get_page(obj, n);
5253 	if (!obj->mm.dirty)
5254 		set_page_dirty(page);
5255 
5256 	return page;
5257 }
5258 
5259 dma_addr_t
5260 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5261 				unsigned long n)
5262 {
5263 	struct scatterlist *sg;
5264 	unsigned int offset;
5265 
5266 	sg = i915_gem_object_get_sg(obj, n, &offset);
5267 	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5268 }
5269