xref: /dflybsd-src/sys/dev/drm/i915/i915_gem.c (revision 56f51086aa3f6f77915d41cf7d311585f0086a49)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 
40 #define RQ_BUG_ON(expr)
41 
42 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
43 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
44 static void
45 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
46 static void
47 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
48 
49 static bool cpu_cache_is_coherent(struct drm_device *dev,
50 				  enum i915_cache_level level)
51 {
52 	return HAS_LLC(dev) || level != I915_CACHE_NONE;
53 }
54 
55 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
56 {
57 	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
58 		return true;
59 
60 	return obj->pin_display;
61 }
62 
63 /* some bookkeeping */
64 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
65 				  size_t size)
66 {
67 	spin_lock(&dev_priv->mm.object_stat_lock);
68 	dev_priv->mm.object_count++;
69 	dev_priv->mm.object_memory += size;
70 	spin_unlock(&dev_priv->mm.object_stat_lock);
71 }
72 
73 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
74 				     size_t size)
75 {
76 	spin_lock(&dev_priv->mm.object_stat_lock);
77 	dev_priv->mm.object_count--;
78 	dev_priv->mm.object_memory -= size;
79 	spin_unlock(&dev_priv->mm.object_stat_lock);
80 }
81 
82 static int
83 i915_gem_wait_for_error(struct i915_gpu_error *error)
84 {
85 	int ret;
86 
87 #define EXIT_COND (!i915_reset_in_progress(error) || \
88 		   i915_terminally_wedged(error))
89 	if (EXIT_COND)
90 		return 0;
91 
92 	/*
93 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
94 	 * userspace. If it takes that long something really bad is going on and
95 	 * we should simply try to bail out and fail as gracefully as possible.
96 	 */
97 	ret = wait_event_interruptible_timeout(error->reset_queue,
98 					       EXIT_COND,
99 					       10*HZ);
100 	if (ret == 0) {
101 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
102 		return -EIO;
103 	} else if (ret < 0) {
104 		return ret;
105 	}
106 #undef EXIT_COND
107 
108 	return 0;
109 }
110 
111 int i915_mutex_lock_interruptible(struct drm_device *dev)
112 {
113 	struct drm_i915_private *dev_priv = dev->dev_private;
114 	int ret;
115 
116 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
117 	if (ret)
118 		return ret;
119 
120 	ret = mutex_lock_interruptible(&dev->struct_mutex);
121 	if (ret)
122 		return ret;
123 
124 	WARN_ON(i915_verify_lists(dev));
125 	return 0;
126 }
127 
128 int
129 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
130 			    struct drm_file *file)
131 {
132 	struct drm_i915_private *dev_priv = dev->dev_private;
133 	struct drm_i915_gem_get_aperture *args = data;
134 	struct i915_gtt *ggtt = &dev_priv->gtt;
135 	struct i915_vma *vma;
136 	size_t pinned;
137 
138 	pinned = 0;
139 	mutex_lock(&dev->struct_mutex);
140 	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
141 		if (vma->pin_count)
142 			pinned += vma->node.size;
143 	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
144 		if (vma->pin_count)
145 			pinned += vma->node.size;
146 	mutex_unlock(&dev->struct_mutex);
147 
148 	args->aper_size = dev_priv->gtt.base.total;
149 	args->aper_available_size = args->aper_size - pinned;
150 
151 	return 0;
152 }
153 
154 #if 0
155 static int
156 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
157 {
158 	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159 	char *vaddr = obj->phys_handle->vaddr;
160 	struct sg_table *st;
161 	struct scatterlist *sg;
162 	int i;
163 
164 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165 		return -EINVAL;
166 
167 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168 		struct page *page;
169 		char *src;
170 
171 		page = shmem_read_mapping_page(mapping, i);
172 		if (IS_ERR(page))
173 			return PTR_ERR(page);
174 
175 		src = kmap_atomic(page);
176 		memcpy(vaddr, src, PAGE_SIZE);
177 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
178 		kunmap_atomic(src);
179 
180 		put_page(page);
181 		vaddr += PAGE_SIZE;
182 	}
183 
184 	i915_gem_chipset_flush(obj->base.dev);
185 
186 	st = kmalloc(sizeof(*st), GFP_KERNEL);
187 	if (st == NULL)
188 		return -ENOMEM;
189 
190 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191 		kfree(st);
192 		return -ENOMEM;
193 	}
194 
195 	sg = st->sgl;
196 	sg->offset = 0;
197 	sg->length = obj->base.size;
198 
199 	sg_dma_address(sg) = obj->phys_handle->busaddr;
200 	sg_dma_len(sg) = obj->base.size;
201 
202 	obj->pages = st;
203 	return 0;
204 }
205 
206 static void
207 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208 {
209 	int ret;
210 
211 	BUG_ON(obj->madv == __I915_MADV_PURGED);
212 
213 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
214 	if (ret) {
215 		/* In the event of a disaster, abandon all caches and
216 		 * hope for the best.
217 		 */
218 		WARN_ON(ret != -EIO);
219 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220 	}
221 
222 	if (obj->madv == I915_MADV_DONTNEED)
223 		obj->dirty = 0;
224 
225 	if (obj->dirty) {
226 		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
227 		char *vaddr = obj->phys_handle->vaddr;
228 		int i;
229 
230 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
231 			struct page *page;
232 			char *dst;
233 
234 			page = shmem_read_mapping_page(mapping, i);
235 			if (IS_ERR(page))
236 				continue;
237 
238 			dst = kmap_atomic(page);
239 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
240 			memcpy(dst, vaddr, PAGE_SIZE);
241 			kunmap_atomic(dst);
242 
243 			set_page_dirty(page);
244 			if (obj->madv == I915_MADV_WILLNEED)
245 				mark_page_accessed(page);
246 			put_page(page);
247 			vaddr += PAGE_SIZE;
248 		}
249 		obj->dirty = 0;
250 	}
251 
252 	sg_free_table(obj->pages);
253 	kfree(obj->pages);
254 }
255 
256 static void
257 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258 {
259 	drm_pci_free(obj->base.dev, obj->phys_handle);
260 }
261 
262 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263 	.get_pages = i915_gem_object_get_pages_phys,
264 	.put_pages = i915_gem_object_put_pages_phys,
265 	.release = i915_gem_object_release_phys,
266 };
267 #endif
268 
269 static int
270 drop_pages(struct drm_i915_gem_object *obj)
271 {
272 	struct i915_vma *vma, *next;
273 	int ret;
274 
275 	drm_gem_object_reference(&obj->base);
276 	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
277 		if (i915_vma_unbind(vma))
278 			break;
279 
280 	ret = i915_gem_object_put_pages(obj);
281 	drm_gem_object_unreference(&obj->base);
282 
283 	return ret;
284 }
285 
286 int
287 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
288 			    int align)
289 {
290 	drm_dma_handle_t *phys;
291 	int ret;
292 
293 	if (obj->phys_handle) {
294 		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
295 			return -EBUSY;
296 
297 		return 0;
298 	}
299 
300 	if (obj->madv != I915_MADV_WILLNEED)
301 		return -EFAULT;
302 
303 #if 0
304 	if (obj->base.filp == NULL)
305 		return -EINVAL;
306 #endif
307 
308 	ret = drop_pages(obj);
309 	if (ret)
310 		return ret;
311 
312 	/* create a new object */
313 	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
314 	if (!phys)
315 		return -ENOMEM;
316 
317 	obj->phys_handle = phys;
318 #if 0
319 	obj->ops = &i915_gem_phys_ops;
320 #endif
321 
322 	return i915_gem_object_get_pages(obj);
323 }
324 
325 static int
326 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
327 		     struct drm_i915_gem_pwrite *args,
328 		     struct drm_file *file_priv)
329 {
330 	struct drm_device *dev = obj->base.dev;
331 	void *vaddr = (char *)obj->phys_handle->vaddr + args->offset;
332 	char __user *user_data = to_user_ptr(args->data_ptr);
333 	int ret = 0;
334 
335 	/* We manually control the domain here and pretend that it
336 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
337 	 */
338 	ret = i915_gem_object_wait_rendering(obj, false);
339 	if (ret)
340 		return ret;
341 
342 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
343 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
344 		unsigned long unwritten;
345 
346 		/* The physical object once assigned is fixed for the lifetime
347 		 * of the obj, so we can safely drop the lock and continue
348 		 * to access vaddr.
349 		 */
350 		mutex_unlock(&dev->struct_mutex);
351 		unwritten = copy_from_user(vaddr, user_data, args->size);
352 		mutex_lock(&dev->struct_mutex);
353 		if (unwritten) {
354 			ret = -EFAULT;
355 			goto out;
356 		}
357 	}
358 
359 	drm_clflush_virt_range(vaddr, args->size);
360 	i915_gem_chipset_flush(dev);
361 
362 out:
363 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
364 	return ret;
365 }
366 
367 void *i915_gem_object_alloc(struct drm_device *dev)
368 {
369 	return kmalloc(sizeof(struct drm_i915_gem_object),
370 	    M_DRM, M_WAITOK | M_ZERO);
371 }
372 
373 void i915_gem_object_free(struct drm_i915_gem_object *obj)
374 {
375 	kfree(obj);
376 }
377 
378 static int
379 i915_gem_create(struct drm_file *file,
380 		struct drm_device *dev,
381 		uint64_t size,
382 		uint32_t *handle_p)
383 {
384 	struct drm_i915_gem_object *obj;
385 	int ret;
386 	u32 handle;
387 
388 	size = roundup(size, PAGE_SIZE);
389 	if (size == 0)
390 		return -EINVAL;
391 
392 	/* Allocate the new object */
393 	obj = i915_gem_alloc_object(dev, size);
394 	if (obj == NULL)
395 		return -ENOMEM;
396 
397 	ret = drm_gem_handle_create(file, &obj->base, &handle);
398 	/* drop reference from allocate - handle holds it now */
399 	drm_gem_object_unreference_unlocked(&obj->base);
400 	if (ret)
401 		return ret;
402 
403 	*handle_p = handle;
404 	return 0;
405 }
406 
407 int
408 i915_gem_dumb_create(struct drm_file *file,
409 		     struct drm_device *dev,
410 		     struct drm_mode_create_dumb *args)
411 {
412 	/* have to work out size/pitch and return them */
413 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
414 	args->size = args->pitch * args->height;
415 	return i915_gem_create(file, dev,
416 			       args->size, &args->handle);
417 }
418 
419 /**
420  * Creates a new mm object and returns a handle to it.
421  */
422 int
423 i915_gem_create_ioctl(struct drm_device *dev, void *data,
424 		      struct drm_file *file)
425 {
426 	struct drm_i915_gem_create *args = data;
427 
428 	return i915_gem_create(file, dev,
429 			       args->size, &args->handle);
430 }
431 
432 static inline int
433 __copy_to_user_swizzled(char __user *cpu_vaddr,
434 			const char *gpu_vaddr, int gpu_offset,
435 			int length)
436 {
437 	int ret, cpu_offset = 0;
438 
439 	while (length > 0) {
440 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
441 		int this_length = min(cacheline_end - gpu_offset, length);
442 		int swizzled_gpu_offset = gpu_offset ^ 64;
443 
444 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
445 				     gpu_vaddr + swizzled_gpu_offset,
446 				     this_length);
447 		if (ret)
448 			return ret + length;
449 
450 		cpu_offset += this_length;
451 		gpu_offset += this_length;
452 		length -= this_length;
453 	}
454 
455 	return 0;
456 }
457 
458 static inline int
459 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
460 			  const char __user *cpu_vaddr,
461 			  int length)
462 {
463 	int ret, cpu_offset = 0;
464 
465 	while (length > 0) {
466 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
467 		int this_length = min(cacheline_end - gpu_offset, length);
468 		int swizzled_gpu_offset = gpu_offset ^ 64;
469 
470 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
471 				       cpu_vaddr + cpu_offset,
472 				       this_length);
473 		if (ret)
474 			return ret + length;
475 
476 		cpu_offset += this_length;
477 		gpu_offset += this_length;
478 		length -= this_length;
479 	}
480 
481 	return 0;
482 }
483 
484 /*
485  * Pins the specified object's pages and synchronizes the object with
486  * GPU accesses. Sets needs_clflush to non-zero if the caller should
487  * flush the object from the CPU cache.
488  */
489 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
490 				    int *needs_clflush)
491 {
492 	int ret;
493 
494 	*needs_clflush = 0;
495 
496 #if 0
497 	if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
498 		return -EINVAL;
499 #endif
500 
501 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
502 		/* If we're not in the cpu read domain, set ourself into the gtt
503 		 * read domain and manually flush cachelines (if required). This
504 		 * optimizes for the case when the gpu will dirty the data
505 		 * anyway again before the next pread happens. */
506 		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
507 							obj->cache_level);
508 		ret = i915_gem_object_wait_rendering(obj, true);
509 		if (ret)
510 			return ret;
511 	}
512 
513 	ret = i915_gem_object_get_pages(obj);
514 	if (ret)
515 		return ret;
516 
517 	i915_gem_object_pin_pages(obj);
518 
519 	return ret;
520 }
521 
522 /* Per-page copy function for the shmem pread fastpath.
523  * Flushes invalid cachelines before reading the target if
524  * needs_clflush is set. */
525 static int
526 shmem_pread_fast(struct vm_page *page, int shmem_page_offset, int page_length,
527 		 char __user *user_data,
528 		 bool page_do_bit17_swizzling, bool needs_clflush)
529 {
530 	char *vaddr;
531 	int ret;
532 
533 	if (unlikely(page_do_bit17_swizzling))
534 		return -EINVAL;
535 
536 	vaddr = kmap_atomic(page);
537 	if (needs_clflush)
538 		drm_clflush_virt_range(vaddr + shmem_page_offset,
539 				       page_length);
540 	ret = __copy_to_user_inatomic(user_data,
541 				      vaddr + shmem_page_offset,
542 				      page_length);
543 	kunmap_atomic(vaddr);
544 
545 	return ret ? -EFAULT : 0;
546 }
547 
548 static void
549 shmem_clflush_swizzled_range(char *addr, unsigned long length,
550 			     bool swizzled)
551 {
552 	if (unlikely(swizzled)) {
553 		unsigned long start = (unsigned long) addr;
554 		unsigned long end = (unsigned long) addr + length;
555 
556 		/* For swizzling simply ensure that we always flush both
557 		 * channels. Lame, but simple and it works. Swizzled
558 		 * pwrite/pread is far from a hotpath - current userspace
559 		 * doesn't use it at all. */
560 		start = round_down(start, 128);
561 		end = round_up(end, 128);
562 
563 		drm_clflush_virt_range((void *)start, end - start);
564 	} else {
565 		drm_clflush_virt_range(addr, length);
566 	}
567 
568 }
569 
570 /* Only difference to the fast-path function is that this can handle bit17
571  * and uses non-atomic copy and kmap functions. */
572 static int
573 shmem_pread_slow(struct vm_page *page, int shmem_page_offset, int page_length,
574 		 char __user *user_data,
575 		 bool page_do_bit17_swizzling, bool needs_clflush)
576 {
577 	char *vaddr;
578 	int ret;
579 
580 	vaddr = kmap(page);
581 	if (needs_clflush)
582 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
583 					     page_length,
584 					     page_do_bit17_swizzling);
585 
586 	if (page_do_bit17_swizzling)
587 		ret = __copy_to_user_swizzled(user_data,
588 					      vaddr, shmem_page_offset,
589 					      page_length);
590 	else
591 		ret = __copy_to_user(user_data,
592 				     vaddr + shmem_page_offset,
593 				     page_length);
594 	kunmap(page);
595 
596 	return ret ? - EFAULT : 0;
597 }
598 
599 static int
600 i915_gem_shmem_pread(struct drm_device *dev,
601 		     struct drm_i915_gem_object *obj,
602 		     struct drm_i915_gem_pread *args,
603 		     struct drm_file *file)
604 {
605 	char __user *user_data;
606 	ssize_t remain;
607 	loff_t offset;
608 	int shmem_page_offset, page_length, ret = 0;
609 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
610 	int prefaulted = 0;
611 	int needs_clflush = 0;
612 	struct sg_page_iter sg_iter;
613 
614 	user_data = to_user_ptr(args->data_ptr);
615 	remain = args->size;
616 
617 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
618 
619 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
620 	if (ret)
621 		return ret;
622 
623 	offset = args->offset;
624 
625 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
626 			 offset >> PAGE_SHIFT) {
627 		struct vm_page *page = sg_page_iter_page(&sg_iter);
628 
629 		if (remain <= 0)
630 			break;
631 
632 		/* Operation in this page
633 		 *
634 		 * shmem_page_offset = offset within page in shmem file
635 		 * page_length = bytes to copy for this page
636 		 */
637 		shmem_page_offset = offset_in_page(offset);
638 		page_length = remain;
639 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
640 			page_length = PAGE_SIZE - shmem_page_offset;
641 
642 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
643 			(page_to_phys(page) & (1 << 17)) != 0;
644 
645 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
646 				       user_data, page_do_bit17_swizzling,
647 				       needs_clflush);
648 		if (ret == 0)
649 			goto next_page;
650 
651 		mutex_unlock(&dev->struct_mutex);
652 
653 		if (likely(!i915.prefault_disable) && !prefaulted) {
654 			ret = fault_in_multipages_writeable(user_data, remain);
655 			/* Userspace is tricking us, but we've already clobbered
656 			 * its pages with the prefault and promised to write the
657 			 * data up to the first fault. Hence ignore any errors
658 			 * and just continue. */
659 			(void)ret;
660 			prefaulted = 1;
661 		}
662 
663 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
664 				       user_data, page_do_bit17_swizzling,
665 				       needs_clflush);
666 
667 		mutex_lock(&dev->struct_mutex);
668 
669 		if (ret)
670 			goto out;
671 
672 next_page:
673 		remain -= page_length;
674 		user_data += page_length;
675 		offset += page_length;
676 	}
677 
678 out:
679 	i915_gem_object_unpin_pages(obj);
680 
681 	return ret;
682 }
683 
684 /**
685  * Reads data from the object referenced by handle.
686  *
687  * On error, the contents of *data are undefined.
688  */
689 int
690 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
691 		     struct drm_file *file)
692 {
693 	struct drm_i915_gem_pread *args = data;
694 	struct drm_i915_gem_object *obj;
695 	int ret = 0;
696 
697 	if (args->size == 0)
698 		return 0;
699 
700 	ret = i915_mutex_lock_interruptible(dev);
701 	if (ret)
702 		return ret;
703 
704 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
705 	if (&obj->base == NULL) {
706 		ret = -ENOENT;
707 		goto unlock;
708 	}
709 
710 	/* Bounds check source.  */
711 	if (args->offset > obj->base.size ||
712 	    args->size > obj->base.size - args->offset) {
713 		ret = -EINVAL;
714 		goto out;
715 	}
716 
717 	/* prime objects have no backing filp to GEM pread/pwrite
718 	 * pages from.
719 	 */
720 
721 	trace_i915_gem_object_pread(obj, args->offset, args->size);
722 
723 	ret = i915_gem_shmem_pread(dev, obj, args, file);
724 
725 out:
726 	drm_gem_object_unreference(&obj->base);
727 unlock:
728 	mutex_unlock(&dev->struct_mutex);
729 	return ret;
730 }
731 
732 /* This is the fast write path which cannot handle
733  * page faults in the source data
734  */
735 
736 static inline int
737 fast_user_write(struct io_mapping *mapping,
738 		loff_t page_base, int page_offset,
739 		char __user *user_data,
740 		int length)
741 {
742 	void __iomem *vaddr_atomic;
743 	void *vaddr;
744 	unsigned long unwritten;
745 
746 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
747 	/* We can use the cpu mem copy function because this is X86. */
748 	vaddr = (char __force*)vaddr_atomic + page_offset;
749 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
750 						      user_data, length);
751 	io_mapping_unmap_atomic(vaddr_atomic);
752 	return unwritten;
753 }
754 
755 /**
756  * This is the fast pwrite path, where we copy the data directly from the
757  * user into the GTT, uncached.
758  */
759 static int
760 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
761 			 struct drm_i915_gem_object *obj,
762 			 struct drm_i915_gem_pwrite *args,
763 			 struct drm_file *file)
764 {
765 	struct drm_i915_private *dev_priv = dev->dev_private;
766 	ssize_t remain;
767 	loff_t offset, page_base;
768 	char __user *user_data;
769 	int page_offset, page_length, ret;
770 
771 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
772 	if (ret)
773 		goto out;
774 
775 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
776 	if (ret)
777 		goto out_unpin;
778 
779 	ret = i915_gem_object_put_fence(obj);
780 	if (ret)
781 		goto out_unpin;
782 
783 	user_data = to_user_ptr(args->data_ptr);
784 	remain = args->size;
785 
786 	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
787 
788 	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
789 
790 	while (remain > 0) {
791 		/* Operation in this page
792 		 *
793 		 * page_base = page offset within aperture
794 		 * page_offset = offset within page
795 		 * page_length = bytes to copy for this page
796 		 */
797 		page_base = offset & ~PAGE_MASK;
798 		page_offset = offset_in_page(offset);
799 		page_length = remain;
800 		if ((page_offset + remain) > PAGE_SIZE)
801 			page_length = PAGE_SIZE - page_offset;
802 
803 		/* If we get a fault while copying data, then (presumably) our
804 		 * source page isn't available.  Return the error and we'll
805 		 * retry in the slow path.
806 		 */
807 		if (fast_user_write(dev_priv->gtt.mappable, page_base,
808 				    page_offset, user_data, page_length)) {
809 			ret = -EFAULT;
810 			goto out_flush;
811 		}
812 
813 		remain -= page_length;
814 		user_data += page_length;
815 		offset += page_length;
816 	}
817 
818 out_flush:
819 	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
820 out_unpin:
821 	i915_gem_object_ggtt_unpin(obj);
822 out:
823 	return ret;
824 }
825 
826 /* Per-page copy function for the shmem pwrite fastpath.
827  * Flushes invalid cachelines before writing to the target if
828  * needs_clflush_before is set and flushes out any written cachelines after
829  * writing if needs_clflush is set. */
830 static int
831 shmem_pwrite_fast(struct vm_page *page, int shmem_page_offset, int page_length,
832 		  char __user *user_data,
833 		  bool page_do_bit17_swizzling,
834 		  bool needs_clflush_before,
835 		  bool needs_clflush_after)
836 {
837 	char *vaddr;
838 	int ret;
839 
840 	if (unlikely(page_do_bit17_swizzling))
841 		return -EINVAL;
842 
843 	vaddr = kmap_atomic(page);
844 	if (needs_clflush_before)
845 		drm_clflush_virt_range(vaddr + shmem_page_offset,
846 				       page_length);
847 	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
848 					user_data, page_length);
849 	if (needs_clflush_after)
850 		drm_clflush_virt_range(vaddr + shmem_page_offset,
851 				       page_length);
852 	kunmap_atomic(vaddr);
853 
854 	return ret ? -EFAULT : 0;
855 }
856 
857 /* Only difference to the fast-path function is that this can handle bit17
858  * and uses non-atomic copy and kmap functions. */
859 static int
860 shmem_pwrite_slow(struct vm_page *page, int shmem_page_offset, int page_length,
861 		  char __user *user_data,
862 		  bool page_do_bit17_swizzling,
863 		  bool needs_clflush_before,
864 		  bool needs_clflush_after)
865 {
866 	char *vaddr;
867 	int ret;
868 
869 	vaddr = kmap(page);
870 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
871 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
872 					     page_length,
873 					     page_do_bit17_swizzling);
874 	if (page_do_bit17_swizzling)
875 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
876 						user_data,
877 						page_length);
878 	else
879 		ret = __copy_from_user(vaddr + shmem_page_offset,
880 				       user_data,
881 				       page_length);
882 	if (needs_clflush_after)
883 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
884 					     page_length,
885 					     page_do_bit17_swizzling);
886 	kunmap(page);
887 
888 	return ret ? -EFAULT : 0;
889 }
890 
891 static int
892 i915_gem_shmem_pwrite(struct drm_device *dev,
893 		      struct drm_i915_gem_object *obj,
894 		      struct drm_i915_gem_pwrite *args,
895 		      struct drm_file *file)
896 {
897 	ssize_t remain;
898 	loff_t offset;
899 	char __user *user_data;
900 	int shmem_page_offset, page_length, ret = 0;
901 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
902 	int hit_slowpath = 0;
903 	int needs_clflush_after = 0;
904 	int needs_clflush_before = 0;
905 	struct sg_page_iter sg_iter;
906 
907 	user_data = to_user_ptr(args->data_ptr);
908 	remain = args->size;
909 
910 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
911 
912 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
913 		/* If we're not in the cpu write domain, set ourself into the gtt
914 		 * write domain and manually flush cachelines (if required). This
915 		 * optimizes for the case when the gpu will use the data
916 		 * right away and we therefore have to clflush anyway. */
917 		needs_clflush_after = cpu_write_needs_clflush(obj);
918 		ret = i915_gem_object_wait_rendering(obj, false);
919 		if (ret)
920 			return ret;
921 	}
922 	/* Same trick applies to invalidate partially written cachelines read
923 	 * before writing. */
924 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
925 		needs_clflush_before =
926 			!cpu_cache_is_coherent(dev, obj->cache_level);
927 
928 	ret = i915_gem_object_get_pages(obj);
929 	if (ret)
930 		return ret;
931 
932 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
933 
934 	i915_gem_object_pin_pages(obj);
935 
936 	offset = args->offset;
937 	obj->dirty = 1;
938 
939 	VM_OBJECT_LOCK(obj->base.vm_obj);
940 	vm_object_pip_add(obj->base.vm_obj, 1);
941 
942 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
943 			 offset >> PAGE_SHIFT) {
944 		struct vm_page *page = sg_page_iter_page(&sg_iter);
945 		int partial_cacheline_write;
946 
947 		if (remain <= 0)
948 			break;
949 
950 		/* Operation in this page
951 		 *
952 		 * shmem_page_offset = offset within page in shmem file
953 		 * page_length = bytes to copy for this page
954 		 */
955 		shmem_page_offset = offset_in_page(offset);
956 
957 		page_length = remain;
958 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
959 			page_length = PAGE_SIZE - shmem_page_offset;
960 
961 		/* If we don't overwrite a cacheline completely we need to be
962 		 * careful to have up-to-date data by first clflushing. Don't
963 		 * overcomplicate things and flush the entire patch. */
964 		partial_cacheline_write = needs_clflush_before &&
965 			((shmem_page_offset | page_length)
966 				& (cpu_clflush_line_size - 1));
967 
968 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
969 			(page_to_phys(page) & (1 << 17)) != 0;
970 
971 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
972 					user_data, page_do_bit17_swizzling,
973 					partial_cacheline_write,
974 					needs_clflush_after);
975 		if (ret == 0)
976 			goto next_page;
977 
978 		hit_slowpath = 1;
979 		mutex_unlock(&dev->struct_mutex);
980 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
981 					user_data, page_do_bit17_swizzling,
982 					partial_cacheline_write,
983 					needs_clflush_after);
984 
985 		mutex_lock(&dev->struct_mutex);
986 
987 		if (ret)
988 			goto out;
989 
990 next_page:
991 		remain -= page_length;
992 		user_data += page_length;
993 		offset += page_length;
994 	}
995 	vm_object_pip_wakeup(obj->base.vm_obj);
996 	VM_OBJECT_UNLOCK(obj->base.vm_obj);
997 
998 out:
999 	i915_gem_object_unpin_pages(obj);
1000 
1001 	if (hit_slowpath) {
1002 		/*
1003 		 * Fixup: Flush cpu caches in case we didn't flush the dirty
1004 		 * cachelines in-line while writing and the object moved
1005 		 * out of the cpu write domain while we've dropped the lock.
1006 		 */
1007 		if (!needs_clflush_after &&
1008 		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1009 			if (i915_gem_clflush_object(obj, obj->pin_display))
1010 				needs_clflush_after = true;
1011 		}
1012 	}
1013 
1014 	if (needs_clflush_after)
1015 		i915_gem_chipset_flush(dev);
1016 	else
1017 		obj->cache_dirty = true;
1018 
1019 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1020 	return ret;
1021 }
1022 
1023 /**
1024  * Writes data to the object referenced by handle.
1025  *
1026  * On error, the contents of the buffer that were to be modified are undefined.
1027  */
1028 int
1029 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1030 		      struct drm_file *file)
1031 {
1032 	struct drm_i915_private *dev_priv = dev->dev_private;
1033 	struct drm_i915_gem_pwrite *args = data;
1034 	struct drm_i915_gem_object *obj;
1035 	int ret;
1036 
1037 	if (args->size == 0)
1038 		return 0;
1039 
1040 	if (likely(!i915.prefault_disable)) {
1041 		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1042 						   args->size);
1043 		if (ret)
1044 			return -EFAULT;
1045 	}
1046 
1047 	intel_runtime_pm_get(dev_priv);
1048 
1049 	ret = i915_mutex_lock_interruptible(dev);
1050 	if (ret)
1051 		goto put_rpm;
1052 
1053 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1054 	if (&obj->base == NULL) {
1055 		ret = -ENOENT;
1056 		goto unlock;
1057 	}
1058 
1059 	/* Bounds check destination. */
1060 	if (args->offset > obj->base.size ||
1061 	    args->size > obj->base.size - args->offset) {
1062 		ret = -EINVAL;
1063 		goto out;
1064 	}
1065 
1066 	/* prime objects have no backing filp to GEM pread/pwrite
1067 	 * pages from.
1068 	 */
1069 
1070 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1071 
1072 	ret = -EFAULT;
1073 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1074 	 * it would end up going through the fenced access, and we'll get
1075 	 * different detiling behavior between reading and writing.
1076 	 * pread/pwrite currently are reading and writing from the CPU
1077 	 * perspective, requiring manual detiling by the client.
1078 	 */
1079 	if (obj->tiling_mode == I915_TILING_NONE &&
1080 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1081 	    cpu_write_needs_clflush(obj)) {
1082 		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1083 		/* Note that the gtt paths might fail with non-page-backed user
1084 		 * pointers (e.g. gtt mappings when moving data between
1085 		 * textures). Fallback to the shmem path in that case. */
1086 	}
1087 
1088 	if (ret == -EFAULT || ret == -ENOSPC) {
1089 		if (obj->phys_handle)
1090 			ret = i915_gem_phys_pwrite(obj, args, file);
1091 		else
1092 			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1093 	}
1094 
1095 out:
1096 	drm_gem_object_unreference(&obj->base);
1097 unlock:
1098 	mutex_unlock(&dev->struct_mutex);
1099 put_rpm:
1100 	intel_runtime_pm_put(dev_priv);
1101 
1102 	return ret;
1103 }
1104 
1105 int
1106 i915_gem_check_wedge(struct i915_gpu_error *error,
1107 		     bool interruptible)
1108 {
1109 	if (i915_reset_in_progress(error)) {
1110 		/* Non-interruptible callers can't handle -EAGAIN, hence return
1111 		 * -EIO unconditionally for these. */
1112 		if (!interruptible)
1113 			return -EIO;
1114 
1115 		/* Recovery complete, but the reset failed ... */
1116 		if (i915_terminally_wedged(error))
1117 			return -EIO;
1118 
1119 		/*
1120 		 * Check if GPU Reset is in progress - we need intel_ring_begin
1121 		 * to work properly to reinit the hw state while the gpu is
1122 		 * still marked as reset-in-progress. Handle this with a flag.
1123 		 */
1124 		if (!error->reload_in_reset)
1125 			return -EAGAIN;
1126 	}
1127 
1128 	return 0;
1129 }
1130 
1131 static void fake_irq(unsigned long data)
1132 {
1133 	wakeup_one((void *)data);
1134 }
1135 
1136 static bool missed_irq(struct drm_i915_private *dev_priv,
1137 		       struct intel_engine_cs *ring)
1138 {
1139 	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1140 }
1141 
1142 #if 0
1143 static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1144 {
1145 	unsigned long timeout;
1146 	unsigned cpu;
1147 
1148 	/* When waiting for high frequency requests, e.g. during synchronous
1149 	 * rendering split between the CPU and GPU, the finite amount of time
1150 	 * required to set up the irq and wait upon it limits the response
1151 	 * rate. By busywaiting on the request completion for a short while we
1152 	 * can service the high frequency waits as quick as possible. However,
1153 	 * if it is a slow request, we want to sleep as quickly as possible.
1154 	 * The tradeoff between waiting and sleeping is roughly the time it
1155 	 * takes to sleep on a request, on the order of a microsecond.
1156 	 */
1157 
1158 	if (req->ring->irq_refcount)
1159 		return -EBUSY;
1160 
1161 	/* Only spin if we know the GPU is processing this request */
1162 	if (!i915_gem_request_started(req, true))
1163 		return -EAGAIN;
1164 
1165 	timeout = local_clock_us(&cpu) + 5;
1166 	while (!need_resched()) {
1167 		if (i915_gem_request_completed(req, true))
1168 			return 0;
1169 
1170 		if (signal_pending_state(state, current))
1171 			break;
1172 
1173 		if (busywait_stop(timeout, cpu))
1174 			break;
1175 
1176 		cpu_relax_lowlatency();
1177 	}
1178 
1179 	if (i915_gem_request_completed(req, false))
1180 		return 0;
1181 
1182 	return -EAGAIN;
1183 }
1184 #endif
1185 
1186 /**
1187  * __i915_wait_request - wait until execution of request has finished
1188  * @req: duh!
1189  * @reset_counter: reset sequence associated with the given request
1190  * @interruptible: do an interruptible wait (normally yes)
1191  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1192  *
1193  * Note: It is of utmost importance that the passed in seqno and reset_counter
1194  * values have been read by the caller in an smp safe manner. Where read-side
1195  * locks are involved, it is sufficient to read the reset_counter before
1196  * unlocking the lock that protects the seqno. For lockless tricks, the
1197  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1198  * inserted.
1199  *
1200  * Returns 0 if the request was found within the alloted time. Else returns the
1201  * errno with remaining time filled in timeout argument.
1202  */
1203 int __i915_wait_request(struct drm_i915_gem_request *req,
1204 			unsigned reset_counter,
1205 			bool interruptible,
1206 			s64 *timeout,
1207 			struct intel_rps_client *rps)
1208 {
1209 	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1210 	struct drm_device *dev = ring->dev;
1211 	struct drm_i915_private *dev_priv = dev->dev_private;
1212 	const bool irq_test_in_progress =
1213 		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1214 	unsigned long timeout_expire;
1215 	s64 before = 0; /* Only to silence a compiler warning. */
1216 	int ret, sl_timeout = 1;
1217 
1218 	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1219 
1220 	if (list_empty(&req->list))
1221 		return 0;
1222 
1223 	if (i915_gem_request_completed(req, true))
1224 		return 0;
1225 
1226 	timeout_expire = 0;
1227 	if (timeout) {
1228 		if (WARN_ON(*timeout < 0))
1229 			return -EINVAL;
1230 
1231 		if (*timeout == 0)
1232 			return -ETIME;
1233 
1234 		timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1235 
1236 		/*
1237 		 * Record current time in case interrupted by signal, or wedged.
1238 		 */
1239 		before = ktime_get_raw_ns();
1240 	}
1241 
1242 	if (INTEL_INFO(dev_priv)->gen >= 6)
1243 		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1244 
1245 	trace_i915_gem_request_wait_begin(req);
1246 
1247 	/* Optimistic spin for the next jiffie before touching IRQs */
1248 #if 0
1249 	ret = __i915_spin_request(req);
1250 	if (ret == 0)
1251 		goto out;
1252 #endif
1253 
1254 	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1255 		ret = -ENODEV;
1256 		goto out;
1257 	}
1258 
1259 	lockmgr(&ring->irq_queue.lock, LK_EXCLUSIVE);
1260 	for (;;) {
1261 		struct timer_list timer;
1262 
1263 		/* We need to check whether any gpu reset happened in between
1264 		 * the caller grabbing the seqno and now ... */
1265 		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1266 			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
1267 			 * is truely gone. */
1268 			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1269 			if (ret == 0)
1270 				ret = -EAGAIN;
1271 			break;
1272 		}
1273 
1274 		if (i915_gem_request_completed(req, false)) {
1275 			ret = 0;
1276 			break;
1277 		}
1278 
1279 		if (interruptible && signal_pending(curthread->td_lwp)) {
1280 			ret = -ERESTARTSYS;
1281 			break;
1282 		}
1283 
1284 		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1285 			ret = -ETIME;
1286 			break;
1287 		}
1288 
1289 		timer.function = NULL;
1290 		if (timeout || missed_irq(dev_priv, ring)) {
1291 			unsigned long expire;
1292 
1293 			setup_timer_on_stack(&timer, fake_irq, (unsigned long)&ring->irq_queue);
1294 			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1295 			sl_timeout = expire - jiffies;
1296 			if (sl_timeout < 1)
1297 				sl_timeout = 1;
1298 			mod_timer(&timer, expire);
1299 		}
1300 
1301 #if 0
1302 		io_schedule();
1303 #endif
1304 
1305 		if (timer.function) {
1306 			del_singleshot_timer_sync(&timer);
1307 			destroy_timer_on_stack(&timer);
1308 		}
1309 
1310 		lksleep(&ring->irq_queue, &ring->irq_queue.lock,
1311 			interruptible ? PCATCH : 0, "lwe", sl_timeout);
1312 	}
1313 	lockmgr(&ring->irq_queue.lock, LK_RELEASE);
1314 	if (!irq_test_in_progress)
1315 		ring->irq_put(ring);
1316 
1317 out:
1318 	trace_i915_gem_request_wait_end(req);
1319 
1320 	if (timeout) {
1321 		s64 tres = *timeout - (ktime_get_raw_ns() - before);
1322 
1323 		*timeout = tres < 0 ? 0 : tres;
1324 
1325 		/*
1326 		 * Apparently ktime isn't accurate enough and occasionally has a
1327 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1328 		 * things up to make the test happy. We allow up to 1 jiffy.
1329 		 *
1330 		 * This is a regrssion from the timespec->ktime conversion.
1331 		 */
1332 		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1333 			*timeout = 0;
1334 	}
1335 
1336 	return ret;
1337 }
1338 
1339 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1340 				   struct drm_file *file)
1341 {
1342 	struct drm_i915_private *dev_private;
1343 	struct drm_i915_file_private *file_priv;
1344 
1345 	WARN_ON(!req || !file || req->file_priv);
1346 
1347 	if (!req || !file)
1348 		return -EINVAL;
1349 
1350 	if (req->file_priv)
1351 		return -EINVAL;
1352 
1353 	dev_private = req->ring->dev->dev_private;
1354 	file_priv = file->driver_priv;
1355 
1356 	spin_lock(&file_priv->mm.lock);
1357 	req->file_priv = file_priv;
1358 	list_add_tail(&req->client_list, &file_priv->mm.request_list);
1359 	spin_unlock(&file_priv->mm.lock);
1360 
1361 	req->pid = curproc->p_pid;
1362 
1363 	return 0;
1364 }
1365 
1366 static inline void
1367 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1368 {
1369 	struct drm_i915_file_private *file_priv = request->file_priv;
1370 
1371 	if (!file_priv)
1372 		return;
1373 
1374 	spin_lock(&file_priv->mm.lock);
1375 	list_del(&request->client_list);
1376 	request->file_priv = NULL;
1377 	spin_unlock(&file_priv->mm.lock);
1378 
1379 #if 0
1380 	put_pid(request->pid);
1381 	request->pid = NULL;
1382 #endif
1383 }
1384 
1385 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1386 {
1387 	trace_i915_gem_request_retire(request);
1388 
1389 	/* We know the GPU must have read the request to have
1390 	 * sent us the seqno + interrupt, so use the position
1391 	 * of tail of the request to update the last known position
1392 	 * of the GPU head.
1393 	 *
1394 	 * Note this requires that we are always called in request
1395 	 * completion order.
1396 	 */
1397 	request->ringbuf->last_retired_head = request->postfix;
1398 
1399 	list_del_init(&request->list);
1400 	i915_gem_request_remove_from_client(request);
1401 
1402 	i915_gem_request_unreference(request);
1403 }
1404 
1405 static void
1406 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1407 {
1408 	struct intel_engine_cs *engine = req->ring;
1409 	struct drm_i915_gem_request *tmp;
1410 
1411 	lockdep_assert_held(&engine->dev->struct_mutex);
1412 
1413 	if (list_empty(&req->list))
1414 		return;
1415 
1416 	do {
1417 		tmp = list_first_entry(&engine->request_list,
1418 				       typeof(*tmp), list);
1419 
1420 		i915_gem_request_retire(tmp);
1421 	} while (tmp != req);
1422 
1423 	WARN_ON(i915_verify_lists(engine->dev));
1424 }
1425 
1426 /**
1427  * Waits for a request to be signaled, and cleans up the
1428  * request and object lists appropriately for that event.
1429  */
1430 int
1431 i915_wait_request(struct drm_i915_gem_request *req)
1432 {
1433 	struct drm_device *dev;
1434 	struct drm_i915_private *dev_priv;
1435 	bool interruptible;
1436 	int ret;
1437 
1438 	BUG_ON(req == NULL);
1439 
1440 	dev = req->ring->dev;
1441 	dev_priv = dev->dev_private;
1442 	interruptible = dev_priv->mm.interruptible;
1443 
1444 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1445 
1446 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1447 	if (ret)
1448 		return ret;
1449 
1450 	ret = __i915_wait_request(req,
1451 				  atomic_read(&dev_priv->gpu_error.reset_counter),
1452 				  interruptible, NULL, NULL);
1453 	if (ret)
1454 		return ret;
1455 
1456 	__i915_gem_request_retire__upto(req);
1457 	return 0;
1458 }
1459 
1460 /**
1461  * Ensures that all rendering to the object has completed and the object is
1462  * safe to unbind from the GTT or access from the CPU.
1463  */
1464 int
1465 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1466 			       bool readonly)
1467 {
1468 	int ret, i;
1469 
1470 	if (!obj->active)
1471 		return 0;
1472 
1473 	if (readonly) {
1474 		if (obj->last_write_req != NULL) {
1475 			ret = i915_wait_request(obj->last_write_req);
1476 			if (ret)
1477 				return ret;
1478 
1479 			i = obj->last_write_req->ring->id;
1480 			if (obj->last_read_req[i] == obj->last_write_req)
1481 				i915_gem_object_retire__read(obj, i);
1482 			else
1483 				i915_gem_object_retire__write(obj);
1484 		}
1485 	} else {
1486 		for (i = 0; i < I915_NUM_RINGS; i++) {
1487 			if (obj->last_read_req[i] == NULL)
1488 				continue;
1489 
1490 			ret = i915_wait_request(obj->last_read_req[i]);
1491 			if (ret)
1492 				return ret;
1493 
1494 			i915_gem_object_retire__read(obj, i);
1495 		}
1496 		RQ_BUG_ON(obj->active);
1497 	}
1498 
1499 	return 0;
1500 }
1501 
1502 static void
1503 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1504 			       struct drm_i915_gem_request *req)
1505 {
1506 	int ring = req->ring->id;
1507 
1508 	if (obj->last_read_req[ring] == req)
1509 		i915_gem_object_retire__read(obj, ring);
1510 	else if (obj->last_write_req == req)
1511 		i915_gem_object_retire__write(obj);
1512 
1513 	__i915_gem_request_retire__upto(req);
1514 }
1515 
1516 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1517  * as the object state may change during this call.
1518  */
1519 static __must_check int
1520 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1521 					    struct intel_rps_client *rps,
1522 					    bool readonly)
1523 {
1524 	struct drm_device *dev = obj->base.dev;
1525 	struct drm_i915_private *dev_priv = dev->dev_private;
1526 	struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1527 	unsigned reset_counter;
1528 	int ret, i, n = 0;
1529 
1530 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1531 	BUG_ON(!dev_priv->mm.interruptible);
1532 
1533 	if (!obj->active)
1534 		return 0;
1535 
1536 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1537 	if (ret)
1538 		return ret;
1539 
1540 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1541 
1542 	if (readonly) {
1543 		struct drm_i915_gem_request *req;
1544 
1545 		req = obj->last_write_req;
1546 		if (req == NULL)
1547 			return 0;
1548 
1549 		requests[n++] = i915_gem_request_reference(req);
1550 	} else {
1551 		for (i = 0; i < I915_NUM_RINGS; i++) {
1552 			struct drm_i915_gem_request *req;
1553 
1554 			req = obj->last_read_req[i];
1555 			if (req == NULL)
1556 				continue;
1557 
1558 			requests[n++] = i915_gem_request_reference(req);
1559 		}
1560 	}
1561 
1562 	mutex_unlock(&dev->struct_mutex);
1563 	for (i = 0; ret == 0 && i < n; i++)
1564 		ret = __i915_wait_request(requests[i], reset_counter, true,
1565 					  NULL, rps);
1566 	mutex_lock(&dev->struct_mutex);
1567 
1568 	for (i = 0; i < n; i++) {
1569 		if (ret == 0)
1570 			i915_gem_object_retire_request(obj, requests[i]);
1571 		i915_gem_request_unreference(requests[i]);
1572 	}
1573 
1574 	return ret;
1575 }
1576 
1577 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1578 {
1579 	struct drm_i915_file_private *fpriv = file->driver_priv;
1580 	return &fpriv->rps;
1581 }
1582 
1583 /**
1584  * Called when user space prepares to use an object with the CPU, either
1585  * through the mmap ioctl's mapping or a GTT mapping.
1586  */
1587 int
1588 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1589 			  struct drm_file *file)
1590 {
1591 	struct drm_i915_gem_set_domain *args = data;
1592 	struct drm_i915_gem_object *obj;
1593 	uint32_t read_domains = args->read_domains;
1594 	uint32_t write_domain = args->write_domain;
1595 	int ret;
1596 
1597 	/* Only handle setting domains to types used by the CPU. */
1598 	if (write_domain & I915_GEM_GPU_DOMAINS)
1599 		return -EINVAL;
1600 
1601 	if (read_domains & I915_GEM_GPU_DOMAINS)
1602 		return -EINVAL;
1603 
1604 	/* Having something in the write domain implies it's in the read
1605 	 * domain, and only that read domain.  Enforce that in the request.
1606 	 */
1607 	if (write_domain != 0 && read_domains != write_domain)
1608 		return -EINVAL;
1609 
1610 	ret = i915_mutex_lock_interruptible(dev);
1611 	if (ret)
1612 		return ret;
1613 
1614 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1615 	if (&obj->base == NULL) {
1616 		ret = -ENOENT;
1617 		goto unlock;
1618 	}
1619 
1620 	/* Try to flush the object off the GPU without holding the lock.
1621 	 * We will repeat the flush holding the lock in the normal manner
1622 	 * to catch cases where we are gazumped.
1623 	 */
1624 	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1625 							  to_rps_client(file),
1626 							  !write_domain);
1627 	if (ret)
1628 		goto unref;
1629 
1630 	if (read_domains & I915_GEM_DOMAIN_GTT)
1631 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1632 	else
1633 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1634 
1635 	if (write_domain != 0)
1636 		intel_fb_obj_invalidate(obj,
1637 					write_domain == I915_GEM_DOMAIN_GTT ?
1638 					ORIGIN_GTT : ORIGIN_CPU);
1639 
1640 unref:
1641 	drm_gem_object_unreference(&obj->base);
1642 unlock:
1643 	mutex_unlock(&dev->struct_mutex);
1644 	return ret;
1645 }
1646 
1647 /**
1648  * Called when user space has done writes to this buffer
1649  */
1650 int
1651 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1652 			 struct drm_file *file)
1653 {
1654 	struct drm_i915_gem_sw_finish *args = data;
1655 	struct drm_i915_gem_object *obj;
1656 	int ret = 0;
1657 
1658 	ret = i915_mutex_lock_interruptible(dev);
1659 	if (ret)
1660 		return ret;
1661 
1662 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1663 	if (&obj->base == NULL) {
1664 		ret = -ENOENT;
1665 		goto unlock;
1666 	}
1667 
1668 	/* Pinned buffers may be scanout, so flush the cache */
1669 	if (obj->pin_display)
1670 		i915_gem_object_flush_cpu_write_domain(obj);
1671 
1672 	drm_gem_object_unreference(&obj->base);
1673 unlock:
1674 	mutex_unlock(&dev->struct_mutex);
1675 	return ret;
1676 }
1677 
1678 /**
1679  * Maps the contents of an object, returning the address it is mapped
1680  * into.
1681  *
1682  * While the mapping holds a reference on the contents of the object, it doesn't
1683  * imply a ref on the object itself.
1684  *
1685  * IMPORTANT:
1686  *
1687  * DRM driver writers who look a this function as an example for how to do GEM
1688  * mmap support, please don't implement mmap support like here. The modern way
1689  * to implement DRM mmap support is with an mmap offset ioctl (like
1690  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1691  * That way debug tooling like valgrind will understand what's going on, hiding
1692  * the mmap call in a driver private ioctl will break that. The i915 driver only
1693  * does cpu mmaps this way because we didn't know better.
1694  */
1695 int
1696 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1697 		    struct drm_file *file)
1698 {
1699 	struct drm_i915_gem_mmap *args = data;
1700 	struct drm_gem_object *obj;
1701 	unsigned long addr;
1702 
1703 	struct proc *p = curproc;
1704 	vm_map_t map = &p->p_vmspace->vm_map;
1705 	vm_size_t size;
1706 	int error = 0, rv;
1707 
1708 	if (args->flags & ~(I915_MMAP_WC))
1709 		return -EINVAL;
1710 
1711 	obj = drm_gem_object_lookup(dev, file, args->handle);
1712 	if (obj == NULL)
1713 		return -ENOENT;
1714 
1715 	if (args->size == 0)
1716 		goto out;
1717 
1718 	size = round_page(args->size);
1719 	if (map->size + size > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
1720 		error = -ENOMEM;
1721 		goto out;
1722 	}
1723 
1724 	/* prime objects have no backing filp to GEM mmap
1725 	 * pages from.
1726 	 */
1727 
1728 	/*
1729 	 * Call hint to ensure that NULL is not returned as a valid address
1730 	 * and to reduce vm_map traversals. XXX causes instability, use a
1731 	 * fixed low address as the start point instead to avoid the NULL
1732 	 * return issue.
1733 	 */
1734 
1735 	addr = PAGE_SIZE;
1736 
1737 	/*
1738 	 * Use 256KB alignment.  It is unclear why this matters for a
1739 	 * virtual address but it appears to fix a number of application/X
1740 	 * crashes and kms console switching is much faster.
1741 	 */
1742 	vm_object_hold(obj->vm_obj);
1743 	vm_object_reference_locked(obj->vm_obj);
1744 	vm_object_drop(obj->vm_obj);
1745 
1746 	rv = vm_map_find(map, obj->vm_obj, NULL,
1747 			 args->offset, &addr, args->size,
1748 			 256 * 1024, /* align */
1749 			 TRUE, /* fitit */
1750 			 VM_MAPTYPE_NORMAL, VM_SUBSYS_DRM_GEM,
1751 			 VM_PROT_READ | VM_PROT_WRITE, /* prot */
1752 			 VM_PROT_READ | VM_PROT_WRITE, /* max */
1753 			 MAP_SHARED /* cow */);
1754 	if (rv != KERN_SUCCESS) {
1755 		vm_object_deallocate(obj->vm_obj);
1756 		error = -vm_mmap_to_errno(rv);
1757 	} else {
1758 		args->addr_ptr = (uint64_t)addr;
1759 	}
1760 out:
1761 	drm_gem_object_unreference(obj);
1762 	return (error);
1763 }
1764 
1765 /**
1766  * i915_gem_fault - fault a page into the GTT
1767  *
1768  * vm_obj is locked on entry and expected to be locked on return.
1769  *
1770  * The vm_pager has placemarked the object with an anonymous memory page
1771  * which we must replace atomically to avoid races against concurrent faults
1772  * on the same page.  XXX we currently are unable to do this atomically.
1773  *
1774  * If we are to return an error we should not touch the anonymous page,
1775  * the caller will deallocate it.
1776  *
1777  * XXX Most GEM calls appear to be interruptable, but we can't hard loop
1778  * in that case.  Release all resources and wait 1 tick before retrying.
1779  * This is a huge problem which needs to be fixed by getting rid of most
1780  * of the interruptability.  The linux code does not retry but does appear
1781  * to have some sort of mechanism (VM_FAULT_NOPAGE ?) for the higher level
1782  * to be able to retry.
1783  *
1784  * --
1785  * @vma: VMA in question
1786  * @vmf: fault info
1787  *
1788  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1789  * from userspace.  The fault handler takes care of binding the object to
1790  * the GTT (if needed), allocating and programming a fence register (again,
1791  * only if needed based on whether the old reg is still valid or the object
1792  * is tiled) and inserting a new PTE into the faulting process.
1793  *
1794  * Note that the faulting process may involve evicting existing objects
1795  * from the GTT and/or fence registers to make room.  So performance may
1796  * suffer if the GTT working set is large or there are few fence registers
1797  * left.
1798  *
1799  * vm_obj is locked on entry and expected to be locked on return.  The VM
1800  * pager has placed an anonymous memory page at (obj,offset) which we have
1801  * to replace.
1802  */
1803 int i915_gem_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot, vm_page_t *mres)
1804 {
1805 	struct drm_i915_gem_object *obj = to_intel_bo(vm_obj->handle);
1806 	struct drm_device *dev = obj->base.dev;
1807 	struct drm_i915_private *dev_priv = dev->dev_private;
1808 	struct i915_ggtt_view view = i915_ggtt_view_normal;
1809 	unsigned long page_offset;
1810 	vm_page_t m, oldm = NULL;
1811 	int ret = 0;
1812 	bool write = !!(prot & VM_PROT_WRITE);
1813 
1814 	intel_runtime_pm_get(dev_priv);
1815 
1816 	/* We don't use vmf->pgoff since that has the fake offset */
1817 	page_offset = (unsigned long)offset;
1818 
1819 retry:
1820 	ret = i915_mutex_lock_interruptible(dev);
1821 	if (ret)
1822 		goto out;
1823 
1824 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1825 
1826 	/* Try to flush the object off the GPU first without holding the lock.
1827 	 * Upon reacquiring the lock, we will perform our sanity checks and then
1828 	 * repeat the flush holding the lock in the normal manner to catch cases
1829 	 * where we are gazumped.
1830 	 */
1831 	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1832 	if (ret)
1833 		goto unlock;
1834 
1835 	/* Access to snoopable pages through the GTT is incoherent. */
1836 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1837 		ret = -EFAULT;
1838 		goto unlock;
1839 	}
1840 
1841 	/* Use a partial view if the object is bigger than the aperture. */
1842 	if (obj->base.size >= dev_priv->gtt.mappable_end &&
1843 	    obj->tiling_mode == I915_TILING_NONE) {
1844 #if 0
1845 		static const unsigned int chunk_size = 256; // 1 MiB
1846 
1847 		memset(&view, 0, sizeof(view));
1848 		view.type = I915_GGTT_VIEW_PARTIAL;
1849 		view.params.partial.offset = rounddown(page_offset, chunk_size);
1850 		view.params.partial.size =
1851 			min_t(unsigned int,
1852 			      chunk_size,
1853 			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1854 			      view.params.partial.offset);
1855 #endif
1856 	}
1857 
1858 	/* Now pin it into the GTT if needed */
1859 	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1860 	if (ret)
1861 		goto unlock;
1862 
1863 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1864 	if (ret)
1865 		goto unpin;
1866 
1867 	ret = i915_gem_object_get_fence(obj);
1868 	if (ret)
1869 		goto unpin;
1870 
1871 	/*
1872 	 * START FREEBSD MAGIC
1873 	 *
1874 	 * Add a pip count to avoid destruction and certain other
1875 	 * complex operations (such as collapses?) while unlocked.
1876 	 */
1877 	vm_object_pip_add(vm_obj, 1);
1878 
1879 	/*
1880 	 * XXX We must currently remove the placeholder page now to avoid
1881 	 * a deadlock against a concurrent i915_gem_release_mmap().
1882 	 * Otherwise concurrent operation will block on the busy page
1883 	 * while holding locks which we need to obtain.
1884 	 */
1885 	if (*mres != NULL) {
1886 		oldm = *mres;
1887 		if ((oldm->flags & PG_BUSY) == 0)
1888 			kprintf("i915_gem_fault: Page was not busy\n");
1889 		else
1890 			vm_page_remove(oldm);
1891 		*mres = NULL;
1892 	} else {
1893 		oldm = NULL;
1894 	}
1895 
1896 	ret = 0;
1897 	m = NULL;
1898 
1899 	/*
1900 	 * Since the object lock was dropped, another thread might have
1901 	 * faulted on the same GTT address and instantiated the mapping.
1902 	 * Recheck.
1903 	 */
1904 	m = vm_page_lookup(vm_obj, OFF_TO_IDX(offset));
1905 	if (m != NULL) {
1906 		/*
1907 		 * Try to busy the page, retry on failure (non-zero ret).
1908 		 */
1909 		if (vm_page_busy_try(m, false)) {
1910 			kprintf("i915_gem_fault: PG_BUSY\n");
1911 			ret = -EINTR;
1912 			goto unlock;
1913 		}
1914 		goto have_page;
1915 	}
1916 	/*
1917 	 * END FREEBSD MAGIC
1918 	 */
1919 
1920 	obj->fault_mappable = true;
1921 
1922 	/* Finally, remap it using the new GTT offset */
1923 	m = vm_phys_fictitious_to_vm_page(dev_priv->gtt.mappable_base +
1924 			i915_gem_obj_ggtt_offset_view(obj, &view) + offset);
1925 	if (m == NULL) {
1926 		ret = -EFAULT;
1927 		goto unpin;
1928 	}
1929 	KASSERT((m->flags & PG_FICTITIOUS) != 0, ("not fictitious %p", m));
1930 	KASSERT(m->wire_count == 1, ("wire_count not 1 %p", m));
1931 
1932 	/*
1933 	 * Try to busy the page.  Fails on non-zero return.
1934 	 */
1935 	if (vm_page_busy_try(m, false)) {
1936 		kprintf("i915_gem_fault: PG_BUSY(2)\n");
1937 		ret = -EINTR;
1938 		goto unpin;
1939 	}
1940 	m->valid = VM_PAGE_BITS_ALL;
1941 
1942 #if 0
1943 	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1944 		/* Overriding existing pages in partial view does not cause
1945 		 * us any trouble as TLBs are still valid because the fault
1946 		 * is due to userspace losing part of the mapping or never
1947 		 * having accessed it before (at this partials' range).
1948 		 */
1949 		unsigned long base = vma->vm_start +
1950 				     (view.params.partial.offset << PAGE_SHIFT);
1951 		unsigned int i;
1952 
1953 		for (i = 0; i < view.params.partial.size; i++) {
1954 			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1955 			if (ret)
1956 				break;
1957 		}
1958 
1959 		obj->fault_mappable = true;
1960 	} else {
1961 		if (!obj->fault_mappable) {
1962 			unsigned long size = min_t(unsigned long,
1963 						   vma->vm_end - vma->vm_start,
1964 						   obj->base.size);
1965 			int i;
1966 
1967 			for (i = 0; i < size >> PAGE_SHIFT; i++) {
1968 				ret = vm_insert_pfn(vma,
1969 						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
1970 						    pfn + i);
1971 				if (ret)
1972 					break;
1973 			}
1974 
1975 			obj->fault_mappable = true;
1976 		} else
1977 			ret = vm_insert_pfn(vma,
1978 					    (unsigned long)vmf->virtual_address,
1979 					    pfn + page_offset);
1980 #endif
1981 			vm_page_insert(m, vm_obj, OFF_TO_IDX(offset));
1982 #if 0
1983 	}
1984 #endif
1985 
1986 have_page:
1987 	*mres = m;
1988 
1989 	i915_gem_object_ggtt_unpin_view(obj, &view);
1990 	mutex_unlock(&dev->struct_mutex);
1991 	ret = VM_PAGER_OK;
1992 	goto done;
1993 
1994 	/*
1995 	 * ALTERNATIVE ERROR RETURN.
1996 	 *
1997 	 * OBJECT EXPECTED TO BE LOCKED.
1998 	 */
1999 unpin:
2000 	i915_gem_object_ggtt_unpin_view(obj, &view);
2001 unlock:
2002 	mutex_unlock(&dev->struct_mutex);
2003 out:
2004 	switch (ret) {
2005 	case -EIO:
2006 		/*
2007 		 * We eat errors when the gpu is terminally wedged to avoid
2008 		 * userspace unduly crashing (gl has no provisions for mmaps to
2009 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2010 		 * and so needs to be reported.
2011 		 */
2012 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2013 //			ret = VM_FAULT_SIGBUS;
2014 			break;
2015 		}
2016 	case -EAGAIN:
2017 		/*
2018 		 * EAGAIN means the gpu is hung and we'll wait for the error
2019 		 * handler to reset everything when re-faulting in
2020 		 * i915_mutex_lock_interruptible.
2021 		 */
2022 	case -ERESTARTSYS:
2023 	case -EINTR:
2024 		VM_OBJECT_UNLOCK(vm_obj);
2025 		int dummy;
2026 		tsleep(&dummy, 0, "delay", 1); /* XXX */
2027 		VM_OBJECT_LOCK(vm_obj);
2028 		goto retry;
2029 	default:
2030 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2031 		ret = VM_PAGER_ERROR;
2032 		break;
2033 	}
2034 
2035 done:
2036 	if (oldm != NULL)
2037 		vm_page_free(oldm);
2038 	vm_object_pip_wakeup(vm_obj);
2039 
2040 	intel_runtime_pm_put(dev_priv);
2041 	return ret;
2042 }
2043 
2044 /**
2045  * i915_gem_release_mmap - remove physical page mappings
2046  * @obj: obj in question
2047  *
2048  * Preserve the reservation of the mmapping with the DRM core code, but
2049  * relinquish ownership of the pages back to the system.
2050  *
2051  * It is vital that we remove the page mapping if we have mapped a tiled
2052  * object through the GTT and then lose the fence register due to
2053  * resource pressure. Similarly if the object has been moved out of the
2054  * aperture, than pages mapped into userspace must be revoked. Removing the
2055  * mapping will then trigger a page fault on the next user access, allowing
2056  * fixup by i915_gem_fault().
2057  */
2058 void
2059 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2060 {
2061 	vm_object_t devobj;
2062 	vm_page_t m;
2063 	int i, page_count;
2064 
2065 	if (!obj->fault_mappable)
2066 		return;
2067 
2068 	devobj = cdev_pager_lookup(obj);
2069 	if (devobj != NULL) {
2070 		page_count = OFF_TO_IDX(obj->base.size);
2071 
2072 		VM_OBJECT_LOCK(devobj);
2073 		for (i = 0; i < page_count; i++) {
2074 			m = vm_page_lookup_busy_wait(devobj, i, TRUE, "915unm");
2075 			if (m == NULL)
2076 				continue;
2077 			cdev_pager_free_page(devobj, m);
2078 		}
2079 		VM_OBJECT_UNLOCK(devobj);
2080 		vm_object_deallocate(devobj);
2081 	}
2082 
2083 	obj->fault_mappable = false;
2084 }
2085 
2086 void
2087 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
2088 {
2089 	struct drm_i915_gem_object *obj;
2090 
2091 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
2092 		i915_gem_release_mmap(obj);
2093 }
2094 
2095 uint32_t
2096 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
2097 {
2098 	uint32_t gtt_size;
2099 
2100 	if (INTEL_INFO(dev)->gen >= 4 ||
2101 	    tiling_mode == I915_TILING_NONE)
2102 		return size;
2103 
2104 	/* Previous chips need a power-of-two fence region when tiling */
2105 	if (INTEL_INFO(dev)->gen == 3)
2106 		gtt_size = 1024*1024;
2107 	else
2108 		gtt_size = 512*1024;
2109 
2110 	while (gtt_size < size)
2111 		gtt_size <<= 1;
2112 
2113 	return gtt_size;
2114 }
2115 
2116 /**
2117  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2118  * @obj: object to check
2119  *
2120  * Return the required GTT alignment for an object, taking into account
2121  * potential fence register mapping.
2122  */
2123 uint32_t
2124 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2125 			   int tiling_mode, bool fenced)
2126 {
2127 	/*
2128 	 * Minimum alignment is 4k (GTT page size), but might be greater
2129 	 * if a fence register is needed for the object.
2130 	 */
2131 	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2132 	    tiling_mode == I915_TILING_NONE)
2133 		return 4096;
2134 
2135 	/*
2136 	 * Previous chips need to be aligned to the size of the smallest
2137 	 * fence register that can contain the object.
2138 	 */
2139 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
2140 }
2141 
2142 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2143 {
2144 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2145 	int ret;
2146 
2147 #if 0
2148 	if (drm_vma_node_has_offset(&obj->base.vma_node))
2149 		return 0;
2150 #endif
2151 
2152 	dev_priv->mm.shrinker_no_lock_stealing = true;
2153 
2154 	ret = drm_gem_create_mmap_offset(&obj->base);
2155 	if (ret != -ENOSPC)
2156 		goto out;
2157 
2158 	/* Badly fragmented mmap space? The only way we can recover
2159 	 * space is by destroying unwanted objects. We can't randomly release
2160 	 * mmap_offsets as userspace expects them to be persistent for the
2161 	 * lifetime of the objects. The closest we can is to release the
2162 	 * offsets on purgeable objects by truncating it and marking it purged,
2163 	 * which prevents userspace from ever using that object again.
2164 	 */
2165 	i915_gem_shrink(dev_priv,
2166 			obj->base.size >> PAGE_SHIFT,
2167 			I915_SHRINK_BOUND |
2168 			I915_SHRINK_UNBOUND |
2169 			I915_SHRINK_PURGEABLE);
2170 	ret = drm_gem_create_mmap_offset(&obj->base);
2171 	if (ret != -ENOSPC)
2172 		goto out;
2173 
2174 	i915_gem_shrink_all(dev_priv);
2175 	ret = drm_gem_create_mmap_offset(&obj->base);
2176 out:
2177 	dev_priv->mm.shrinker_no_lock_stealing = false;
2178 
2179 	return ret;
2180 }
2181 
2182 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2183 {
2184 	drm_gem_free_mmap_offset(&obj->base);
2185 }
2186 
2187 int
2188 i915_gem_mmap_gtt(struct drm_file *file,
2189 		  struct drm_device *dev,
2190 		  uint32_t handle,
2191 		  uint64_t *offset)
2192 {
2193 	struct drm_i915_gem_object *obj;
2194 	int ret;
2195 
2196 	ret = i915_mutex_lock_interruptible(dev);
2197 	if (ret)
2198 		return ret;
2199 
2200 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2201 	if (&obj->base == NULL) {
2202 		ret = -ENOENT;
2203 		goto unlock;
2204 	}
2205 
2206 	if (obj->madv != I915_MADV_WILLNEED) {
2207 		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2208 		ret = -EFAULT;
2209 		goto out;
2210 	}
2211 
2212 	ret = i915_gem_object_create_mmap_offset(obj);
2213 	if (ret)
2214 		goto out;
2215 
2216 	*offset = DRM_GEM_MAPPING_OFF(obj->base.map_list.key) |
2217 	    DRM_GEM_MAPPING_KEY;
2218 
2219 out:
2220 	drm_gem_object_unreference(&obj->base);
2221 unlock:
2222 	mutex_unlock(&dev->struct_mutex);
2223 	return ret;
2224 }
2225 
2226 /**
2227  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2228  * @dev: DRM device
2229  * @data: GTT mapping ioctl data
2230  * @file: GEM object info
2231  *
2232  * Simply returns the fake offset to userspace so it can mmap it.
2233  * The mmap call will end up in drm_gem_mmap(), which will set things
2234  * up so we can get faults in the handler above.
2235  *
2236  * The fault handler will take care of binding the object into the GTT
2237  * (since it may have been evicted to make room for something), allocating
2238  * a fence register, and mapping the appropriate aperture address into
2239  * userspace.
2240  */
2241 int
2242 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2243 			struct drm_file *file)
2244 {
2245 	struct drm_i915_gem_mmap_gtt *args = data;
2246 
2247 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2248 }
2249 
2250 /* Immediately discard the backing storage */
2251 static void
2252 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2253 {
2254 	vm_object_t vm_obj;
2255 
2256 	vm_obj = obj->base.vm_obj;
2257 	VM_OBJECT_LOCK(vm_obj);
2258 	vm_object_page_remove(vm_obj, 0, 0, false);
2259 	VM_OBJECT_UNLOCK(vm_obj);
2260 
2261 	obj->madv = __I915_MADV_PURGED;
2262 }
2263 
2264 /* Try to discard unwanted pages */
2265 static void
2266 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2267 {
2268 #if 0
2269 	struct address_space *mapping;
2270 #endif
2271 
2272 	switch (obj->madv) {
2273 	case I915_MADV_DONTNEED:
2274 		i915_gem_object_truncate(obj);
2275 	case __I915_MADV_PURGED:
2276 		return;
2277 	}
2278 
2279 #if 0
2280 	if (obj->base.filp == NULL)
2281 		return;
2282 
2283 	mapping = file_inode(obj->base.filp)->i_mapping,
2284 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2285 #endif
2286 }
2287 
2288 static void
2289 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2290 {
2291 	struct sg_page_iter sg_iter;
2292 	int ret;
2293 
2294 	BUG_ON(obj->madv == __I915_MADV_PURGED);
2295 
2296 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2297 	if (ret) {
2298 		/* In the event of a disaster, abandon all caches and
2299 		 * hope for the best.
2300 		 */
2301 		WARN_ON(ret != -EIO);
2302 		i915_gem_clflush_object(obj, true);
2303 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2304 	}
2305 
2306 	i915_gem_gtt_finish_object(obj);
2307 
2308 	if (i915_gem_object_needs_bit17_swizzle(obj))
2309 		i915_gem_object_save_bit_17_swizzle(obj);
2310 
2311 	if (obj->madv == I915_MADV_DONTNEED)
2312 		obj->dirty = 0;
2313 
2314 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2315 		struct vm_page *page = sg_page_iter_page(&sg_iter);
2316 
2317 		if (obj->dirty)
2318 			set_page_dirty(page);
2319 
2320 		if (obj->madv == I915_MADV_WILLNEED)
2321 			mark_page_accessed(page);
2322 
2323 		vm_page_busy_wait(page, FALSE, "i915gem");
2324 		vm_page_unwire(page, 1);
2325 		vm_page_wakeup(page);
2326 	}
2327 	obj->dirty = 0;
2328 
2329 	sg_free_table(obj->pages);
2330 	kfree(obj->pages);
2331 }
2332 
2333 int
2334 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2335 {
2336 	const struct drm_i915_gem_object_ops *ops = obj->ops;
2337 
2338 	if (obj->pages == NULL)
2339 		return 0;
2340 
2341 	if (obj->pages_pin_count)
2342 		return -EBUSY;
2343 
2344 	BUG_ON(i915_gem_obj_bound_any(obj));
2345 
2346 	/* ->put_pages might need to allocate memory for the bit17 swizzle
2347 	 * array, hence protect them from being reaped by removing them from gtt
2348 	 * lists early. */
2349 	list_del(&obj->global_list);
2350 
2351 	ops->put_pages(obj);
2352 	obj->pages = NULL;
2353 
2354 	i915_gem_object_invalidate(obj);
2355 
2356 	return 0;
2357 }
2358 
2359 static int
2360 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2361 {
2362 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2363 	int page_count, i;
2364 	vm_object_t vm_obj;
2365 	struct sg_table *st;
2366 	struct scatterlist *sg;
2367 	struct sg_page_iter sg_iter;
2368 	struct vm_page *page;
2369 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2370 	int ret;
2371 
2372 	/* Assert that the object is not currently in any GPU domain. As it
2373 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2374 	 * a GPU cache
2375 	 */
2376 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2377 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2378 
2379 	st = kmalloc(sizeof(*st), M_DRM, M_WAITOK);
2380 	if (st == NULL)
2381 		return -ENOMEM;
2382 
2383 	page_count = obj->base.size / PAGE_SIZE;
2384 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2385 		kfree(st);
2386 		return -ENOMEM;
2387 	}
2388 
2389 	/* Get the list of pages out of our struct file.  They'll be pinned
2390 	 * at this point until we release them.
2391 	 *
2392 	 * Fail silently without starting the shrinker
2393 	 */
2394 	vm_obj = obj->base.vm_obj;
2395 	VM_OBJECT_LOCK(vm_obj);
2396 	sg = st->sgl;
2397 	st->nents = 0;
2398 	for (i = 0; i < page_count; i++) {
2399 		page = shmem_read_mapping_page(vm_obj, i);
2400 		if (IS_ERR(page)) {
2401 			i915_gem_shrink(dev_priv,
2402 					page_count,
2403 					I915_SHRINK_BOUND |
2404 					I915_SHRINK_UNBOUND |
2405 					I915_SHRINK_PURGEABLE);
2406 			page = shmem_read_mapping_page(vm_obj, i);
2407 		}
2408 		if (IS_ERR(page)) {
2409 			/* We've tried hard to allocate the memory by reaping
2410 			 * our own buffer, now let the real VM do its job and
2411 			 * go down in flames if truly OOM.
2412 			 */
2413 			i915_gem_shrink_all(dev_priv);
2414 			page = shmem_read_mapping_page(vm_obj, i);
2415 			if (IS_ERR(page)) {
2416 				ret = PTR_ERR(page);
2417 				goto err_pages;
2418 			}
2419 		}
2420 #ifdef CONFIG_SWIOTLB
2421 		if (swiotlb_nr_tbl()) {
2422 			st->nents++;
2423 			sg_set_page(sg, page, PAGE_SIZE, 0);
2424 			sg = sg_next(sg);
2425 			continue;
2426 		}
2427 #endif
2428 		if (!i || page_to_pfn(page) != last_pfn + 1) {
2429 			if (i)
2430 				sg = sg_next(sg);
2431 			st->nents++;
2432 			sg_set_page(sg, page, PAGE_SIZE, 0);
2433 		} else {
2434 			sg->length += PAGE_SIZE;
2435 		}
2436 		last_pfn = page_to_pfn(page);
2437 
2438 		/* Check that the i965g/gm workaround works. */
2439 	}
2440 #ifdef CONFIG_SWIOTLB
2441 	if (!swiotlb_nr_tbl())
2442 #endif
2443 		sg_mark_end(sg);
2444 	obj->pages = st;
2445 	VM_OBJECT_UNLOCK(vm_obj);
2446 
2447 	ret = i915_gem_gtt_prepare_object(obj);
2448 	if (ret)
2449 		goto err_pages;
2450 
2451 	if (i915_gem_object_needs_bit17_swizzle(obj))
2452 		i915_gem_object_do_bit_17_swizzle(obj);
2453 
2454 	if (obj->tiling_mode != I915_TILING_NONE &&
2455 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2456 		i915_gem_object_pin_pages(obj);
2457 
2458 	return 0;
2459 
2460 err_pages:
2461 	sg_mark_end(sg);
2462 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
2463 		page = sg_page_iter_page(&sg_iter);
2464 		vm_page_busy_wait(page, FALSE, "i915gem");
2465 		vm_page_unwire(page, 0);
2466 		vm_page_wakeup(page);
2467 	}
2468 	VM_OBJECT_UNLOCK(vm_obj);
2469 	sg_free_table(st);
2470 	kfree(st);
2471 
2472 	/* shmemfs first checks if there is enough memory to allocate the page
2473 	 * and reports ENOSPC should there be insufficient, along with the usual
2474 	 * ENOMEM for a genuine allocation failure.
2475 	 *
2476 	 * We use ENOSPC in our driver to mean that we have run out of aperture
2477 	 * space and so want to translate the error from shmemfs back to our
2478 	 * usual understanding of ENOMEM.
2479 	 */
2480 	if (ret == -ENOSPC)
2481 		ret = -ENOMEM;
2482 
2483 	return ret;
2484 }
2485 
2486 /* Ensure that the associated pages are gathered from the backing storage
2487  * and pinned into our object. i915_gem_object_get_pages() may be called
2488  * multiple times before they are released by a single call to
2489  * i915_gem_object_put_pages() - once the pages are no longer referenced
2490  * either as a result of memory pressure (reaping pages under the shrinker)
2491  * or as the object is itself released.
2492  */
2493 int
2494 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2495 {
2496 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2497 	const struct drm_i915_gem_object_ops *ops = obj->ops;
2498 	int ret;
2499 
2500 	if (obj->pages)
2501 		return 0;
2502 
2503 	if (obj->madv != I915_MADV_WILLNEED) {
2504 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2505 		return -EFAULT;
2506 	}
2507 
2508 	BUG_ON(obj->pages_pin_count);
2509 
2510 	ret = ops->get_pages(obj);
2511 	if (ret)
2512 		return ret;
2513 
2514 	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2515 
2516 	obj->get_page.sg = obj->pages->sgl;
2517 	obj->get_page.last = 0;
2518 
2519 	return 0;
2520 }
2521 
2522 void i915_vma_move_to_active(struct i915_vma *vma,
2523 			     struct drm_i915_gem_request *req)
2524 {
2525 	struct drm_i915_gem_object *obj = vma->obj;
2526 	struct intel_engine_cs *ring;
2527 
2528 	ring = i915_gem_request_get_ring(req);
2529 
2530 	/* Add a reference if we're newly entering the active list. */
2531 	if (obj->active == 0)
2532 		drm_gem_object_reference(&obj->base);
2533 	obj->active |= intel_ring_flag(ring);
2534 
2535 	list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2536 	i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2537 
2538 	list_move_tail(&vma->vm_link, &vma->vm->active_list);
2539 }
2540 
2541 static void
2542 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2543 {
2544 	RQ_BUG_ON(obj->last_write_req == NULL);
2545 	RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2546 
2547 	i915_gem_request_assign(&obj->last_write_req, NULL);
2548 	intel_fb_obj_flush(obj, true, ORIGIN_CS);
2549 }
2550 
2551 static void
2552 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2553 {
2554 	struct i915_vma *vma;
2555 
2556 	RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2557 	RQ_BUG_ON(!(obj->active & (1 << ring)));
2558 
2559 	list_del_init(&obj->ring_list[ring]);
2560 	i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2561 
2562 	if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2563 		i915_gem_object_retire__write(obj);
2564 
2565 	obj->active &= ~(1 << ring);
2566 	if (obj->active)
2567 		return;
2568 
2569 	/* Bump our place on the bound list to keep it roughly in LRU order
2570 	 * so that we don't steal from recently used but inactive objects
2571 	 * (unless we are forced to ofc!)
2572 	 */
2573 	list_move_tail(&obj->global_list,
2574 		       &to_i915(obj->base.dev)->mm.bound_list);
2575 
2576 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
2577 		if (!list_empty(&vma->vm_link))
2578 			list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2579 	}
2580 
2581 	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2582 	drm_gem_object_unreference(&obj->base);
2583 }
2584 
2585 static int
2586 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2587 {
2588 	struct drm_i915_private *dev_priv = dev->dev_private;
2589 	struct intel_engine_cs *ring;
2590 	int ret, i, j;
2591 
2592 	/* Carefully retire all requests without writing to the rings */
2593 	for_each_ring(ring, dev_priv, i) {
2594 		ret = intel_ring_idle(ring);
2595 		if (ret)
2596 			return ret;
2597 	}
2598 	i915_gem_retire_requests(dev);
2599 
2600 	/* Finally reset hw state */
2601 	for_each_ring(ring, dev_priv, i) {
2602 		intel_ring_init_seqno(ring, seqno);
2603 
2604 		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2605 			ring->semaphore.sync_seqno[j] = 0;
2606 	}
2607 
2608 	return 0;
2609 }
2610 
2611 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2612 {
2613 	struct drm_i915_private *dev_priv = dev->dev_private;
2614 	int ret;
2615 
2616 	if (seqno == 0)
2617 		return -EINVAL;
2618 
2619 	/* HWS page needs to be set less than what we
2620 	 * will inject to ring
2621 	 */
2622 	ret = i915_gem_init_seqno(dev, seqno - 1);
2623 	if (ret)
2624 		return ret;
2625 
2626 	/* Carefully set the last_seqno value so that wrap
2627 	 * detection still works
2628 	 */
2629 	dev_priv->next_seqno = seqno;
2630 	dev_priv->last_seqno = seqno - 1;
2631 	if (dev_priv->last_seqno == 0)
2632 		dev_priv->last_seqno--;
2633 
2634 	return 0;
2635 }
2636 
2637 int
2638 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2639 {
2640 	struct drm_i915_private *dev_priv = dev->dev_private;
2641 
2642 	/* reserve 0 for non-seqno */
2643 	if (dev_priv->next_seqno == 0) {
2644 		int ret = i915_gem_init_seqno(dev, 0);
2645 		if (ret)
2646 			return ret;
2647 
2648 		dev_priv->next_seqno = 1;
2649 	}
2650 
2651 	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2652 	return 0;
2653 }
2654 
2655 /*
2656  * NB: This function is not allowed to fail. Doing so would mean the the
2657  * request is not being tracked for completion but the work itself is
2658  * going to happen on the hardware. This would be a Bad Thing(tm).
2659  */
2660 void __i915_add_request(struct drm_i915_gem_request *request,
2661 			struct drm_i915_gem_object *obj,
2662 			bool flush_caches)
2663 {
2664 	struct intel_engine_cs *ring;
2665 	struct drm_i915_private *dev_priv;
2666 	struct intel_ringbuffer *ringbuf;
2667 	u32 request_start;
2668 	int ret;
2669 
2670 	if (WARN_ON(request == NULL))
2671 		return;
2672 
2673 	ring = request->ring;
2674 	dev_priv = ring->dev->dev_private;
2675 	ringbuf = request->ringbuf;
2676 
2677 	/*
2678 	 * To ensure that this call will not fail, space for its emissions
2679 	 * should already have been reserved in the ring buffer. Let the ring
2680 	 * know that it is time to use that space up.
2681 	 */
2682 	intel_ring_reserved_space_use(ringbuf);
2683 
2684 	request_start = intel_ring_get_tail(ringbuf);
2685 	/*
2686 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
2687 	 * after having emitted the batchbuffer command. Hence we need to fix
2688 	 * things up similar to emitting the lazy request. The difference here
2689 	 * is that the flush _must_ happen before the next request, no matter
2690 	 * what.
2691 	 */
2692 	if (flush_caches) {
2693 		if (i915.enable_execlists)
2694 			ret = logical_ring_flush_all_caches(request);
2695 		else
2696 			ret = intel_ring_flush_all_caches(request);
2697 		/* Not allowed to fail! */
2698 		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2699 	}
2700 
2701 	/* Record the position of the start of the request so that
2702 	 * should we detect the updated seqno part-way through the
2703 	 * GPU processing the request, we never over-estimate the
2704 	 * position of the head.
2705 	 */
2706 	request->postfix = intel_ring_get_tail(ringbuf);
2707 
2708 	if (i915.enable_execlists)
2709 		ret = ring->emit_request(request);
2710 	else {
2711 		ret = ring->add_request(request);
2712 
2713 		request->tail = intel_ring_get_tail(ringbuf);
2714 	}
2715 
2716 	/* Not allowed to fail! */
2717 	WARN(ret, "emit|add_request failed: %d!\n", ret);
2718 
2719 	request->head = request_start;
2720 
2721 	/* Whilst this request exists, batch_obj will be on the
2722 	 * active_list, and so will hold the active reference. Only when this
2723 	 * request is retired will the the batch_obj be moved onto the
2724 	 * inactive_list and lose its active reference. Hence we do not need
2725 	 * to explicitly hold another reference here.
2726 	 */
2727 	request->batch_obj = obj;
2728 
2729 	request->emitted_jiffies = jiffies;
2730 	request->previous_seqno = ring->last_submitted_seqno;
2731 	ring->last_submitted_seqno = request->seqno;
2732 	list_add_tail(&request->list, &ring->request_list);
2733 
2734 	trace_i915_gem_request_add(request);
2735 
2736 	i915_queue_hangcheck(ring->dev);
2737 
2738 	queue_delayed_work(dev_priv->wq,
2739 			   &dev_priv->mm.retire_work,
2740 			   round_jiffies_up_relative(HZ));
2741 	intel_mark_busy(dev_priv->dev);
2742 
2743 	/* Sanity check that the reserved size was large enough. */
2744 	intel_ring_reserved_space_end(ringbuf);
2745 }
2746 
2747 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2748 				   const struct intel_context *ctx)
2749 {
2750 	unsigned long elapsed;
2751 
2752 	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2753 
2754 	if (ctx->hang_stats.banned)
2755 		return true;
2756 
2757 	if (ctx->hang_stats.ban_period_seconds &&
2758 	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2759 		if (!i915_gem_context_is_default(ctx)) {
2760 			DRM_DEBUG("context hanging too fast, banning!\n");
2761 			return true;
2762 		} else if (i915_stop_ring_allow_ban(dev_priv)) {
2763 			if (i915_stop_ring_allow_warn(dev_priv))
2764 				DRM_ERROR("gpu hanging too fast, banning!\n");
2765 			return true;
2766 		}
2767 	}
2768 
2769 	return false;
2770 }
2771 
2772 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2773 				  struct intel_context *ctx,
2774 				  const bool guilty)
2775 {
2776 	struct i915_ctx_hang_stats *hs;
2777 
2778 	if (WARN_ON(!ctx))
2779 		return;
2780 
2781 	hs = &ctx->hang_stats;
2782 
2783 	if (guilty) {
2784 		hs->banned = i915_context_is_banned(dev_priv, ctx);
2785 		hs->batch_active++;
2786 		hs->guilty_ts = get_seconds();
2787 	} else {
2788 		hs->batch_pending++;
2789 	}
2790 }
2791 
2792 void i915_gem_request_free(struct kref *req_ref)
2793 {
2794 	struct drm_i915_gem_request *req = container_of(req_ref,
2795 						 typeof(*req), ref);
2796 	struct intel_context *ctx = req->ctx;
2797 
2798 	if (req->file_priv)
2799 		i915_gem_request_remove_from_client(req);
2800 
2801 	if (ctx) {
2802 		if (i915.enable_execlists && ctx != req->i915->kernel_context)
2803 			intel_lr_context_unpin(ctx, req->ring);
2804 
2805 		i915_gem_context_unreference(ctx);
2806 	}
2807 
2808 	kfree(req);
2809 }
2810 
2811 static inline int
2812 __i915_gem_request_alloc(struct intel_engine_cs *ring,
2813 			 struct intel_context *ctx,
2814 			 struct drm_i915_gem_request **req_out)
2815 {
2816 	struct drm_i915_private *dev_priv = to_i915(ring->dev);
2817 	struct drm_i915_gem_request *req;
2818 	int ret;
2819 
2820 	if (!req_out)
2821 		return -EINVAL;
2822 
2823 	*req_out = NULL;
2824 
2825 	req = kzalloc(sizeof(*req), GFP_KERNEL);
2826 	if (req == NULL)
2827 		return -ENOMEM;
2828 
2829 	ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2830 	if (ret)
2831 		goto err;
2832 
2833 	kref_init(&req->ref);
2834 	req->i915 = dev_priv;
2835 	req->ring = ring;
2836 	req->ctx  = ctx;
2837 	i915_gem_context_reference(req->ctx);
2838 
2839 	if (i915.enable_execlists)
2840 		ret = intel_logical_ring_alloc_request_extras(req);
2841 	else
2842 		ret = intel_ring_alloc_request_extras(req);
2843 	if (ret) {
2844 		i915_gem_context_unreference(req->ctx);
2845 		goto err;
2846 	}
2847 
2848 	/*
2849 	 * Reserve space in the ring buffer for all the commands required to
2850 	 * eventually emit this request. This is to guarantee that the
2851 	 * i915_add_request() call can't fail. Note that the reserve may need
2852 	 * to be redone if the request is not actually submitted straight
2853 	 * away, e.g. because a GPU scheduler has deferred it.
2854 	 */
2855 	if (i915.enable_execlists)
2856 		ret = intel_logical_ring_reserve_space(req);
2857 	else
2858 		ret = intel_ring_reserve_space(req);
2859 	if (ret) {
2860 		/*
2861 		 * At this point, the request is fully allocated even if not
2862 		 * fully prepared. Thus it can be cleaned up using the proper
2863 		 * free code.
2864 		 */
2865 		i915_gem_request_cancel(req);
2866 		return ret;
2867 	}
2868 
2869 	*req_out = req;
2870 	return 0;
2871 
2872 err:
2873 	kfree(req);
2874 	return ret;
2875 }
2876 
2877 /**
2878  * i915_gem_request_alloc - allocate a request structure
2879  *
2880  * @engine: engine that we wish to issue the request on.
2881  * @ctx: context that the request will be associated with.
2882  *       This can be NULL if the request is not directly related to
2883  *       any specific user context, in which case this function will
2884  *       choose an appropriate context to use.
2885  *
2886  * Returns a pointer to the allocated request if successful,
2887  * or an error code if not.
2888  */
2889 struct drm_i915_gem_request *
2890 i915_gem_request_alloc(struct intel_engine_cs *engine,
2891 		       struct intel_context *ctx)
2892 {
2893 	struct drm_i915_gem_request *req;
2894 	int err;
2895 
2896 	if (ctx == NULL)
2897 		ctx = to_i915(engine->dev)->kernel_context;
2898 	err = __i915_gem_request_alloc(engine, ctx, &req);
2899 	return err ? ERR_PTR(err) : req;
2900 }
2901 
2902 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2903 {
2904 	intel_ring_reserved_space_cancel(req->ringbuf);
2905 
2906 	i915_gem_request_unreference(req);
2907 }
2908 
2909 struct drm_i915_gem_request *
2910 i915_gem_find_active_request(struct intel_engine_cs *ring)
2911 {
2912 	struct drm_i915_gem_request *request;
2913 
2914 	list_for_each_entry(request, &ring->request_list, list) {
2915 		if (i915_gem_request_completed(request, false))
2916 			continue;
2917 
2918 		return request;
2919 	}
2920 
2921 	return NULL;
2922 }
2923 
2924 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2925 				       struct intel_engine_cs *ring)
2926 {
2927 	struct drm_i915_gem_request *request;
2928 	bool ring_hung;
2929 
2930 	request = i915_gem_find_active_request(ring);
2931 
2932 	if (request == NULL)
2933 		return;
2934 
2935 	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2936 
2937 	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2938 
2939 	list_for_each_entry_continue(request, &ring->request_list, list)
2940 		i915_set_reset_status(dev_priv, request->ctx, false);
2941 }
2942 
2943 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2944 					struct intel_engine_cs *ring)
2945 {
2946 	struct intel_ringbuffer *buffer;
2947 
2948 	while (!list_empty(&ring->active_list)) {
2949 		struct drm_i915_gem_object *obj;
2950 
2951 		obj = list_first_entry(&ring->active_list,
2952 				       struct drm_i915_gem_object,
2953 				       ring_list[ring->id]);
2954 
2955 		i915_gem_object_retire__read(obj, ring->id);
2956 	}
2957 
2958 	/*
2959 	 * Clear the execlists queue up before freeing the requests, as those
2960 	 * are the ones that keep the context and ringbuffer backing objects
2961 	 * pinned in place.
2962 	 */
2963 
2964 	if (i915.enable_execlists) {
2965 		spin_lock_irq(&ring->execlist_lock);
2966 
2967 		/* list_splice_tail_init checks for empty lists */
2968 		list_splice_tail_init(&ring->execlist_queue,
2969 				      &ring->execlist_retired_req_list);
2970 
2971 		spin_unlock_irq(&ring->execlist_lock);
2972 		intel_execlists_retire_requests(ring);
2973 	}
2974 
2975 	/*
2976 	 * We must free the requests after all the corresponding objects have
2977 	 * been moved off active lists. Which is the same order as the normal
2978 	 * retire_requests function does. This is important if object hold
2979 	 * implicit references on things like e.g. ppgtt address spaces through
2980 	 * the request.
2981 	 */
2982 	while (!list_empty(&ring->request_list)) {
2983 		struct drm_i915_gem_request *request;
2984 
2985 		request = list_first_entry(&ring->request_list,
2986 					   struct drm_i915_gem_request,
2987 					   list);
2988 
2989 		i915_gem_request_retire(request);
2990 	}
2991 
2992 	/* Having flushed all requests from all queues, we know that all
2993 	 * ringbuffers must now be empty. However, since we do not reclaim
2994 	 * all space when retiring the request (to prevent HEADs colliding
2995 	 * with rapid ringbuffer wraparound) the amount of available space
2996 	 * upon reset is less than when we start. Do one more pass over
2997 	 * all the ringbuffers to reset last_retired_head.
2998 	 */
2999 	list_for_each_entry(buffer, &ring->buffers, link) {
3000 		buffer->last_retired_head = buffer->tail;
3001 		intel_ring_update_space(buffer);
3002 	}
3003 }
3004 
3005 void i915_gem_reset(struct drm_device *dev)
3006 {
3007 	struct drm_i915_private *dev_priv = dev->dev_private;
3008 	struct intel_engine_cs *ring;
3009 	int i;
3010 
3011 	/*
3012 	 * Before we free the objects from the requests, we need to inspect
3013 	 * them for finding the guilty party. As the requests only borrow
3014 	 * their reference to the objects, the inspection must be done first.
3015 	 */
3016 	for_each_ring(ring, dev_priv, i)
3017 		i915_gem_reset_ring_status(dev_priv, ring);
3018 
3019 	for_each_ring(ring, dev_priv, i)
3020 		i915_gem_reset_ring_cleanup(dev_priv, ring);
3021 
3022 	i915_gem_context_reset(dev);
3023 
3024 	i915_gem_restore_fences(dev);
3025 
3026 	WARN_ON(i915_verify_lists(dev));
3027 }
3028 
3029 /**
3030  * This function clears the request list as sequence numbers are passed.
3031  */
3032 void
3033 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
3034 {
3035 	WARN_ON(i915_verify_lists(ring->dev));
3036 
3037 	/* Retire requests first as we use it above for the early return.
3038 	 * If we retire requests last, we may use a later seqno and so clear
3039 	 * the requests lists without clearing the active list, leading to
3040 	 * confusion.
3041 	 */
3042 	while (!list_empty(&ring->request_list)) {
3043 		struct drm_i915_gem_request *request;
3044 
3045 		request = list_first_entry(&ring->request_list,
3046 					   struct drm_i915_gem_request,
3047 					   list);
3048 
3049 		if (!i915_gem_request_completed(request, true))
3050 			break;
3051 
3052 		i915_gem_request_retire(request);
3053 	}
3054 
3055 	/* Move any buffers on the active list that are no longer referenced
3056 	 * by the ringbuffer to the flushing/inactive lists as appropriate,
3057 	 * before we free the context associated with the requests.
3058 	 */
3059 	while (!list_empty(&ring->active_list)) {
3060 		struct drm_i915_gem_object *obj;
3061 
3062 		obj = list_first_entry(&ring->active_list,
3063 				      struct drm_i915_gem_object,
3064 				      ring_list[ring->id]);
3065 
3066 		if (!list_empty(&obj->last_read_req[ring->id]->list))
3067 			break;
3068 
3069 		i915_gem_object_retire__read(obj, ring->id);
3070 	}
3071 
3072 	if (unlikely(ring->trace_irq_req &&
3073 		     i915_gem_request_completed(ring->trace_irq_req, true))) {
3074 		ring->irq_put(ring);
3075 		i915_gem_request_assign(&ring->trace_irq_req, NULL);
3076 	}
3077 
3078 	WARN_ON(i915_verify_lists(ring->dev));
3079 }
3080 
3081 bool
3082 i915_gem_retire_requests(struct drm_device *dev)
3083 {
3084 	struct drm_i915_private *dev_priv = dev->dev_private;
3085 	struct intel_engine_cs *ring;
3086 	bool idle = true;
3087 	int i;
3088 
3089 	for_each_ring(ring, dev_priv, i) {
3090 		i915_gem_retire_requests_ring(ring);
3091 		idle &= list_empty(&ring->request_list);
3092 		if (i915.enable_execlists) {
3093 			spin_lock_irq(&ring->execlist_lock);
3094 			idle &= list_empty(&ring->execlist_queue);
3095 			spin_unlock_irq(&ring->execlist_lock);
3096 
3097 			intel_execlists_retire_requests(ring);
3098 		}
3099 	}
3100 
3101 	if (idle)
3102 		mod_delayed_work(dev_priv->wq,
3103 				   &dev_priv->mm.idle_work,
3104 				   msecs_to_jiffies(100));
3105 
3106 	return idle;
3107 }
3108 
3109 static void
3110 i915_gem_retire_work_handler(struct work_struct *work)
3111 {
3112 	struct drm_i915_private *dev_priv =
3113 		container_of(work, typeof(*dev_priv), mm.retire_work.work);
3114 	struct drm_device *dev = dev_priv->dev;
3115 	bool idle;
3116 
3117 	/* Come back later if the device is busy... */
3118 	idle = false;
3119 	if (mutex_trylock(&dev->struct_mutex)) {
3120 		idle = i915_gem_retire_requests(dev);
3121 		mutex_unlock(&dev->struct_mutex);
3122 	}
3123 	if (!idle)
3124 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3125 				   round_jiffies_up_relative(HZ));
3126 }
3127 
3128 static void
3129 i915_gem_idle_work_handler(struct work_struct *work)
3130 {
3131 	struct drm_i915_private *dev_priv =
3132 		container_of(work, typeof(*dev_priv), mm.idle_work.work);
3133 	struct drm_device *dev = dev_priv->dev;
3134 	struct intel_engine_cs *ring;
3135 	int i;
3136 
3137 	for_each_ring(ring, dev_priv, i)
3138 		if (!list_empty(&ring->request_list))
3139 			return;
3140 
3141 	/* we probably should sync with hangcheck here, using cancel_work_sync.
3142 	 * Also locking seems to be fubar here, ring->request_list is protected
3143 	 * by dev->struct_mutex. */
3144 
3145 	intel_mark_idle(dev);
3146 
3147 	if (mutex_trylock(&dev->struct_mutex)) {
3148 		struct intel_engine_cs *ring;
3149 		int i;
3150 
3151 		for_each_ring(ring, dev_priv, i)
3152 			i915_gem_batch_pool_fini(&ring->batch_pool);
3153 
3154 		mutex_unlock(&dev->struct_mutex);
3155 	}
3156 }
3157 
3158 /**
3159  * Ensures that an object will eventually get non-busy by flushing any required
3160  * write domains, emitting any outstanding lazy request and retiring and
3161  * completed requests.
3162  */
3163 static int
3164 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3165 {
3166 	int i;
3167 
3168 	if (!obj->active)
3169 		return 0;
3170 
3171 	for (i = 0; i < I915_NUM_RINGS; i++) {
3172 		struct drm_i915_gem_request *req;
3173 
3174 		req = obj->last_read_req[i];
3175 		if (req == NULL)
3176 			continue;
3177 
3178 		if (list_empty(&req->list))
3179 			goto retire;
3180 
3181 		if (i915_gem_request_completed(req, true)) {
3182 			__i915_gem_request_retire__upto(req);
3183 retire:
3184 			i915_gem_object_retire__read(obj, i);
3185 		}
3186 	}
3187 
3188 	return 0;
3189 }
3190 
3191 /**
3192  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3193  * @DRM_IOCTL_ARGS: standard ioctl arguments
3194  *
3195  * Returns 0 if successful, else an error is returned with the remaining time in
3196  * the timeout parameter.
3197  *  -ETIME: object is still busy after timeout
3198  *  -ERESTARTSYS: signal interrupted the wait
3199  *  -ENONENT: object doesn't exist
3200  * Also possible, but rare:
3201  *  -EAGAIN: GPU wedged
3202  *  -ENOMEM: damn
3203  *  -ENODEV: Internal IRQ fail
3204  *  -E?: The add request failed
3205  *
3206  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3207  * non-zero timeout parameter the wait ioctl will wait for the given number of
3208  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3209  * without holding struct_mutex the object may become re-busied before this
3210  * function completes. A similar but shorter * race condition exists in the busy
3211  * ioctl
3212  */
3213 int
3214 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3215 {
3216 	struct drm_i915_private *dev_priv = dev->dev_private;
3217 	struct drm_i915_gem_wait *args = data;
3218 	struct drm_i915_gem_object *obj;
3219 	struct drm_i915_gem_request *req[I915_NUM_RINGS];
3220 	unsigned reset_counter;
3221 	int i, n = 0;
3222 	int ret;
3223 
3224 	if (args->flags != 0)
3225 		return -EINVAL;
3226 
3227 	ret = i915_mutex_lock_interruptible(dev);
3228 	if (ret)
3229 		return ret;
3230 
3231 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3232 	if (&obj->base == NULL) {
3233 		mutex_unlock(&dev->struct_mutex);
3234 		return -ENOENT;
3235 	}
3236 
3237 	/* Need to make sure the object gets inactive eventually. */
3238 	ret = i915_gem_object_flush_active(obj);
3239 	if (ret)
3240 		goto out;
3241 
3242 	if (!obj->active)
3243 		goto out;
3244 
3245 	/* Do this after OLR check to make sure we make forward progress polling
3246 	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3247 	 */
3248 	if (args->timeout_ns == 0) {
3249 		ret = -ETIME;
3250 		goto out;
3251 	}
3252 
3253 	drm_gem_object_unreference(&obj->base);
3254 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3255 
3256 	for (i = 0; i < I915_NUM_RINGS; i++) {
3257 		if (obj->last_read_req[i] == NULL)
3258 			continue;
3259 
3260 		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3261 	}
3262 
3263 	mutex_unlock(&dev->struct_mutex);
3264 
3265 	for (i = 0; i < n; i++) {
3266 		if (ret == 0)
3267 			ret = __i915_wait_request(req[i], reset_counter, true,
3268 						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3269 						  to_rps_client(file));
3270 		i915_gem_request_unreference__unlocked(req[i]);
3271 	}
3272 	return ret;
3273 
3274 out:
3275 	drm_gem_object_unreference(&obj->base);
3276 	mutex_unlock(&dev->struct_mutex);
3277 	return ret;
3278 }
3279 
3280 static int
3281 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3282 		       struct intel_engine_cs *to,
3283 		       struct drm_i915_gem_request *from_req,
3284 		       struct drm_i915_gem_request **to_req)
3285 {
3286 	struct intel_engine_cs *from;
3287 	int ret;
3288 
3289 	from = i915_gem_request_get_ring(from_req);
3290 	if (to == from)
3291 		return 0;
3292 
3293 	if (i915_gem_request_completed(from_req, true))
3294 		return 0;
3295 
3296 	if (!i915_semaphore_is_enabled(obj->base.dev)) {
3297 		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3298 		ret = __i915_wait_request(from_req,
3299 					  atomic_read(&i915->gpu_error.reset_counter),
3300 					  i915->mm.interruptible,
3301 					  NULL,
3302 					  &i915->rps.semaphores);
3303 		if (ret)
3304 			return ret;
3305 
3306 		i915_gem_object_retire_request(obj, from_req);
3307 	} else {
3308 		int idx = intel_ring_sync_index(from, to);
3309 		u32 seqno = i915_gem_request_get_seqno(from_req);
3310 
3311 		WARN_ON(!to_req);
3312 
3313 		if (seqno <= from->semaphore.sync_seqno[idx])
3314 			return 0;
3315 
3316 		if (*to_req == NULL) {
3317 			struct drm_i915_gem_request *req;
3318 
3319 			req = i915_gem_request_alloc(to, NULL);
3320 			if (IS_ERR(req))
3321 				return PTR_ERR(req);
3322 
3323 			*to_req = req;
3324 		}
3325 
3326 		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3327 		ret = to->semaphore.sync_to(*to_req, from, seqno);
3328 		if (ret)
3329 			return ret;
3330 
3331 		/* We use last_read_req because sync_to()
3332 		 * might have just caused seqno wrap under
3333 		 * the radar.
3334 		 */
3335 		from->semaphore.sync_seqno[idx] =
3336 			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3337 	}
3338 
3339 	return 0;
3340 }
3341 
3342 /**
3343  * i915_gem_object_sync - sync an object to a ring.
3344  *
3345  * @obj: object which may be in use on another ring.
3346  * @to: ring we wish to use the object on. May be NULL.
3347  * @to_req: request we wish to use the object for. See below.
3348  *          This will be allocated and returned if a request is
3349  *          required but not passed in.
3350  *
3351  * This code is meant to abstract object synchronization with the GPU.
3352  * Calling with NULL implies synchronizing the object with the CPU
3353  * rather than a particular GPU ring. Conceptually we serialise writes
3354  * between engines inside the GPU. We only allow one engine to write
3355  * into a buffer at any time, but multiple readers. To ensure each has
3356  * a coherent view of memory, we must:
3357  *
3358  * - If there is an outstanding write request to the object, the new
3359  *   request must wait for it to complete (either CPU or in hw, requests
3360  *   on the same ring will be naturally ordered).
3361  *
3362  * - If we are a write request (pending_write_domain is set), the new
3363  *   request must wait for outstanding read requests to complete.
3364  *
3365  * For CPU synchronisation (NULL to) no request is required. For syncing with
3366  * rings to_req must be non-NULL. However, a request does not have to be
3367  * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3368  * request will be allocated automatically and returned through *to_req. Note
3369  * that it is not guaranteed that commands will be emitted (because the system
3370  * might already be idle). Hence there is no need to create a request that
3371  * might never have any work submitted. Note further that if a request is
3372  * returned in *to_req, it is the responsibility of the caller to submit
3373  * that request (after potentially adding more work to it).
3374  *
3375  * Returns 0 if successful, else propagates up the lower layer error.
3376  */
3377 int
3378 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3379 		     struct intel_engine_cs *to,
3380 		     struct drm_i915_gem_request **to_req)
3381 {
3382 	const bool readonly = obj->base.pending_write_domain == 0;
3383 	struct drm_i915_gem_request *req[I915_NUM_RINGS];
3384 	int ret, i, n;
3385 
3386 	if (!obj->active)
3387 		return 0;
3388 
3389 	if (to == NULL)
3390 		return i915_gem_object_wait_rendering(obj, readonly);
3391 
3392 	n = 0;
3393 	if (readonly) {
3394 		if (obj->last_write_req)
3395 			req[n++] = obj->last_write_req;
3396 	} else {
3397 		for (i = 0; i < I915_NUM_RINGS; i++)
3398 			if (obj->last_read_req[i])
3399 				req[n++] = obj->last_read_req[i];
3400 	}
3401 	for (i = 0; i < n; i++) {
3402 		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3403 		if (ret)
3404 			return ret;
3405 	}
3406 
3407 	return 0;
3408 }
3409 
3410 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3411 {
3412 	u32 old_write_domain, old_read_domains;
3413 
3414 	/* Force a pagefault for domain tracking on next user access */
3415 	i915_gem_release_mmap(obj);
3416 
3417 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3418 		return;
3419 
3420 	/* Wait for any direct GTT access to complete */
3421 	mb();
3422 
3423 	old_read_domains = obj->base.read_domains;
3424 	old_write_domain = obj->base.write_domain;
3425 
3426 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3427 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3428 
3429 	trace_i915_gem_object_change_domain(obj,
3430 					    old_read_domains,
3431 					    old_write_domain);
3432 }
3433 
3434 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3435 {
3436 	struct drm_i915_gem_object *obj = vma->obj;
3437 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3438 	int ret;
3439 
3440 	if (list_empty(&vma->obj_link))
3441 		return 0;
3442 
3443 	if (!drm_mm_node_allocated(&vma->node)) {
3444 		i915_gem_vma_destroy(vma);
3445 		return 0;
3446 	}
3447 
3448 	if (vma->pin_count)
3449 		return -EBUSY;
3450 
3451 	BUG_ON(obj->pages == NULL);
3452 
3453 	if (wait) {
3454 		ret = i915_gem_object_wait_rendering(obj, false);
3455 		if (ret)
3456 			return ret;
3457 	}
3458 
3459 	if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3460 		i915_gem_object_finish_gtt(obj);
3461 
3462 		/* release the fence reg _after_ flushing */
3463 		ret = i915_gem_object_put_fence(obj);
3464 		if (ret)
3465 			return ret;
3466 	}
3467 
3468 	trace_i915_vma_unbind(vma);
3469 
3470 	vma->vm->unbind_vma(vma);
3471 	vma->bound = 0;
3472 
3473 	list_del_init(&vma->vm_link);
3474 	if (vma->is_ggtt) {
3475 		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3476 			obj->map_and_fenceable = false;
3477 		} else if (vma->ggtt_view.pages) {
3478 			sg_free_table(vma->ggtt_view.pages);
3479 			kfree(vma->ggtt_view.pages);
3480 		}
3481 		vma->ggtt_view.pages = NULL;
3482 	}
3483 
3484 	drm_mm_remove_node(&vma->node);
3485 	i915_gem_vma_destroy(vma);
3486 
3487 	/* Since the unbound list is global, only move to that list if
3488 	 * no more VMAs exist. */
3489 	if (list_empty(&obj->vma_list))
3490 		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3491 
3492 	/* And finally now the object is completely decoupled from this vma,
3493 	 * we can drop its hold on the backing storage and allow it to be
3494 	 * reaped by the shrinker.
3495 	 */
3496 	i915_gem_object_unpin_pages(obj);
3497 
3498 	return 0;
3499 }
3500 
3501 int i915_vma_unbind(struct i915_vma *vma)
3502 {
3503 	return __i915_vma_unbind(vma, true);
3504 }
3505 
3506 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3507 {
3508 	return __i915_vma_unbind(vma, false);
3509 }
3510 
3511 int i915_gpu_idle(struct drm_device *dev)
3512 {
3513 	struct drm_i915_private *dev_priv = dev->dev_private;
3514 	struct intel_engine_cs *ring;
3515 	int ret, i;
3516 
3517 	/* Flush everything onto the inactive list. */
3518 	for_each_ring(ring, dev_priv, i) {
3519 		if (!i915.enable_execlists) {
3520 			struct drm_i915_gem_request *req;
3521 
3522 			req = i915_gem_request_alloc(ring, NULL);
3523 			if (IS_ERR(req))
3524 				return PTR_ERR(req);
3525 
3526 			ret = i915_switch_context(req);
3527 			if (ret) {
3528 				i915_gem_request_cancel(req);
3529 				return ret;
3530 			}
3531 
3532 			i915_add_request_no_flush(req);
3533 		}
3534 
3535 		ret = intel_ring_idle(ring);
3536 		if (ret)
3537 			return ret;
3538 	}
3539 
3540 	WARN_ON(i915_verify_lists(dev));
3541 	return 0;
3542 }
3543 
3544 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3545 				     unsigned long cache_level)
3546 {
3547 	struct drm_mm_node *gtt_space = &vma->node;
3548 	struct drm_mm_node *other;
3549 
3550 	/*
3551 	 * On some machines we have to be careful when putting differing types
3552 	 * of snoopable memory together to avoid the prefetcher crossing memory
3553 	 * domains and dying. During vm initialisation, we decide whether or not
3554 	 * these constraints apply and set the drm_mm.color_adjust
3555 	 * appropriately.
3556 	 */
3557 	if (vma->vm->mm.color_adjust == NULL)
3558 		return true;
3559 
3560 	if (!drm_mm_node_allocated(gtt_space))
3561 		return true;
3562 
3563 	if (list_empty(&gtt_space->node_list))
3564 		return true;
3565 
3566 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3567 	if (other->allocated && !other->hole_follows && other->color != cache_level)
3568 		return false;
3569 
3570 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3571 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3572 		return false;
3573 
3574 	return true;
3575 }
3576 
3577 /**
3578  * Finds free space in the GTT aperture and binds the object or a view of it
3579  * there.
3580  */
3581 static struct i915_vma *
3582 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3583 			   struct i915_address_space *vm,
3584 			   const struct i915_ggtt_view *ggtt_view,
3585 			   unsigned alignment,
3586 			   uint64_t flags)
3587 {
3588 	struct drm_device *dev = obj->base.dev;
3589 	struct drm_i915_private *dev_priv = dev->dev_private;
3590 	u32 fence_alignment, unfenced_alignment;
3591 	u32 search_flag, alloc_flag;
3592 	u64 start, end;
3593 	u64 size, fence_size;
3594 	struct i915_vma *vma;
3595 	int ret;
3596 
3597 	if (i915_is_ggtt(vm)) {
3598 		u32 view_size;
3599 
3600 		if (WARN_ON(!ggtt_view))
3601 			return ERR_PTR(-EINVAL);
3602 
3603 		view_size = i915_ggtt_view_size(obj, ggtt_view);
3604 
3605 		fence_size = i915_gem_get_gtt_size(dev,
3606 						   view_size,
3607 						   obj->tiling_mode);
3608 		fence_alignment = i915_gem_get_gtt_alignment(dev,
3609 							     view_size,
3610 							     obj->tiling_mode,
3611 							     true);
3612 		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3613 								view_size,
3614 								obj->tiling_mode,
3615 								false);
3616 		size = flags & PIN_MAPPABLE ? fence_size : view_size;
3617 	} else {
3618 		fence_size = i915_gem_get_gtt_size(dev,
3619 						   obj->base.size,
3620 						   obj->tiling_mode);
3621 		fence_alignment = i915_gem_get_gtt_alignment(dev,
3622 							     obj->base.size,
3623 							     obj->tiling_mode,
3624 							     true);
3625 		unfenced_alignment =
3626 			i915_gem_get_gtt_alignment(dev,
3627 						   obj->base.size,
3628 						   obj->tiling_mode,
3629 						   false);
3630 		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3631 	}
3632 
3633 	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3634 	end = vm->total;
3635 	if (flags & PIN_MAPPABLE)
3636 		end = min_t(u64, end, dev_priv->gtt.mappable_end);
3637 	if (flags & PIN_ZONE_4G)
3638 		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3639 
3640 	if (alignment == 0)
3641 		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3642 						unfenced_alignment;
3643 	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3644 		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3645 			  ggtt_view ? ggtt_view->type : 0,
3646 			  alignment);
3647 		return ERR_PTR(-EINVAL);
3648 	}
3649 
3650 	/* If binding the object/GGTT view requires more space than the entire
3651 	 * aperture has, reject it early before evicting everything in a vain
3652 	 * attempt to find space.
3653 	 */
3654 	if (size > end) {
3655 		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%lu > %s aperture=%lu\n",
3656 			  ggtt_view ? ggtt_view->type : 0,
3657 			  size,
3658 			  flags & PIN_MAPPABLE ? "mappable" : "total",
3659 			  end);
3660 		return ERR_PTR(-E2BIG);
3661 	}
3662 
3663 	ret = i915_gem_object_get_pages(obj);
3664 	if (ret)
3665 		return ERR_PTR(ret);
3666 
3667 	i915_gem_object_pin_pages(obj);
3668 
3669 	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3670 			  i915_gem_obj_lookup_or_create_vma(obj, vm);
3671 
3672 	if (IS_ERR(vma))
3673 		goto err_unpin;
3674 
3675 	if (flags & PIN_OFFSET_FIXED) {
3676 		uint64_t offset = flags & PIN_OFFSET_MASK;
3677 
3678 		if (offset & (alignment - 1) || offset + size > end) {
3679 			ret = -EINVAL;
3680 			goto err_free_vma;
3681 		}
3682 		vma->node.start = offset;
3683 		vma->node.size = size;
3684 		vma->node.color = obj->cache_level;
3685 		ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3686 		if (ret) {
3687 			ret = i915_gem_evict_for_vma(vma);
3688 			if (ret == 0)
3689 				ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3690 		}
3691 		if (ret)
3692 			goto err_free_vma;
3693 	} else {
3694 		if (flags & PIN_HIGH) {
3695 			search_flag = DRM_MM_SEARCH_BELOW;
3696 			alloc_flag = DRM_MM_CREATE_TOP;
3697 		} else {
3698 			search_flag = DRM_MM_SEARCH_DEFAULT;
3699 			alloc_flag = DRM_MM_CREATE_DEFAULT;
3700 		}
3701 
3702 search_free:
3703 		ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3704 							  size, alignment,
3705 							  obj->cache_level,
3706 							  start, end,
3707 							  search_flag,
3708 							  alloc_flag);
3709 		if (ret) {
3710 			ret = i915_gem_evict_something(dev, vm, size, alignment,
3711 						       obj->cache_level,
3712 						       start, end,
3713 						       flags);
3714 			if (ret == 0)
3715 				goto search_free;
3716 
3717 			goto err_free_vma;
3718 		}
3719 	}
3720 	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3721 		ret = -EINVAL;
3722 		goto err_remove_node;
3723 	}
3724 
3725 	trace_i915_vma_bind(vma, flags);
3726 	ret = i915_vma_bind(vma, obj->cache_level, flags);
3727 	if (ret)
3728 		goto err_remove_node;
3729 
3730 	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3731 	list_add_tail(&vma->vm_link, &vm->inactive_list);
3732 
3733 	return vma;
3734 
3735 err_remove_node:
3736 	drm_mm_remove_node(&vma->node);
3737 err_free_vma:
3738 	i915_gem_vma_destroy(vma);
3739 	vma = ERR_PTR(ret);
3740 err_unpin:
3741 	i915_gem_object_unpin_pages(obj);
3742 	return vma;
3743 }
3744 
3745 bool
3746 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3747 			bool force)
3748 {
3749 	/* If we don't have a page list set up, then we're not pinned
3750 	 * to GPU, and we can ignore the cache flush because it'll happen
3751 	 * again at bind time.
3752 	 */
3753 	if (obj->pages == NULL)
3754 		return false;
3755 
3756 	/*
3757 	 * Stolen memory is always coherent with the GPU as it is explicitly
3758 	 * marked as wc by the system, or the system is cache-coherent.
3759 	 */
3760 	if (obj->stolen || obj->phys_handle)
3761 		return false;
3762 
3763 	/* If the GPU is snooping the contents of the CPU cache,
3764 	 * we do not need to manually clear the CPU cache lines.  However,
3765 	 * the caches are only snooped when the render cache is
3766 	 * flushed/invalidated.  As we always have to emit invalidations
3767 	 * and flushes when moving into and out of the RENDER domain, correct
3768 	 * snooping behaviour occurs naturally as the result of our domain
3769 	 * tracking.
3770 	 */
3771 	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3772 		obj->cache_dirty = true;
3773 		return false;
3774 	}
3775 
3776 	trace_i915_gem_object_clflush(obj);
3777 	drm_clflush_sg(obj->pages);
3778 	obj->cache_dirty = false;
3779 
3780 	return true;
3781 }
3782 
3783 /** Flushes the GTT write domain for the object if it's dirty. */
3784 static void
3785 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3786 {
3787 	uint32_t old_write_domain;
3788 
3789 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3790 		return;
3791 
3792 	/* No actual flushing is required for the GTT write domain.  Writes
3793 	 * to it immediately go to main memory as far as we know, so there's
3794 	 * no chipset flush.  It also doesn't land in render cache.
3795 	 *
3796 	 * However, we do have to enforce the order so that all writes through
3797 	 * the GTT land before any writes to the device, such as updates to
3798 	 * the GATT itself.
3799 	 */
3800 	wmb();
3801 
3802 	old_write_domain = obj->base.write_domain;
3803 	obj->base.write_domain = 0;
3804 
3805 	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3806 
3807 	trace_i915_gem_object_change_domain(obj,
3808 					    obj->base.read_domains,
3809 					    old_write_domain);
3810 }
3811 
3812 /** Flushes the CPU write domain for the object if it's dirty. */
3813 static void
3814 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3815 {
3816 	uint32_t old_write_domain;
3817 
3818 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3819 		return;
3820 
3821 	if (i915_gem_clflush_object(obj, obj->pin_display))
3822 		i915_gem_chipset_flush(obj->base.dev);
3823 
3824 	old_write_domain = obj->base.write_domain;
3825 	obj->base.write_domain = 0;
3826 
3827 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3828 
3829 	trace_i915_gem_object_change_domain(obj,
3830 					    obj->base.read_domains,
3831 					    old_write_domain);
3832 }
3833 
3834 /**
3835  * Moves a single object to the GTT read, and possibly write domain.
3836  *
3837  * This function returns when the move is complete, including waiting on
3838  * flushes to occur.
3839  */
3840 int
3841 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3842 {
3843 	uint32_t old_write_domain, old_read_domains;
3844 	struct i915_vma *vma;
3845 	int ret;
3846 
3847 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3848 		return 0;
3849 
3850 	ret = i915_gem_object_wait_rendering(obj, !write);
3851 	if (ret)
3852 		return ret;
3853 
3854 	/* Flush and acquire obj->pages so that we are coherent through
3855 	 * direct access in memory with previous cached writes through
3856 	 * shmemfs and that our cache domain tracking remains valid.
3857 	 * For example, if the obj->filp was moved to swap without us
3858 	 * being notified and releasing the pages, we would mistakenly
3859 	 * continue to assume that the obj remained out of the CPU cached
3860 	 * domain.
3861 	 */
3862 	ret = i915_gem_object_get_pages(obj);
3863 	if (ret)
3864 		return ret;
3865 
3866 	i915_gem_object_flush_cpu_write_domain(obj);
3867 
3868 	/* Serialise direct access to this object with the barriers for
3869 	 * coherent writes from the GPU, by effectively invalidating the
3870 	 * GTT domain upon first access.
3871 	 */
3872 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3873 		mb();
3874 
3875 	old_write_domain = obj->base.write_domain;
3876 	old_read_domains = obj->base.read_domains;
3877 
3878 	/* It should now be out of any other write domains, and we can update
3879 	 * the domain values for our changes.
3880 	 */
3881 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3882 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3883 	if (write) {
3884 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3885 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3886 		obj->dirty = 1;
3887 	}
3888 
3889 	trace_i915_gem_object_change_domain(obj,
3890 					    old_read_domains,
3891 					    old_write_domain);
3892 
3893 	/* And bump the LRU for this access */
3894 	vma = i915_gem_obj_to_ggtt(obj);
3895 	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3896 		list_move_tail(&vma->vm_link,
3897 			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
3898 
3899 	return 0;
3900 }
3901 
3902 /**
3903  * Changes the cache-level of an object across all VMA.
3904  *
3905  * After this function returns, the object will be in the new cache-level
3906  * across all GTT and the contents of the backing storage will be coherent,
3907  * with respect to the new cache-level. In order to keep the backing storage
3908  * coherent for all users, we only allow a single cache level to be set
3909  * globally on the object and prevent it from being changed whilst the
3910  * hardware is reading from the object. That is if the object is currently
3911  * on the scanout it will be set to uncached (or equivalent display
3912  * cache coherency) and all non-MOCS GPU access will also be uncached so
3913  * that all direct access to the scanout remains coherent.
3914  */
3915 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3916 				    enum i915_cache_level cache_level)
3917 {
3918 	struct drm_device *dev = obj->base.dev;
3919 	struct i915_vma *vma, *next;
3920 	bool bound = false;
3921 	int ret = 0;
3922 
3923 	if (obj->cache_level == cache_level)
3924 		goto out;
3925 
3926 	/* Inspect the list of currently bound VMA and unbind any that would
3927 	 * be invalid given the new cache-level. This is principally to
3928 	 * catch the issue of the CS prefetch crossing page boundaries and
3929 	 * reading an invalid PTE on older architectures.
3930 	 */
3931 	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3932 		if (!drm_mm_node_allocated(&vma->node))
3933 			continue;
3934 
3935 		if (vma->pin_count) {
3936 			DRM_DEBUG("can not change the cache level of pinned objects\n");
3937 			return -EBUSY;
3938 		}
3939 
3940 		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3941 			ret = i915_vma_unbind(vma);
3942 			if (ret)
3943 				return ret;
3944 		} else
3945 			bound = true;
3946 	}
3947 
3948 	/* We can reuse the existing drm_mm nodes but need to change the
3949 	 * cache-level on the PTE. We could simply unbind them all and
3950 	 * rebind with the correct cache-level on next use. However since
3951 	 * we already have a valid slot, dma mapping, pages etc, we may as
3952 	 * rewrite the PTE in the belief that doing so tramples upon less
3953 	 * state and so involves less work.
3954 	 */
3955 	if (bound) {
3956 		/* Before we change the PTE, the GPU must not be accessing it.
3957 		 * If we wait upon the object, we know that all the bound
3958 		 * VMA are no longer active.
3959 		 */
3960 		ret = i915_gem_object_wait_rendering(obj, false);
3961 		if (ret)
3962 			return ret;
3963 
3964 		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3965 			/* Access to snoopable pages through the GTT is
3966 			 * incoherent and on some machines causes a hard
3967 			 * lockup. Relinquish the CPU mmaping to force
3968 			 * userspace to refault in the pages and we can
3969 			 * then double check if the GTT mapping is still
3970 			 * valid for that pointer access.
3971 			 */
3972 			i915_gem_release_mmap(obj);
3973 
3974 			/* As we no longer need a fence for GTT access,
3975 			 * we can relinquish it now (and so prevent having
3976 			 * to steal a fence from someone else on the next
3977 			 * fence request). Note GPU activity would have
3978 			 * dropped the fence as all snoopable access is
3979 			 * supposed to be linear.
3980 			 */
3981 			ret = i915_gem_object_put_fence(obj);
3982 			if (ret)
3983 				return ret;
3984 		} else {
3985 			/* We either have incoherent backing store and
3986 			 * so no GTT access or the architecture is fully
3987 			 * coherent. In such cases, existing GTT mmaps
3988 			 * ignore the cache bit in the PTE and we can
3989 			 * rewrite it without confusing the GPU or having
3990 			 * to force userspace to fault back in its mmaps.
3991 			 */
3992 		}
3993 
3994 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3995 			if (!drm_mm_node_allocated(&vma->node))
3996 				continue;
3997 
3998 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3999 			if (ret)
4000 				return ret;
4001 		}
4002 	}
4003 
4004 	list_for_each_entry(vma, &obj->vma_list, obj_link)
4005 		vma->node.color = cache_level;
4006 	obj->cache_level = cache_level;
4007 
4008 out:
4009 	/* Flush the dirty CPU caches to the backing storage so that the
4010 	 * object is now coherent at its new cache level (with respect
4011 	 * to the access domain).
4012 	 */
4013 	if (obj->cache_dirty &&
4014 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
4015 	    cpu_write_needs_clflush(obj)) {
4016 		if (i915_gem_clflush_object(obj, true))
4017 			i915_gem_chipset_flush(obj->base.dev);
4018 	}
4019 
4020 	return 0;
4021 }
4022 
4023 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4024 			       struct drm_file *file)
4025 {
4026 	struct drm_i915_gem_caching *args = data;
4027 	struct drm_i915_gem_object *obj;
4028 
4029 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4030 	if (&obj->base == NULL)
4031 		return -ENOENT;
4032 
4033 	switch (obj->cache_level) {
4034 	case I915_CACHE_LLC:
4035 	case I915_CACHE_L3_LLC:
4036 		args->caching = I915_CACHING_CACHED;
4037 		break;
4038 
4039 	case I915_CACHE_WT:
4040 		args->caching = I915_CACHING_DISPLAY;
4041 		break;
4042 
4043 	default:
4044 		args->caching = I915_CACHING_NONE;
4045 		break;
4046 	}
4047 
4048 	drm_gem_object_unreference_unlocked(&obj->base);
4049 	return 0;
4050 }
4051 
4052 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4053 			       struct drm_file *file)
4054 {
4055 	struct drm_i915_private *dev_priv = dev->dev_private;
4056 	struct drm_i915_gem_caching *args = data;
4057 	struct drm_i915_gem_object *obj;
4058 	enum i915_cache_level level;
4059 	int ret;
4060 
4061 	switch (args->caching) {
4062 	case I915_CACHING_NONE:
4063 		level = I915_CACHE_NONE;
4064 		break;
4065 	case I915_CACHING_CACHED:
4066 		/*
4067 		 * Due to a HW issue on BXT A stepping, GPU stores via a
4068 		 * snooped mapping may leave stale data in a corresponding CPU
4069 		 * cacheline, whereas normally such cachelines would get
4070 		 * invalidated.
4071 		 */
4072 		if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
4073 			return -ENODEV;
4074 
4075 		level = I915_CACHE_LLC;
4076 		break;
4077 	case I915_CACHING_DISPLAY:
4078 		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4079 		break;
4080 	default:
4081 		return -EINVAL;
4082 	}
4083 
4084 	intel_runtime_pm_get(dev_priv);
4085 
4086 	ret = i915_mutex_lock_interruptible(dev);
4087 	if (ret)
4088 		goto rpm_put;
4089 
4090 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4091 	if (&obj->base == NULL) {
4092 		ret = -ENOENT;
4093 		goto unlock;
4094 	}
4095 
4096 	ret = i915_gem_object_set_cache_level(obj, level);
4097 
4098 	drm_gem_object_unreference(&obj->base);
4099 unlock:
4100 	mutex_unlock(&dev->struct_mutex);
4101 rpm_put:
4102 	intel_runtime_pm_put(dev_priv);
4103 
4104 	return ret;
4105 }
4106 
4107 /*
4108  * Prepare buffer for display plane (scanout, cursors, etc).
4109  * Can be called from an uninterruptible phase (modesetting) and allows
4110  * any flushes to be pipelined (for pageflips).
4111  */
4112 int
4113 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4114 				     u32 alignment,
4115 				     const struct i915_ggtt_view *view)
4116 {
4117 	u32 old_read_domains, old_write_domain;
4118 	int ret;
4119 
4120 	/* Mark the pin_display early so that we account for the
4121 	 * display coherency whilst setting up the cache domains.
4122 	 */
4123 	obj->pin_display++;
4124 
4125 	/* The display engine is not coherent with the LLC cache on gen6.  As
4126 	 * a result, we make sure that the pinning that is about to occur is
4127 	 * done with uncached PTEs. This is lowest common denominator for all
4128 	 * chipsets.
4129 	 *
4130 	 * However for gen6+, we could do better by using the GFDT bit instead
4131 	 * of uncaching, which would allow us to flush all the LLC-cached data
4132 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4133 	 */
4134 	ret = i915_gem_object_set_cache_level(obj,
4135 					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4136 	if (ret)
4137 		goto err_unpin_display;
4138 
4139 	/* As the user may map the buffer once pinned in the display plane
4140 	 * (e.g. libkms for the bootup splash), we have to ensure that we
4141 	 * always use map_and_fenceable for all scanout buffers.
4142 	 */
4143 	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4144 				       view->type == I915_GGTT_VIEW_NORMAL ?
4145 				       PIN_MAPPABLE : 0);
4146 	if (ret)
4147 		goto err_unpin_display;
4148 
4149 	i915_gem_object_flush_cpu_write_domain(obj);
4150 
4151 	old_write_domain = obj->base.write_domain;
4152 	old_read_domains = obj->base.read_domains;
4153 
4154 	/* It should now be out of any other write domains, and we can update
4155 	 * the domain values for our changes.
4156 	 */
4157 	obj->base.write_domain = 0;
4158 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4159 
4160 	trace_i915_gem_object_change_domain(obj,
4161 					    old_read_domains,
4162 					    old_write_domain);
4163 
4164 	return 0;
4165 
4166 err_unpin_display:
4167 	obj->pin_display--;
4168 	return ret;
4169 }
4170 
4171 void
4172 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4173 					 const struct i915_ggtt_view *view)
4174 {
4175 	if (WARN_ON(obj->pin_display == 0))
4176 		return;
4177 
4178 	i915_gem_object_ggtt_unpin_view(obj, view);
4179 
4180 	obj->pin_display--;
4181 }
4182 
4183 /**
4184  * Moves a single object to the CPU read, and possibly write domain.
4185  *
4186  * This function returns when the move is complete, including waiting on
4187  * flushes to occur.
4188  */
4189 int
4190 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4191 {
4192 	uint32_t old_write_domain, old_read_domains;
4193 	int ret;
4194 
4195 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4196 		return 0;
4197 
4198 	ret = i915_gem_object_wait_rendering(obj, !write);
4199 	if (ret)
4200 		return ret;
4201 
4202 	i915_gem_object_flush_gtt_write_domain(obj);
4203 
4204 	old_write_domain = obj->base.write_domain;
4205 	old_read_domains = obj->base.read_domains;
4206 
4207 	/* Flush the CPU cache if it's still invalid. */
4208 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4209 		i915_gem_clflush_object(obj, false);
4210 
4211 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4212 	}
4213 
4214 	/* It should now be out of any other write domains, and we can update
4215 	 * the domain values for our changes.
4216 	 */
4217 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4218 
4219 	/* If we're writing through the CPU, then the GPU read domains will
4220 	 * need to be invalidated at next use.
4221 	 */
4222 	if (write) {
4223 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4224 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4225 	}
4226 
4227 	trace_i915_gem_object_change_domain(obj,
4228 					    old_read_domains,
4229 					    old_write_domain);
4230 
4231 	return 0;
4232 }
4233 
4234 /* Throttle our rendering by waiting until the ring has completed our requests
4235  * emitted over 20 msec ago.
4236  *
4237  * Note that if we were to use the current jiffies each time around the loop,
4238  * we wouldn't escape the function with any frames outstanding if the time to
4239  * render a frame was over 20ms.
4240  *
4241  * This should get us reasonable parallelism between CPU and GPU but also
4242  * relatively low latency when blocking on a particular request to finish.
4243  */
4244 static int
4245 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4246 {
4247 	struct drm_i915_private *dev_priv = dev->dev_private;
4248 	struct drm_i915_file_private *file_priv = file->driver_priv;
4249 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4250 	struct drm_i915_gem_request *request, *target = NULL;
4251 	unsigned reset_counter;
4252 	int ret;
4253 
4254 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4255 	if (ret)
4256 		return ret;
4257 
4258 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4259 	if (ret)
4260 		return ret;
4261 
4262 	spin_lock(&file_priv->mm.lock);
4263 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4264 		if (time_after_eq(request->emitted_jiffies, recent_enough))
4265 			break;
4266 
4267 		/*
4268 		 * Note that the request might not have been submitted yet.
4269 		 * In which case emitted_jiffies will be zero.
4270 		 */
4271 		if (!request->emitted_jiffies)
4272 			continue;
4273 
4274 		target = request;
4275 	}
4276 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4277 	if (target)
4278 		i915_gem_request_reference(target);
4279 	spin_unlock(&file_priv->mm.lock);
4280 
4281 	if (target == NULL)
4282 		return 0;
4283 
4284 	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4285 	if (ret == 0)
4286 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4287 
4288 	i915_gem_request_unreference__unlocked(target);
4289 
4290 	return ret;
4291 }
4292 
4293 static bool
4294 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4295 {
4296 	struct drm_i915_gem_object *obj = vma->obj;
4297 
4298 	if (alignment &&
4299 	    vma->node.start & (alignment - 1))
4300 		return true;
4301 
4302 	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4303 		return true;
4304 
4305 	if (flags & PIN_OFFSET_BIAS &&
4306 	    vma->node.start < (flags & PIN_OFFSET_MASK))
4307 		return true;
4308 
4309 	if (flags & PIN_OFFSET_FIXED &&
4310 	    vma->node.start != (flags & PIN_OFFSET_MASK))
4311 		return true;
4312 
4313 	return false;
4314 }
4315 
4316 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4317 {
4318 	struct drm_i915_gem_object *obj = vma->obj;
4319 	bool mappable, fenceable;
4320 	u32 fence_size, fence_alignment;
4321 
4322 	fence_size = i915_gem_get_gtt_size(obj->base.dev,
4323 					   obj->base.size,
4324 					   obj->tiling_mode);
4325 	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4326 						     obj->base.size,
4327 						     obj->tiling_mode,
4328 						     true);
4329 
4330 	fenceable = (vma->node.size == fence_size &&
4331 		     (vma->node.start & (fence_alignment - 1)) == 0);
4332 
4333 	mappable = (vma->node.start + fence_size <=
4334 		    to_i915(obj->base.dev)->gtt.mappable_end);
4335 
4336 	obj->map_and_fenceable = mappable && fenceable;
4337 }
4338 
4339 static int
4340 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4341 		       struct i915_address_space *vm,
4342 		       const struct i915_ggtt_view *ggtt_view,
4343 		       uint32_t alignment,
4344 		       uint64_t flags)
4345 {
4346 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4347 	struct i915_vma *vma;
4348 	unsigned bound;
4349 	int ret;
4350 
4351 	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4352 		return -ENODEV;
4353 
4354 	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4355 		return -EINVAL;
4356 
4357 	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4358 		return -EINVAL;
4359 
4360 	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4361 		return -EINVAL;
4362 
4363 	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4364 			  i915_gem_obj_to_vma(obj, vm);
4365 
4366 	if (IS_ERR(vma))
4367 		return PTR_ERR(vma);
4368 
4369 	if (vma) {
4370 		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4371 			return -EBUSY;
4372 
4373 		if (i915_vma_misplaced(vma, alignment, flags)) {
4374 			WARN(vma->pin_count,
4375 			     "bo is already pinned in %s with incorrect alignment:"
4376 			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4377 			     " obj->map_and_fenceable=%d\n",
4378 			     ggtt_view ? "ggtt" : "ppgtt",
4379 			     upper_32_bits(vma->node.start),
4380 			     lower_32_bits(vma->node.start),
4381 			     alignment,
4382 			     !!(flags & PIN_MAPPABLE),
4383 			     obj->map_and_fenceable);
4384 			ret = i915_vma_unbind(vma);
4385 			if (ret)
4386 				return ret;
4387 
4388 			vma = NULL;
4389 		}
4390 	}
4391 
4392 	bound = vma ? vma->bound : 0;
4393 	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4394 		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4395 						 flags);
4396 		if (IS_ERR(vma))
4397 			return PTR_ERR(vma);
4398 	} else {
4399 		ret = i915_vma_bind(vma, obj->cache_level, flags);
4400 		if (ret)
4401 			return ret;
4402 	}
4403 
4404 	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4405 	    (bound ^ vma->bound) & GLOBAL_BIND) {
4406 		__i915_vma_set_map_and_fenceable(vma);
4407 		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4408 	}
4409 
4410 	vma->pin_count++;
4411 	return 0;
4412 }
4413 
4414 int
4415 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4416 		    struct i915_address_space *vm,
4417 		    uint32_t alignment,
4418 		    uint64_t flags)
4419 {
4420 	return i915_gem_object_do_pin(obj, vm,
4421 				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4422 				      alignment, flags);
4423 }
4424 
4425 int
4426 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4427 			 const struct i915_ggtt_view *view,
4428 			 uint32_t alignment,
4429 			 uint64_t flags)
4430 {
4431 	if (WARN_ONCE(!view, "no view specified"))
4432 		return -EINVAL;
4433 
4434 	return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4435 				      alignment, flags | PIN_GLOBAL);
4436 }
4437 
4438 void
4439 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4440 				const struct i915_ggtt_view *view)
4441 {
4442 	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4443 
4444 	BUG_ON(!vma);
4445 	WARN_ON(vma->pin_count == 0);
4446 	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4447 
4448 	--vma->pin_count;
4449 }
4450 
4451 int
4452 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4453 		    struct drm_file *file)
4454 {
4455 	struct drm_i915_gem_busy *args = data;
4456 	struct drm_i915_gem_object *obj;
4457 	int ret;
4458 
4459 	ret = i915_mutex_lock_interruptible(dev);
4460 	if (ret)
4461 		return ret;
4462 
4463 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4464 	if (&obj->base == NULL) {
4465 		ret = -ENOENT;
4466 		goto unlock;
4467 	}
4468 
4469 	/* Count all active objects as busy, even if they are currently not used
4470 	 * by the gpu. Users of this interface expect objects to eventually
4471 	 * become non-busy without any further actions, therefore emit any
4472 	 * necessary flushes here.
4473 	 */
4474 	ret = i915_gem_object_flush_active(obj);
4475 	if (ret)
4476 		goto unref;
4477 
4478 	args->busy = 0;
4479 	if (obj->active) {
4480 		int i;
4481 
4482 		for (i = 0; i < I915_NUM_RINGS; i++) {
4483 			struct drm_i915_gem_request *req;
4484 
4485 			req = obj->last_read_req[i];
4486 			if (req)
4487 				args->busy |= 1 << (16 + req->ring->exec_id);
4488 		}
4489 		if (obj->last_write_req)
4490 			args->busy |= obj->last_write_req->ring->exec_id;
4491 	}
4492 
4493 unref:
4494 	drm_gem_object_unreference(&obj->base);
4495 unlock:
4496 	mutex_unlock(&dev->struct_mutex);
4497 	return ret;
4498 }
4499 
4500 int
4501 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4502 			struct drm_file *file_priv)
4503 {
4504 	return i915_gem_ring_throttle(dev, file_priv);
4505 }
4506 
4507 int
4508 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4509 		       struct drm_file *file_priv)
4510 {
4511 	struct drm_i915_private *dev_priv = dev->dev_private;
4512 	struct drm_i915_gem_madvise *args = data;
4513 	struct drm_i915_gem_object *obj;
4514 	int ret;
4515 
4516 	switch (args->madv) {
4517 	case I915_MADV_DONTNEED:
4518 	case I915_MADV_WILLNEED:
4519 	    break;
4520 	default:
4521 	    return -EINVAL;
4522 	}
4523 
4524 	ret = i915_mutex_lock_interruptible(dev);
4525 	if (ret)
4526 		return ret;
4527 
4528 	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4529 	if (&obj->base == NULL) {
4530 		ret = -ENOENT;
4531 		goto unlock;
4532 	}
4533 
4534 	if (i915_gem_obj_is_pinned(obj)) {
4535 		ret = -EINVAL;
4536 		goto out;
4537 	}
4538 
4539 	if (obj->pages &&
4540 	    obj->tiling_mode != I915_TILING_NONE &&
4541 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4542 		if (obj->madv == I915_MADV_WILLNEED)
4543 			i915_gem_object_unpin_pages(obj);
4544 		if (args->madv == I915_MADV_WILLNEED)
4545 			i915_gem_object_pin_pages(obj);
4546 	}
4547 
4548 	if (obj->madv != __I915_MADV_PURGED)
4549 		obj->madv = args->madv;
4550 
4551 	/* if the object is no longer attached, discard its backing storage */
4552 	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4553 		i915_gem_object_truncate(obj);
4554 
4555 	args->retained = obj->madv != __I915_MADV_PURGED;
4556 
4557 out:
4558 	drm_gem_object_unreference(&obj->base);
4559 unlock:
4560 	mutex_unlock(&dev->struct_mutex);
4561 	return ret;
4562 }
4563 
4564 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4565 			  const struct drm_i915_gem_object_ops *ops)
4566 {
4567 	int i;
4568 
4569 	INIT_LIST_HEAD(&obj->global_list);
4570 	for (i = 0; i < I915_NUM_RINGS; i++)
4571 		INIT_LIST_HEAD(&obj->ring_list[i]);
4572 	INIT_LIST_HEAD(&obj->obj_exec_link);
4573 	INIT_LIST_HEAD(&obj->vma_list);
4574 	INIT_LIST_HEAD(&obj->batch_pool_link);
4575 
4576 	obj->ops = ops;
4577 
4578 	obj->fence_reg = I915_FENCE_REG_NONE;
4579 	obj->madv = I915_MADV_WILLNEED;
4580 
4581 	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4582 }
4583 
4584 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4585 	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4586 	.get_pages = i915_gem_object_get_pages_gtt,
4587 	.put_pages = i915_gem_object_put_pages_gtt,
4588 };
4589 
4590 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4591 						  size_t size)
4592 {
4593 	struct drm_i915_gem_object *obj;
4594 #if 0
4595 	struct address_space *mapping;
4596 	gfp_t mask;
4597 #endif
4598 
4599 	obj = i915_gem_object_alloc(dev);
4600 	if (obj == NULL)
4601 		return NULL;
4602 
4603 	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4604 		i915_gem_object_free(obj);
4605 		return NULL;
4606 	}
4607 
4608 #if 0
4609 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4610 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4611 		/* 965gm cannot relocate objects above 4GiB. */
4612 		mask &= ~__GFP_HIGHMEM;
4613 		mask |= __GFP_DMA32;
4614 	}
4615 
4616 	mapping = file_inode(obj->base.filp)->i_mapping;
4617 	mapping_set_gfp_mask(mapping, mask);
4618 #endif
4619 
4620 	i915_gem_object_init(obj, &i915_gem_object_ops);
4621 
4622 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4623 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4624 
4625 	if (HAS_LLC(dev)) {
4626 		/* On some devices, we can have the GPU use the LLC (the CPU
4627 		 * cache) for about a 10% performance improvement
4628 		 * compared to uncached.  Graphics requests other than
4629 		 * display scanout are coherent with the CPU in
4630 		 * accessing this cache.  This means in this mode we
4631 		 * don't need to clflush on the CPU side, and on the
4632 		 * GPU side we only need to flush internal caches to
4633 		 * get data visible to the CPU.
4634 		 *
4635 		 * However, we maintain the display planes as UC, and so
4636 		 * need to rebind when first used as such.
4637 		 */
4638 		obj->cache_level = I915_CACHE_LLC;
4639 	} else
4640 		obj->cache_level = I915_CACHE_NONE;
4641 
4642 	trace_i915_gem_object_create(obj);
4643 
4644 	return obj;
4645 }
4646 
4647 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4648 {
4649 	/* If we are the last user of the backing storage (be it shmemfs
4650 	 * pages or stolen etc), we know that the pages are going to be
4651 	 * immediately released. In this case, we can then skip copying
4652 	 * back the contents from the GPU.
4653 	 */
4654 
4655 	if (obj->madv != I915_MADV_WILLNEED)
4656 		return false;
4657 
4658 	if (obj->base.vm_obj == NULL)
4659 		return true;
4660 
4661 	/* At first glance, this looks racy, but then again so would be
4662 	 * userspace racing mmap against close. However, the first external
4663 	 * reference to the filp can only be obtained through the
4664 	 * i915_gem_mmap_ioctl() which safeguards us against the user
4665 	 * acquiring such a reference whilst we are in the middle of
4666 	 * freeing the object.
4667 	 */
4668 #if 0
4669 	return atomic_long_read(&obj->base.filp->f_count) == 1;
4670 #else
4671 	return false;
4672 #endif
4673 }
4674 
4675 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4676 {
4677 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4678 	struct drm_device *dev = obj->base.dev;
4679 	struct drm_i915_private *dev_priv = dev->dev_private;
4680 	struct i915_vma *vma, *next;
4681 
4682 	intel_runtime_pm_get(dev_priv);
4683 
4684 	trace_i915_gem_object_destroy(obj);
4685 
4686 	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4687 		int ret;
4688 
4689 		vma->pin_count = 0;
4690 		ret = i915_vma_unbind(vma);
4691 		if (WARN_ON(ret == -ERESTARTSYS)) {
4692 			bool was_interruptible;
4693 
4694 			was_interruptible = dev_priv->mm.interruptible;
4695 			dev_priv->mm.interruptible = false;
4696 
4697 			WARN_ON(i915_vma_unbind(vma));
4698 
4699 			dev_priv->mm.interruptible = was_interruptible;
4700 		}
4701 	}
4702 
4703 	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4704 	 * before progressing. */
4705 	if (obj->stolen)
4706 		i915_gem_object_unpin_pages(obj);
4707 
4708 	WARN_ON(obj->frontbuffer_bits);
4709 
4710 	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4711 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4712 	    obj->tiling_mode != I915_TILING_NONE)
4713 		i915_gem_object_unpin_pages(obj);
4714 
4715 	if (WARN_ON(obj->pages_pin_count))
4716 		obj->pages_pin_count = 0;
4717 	if (discard_backing_storage(obj))
4718 		obj->madv = I915_MADV_DONTNEED;
4719 	i915_gem_object_put_pages(obj);
4720 	i915_gem_object_free_mmap_offset(obj);
4721 
4722 	BUG_ON(obj->pages);
4723 
4724 #if 0
4725 	if (obj->base.import_attach)
4726 		drm_prime_gem_destroy(&obj->base, NULL);
4727 #endif
4728 
4729 	if (obj->ops->release)
4730 		obj->ops->release(obj);
4731 
4732 	drm_gem_object_release(&obj->base);
4733 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4734 
4735 	kfree(obj->bit_17);
4736 	i915_gem_object_free(obj);
4737 
4738 	intel_runtime_pm_put(dev_priv);
4739 }
4740 
4741 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4742 				     struct i915_address_space *vm)
4743 {
4744 	struct i915_vma *vma;
4745 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4746 		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4747 		    vma->vm == vm)
4748 			return vma;
4749 	}
4750 	return NULL;
4751 }
4752 
4753 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4754 					   const struct i915_ggtt_view *view)
4755 {
4756 	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4757 	struct i915_vma *vma;
4758 
4759 	if (WARN_ONCE(!view, "no view specified"))
4760 		return ERR_PTR(-EINVAL);
4761 
4762 	list_for_each_entry(vma, &obj->vma_list, obj_link)
4763 		if (vma->vm == ggtt &&
4764 		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4765 			return vma;
4766 	return NULL;
4767 }
4768 
4769 void i915_gem_vma_destroy(struct i915_vma *vma)
4770 {
4771 	WARN_ON(vma->node.allocated);
4772 
4773 	/* Keep the vma as a placeholder in the execbuffer reservation lists */
4774 	if (!list_empty(&vma->exec_list))
4775 		return;
4776 
4777 	if (!vma->is_ggtt)
4778 		i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4779 
4780 	list_del(&vma->obj_link);
4781 
4782 	kfree(vma);
4783 }
4784 
4785 static void
4786 i915_gem_stop_ringbuffers(struct drm_device *dev)
4787 {
4788 	struct drm_i915_private *dev_priv = dev->dev_private;
4789 	struct intel_engine_cs *ring;
4790 	int i;
4791 
4792 	for_each_ring(ring, dev_priv, i)
4793 		dev_priv->gt.stop_ring(ring);
4794 }
4795 
4796 int
4797 i915_gem_suspend(struct drm_device *dev)
4798 {
4799 	struct drm_i915_private *dev_priv = dev->dev_private;
4800 	int ret = 0;
4801 
4802 	mutex_lock(&dev->struct_mutex);
4803 	ret = i915_gpu_idle(dev);
4804 	if (ret)
4805 		goto err;
4806 
4807 	i915_gem_retire_requests(dev);
4808 
4809 	i915_gem_stop_ringbuffers(dev);
4810 	mutex_unlock(&dev->struct_mutex);
4811 
4812 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4813 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4814 #if 0
4815 	flush_delayed_work(&dev_priv->mm.idle_work);
4816 #endif
4817 
4818 	/* Assert that we sucessfully flushed all the work and
4819 	 * reset the GPU back to its idle, low power state.
4820 	 */
4821 	WARN_ON(dev_priv->mm.busy);
4822 
4823 	return 0;
4824 
4825 err:
4826 	mutex_unlock(&dev->struct_mutex);
4827 	return ret;
4828 }
4829 
4830 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4831 {
4832 	struct intel_engine_cs *ring = req->ring;
4833 	struct drm_device *dev = ring->dev;
4834 	struct drm_i915_private *dev_priv = dev->dev_private;
4835 	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4836 	int i, ret;
4837 
4838 	if (!HAS_L3_DPF(dev) || !remap_info)
4839 		return 0;
4840 
4841 	ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4842 	if (ret)
4843 		return ret;
4844 
4845 	/*
4846 	 * Note: We do not worry about the concurrent register cacheline hang
4847 	 * here because no other code should access these registers other than
4848 	 * at initialization time.
4849 	 */
4850 	for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
4851 		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4852 		intel_ring_emit_reg(ring, GEN7_L3LOG(slice, i));
4853 		intel_ring_emit(ring, remap_info[i]);
4854 	}
4855 
4856 	intel_ring_advance(ring);
4857 
4858 	return ret;
4859 }
4860 
4861 void i915_gem_init_swizzling(struct drm_device *dev)
4862 {
4863 	struct drm_i915_private *dev_priv = dev->dev_private;
4864 
4865 	if (INTEL_INFO(dev)->gen < 5 ||
4866 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4867 		return;
4868 
4869 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4870 				 DISP_TILE_SURFACE_SWIZZLING);
4871 
4872 	if (IS_GEN5(dev))
4873 		return;
4874 
4875 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4876 	if (IS_GEN6(dev))
4877 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4878 	else if (IS_GEN7(dev))
4879 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4880 	else if (IS_GEN8(dev))
4881 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4882 	else
4883 		BUG();
4884 }
4885 
4886 static void init_unused_ring(struct drm_device *dev, u32 base)
4887 {
4888 	struct drm_i915_private *dev_priv = dev->dev_private;
4889 
4890 	I915_WRITE(RING_CTL(base), 0);
4891 	I915_WRITE(RING_HEAD(base), 0);
4892 	I915_WRITE(RING_TAIL(base), 0);
4893 	I915_WRITE(RING_START(base), 0);
4894 }
4895 
4896 static void init_unused_rings(struct drm_device *dev)
4897 {
4898 	if (IS_I830(dev)) {
4899 		init_unused_ring(dev, PRB1_BASE);
4900 		init_unused_ring(dev, SRB0_BASE);
4901 		init_unused_ring(dev, SRB1_BASE);
4902 		init_unused_ring(dev, SRB2_BASE);
4903 		init_unused_ring(dev, SRB3_BASE);
4904 	} else if (IS_GEN2(dev)) {
4905 		init_unused_ring(dev, SRB0_BASE);
4906 		init_unused_ring(dev, SRB1_BASE);
4907 	} else if (IS_GEN3(dev)) {
4908 		init_unused_ring(dev, PRB1_BASE);
4909 		init_unused_ring(dev, PRB2_BASE);
4910 	}
4911 }
4912 
4913 int i915_gem_init_rings(struct drm_device *dev)
4914 {
4915 	struct drm_i915_private *dev_priv = dev->dev_private;
4916 	int ret;
4917 
4918 	ret = intel_init_render_ring_buffer(dev);
4919 	if (ret)
4920 		return ret;
4921 
4922 	if (HAS_BSD(dev)) {
4923 		ret = intel_init_bsd_ring_buffer(dev);
4924 		if (ret)
4925 			goto cleanup_render_ring;
4926 	}
4927 
4928 	if (HAS_BLT(dev)) {
4929 		ret = intel_init_blt_ring_buffer(dev);
4930 		if (ret)
4931 			goto cleanup_bsd_ring;
4932 	}
4933 
4934 	if (HAS_VEBOX(dev)) {
4935 		ret = intel_init_vebox_ring_buffer(dev);
4936 		if (ret)
4937 			goto cleanup_blt_ring;
4938 	}
4939 
4940 	if (HAS_BSD2(dev)) {
4941 		ret = intel_init_bsd2_ring_buffer(dev);
4942 		if (ret)
4943 			goto cleanup_vebox_ring;
4944 	}
4945 
4946 	return 0;
4947 
4948 cleanup_vebox_ring:
4949 	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4950 cleanup_blt_ring:
4951 	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4952 cleanup_bsd_ring:
4953 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4954 cleanup_render_ring:
4955 	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4956 
4957 	return ret;
4958 }
4959 
4960 int
4961 i915_gem_init_hw(struct drm_device *dev)
4962 {
4963 	struct drm_i915_private *dev_priv = dev->dev_private;
4964 	struct intel_engine_cs *ring;
4965 	int ret, i, j;
4966 
4967 #if 0
4968 	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4969 		return -EIO;
4970 #endif
4971 
4972 	/* Double layer security blanket, see i915_gem_init() */
4973 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4974 
4975 	if (dev_priv->ellc_size)
4976 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4977 
4978 	if (IS_HASWELL(dev))
4979 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4980 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4981 
4982 	if (HAS_PCH_NOP(dev)) {
4983 		if (IS_IVYBRIDGE(dev)) {
4984 			u32 temp = I915_READ(GEN7_MSG_CTL);
4985 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4986 			I915_WRITE(GEN7_MSG_CTL, temp);
4987 		} else if (INTEL_INFO(dev)->gen >= 7) {
4988 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4989 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4990 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4991 		}
4992 	}
4993 
4994 	i915_gem_init_swizzling(dev);
4995 
4996 	/*
4997 	 * At least 830 can leave some of the unused rings
4998 	 * "active" (ie. head != tail) after resume which
4999 	 * will prevent c3 entry. Makes sure all unused rings
5000 	 * are totally idle.
5001 	 */
5002 	init_unused_rings(dev);
5003 
5004 	BUG_ON(!dev_priv->kernel_context);
5005 
5006 	ret = i915_ppgtt_init_hw(dev);
5007 	if (ret) {
5008 		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
5009 		goto out;
5010 	}
5011 
5012 	/* Need to do basic initialisation of all rings first: */
5013 	for_each_ring(ring, dev_priv, i) {
5014 		ret = ring->init_hw(ring);
5015 		if (ret)
5016 			goto out;
5017 	}
5018 
5019 	/* We can't enable contexts until all firmware is loaded */
5020 	if (HAS_GUC_UCODE(dev)) {
5021 		ret = intel_guc_ucode_load(dev);
5022 		if (ret) {
5023 			DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
5024 			ret = -EIO;
5025 			goto out;
5026 		}
5027 	}
5028 
5029 	/*
5030 	 * Increment the next seqno by 0x100 so we have a visible break
5031 	 * on re-initialisation
5032 	 */
5033 	ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
5034 	if (ret)
5035 		goto out;
5036 
5037 	/* Now it is safe to go back round and do everything else: */
5038 	for_each_ring(ring, dev_priv, i) {
5039 		struct drm_i915_gem_request *req;
5040 
5041 		req = i915_gem_request_alloc(ring, NULL);
5042 		if (IS_ERR(req)) {
5043 			ret = PTR_ERR(req);
5044 			i915_gem_cleanup_ringbuffer(dev);
5045 			goto out;
5046 		}
5047 
5048 		if (ring->id == RCS) {
5049 			for (j = 0; j < NUM_L3_SLICES(dev); j++)
5050 				i915_gem_l3_remap(req, j);
5051 		}
5052 
5053 		ret = i915_ppgtt_init_ring(req);
5054 		if (ret && ret != -EIO) {
5055 			DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
5056 			i915_gem_request_cancel(req);
5057 			i915_gem_cleanup_ringbuffer(dev);
5058 			goto out;
5059 		}
5060 
5061 		ret = i915_gem_context_enable(req);
5062 		if (ret && ret != -EIO) {
5063 			DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
5064 			i915_gem_request_cancel(req);
5065 			i915_gem_cleanup_ringbuffer(dev);
5066 			goto out;
5067 		}
5068 
5069 		i915_add_request_no_flush(req);
5070 	}
5071 
5072 out:
5073 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5074 	return ret;
5075 }
5076 
5077 int i915_gem_init(struct drm_device *dev)
5078 {
5079 	struct drm_i915_private *dev_priv = dev->dev_private;
5080 	int ret;
5081 
5082 	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
5083 			i915.enable_execlists);
5084 
5085 	mutex_lock(&dev->struct_mutex);
5086 
5087 	if (!i915.enable_execlists) {
5088 		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5089 		dev_priv->gt.init_rings = i915_gem_init_rings;
5090 		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
5091 		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
5092 	} else {
5093 		dev_priv->gt.execbuf_submit = intel_execlists_submission;
5094 		dev_priv->gt.init_rings = intel_logical_rings_init;
5095 		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
5096 		dev_priv->gt.stop_ring = intel_logical_ring_stop;
5097 	}
5098 
5099 	/* This is just a security blanket to placate dragons.
5100 	 * On some systems, we very sporadically observe that the first TLBs
5101 	 * used by the CS may be stale, despite us poking the TLB reset. If
5102 	 * we hold the forcewake during initialisation these problems
5103 	 * just magically go away.
5104 	 */
5105 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5106 
5107 	ret = i915_gem_init_userptr(dev);
5108 	if (ret)
5109 		goto out_unlock;
5110 
5111 	i915_gem_init_global_gtt(dev);
5112 
5113 	ret = i915_gem_context_init(dev);
5114 	if (ret)
5115 		goto out_unlock;
5116 
5117 	ret = dev_priv->gt.init_rings(dev);
5118 	if (ret)
5119 		goto out_unlock;
5120 
5121 	ret = i915_gem_init_hw(dev);
5122 	if (ret == -EIO) {
5123 		/* Allow ring initialisation to fail by marking the GPU as
5124 		 * wedged. But we only want to do this where the GPU is angry,
5125 		 * for all other failure, such as an allocation failure, bail.
5126 		 */
5127 		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5128 		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5129 		ret = 0;
5130 	}
5131 
5132 out_unlock:
5133 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5134 	mutex_unlock(&dev->struct_mutex);
5135 
5136 	return ret;
5137 }
5138 
5139 void
5140 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
5141 {
5142 	struct drm_i915_private *dev_priv = dev->dev_private;
5143 	struct intel_engine_cs *ring;
5144 	int i;
5145 
5146 	for_each_ring(ring, dev_priv, i)
5147 		dev_priv->gt.cleanup_ring(ring);
5148 
5149     if (i915.enable_execlists)
5150             /*
5151              * Neither the BIOS, ourselves or any other kernel
5152              * expects the system to be in execlists mode on startup,
5153              * so we need to reset the GPU back to legacy mode.
5154              */
5155             intel_gpu_reset(dev);
5156 }
5157 
5158 static void
5159 init_ring_lists(struct intel_engine_cs *ring)
5160 {
5161 	INIT_LIST_HEAD(&ring->active_list);
5162 	INIT_LIST_HEAD(&ring->request_list);
5163 }
5164 
5165 void
5166 i915_gem_load_init(struct drm_device *dev)
5167 {
5168 	struct drm_i915_private *dev_priv = dev->dev_private;
5169 	int i;
5170 
5171 	INIT_LIST_HEAD(&dev_priv->vm_list);
5172 	INIT_LIST_HEAD(&dev_priv->context_list);
5173 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5174 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5175 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5176 	for (i = 0; i < I915_NUM_RINGS; i++)
5177 		init_ring_lists(&dev_priv->ring[i]);
5178 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5179 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5180 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5181 			  i915_gem_retire_work_handler);
5182 	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5183 			  i915_gem_idle_work_handler);
5184 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5185 
5186 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5187 
5188 	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev))
5189 		dev_priv->num_fence_regs = 32;
5190 	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5191 		dev_priv->num_fence_regs = 16;
5192 	else
5193 		dev_priv->num_fence_regs = 8;
5194 
5195 	if (intel_vgpu_active(dev))
5196 		dev_priv->num_fence_regs =
5197 				I915_READ(vgtif_reg(avail_rs.fence_num));
5198 
5199 	/*
5200 	 * Set initial sequence number for requests.
5201 	 * Using this number allows the wraparound to happen early,
5202 	 * catching any obvious problems.
5203 	 */
5204 	dev_priv->next_seqno = ((u32)~0 - 0x1100);
5205 	dev_priv->last_seqno = ((u32)~0 - 0x1101);
5206 
5207 	/* Initialize fence registers to zero */
5208 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5209 	i915_gem_restore_fences(dev);
5210 
5211 	i915_gem_detect_bit_6_swizzle(dev);
5212 	init_waitqueue_head(&dev_priv->pending_flip_queue);
5213 
5214 	dev_priv->mm.interruptible = true;
5215 
5216 	lockinit(&dev_priv->fb_tracking.lock, "drmftl", 0, LK_CANRECURSE);
5217 }
5218 
5219 void i915_gem_load_cleanup(struct drm_device *dev)
5220 {
5221 #if 0
5222 	struct drm_i915_private *dev_priv = to_i915(dev);
5223 
5224 	kmem_cache_destroy(dev_priv->requests);
5225 	kmem_cache_destroy(dev_priv->vmas);
5226 	kmem_cache_destroy(dev_priv->objects);
5227 #endif
5228 }
5229 
5230 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5231 {
5232 	struct drm_i915_file_private *file_priv = file->driver_priv;
5233 
5234 	/* Clean up our request list when the client is going away, so that
5235 	 * later retire_requests won't dereference our soon-to-be-gone
5236 	 * file_priv.
5237 	 */
5238 	spin_lock(&file_priv->mm.lock);
5239 	while (!list_empty(&file_priv->mm.request_list)) {
5240 		struct drm_i915_gem_request *request;
5241 
5242 		request = list_first_entry(&file_priv->mm.request_list,
5243 					   struct drm_i915_gem_request,
5244 					   client_list);
5245 		list_del(&request->client_list);
5246 		request->file_priv = NULL;
5247 	}
5248 	spin_unlock(&file_priv->mm.lock);
5249 
5250 	if (!list_empty(&file_priv->rps.link)) {
5251 		lockmgr(&to_i915(dev)->rps.client_lock, LK_EXCLUSIVE);
5252 		list_del(&file_priv->rps.link);
5253 		lockmgr(&to_i915(dev)->rps.client_lock, LK_RELEASE);
5254 	}
5255 }
5256 
5257 int
5258 i915_gem_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
5259     vm_ooffset_t foff, struct ucred *cred, u_short *color)
5260 {
5261 	*color = 0; /* XXXKIB */
5262 	return (0);
5263 }
5264 
5265 void
5266 i915_gem_pager_dtor(void *handle)
5267 {
5268 	struct drm_gem_object *obj;
5269 	struct drm_device *dev;
5270 
5271 	obj = handle;
5272 	dev = obj->dev;
5273 
5274 	mutex_lock(&dev->struct_mutex);
5275 	drm_gem_free_mmap_offset(obj);
5276 	i915_gem_release_mmap(to_intel_bo(obj));
5277 	drm_gem_object_unreference(obj);
5278 	mutex_unlock(&dev->struct_mutex);
5279 }
5280 
5281 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5282 {
5283 	struct drm_i915_file_private *file_priv;
5284 	int ret;
5285 
5286 	DRM_DEBUG_DRIVER("\n");
5287 
5288 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5289 	if (!file_priv)
5290 		return -ENOMEM;
5291 
5292 	file->driver_priv = file_priv;
5293 	file_priv->dev_priv = dev->dev_private;
5294 	file_priv->file = file;
5295 	INIT_LIST_HEAD(&file_priv->rps.link);
5296 
5297 	spin_init(&file_priv->mm.lock, "i915_priv");
5298 	INIT_LIST_HEAD(&file_priv->mm.request_list);
5299 
5300 	file_priv->bsd_ring = -1;
5301 
5302 	ret = i915_gem_context_open(dev, file);
5303 	if (ret)
5304 		kfree(file_priv);
5305 
5306 	return ret;
5307 }
5308 
5309 /**
5310  * i915_gem_track_fb - update frontbuffer tracking
5311  * @old: current GEM buffer for the frontbuffer slots
5312  * @new: new GEM buffer for the frontbuffer slots
5313  * @frontbuffer_bits: bitmask of frontbuffer slots
5314  *
5315  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5316  * from @old and setting them in @new. Both @old and @new can be NULL.
5317  */
5318 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5319 		       struct drm_i915_gem_object *new,
5320 		       unsigned frontbuffer_bits)
5321 {
5322 	if (old) {
5323 		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5324 		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5325 		old->frontbuffer_bits &= ~frontbuffer_bits;
5326 	}
5327 
5328 	if (new) {
5329 		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5330 		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5331 		new->frontbuffer_bits |= frontbuffer_bits;
5332 	}
5333 }
5334 
5335 /* All the new VM stuff */
5336 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5337 			struct i915_address_space *vm)
5338 {
5339 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5340 	struct i915_vma *vma;
5341 
5342 	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5343 
5344 	list_for_each_entry(vma, &o->vma_list, obj_link) {
5345 		if (vma->is_ggtt &&
5346 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5347 			continue;
5348 		if (vma->vm == vm)
5349 			return vma->node.start;
5350 	}
5351 
5352 	WARN(1, "%s vma for this object not found.\n",
5353 	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5354 	return -1;
5355 }
5356 
5357 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5358 				  const struct i915_ggtt_view *view)
5359 {
5360 	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5361 	struct i915_vma *vma;
5362 
5363 	list_for_each_entry(vma, &o->vma_list, obj_link)
5364 		if (vma->vm == ggtt &&
5365 		    i915_ggtt_view_equal(&vma->ggtt_view, view))
5366 			return vma->node.start;
5367 
5368 	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5369 	return -1;
5370 }
5371 
5372 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5373 			struct i915_address_space *vm)
5374 {
5375 	struct i915_vma *vma;
5376 
5377 	list_for_each_entry(vma, &o->vma_list, obj_link) {
5378 		if (vma->is_ggtt &&
5379 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5380 			continue;
5381 		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5382 			return true;
5383 	}
5384 
5385 	return false;
5386 }
5387 
5388 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5389 				  const struct i915_ggtt_view *view)
5390 {
5391 	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5392 	struct i915_vma *vma;
5393 
5394 	list_for_each_entry(vma, &o->vma_list, obj_link)
5395 		if (vma->vm == ggtt &&
5396 		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5397 		    drm_mm_node_allocated(&vma->node))
5398 			return true;
5399 
5400 	return false;
5401 }
5402 
5403 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5404 {
5405 	struct i915_vma *vma;
5406 
5407 	list_for_each_entry(vma, &o->vma_list, obj_link)
5408 		if (drm_mm_node_allocated(&vma->node))
5409 			return true;
5410 
5411 	return false;
5412 }
5413 
5414 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5415 				struct i915_address_space *vm)
5416 {
5417 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5418 	struct i915_vma *vma;
5419 
5420 	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5421 
5422 	BUG_ON(list_empty(&o->vma_list));
5423 
5424 	list_for_each_entry(vma, &o->vma_list, obj_link) {
5425 		if (vma->is_ggtt &&
5426 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5427 			continue;
5428 		if (vma->vm == vm)
5429 			return vma->node.size;
5430 	}
5431 	return 0;
5432 }
5433 
5434 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5435 {
5436 	struct i915_vma *vma;
5437 	list_for_each_entry(vma, &obj->vma_list, obj_link)
5438 		if (vma->pin_count > 0)
5439 			return true;
5440 
5441 	return false;
5442 }
5443 
5444 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5445 struct vm_page *
5446 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5447 {
5448 	struct vm_page *page;
5449 
5450 	/* Only default objects have per-page dirty tracking */
5451 	if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
5452 		return NULL;
5453 
5454 	page = i915_gem_object_get_page(obj, n);
5455 	set_page_dirty(page);
5456 	return page;
5457 }
5458 
5459 /* Allocate a new GEM object and fill it with the supplied data */
5460 struct drm_i915_gem_object *
5461 i915_gem_object_create_from_data(struct drm_device *dev,
5462 			         const void *data, size_t size)
5463 {
5464 	struct drm_i915_gem_object *obj;
5465 	struct sg_table *sg;
5466 	size_t bytes;
5467 	int ret;
5468 
5469 	obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5470 	if (IS_ERR_OR_NULL(obj))
5471 		return obj;
5472 
5473 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
5474 	if (ret)
5475 		goto fail;
5476 
5477 	ret = i915_gem_object_get_pages(obj);
5478 	if (ret)
5479 		goto fail;
5480 
5481 	i915_gem_object_pin_pages(obj);
5482 	sg = obj->pages;
5483 	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, data, size);
5484 	obj->dirty = 1;		/* Backing store is now out of date */
5485 	i915_gem_object_unpin_pages(obj);
5486 
5487 	if (WARN_ON(bytes != size)) {
5488 		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5489 		ret = -EFAULT;
5490 		goto fail;
5491 	}
5492 
5493 	return obj;
5494 
5495 fail:
5496 	drm_gem_object_unreference(&obj->base);
5497 	return ERR_PTR(ret);
5498 }
5499