1 /* 2 * Copyright © 2008 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 * Copyright (c) 2011 The FreeBSD Foundation 27 * All rights reserved. 28 * 29 * This software was developed by Konstantin Belousov under sponsorship from 30 * the FreeBSD Foundation. 31 * 32 * Redistribution and use in source and binary forms, with or without 33 * modification, are permitted provided that the following conditions 34 * are met: 35 * 1. Redistributions of source code must retain the above copyright 36 * notice, this list of conditions and the following disclaimer. 37 * 2. Redistributions in binary form must reproduce the above copyright 38 * notice, this list of conditions and the following disclaimer in the 39 * documentation and/or other materials provided with the distribution. 40 * 41 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 51 * SUCH DAMAGE. 52 * 53 */ 54 55 #include <sys/resourcevar.h> 56 #include <sys/sfbuf.h> 57 58 #include <drm/drmP.h> 59 #include <drm/i915_drm.h> 60 #include "i915_drv.h" 61 #include "intel_drv.h" 62 #include "intel_ringbuffer.h" 63 #include <linux/completion.h> 64 #include <linux/jiffies.h> 65 #include <linux/time.h> 66 67 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj); 68 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj); 69 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj, 70 unsigned alignment, 71 bool map_and_fenceable, 72 bool nonblocking); 73 static int i915_gem_phys_pwrite(struct drm_device *dev, 74 struct drm_i915_gem_object *obj, uint64_t data_ptr, uint64_t offset, 75 uint64_t size, struct drm_file *file_priv); 76 77 static void i915_gem_write_fence(struct drm_device *dev, int reg, 78 struct drm_i915_gem_object *obj); 79 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj, 80 struct drm_i915_fence_reg *fence, 81 bool enable); 82 83 static uint32_t i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, 84 int tiling_mode); 85 static uint32_t i915_gem_get_gtt_alignment(struct drm_device *dev, 86 uint32_t size, int tiling_mode); 87 static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj, 88 int flags); 89 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj); 90 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj); 91 92 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj) 93 { 94 if (obj->tiling_mode) 95 i915_gem_release_mmap(obj); 96 97 /* As we do not have an associated fence register, we will force 98 * a tiling change if we ever need to acquire one. 99 */ 100 obj->fence_dirty = false; 101 obj->fence_reg = I915_FENCE_REG_NONE; 102 } 103 104 static int i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj); 105 static bool i915_gem_object_is_inactive(struct drm_i915_gem_object *obj); 106 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj); 107 static vm_page_t i915_gem_wire_page(vm_object_t object, vm_pindex_t pindex); 108 static void i915_gem_reset_fences(struct drm_device *dev); 109 static void i915_gem_lowmem(void *arg); 110 111 static int i915_gem_obj_io(struct drm_device *dev, uint32_t handle, uint64_t data_ptr, 112 uint64_t size, uint64_t offset, enum uio_rw rw, struct drm_file *file); 113 114 /* some bookkeeping */ 115 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv, 116 size_t size) 117 { 118 dev_priv->mm.object_count++; 119 dev_priv->mm.object_memory += size; 120 } 121 122 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv, 123 size_t size) 124 { 125 dev_priv->mm.object_count--; 126 dev_priv->mm.object_memory -= size; 127 } 128 129 static int 130 i915_gem_wait_for_error(struct drm_device *dev) 131 { 132 struct drm_i915_private *dev_priv = dev->dev_private; 133 struct completion *x = &dev_priv->error_completion; 134 int ret; 135 136 if (!atomic_read(&dev_priv->mm.wedged)) 137 return 0; 138 139 /* 140 * Only wait 10 seconds for the gpu reset to complete to avoid hanging 141 * userspace. If it takes that long something really bad is going on and 142 * we should simply try to bail out and fail as gracefully as possible. 143 */ 144 ret = wait_for_completion_interruptible_timeout(x, 10*hz); 145 if (ret == 0) { 146 DRM_ERROR("Timed out waiting for the gpu reset to complete\n"); 147 return -EIO; 148 } else if (ret < 0) { 149 return ret; 150 } 151 152 if (atomic_read(&dev_priv->mm.wedged)) { 153 /* GPU is hung, bump the completion count to account for 154 * the token we just consumed so that we never hit zero and 155 * end up waiting upon a subsequent completion event that 156 * will never happen. 157 */ 158 spin_lock(&x->wait.lock); 159 x->done++; 160 spin_unlock(&x->wait.lock); 161 } 162 return 0; 163 } 164 165 int i915_mutex_lock_interruptible(struct drm_device *dev) 166 { 167 int ret; 168 169 ret = i915_gem_wait_for_error(dev); 170 if (ret) 171 return ret; 172 173 ret = lockmgr(&dev->dev_struct_lock, LK_EXCLUSIVE|LK_SLEEPFAIL); 174 if (ret) 175 return -EINTR; 176 177 WARN_ON(i915_verify_lists(dev)); 178 return 0; 179 } 180 181 static inline bool 182 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj) 183 { 184 return !obj->active; 185 } 186 187 int 188 i915_gem_init_ioctl(struct drm_device *dev, void *data, 189 struct drm_file *file) 190 { 191 struct drm_i915_gem_init *args = data; 192 193 if (drm_core_check_feature(dev, DRIVER_MODESET)) 194 return -ENODEV; 195 196 if (args->gtt_start >= args->gtt_end || 197 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1)) 198 return -EINVAL; 199 200 /* GEM with user mode setting was never supported on ilk and later. */ 201 if (INTEL_INFO(dev)->gen >= 5) 202 return -ENODEV; 203 204 lockmgr(&dev->dev_lock, LK_EXCLUSIVE|LK_RETRY|LK_CANRECURSE); 205 i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end); 206 lockmgr(&dev->dev_lock, LK_RELEASE); 207 208 return 0; 209 } 210 211 int 212 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 213 struct drm_file *file) 214 { 215 struct drm_i915_private *dev_priv = dev->dev_private; 216 struct drm_i915_gem_get_aperture *args = data; 217 struct drm_i915_gem_object *obj; 218 size_t pinned; 219 220 pinned = 0; 221 DRM_LOCK(dev); 222 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) 223 if (obj->pin_count) 224 pinned += obj->gtt_space->size; 225 DRM_UNLOCK(dev); 226 227 args->aper_size = dev_priv->mm.gtt_total; 228 args->aper_available_size = args->aper_size - pinned; 229 230 return 0; 231 } 232 233 static int 234 i915_gem_create(struct drm_file *file, 235 struct drm_device *dev, 236 uint64_t size, 237 uint32_t *handle_p) 238 { 239 struct drm_i915_gem_object *obj; 240 int ret; 241 u32 handle; 242 243 size = roundup(size, PAGE_SIZE); 244 if (size == 0) 245 return -EINVAL; 246 247 /* Allocate the new object */ 248 obj = i915_gem_alloc_object(dev, size); 249 if (obj == NULL) 250 return -ENOMEM; 251 252 handle = 0; 253 ret = drm_gem_handle_create(file, &obj->base, &handle); 254 if (ret) { 255 drm_gem_object_release(&obj->base); 256 i915_gem_info_remove_obj(dev->dev_private, obj->base.size); 257 drm_free(obj, M_DRM); 258 return (-ret); 259 } 260 261 /* drop reference from allocate - handle holds it now */ 262 drm_gem_object_unreference(&obj->base); 263 *handle_p = handle; 264 return 0; 265 } 266 267 int 268 i915_gem_dumb_create(struct drm_file *file, 269 struct drm_device *dev, 270 struct drm_mode_create_dumb *args) 271 { 272 273 /* have to work out size/pitch and return them */ 274 args->pitch = roundup2(args->width * ((args->bpp + 7) / 8), 64); 275 args->size = args->pitch * args->height; 276 return i915_gem_create(file, dev, 277 args->size, &args->handle); 278 } 279 280 int i915_gem_dumb_destroy(struct drm_file *file, 281 struct drm_device *dev, 282 uint32_t handle) 283 { 284 285 return drm_gem_handle_delete(file, handle); 286 } 287 288 /** 289 * Creates a new mm object and returns a handle to it. 290 */ 291 int 292 i915_gem_create_ioctl(struct drm_device *dev, void *data, 293 struct drm_file *file) 294 { 295 struct drm_i915_gem_create *args = data; 296 297 return i915_gem_create(file, dev, 298 args->size, &args->handle); 299 } 300 301 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj) 302 { 303 drm_i915_private_t *dev_priv = obj->base.dev->dev_private; 304 305 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 && 306 obj->tiling_mode != I915_TILING_NONE; 307 } 308 309 /** 310 * Reads data from the object referenced by handle. 311 * 312 * On error, the contents of *data are undefined. 313 */ 314 int 315 i915_gem_pread_ioctl(struct drm_device *dev, void *data, 316 struct drm_file *file) 317 { 318 struct drm_i915_gem_pread *args = data; 319 320 return (i915_gem_obj_io(dev, args->handle, args->data_ptr, args->size, 321 args->offset, UIO_READ, file)); 322 } 323 324 /** 325 * Writes data to the object referenced by handle. 326 * 327 * On error, the contents of the buffer that were to be modified are undefined. 328 */ 329 int 330 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 331 struct drm_file *file) 332 { 333 struct drm_i915_gem_pwrite *args = data; 334 335 return (i915_gem_obj_io(dev, args->handle, args->data_ptr, args->size, 336 args->offset, UIO_WRITE, file)); 337 } 338 339 int 340 i915_gem_check_wedge(struct drm_i915_private *dev_priv, 341 bool interruptible) 342 { 343 if (atomic_read(&dev_priv->mm.wedged)) { 344 struct completion *x = &dev_priv->error_completion; 345 bool recovery_complete; 346 347 /* Give the error handler a chance to run. */ 348 spin_lock(&x->wait.lock); 349 recovery_complete = x->done > 0; 350 spin_unlock(&x->wait.lock); 351 352 /* Non-interruptible callers can't handle -EAGAIN, hence return 353 * -EIO unconditionally for these. */ 354 if (!interruptible) 355 return -EIO; 356 357 /* Recovery complete, but still wedged means reset failure. */ 358 if (recovery_complete) 359 return -EIO; 360 361 return -EAGAIN; 362 } 363 364 return 0; 365 } 366 367 /* 368 * Compare seqno against outstanding lazy request. Emit a request if they are 369 * equal. 370 */ 371 static int 372 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno) 373 { 374 int ret; 375 376 DRM_LOCK_ASSERT(ring->dev); 377 378 ret = 0; 379 if (seqno == ring->outstanding_lazy_request) 380 ret = i915_add_request(ring, NULL, NULL); 381 382 return ret; 383 } 384 385 /** 386 * __wait_seqno - wait until execution of seqno has finished 387 * @ring: the ring expected to report seqno 388 * @seqno: duh! 389 * @interruptible: do an interruptible wait (normally yes) 390 * @timeout: in - how long to wait (NULL forever); out - how much time remaining 391 * 392 * Returns 0 if the seqno was found within the alloted time. Else returns the 393 * errno with remaining time filled in timeout argument. 394 */ 395 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno, 396 bool interruptible, struct timespec *timeout) 397 { 398 drm_i915_private_t *dev_priv = ring->dev->dev_private; 399 struct timespec before, now, wait_time={1,0}; 400 unsigned long timeout_jiffies; 401 long end; 402 bool wait_forever = true; 403 int ret; 404 405 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno)) 406 return 0; 407 408 if (timeout != NULL) { 409 wait_time = *timeout; 410 wait_forever = false; 411 } 412 413 timeout_jiffies = timespec_to_jiffies(&wait_time); 414 415 if (WARN_ON(!ring->irq_get(ring))) 416 return -ENODEV; 417 418 /* Record current time in case interrupted by signal, or wedged * */ 419 getrawmonotonic(&before); 420 421 #define EXIT_COND \ 422 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \ 423 atomic_read(&dev_priv->mm.wedged)) 424 do { 425 if (interruptible) 426 end = wait_event_interruptible_timeout(ring->irq_queue, 427 EXIT_COND, 428 timeout_jiffies); 429 else 430 end = wait_event_timeout(ring->irq_queue, EXIT_COND, 431 timeout_jiffies); 432 433 ret = i915_gem_check_wedge(dev_priv, interruptible); 434 if (ret) 435 end = ret; 436 } while (end == 0 && wait_forever); 437 438 getrawmonotonic(&now); 439 440 ring->irq_put(ring); 441 #undef EXIT_COND 442 443 if (timeout) { 444 struct timespec sleep_time = timespec_sub(now, before); 445 *timeout = timespec_sub(*timeout, sleep_time); 446 } 447 448 switch (end) { 449 case -EIO: 450 case -EAGAIN: /* Wedged */ 451 case -ERESTARTSYS: /* Signal */ 452 return (int)end; 453 case 0: /* Timeout */ 454 if (timeout) 455 set_normalized_timespec(timeout, 0, 0); 456 return -ETIMEDOUT; /* -ETIME on Linux */ 457 default: /* Completed */ 458 WARN_ON(end < 0); /* We're not aware of other errors */ 459 return 0; 460 } 461 } 462 463 /** 464 * Waits for a sequence number to be signaled, and cleans up the 465 * request and object lists appropriately for that event. 466 */ 467 int 468 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno) 469 { 470 struct drm_device *dev = ring->dev; 471 struct drm_i915_private *dev_priv = dev->dev_private; 472 int ret = 0; 473 474 DRM_LOCK_ASSERT(dev); 475 BUG_ON(seqno == 0); 476 477 ret = i915_gem_check_wedge(dev_priv, dev_priv->mm.interruptible); 478 if (ret) 479 return ret; 480 481 ret = i915_gem_check_olr(ring, seqno); 482 if (ret) 483 return ret; 484 485 ret = __wait_seqno(ring, seqno, dev_priv->mm.interruptible, NULL); 486 487 return ret; 488 } 489 490 /** 491 * Ensures that all rendering to the object has completed and the object is 492 * safe to unbind from the GTT or access from the CPU. 493 */ 494 static __must_check int 495 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj, 496 bool readonly) 497 { 498 struct intel_ring_buffer *ring = obj->ring; 499 u32 seqno; 500 int ret; 501 502 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno; 503 if (seqno == 0) 504 return 0; 505 506 ret = i915_wait_seqno(ring, seqno); 507 if (ret) 508 return ret; 509 510 i915_gem_retire_requests_ring(ring); 511 512 /* Manually manage the write flush as we may have not yet 513 * retired the buffer. 514 */ 515 if (obj->last_write_seqno && 516 i915_seqno_passed(seqno, obj->last_write_seqno)) { 517 obj->last_write_seqno = 0; 518 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS; 519 } 520 521 return 0; 522 } 523 524 /* A nonblocking variant of the above wait. This is a highly dangerous routine 525 * as the object state may change during this call. 526 */ 527 static __must_check int 528 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj, 529 bool readonly) 530 { 531 struct drm_device *dev = obj->base.dev; 532 struct drm_i915_private *dev_priv = dev->dev_private; 533 struct intel_ring_buffer *ring = obj->ring; 534 u32 seqno; 535 int ret; 536 537 DRM_LOCK_ASSERT(dev); 538 BUG_ON(!dev_priv->mm.interruptible); 539 540 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno; 541 if (seqno == 0) 542 return 0; 543 544 ret = i915_gem_check_wedge(dev_priv, true); 545 if (ret) 546 return ret; 547 548 ret = i915_gem_check_olr(ring, seqno); 549 if (ret) 550 return ret; 551 552 DRM_UNLOCK(dev); 553 ret = __wait_seqno(ring, seqno, true, NULL); 554 DRM_LOCK(dev); 555 556 i915_gem_retire_requests_ring(ring); 557 558 /* Manually manage the write flush as we may have not yet 559 * retired the buffer. 560 */ 561 if (obj->last_write_seqno && 562 i915_seqno_passed(seqno, obj->last_write_seqno)) { 563 obj->last_write_seqno = 0; 564 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS; 565 } 566 567 return ret; 568 } 569 570 /** 571 * Called when user space prepares to use an object with the CPU, either 572 * through the mmap ioctl's mapping or a GTT mapping. 573 */ 574 int 575 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 576 struct drm_file *file) 577 { 578 struct drm_i915_gem_set_domain *args = data; 579 struct drm_i915_gem_object *obj; 580 uint32_t read_domains = args->read_domains; 581 uint32_t write_domain = args->write_domain; 582 int ret; 583 584 /* Only handle setting domains to types used by the CPU. */ 585 if (write_domain & I915_GEM_GPU_DOMAINS) 586 return -EINVAL; 587 588 if (read_domains & I915_GEM_GPU_DOMAINS) 589 return -EINVAL; 590 591 /* Having something in the write domain implies it's in the read 592 * domain, and only that read domain. Enforce that in the request. 593 */ 594 if (write_domain != 0 && read_domains != write_domain) 595 return -EINVAL; 596 597 ret = i915_mutex_lock_interruptible(dev); 598 if (ret) 599 return ret; 600 601 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 602 if (&obj->base == NULL) { 603 ret = -ENOENT; 604 goto unlock; 605 } 606 607 /* Try to flush the object off the GPU without holding the lock. 608 * We will repeat the flush holding the lock in the normal manner 609 * to catch cases where we are gazumped. 610 */ 611 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain); 612 if (ret) 613 goto unref; 614 615 if (read_domains & I915_GEM_DOMAIN_GTT) { 616 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0); 617 618 /* Silently promote "you're not bound, there was nothing to do" 619 * to success, since the client was just asking us to 620 * make sure everything was done. 621 */ 622 if (ret == -EINVAL) 623 ret = 0; 624 } else { 625 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0); 626 } 627 628 unref: 629 drm_gem_object_unreference(&obj->base); 630 unlock: 631 DRM_UNLOCK(dev); 632 return ret; 633 } 634 635 /** 636 * Called when user space has done writes to this buffer 637 */ 638 int 639 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 640 struct drm_file *file) 641 { 642 struct drm_i915_gem_sw_finish *args = data; 643 struct drm_i915_gem_object *obj; 644 int ret = 0; 645 646 ret = i915_mutex_lock_interruptible(dev); 647 if (ret) 648 return ret; 649 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 650 if (&obj->base == NULL) { 651 ret = -ENOENT; 652 goto unlock; 653 } 654 655 /* Pinned buffers may be scanout, so flush the cache */ 656 if (obj->pin_count) 657 i915_gem_object_flush_cpu_write_domain(obj); 658 659 drm_gem_object_unreference(&obj->base); 660 unlock: 661 DRM_UNLOCK(dev); 662 return ret; 663 } 664 665 /** 666 * Maps the contents of an object, returning the address it is mapped 667 * into. 668 * 669 * While the mapping holds a reference on the contents of the object, it doesn't 670 * imply a ref on the object itself. 671 */ 672 int 673 i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 674 struct drm_file *file) 675 { 676 struct drm_i915_gem_mmap *args = data; 677 struct drm_gem_object *obj; 678 struct proc *p = curproc; 679 vm_map_t map = &p->p_vmspace->vm_map; 680 vm_offset_t addr; 681 vm_size_t size; 682 int error = 0, rv; 683 684 obj = drm_gem_object_lookup(dev, file, args->handle); 685 if (obj == NULL) 686 return -ENOENT; 687 688 if (args->size == 0) 689 goto out; 690 691 size = round_page(args->size); 692 PROC_LOCK(p); 693 if (map->size + size > p->p_rlimit[RLIMIT_VMEM].rlim_cur) { 694 PROC_UNLOCK(p); 695 error = ENOMEM; 696 goto out; 697 } 698 PROC_UNLOCK(p); 699 700 addr = 0; 701 vm_object_hold(obj->vm_obj); 702 vm_object_reference_locked(obj->vm_obj); 703 vm_object_drop(obj->vm_obj); 704 rv = vm_map_find(map, obj->vm_obj, NULL, 705 args->offset, &addr, args->size, 706 PAGE_SIZE, /* align */ 707 TRUE, /* fitit */ 708 VM_MAPTYPE_NORMAL, /* maptype */ 709 VM_PROT_READ | VM_PROT_WRITE, /* prot */ 710 VM_PROT_READ | VM_PROT_WRITE, /* max */ 711 MAP_SHARED /* cow */); 712 if (rv != KERN_SUCCESS) { 713 vm_object_deallocate(obj->vm_obj); 714 error = -vm_mmap_to_errno(rv); 715 } else { 716 args->addr_ptr = (uint64_t)addr; 717 } 718 out: 719 drm_gem_object_unreference(obj); 720 return (error); 721 } 722 723 /** 724 * i915_gem_release_mmap - remove physical page mappings 725 * @obj: obj in question 726 * 727 * Preserve the reservation of the mmapping with the DRM core code, but 728 * relinquish ownership of the pages back to the system. 729 * 730 * It is vital that we remove the page mapping if we have mapped a tiled 731 * object through the GTT and then lose the fence register due to 732 * resource pressure. Similarly if the object has been moved out of the 733 * aperture, than pages mapped into userspace must be revoked. Removing the 734 * mapping will then trigger a page fault on the next user access, allowing 735 * fixup by i915_gem_fault(). 736 */ 737 void 738 i915_gem_release_mmap(struct drm_i915_gem_object *obj) 739 { 740 vm_object_t devobj; 741 vm_page_t m; 742 int i, page_count; 743 744 if (!obj->fault_mappable) 745 return; 746 747 devobj = cdev_pager_lookup(obj); 748 if (devobj != NULL) { 749 page_count = OFF_TO_IDX(obj->base.size); 750 751 VM_OBJECT_LOCK(devobj); 752 for (i = 0; i < page_count; i++) { 753 m = vm_page_lookup_busy_wait(devobj, i, TRUE, "915unm"); 754 if (m == NULL) 755 continue; 756 cdev_pager_free_page(devobj, m); 757 } 758 VM_OBJECT_UNLOCK(devobj); 759 vm_object_deallocate(devobj); 760 } 761 762 obj->fault_mappable = false; 763 } 764 765 static uint32_t 766 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode) 767 { 768 uint32_t gtt_size; 769 770 if (INTEL_INFO(dev)->gen >= 4 || 771 tiling_mode == I915_TILING_NONE) 772 return size; 773 774 /* Previous chips need a power-of-two fence region when tiling */ 775 if (INTEL_INFO(dev)->gen == 3) 776 gtt_size = 1024*1024; 777 else 778 gtt_size = 512*1024; 779 780 while (gtt_size < size) 781 gtt_size <<= 1; 782 783 return gtt_size; 784 } 785 786 /** 787 * i915_gem_get_gtt_alignment - return required GTT alignment for an object 788 * @obj: object to check 789 * 790 * Return the required GTT alignment for an object, taking into account 791 * potential fence register mapping. 792 */ 793 static uint32_t 794 i915_gem_get_gtt_alignment(struct drm_device *dev, 795 uint32_t size, 796 int tiling_mode) 797 { 798 799 /* 800 * Minimum alignment is 4k (GTT page size), but might be greater 801 * if a fence register is needed for the object. 802 */ 803 if (INTEL_INFO(dev)->gen >= 4 || 804 tiling_mode == I915_TILING_NONE) 805 return 4096; 806 807 /* 808 * Previous chips need to be aligned to the size of the smallest 809 * fence register that can contain the object. 810 */ 811 return i915_gem_get_gtt_size(dev, size, tiling_mode); 812 } 813 814 /** 815 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an 816 * unfenced object 817 * @dev: the device 818 * @size: size of the object 819 * @tiling_mode: tiling mode of the object 820 * 821 * Return the required GTT alignment for an object, only taking into account 822 * unfenced tiled surface requirements. 823 */ 824 uint32_t 825 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev, 826 uint32_t size, 827 int tiling_mode) 828 { 829 /* 830 * Minimum alignment is 4k (GTT page size) for sane hw. 831 */ 832 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) || 833 tiling_mode == I915_TILING_NONE) 834 return 4096; 835 836 /* Previous hardware however needs to be aligned to a power-of-two 837 * tile height. The simplest method for determining this is to reuse 838 * the power-of-tile object size. 839 */ 840 return i915_gem_get_gtt_size(dev, size, tiling_mode); 841 } 842 843 int 844 i915_gem_mmap_gtt(struct drm_file *file, 845 struct drm_device *dev, 846 uint32_t handle, 847 uint64_t *offset) 848 { 849 struct drm_i915_private *dev_priv = dev->dev_private; 850 struct drm_i915_gem_object *obj; 851 int ret; 852 853 ret = i915_mutex_lock_interruptible(dev); 854 if (ret) 855 return ret; 856 857 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle)); 858 if (&obj->base == NULL) { 859 ret = -ENOENT; 860 goto unlock; 861 } 862 863 if (obj->base.size > dev_priv->mm.gtt_mappable_end) { 864 ret = -E2BIG; 865 goto out; 866 } 867 868 if (obj->madv != I915_MADV_WILLNEED) { 869 DRM_ERROR("Attempting to mmap a purgeable buffer\n"); 870 ret = -EINVAL; 871 goto out; 872 } 873 874 ret = drm_gem_create_mmap_offset(&obj->base); 875 if (ret) 876 goto out; 877 878 *offset = DRM_GEM_MAPPING_OFF(obj->base.map_list.key) | 879 DRM_GEM_MAPPING_KEY; 880 out: 881 drm_gem_object_unreference(&obj->base); 882 unlock: 883 DRM_UNLOCK(dev); 884 return ret; 885 } 886 887 /** 888 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing 889 * @dev: DRM device 890 * @data: GTT mapping ioctl data 891 * @file: GEM object info 892 * 893 * Simply returns the fake offset to userspace so it can mmap it. 894 * The mmap call will end up in drm_gem_mmap(), which will set things 895 * up so we can get faults in the handler above. 896 * 897 * The fault handler will take care of binding the object into the GTT 898 * (since it may have been evicted to make room for something), allocating 899 * a fence register, and mapping the appropriate aperture address into 900 * userspace. 901 */ 902 int 903 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 904 struct drm_file *file) 905 { 906 struct drm_i915_gem_mmap_gtt *args = data; 907 908 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset); 909 } 910 911 /* Immediately discard the backing storage */ 912 static void 913 i915_gem_object_truncate(struct drm_i915_gem_object *obj) 914 { 915 vm_object_t vm_obj; 916 917 vm_obj = obj->base.vm_obj; 918 VM_OBJECT_LOCK(vm_obj); 919 vm_object_page_remove(vm_obj, 0, 0, false); 920 VM_OBJECT_UNLOCK(vm_obj); 921 obj->madv = __I915_MADV_PURGED; 922 } 923 924 static inline int 925 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj) 926 { 927 return obj->madv == I915_MADV_DONTNEED; 928 } 929 930 static inline void vm_page_reference(vm_page_t m) 931 { 932 vm_page_flag_set(m, PG_REFERENCED); 933 } 934 935 static void 936 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj) 937 { 938 vm_page_t m; 939 int page_count, i; 940 941 BUG_ON(obj->madv == __I915_MADV_PURGED); 942 943 if (obj->tiling_mode != I915_TILING_NONE) 944 i915_gem_object_save_bit_17_swizzle(obj); 945 if (obj->madv == I915_MADV_DONTNEED) 946 obj->dirty = 0; 947 page_count = obj->base.size / PAGE_SIZE; 948 VM_OBJECT_LOCK(obj->base.vm_obj); 949 #if GEM_PARANOID_CHECK_GTT 950 i915_gem_assert_pages_not_mapped(obj->base.dev, obj->pages, page_count); 951 #endif 952 for (i = 0; i < page_count; i++) { 953 m = obj->pages[i]; 954 if (obj->dirty) 955 vm_page_dirty(m); 956 if (obj->madv == I915_MADV_WILLNEED) 957 vm_page_reference(m); 958 vm_page_busy_wait(obj->pages[i], FALSE, "i915gem"); 959 vm_page_unwire(obj->pages[i], 1); 960 vm_page_wakeup(obj->pages[i]); 961 } 962 VM_OBJECT_UNLOCK(obj->base.vm_obj); 963 obj->dirty = 0; 964 drm_free(obj->pages, M_DRM); 965 obj->pages = NULL; 966 } 967 968 static int 969 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj, 970 int flags) 971 { 972 struct drm_device *dev; 973 vm_object_t vm_obj; 974 vm_page_t m; 975 int page_count, i, j; 976 977 dev = obj->base.dev; 978 KASSERT(obj->pages == NULL, ("Obj already has pages")); 979 page_count = obj->base.size / PAGE_SIZE; 980 obj->pages = kmalloc(page_count * sizeof(vm_page_t), M_DRM, 981 M_WAITOK); 982 vm_obj = obj->base.vm_obj; 983 VM_OBJECT_LOCK(vm_obj); 984 for (i = 0; i < page_count; i++) { 985 if ((obj->pages[i] = i915_gem_wire_page(vm_obj, i)) == NULL) 986 goto failed; 987 } 988 VM_OBJECT_UNLOCK(vm_obj); 989 if (i915_gem_object_needs_bit17_swizzle(obj)) 990 i915_gem_object_do_bit_17_swizzle(obj); 991 return (0); 992 993 failed: 994 for (j = 0; j < i; j++) { 995 m = obj->pages[j]; 996 vm_page_busy_wait(m, FALSE, "i915gem"); 997 vm_page_unwire(m, 0); 998 vm_page_wakeup(m); 999 } 1000 VM_OBJECT_UNLOCK(vm_obj); 1001 drm_free(obj->pages, M_DRM); 1002 obj->pages = NULL; 1003 return (-EIO); 1004 } 1005 1006 void 1007 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj, 1008 struct intel_ring_buffer *ring) 1009 { 1010 struct drm_device *dev = obj->base.dev; 1011 struct drm_i915_private *dev_priv = dev->dev_private; 1012 u32 seqno = intel_ring_get_seqno(ring); 1013 1014 BUG_ON(ring == NULL); 1015 obj->ring = ring; 1016 1017 /* Add a reference if we're newly entering the active list. */ 1018 if (!obj->active) { 1019 drm_gem_object_reference(&obj->base); 1020 obj->active = 1; 1021 } 1022 1023 /* Move from whatever list we were on to the tail of execution. */ 1024 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list); 1025 list_move_tail(&obj->ring_list, &ring->active_list); 1026 1027 obj->last_read_seqno = seqno; 1028 1029 if (obj->fenced_gpu_access) { 1030 obj->last_fenced_seqno = seqno; 1031 1032 /* Bump MRU to take account of the delayed flush */ 1033 if (obj->fence_reg != I915_FENCE_REG_NONE) { 1034 struct drm_i915_fence_reg *reg; 1035 1036 reg = &dev_priv->fence_regs[obj->fence_reg]; 1037 list_move_tail(®->lru_list, 1038 &dev_priv->mm.fence_list); 1039 } 1040 } 1041 } 1042 1043 static void 1044 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj) 1045 { 1046 struct drm_device *dev = obj->base.dev; 1047 struct drm_i915_private *dev_priv = dev->dev_private; 1048 1049 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS); 1050 BUG_ON(!obj->active); 1051 1052 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list); 1053 1054 list_del_init(&obj->ring_list); 1055 obj->ring = NULL; 1056 1057 obj->last_read_seqno = 0; 1058 obj->last_write_seqno = 0; 1059 obj->base.write_domain = 0; 1060 1061 obj->last_fenced_seqno = 0; 1062 obj->fenced_gpu_access = false; 1063 1064 obj->active = 0; 1065 drm_gem_object_unreference(&obj->base); 1066 1067 WARN_ON(i915_verify_lists(dev)); 1068 } 1069 1070 static int 1071 i915_gem_handle_seqno_wrap(struct drm_device *dev) 1072 { 1073 struct drm_i915_private *dev_priv = dev->dev_private; 1074 struct intel_ring_buffer *ring; 1075 int ret, i, j; 1076 1077 /* The hardware uses various monotonic 32-bit counters, if we 1078 * detect that they will wraparound we need to idle the GPU 1079 * and reset those counters. 1080 */ 1081 ret = 0; 1082 for_each_ring(ring, dev_priv, i) { 1083 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++) 1084 ret |= ring->sync_seqno[j] != 0; 1085 } 1086 if (ret == 0) 1087 return ret; 1088 1089 ret = i915_gpu_idle(dev); 1090 if (ret) 1091 return ret; 1092 1093 i915_gem_retire_requests(dev); 1094 for_each_ring(ring, dev_priv, i) { 1095 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++) 1096 ring->sync_seqno[j] = 0; 1097 } 1098 1099 return 0; 1100 } 1101 1102 int 1103 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno) 1104 { 1105 struct drm_i915_private *dev_priv = dev->dev_private; 1106 1107 /* reserve 0 for non-seqno */ 1108 if (dev_priv->next_seqno == 0) { 1109 int ret = i915_gem_handle_seqno_wrap(dev); 1110 if (ret) 1111 return ret; 1112 1113 dev_priv->next_seqno = 1; 1114 } 1115 1116 *seqno = dev_priv->next_seqno++; 1117 return 0; 1118 } 1119 1120 int 1121 i915_add_request(struct intel_ring_buffer *ring, 1122 struct drm_file *file, 1123 u32 *out_seqno) 1124 { 1125 drm_i915_private_t *dev_priv = ring->dev->dev_private; 1126 struct drm_i915_gem_request *request; 1127 u32 request_ring_position; 1128 int was_empty; 1129 int ret; 1130 1131 /* 1132 * Emit any outstanding flushes - execbuf can fail to emit the flush 1133 * after having emitted the batchbuffer command. Hence we need to fix 1134 * things up similar to emitting the lazy request. The difference here 1135 * is that the flush _must_ happen before the next request, no matter 1136 * what. 1137 */ 1138 ret = intel_ring_flush_all_caches(ring); 1139 if (ret) 1140 return ret; 1141 1142 request = kmalloc(sizeof(*request), M_DRM, M_WAITOK | M_ZERO); 1143 if (request == NULL) 1144 return -ENOMEM; 1145 1146 1147 /* Record the position of the start of the request so that 1148 * should we detect the updated seqno part-way through the 1149 * GPU processing the request, we never over-estimate the 1150 * position of the head. 1151 */ 1152 request_ring_position = intel_ring_get_tail(ring); 1153 1154 ret = ring->add_request(ring); 1155 if (ret) { 1156 kfree(request, M_DRM); 1157 return ret; 1158 } 1159 1160 request->seqno = intel_ring_get_seqno(ring); 1161 request->ring = ring; 1162 request->tail = request_ring_position; 1163 request->emitted_jiffies = jiffies; 1164 was_empty = list_empty(&ring->request_list); 1165 list_add_tail(&request->list, &ring->request_list); 1166 request->file_priv = NULL; 1167 1168 if (file) { 1169 struct drm_i915_file_private *file_priv = file->driver_priv; 1170 1171 spin_lock(&file_priv->mm.lock); 1172 request->file_priv = file_priv; 1173 list_add_tail(&request->client_list, 1174 &file_priv->mm.request_list); 1175 spin_unlock(&file_priv->mm.lock); 1176 } 1177 1178 ring->outstanding_lazy_request = 0; 1179 1180 if (!dev_priv->mm.suspended) { 1181 if (i915_enable_hangcheck) { 1182 mod_timer(&dev_priv->hangcheck_timer, 1183 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES)); 1184 } 1185 if (was_empty) { 1186 queue_delayed_work(dev_priv->wq, 1187 &dev_priv->mm.retire_work, 1188 round_jiffies_up_relative(hz)); 1189 intel_mark_busy(dev_priv->dev); 1190 } 1191 } 1192 1193 if (out_seqno) 1194 *out_seqno = request->seqno; 1195 return 0; 1196 } 1197 1198 static inline void 1199 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request) 1200 { 1201 struct drm_i915_file_private *file_priv = request->file_priv; 1202 1203 if (!file_priv) 1204 return; 1205 1206 spin_lock(&file_priv->mm.lock); 1207 if (request->file_priv) { 1208 list_del(&request->client_list); 1209 request->file_priv = NULL; 1210 } 1211 spin_unlock(&file_priv->mm.lock); 1212 } 1213 1214 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv, 1215 struct intel_ring_buffer *ring) 1216 { 1217 while (!list_empty(&ring->request_list)) { 1218 struct drm_i915_gem_request *request; 1219 1220 request = list_first_entry(&ring->request_list, 1221 struct drm_i915_gem_request, 1222 list); 1223 1224 list_del(&request->list); 1225 i915_gem_request_remove_from_client(request); 1226 drm_free(request, M_DRM); 1227 } 1228 1229 while (!list_empty(&ring->active_list)) { 1230 struct drm_i915_gem_object *obj; 1231 1232 obj = list_first_entry(&ring->active_list, 1233 struct drm_i915_gem_object, 1234 ring_list); 1235 1236 i915_gem_object_move_to_inactive(obj); 1237 } 1238 } 1239 1240 static void i915_gem_reset_fences(struct drm_device *dev) 1241 { 1242 struct drm_i915_private *dev_priv = dev->dev_private; 1243 int i; 1244 1245 for (i = 0; i < dev_priv->num_fence_regs; i++) { 1246 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i]; 1247 1248 i915_gem_write_fence(dev, i, NULL); 1249 1250 if (reg->obj) 1251 i915_gem_object_fence_lost(reg->obj); 1252 1253 reg->pin_count = 0; 1254 reg->obj = NULL; 1255 INIT_LIST_HEAD(®->lru_list); 1256 } 1257 1258 INIT_LIST_HEAD(&dev_priv->mm.fence_list); 1259 } 1260 1261 void i915_gem_reset(struct drm_device *dev) 1262 { 1263 struct drm_i915_private *dev_priv = dev->dev_private; 1264 struct drm_i915_gem_object *obj; 1265 struct intel_ring_buffer *ring; 1266 int i; 1267 1268 for_each_ring(ring, dev_priv, i) 1269 i915_gem_reset_ring_lists(dev_priv, ring); 1270 1271 /* Move everything out of the GPU domains to ensure we do any 1272 * necessary invalidation upon reuse. 1273 */ 1274 list_for_each_entry(obj, 1275 &dev_priv->mm.inactive_list, 1276 mm_list) 1277 { 1278 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS; 1279 } 1280 1281 /* The fence registers are invalidated so clear them out */ 1282 i915_gem_reset_fences(dev); 1283 } 1284 1285 /** 1286 * This function clears the request list as sequence numbers are passed. 1287 */ 1288 void 1289 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring) 1290 { 1291 uint32_t seqno; 1292 1293 if (list_empty(&ring->request_list)) 1294 return; 1295 1296 WARN_ON(i915_verify_lists(ring->dev)); 1297 1298 seqno = ring->get_seqno(ring, true); 1299 1300 while (!list_empty(&ring->request_list)) { 1301 struct drm_i915_gem_request *request; 1302 1303 request = list_first_entry(&ring->request_list, 1304 struct drm_i915_gem_request, 1305 list); 1306 1307 if (!i915_seqno_passed(seqno, request->seqno)) 1308 break; 1309 1310 /* We know the GPU must have read the request to have 1311 * sent us the seqno + interrupt, so use the position 1312 * of tail of the request to update the last known position 1313 * of the GPU head. 1314 */ 1315 ring->last_retired_head = request->tail; 1316 1317 list_del(&request->list); 1318 i915_gem_request_remove_from_client(request); 1319 kfree(request, M_DRM); 1320 } 1321 1322 /* Move any buffers on the active list that are no longer referenced 1323 * by the ringbuffer to the flushing/inactive lists as appropriate. 1324 */ 1325 while (!list_empty(&ring->active_list)) { 1326 struct drm_i915_gem_object *obj; 1327 1328 obj = list_first_entry(&ring->active_list, 1329 struct drm_i915_gem_object, 1330 ring_list); 1331 1332 if (!i915_seqno_passed(seqno, obj->last_read_seqno)) 1333 break; 1334 1335 i915_gem_object_move_to_inactive(obj); 1336 } 1337 1338 if (unlikely(ring->trace_irq_seqno && 1339 i915_seqno_passed(seqno, ring->trace_irq_seqno))) { 1340 ring->irq_put(ring); 1341 ring->trace_irq_seqno = 0; 1342 } 1343 1344 } 1345 1346 void 1347 i915_gem_retire_requests(struct drm_device *dev) 1348 { 1349 drm_i915_private_t *dev_priv = dev->dev_private; 1350 struct intel_ring_buffer *ring; 1351 int i; 1352 1353 for_each_ring(ring, dev_priv, i) 1354 i915_gem_retire_requests_ring(ring); 1355 } 1356 1357 static void 1358 i915_gem_retire_work_handler(struct work_struct *work) 1359 { 1360 drm_i915_private_t *dev_priv; 1361 struct drm_device *dev; 1362 struct intel_ring_buffer *ring; 1363 bool idle; 1364 int i; 1365 1366 dev_priv = container_of(work, drm_i915_private_t, 1367 mm.retire_work.work); 1368 dev = dev_priv->dev; 1369 1370 /* Come back later if the device is busy... */ 1371 if (lockmgr(&dev->dev_struct_lock, LK_EXCLUSIVE|LK_NOWAIT)) { 1372 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 1373 round_jiffies_up_relative(hz)); 1374 return; 1375 } 1376 1377 i915_gem_retire_requests(dev); 1378 1379 /* Send a periodic flush down the ring so we don't hold onto GEM 1380 * objects indefinitely. 1381 */ 1382 idle = true; 1383 for_each_ring(ring, dev_priv, i) { 1384 if (ring->gpu_caches_dirty) 1385 i915_add_request(ring, NULL, NULL); 1386 1387 idle &= list_empty(&ring->request_list); 1388 } 1389 1390 if (!dev_priv->mm.suspended && !idle) 1391 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 1392 round_jiffies_up_relative(hz)); 1393 if (idle) 1394 intel_mark_idle(dev); 1395 1396 DRM_UNLOCK(dev); 1397 } 1398 /** 1399 * Ensures that an object will eventually get non-busy by flushing any required 1400 * write domains, emitting any outstanding lazy request and retiring and 1401 * completed requests. 1402 */ 1403 static int 1404 i915_gem_object_flush_active(struct drm_i915_gem_object *obj) 1405 { 1406 int ret; 1407 1408 if (obj->active) { 1409 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno); 1410 if (ret) 1411 return ret; 1412 1413 i915_gem_retire_requests_ring(obj->ring); 1414 } 1415 1416 return 0; 1417 } 1418 1419 /** 1420 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT 1421 * @DRM_IOCTL_ARGS: standard ioctl arguments 1422 * 1423 * Returns 0 if successful, else an error is returned with the remaining time in 1424 * the timeout parameter. 1425 * -ETIME: object is still busy after timeout 1426 * -ERESTARTSYS: signal interrupted the wait 1427 * -ENONENT: object doesn't exist 1428 * Also possible, but rare: 1429 * -EAGAIN: GPU wedged 1430 * -ENOMEM: damn 1431 * -ENODEV: Internal IRQ fail 1432 * -E?: The add request failed 1433 * 1434 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any 1435 * non-zero timeout parameter the wait ioctl will wait for the given number of 1436 * nanoseconds on an object becoming unbusy. Since the wait itself does so 1437 * without holding struct_mutex the object may become re-busied before this 1438 * function completes. A similar but shorter * race condition exists in the busy 1439 * ioctl 1440 */ 1441 int 1442 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file) 1443 { 1444 struct drm_i915_gem_wait *args = data; 1445 struct drm_i915_gem_object *obj; 1446 struct intel_ring_buffer *ring = NULL; 1447 struct timespec timeout_stack, *timeout = NULL; 1448 u32 seqno = 0; 1449 int ret = 0; 1450 1451 if (args->timeout_ns >= 0) { 1452 timeout_stack = ns_to_timespec(args->timeout_ns); 1453 timeout = &timeout_stack; 1454 } 1455 1456 ret = i915_mutex_lock_interruptible(dev); 1457 if (ret) 1458 return ret; 1459 1460 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle)); 1461 if (&obj->base == NULL) { 1462 DRM_UNLOCK(dev); 1463 return -ENOENT; 1464 } 1465 1466 /* Need to make sure the object gets inactive eventually. */ 1467 ret = i915_gem_object_flush_active(obj); 1468 if (ret) 1469 goto out; 1470 1471 if (obj->active) { 1472 seqno = obj->last_read_seqno; 1473 ring = obj->ring; 1474 } 1475 1476 if (seqno == 0) 1477 goto out; 1478 1479 /* Do this after OLR check to make sure we make forward progress polling 1480 * on this IOCTL with a 0 timeout (like busy ioctl) 1481 */ 1482 if (!args->timeout_ns) { 1483 ret = -ETIMEDOUT; 1484 goto out; 1485 } 1486 1487 drm_gem_object_unreference(&obj->base); 1488 DRM_UNLOCK(dev); 1489 1490 ret = __wait_seqno(ring, seqno, true, timeout); 1491 if (timeout) { 1492 WARN_ON(!timespec_valid(timeout)); 1493 args->timeout_ns = timespec_to_ns(timeout); 1494 } 1495 return ret; 1496 1497 out: 1498 drm_gem_object_unreference(&obj->base); 1499 DRM_UNLOCK(dev); 1500 return ret; 1501 } 1502 1503 /** 1504 * i915_gem_object_sync - sync an object to a ring. 1505 * 1506 * @obj: object which may be in use on another ring. 1507 * @to: ring we wish to use the object on. May be NULL. 1508 * 1509 * This code is meant to abstract object synchronization with the GPU. 1510 * Calling with NULL implies synchronizing the object with the CPU 1511 * rather than a particular GPU ring. 1512 * 1513 * Returns 0 if successful, else propagates up the lower layer error. 1514 */ 1515 int 1516 i915_gem_object_sync(struct drm_i915_gem_object *obj, 1517 struct intel_ring_buffer *to) 1518 { 1519 struct intel_ring_buffer *from = obj->ring; 1520 u32 seqno; 1521 int ret, idx; 1522 1523 if (from == NULL || to == from) 1524 return 0; 1525 1526 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev)) 1527 return i915_gem_object_wait_rendering(obj, false); 1528 1529 idx = intel_ring_sync_index(from, to); 1530 1531 seqno = obj->last_read_seqno; 1532 if (seqno <= from->sync_seqno[idx]) 1533 return 0; 1534 1535 ret = i915_gem_check_olr(obj->ring, seqno); 1536 if (ret) 1537 return ret; 1538 1539 ret = to->sync_to(to, from, seqno); 1540 if (!ret) 1541 /* We use last_read_seqno because sync_to() 1542 * might have just caused seqno wrap under 1543 * the radar. 1544 */ 1545 from->sync_seqno[idx] = obj->last_read_seqno; 1546 1547 return ret; 1548 } 1549 1550 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj) 1551 { 1552 u32 old_write_domain, old_read_domains; 1553 1554 /* Act a barrier for all accesses through the GTT */ 1555 cpu_mfence(); 1556 1557 /* Force a pagefault for domain tracking on next user access */ 1558 i915_gem_release_mmap(obj); 1559 1560 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) 1561 return; 1562 1563 old_read_domains = obj->base.read_domains; 1564 old_write_domain = obj->base.write_domain; 1565 1566 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT; 1567 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT; 1568 1569 } 1570 1571 /** 1572 * Unbinds an object from the GTT aperture. 1573 */ 1574 int 1575 i915_gem_object_unbind(struct drm_i915_gem_object *obj) 1576 { 1577 drm_i915_private_t *dev_priv = obj->base.dev->dev_private; 1578 int ret = 0; 1579 1580 if (obj->gtt_space == NULL) 1581 return 0; 1582 1583 if (obj->pin_count) 1584 return -EBUSY; 1585 1586 ret = i915_gem_object_finish_gpu(obj); 1587 if (ret) 1588 return ret; 1589 /* Continue on if we fail due to EIO, the GPU is hung so we 1590 * should be safe and we need to cleanup or else we might 1591 * cause memory corruption through use-after-free. 1592 */ 1593 1594 i915_gem_object_finish_gtt(obj); 1595 1596 /* Move the object to the CPU domain to ensure that 1597 * any possible CPU writes while it's not in the GTT 1598 * are flushed when we go to remap it. 1599 */ 1600 if (ret == 0) 1601 ret = i915_gem_object_set_to_cpu_domain(obj, 1); 1602 if (ret == -ERESTART || ret == -EINTR) 1603 return ret; 1604 if (ret) { 1605 /* In the event of a disaster, abandon all caches and 1606 * hope for the best. 1607 */ 1608 i915_gem_clflush_object(obj); 1609 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU; 1610 } 1611 1612 /* release the fence reg _after_ flushing */ 1613 ret = i915_gem_object_put_fence(obj); 1614 if (ret) 1615 return ret; 1616 1617 if (obj->has_global_gtt_mapping) 1618 i915_gem_gtt_unbind_object(obj); 1619 if (obj->has_aliasing_ppgtt_mapping) { 1620 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj); 1621 obj->has_aliasing_ppgtt_mapping = 0; 1622 } 1623 i915_gem_gtt_finish_object(obj); 1624 1625 i915_gem_object_put_pages_gtt(obj); 1626 1627 list_del_init(&obj->gtt_list); 1628 list_del_init(&obj->mm_list); 1629 /* Avoid an unnecessary call to unbind on rebind. */ 1630 obj->map_and_fenceable = true; 1631 1632 drm_mm_put_block(obj->gtt_space); 1633 obj->gtt_space = NULL; 1634 obj->gtt_offset = 0; 1635 1636 if (i915_gem_object_is_purgeable(obj)) 1637 i915_gem_object_truncate(obj); 1638 1639 return ret; 1640 } 1641 1642 int i915_gpu_idle(struct drm_device *dev) 1643 { 1644 drm_i915_private_t *dev_priv = dev->dev_private; 1645 struct intel_ring_buffer *ring; 1646 int ret, i; 1647 1648 /* Flush everything onto the inactive list. */ 1649 for_each_ring(ring, dev_priv, i) { 1650 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID); 1651 if (ret) 1652 return ret; 1653 1654 ret = intel_ring_idle(ring); 1655 if (ret) 1656 return ret; 1657 } 1658 1659 return 0; 1660 } 1661 1662 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg, 1663 struct drm_i915_gem_object *obj) 1664 { 1665 drm_i915_private_t *dev_priv = dev->dev_private; 1666 uint64_t val; 1667 1668 if (obj) { 1669 u32 size = obj->gtt_space->size; 1670 1671 val = (uint64_t)((obj->gtt_offset + size - 4096) & 1672 0xfffff000) << 32; 1673 val |= obj->gtt_offset & 0xfffff000; 1674 val |= (uint64_t)((obj->stride / 128) - 1) << 1675 SANDYBRIDGE_FENCE_PITCH_SHIFT; 1676 1677 if (obj->tiling_mode == I915_TILING_Y) 1678 val |= 1 << I965_FENCE_TILING_Y_SHIFT; 1679 val |= I965_FENCE_REG_VALID; 1680 } else 1681 val = 0; 1682 1683 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val); 1684 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8); 1685 } 1686 1687 static void i965_write_fence_reg(struct drm_device *dev, int reg, 1688 struct drm_i915_gem_object *obj) 1689 { 1690 drm_i915_private_t *dev_priv = dev->dev_private; 1691 uint64_t val; 1692 1693 if (obj) { 1694 u32 size = obj->gtt_space->size; 1695 1696 val = (uint64_t)((obj->gtt_offset + size - 4096) & 1697 0xfffff000) << 32; 1698 val |= obj->gtt_offset & 0xfffff000; 1699 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT; 1700 if (obj->tiling_mode == I915_TILING_Y) 1701 val |= 1 << I965_FENCE_TILING_Y_SHIFT; 1702 val |= I965_FENCE_REG_VALID; 1703 } else 1704 val = 0; 1705 1706 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val); 1707 POSTING_READ(FENCE_REG_965_0 + reg * 8); 1708 } 1709 1710 static void i915_write_fence_reg(struct drm_device *dev, int reg, 1711 struct drm_i915_gem_object *obj) 1712 { 1713 drm_i915_private_t *dev_priv = dev->dev_private; 1714 u32 val; 1715 1716 if (obj) { 1717 u32 size = obj->gtt_space->size; 1718 int pitch_val; 1719 int tile_width; 1720 1721 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) || 1722 (size & -size) != size || 1723 (obj->gtt_offset & (size - 1)), 1724 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n", 1725 obj->gtt_offset, obj->map_and_fenceable, size); 1726 1727 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)) 1728 tile_width = 128; 1729 else 1730 tile_width = 512; 1731 1732 /* Note: pitch better be a power of two tile widths */ 1733 pitch_val = obj->stride / tile_width; 1734 pitch_val = ffs(pitch_val) - 1; 1735 1736 val = obj->gtt_offset; 1737 if (obj->tiling_mode == I915_TILING_Y) 1738 val |= 1 << I830_FENCE_TILING_Y_SHIFT; 1739 val |= I915_FENCE_SIZE_BITS(size); 1740 val |= pitch_val << I830_FENCE_PITCH_SHIFT; 1741 val |= I830_FENCE_REG_VALID; 1742 } else 1743 val = 0; 1744 1745 if (reg < 8) 1746 reg = FENCE_REG_830_0 + reg * 4; 1747 else 1748 reg = FENCE_REG_945_8 + (reg - 8) * 4; 1749 1750 I915_WRITE(reg, val); 1751 POSTING_READ(reg); 1752 } 1753 1754 static void i830_write_fence_reg(struct drm_device *dev, int reg, 1755 struct drm_i915_gem_object *obj) 1756 { 1757 drm_i915_private_t *dev_priv = dev->dev_private; 1758 uint32_t val; 1759 1760 if (obj) { 1761 u32 size = obj->gtt_space->size; 1762 uint32_t pitch_val; 1763 1764 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) || 1765 (size & -size) != size || 1766 (obj->gtt_offset & (size - 1)), 1767 "object 0x%08x not 512K or pot-size 0x%08x aligned\n", 1768 obj->gtt_offset, size); 1769 1770 pitch_val = obj->stride / 128; 1771 pitch_val = ffs(pitch_val) - 1; 1772 1773 val = obj->gtt_offset; 1774 if (obj->tiling_mode == I915_TILING_Y) 1775 val |= 1 << I830_FENCE_TILING_Y_SHIFT; 1776 val |= I830_FENCE_SIZE_BITS(size); 1777 val |= pitch_val << I830_FENCE_PITCH_SHIFT; 1778 val |= I830_FENCE_REG_VALID; 1779 } else 1780 val = 0; 1781 1782 I915_WRITE(FENCE_REG_830_0 + reg * 4, val); 1783 POSTING_READ(FENCE_REG_830_0 + reg * 4); 1784 } 1785 1786 static void i915_gem_write_fence(struct drm_device *dev, int reg, 1787 struct drm_i915_gem_object *obj) 1788 { 1789 switch (INTEL_INFO(dev)->gen) { 1790 case 7: 1791 case 6: sandybridge_write_fence_reg(dev, reg, obj); break; 1792 case 5: 1793 case 4: i965_write_fence_reg(dev, reg, obj); break; 1794 case 3: i915_write_fence_reg(dev, reg, obj); break; 1795 case 2: i830_write_fence_reg(dev, reg, obj); break; 1796 default: break; 1797 } 1798 } 1799 1800 static inline int fence_number(struct drm_i915_private *dev_priv, 1801 struct drm_i915_fence_reg *fence) 1802 { 1803 return fence - dev_priv->fence_regs; 1804 } 1805 1806 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj, 1807 struct drm_i915_fence_reg *fence, 1808 bool enable) 1809 { 1810 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 1811 int reg = fence_number(dev_priv, fence); 1812 1813 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL); 1814 1815 if (enable) { 1816 obj->fence_reg = reg; 1817 fence->obj = obj; 1818 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list); 1819 } else { 1820 obj->fence_reg = I915_FENCE_REG_NONE; 1821 fence->obj = NULL; 1822 list_del_init(&fence->lru_list); 1823 } 1824 } 1825 1826 static int 1827 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj) 1828 { 1829 if (obj->last_fenced_seqno) { 1830 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno); 1831 if (ret) 1832 return ret; 1833 1834 obj->last_fenced_seqno = 0; 1835 } 1836 1837 /* Ensure that all CPU reads are completed before installing a fence 1838 * and all writes before removing the fence. 1839 */ 1840 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT) 1841 cpu_mfence(); 1842 1843 obj->fenced_gpu_access = false; 1844 return 0; 1845 } 1846 1847 int 1848 i915_gem_object_put_fence(struct drm_i915_gem_object *obj) 1849 { 1850 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 1851 int ret; 1852 1853 ret = i915_gem_object_flush_fence(obj); 1854 if (ret) 1855 return ret; 1856 1857 if (obj->fence_reg == I915_FENCE_REG_NONE) 1858 return 0; 1859 1860 i915_gem_object_update_fence(obj, 1861 &dev_priv->fence_regs[obj->fence_reg], 1862 false); 1863 i915_gem_object_fence_lost(obj); 1864 1865 return 0; 1866 } 1867 1868 static struct drm_i915_fence_reg * 1869 i915_find_fence_reg(struct drm_device *dev) 1870 { 1871 struct drm_i915_private *dev_priv = dev->dev_private; 1872 struct drm_i915_fence_reg *reg, *avail; 1873 int i; 1874 1875 /* First try to find a free reg */ 1876 avail = NULL; 1877 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) { 1878 reg = &dev_priv->fence_regs[i]; 1879 if (!reg->obj) 1880 return reg; 1881 1882 if (!reg->pin_count) 1883 avail = reg; 1884 } 1885 1886 if (avail == NULL) 1887 return NULL; 1888 1889 /* None available, try to steal one or wait for a user to finish */ 1890 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) { 1891 if (reg->pin_count) 1892 continue; 1893 1894 return reg; 1895 } 1896 1897 return NULL; 1898 } 1899 1900 /** 1901 * i915_gem_object_get_fence - set up fencing for an object 1902 * @obj: object to map through a fence reg 1903 * 1904 * When mapping objects through the GTT, userspace wants to be able to write 1905 * to them without having to worry about swizzling if the object is tiled. 1906 * This function walks the fence regs looking for a free one for @obj, 1907 * stealing one if it can't find any. 1908 * 1909 * It then sets up the reg based on the object's properties: address, pitch 1910 * and tiling format. 1911 * 1912 * For an untiled surface, this removes any existing fence. 1913 */ 1914 int 1915 i915_gem_object_get_fence(struct drm_i915_gem_object *obj) 1916 { 1917 struct drm_device *dev = obj->base.dev; 1918 struct drm_i915_private *dev_priv = dev->dev_private; 1919 bool enable = obj->tiling_mode != I915_TILING_NONE; 1920 struct drm_i915_fence_reg *reg; 1921 int ret; 1922 1923 /* Have we updated the tiling parameters upon the object and so 1924 * will need to serialise the write to the associated fence register? 1925 */ 1926 if (obj->fence_dirty) { 1927 ret = i915_gem_object_flush_fence(obj); 1928 if (ret) 1929 return ret; 1930 } 1931 1932 /* Just update our place in the LRU if our fence is getting reused. */ 1933 if (obj->fence_reg != I915_FENCE_REG_NONE) { 1934 reg = &dev_priv->fence_regs[obj->fence_reg]; 1935 if (!obj->fence_dirty) { 1936 list_move_tail(®->lru_list, 1937 &dev_priv->mm.fence_list); 1938 return 0; 1939 } 1940 } else if (enable) { 1941 reg = i915_find_fence_reg(dev); 1942 if (reg == NULL) 1943 return -EDEADLK; 1944 1945 if (reg->obj) { 1946 struct drm_i915_gem_object *old = reg->obj; 1947 1948 ret = i915_gem_object_flush_fence(old); 1949 if (ret) 1950 return ret; 1951 1952 i915_gem_object_fence_lost(old); 1953 } 1954 } else 1955 return 0; 1956 1957 i915_gem_object_update_fence(obj, reg, enable); 1958 obj->fence_dirty = false; 1959 1960 return 0; 1961 } 1962 1963 /** 1964 * Finds free space in the GTT aperture and binds the object there. 1965 */ 1966 static int 1967 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj, 1968 unsigned alignment, 1969 bool map_and_fenceable, 1970 bool nonblocking) 1971 { 1972 struct drm_device *dev = obj->base.dev; 1973 drm_i915_private_t *dev_priv = dev->dev_private; 1974 struct drm_mm_node *free_space; 1975 uint32_t size, fence_size, fence_alignment, unfenced_alignment; 1976 bool mappable, fenceable; 1977 int ret; 1978 1979 if (obj->madv != I915_MADV_WILLNEED) { 1980 DRM_ERROR("Attempting to bind a purgeable object\n"); 1981 return -EINVAL; 1982 } 1983 1984 fence_size = i915_gem_get_gtt_size(dev, obj->base.size, 1985 obj->tiling_mode); 1986 fence_alignment = i915_gem_get_gtt_alignment(dev, obj->base.size, 1987 obj->tiling_mode); 1988 unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(dev, 1989 obj->base.size, obj->tiling_mode); 1990 if (alignment == 0) 1991 alignment = map_and_fenceable ? fence_alignment : 1992 unfenced_alignment; 1993 if (map_and_fenceable && (alignment & (fence_alignment - 1)) != 0) { 1994 DRM_ERROR("Invalid object alignment requested %u\n", alignment); 1995 return -EINVAL; 1996 } 1997 1998 size = map_and_fenceable ? fence_size : obj->base.size; 1999 2000 /* If the object is bigger than the entire aperture, reject it early 2001 * before evicting everything in a vain attempt to find space. 2002 */ 2003 if (obj->base.size > (map_and_fenceable ? 2004 dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) { 2005 DRM_ERROR( 2006 "Attempting to bind an object larger than the aperture\n"); 2007 return -E2BIG; 2008 } 2009 2010 search_free: 2011 if (map_and_fenceable) 2012 free_space = drm_mm_search_free_in_range( 2013 &dev_priv->mm.gtt_space, size, alignment, 0, 2014 dev_priv->mm.gtt_mappable_end, 0); 2015 else 2016 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space, 2017 size, alignment, 0); 2018 if (free_space != NULL) { 2019 int color = 0; 2020 if (map_and_fenceable) 2021 obj->gtt_space = drm_mm_get_block_range_generic( 2022 free_space, size, alignment, color, 0, 2023 dev_priv->mm.gtt_mappable_end, 1); 2024 else 2025 obj->gtt_space = drm_mm_get_block_generic(free_space, 2026 size, alignment, color, 1); 2027 } 2028 if (obj->gtt_space == NULL) { 2029 ret = i915_gem_evict_something(dev, size, alignment, 2030 obj->cache_level, 2031 map_and_fenceable, 2032 nonblocking); 2033 if (ret != 0) 2034 return (ret); 2035 goto search_free; 2036 } 2037 2038 /* 2039 * NOTE: i915_gem_object_get_pages_gtt() cannot 2040 * return ENOMEM, since we used VM_ALLOC_RETRY. 2041 */ 2042 ret = i915_gem_object_get_pages_gtt(obj, 0); 2043 if (ret != 0) { 2044 drm_mm_put_block(obj->gtt_space); 2045 obj->gtt_space = NULL; 2046 return ret; 2047 } 2048 2049 i915_gem_gtt_bind_object(obj, obj->cache_level); 2050 if (ret != 0) { 2051 i915_gem_object_put_pages_gtt(obj); 2052 drm_mm_put_block(obj->gtt_space); 2053 obj->gtt_space = NULL; 2054 if (i915_gem_evict_everything(dev)) 2055 return (ret); 2056 goto search_free; 2057 } 2058 2059 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list); 2060 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list); 2061 2062 obj->gtt_offset = obj->gtt_space->start; 2063 2064 fenceable = 2065 obj->gtt_space->size == fence_size && 2066 (obj->gtt_space->start & (fence_alignment - 1)) == 0; 2067 2068 mappable = 2069 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end; 2070 obj->map_and_fenceable = mappable && fenceable; 2071 2072 return 0; 2073 } 2074 2075 void 2076 i915_gem_clflush_object(struct drm_i915_gem_object *obj) 2077 { 2078 2079 /* If we don't have a page list set up, then we're not pinned 2080 * to GPU, and we can ignore the cache flush because it'll happen 2081 * again at bind time. 2082 */ 2083 if (obj->pages == NULL) 2084 return; 2085 2086 /* If the GPU is snooping the contents of the CPU cache, 2087 * we do not need to manually clear the CPU cache lines. However, 2088 * the caches are only snooped when the render cache is 2089 * flushed/invalidated. As we always have to emit invalidations 2090 * and flushes when moving into and out of the RENDER domain, correct 2091 * snooping behaviour occurs naturally as the result of our domain 2092 * tracking. 2093 */ 2094 if (obj->cache_level != I915_CACHE_NONE) 2095 return; 2096 2097 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE); 2098 } 2099 2100 /** Flushes the GTT write domain for the object if it's dirty. */ 2101 static void 2102 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj) 2103 { 2104 uint32_t old_write_domain; 2105 2106 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT) 2107 return; 2108 2109 /* No actual flushing is required for the GTT write domain. Writes 2110 * to it immediately go to main memory as far as we know, so there's 2111 * no chipset flush. It also doesn't land in render cache. 2112 * 2113 * However, we do have to enforce the order so that all writes through 2114 * the GTT land before any writes to the device, such as updates to 2115 * the GATT itself. 2116 */ 2117 cpu_sfence(); 2118 2119 old_write_domain = obj->base.write_domain; 2120 obj->base.write_domain = 0; 2121 } 2122 2123 /** Flushes the CPU write domain for the object if it's dirty. */ 2124 static void 2125 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj) 2126 { 2127 uint32_t old_write_domain; 2128 2129 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) 2130 return; 2131 2132 i915_gem_clflush_object(obj); 2133 intel_gtt_chipset_flush(); 2134 old_write_domain = obj->base.write_domain; 2135 obj->base.write_domain = 0; 2136 } 2137 2138 /** 2139 * Moves a single object to the GTT read, and possibly write domain. 2140 * 2141 * This function returns when the move is complete, including waiting on 2142 * flushes to occur. 2143 */ 2144 int 2145 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write) 2146 { 2147 drm_i915_private_t *dev_priv = obj->base.dev->dev_private; 2148 uint32_t old_write_domain, old_read_domains; 2149 int ret; 2150 2151 /* Not valid to be called on unbound objects. */ 2152 if (obj->gtt_space == NULL) 2153 return -EINVAL; 2154 2155 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT) 2156 return 0; 2157 2158 ret = i915_gem_object_wait_rendering(obj, !write); 2159 if (ret) 2160 return ret; 2161 2162 i915_gem_object_flush_cpu_write_domain(obj); 2163 2164 old_write_domain = obj->base.write_domain; 2165 old_read_domains = obj->base.read_domains; 2166 2167 /* It should now be out of any other write domains, and we can update 2168 * the domain values for our changes. 2169 */ 2170 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0); 2171 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 2172 if (write) { 2173 obj->base.read_domains = I915_GEM_DOMAIN_GTT; 2174 obj->base.write_domain = I915_GEM_DOMAIN_GTT; 2175 obj->dirty = 1; 2176 } 2177 2178 /* And bump the LRU for this access */ 2179 if (i915_gem_object_is_inactive(obj)) 2180 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list); 2181 2182 return 0; 2183 } 2184 2185 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 2186 enum i915_cache_level cache_level) 2187 { 2188 struct drm_device *dev = obj->base.dev; 2189 drm_i915_private_t *dev_priv = dev->dev_private; 2190 int ret; 2191 2192 if (obj->cache_level == cache_level) 2193 return 0; 2194 2195 if (obj->pin_count) { 2196 DRM_DEBUG("can not change the cache level of pinned objects\n"); 2197 return -EBUSY; 2198 } 2199 2200 if (obj->gtt_space) { 2201 ret = i915_gem_object_finish_gpu(obj); 2202 if (ret) 2203 return ret; 2204 2205 i915_gem_object_finish_gtt(obj); 2206 2207 /* Before SandyBridge, you could not use tiling or fence 2208 * registers with snooped memory, so relinquish any fences 2209 * currently pointing to our region in the aperture. 2210 */ 2211 if (INTEL_INFO(obj->base.dev)->gen < 6) { 2212 ret = i915_gem_object_put_fence(obj); 2213 if (ret) 2214 return ret; 2215 } 2216 2217 if (obj->has_global_gtt_mapping) 2218 i915_gem_gtt_bind_object(obj, cache_level); 2219 if (obj->has_aliasing_ppgtt_mapping) 2220 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt, 2221 obj, cache_level); 2222 } 2223 2224 if (cache_level == I915_CACHE_NONE) { 2225 u32 old_read_domains, old_write_domain; 2226 2227 /* If we're coming from LLC cached, then we haven't 2228 * actually been tracking whether the data is in the 2229 * CPU cache or not, since we only allow one bit set 2230 * in obj->write_domain and have been skipping the clflushes. 2231 * Just set it to the CPU cache for now. 2232 */ 2233 KASSERT((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) == 0, 2234 ("obj %p in CPU write domain", obj)); 2235 KASSERT((obj->base.read_domains & ~I915_GEM_DOMAIN_CPU) == 0, 2236 ("obj %p in CPU read domain", obj)); 2237 2238 old_read_domains = obj->base.read_domains; 2239 old_write_domain = obj->base.write_domain; 2240 2241 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 2242 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 2243 2244 } 2245 2246 obj->cache_level = cache_level; 2247 return 0; 2248 } 2249 2250 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, 2251 struct drm_file *file) 2252 { 2253 struct drm_i915_gem_caching *args = data; 2254 struct drm_i915_gem_object *obj; 2255 int ret; 2256 2257 ret = i915_mutex_lock_interruptible(dev); 2258 if (ret) 2259 return ret; 2260 2261 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 2262 if (&obj->base == NULL) { 2263 ret = -ENOENT; 2264 goto unlock; 2265 } 2266 2267 args->caching = obj->cache_level != I915_CACHE_NONE; 2268 2269 drm_gem_object_unreference(&obj->base); 2270 unlock: 2271 DRM_UNLOCK(dev); 2272 return ret; 2273 } 2274 2275 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, 2276 struct drm_file *file) 2277 { 2278 struct drm_i915_gem_caching *args = data; 2279 struct drm_i915_gem_object *obj; 2280 enum i915_cache_level level; 2281 int ret; 2282 2283 switch (args->caching) { 2284 case I915_CACHING_NONE: 2285 level = I915_CACHE_NONE; 2286 break; 2287 case I915_CACHING_CACHED: 2288 level = I915_CACHE_LLC; 2289 break; 2290 default: 2291 return -EINVAL; 2292 } 2293 2294 ret = i915_mutex_lock_interruptible(dev); 2295 if (ret) 2296 return ret; 2297 2298 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 2299 if (&obj->base == NULL) { 2300 ret = -ENOENT; 2301 goto unlock; 2302 } 2303 2304 ret = i915_gem_object_set_cache_level(obj, level); 2305 2306 drm_gem_object_unreference(&obj->base); 2307 unlock: 2308 DRM_UNLOCK(dev); 2309 return ret; 2310 } 2311 2312 /* 2313 * Prepare buffer for display plane (scanout, cursors, etc). 2314 * Can be called from an uninterruptible phase (modesetting) and allows 2315 * any flushes to be pipelined (for pageflips). 2316 */ 2317 int 2318 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 2319 u32 alignment, 2320 struct intel_ring_buffer *pipelined) 2321 { 2322 u32 old_read_domains, old_write_domain; 2323 int ret; 2324 2325 if (pipelined != obj->ring) { 2326 ret = i915_gem_object_sync(obj, pipelined); 2327 if (ret) 2328 return ret; 2329 } 2330 2331 /* The display engine is not coherent with the LLC cache on gen6. As 2332 * a result, we make sure that the pinning that is about to occur is 2333 * done with uncached PTEs. This is lowest common denominator for all 2334 * chipsets. 2335 * 2336 * However for gen6+, we could do better by using the GFDT bit instead 2337 * of uncaching, which would allow us to flush all the LLC-cached data 2338 * with that bit in the PTE to main memory with just one PIPE_CONTROL. 2339 */ 2340 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE); 2341 if (ret) 2342 return ret; 2343 2344 /* As the user may map the buffer once pinned in the display plane 2345 * (e.g. libkms for the bootup splash), we have to ensure that we 2346 * always use map_and_fenceable for all scanout buffers. 2347 */ 2348 ret = i915_gem_object_pin(obj, alignment, true, false); 2349 if (ret) 2350 return ret; 2351 2352 i915_gem_object_flush_cpu_write_domain(obj); 2353 2354 old_write_domain = obj->base.write_domain; 2355 old_read_domains = obj->base.read_domains; 2356 2357 /* It should now be out of any other write domains, and we can update 2358 * the domain values for our changes. 2359 */ 2360 obj->base.write_domain = 0; 2361 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 2362 2363 return 0; 2364 } 2365 2366 int 2367 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj) 2368 { 2369 int ret; 2370 2371 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0) 2372 return 0; 2373 2374 ret = i915_gem_object_wait_rendering(obj, false); 2375 if (ret) 2376 return ret; 2377 2378 /* Ensure that we invalidate the GPU's caches and TLBs. */ 2379 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS; 2380 return 0; 2381 } 2382 2383 /** 2384 * Moves a single object to the CPU read, and possibly write domain. 2385 * 2386 * This function returns when the move is complete, including waiting on 2387 * flushes to occur. 2388 */ 2389 int 2390 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write) 2391 { 2392 uint32_t old_write_domain, old_read_domains; 2393 int ret; 2394 2395 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) 2396 return 0; 2397 2398 ret = i915_gem_object_wait_rendering(obj, !write); 2399 if (ret) 2400 return ret; 2401 2402 i915_gem_object_flush_gtt_write_domain(obj); 2403 2404 old_write_domain = obj->base.write_domain; 2405 old_read_domains = obj->base.read_domains; 2406 2407 /* Flush the CPU cache if it's still invalid. */ 2408 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) { 2409 i915_gem_clflush_object(obj); 2410 2411 obj->base.read_domains |= I915_GEM_DOMAIN_CPU; 2412 } 2413 2414 /* It should now be out of any other write domains, and we can update 2415 * the domain values for our changes. 2416 */ 2417 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0); 2418 2419 /* If we're writing through the CPU, then the GPU read domains will 2420 * need to be invalidated at next use. 2421 */ 2422 if (write) { 2423 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 2424 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 2425 } 2426 2427 return 0; 2428 } 2429 2430 /* Throttle our rendering by waiting until the ring has completed our requests 2431 * emitted over 20 msec ago. 2432 * 2433 * Note that if we were to use the current jiffies each time around the loop, 2434 * we wouldn't escape the function with any frames outstanding if the time to 2435 * render a frame was over 20ms. 2436 * 2437 * This should get us reasonable parallelism between CPU and GPU but also 2438 * relatively low latency when blocking on a particular request to finish. 2439 */ 2440 static int 2441 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file) 2442 { 2443 struct drm_i915_private *dev_priv = dev->dev_private; 2444 struct drm_i915_file_private *file_priv = file->driver_priv; 2445 unsigned long recent_enough = ticks - (20 * hz / 1000); 2446 struct drm_i915_gem_request *request; 2447 struct intel_ring_buffer *ring = NULL; 2448 u32 seqno = 0; 2449 int ret; 2450 2451 if (atomic_read(&dev_priv->mm.wedged)) 2452 return -EIO; 2453 2454 spin_lock(&file_priv->mm.lock); 2455 list_for_each_entry(request, &file_priv->mm.request_list, client_list) { 2456 if (time_after_eq(request->emitted_jiffies, recent_enough)) 2457 break; 2458 2459 ring = request->ring; 2460 seqno = request->seqno; 2461 } 2462 spin_unlock(&file_priv->mm.lock); 2463 2464 if (seqno == 0) 2465 return 0; 2466 2467 ret = __wait_seqno(ring, seqno, true, NULL); 2468 2469 if (ret == 0) 2470 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0); 2471 2472 return ret; 2473 } 2474 2475 int 2476 i915_gem_object_pin(struct drm_i915_gem_object *obj, 2477 uint32_t alignment, 2478 bool map_and_fenceable, 2479 bool nonblocking) 2480 { 2481 int ret; 2482 2483 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT)) 2484 return -EBUSY; 2485 2486 if (obj->gtt_space != NULL) { 2487 if ((alignment && obj->gtt_offset & (alignment - 1)) || 2488 (map_and_fenceable && !obj->map_and_fenceable)) { 2489 WARN(obj->pin_count, 2490 "bo is already pinned with incorrect alignment:" 2491 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d," 2492 " obj->map_and_fenceable=%d\n", 2493 obj->gtt_offset, alignment, 2494 map_and_fenceable, 2495 obj->map_and_fenceable); 2496 ret = i915_gem_object_unbind(obj); 2497 if (ret) 2498 return ret; 2499 } 2500 } 2501 2502 if (obj->gtt_space == NULL) { 2503 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2504 2505 ret = i915_gem_object_bind_to_gtt(obj, alignment, 2506 map_and_fenceable, 2507 nonblocking); 2508 if (ret) 2509 return ret; 2510 2511 if (!dev_priv->mm.aliasing_ppgtt) 2512 i915_gem_gtt_bind_object(obj, obj->cache_level); 2513 } 2514 2515 if (!obj->has_global_gtt_mapping && map_and_fenceable) 2516 i915_gem_gtt_bind_object(obj, obj->cache_level); 2517 2518 obj->pin_count++; 2519 obj->pin_mappable |= map_and_fenceable; 2520 2521 return 0; 2522 } 2523 2524 void 2525 i915_gem_object_unpin(struct drm_i915_gem_object *obj) 2526 { 2527 BUG_ON(obj->pin_count == 0); 2528 BUG_ON(obj->gtt_space == NULL); 2529 2530 if (--obj->pin_count == 0) 2531 obj->pin_mappable = false; 2532 } 2533 2534 int 2535 i915_gem_pin_ioctl(struct drm_device *dev, void *data, 2536 struct drm_file *file) 2537 { 2538 struct drm_i915_gem_pin *args = data; 2539 struct drm_i915_gem_object *obj; 2540 int ret; 2541 2542 ret = i915_mutex_lock_interruptible(dev); 2543 if (ret) 2544 return ret; 2545 2546 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 2547 if (&obj->base == NULL) { 2548 ret = -ENOENT; 2549 goto unlock; 2550 } 2551 2552 if (obj->madv != I915_MADV_WILLNEED) { 2553 DRM_ERROR("Attempting to pin a purgeable buffer\n"); 2554 ret = -EINVAL; 2555 goto out; 2556 } 2557 2558 if (obj->pin_filp != NULL && obj->pin_filp != file) { 2559 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n", 2560 args->handle); 2561 ret = -EINVAL; 2562 goto out; 2563 } 2564 2565 if (obj->user_pin_count == 0) { 2566 ret = i915_gem_object_pin(obj, args->alignment, true, false); 2567 if (ret) 2568 goto out; 2569 } 2570 2571 obj->user_pin_count++; 2572 obj->pin_filp = file; 2573 2574 /* XXX - flush the CPU caches for pinned objects 2575 * as the X server doesn't manage domains yet 2576 */ 2577 i915_gem_object_flush_cpu_write_domain(obj); 2578 args->offset = obj->gtt_offset; 2579 out: 2580 drm_gem_object_unreference(&obj->base); 2581 unlock: 2582 DRM_UNLOCK(dev); 2583 return ret; 2584 } 2585 2586 int 2587 i915_gem_unpin_ioctl(struct drm_device *dev, void *data, 2588 struct drm_file *file) 2589 { 2590 struct drm_i915_gem_pin *args = data; 2591 struct drm_i915_gem_object *obj; 2592 int ret; 2593 2594 ret = i915_mutex_lock_interruptible(dev); 2595 if (ret) 2596 return ret; 2597 2598 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 2599 if (&obj->base == NULL) { 2600 ret = -ENOENT; 2601 goto unlock; 2602 } 2603 2604 if (obj->pin_filp != file) { 2605 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n", 2606 args->handle); 2607 ret = -EINVAL; 2608 goto out; 2609 } 2610 obj->user_pin_count--; 2611 if (obj->user_pin_count == 0) { 2612 obj->pin_filp = NULL; 2613 i915_gem_object_unpin(obj); 2614 } 2615 2616 out: 2617 drm_gem_object_unreference(&obj->base); 2618 unlock: 2619 DRM_UNLOCK(dev); 2620 return (ret); 2621 } 2622 2623 int 2624 i915_gem_busy_ioctl(struct drm_device *dev, void *data, 2625 struct drm_file *file) 2626 { 2627 struct drm_i915_gem_busy *args = data; 2628 struct drm_i915_gem_object *obj; 2629 int ret; 2630 2631 ret = i915_mutex_lock_interruptible(dev); 2632 if (ret) 2633 return ret; 2634 2635 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 2636 if (&obj->base == NULL) { 2637 ret = -ENOENT; 2638 goto unlock; 2639 } 2640 2641 /* Count all active objects as busy, even if they are currently not used 2642 * by the gpu. Users of this interface expect objects to eventually 2643 * become non-busy without any further actions, therefore emit any 2644 * necessary flushes here. 2645 */ 2646 ret = i915_gem_object_flush_active(obj); 2647 2648 args->busy = obj->active; 2649 if (obj->ring) { 2650 args->busy |= intel_ring_flag(obj->ring) << 17; 2651 } 2652 2653 drm_gem_object_unreference(&obj->base); 2654 unlock: 2655 DRM_UNLOCK(dev); 2656 return ret; 2657 } 2658 2659 int 2660 i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 2661 struct drm_file *file_priv) 2662 { 2663 return i915_gem_ring_throttle(dev, file_priv); 2664 } 2665 2666 int 2667 i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 2668 struct drm_file *file_priv) 2669 { 2670 struct drm_i915_gem_madvise *args = data; 2671 struct drm_i915_gem_object *obj; 2672 int ret; 2673 2674 switch (args->madv) { 2675 case I915_MADV_DONTNEED: 2676 case I915_MADV_WILLNEED: 2677 break; 2678 default: 2679 return -EINVAL; 2680 } 2681 2682 ret = i915_mutex_lock_interruptible(dev); 2683 if (ret) 2684 return ret; 2685 2686 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle)); 2687 if (&obj->base == NULL) { 2688 ret = -ENOENT; 2689 goto unlock; 2690 } 2691 2692 if (obj->pin_count) { 2693 ret = -EINVAL; 2694 goto out; 2695 } 2696 2697 if (obj->madv != __I915_MADV_PURGED) 2698 obj->madv = args->madv; 2699 2700 /* if the object is no longer attached, discard its backing storage */ 2701 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL) 2702 i915_gem_object_truncate(obj); 2703 2704 args->retained = obj->madv != __I915_MADV_PURGED; 2705 2706 out: 2707 drm_gem_object_unreference(&obj->base); 2708 unlock: 2709 DRM_UNLOCK(dev); 2710 return ret; 2711 } 2712 2713 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev, 2714 size_t size) 2715 { 2716 struct drm_i915_private *dev_priv; 2717 struct drm_i915_gem_object *obj; 2718 2719 dev_priv = dev->dev_private; 2720 2721 obj = kmalloc(sizeof(*obj), M_DRM, M_WAITOK | M_ZERO); 2722 2723 if (drm_gem_object_init(dev, &obj->base, size) != 0) { 2724 drm_free(obj, M_DRM); 2725 return (NULL); 2726 } 2727 2728 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 2729 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 2730 2731 if (HAS_LLC(dev)) { 2732 /* On some devices, we can have the GPU use the LLC (the CPU 2733 * cache) for about a 10% performance improvement 2734 * compared to uncached. Graphics requests other than 2735 * display scanout are coherent with the CPU in 2736 * accessing this cache. This means in this mode we 2737 * don't need to clflush on the CPU side, and on the 2738 * GPU side we only need to flush internal caches to 2739 * get data visible to the CPU. 2740 * 2741 * However, we maintain the display planes as UC, and so 2742 * need to rebind when first used as such. 2743 */ 2744 obj->cache_level = I915_CACHE_LLC; 2745 } else 2746 obj->cache_level = I915_CACHE_NONE; 2747 obj->base.driver_private = NULL; 2748 obj->fence_reg = I915_FENCE_REG_NONE; 2749 INIT_LIST_HEAD(&obj->mm_list); 2750 INIT_LIST_HEAD(&obj->gtt_list); 2751 INIT_LIST_HEAD(&obj->ring_list); 2752 INIT_LIST_HEAD(&obj->exec_list); 2753 obj->madv = I915_MADV_WILLNEED; 2754 /* Avoid an unnecessary call to unbind on the first bind. */ 2755 obj->map_and_fenceable = true; 2756 2757 i915_gem_info_add_obj(dev_priv, size); 2758 2759 return obj; 2760 } 2761 2762 int i915_gem_init_object(struct drm_gem_object *obj) 2763 { 2764 BUG(); 2765 2766 return 0; 2767 } 2768 2769 void i915_gem_free_object(struct drm_gem_object *gem_obj) 2770 { 2771 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj); 2772 struct drm_device *dev = obj->base.dev; 2773 drm_i915_private_t *dev_priv = dev->dev_private; 2774 2775 if (obj->phys_obj) 2776 i915_gem_detach_phys_object(dev, obj); 2777 2778 obj->pin_count = 0; 2779 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) { 2780 bool was_interruptible; 2781 2782 was_interruptible = dev_priv->mm.interruptible; 2783 dev_priv->mm.interruptible = false; 2784 2785 WARN_ON(i915_gem_object_unbind(obj)); 2786 2787 dev_priv->mm.interruptible = was_interruptible; 2788 } 2789 2790 drm_gem_free_mmap_offset(&obj->base); 2791 2792 drm_gem_object_release(&obj->base); 2793 i915_gem_info_remove_obj(dev_priv, obj->base.size); 2794 2795 drm_free(obj->bit_17, M_DRM); 2796 drm_free(obj, M_DRM); 2797 } 2798 2799 int 2800 i915_gem_do_init(struct drm_device *dev, unsigned long start, 2801 unsigned long mappable_end, unsigned long end) 2802 { 2803 drm_i915_private_t *dev_priv; 2804 unsigned long mappable; 2805 int error; 2806 2807 dev_priv = dev->dev_private; 2808 mappable = min(end, mappable_end) - start; 2809 2810 drm_mm_init(&dev_priv->mm.gtt_space, start, end - start); 2811 2812 dev_priv->mm.gtt_start = start; 2813 dev_priv->mm.gtt_mappable_end = mappable_end; 2814 dev_priv->mm.gtt_end = end; 2815 dev_priv->mm.gtt_total = end - start; 2816 dev_priv->mm.mappable_gtt_total = mappable; 2817 2818 /* Take over this portion of the GTT */ 2819 intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE); 2820 device_printf(dev->dev, 2821 "taking over the fictitious range 0x%lx-0x%lx\n", 2822 dev->agp->base + start, dev->agp->base + start + mappable); 2823 error = -vm_phys_fictitious_reg_range(dev->agp->base + start, 2824 dev->agp->base + start + mappable, VM_MEMATTR_WRITE_COMBINING); 2825 return (error); 2826 } 2827 2828 int 2829 i915_gem_idle(struct drm_device *dev) 2830 { 2831 drm_i915_private_t *dev_priv = dev->dev_private; 2832 int ret; 2833 2834 DRM_LOCK(dev); 2835 2836 if (dev_priv->mm.suspended) { 2837 DRM_UNLOCK(dev); 2838 return 0; 2839 } 2840 2841 ret = i915_gpu_idle(dev); 2842 if (ret) { 2843 DRM_UNLOCK(dev); 2844 return ret; 2845 } 2846 i915_gem_retire_requests(dev); 2847 2848 /* Under UMS, be paranoid and evict. */ 2849 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 2850 i915_gem_evict_everything(dev); 2851 2852 i915_gem_reset_fences(dev); 2853 2854 /* Hack! Don't let anybody do execbuf while we don't control the chip. 2855 * We need to replace this with a semaphore, or something. 2856 * And not confound mm.suspended! 2857 */ 2858 dev_priv->mm.suspended = 1; 2859 del_timer_sync(&dev_priv->hangcheck_timer); 2860 2861 i915_kernel_lost_context(dev); 2862 i915_gem_cleanup_ringbuffer(dev); 2863 2864 DRM_UNLOCK(dev); 2865 2866 /* Cancel the retire work handler, which should be idle now. */ 2867 cancel_delayed_work_sync(&dev_priv->mm.retire_work); 2868 2869 return 0; 2870 } 2871 2872 void i915_gem_l3_remap(struct drm_device *dev) 2873 { 2874 drm_i915_private_t *dev_priv = dev->dev_private; 2875 u32 misccpctl; 2876 int i; 2877 2878 if (!HAS_L3_GPU_CACHE(dev)) 2879 return; 2880 2881 if (!dev_priv->l3_parity.remap_info) 2882 return; 2883 2884 misccpctl = I915_READ(GEN7_MISCCPCTL); 2885 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE); 2886 POSTING_READ(GEN7_MISCCPCTL); 2887 2888 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) { 2889 u32 remap = I915_READ(GEN7_L3LOG_BASE + i); 2890 if (remap && remap != dev_priv->l3_parity.remap_info[i/4]) 2891 DRM_DEBUG("0x%x was already programmed to %x\n", 2892 GEN7_L3LOG_BASE + i, remap); 2893 if (remap && !dev_priv->l3_parity.remap_info[i/4]) 2894 DRM_DEBUG_DRIVER("Clearing remapped register\n"); 2895 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]); 2896 } 2897 2898 /* Make sure all the writes land before disabling dop clock gating */ 2899 POSTING_READ(GEN7_L3LOG_BASE); 2900 2901 I915_WRITE(GEN7_MISCCPCTL, misccpctl); 2902 } 2903 2904 void i915_gem_init_swizzling(struct drm_device *dev) 2905 { 2906 drm_i915_private_t *dev_priv = dev->dev_private; 2907 2908 if (INTEL_INFO(dev)->gen < 5 || 2909 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE) 2910 return; 2911 2912 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) | 2913 DISP_TILE_SURFACE_SWIZZLING); 2914 2915 if (IS_GEN5(dev)) 2916 return; 2917 2918 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL); 2919 if (IS_GEN6(dev)) 2920 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB)); 2921 else 2922 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB)); 2923 } 2924 2925 static bool 2926 intel_enable_blt(struct drm_device *dev) 2927 { 2928 int revision; 2929 2930 if (!HAS_BLT(dev)) 2931 return false; 2932 2933 /* The blitter was dysfunctional on early prototypes */ 2934 revision = pci_read_config(dev->dev, PCIR_REVID, 1); 2935 if (IS_GEN6(dev) && revision < 8) { 2936 DRM_INFO("BLT not supported on this pre-production hardware;" 2937 " graphics performance will be degraded.\n"); 2938 return false; 2939 } 2940 2941 return true; 2942 } 2943 2944 int 2945 i915_gem_init_hw(struct drm_device *dev) 2946 { 2947 drm_i915_private_t *dev_priv = dev->dev_private; 2948 int ret; 2949 2950 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1)) 2951 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000); 2952 2953 i915_gem_l3_remap(dev); 2954 2955 i915_gem_init_swizzling(dev); 2956 2957 ret = intel_init_render_ring_buffer(dev); 2958 if (ret) 2959 return ret; 2960 2961 if (HAS_BSD(dev)) { 2962 ret = intel_init_bsd_ring_buffer(dev); 2963 if (ret) 2964 goto cleanup_render_ring; 2965 } 2966 2967 if (intel_enable_blt(dev)) { 2968 ret = intel_init_blt_ring_buffer(dev); 2969 if (ret) 2970 goto cleanup_bsd_ring; 2971 } 2972 2973 dev_priv->next_seqno = 1; 2974 2975 /* 2976 * XXX: There was some w/a described somewhere suggesting loading 2977 * contexts before PPGTT. 2978 */ 2979 i915_gem_context_init(dev); 2980 i915_gem_init_ppgtt(dev); 2981 2982 return 0; 2983 2984 cleanup_bsd_ring: 2985 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]); 2986 cleanup_render_ring: 2987 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]); 2988 return ret; 2989 } 2990 2991 static bool 2992 intel_enable_ppgtt(struct drm_device *dev) 2993 { 2994 if (i915_enable_ppgtt >= 0) 2995 return i915_enable_ppgtt; 2996 2997 /* Disable ppgtt on SNB if VT-d is on. */ 2998 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_enabled) 2999 return false; 3000 3001 return true; 3002 } 3003 3004 int i915_gem_init(struct drm_device *dev) 3005 { 3006 struct drm_i915_private *dev_priv = dev->dev_private; 3007 unsigned long prealloc_size, gtt_size, mappable_size; 3008 int ret; 3009 3010 prealloc_size = dev_priv->mm.gtt->stolen_size; 3011 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT; 3012 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT; 3013 3014 /* Basic memrange allocator for stolen space */ 3015 drm_mm_init(&dev_priv->mm.stolen, 0, prealloc_size); 3016 3017 DRM_LOCK(dev); 3018 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) { 3019 /* PPGTT pdes are stolen from global gtt ptes, so shrink the 3020 * aperture accordingly when using aliasing ppgtt. */ 3021 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE; 3022 /* For paranoia keep the guard page in between. */ 3023 gtt_size -= PAGE_SIZE; 3024 3025 i915_gem_do_init(dev, 0, mappable_size, gtt_size); 3026 3027 ret = i915_gem_init_aliasing_ppgtt(dev); 3028 if (ret) { 3029 DRM_UNLOCK(dev); 3030 return ret; 3031 } 3032 } else { 3033 /* Let GEM Manage all of the aperture. 3034 * 3035 * However, leave one page at the end still bound to the scratch 3036 * page. There are a number of places where the hardware 3037 * apparently prefetches past the end of the object, and we've 3038 * seen multiple hangs with the GPU head pointer stuck in a 3039 * batchbuffer bound at the last page of the aperture. One page 3040 * should be enough to keep any prefetching inside of the 3041 * aperture. 3042 */ 3043 i915_gem_do_init(dev, 0, mappable_size, gtt_size - PAGE_SIZE); 3044 } 3045 3046 ret = i915_gem_init_hw(dev); 3047 DRM_UNLOCK(dev); 3048 if (ret) { 3049 i915_gem_cleanup_aliasing_ppgtt(dev); 3050 return ret; 3051 } 3052 3053 #if 0 3054 /* Try to set up FBC with a reasonable compressed buffer size */ 3055 if (I915_HAS_FBC(dev) && i915_powersave) { 3056 int cfb_size; 3057 3058 /* Leave 1M for line length buffer & misc. */ 3059 3060 /* Try to get a 32M buffer... */ 3061 if (prealloc_size > (36*1024*1024)) 3062 cfb_size = 32*1024*1024; 3063 else /* fall back to 7/8 of the stolen space */ 3064 cfb_size = prealloc_size * 7 / 8; 3065 i915_setup_compression(dev, cfb_size); 3066 } 3067 #endif 3068 3069 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */ 3070 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 3071 dev_priv->dri1.allow_batchbuffer = 1; 3072 return 0; 3073 } 3074 3075 void 3076 i915_gem_cleanup_ringbuffer(struct drm_device *dev) 3077 { 3078 drm_i915_private_t *dev_priv = dev->dev_private; 3079 struct intel_ring_buffer *ring; 3080 int i; 3081 3082 for_each_ring(ring, dev_priv, i) 3083 intel_cleanup_ring_buffer(ring); 3084 } 3085 3086 int 3087 i915_gem_entervt_ioctl(struct drm_device *dev, void *data, 3088 struct drm_file *file_priv) 3089 { 3090 drm_i915_private_t *dev_priv = dev->dev_private; 3091 int ret; 3092 3093 if (drm_core_check_feature(dev, DRIVER_MODESET)) 3094 return 0; 3095 3096 if (atomic_read(&dev_priv->mm.wedged)) { 3097 DRM_ERROR("Reenabling wedged hardware, good luck\n"); 3098 atomic_set(&dev_priv->mm.wedged, 0); 3099 } 3100 3101 DRM_LOCK(dev); 3102 dev_priv->mm.suspended = 0; 3103 3104 ret = i915_gem_init_hw(dev); 3105 if (ret != 0) { 3106 DRM_UNLOCK(dev); 3107 return ret; 3108 } 3109 3110 KASSERT(list_empty(&dev_priv->mm.active_list), ("active list")); 3111 DRM_UNLOCK(dev); 3112 3113 ret = drm_irq_install(dev); 3114 if (ret) 3115 goto cleanup_ringbuffer; 3116 3117 return 0; 3118 3119 cleanup_ringbuffer: 3120 DRM_LOCK(dev); 3121 i915_gem_cleanup_ringbuffer(dev); 3122 dev_priv->mm.suspended = 1; 3123 DRM_UNLOCK(dev); 3124 3125 return ret; 3126 } 3127 3128 int 3129 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data, 3130 struct drm_file *file_priv) 3131 { 3132 if (drm_core_check_feature(dev, DRIVER_MODESET)) 3133 return 0; 3134 3135 drm_irq_uninstall(dev); 3136 return i915_gem_idle(dev); 3137 } 3138 3139 void 3140 i915_gem_lastclose(struct drm_device *dev) 3141 { 3142 int ret; 3143 3144 if (drm_core_check_feature(dev, DRIVER_MODESET)) 3145 return; 3146 3147 ret = i915_gem_idle(dev); 3148 if (ret) 3149 DRM_ERROR("failed to idle hardware: %d\n", ret); 3150 } 3151 3152 static void 3153 init_ring_lists(struct intel_ring_buffer *ring) 3154 { 3155 INIT_LIST_HEAD(&ring->active_list); 3156 INIT_LIST_HEAD(&ring->request_list); 3157 } 3158 3159 void 3160 i915_gem_load(struct drm_device *dev) 3161 { 3162 int i; 3163 drm_i915_private_t *dev_priv = dev->dev_private; 3164 3165 INIT_LIST_HEAD(&dev_priv->mm.active_list); 3166 INIT_LIST_HEAD(&dev_priv->mm.inactive_list); 3167 INIT_LIST_HEAD(&dev_priv->mm.fence_list); 3168 INIT_LIST_HEAD(&dev_priv->mm.gtt_list); 3169 for (i = 0; i < I915_NUM_RINGS; i++) 3170 init_ring_lists(&dev_priv->ring[i]); 3171 for (i = 0; i < I915_MAX_NUM_FENCES; i++) 3172 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list); 3173 INIT_DELAYED_WORK(&dev_priv->mm.retire_work, 3174 i915_gem_retire_work_handler); 3175 init_completion(&dev_priv->error_completion); 3176 3177 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */ 3178 if (IS_GEN3(dev)) { 3179 I915_WRITE(MI_ARB_STATE, 3180 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE)); 3181 } 3182 3183 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL; 3184 3185 /* Old X drivers will take 0-2 for front, back, depth buffers */ 3186 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 3187 dev_priv->fence_reg_start = 3; 3188 3189 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) 3190 dev_priv->num_fence_regs = 16; 3191 else 3192 dev_priv->num_fence_regs = 8; 3193 3194 /* Initialize fence registers to zero */ 3195 i915_gem_reset_fences(dev); 3196 3197 i915_gem_detect_bit_6_swizzle(dev); 3198 init_waitqueue_head(&dev_priv->pending_flip_queue); 3199 3200 dev_priv->mm.interruptible = true; 3201 3202 #if 0 3203 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink; 3204 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS; 3205 register_shrinker(&dev_priv->mm.inactive_shrinker); 3206 #else 3207 dev_priv->mm.i915_lowmem = EVENTHANDLER_REGISTER(vm_lowmem, 3208 i915_gem_lowmem, dev, EVENTHANDLER_PRI_ANY); 3209 #endif 3210 } 3211 3212 /* 3213 * Create a physically contiguous memory object for this object 3214 * e.g. for cursor + overlay regs 3215 */ 3216 static int i915_gem_init_phys_object(struct drm_device *dev, 3217 int id, int size, int align) 3218 { 3219 drm_i915_private_t *dev_priv = dev->dev_private; 3220 struct drm_i915_gem_phys_object *phys_obj; 3221 int ret; 3222 3223 if (dev_priv->mm.phys_objs[id - 1] || !size) 3224 return 0; 3225 3226 phys_obj = kmalloc(sizeof(struct drm_i915_gem_phys_object), M_DRM, 3227 M_WAITOK | M_ZERO); 3228 if (!phys_obj) 3229 return -ENOMEM; 3230 3231 phys_obj->id = id; 3232 3233 phys_obj->handle = drm_pci_alloc(dev, size, align, ~0); 3234 if (!phys_obj->handle) { 3235 ret = -ENOMEM; 3236 goto kfree_obj; 3237 } 3238 pmap_change_attr((vm_offset_t)phys_obj->handle->vaddr, 3239 size / PAGE_SIZE, PAT_WRITE_COMBINING); 3240 3241 dev_priv->mm.phys_objs[id - 1] = phys_obj; 3242 3243 return 0; 3244 3245 kfree_obj: 3246 drm_free(phys_obj, M_DRM); 3247 return ret; 3248 } 3249 3250 static void i915_gem_free_phys_object(struct drm_device *dev, int id) 3251 { 3252 drm_i915_private_t *dev_priv = dev->dev_private; 3253 struct drm_i915_gem_phys_object *phys_obj; 3254 3255 if (!dev_priv->mm.phys_objs[id - 1]) 3256 return; 3257 3258 phys_obj = dev_priv->mm.phys_objs[id - 1]; 3259 if (phys_obj->cur_obj) { 3260 i915_gem_detach_phys_object(dev, phys_obj->cur_obj); 3261 } 3262 3263 drm_pci_free(dev, phys_obj->handle); 3264 drm_free(phys_obj, M_DRM); 3265 dev_priv->mm.phys_objs[id - 1] = NULL; 3266 } 3267 3268 void i915_gem_free_all_phys_object(struct drm_device *dev) 3269 { 3270 int i; 3271 3272 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++) 3273 i915_gem_free_phys_object(dev, i); 3274 } 3275 3276 void i915_gem_detach_phys_object(struct drm_device *dev, 3277 struct drm_i915_gem_object *obj) 3278 { 3279 vm_page_t m; 3280 struct sf_buf *sf; 3281 char *vaddr, *dst; 3282 int i, page_count; 3283 3284 if (!obj->phys_obj) 3285 return; 3286 vaddr = obj->phys_obj->handle->vaddr; 3287 3288 page_count = obj->base.size / PAGE_SIZE; 3289 VM_OBJECT_LOCK(obj->base.vm_obj); 3290 for (i = 0; i < page_count; i++) { 3291 m = i915_gem_wire_page(obj->base.vm_obj, i); 3292 if (m == NULL) 3293 continue; /* XXX */ 3294 3295 VM_OBJECT_UNLOCK(obj->base.vm_obj); 3296 sf = sf_buf_alloc(m); 3297 if (sf != NULL) { 3298 dst = (char *)sf_buf_kva(sf); 3299 memcpy(dst, vaddr + IDX_TO_OFF(i), PAGE_SIZE); 3300 sf_buf_free(sf); 3301 } 3302 drm_clflush_pages(&m, 1); 3303 3304 VM_OBJECT_LOCK(obj->base.vm_obj); 3305 vm_page_reference(m); 3306 vm_page_dirty(m); 3307 vm_page_busy_wait(m, FALSE, "i915gem"); 3308 vm_page_unwire(m, 0); 3309 vm_page_wakeup(m); 3310 } 3311 VM_OBJECT_UNLOCK(obj->base.vm_obj); 3312 intel_gtt_chipset_flush(); 3313 3314 obj->phys_obj->cur_obj = NULL; 3315 obj->phys_obj = NULL; 3316 } 3317 3318 int 3319 i915_gem_attach_phys_object(struct drm_device *dev, 3320 struct drm_i915_gem_object *obj, 3321 int id, 3322 int align) 3323 { 3324 drm_i915_private_t *dev_priv = dev->dev_private; 3325 vm_page_t m; 3326 struct sf_buf *sf; 3327 char *dst, *src; 3328 int i, page_count, ret; 3329 3330 if (id > I915_MAX_PHYS_OBJECT) 3331 return -EINVAL; 3332 3333 if (obj->phys_obj) { 3334 if (obj->phys_obj->id == id) 3335 return 0; 3336 i915_gem_detach_phys_object(dev, obj); 3337 } 3338 3339 /* create a new object */ 3340 if (!dev_priv->mm.phys_objs[id - 1]) { 3341 ret = i915_gem_init_phys_object(dev, id, 3342 obj->base.size, align); 3343 if (ret) { 3344 DRM_ERROR("failed to init phys object %d size: %zu\n", 3345 id, obj->base.size); 3346 return ret; 3347 } 3348 } 3349 3350 /* bind to the object */ 3351 obj->phys_obj = dev_priv->mm.phys_objs[id - 1]; 3352 obj->phys_obj->cur_obj = obj; 3353 3354 page_count = obj->base.size / PAGE_SIZE; 3355 3356 VM_OBJECT_LOCK(obj->base.vm_obj); 3357 ret = 0; 3358 for (i = 0; i < page_count; i++) { 3359 m = i915_gem_wire_page(obj->base.vm_obj, i); 3360 if (m == NULL) { 3361 ret = -EIO; 3362 break; 3363 } 3364 VM_OBJECT_UNLOCK(obj->base.vm_obj); 3365 sf = sf_buf_alloc(m); 3366 src = (char *)sf_buf_kva(sf); 3367 dst = (char *)obj->phys_obj->handle->vaddr + IDX_TO_OFF(i); 3368 memcpy(dst, src, PAGE_SIZE); 3369 sf_buf_free(sf); 3370 3371 VM_OBJECT_LOCK(obj->base.vm_obj); 3372 3373 vm_page_reference(m); 3374 vm_page_busy_wait(m, FALSE, "i915gem"); 3375 vm_page_unwire(m, 0); 3376 vm_page_wakeup(m); 3377 } 3378 VM_OBJECT_UNLOCK(obj->base.vm_obj); 3379 3380 return (0); 3381 } 3382 3383 static int 3384 i915_gem_phys_pwrite(struct drm_device *dev, 3385 struct drm_i915_gem_object *obj, 3386 uint64_t data_ptr, 3387 uint64_t offset, 3388 uint64_t size, 3389 struct drm_file *file_priv) 3390 { 3391 char *user_data, *vaddr; 3392 int ret; 3393 3394 vaddr = (char *)obj->phys_obj->handle->vaddr + offset; 3395 user_data = (char *)(uintptr_t)data_ptr; 3396 3397 if (copyin_nofault(user_data, vaddr, size) != 0) { 3398 /* The physical object once assigned is fixed for the lifetime 3399 * of the obj, so we can safely drop the lock and continue 3400 * to access vaddr. 3401 */ 3402 DRM_UNLOCK(dev); 3403 ret = -copyin(user_data, vaddr, size); 3404 DRM_LOCK(dev); 3405 if (ret != 0) 3406 return (ret); 3407 } 3408 3409 intel_gtt_chipset_flush(); 3410 return 0; 3411 } 3412 3413 void i915_gem_release(struct drm_device *dev, struct drm_file *file) 3414 { 3415 struct drm_i915_file_private *file_priv = file->driver_priv; 3416 3417 /* Clean up our request list when the client is going away, so that 3418 * later retire_requests won't dereference our soon-to-be-gone 3419 * file_priv. 3420 */ 3421 spin_lock(&file_priv->mm.lock); 3422 while (!list_empty(&file_priv->mm.request_list)) { 3423 struct drm_i915_gem_request *request; 3424 3425 request = list_first_entry(&file_priv->mm.request_list, 3426 struct drm_i915_gem_request, 3427 client_list); 3428 list_del(&request->client_list); 3429 request->file_priv = NULL; 3430 } 3431 spin_unlock(&file_priv->mm.lock); 3432 } 3433 3434 static int 3435 i915_gem_swap_io(struct drm_device *dev, struct drm_i915_gem_object *obj, 3436 uint64_t data_ptr, uint64_t size, uint64_t offset, enum uio_rw rw, 3437 struct drm_file *file) 3438 { 3439 vm_object_t vm_obj; 3440 vm_page_t m; 3441 struct sf_buf *sf; 3442 vm_offset_t mkva; 3443 vm_pindex_t obj_pi; 3444 int cnt, do_bit17_swizzling, length, obj_po, ret, swizzled_po; 3445 3446 if (obj->gtt_offset != 0 && rw == UIO_READ) 3447 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); 3448 else 3449 do_bit17_swizzling = 0; 3450 3451 obj->dirty = 1; 3452 vm_obj = obj->base.vm_obj; 3453 ret = 0; 3454 3455 VM_OBJECT_LOCK(vm_obj); 3456 vm_object_pip_add(vm_obj, 1); 3457 while (size > 0) { 3458 obj_pi = OFF_TO_IDX(offset); 3459 obj_po = offset & PAGE_MASK; 3460 3461 m = i915_gem_wire_page(vm_obj, obj_pi); 3462 VM_OBJECT_UNLOCK(vm_obj); 3463 3464 sf = sf_buf_alloc(m); 3465 mkva = sf_buf_kva(sf); 3466 length = min(size, PAGE_SIZE - obj_po); 3467 while (length > 0) { 3468 if (do_bit17_swizzling && 3469 (VM_PAGE_TO_PHYS(m) & (1 << 17)) != 0) { 3470 cnt = roundup2(obj_po + 1, 64); 3471 cnt = min(cnt - obj_po, length); 3472 swizzled_po = obj_po ^ 64; 3473 } else { 3474 cnt = length; 3475 swizzled_po = obj_po; 3476 } 3477 if (rw == UIO_READ) 3478 ret = -copyout_nofault( 3479 (char *)mkva + swizzled_po, 3480 (void *)(uintptr_t)data_ptr, cnt); 3481 else 3482 ret = -copyin_nofault( 3483 (void *)(uintptr_t)data_ptr, 3484 (char *)mkva + swizzled_po, cnt); 3485 if (ret != 0) 3486 break; 3487 data_ptr += cnt; 3488 size -= cnt; 3489 length -= cnt; 3490 offset += cnt; 3491 obj_po += cnt; 3492 } 3493 sf_buf_free(sf); 3494 VM_OBJECT_LOCK(vm_obj); 3495 if (rw == UIO_WRITE) 3496 vm_page_dirty(m); 3497 vm_page_reference(m); 3498 vm_page_busy_wait(m, FALSE, "i915gem"); 3499 vm_page_unwire(m, 1); 3500 vm_page_wakeup(m); 3501 3502 if (ret != 0) 3503 break; 3504 } 3505 vm_object_pip_wakeup(vm_obj); 3506 VM_OBJECT_UNLOCK(vm_obj); 3507 3508 return (ret); 3509 } 3510 3511 static int 3512 i915_gem_gtt_write(struct drm_device *dev, struct drm_i915_gem_object *obj, 3513 uint64_t data_ptr, uint64_t size, uint64_t offset, struct drm_file *file) 3514 { 3515 vm_offset_t mkva; 3516 int ret; 3517 3518 /* 3519 * Pass the unaligned physical address and size to pmap_mapdev_attr() 3520 * so it can properly calculate whether an extra page needs to be 3521 * mapped or not to cover the requested range. The function will 3522 * add the page offset into the returned mkva for us. 3523 */ 3524 mkva = (vm_offset_t)pmap_mapdev_attr(dev->agp->base + obj->gtt_offset + 3525 offset, size, PAT_WRITE_COMBINING); 3526 ret = -copyin_nofault((void *)(uintptr_t)data_ptr, (char *)mkva, size); 3527 pmap_unmapdev(mkva, size); 3528 return (ret); 3529 } 3530 3531 static int 3532 i915_gem_obj_io(struct drm_device *dev, uint32_t handle, uint64_t data_ptr, 3533 uint64_t size, uint64_t offset, enum uio_rw rw, struct drm_file *file) 3534 { 3535 struct drm_i915_gem_object *obj; 3536 vm_page_t *ma; 3537 vm_offset_t start, end; 3538 int npages, ret; 3539 3540 if (size == 0) 3541 return (0); 3542 start = trunc_page(data_ptr); 3543 end = round_page(data_ptr + size); 3544 npages = howmany(end - start, PAGE_SIZE); 3545 ma = kmalloc(npages * sizeof(vm_page_t), M_DRM, M_WAITOK | 3546 M_ZERO); 3547 npages = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map, 3548 (vm_offset_t)data_ptr, size, 3549 (rw == UIO_READ ? VM_PROT_WRITE : 0 ) | VM_PROT_READ, ma, npages); 3550 if (npages == -1) { 3551 ret = -EFAULT; 3552 goto free_ma; 3553 } 3554 3555 ret = i915_mutex_lock_interruptible(dev); 3556 if (ret != 0) 3557 goto unlocked; 3558 3559 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle)); 3560 if (&obj->base == NULL) { 3561 ret = -ENOENT; 3562 goto unlock; 3563 } 3564 if (offset > obj->base.size || size > obj->base.size - offset) { 3565 ret = -EINVAL; 3566 goto out; 3567 } 3568 3569 if (rw == UIO_READ) { 3570 ret = i915_gem_swap_io(dev, obj, data_ptr, size, offset, 3571 UIO_READ, file); 3572 } else { 3573 if (obj->phys_obj) { 3574 ret = i915_gem_phys_pwrite(dev, obj, data_ptr, offset, 3575 size, file); 3576 } else if (obj->gtt_space && 3577 obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 3578 ret = i915_gem_object_pin(obj, 0, true, false); 3579 if (ret != 0) 3580 goto out; 3581 ret = i915_gem_object_set_to_gtt_domain(obj, true); 3582 if (ret != 0) 3583 goto out_unpin; 3584 ret = i915_gem_object_put_fence(obj); 3585 if (ret != 0) 3586 goto out_unpin; 3587 ret = i915_gem_gtt_write(dev, obj, data_ptr, size, 3588 offset, file); 3589 out_unpin: 3590 i915_gem_object_unpin(obj); 3591 } else { 3592 ret = i915_gem_object_set_to_cpu_domain(obj, true); 3593 if (ret != 0) 3594 goto out; 3595 ret = i915_gem_swap_io(dev, obj, data_ptr, size, offset, 3596 UIO_WRITE, file); 3597 } 3598 } 3599 out: 3600 drm_gem_object_unreference(&obj->base); 3601 unlock: 3602 DRM_UNLOCK(dev); 3603 unlocked: 3604 vm_page_unhold_pages(ma, npages); 3605 free_ma: 3606 drm_free(ma, M_DRM); 3607 return (ret); 3608 } 3609 3610 static int 3611 i915_gem_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot, 3612 vm_ooffset_t foff, struct ucred *cred, u_short *color) 3613 { 3614 3615 *color = 0; /* XXXKIB */ 3616 return (0); 3617 } 3618 3619 int i915_intr_pf; 3620 3621 static int 3622 i915_gem_pager_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot, 3623 vm_page_t *mres) 3624 { 3625 struct drm_gem_object *gem_obj; 3626 struct drm_i915_gem_object *obj; 3627 struct drm_device *dev; 3628 drm_i915_private_t *dev_priv; 3629 vm_page_t m, oldm; 3630 int cause, ret; 3631 bool write; 3632 3633 gem_obj = vm_obj->handle; 3634 obj = to_intel_bo(gem_obj); 3635 dev = obj->base.dev; 3636 dev_priv = dev->dev_private; 3637 #if 0 3638 write = (prot & VM_PROT_WRITE) != 0; 3639 #else 3640 write = true; 3641 #endif 3642 vm_object_pip_add(vm_obj, 1); 3643 3644 /* 3645 * Remove the placeholder page inserted by vm_fault() from the 3646 * object before dropping the object lock. If 3647 * i915_gem_release_mmap() is active in parallel on this gem 3648 * object, then it owns the drm device sx and might find the 3649 * placeholder already. Then, since the page is busy, 3650 * i915_gem_release_mmap() sleeps waiting for the busy state 3651 * of the page cleared. We will be not able to acquire drm 3652 * device lock until i915_gem_release_mmap() is able to make a 3653 * progress. 3654 */ 3655 if (*mres != NULL) { 3656 oldm = *mres; 3657 vm_page_remove(oldm); 3658 *mres = NULL; 3659 } else 3660 oldm = NULL; 3661 retry: 3662 VM_OBJECT_UNLOCK(vm_obj); 3663 unlocked_vmobj: 3664 cause = ret = 0; 3665 m = NULL; 3666 3667 if (i915_intr_pf) { 3668 ret = i915_mutex_lock_interruptible(dev); 3669 if (ret != 0) { 3670 cause = 10; 3671 goto out; 3672 } 3673 } else 3674 DRM_LOCK(dev); 3675 3676 /* 3677 * Since the object lock was dropped, other thread might have 3678 * faulted on the same GTT address and instantiated the 3679 * mapping for the page. Recheck. 3680 */ 3681 VM_OBJECT_LOCK(vm_obj); 3682 m = vm_page_lookup(vm_obj, OFF_TO_IDX(offset)); 3683 if (m != NULL) { 3684 if ((m->flags & PG_BUSY) != 0) { 3685 DRM_UNLOCK(dev); 3686 #if 0 /* XXX */ 3687 vm_page_sleep(m, "915pee"); 3688 #endif 3689 goto retry; 3690 } 3691 goto have_page; 3692 } else 3693 VM_OBJECT_UNLOCK(vm_obj); 3694 3695 /* Now bind it into the GTT if needed */ 3696 if (!obj->map_and_fenceable) { 3697 ret = i915_gem_object_unbind(obj); 3698 if (ret != 0) { 3699 cause = 20; 3700 goto unlock; 3701 } 3702 } 3703 if (!obj->gtt_space) { 3704 ret = i915_gem_object_bind_to_gtt(obj, 0, true, false); 3705 if (ret != 0) { 3706 cause = 30; 3707 goto unlock; 3708 } 3709 3710 ret = i915_gem_object_set_to_gtt_domain(obj, write); 3711 if (ret != 0) { 3712 cause = 40; 3713 goto unlock; 3714 } 3715 } 3716 3717 if (obj->tiling_mode == I915_TILING_NONE) 3718 ret = i915_gem_object_put_fence(obj); 3719 else 3720 ret = i915_gem_object_get_fence(obj); 3721 if (ret != 0) { 3722 cause = 50; 3723 goto unlock; 3724 } 3725 3726 if (i915_gem_object_is_inactive(obj)) 3727 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list); 3728 3729 obj->fault_mappable = true; 3730 VM_OBJECT_LOCK(vm_obj); 3731 m = vm_phys_fictitious_to_vm_page(dev->agp->base + obj->gtt_offset + 3732 offset); 3733 if (m == NULL) { 3734 cause = 60; 3735 ret = -EFAULT; 3736 goto unlock; 3737 } 3738 KASSERT((m->flags & PG_FICTITIOUS) != 0, 3739 ("not fictitious %p", m)); 3740 KASSERT(m->wire_count == 1, ("wire_count not 1 %p", m)); 3741 3742 if ((m->flags & PG_BUSY) != 0) { 3743 DRM_UNLOCK(dev); 3744 #if 0 /* XXX */ 3745 vm_page_sleep(m, "915pbs"); 3746 #endif 3747 goto retry; 3748 } 3749 m->valid = VM_PAGE_BITS_ALL; 3750 vm_page_insert(m, vm_obj, OFF_TO_IDX(offset)); 3751 have_page: 3752 *mres = m; 3753 vm_page_busy_try(m, false); 3754 3755 DRM_UNLOCK(dev); 3756 if (oldm != NULL) { 3757 vm_page_free(oldm); 3758 } 3759 vm_object_pip_wakeup(vm_obj); 3760 return (VM_PAGER_OK); 3761 3762 unlock: 3763 DRM_UNLOCK(dev); 3764 out: 3765 KASSERT(ret != 0, ("i915_gem_pager_fault: wrong return")); 3766 if (ret == -EAGAIN || ret == -EIO || ret == -EINTR) { 3767 goto unlocked_vmobj; 3768 } 3769 VM_OBJECT_LOCK(vm_obj); 3770 vm_object_pip_wakeup(vm_obj); 3771 return (VM_PAGER_ERROR); 3772 } 3773 3774 static void 3775 i915_gem_pager_dtor(void *handle) 3776 { 3777 struct drm_gem_object *obj; 3778 struct drm_device *dev; 3779 3780 obj = handle; 3781 dev = obj->dev; 3782 3783 DRM_LOCK(dev); 3784 drm_gem_free_mmap_offset(obj); 3785 i915_gem_release_mmap(to_intel_bo(obj)); 3786 drm_gem_object_unreference(obj); 3787 DRM_UNLOCK(dev); 3788 } 3789 3790 struct cdev_pager_ops i915_gem_pager_ops = { 3791 .cdev_pg_fault = i915_gem_pager_fault, 3792 .cdev_pg_ctor = i915_gem_pager_ctor, 3793 .cdev_pg_dtor = i915_gem_pager_dtor 3794 }; 3795 3796 #define GEM_PARANOID_CHECK_GTT 0 3797 #if GEM_PARANOID_CHECK_GTT 3798 static void 3799 i915_gem_assert_pages_not_mapped(struct drm_device *dev, vm_page_t *ma, 3800 int page_count) 3801 { 3802 struct drm_i915_private *dev_priv; 3803 vm_paddr_t pa; 3804 unsigned long start, end; 3805 u_int i; 3806 int j; 3807 3808 dev_priv = dev->dev_private; 3809 start = OFF_TO_IDX(dev_priv->mm.gtt_start); 3810 end = OFF_TO_IDX(dev_priv->mm.gtt_end); 3811 for (i = start; i < end; i++) { 3812 pa = intel_gtt_read_pte_paddr(i); 3813 for (j = 0; j < page_count; j++) { 3814 if (pa == VM_PAGE_TO_PHYS(ma[j])) { 3815 panic("Page %p in GTT pte index %d pte %x", 3816 ma[i], i, intel_gtt_read_pte(i)); 3817 } 3818 } 3819 } 3820 } 3821 #endif 3822 3823 #define VM_OBJECT_LOCK_ASSERT_OWNED(object) 3824 3825 static vm_page_t 3826 i915_gem_wire_page(vm_object_t object, vm_pindex_t pindex) 3827 { 3828 vm_page_t m; 3829 int rv; 3830 3831 VM_OBJECT_LOCK_ASSERT_OWNED(object); 3832 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_RETRY); 3833 if (m->valid != VM_PAGE_BITS_ALL) { 3834 if (vm_pager_has_page(object, pindex)) { 3835 rv = vm_pager_get_page(object, &m, 1); 3836 m = vm_page_lookup(object, pindex); 3837 if (m == NULL) 3838 return (NULL); 3839 if (rv != VM_PAGER_OK) { 3840 vm_page_free(m); 3841 return (NULL); 3842 } 3843 } else { 3844 pmap_zero_page(VM_PAGE_TO_PHYS(m)); 3845 m->valid = VM_PAGE_BITS_ALL; 3846 m->dirty = 0; 3847 } 3848 } 3849 vm_page_wire(m); 3850 vm_page_wakeup(m); 3851 return (m); 3852 } 3853 3854 static int 3855 i915_gpu_is_active(struct drm_device *dev) 3856 { 3857 drm_i915_private_t *dev_priv = dev->dev_private; 3858 3859 return !list_empty(&dev_priv->mm.active_list); 3860 } 3861 3862 static void 3863 i915_gem_lowmem(void *arg) 3864 { 3865 struct drm_device *dev; 3866 struct drm_i915_private *dev_priv; 3867 struct drm_i915_gem_object *obj, *next; 3868 int cnt, cnt_fail, cnt_total; 3869 3870 dev = arg; 3871 dev_priv = dev->dev_private; 3872 3873 if (lockmgr(&dev->dev_struct_lock, LK_EXCLUSIVE|LK_NOWAIT)) 3874 return; 3875 3876 rescan: 3877 /* first scan for clean buffers */ 3878 i915_gem_retire_requests(dev); 3879 3880 cnt_total = cnt_fail = cnt = 0; 3881 3882 list_for_each_entry_safe(obj, next, &dev_priv->mm.inactive_list, 3883 mm_list) { 3884 if (i915_gem_object_is_purgeable(obj)) { 3885 if (i915_gem_object_unbind(obj) != 0) 3886 cnt_total++; 3887 } else 3888 cnt_total++; 3889 } 3890 3891 /* second pass, evict/count anything still on the inactive list */ 3892 list_for_each_entry_safe(obj, next, &dev_priv->mm.inactive_list, 3893 mm_list) { 3894 if (i915_gem_object_unbind(obj) == 0) 3895 cnt++; 3896 else 3897 cnt_fail++; 3898 } 3899 3900 if (cnt_fail > cnt_total / 100 && i915_gpu_is_active(dev)) { 3901 /* 3902 * We are desperate for pages, so as a last resort, wait 3903 * for the GPU to finish and discard whatever we can. 3904 * This has a dramatic impact to reduce the number of 3905 * OOM-killer events whilst running the GPU aggressively. 3906 */ 3907 if (i915_gpu_idle(dev) == 0) 3908 goto rescan; 3909 } 3910 DRM_UNLOCK(dev); 3911 } 3912 3913 void 3914 i915_gem_unload(struct drm_device *dev) 3915 { 3916 struct drm_i915_private *dev_priv; 3917 3918 dev_priv = dev->dev_private; 3919 EVENTHANDLER_DEREGISTER(vm_lowmem, dev_priv->mm.i915_lowmem); 3920 } 3921