xref: /dflybsd-src/sys/dev/drm/i915/i915_gem.c (revision 23832f75edc9855492226d612851679a00de2f9c)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  * Copyright (c) 2011 The FreeBSD Foundation
27  * All rights reserved.
28  *
29  * This software was developed by Konstantin Belousov under sponsorship from
30  * the FreeBSD Foundation.
31  *
32  * Redistribution and use in source and binary forms, with or without
33  * modification, are permitted provided that the following conditions
34  * are met:
35  * 1. Redistributions of source code must retain the above copyright
36  *    notice, this list of conditions and the following disclaimer.
37  * 2. Redistributions in binary form must reproduce the above copyright
38  *    notice, this list of conditions and the following disclaimer in the
39  *    documentation and/or other materials provided with the distribution.
40  *
41  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  *
53  */
54 
55 #include <sys/resourcevar.h>
56 #include <sys/sfbuf.h>
57 #include <machine/md_var.h>
58 
59 #include <drm/drmP.h>
60 #include <drm/i915_drm.h>
61 #include "i915_drv.h"
62 #include "i915_trace.h"
63 #include "intel_drv.h"
64 #include <linux/shmem_fs.h>
65 #include <linux/slab.h>
66 #include <linux/swap.h>
67 #include <linux/pci.h>
68 
69 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
70 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
71 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
72 						    unsigned alignment,
73 						    bool map_and_fenceable,
74 						    bool nonblocking);
75 static int i915_gem_phys_pwrite(struct drm_device *dev,
76 				struct drm_i915_gem_object *obj,
77 				struct drm_i915_gem_pwrite *args,
78 				struct drm_file *file);
79 
80 static void i915_gem_write_fence(struct drm_device *dev, int reg,
81 				 struct drm_i915_gem_object *obj);
82 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
83 					 struct drm_i915_fence_reg *fence,
84 					 bool enable);
85 
86 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
87 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
88 
89 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
90 {
91 	if (obj->tiling_mode)
92 		i915_gem_release_mmap(obj);
93 
94 	/* As we do not have an associated fence register, we will force
95 	 * a tiling change if we ever need to acquire one.
96 	 */
97 	obj->fence_dirty = false;
98 	obj->fence_reg = I915_FENCE_REG_NONE;
99 }
100 
101 static bool i915_gem_object_is_inactive(struct drm_i915_gem_object *obj);
102 static void i915_gem_lowmem(void *arg);
103 
104 /* some bookkeeping */
105 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
106 				  size_t size)
107 {
108 	dev_priv->mm.object_count++;
109 	dev_priv->mm.object_memory += size;
110 }
111 
112 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
113 				     size_t size)
114 {
115 	dev_priv->mm.object_count--;
116 	dev_priv->mm.object_memory -= size;
117 }
118 
119 static int
120 i915_gem_wait_for_error(struct i915_gpu_error *error)
121 {
122 	int ret;
123 
124 #define EXIT_COND (!i915_reset_in_progress(error) || \
125 		   i915_terminally_wedged(error))
126 	if (EXIT_COND)
127 		return 0;
128 
129 	/*
130 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
131 	 * userspace. If it takes that long something really bad is going on and
132 	 * we should simply try to bail out and fail as gracefully as possible.
133 	 */
134 	ret = wait_event_interruptible_timeout(error->reset_queue,
135 					       EXIT_COND,
136 					       10*HZ);
137 	if (ret == 0) {
138 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
139 		return -EIO;
140 	} else if (ret < 0) {
141 		return ret;
142 	}
143 #undef EXIT_COND
144 
145 	return 0;
146 }
147 
148 int i915_mutex_lock_interruptible(struct drm_device *dev)
149 {
150 	struct drm_i915_private *dev_priv = dev->dev_private;
151 	int ret;
152 
153 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
154 	if (ret)
155 		return ret;
156 
157 	ret = lockmgr(&dev->struct_mutex, LK_EXCLUSIVE|LK_SLEEPFAIL);
158 	if (ret)
159 		return -EINTR;
160 
161 	WARN_ON(i915_verify_lists(dev));
162 	return 0;
163 }
164 
165 static inline bool
166 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
167 {
168 	return !obj->active;
169 }
170 
171 int
172 i915_gem_init_ioctl(struct drm_device *dev, void *data,
173 		    struct drm_file *file)
174 {
175 	struct drm_i915_private *dev_priv = dev->dev_private;
176 	struct drm_i915_gem_init *args = data;
177 
178 	if (drm_core_check_feature(dev, DRIVER_MODESET))
179 		return -ENODEV;
180 
181 	if (args->gtt_start >= args->gtt_end ||
182 	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
183 		return -EINVAL;
184 
185 	/* GEM with user mode setting was never supported on ilk and later. */
186 	if (INTEL_INFO(dev)->gen >= 5)
187 		return -ENODEV;
188 
189 	mutex_lock(&dev->struct_mutex);
190 	i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
191 				  args->gtt_end);
192 	dev_priv->gtt.mappable_end = args->gtt_end;
193 	mutex_unlock(&dev->struct_mutex);
194 
195 	return 0;
196 }
197 
198 int
199 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
200 			    struct drm_file *file)
201 {
202 	struct drm_i915_private *dev_priv = dev->dev_private;
203 	struct drm_i915_gem_get_aperture *args = data;
204 	struct drm_i915_gem_object *obj;
205 	size_t pinned;
206 
207 	pinned = 0;
208 	mutex_lock(&dev->struct_mutex);
209 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
210 		if (obj->pin_count)
211 			pinned += obj->gtt_space->size;
212 	mutex_unlock(&dev->struct_mutex);
213 
214 	args->aper_size = dev_priv->gtt.total;
215 	args->aper_available_size = args->aper_size - pinned;
216 
217 	return 0;
218 }
219 
220 void i915_gem_object_free(struct drm_i915_gem_object *obj)
221 {
222 	kfree(obj);
223 }
224 
225 static int
226 i915_gem_create(struct drm_file *file,
227 		struct drm_device *dev,
228 		uint64_t size,
229 		uint32_t *handle_p)
230 {
231 	struct drm_i915_gem_object *obj;
232 	int ret;
233 	u32 handle;
234 
235 	size = roundup(size, PAGE_SIZE);
236 	if (size == 0)
237 		return -EINVAL;
238 
239 	/* Allocate the new object */
240 	obj = i915_gem_alloc_object(dev, size);
241 	if (obj == NULL)
242 		return -ENOMEM;
243 
244 	ret = drm_gem_handle_create(file, &obj->base, &handle);
245 	if (ret) {
246 		drm_gem_object_release(&obj->base);
247 		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
248 		i915_gem_object_free(obj);
249 		return ret;
250 	}
251 
252 	/* drop reference from allocate - handle holds it now */
253 	drm_gem_object_unreference(&obj->base);
254 	trace_i915_gem_object_create(obj);
255 
256 	*handle_p = handle;
257 	return 0;
258 }
259 
260 int
261 i915_gem_dumb_create(struct drm_file *file,
262 		     struct drm_device *dev,
263 		     struct drm_mode_create_dumb *args)
264 {
265 
266 	/* have to work out size/pitch and return them */
267 	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
268 	args->size = args->pitch * args->height;
269 	return i915_gem_create(file, dev,
270 			       args->size, &args->handle);
271 }
272 
273 int i915_gem_dumb_destroy(struct drm_file *file,
274 			  struct drm_device *dev,
275 			  uint32_t handle)
276 {
277 
278 	return drm_gem_handle_delete(file, handle);
279 }
280 
281 /**
282  * Creates a new mm object and returns a handle to it.
283  */
284 int
285 i915_gem_create_ioctl(struct drm_device *dev, void *data,
286 		      struct drm_file *file)
287 {
288 	struct drm_i915_gem_create *args = data;
289 
290 	return i915_gem_create(file, dev,
291 			       args->size, &args->handle);
292 }
293 
294 static inline int
295 __copy_to_user_swizzled(char __user *cpu_vaddr,
296 			const char *gpu_vaddr, int gpu_offset,
297 			int length)
298 {
299 	int ret, cpu_offset = 0;
300 
301 	while (length > 0) {
302 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
303 		int this_length = min(cacheline_end - gpu_offset, length);
304 		int swizzled_gpu_offset = gpu_offset ^ 64;
305 
306 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
307 				     gpu_vaddr + swizzled_gpu_offset,
308 				     this_length);
309 		if (ret)
310 			return ret + length;
311 
312 		cpu_offset += this_length;
313 		gpu_offset += this_length;
314 		length -= this_length;
315 	}
316 
317 	return 0;
318 }
319 
320 static inline int
321 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
322 			  const char __user *cpu_vaddr,
323 			  int length)
324 {
325 	int ret, cpu_offset = 0;
326 
327 	while (length > 0) {
328 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
329 		int this_length = min(cacheline_end - gpu_offset, length);
330 		int swizzled_gpu_offset = gpu_offset ^ 64;
331 
332 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
333 				       cpu_vaddr + cpu_offset,
334 				       this_length);
335 		if (ret)
336 			return ret + length;
337 
338 		cpu_offset += this_length;
339 		gpu_offset += this_length;
340 		length -= this_length;
341 	}
342 
343 	return 0;
344 }
345 
346 /* Per-page copy function for the shmem pread fastpath.
347  * Flushes invalid cachelines before reading the target if
348  * needs_clflush is set. */
349 static int
350 shmem_pread_fast(struct vm_page *page, int shmem_page_offset, int page_length,
351 		 char __user *user_data,
352 		 bool page_do_bit17_swizzling, bool needs_clflush)
353 {
354 	char *vaddr;
355 	int ret;
356 
357 	if (unlikely(page_do_bit17_swizzling))
358 		return -EINVAL;
359 
360 	vaddr = kmap_atomic(page);
361 	if (needs_clflush)
362 		drm_clflush_virt_range(vaddr + shmem_page_offset,
363 				       page_length);
364 	ret = __copy_to_user_inatomic(user_data,
365 				      vaddr + shmem_page_offset,
366 				      page_length);
367 	kunmap_atomic(vaddr);
368 
369 	return ret ? -EFAULT : 0;
370 }
371 
372 static void
373 shmem_clflush_swizzled_range(char *addr, unsigned long length,
374 			     bool swizzled)
375 {
376 	if (unlikely(swizzled)) {
377 		unsigned long start = (unsigned long) addr;
378 		unsigned long end = (unsigned long) addr + length;
379 
380 		/* For swizzling simply ensure that we always flush both
381 		 * channels. Lame, but simple and it works. Swizzled
382 		 * pwrite/pread is far from a hotpath - current userspace
383 		 * doesn't use it at all. */
384 		start = round_down(start, 128);
385 		end = round_up(end, 128);
386 
387 		drm_clflush_virt_range((void *)start, end - start);
388 	} else {
389 		drm_clflush_virt_range(addr, length);
390 	}
391 
392 }
393 
394 /* Only difference to the fast-path function is that this can handle bit17
395  * and uses non-atomic copy and kmap functions. */
396 static int
397 shmem_pread_slow(struct vm_page *page, int shmem_page_offset, int page_length,
398 		 char __user *user_data,
399 		 bool page_do_bit17_swizzling, bool needs_clflush)
400 {
401 	char *vaddr;
402 	int ret;
403 
404 	vaddr = kmap(page);
405 	if (needs_clflush)
406 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
407 					     page_length,
408 					     page_do_bit17_swizzling);
409 
410 	if (page_do_bit17_swizzling)
411 		ret = __copy_to_user_swizzled(user_data,
412 					      vaddr, shmem_page_offset,
413 					      page_length);
414 	else
415 		ret = __copy_to_user(user_data,
416 				     vaddr + shmem_page_offset,
417 				     page_length);
418 	kunmap(page);
419 
420 	return ret ? - EFAULT : 0;
421 }
422 
423 static inline void vm_page_reference(vm_page_t m)
424 {
425 	vm_page_flag_set(m, PG_REFERENCED);
426 }
427 
428 static int
429 i915_gem_shmem_pread(struct drm_device *dev,
430 		     struct drm_i915_gem_object *obj,
431 		     struct drm_i915_gem_pread *args,
432 		     struct drm_file *file)
433 {
434 	char __user *user_data;
435 	ssize_t remain;
436 	loff_t offset;
437 	int shmem_page_offset, page_length, ret = 0;
438 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
439 	int needs_clflush = 0;
440 	int i;
441 
442 	user_data = to_user_ptr(args->data_ptr);
443 	remain = args->size;
444 
445 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
446 
447 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
448 		/* If we're not in the cpu read domain, set ourself into the gtt
449 		 * read domain and manually flush cachelines (if required). This
450 		 * optimizes for the case when the gpu will dirty the data
451 		 * anyway again before the next pread happens. */
452 		if (obj->cache_level == I915_CACHE_NONE)
453 			needs_clflush = 1;
454 		if (obj->gtt_space) {
455 			ret = i915_gem_object_set_to_gtt_domain(obj, false);
456 			if (ret)
457 				return ret;
458 		}
459 	}
460 
461 	ret = i915_gem_object_get_pages(obj);
462 	if (ret)
463 		return ret;
464 
465 	i915_gem_object_pin_pages(obj);
466 
467 	offset = args->offset;
468 
469 	for (i = 0; i < (obj->base.size >> PAGE_SHIFT); i++) {
470 		struct vm_page *page = obj->pages[i];
471 
472 		if (i < offset >> PAGE_SHIFT)
473 			continue;
474 
475 		if (remain <= 0)
476 			break;
477 
478 		/* Operation in this page
479 		 *
480 		 * shmem_page_offset = offset within page in shmem file
481 		 * page_length = bytes to copy for this page
482 		 */
483 		shmem_page_offset = offset_in_page(offset);
484 		page_length = remain;
485 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
486 			page_length = PAGE_SIZE - shmem_page_offset;
487 
488 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
489 			(VM_PAGE_TO_PHYS(page) & (1 << 17)) != 0;
490 
491 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
492 				       user_data, page_do_bit17_swizzling,
493 				       needs_clflush);
494 		if (ret == 0)
495 			goto next_page;
496 
497 		mutex_unlock(&dev->struct_mutex);
498 
499 #ifdef __linux__
500 		if (!prefaulted) {
501 			ret = fault_in_multipages_writeable(user_data, remain);
502 			/* Userspace is tricking us, but we've already clobbered
503 			 * its pages with the prefault and promised to write the
504 			 * data up to the first fault. Hence ignore any errors
505 			 * and just continue. */
506 			(void)ret;
507 			prefaulted = 1;
508 		}
509 #endif
510 
511 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
512 				       user_data, page_do_bit17_swizzling,
513 				       needs_clflush);
514 
515 		mutex_lock(&dev->struct_mutex);
516 
517 next_page:
518 		mark_page_accessed(page);
519 
520 		if (ret)
521 			goto out;
522 
523 		remain -= page_length;
524 		user_data += page_length;
525 		offset += page_length;
526 	}
527 
528 out:
529 	i915_gem_object_unpin_pages(obj);
530 
531 	return ret;
532 }
533 
534 /**
535  * Reads data from the object referenced by handle.
536  *
537  * On error, the contents of *data are undefined.
538  */
539 int
540 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
541 		     struct drm_file *file)
542 {
543 	struct drm_i915_gem_pread *args = data;
544 	struct drm_i915_gem_object *obj;
545 	int ret = 0;
546 
547 	if (args->size == 0)
548 		return 0;
549 
550 	ret = i915_mutex_lock_interruptible(dev);
551 	if (ret)
552 		return ret;
553 
554 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
555 	if (&obj->base == NULL) {
556 		ret = -ENOENT;
557 		goto unlock;
558 	}
559 
560 	/* Bounds check source.  */
561 	if (args->offset > obj->base.size ||
562 	    args->size > obj->base.size - args->offset) {
563 		ret = -EINVAL;
564 		goto out;
565 	}
566 
567 	trace_i915_gem_object_pread(obj, args->offset, args->size);
568 
569 	ret = i915_gem_shmem_pread(dev, obj, args, file);
570 
571 out:
572 	drm_gem_object_unreference(&obj->base);
573 unlock:
574 	mutex_unlock(&dev->struct_mutex);
575 	return ret;
576 }
577 
578 #if 0
579 /* This is the fast write path which cannot handle
580  * page faults in the source data
581  */
582 
583 static inline int
584 fast_user_write(struct io_mapping *mapping,
585 		loff_t page_base, int page_offset,
586 		char __user *user_data,
587 		int length)
588 {
589 	void __iomem *vaddr_atomic;
590 	void *vaddr;
591 	unsigned long unwritten;
592 
593 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
594 	/* We can use the cpu mem copy function because this is X86. */
595 	vaddr = (void __force*)vaddr_atomic + page_offset;
596 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
597 						      user_data, length);
598 	io_mapping_unmap_atomic(vaddr_atomic);
599 	return unwritten;
600 }
601 
602 /**
603  * This is the fast pwrite path, where we copy the data directly from the
604  * user into the GTT, uncached.
605  */
606 static int
607 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
608 			 struct drm_i915_gem_object *obj,
609 			 struct drm_i915_gem_pwrite *args,
610 			 struct drm_file *file)
611 {
612 	drm_i915_private_t *dev_priv = dev->dev_private;
613 	ssize_t remain;
614 	loff_t offset, page_base;
615 	char __user *user_data;
616 	int page_offset, page_length, ret;
617 
618 	ret = i915_gem_object_pin(obj, 0, true, true);
619 	if (ret)
620 		goto out;
621 
622 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
623 	if (ret)
624 		goto out_unpin;
625 
626 	ret = i915_gem_object_put_fence(obj);
627 	if (ret)
628 		goto out_unpin;
629 
630 	user_data = to_user_ptr(args->data_ptr);
631 	remain = args->size;
632 
633 	offset = obj->gtt_offset + args->offset;
634 
635 	while (remain > 0) {
636 		/* Operation in this page
637 		 *
638 		 * page_base = page offset within aperture
639 		 * page_offset = offset within page
640 		 * page_length = bytes to copy for this page
641 		 */
642 		page_base = offset & PAGE_MASK;
643 		page_offset = offset_in_page(offset);
644 		page_length = remain;
645 		if ((page_offset + remain) > PAGE_SIZE)
646 			page_length = PAGE_SIZE - page_offset;
647 
648 		/* If we get a fault while copying data, then (presumably) our
649 		 * source page isn't available.  Return the error and we'll
650 		 * retry in the slow path.
651 		 */
652 		if (fast_user_write(dev_priv->gtt.mappable, page_base,
653 				    page_offset, user_data, page_length)) {
654 			ret = -EFAULT;
655 			goto out_unpin;
656 		}
657 
658 		remain -= page_length;
659 		user_data += page_length;
660 		offset += page_length;
661 	}
662 
663 out_unpin:
664 	i915_gem_object_unpin(obj);
665 out:
666 	return ret;
667 }
668 #endif
669 
670 static int
671 i915_gem_gtt_write(struct drm_device *dev, struct drm_i915_gem_object *obj,
672     uint64_t data_ptr, uint64_t size, uint64_t offset, struct drm_file *file)
673 {
674 	vm_offset_t mkva;
675 	int ret;
676 
677 	/*
678 	 * Pass the unaligned physical address and size to pmap_mapdev_attr()
679 	 * so it can properly calculate whether an extra page needs to be
680 	 * mapped or not to cover the requested range.  The function will
681 	 * add the page offset into the returned mkva for us.
682 	 */
683 	mkva = (vm_offset_t)pmap_mapdev_attr(dev->agp->base + obj->gtt_offset +
684 	    offset, size, PAT_WRITE_COMBINING);
685 	ret = -copyin_nofault((void *)(uintptr_t)data_ptr, (char *)mkva, size);
686 	pmap_unmapdev(mkva, size);
687 	return ret;
688 }
689 
690 #if 0
691 /* Per-page copy function for the shmem pwrite fastpath.
692  * Flushes invalid cachelines before writing to the target if
693  * needs_clflush_before is set and flushes out any written cachelines after
694  * writing if needs_clflush is set. */
695 static int
696 shmem_pwrite_fast(struct vm_page *page, int shmem_page_offset, int page_length,
697 		  char __user *user_data,
698 		  bool page_do_bit17_swizzling,
699 		  bool needs_clflush_before,
700 		  bool needs_clflush_after)
701 {
702 	char *vaddr;
703 	int ret;
704 
705 	if (unlikely(page_do_bit17_swizzling))
706 		return -EINVAL;
707 
708 	vaddr = kmap_atomic(page);
709 	if (needs_clflush_before)
710 		drm_clflush_virt_range(vaddr + shmem_page_offset,
711 				       page_length);
712 	ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
713 						user_data,
714 						page_length);
715 	if (needs_clflush_after)
716 		drm_clflush_virt_range(vaddr + shmem_page_offset,
717 				       page_length);
718 	kunmap_atomic(vaddr);
719 
720 	return ret ? -EFAULT : 0;
721 }
722 
723 /* Only difference to the fast-path function is that this can handle bit17
724  * and uses non-atomic copy and kmap functions. */
725 static int
726 shmem_pwrite_slow(struct vm_page *page, int shmem_page_offset, int page_length,
727 		  char __user *user_data,
728 		  bool page_do_bit17_swizzling,
729 		  bool needs_clflush_before,
730 		  bool needs_clflush_after)
731 {
732 	char *vaddr;
733 	int ret;
734 
735 	vaddr = kmap(page);
736 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
737 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
738 					     page_length,
739 					     page_do_bit17_swizzling);
740 	if (page_do_bit17_swizzling)
741 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
742 						user_data,
743 						page_length);
744 	else
745 		ret = __copy_from_user(vaddr + shmem_page_offset,
746 				       user_data,
747 				       page_length);
748 	if (needs_clflush_after)
749 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
750 					     page_length,
751 					     page_do_bit17_swizzling);
752 	kunmap(page);
753 
754 	return ret ? -EFAULT : 0;
755 }
756 #endif
757 
758 static int
759 i915_gem_shmem_pwrite(struct drm_device *dev,
760 		      struct drm_i915_gem_object *obj,
761 		      struct drm_i915_gem_pwrite *args,
762 		      struct drm_file *file)
763 {
764 	vm_object_t vm_obj;
765 	vm_page_t m;
766 	struct sf_buf *sf;
767 	vm_offset_t mkva;
768 	vm_pindex_t obj_pi;
769 	int cnt, do_bit17_swizzling, length, obj_po, ret, swizzled_po;
770 
771 	do_bit17_swizzling = 0;
772 
773 	obj->dirty = 1;
774 	vm_obj = obj->base.vm_obj;
775 	ret = 0;
776 
777 	VM_OBJECT_LOCK(vm_obj);
778 	vm_object_pip_add(vm_obj, 1);
779 	while (args->size > 0) {
780 		obj_pi = OFF_TO_IDX(args->offset);
781 		obj_po = args->offset & PAGE_MASK;
782 
783 		m = shmem_read_mapping_page(vm_obj, obj_pi);
784 		VM_OBJECT_UNLOCK(vm_obj);
785 
786 		sf = sf_buf_alloc(m);
787 		mkva = sf_buf_kva(sf);
788 		length = min(args->size, PAGE_SIZE - obj_po);
789 		while (length > 0) {
790 			if (do_bit17_swizzling &&
791 			    (VM_PAGE_TO_PHYS(m) & (1 << 17)) != 0) {
792 				cnt = roundup2(obj_po + 1, 64);
793 				cnt = min(cnt - obj_po, length);
794 				swizzled_po = obj_po ^ 64;
795 			} else {
796 				cnt = length;
797 				swizzled_po = obj_po;
798 			}
799 			ret = -copyin_nofault(
800 			    (void *)(uintptr_t)args->data_ptr,
801 			    (char *)mkva + swizzled_po, cnt);
802 			if (ret != 0)
803 				break;
804 			args->data_ptr += cnt;
805 			args->size -= cnt;
806 			length -= cnt;
807 			args->offset += cnt;
808 			obj_po += cnt;
809 		}
810 		sf_buf_free(sf);
811 		VM_OBJECT_LOCK(vm_obj);
812 		vm_page_dirty(m);
813 		vm_page_reference(m);
814 		vm_page_busy_wait(m, FALSE, "i915gem");
815 		vm_page_unwire(m, 1);
816 		vm_page_wakeup(m);
817 
818 		if (ret != 0)
819 			break;
820 	}
821 	vm_object_pip_wakeup(vm_obj);
822 	VM_OBJECT_UNLOCK(vm_obj);
823 
824 	return (ret);
825 }
826 
827 /**
828  * Writes data to the object referenced by handle.
829  *
830  * On error, the contents of the buffer that were to be modified are undefined.
831  */
832 int
833 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
834 		      struct drm_file *file)
835 {
836 	struct drm_i915_gem_pwrite *args = data;
837 	struct drm_i915_gem_object *obj;
838 	vm_page_t *ma;
839 	vm_offset_t start, end;
840 	int npages, ret;
841 
842 	if (args->size == 0)
843 		return 0;
844 
845 	start = trunc_page(args->data_ptr);
846 	end = round_page(args->data_ptr + args->size);
847 	npages = howmany(end - start, PAGE_SIZE);
848 	ma = kmalloc(npages * sizeof(vm_page_t), M_DRM, M_WAITOK |
849 	    M_ZERO);
850 	npages = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
851 	    (vm_offset_t)args->data_ptr, args->size,
852 	    VM_PROT_READ, ma, npages);
853 	if (npages == -1) {
854 		ret = -EFAULT;
855 		goto free_ma;
856 	}
857 
858 	ret = i915_mutex_lock_interruptible(dev);
859 	if (ret != 0)
860 		goto unlocked;
861 
862 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
863 	if (&obj->base == NULL) {
864 		ret = -ENOENT;
865 		goto unlock;
866 	}
867 
868 	/* Bounds check destination. */
869 	if (args->offset > obj->base.size ||
870 	    args->size > obj->base.size - args->offset) {
871 		ret = -EINVAL;
872 		goto out;
873 	}
874 
875 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
876 
877 	if (obj->phys_obj) {
878 		ret = i915_gem_phys_pwrite(dev, obj, args, file);
879 	} else if (obj->gtt_space &&
880 		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
881 		ret = i915_gem_object_pin(obj, 0, true, false);
882 		if (ret != 0)
883 			goto out;
884 		ret = i915_gem_object_set_to_gtt_domain(obj, true);
885 		if (ret != 0)
886 			goto out_unpin;
887 		ret = i915_gem_object_put_fence(obj);
888 		if (ret != 0)
889 			goto out_unpin;
890 		ret = i915_gem_gtt_write(dev, obj, args->data_ptr, args->size,
891 		    args->offset, file);
892 out_unpin:
893 		i915_gem_object_unpin(obj);
894 	} else {
895 		ret = i915_gem_object_set_to_cpu_domain(obj, true);
896 		if (ret != 0)
897 			goto out;
898 		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
899 	}
900 out:
901 	drm_gem_object_unreference(&obj->base);
902 unlock:
903 	mutex_unlock(&dev->struct_mutex);
904 unlocked:
905 	vm_page_unhold_pages(ma, npages);
906 free_ma:
907 	drm_free(ma, M_DRM);
908 	return ret;
909 }
910 
911 int
912 i915_gem_check_wedge(struct i915_gpu_error *error,
913 		     bool interruptible)
914 {
915 	if (i915_reset_in_progress(error)) {
916 		/* Non-interruptible callers can't handle -EAGAIN, hence return
917 		 * -EIO unconditionally for these. */
918 		if (!interruptible)
919 			return -EIO;
920 
921 		/* Recovery complete, but the reset failed ... */
922 		if (i915_terminally_wedged(error))
923 			return -EIO;
924 
925 		return -EAGAIN;
926 	}
927 
928 	return 0;
929 }
930 
931 /*
932  * Compare seqno against outstanding lazy request. Emit a request if they are
933  * equal.
934  */
935 static int
936 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
937 {
938 	int ret;
939 
940 	DRM_LOCK_ASSERT(ring->dev);
941 
942 	ret = 0;
943 	if (seqno == ring->outstanding_lazy_request)
944 		ret = i915_add_request(ring, NULL);
945 
946 	return ret;
947 }
948 
949 /**
950  * __wait_seqno - wait until execution of seqno has finished
951  * @ring: the ring expected to report seqno
952  * @seqno: duh!
953  * @reset_counter: reset sequence associated with the given seqno
954  * @interruptible: do an interruptible wait (normally yes)
955  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
956  *
957  * Note: It is of utmost importance that the passed in seqno and reset_counter
958  * values have been read by the caller in an smp safe manner. Where read-side
959  * locks are involved, it is sufficient to read the reset_counter before
960  * unlocking the lock that protects the seqno. For lockless tricks, the
961  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
962  * inserted.
963  *
964  * Returns 0 if the seqno was found within the alloted time. Else returns the
965  * errno with remaining time filled in timeout argument.
966  */
967 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
968 			unsigned reset_counter,
969 			bool interruptible, struct timespec *timeout)
970 {
971 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
972 	struct timespec before, now, wait_time={1,0};
973 	unsigned long timeout_jiffies;
974 	long end;
975 	bool wait_forever = true;
976 	int ret;
977 
978 	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
979 		return 0;
980 
981 	trace_i915_gem_request_wait_begin(ring, seqno);
982 
983 	if (timeout != NULL) {
984 		wait_time = *timeout;
985 		wait_forever = false;
986 	}
987 
988 	timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
989 
990 	if (WARN_ON(!ring->irq_get(ring)))
991 		return -ENODEV;
992 
993 	/* Record current time in case interrupted by signal, or wedged * */
994 	getrawmonotonic(&before);
995 
996 #define EXIT_COND \
997 	(i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
998 	 i915_reset_in_progress(&dev_priv->gpu_error) || \
999 	 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1000 	do {
1001 		if (interruptible)
1002 			end = wait_event_interruptible_timeout(ring->irq_queue,
1003 							       EXIT_COND,
1004 							       timeout_jiffies);
1005 		else
1006 			end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1007 						 timeout_jiffies);
1008 
1009 		/* We need to check whether any gpu reset happened in between
1010 		 * the caller grabbing the seqno and now ... */
1011 		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1012 			end = -EAGAIN;
1013 
1014 		/* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1015 		 * gone. */
1016 		ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1017 		if (ret)
1018 			end = ret;
1019 	} while (end == 0 && wait_forever);
1020 
1021 	getrawmonotonic(&now);
1022 
1023 	ring->irq_put(ring);
1024 	trace_i915_gem_request_wait_end(ring, seqno);
1025 #undef EXIT_COND
1026 
1027 	if (timeout) {
1028 		struct timespec sleep_time = timespec_sub(now, before);
1029 		*timeout = timespec_sub(*timeout, sleep_time);
1030 		if (!timespec_valid(timeout)) /* i.e. negative time remains */
1031 			set_normalized_timespec(timeout, 0, 0);
1032 	}
1033 
1034 	switch (end) {
1035 	case -EIO:
1036 	case -EAGAIN: /* Wedged */
1037 	case -ERESTARTSYS: /* Signal */
1038 		return (int)end;
1039 	case 0: /* Timeout */
1040 		return -ETIMEDOUT;	/* -ETIME on Linux */
1041 	default: /* Completed */
1042 		WARN_ON(end < 0); /* We're not aware of other errors */
1043 		return 0;
1044 	}
1045 }
1046 
1047 /**
1048  * Waits for a sequence number to be signaled, and cleans up the
1049  * request and object lists appropriately for that event.
1050  */
1051 int
1052 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1053 {
1054 	struct drm_device *dev = ring->dev;
1055 	struct drm_i915_private *dev_priv = dev->dev_private;
1056 	bool interruptible = dev_priv->mm.interruptible;
1057 	int ret;
1058 
1059 	DRM_LOCK_ASSERT(dev);
1060 	BUG_ON(seqno == 0);
1061 
1062 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1063 	if (ret)
1064 		return ret;
1065 
1066 	ret = i915_gem_check_olr(ring, seqno);
1067 	if (ret)
1068 		return ret;
1069 
1070 	return __wait_seqno(ring, seqno,
1071 			    atomic_read(&dev_priv->gpu_error.reset_counter),
1072 			    interruptible, NULL);
1073 }
1074 
1075 static int
1076 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1077 				     struct intel_ring_buffer *ring)
1078 {
1079 	i915_gem_retire_requests_ring(ring);
1080 
1081 	/* Manually manage the write flush as we may have not yet
1082 	 * retired the buffer.
1083 	 *
1084 	 * Note that the last_write_seqno is always the earlier of
1085 	 * the two (read/write) seqno, so if we haved successfully waited,
1086 	 * we know we have passed the last write.
1087 	 */
1088 	obj->last_write_seqno = 0;
1089 	obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1090 
1091 	return 0;
1092 }
1093 
1094 /**
1095  * Ensures that all rendering to the object has completed and the object is
1096  * safe to unbind from the GTT or access from the CPU.
1097  */
1098 static __must_check int
1099 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1100 			       bool readonly)
1101 {
1102 	struct intel_ring_buffer *ring = obj->ring;
1103 	u32 seqno;
1104 	int ret;
1105 
1106 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1107 	if (seqno == 0)
1108 		return 0;
1109 
1110 	ret = i915_wait_seqno(ring, seqno);
1111 	if (ret)
1112 		return ret;
1113 
1114 	return i915_gem_object_wait_rendering__tail(obj, ring);
1115 }
1116 
1117 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1118  * as the object state may change during this call.
1119  */
1120 static __must_check int
1121 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1122 					    bool readonly)
1123 {
1124 	struct drm_device *dev = obj->base.dev;
1125 	struct drm_i915_private *dev_priv = dev->dev_private;
1126 	struct intel_ring_buffer *ring = obj->ring;
1127 	unsigned reset_counter;
1128 	u32 seqno;
1129 	int ret;
1130 
1131 	DRM_LOCK_ASSERT(dev);
1132 	BUG_ON(!dev_priv->mm.interruptible);
1133 
1134 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1135 	if (seqno == 0)
1136 		return 0;
1137 
1138 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1139 	if (ret)
1140 		return ret;
1141 
1142 	ret = i915_gem_check_olr(ring, seqno);
1143 	if (ret)
1144 		return ret;
1145 
1146 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1147 	mutex_unlock(&dev->struct_mutex);
1148 	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
1149 	mutex_lock(&dev->struct_mutex);
1150 	if (ret)
1151 		return ret;
1152 
1153 	return i915_gem_object_wait_rendering__tail(obj, ring);
1154 }
1155 
1156 /**
1157  * Called when user space prepares to use an object with the CPU, either
1158  * through the mmap ioctl's mapping or a GTT mapping.
1159  */
1160 int
1161 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1162 			  struct drm_file *file)
1163 {
1164 	struct drm_i915_gem_set_domain *args = data;
1165 	struct drm_i915_gem_object *obj;
1166 	uint32_t read_domains = args->read_domains;
1167 	uint32_t write_domain = args->write_domain;
1168 	int ret;
1169 
1170 	/* Only handle setting domains to types used by the CPU. */
1171 	if (write_domain & I915_GEM_GPU_DOMAINS)
1172 		return -EINVAL;
1173 
1174 	if (read_domains & I915_GEM_GPU_DOMAINS)
1175 		return -EINVAL;
1176 
1177 	/* Having something in the write domain implies it's in the read
1178 	 * domain, and only that read domain.  Enforce that in the request.
1179 	 */
1180 	if (write_domain != 0 && read_domains != write_domain)
1181 		return -EINVAL;
1182 
1183 	ret = i915_mutex_lock_interruptible(dev);
1184 	if (ret)
1185 		return ret;
1186 
1187 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1188 	if (&obj->base == NULL) {
1189 		ret = -ENOENT;
1190 		goto unlock;
1191 	}
1192 
1193 	/* Try to flush the object off the GPU without holding the lock.
1194 	 * We will repeat the flush holding the lock in the normal manner
1195 	 * to catch cases where we are gazumped.
1196 	 */
1197 	ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1198 	if (ret)
1199 		goto unref;
1200 
1201 	if (read_domains & I915_GEM_DOMAIN_GTT) {
1202 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1203 
1204 		/* Silently promote "you're not bound, there was nothing to do"
1205 		 * to success, since the client was just asking us to
1206 		 * make sure everything was done.
1207 		 */
1208 		if (ret == -EINVAL)
1209 			ret = 0;
1210 	} else {
1211 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1212 	}
1213 
1214 unref:
1215 	drm_gem_object_unreference(&obj->base);
1216 unlock:
1217 	mutex_unlock(&dev->struct_mutex);
1218 	return ret;
1219 }
1220 
1221 /**
1222  * Called when user space has done writes to this buffer
1223  */
1224 int
1225 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1226 			 struct drm_file *file)
1227 {
1228 	struct drm_i915_gem_sw_finish *args = data;
1229 	struct drm_i915_gem_object *obj;
1230 	int ret = 0;
1231 
1232 	ret = i915_mutex_lock_interruptible(dev);
1233 	if (ret)
1234 		return ret;
1235 
1236 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1237 	if (&obj->base == NULL) {
1238 		ret = -ENOENT;
1239 		goto unlock;
1240 	}
1241 
1242 	/* Pinned buffers may be scanout, so flush the cache */
1243 	if (obj->pin_count)
1244 		i915_gem_object_flush_cpu_write_domain(obj);
1245 
1246 	drm_gem_object_unreference(&obj->base);
1247 unlock:
1248 	mutex_unlock(&dev->struct_mutex);
1249 	return ret;
1250 }
1251 
1252 /**
1253  * Maps the contents of an object, returning the address it is mapped
1254  * into.
1255  *
1256  * While the mapping holds a reference on the contents of the object, it doesn't
1257  * imply a ref on the object itself.
1258  */
1259 int
1260 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1261 		    struct drm_file *file)
1262 {
1263 	struct drm_i915_gem_mmap *args = data;
1264 	struct drm_gem_object *obj;
1265 	struct proc *p = curproc;
1266 	vm_map_t map = &p->p_vmspace->vm_map;
1267 	vm_offset_t addr;
1268 	vm_size_t size;
1269 	int error = 0, rv;
1270 
1271 	obj = drm_gem_object_lookup(dev, file, args->handle);
1272 	if (obj == NULL)
1273 		return -ENOENT;
1274 
1275 	if (args->size == 0)
1276 		goto out;
1277 
1278 	size = round_page(args->size);
1279 	if (map->size + size > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
1280 		error = ENOMEM;
1281 		goto out;
1282 	}
1283 
1284 	addr = 0;
1285 	vm_object_hold(obj->vm_obj);
1286 	vm_object_reference_locked(obj->vm_obj);
1287 	vm_object_drop(obj->vm_obj);
1288 	rv = vm_map_find(map, obj->vm_obj, NULL,
1289 			 args->offset, &addr, args->size,
1290 			 PAGE_SIZE, /* align */
1291 			 TRUE, /* fitit */
1292 			 VM_MAPTYPE_NORMAL, /* maptype */
1293 			 VM_PROT_READ | VM_PROT_WRITE, /* prot */
1294 			 VM_PROT_READ | VM_PROT_WRITE, /* max */
1295 			 MAP_SHARED /* cow */);
1296 	if (rv != KERN_SUCCESS) {
1297 		vm_object_deallocate(obj->vm_obj);
1298 		error = -vm_mmap_to_errno(rv);
1299 	} else {
1300 		args->addr_ptr = (uint64_t)addr;
1301 	}
1302 out:
1303 	drm_gem_object_unreference(obj);
1304 	return (error);
1305 }
1306 
1307 int i915_intr_pf;
1308 
1309 /**
1310  * i915_gem_fault - fault a page into the GTT
1311  * vma: VMA in question
1312  * vmf: fault info
1313  *
1314  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1315  * from userspace.  The fault handler takes care of binding the object to
1316  * the GTT (if needed), allocating and programming a fence register (again,
1317  * only if needed based on whether the old reg is still valid or the object
1318  * is tiled) and inserting a new PTE into the faulting process.
1319  *
1320  * Note that the faulting process may involve evicting existing objects
1321  * from the GTT and/or fence registers to make room.  So performance may
1322  * suffer if the GTT working set is large or there are few fence registers
1323  * left.
1324  */
1325 int
1326 i915_gem_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot,
1327     vm_page_t *mres)
1328 {
1329 	struct drm_gem_object *gem_obj;
1330 	struct drm_i915_gem_object *obj;
1331 	struct drm_device *dev;
1332 	drm_i915_private_t *dev_priv;
1333 	vm_page_t m, oldm;
1334 	int cause, ret;
1335 	bool write;
1336 
1337 	gem_obj = vm_obj->handle;
1338 	obj = to_intel_bo(gem_obj);
1339 	dev = obj->base.dev;
1340 	dev_priv = dev->dev_private;
1341 #if 0
1342 	write = (prot & VM_PROT_WRITE) != 0;
1343 #else
1344 	write = true;
1345 #endif
1346 	vm_object_pip_add(vm_obj, 1);
1347 
1348 	/*
1349 	 * Remove the placeholder page inserted by vm_fault() from the
1350 	 * object before dropping the object lock. If
1351 	 * i915_gem_release_mmap() is active in parallel on this gem
1352 	 * object, then it owns the drm device sx and might find the
1353 	 * placeholder already. Then, since the page is busy,
1354 	 * i915_gem_release_mmap() sleeps waiting for the busy state
1355 	 * of the page cleared. We will be not able to acquire drm
1356 	 * device lock until i915_gem_release_mmap() is able to make a
1357 	 * progress.
1358 	 */
1359 	if (*mres != NULL) {
1360 		oldm = *mres;
1361 		vm_page_remove(oldm);
1362 		*mres = NULL;
1363 	} else
1364 		oldm = NULL;
1365 retry:
1366 	VM_OBJECT_UNLOCK(vm_obj);
1367 unlocked_vmobj:
1368 	cause = ret = 0;
1369 	m = NULL;
1370 
1371 	if (i915_intr_pf) {
1372 		ret = i915_mutex_lock_interruptible(dev);
1373 		if (ret != 0) {
1374 			cause = 10;
1375 			goto out;
1376 		}
1377 	} else
1378 		mutex_lock(&dev->struct_mutex);
1379 
1380 	/*
1381 	 * Since the object lock was dropped, other thread might have
1382 	 * faulted on the same GTT address and instantiated the
1383 	 * mapping for the page.  Recheck.
1384 	 */
1385 	VM_OBJECT_LOCK(vm_obj);
1386 	m = vm_page_lookup(vm_obj, OFF_TO_IDX(offset));
1387 	if (m != NULL) {
1388 		if ((m->flags & PG_BUSY) != 0) {
1389 			mutex_unlock(&dev->struct_mutex);
1390 #if 0 /* XXX */
1391 			vm_page_sleep(m, "915pee");
1392 #endif
1393 			goto retry;
1394 		}
1395 		goto have_page;
1396 	} else
1397 		VM_OBJECT_UNLOCK(vm_obj);
1398 
1399 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1400 
1401 	/* Access to snoopable pages through the GTT is incoherent. */
1402 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1403 		ret = -EINVAL;
1404 		goto unlock;
1405 	}
1406 
1407 	/* Now bind it into the GTT if needed */
1408 	if (!obj->map_and_fenceable) {
1409 		ret = i915_gem_object_unbind(obj);
1410 		if (ret != 0) {
1411 			cause = 20;
1412 			goto unlock;
1413 		}
1414 	}
1415 	if (!obj->gtt_space) {
1416 		ret = i915_gem_object_bind_to_gtt(obj, 0, true, false);
1417 		if (ret != 0) {
1418 			cause = 30;
1419 			goto unlock;
1420 		}
1421 
1422 		ret = i915_gem_object_set_to_gtt_domain(obj, write);
1423 		if (ret != 0) {
1424 			cause = 40;
1425 			goto unlock;
1426 		}
1427 	}
1428 
1429 	if (obj->tiling_mode == I915_TILING_NONE)
1430 		ret = i915_gem_object_put_fence(obj);
1431 	else
1432 		ret = i915_gem_object_get_fence(obj);
1433 	if (ret != 0) {
1434 		cause = 50;
1435 		goto unlock;
1436 	}
1437 
1438 	if (i915_gem_object_is_inactive(obj))
1439 		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1440 
1441 	obj->fault_mappable = true;
1442 	VM_OBJECT_LOCK(vm_obj);
1443 	m = vm_phys_fictitious_to_vm_page(dev->agp->base + obj->gtt_offset +
1444 	    offset);
1445 	if (m == NULL) {
1446 		cause = 60;
1447 		ret = -EFAULT;
1448 		goto unlock;
1449 	}
1450 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1451 	    ("not fictitious %p", m));
1452 	KASSERT(m->wire_count == 1, ("wire_count not 1 %p", m));
1453 
1454 	if ((m->flags & PG_BUSY) != 0) {
1455 		mutex_unlock(&dev->struct_mutex);
1456 #if 0 /* XXX */
1457 		vm_page_sleep(m, "915pbs");
1458 #endif
1459 		goto retry;
1460 	}
1461 	m->valid = VM_PAGE_BITS_ALL;
1462 	vm_page_insert(m, vm_obj, OFF_TO_IDX(offset));
1463 have_page:
1464 	*mres = m;
1465 	vm_page_busy_try(m, false);
1466 
1467 	mutex_unlock(&dev->struct_mutex);
1468 	if (oldm != NULL) {
1469 		vm_page_free(oldm);
1470 	}
1471 	vm_object_pip_wakeup(vm_obj);
1472 	return (VM_PAGER_OK);
1473 
1474 unlock:
1475 	mutex_unlock(&dev->struct_mutex);
1476 out:
1477 	KASSERT(ret != 0, ("i915_gem_pager_fault: wrong return"));
1478 	if (ret == -EAGAIN || ret == -EIO || ret == -EINTR) {
1479 		goto unlocked_vmobj;
1480 	}
1481 	VM_OBJECT_LOCK(vm_obj);
1482 	vm_object_pip_wakeup(vm_obj);
1483 	return (VM_PAGER_ERROR);
1484 }
1485 
1486 /**
1487  * i915_gem_release_mmap - remove physical page mappings
1488  * @obj: obj in question
1489  *
1490  * Preserve the reservation of the mmapping with the DRM core code, but
1491  * relinquish ownership of the pages back to the system.
1492  *
1493  * It is vital that we remove the page mapping if we have mapped a tiled
1494  * object through the GTT and then lose the fence register due to
1495  * resource pressure. Similarly if the object has been moved out of the
1496  * aperture, than pages mapped into userspace must be revoked. Removing the
1497  * mapping will then trigger a page fault on the next user access, allowing
1498  * fixup by i915_gem_fault().
1499  */
1500 void
1501 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1502 {
1503 	vm_object_t devobj;
1504 	vm_page_t m;
1505 	int i, page_count;
1506 
1507 	if (!obj->fault_mappable)
1508 		return;
1509 
1510 	devobj = cdev_pager_lookup(obj);
1511 	if (devobj != NULL) {
1512 		page_count = OFF_TO_IDX(obj->base.size);
1513 
1514 		VM_OBJECT_LOCK(devobj);
1515 		for (i = 0; i < page_count; i++) {
1516 			m = vm_page_lookup_busy_wait(devobj, i, TRUE, "915unm");
1517 			if (m == NULL)
1518 				continue;
1519 			cdev_pager_free_page(devobj, m);
1520 		}
1521 		VM_OBJECT_UNLOCK(devobj);
1522 		vm_object_deallocate(devobj);
1523 	}
1524 
1525 	obj->fault_mappable = false;
1526 }
1527 
1528 uint32_t
1529 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1530 {
1531 	uint32_t gtt_size;
1532 
1533 	if (INTEL_INFO(dev)->gen >= 4 ||
1534 	    tiling_mode == I915_TILING_NONE)
1535 		return size;
1536 
1537 	/* Previous chips need a power-of-two fence region when tiling */
1538 	if (INTEL_INFO(dev)->gen == 3)
1539 		gtt_size = 1024*1024;
1540 	else
1541 		gtt_size = 512*1024;
1542 
1543 	while (gtt_size < size)
1544 		gtt_size <<= 1;
1545 
1546 	return gtt_size;
1547 }
1548 
1549 /**
1550  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1551  * @obj: object to check
1552  *
1553  * Return the required GTT alignment for an object, taking into account
1554  * potential fence register mapping.
1555  */
1556 uint32_t
1557 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1558 			   int tiling_mode, bool fenced)
1559 {
1560 	/*
1561 	 * Minimum alignment is 4k (GTT page size), but might be greater
1562 	 * if a fence register is needed for the object.
1563 	 */
1564 	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1565 	    tiling_mode == I915_TILING_NONE)
1566 		return 4096;
1567 
1568 	/*
1569 	 * Previous chips need to be aligned to the size of the smallest
1570 	 * fence register that can contain the object.
1571 	 */
1572 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1573 }
1574 
1575 int
1576 i915_gem_mmap_gtt(struct drm_file *file,
1577 		  struct drm_device *dev,
1578 		  uint32_t handle,
1579 		  uint64_t *offset)
1580 {
1581 	struct drm_i915_private *dev_priv = dev->dev_private;
1582 	struct drm_i915_gem_object *obj;
1583 	int ret;
1584 
1585 	ret = i915_mutex_lock_interruptible(dev);
1586 	if (ret)
1587 		return ret;
1588 
1589 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1590 	if (&obj->base == NULL) {
1591 		ret = -ENOENT;
1592 		goto unlock;
1593 	}
1594 
1595 	if (obj->base.size > dev_priv->gtt.mappable_end) {
1596 		ret = -E2BIG;
1597 		goto out;
1598 	}
1599 
1600 	if (obj->madv != I915_MADV_WILLNEED) {
1601 		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1602 		ret = -EINVAL;
1603 		goto out;
1604 	}
1605 
1606 	ret = drm_gem_create_mmap_offset(&obj->base);
1607 	if (ret)
1608 		goto out;
1609 
1610 	*offset = DRM_GEM_MAPPING_OFF(obj->base.map_list.key) |
1611 	    DRM_GEM_MAPPING_KEY;
1612 out:
1613 	drm_gem_object_unreference(&obj->base);
1614 unlock:
1615 	mutex_unlock(&dev->struct_mutex);
1616 	return ret;
1617 }
1618 
1619 /**
1620  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1621  * @dev: DRM device
1622  * @data: GTT mapping ioctl data
1623  * @file: GEM object info
1624  *
1625  * Simply returns the fake offset to userspace so it can mmap it.
1626  * The mmap call will end up in drm_gem_mmap(), which will set things
1627  * up so we can get faults in the handler above.
1628  *
1629  * The fault handler will take care of binding the object into the GTT
1630  * (since it may have been evicted to make room for something), allocating
1631  * a fence register, and mapping the appropriate aperture address into
1632  * userspace.
1633  */
1634 int
1635 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1636 			struct drm_file *file)
1637 {
1638 	struct drm_i915_gem_mmap_gtt *args = data;
1639 
1640 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1641 }
1642 
1643 /* Immediately discard the backing storage */
1644 static void
1645 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1646 {
1647 	vm_object_t vm_obj;
1648 
1649 	vm_obj = obj->base.vm_obj;
1650 	VM_OBJECT_LOCK(vm_obj);
1651 	vm_object_page_remove(vm_obj, 0, 0, false);
1652 	VM_OBJECT_UNLOCK(vm_obj);
1653 
1654 	obj->madv = __I915_MADV_PURGED;
1655 }
1656 
1657 static inline int
1658 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1659 {
1660 	return obj->madv == I915_MADV_DONTNEED;
1661 }
1662 
1663 static void
1664 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1665 {
1666 	int page_count = obj->base.size / PAGE_SIZE;
1667 	int i, ret;
1668 
1669 	if (!obj->pages)
1670 		return;
1671 
1672 	BUG_ON(obj->madv == __I915_MADV_PURGED);
1673 
1674 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
1675 	if (ret) {
1676 		/* In the event of a disaster, abandon all caches and
1677 		 * hope for the best.
1678 		 */
1679 		WARN_ON(ret != -EIO);
1680 		i915_gem_clflush_object(obj);
1681 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1682 	}
1683 
1684 	if (i915_gem_object_needs_bit17_swizzle(obj))
1685 		i915_gem_object_save_bit_17_swizzle(obj);
1686 
1687 	if (obj->madv == I915_MADV_DONTNEED)
1688 		obj->dirty = 0;
1689 
1690 	for (i = 0; i < page_count; i++) {
1691 		if (obj->dirty)
1692 			set_page_dirty(obj->pages[i]);
1693 
1694 		if (obj->madv == I915_MADV_WILLNEED)
1695 			mark_page_accessed(obj->pages[i]);
1696 
1697 		vm_page_busy_wait(obj->pages[i], FALSE, "i915gem");
1698 		vm_page_unwire(obj->pages[i], 1);
1699 		vm_page_wakeup(obj->pages[i]);
1700 	}
1701 	obj->dirty = 0;
1702 
1703 	kfree(obj->pages);
1704 	obj->pages = NULL;
1705 }
1706 
1707 int
1708 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1709 {
1710 	const struct drm_i915_gem_object_ops *ops = obj->ops;
1711 
1712 	if (obj->pages == NULL)
1713 		return 0;
1714 
1715 	BUG_ON(obj->gtt_space);
1716 
1717 	if (obj->pages_pin_count)
1718 		return -EBUSY;
1719 
1720 	/* ->put_pages might need to allocate memory for the bit17 swizzle
1721 	 * array, hence protect them from being reaped by removing them from gtt
1722 	 * lists early. */
1723 	list_del(&obj->global_list);
1724 
1725 	ops->put_pages(obj);
1726 	obj->pages = NULL;
1727 
1728 	if (i915_gem_object_is_purgeable(obj))
1729 		i915_gem_object_truncate(obj);
1730 
1731 	return 0;
1732 }
1733 
1734 static long
1735 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1736 		  bool purgeable_only)
1737 {
1738 	struct drm_i915_gem_object *obj, *next;
1739 	long count = 0;
1740 
1741 	list_for_each_entry_safe(obj, next,
1742 				 &dev_priv->mm.unbound_list,
1743 				 global_list) {
1744 #if 0
1745 		if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1746 		    i915_gem_object_put_pages(obj) == 0) {
1747 			count += obj->base.size >> PAGE_SHIFT;
1748 			if (count >= target)
1749 				return count;
1750 		}
1751 #endif
1752 	}
1753 
1754 	list_for_each_entry_safe(obj, next,
1755 				 &dev_priv->mm.inactive_list,
1756 				 mm_list) {
1757 #if 0
1758 		if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1759 		    i915_gem_object_unbind(obj) == 0 &&
1760 		    i915_gem_object_put_pages(obj) == 0) {
1761 			count += obj->base.size >> PAGE_SHIFT;
1762 			if (count >= target)
1763 				return count;
1764 		}
1765 #endif
1766 	}
1767 
1768 	return count;
1769 }
1770 
1771 static long
1772 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1773 {
1774 	return __i915_gem_shrink(dev_priv, target, true);
1775 }
1776 
1777 static int
1778 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1779 {
1780 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1781 	struct drm_device *dev;
1782 	vm_object_t vm_obj;
1783 	int page_count, i, j;
1784 	struct vm_page *page;
1785 
1786 	dev = obj->base.dev;
1787 	KASSERT(obj->pages == NULL, ("Obj already has pages"));
1788 	page_count = obj->base.size / PAGE_SIZE;
1789 	obj->pages = kmalloc(page_count * sizeof(vm_page_t), M_DRM,
1790 	    M_WAITOK);
1791 
1792 	vm_obj = obj->base.vm_obj;
1793 	VM_OBJECT_LOCK(vm_obj);
1794 
1795 	for (i = 0; i < page_count; i++) {
1796 		page = shmem_read_mapping_page(vm_obj, i);
1797 		if (IS_ERR(page)) {
1798 			i915_gem_purge(dev_priv, page_count);
1799 			goto err_pages;
1800 		}
1801 
1802 		obj->pages[i] = page;
1803 	}
1804 
1805 	VM_OBJECT_UNLOCK(vm_obj);
1806 	if (i915_gem_object_needs_bit17_swizzle(obj))
1807 		i915_gem_object_do_bit_17_swizzle(obj);
1808 
1809 	return 0;
1810 
1811 err_pages:
1812 	for (j = 0; j < i; j++) {
1813 		page = obj->pages[j];
1814 		vm_page_busy_wait(page, FALSE, "i915gem");
1815 		vm_page_unwire(page, 0);
1816 		vm_page_wakeup(page);
1817 	}
1818 	VM_OBJECT_UNLOCK(vm_obj);
1819 	drm_free(obj->pages, M_DRM);
1820 	obj->pages = NULL;
1821 	return (-EIO);
1822 }
1823 
1824 /* Ensure that the associated pages are gathered from the backing storage
1825  * and pinned into our object. i915_gem_object_get_pages() may be called
1826  * multiple times before they are released by a single call to
1827  * i915_gem_object_put_pages() - once the pages are no longer referenced
1828  * either as a result of memory pressure (reaping pages under the shrinker)
1829  * or as the object is itself released.
1830  */
1831 int
1832 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1833 {
1834 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1835 	const struct drm_i915_gem_object_ops *ops = obj->ops;
1836 	int ret;
1837 
1838 	if (obj->pages)
1839 		return 0;
1840 
1841 	if (obj->madv != I915_MADV_WILLNEED) {
1842 		DRM_ERROR("Attempting to obtain a purgeable object\n");
1843 		return -EINVAL;
1844 	}
1845 
1846 	BUG_ON(obj->pages_pin_count);
1847 
1848 	ret = ops->get_pages(obj);
1849 	if (ret)
1850 		return ret;
1851 
1852 	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1853 	return 0;
1854 }
1855 
1856 void
1857 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1858 			       struct intel_ring_buffer *ring)
1859 {
1860 	struct drm_device *dev = obj->base.dev;
1861 	struct drm_i915_private *dev_priv = dev->dev_private;
1862 	u32 seqno = intel_ring_get_seqno(ring);
1863 
1864 	BUG_ON(ring == NULL);
1865 	if (obj->ring != ring && obj->last_write_seqno) {
1866 		/* Keep the seqno relative to the current ring */
1867 		obj->last_write_seqno = seqno;
1868 	}
1869 	obj->ring = ring;
1870 
1871 	/* Add a reference if we're newly entering the active list. */
1872 	if (!obj->active) {
1873 		drm_gem_object_reference(&obj->base);
1874 		obj->active = 1;
1875 	}
1876 
1877 	/* Move from whatever list we were on to the tail of execution. */
1878 	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1879 	list_move_tail(&obj->ring_list, &ring->active_list);
1880 
1881 	obj->last_read_seqno = seqno;
1882 
1883 	if (obj->fenced_gpu_access) {
1884 		obj->last_fenced_seqno = seqno;
1885 
1886 		/* Bump MRU to take account of the delayed flush */
1887 		if (obj->fence_reg != I915_FENCE_REG_NONE) {
1888 			struct drm_i915_fence_reg *reg;
1889 
1890 			reg = &dev_priv->fence_regs[obj->fence_reg];
1891 			list_move_tail(&reg->lru_list,
1892 				       &dev_priv->mm.fence_list);
1893 		}
1894 	}
1895 }
1896 
1897 static void
1898 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1899 {
1900 	struct drm_device *dev = obj->base.dev;
1901 	struct drm_i915_private *dev_priv = dev->dev_private;
1902 
1903 	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1904 	BUG_ON(!obj->active);
1905 
1906 	list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1907 
1908 	list_del_init(&obj->ring_list);
1909 	obj->ring = NULL;
1910 
1911 	obj->last_read_seqno = 0;
1912 	obj->last_write_seqno = 0;
1913 	obj->base.write_domain = 0;
1914 
1915 	obj->last_fenced_seqno = 0;
1916 	obj->fenced_gpu_access = false;
1917 
1918 	obj->active = 0;
1919 	drm_gem_object_unreference(&obj->base);
1920 
1921 	WARN_ON(i915_verify_lists(dev));
1922 }
1923 
1924 static int
1925 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1926 {
1927 	struct drm_i915_private *dev_priv = dev->dev_private;
1928 	struct intel_ring_buffer *ring;
1929 	int ret, i, j;
1930 
1931 	/* Carefully retire all requests without writing to the rings */
1932 	for_each_ring(ring, dev_priv, i) {
1933 		ret = intel_ring_idle(ring);
1934 		if (ret)
1935 			return ret;
1936 	}
1937 	i915_gem_retire_requests(dev);
1938 
1939 	/* Finally reset hw state */
1940 	for_each_ring(ring, dev_priv, i) {
1941 		intel_ring_init_seqno(ring, seqno);
1942 
1943 		for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1944 			ring->sync_seqno[j] = 0;
1945 	}
1946 
1947 	return 0;
1948 }
1949 
1950 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1951 {
1952 	struct drm_i915_private *dev_priv = dev->dev_private;
1953 	int ret;
1954 
1955 	if (seqno == 0)
1956 		return -EINVAL;
1957 
1958 	/* HWS page needs to be set less than what we
1959 	 * will inject to ring
1960 	 */
1961 	ret = i915_gem_init_seqno(dev, seqno - 1);
1962 	if (ret)
1963 		return ret;
1964 
1965 	/* Carefully set the last_seqno value so that wrap
1966 	 * detection still works
1967 	 */
1968 	dev_priv->next_seqno = seqno;
1969 	dev_priv->last_seqno = seqno - 1;
1970 	if (dev_priv->last_seqno == 0)
1971 		dev_priv->last_seqno--;
1972 
1973 	return 0;
1974 }
1975 
1976 int
1977 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1978 {
1979 	struct drm_i915_private *dev_priv = dev->dev_private;
1980 
1981 	/* reserve 0 for non-seqno */
1982 	if (dev_priv->next_seqno == 0) {
1983 		int ret = i915_gem_init_seqno(dev, 0);
1984 		if (ret)
1985 			return ret;
1986 
1987 		dev_priv->next_seqno = 1;
1988 	}
1989 
1990 	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
1991 	return 0;
1992 }
1993 
1994 int __i915_add_request(struct intel_ring_buffer *ring,
1995 		       struct drm_file *file,
1996 		       struct drm_i915_gem_object *obj,
1997 		       u32 *out_seqno)
1998 {
1999 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
2000 	struct drm_i915_gem_request *request;
2001 	u32 request_ring_position, request_start;
2002 	int was_empty;
2003 	int ret;
2004 
2005 	request_start = intel_ring_get_tail(ring);
2006 	/*
2007 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
2008 	 * after having emitted the batchbuffer command. Hence we need to fix
2009 	 * things up similar to emitting the lazy request. The difference here
2010 	 * is that the flush _must_ happen before the next request, no matter
2011 	 * what.
2012 	 */
2013 	ret = intel_ring_flush_all_caches(ring);
2014 	if (ret)
2015 		return ret;
2016 
2017 	request = kmalloc(sizeof(*request), M_DRM, M_WAITOK);
2018 	if (request == NULL)
2019 		return -ENOMEM;
2020 
2021 
2022 	/* Record the position of the start of the request so that
2023 	 * should we detect the updated seqno part-way through the
2024 	 * GPU processing the request, we never over-estimate the
2025 	 * position of the head.
2026 	 */
2027 	request_ring_position = intel_ring_get_tail(ring);
2028 
2029 	ret = ring->add_request(ring);
2030 	if (ret) {
2031 		kfree(request);
2032 		return ret;
2033 	}
2034 
2035 	request->seqno = intel_ring_get_seqno(ring);
2036 	request->ring = ring;
2037 	request->head = request_start;
2038 	request->tail = request_ring_position;
2039 	request->ctx = ring->last_context;
2040 	request->batch_obj = obj;
2041 
2042 	/* Whilst this request exists, batch_obj will be on the
2043 	 * active_list, and so will hold the active reference. Only when this
2044 	 * request is retired will the the batch_obj be moved onto the
2045 	 * inactive_list and lose its active reference. Hence we do not need
2046 	 * to explicitly hold another reference here.
2047 	 */
2048 
2049 	if (request->ctx)
2050 		i915_gem_context_reference(request->ctx);
2051 
2052 	request->emitted_jiffies = jiffies;
2053 	was_empty = list_empty(&ring->request_list);
2054 	list_add_tail(&request->list, &ring->request_list);
2055 	request->file_priv = NULL;
2056 
2057 	if (file) {
2058 		struct drm_i915_file_private *file_priv = file->driver_priv;
2059 
2060 		spin_lock(&file_priv->mm.lock);
2061 		request->file_priv = file_priv;
2062 		list_add_tail(&request->client_list,
2063 			      &file_priv->mm.request_list);
2064 		spin_unlock(&file_priv->mm.lock);
2065 	}
2066 
2067 	trace_i915_gem_request_add(ring, request->seqno);
2068 	ring->outstanding_lazy_request = 0;
2069 
2070 	if (!dev_priv->mm.suspended) {
2071 		if (i915_enable_hangcheck) {
2072 			mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2073 				  round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2074 		}
2075 		if (was_empty) {
2076 			queue_delayed_work(dev_priv->wq,
2077 					   &dev_priv->mm.retire_work,
2078 					   round_jiffies_up_relative(hz));
2079 			intel_mark_busy(dev_priv->dev);
2080 		}
2081 	}
2082 
2083 	if (out_seqno)
2084 		*out_seqno = request->seqno;
2085 	return 0;
2086 }
2087 
2088 static inline void
2089 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2090 {
2091 	struct drm_i915_file_private *file_priv = request->file_priv;
2092 
2093 	if (!file_priv)
2094 		return;
2095 
2096 	spin_lock(&file_priv->mm.lock);
2097 	if (request->file_priv) {
2098 		list_del(&request->client_list);
2099 		request->file_priv = NULL;
2100 	}
2101 	spin_unlock(&file_priv->mm.lock);
2102 }
2103 
2104 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj)
2105 {
2106 	if (acthd >= obj->gtt_offset &&
2107 	    acthd < obj->gtt_offset + obj->base.size)
2108 		return true;
2109 
2110 	return false;
2111 }
2112 
2113 static bool i915_head_inside_request(const u32 acthd_unmasked,
2114 				     const u32 request_start,
2115 				     const u32 request_end)
2116 {
2117 	const u32 acthd = acthd_unmasked & HEAD_ADDR;
2118 
2119 	if (request_start < request_end) {
2120 		if (acthd >= request_start && acthd < request_end)
2121 			return true;
2122 	} else if (request_start > request_end) {
2123 		if (acthd >= request_start || acthd < request_end)
2124 			return true;
2125 	}
2126 
2127 	return false;
2128 }
2129 
2130 static bool i915_request_guilty(struct drm_i915_gem_request *request,
2131 				const u32 acthd, bool *inside)
2132 {
2133 	/* There is a possibility that unmasked head address
2134 	 * pointing inside the ring, matches the batch_obj address range.
2135 	 * However this is extremely unlikely.
2136 	 */
2137 
2138 	if (request->batch_obj) {
2139 		if (i915_head_inside_object(acthd, request->batch_obj)) {
2140 			*inside = true;
2141 			return true;
2142 		}
2143 	}
2144 
2145 	if (i915_head_inside_request(acthd, request->head, request->tail)) {
2146 		*inside = false;
2147 		return true;
2148 	}
2149 
2150 	return false;
2151 }
2152 
2153 static void i915_set_reset_status(struct intel_ring_buffer *ring,
2154 				  struct drm_i915_gem_request *request,
2155 				  u32 acthd)
2156 {
2157 	struct i915_ctx_hang_stats *hs = NULL;
2158 	bool inside, guilty;
2159 
2160 	/* Innocent until proven guilty */
2161 	guilty = false;
2162 
2163 	if (ring->hangcheck.action != wait &&
2164 	    i915_request_guilty(request, acthd, &inside)) {
2165 		DRM_ERROR("%s hung %s bo (0x%x ctx %d) at 0x%x\n",
2166 			  ring->name,
2167 			  inside ? "inside" : "flushing",
2168 			  request->batch_obj ?
2169 			  request->batch_obj->gtt_offset : 0,
2170 			  request->ctx ? request->ctx->id : 0,
2171 			  acthd);
2172 
2173 		guilty = true;
2174 	}
2175 
2176 	/* If contexts are disabled or this is the default context, use
2177 	 * file_priv->reset_state
2178 	 */
2179 	if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2180 		hs = &request->ctx->hang_stats;
2181 	else if (request->file_priv)
2182 		hs = &request->file_priv->hang_stats;
2183 
2184 	if (hs) {
2185 		if (guilty)
2186 			hs->batch_active++;
2187 		else
2188 			hs->batch_pending++;
2189 	}
2190 }
2191 
2192 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2193 {
2194 	list_del(&request->list);
2195 	i915_gem_request_remove_from_client(request);
2196 
2197 	if (request->ctx)
2198 		i915_gem_context_unreference(request->ctx);
2199 
2200 	kfree(request);
2201 }
2202 
2203 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2204 				      struct intel_ring_buffer *ring)
2205 {
2206 	u32 completed_seqno;
2207 	u32 acthd;
2208 
2209 	acthd = intel_ring_get_active_head(ring);
2210 	completed_seqno = ring->get_seqno(ring, false);
2211 
2212 	while (!list_empty(&ring->request_list)) {
2213 		struct drm_i915_gem_request *request;
2214 
2215 		request = list_first_entry(&ring->request_list,
2216 					   struct drm_i915_gem_request,
2217 					   list);
2218 
2219 		if (request->seqno > completed_seqno)
2220 			i915_set_reset_status(ring, request, acthd);
2221 
2222 		i915_gem_free_request(request);
2223 	}
2224 
2225 	while (!list_empty(&ring->active_list)) {
2226 		struct drm_i915_gem_object *obj;
2227 
2228 		obj = list_first_entry(&ring->active_list,
2229 				       struct drm_i915_gem_object,
2230 				       ring_list);
2231 
2232 		i915_gem_object_move_to_inactive(obj);
2233 	}
2234 }
2235 
2236 void i915_gem_restore_fences(struct drm_device *dev)
2237 {
2238 	struct drm_i915_private *dev_priv = dev->dev_private;
2239 	int i;
2240 
2241 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2242 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2243 
2244 		/*
2245 		 * Commit delayed tiling changes if we have an object still
2246 		 * attached to the fence, otherwise just clear the fence.
2247 		 */
2248 		if (reg->obj) {
2249 			i915_gem_object_update_fence(reg->obj, reg,
2250 						     reg->obj->tiling_mode);
2251 		} else {
2252 			i915_gem_write_fence(dev, i, NULL);
2253 		}
2254 	}
2255 }
2256 
2257 void i915_gem_reset(struct drm_device *dev)
2258 {
2259 	struct drm_i915_private *dev_priv = dev->dev_private;
2260 	struct drm_i915_gem_object *obj;
2261 	struct intel_ring_buffer *ring;
2262 	int i;
2263 
2264 	for_each_ring(ring, dev_priv, i)
2265 		i915_gem_reset_ring_lists(dev_priv, ring);
2266 
2267 	/* Move everything out of the GPU domains to ensure we do any
2268 	 * necessary invalidation upon reuse.
2269 	 */
2270 	list_for_each_entry(obj,
2271 			    &dev_priv->mm.inactive_list,
2272 			    mm_list)
2273 	{
2274 		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2275 	}
2276 
2277 	i915_gem_restore_fences(dev);
2278 }
2279 
2280 /**
2281  * This function clears the request list as sequence numbers are passed.
2282  */
2283 void
2284 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2285 {
2286 	uint32_t seqno;
2287 
2288 	if (list_empty(&ring->request_list))
2289 		return;
2290 
2291 	WARN_ON(i915_verify_lists(ring->dev));
2292 
2293 	seqno = ring->get_seqno(ring, true);
2294 
2295 	while (!list_empty(&ring->request_list)) {
2296 		struct drm_i915_gem_request *request;
2297 
2298 		request = list_first_entry(&ring->request_list,
2299 					   struct drm_i915_gem_request,
2300 					   list);
2301 
2302 		if (!i915_seqno_passed(seqno, request->seqno))
2303 			break;
2304 
2305 		trace_i915_gem_request_retire(ring, request->seqno);
2306 		/* We know the GPU must have read the request to have
2307 		 * sent us the seqno + interrupt, so use the position
2308 		 * of tail of the request to update the last known position
2309 		 * of the GPU head.
2310 		 */
2311 		ring->last_retired_head = request->tail;
2312 
2313 		i915_gem_free_request(request);
2314 	}
2315 
2316 	/* Move any buffers on the active list that are no longer referenced
2317 	 * by the ringbuffer to the flushing/inactive lists as appropriate.
2318 	 */
2319 	while (!list_empty(&ring->active_list)) {
2320 		struct drm_i915_gem_object *obj;
2321 
2322 		obj = list_first_entry(&ring->active_list,
2323 				      struct drm_i915_gem_object,
2324 				      ring_list);
2325 
2326 		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2327 			break;
2328 
2329 		i915_gem_object_move_to_inactive(obj);
2330 	}
2331 
2332 	if (unlikely(ring->trace_irq_seqno &&
2333 		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2334 		ring->irq_put(ring);
2335 		ring->trace_irq_seqno = 0;
2336 	}
2337 
2338 }
2339 
2340 void
2341 i915_gem_retire_requests(struct drm_device *dev)
2342 {
2343 	drm_i915_private_t *dev_priv = dev->dev_private;
2344 	struct intel_ring_buffer *ring;
2345 	int i;
2346 
2347 	for_each_ring(ring, dev_priv, i)
2348 		i915_gem_retire_requests_ring(ring);
2349 }
2350 
2351 static void
2352 i915_gem_retire_work_handler(struct work_struct *work)
2353 {
2354 	drm_i915_private_t *dev_priv;
2355 	struct drm_device *dev;
2356 	struct intel_ring_buffer *ring;
2357 	bool idle;
2358 	int i;
2359 
2360 	dev_priv = container_of(work, drm_i915_private_t,
2361 				mm.retire_work.work);
2362 	dev = dev_priv->dev;
2363 
2364 	/* Come back later if the device is busy... */
2365 	if (lockmgr(&dev->struct_mutex, LK_EXCLUSIVE|LK_NOWAIT)) {
2366 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2367 				   round_jiffies_up_relative(hz));
2368 		return;
2369 	}
2370 
2371 	i915_gem_retire_requests(dev);
2372 
2373 	/* Send a periodic flush down the ring so we don't hold onto GEM
2374 	 * objects indefinitely.
2375 	 */
2376 	idle = true;
2377 	for_each_ring(ring, dev_priv, i) {
2378 		if (ring->gpu_caches_dirty)
2379 			i915_add_request(ring, NULL);
2380 
2381 		idle &= list_empty(&ring->request_list);
2382 	}
2383 
2384 	if (!dev_priv->mm.suspended && !idle)
2385 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2386 				   round_jiffies_up_relative(hz));
2387 	if (idle)
2388 		intel_mark_idle(dev);
2389 
2390 	mutex_unlock(&dev->struct_mutex);
2391 }
2392 /**
2393  * Ensures that an object will eventually get non-busy by flushing any required
2394  * write domains, emitting any outstanding lazy request and retiring and
2395  * completed requests.
2396  */
2397 static int
2398 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2399 {
2400 	int ret;
2401 
2402 	if (obj->active) {
2403 		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2404 		if (ret)
2405 			return ret;
2406 
2407 		i915_gem_retire_requests_ring(obj->ring);
2408 	}
2409 
2410 	return 0;
2411 }
2412 
2413 /**
2414  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2415  * @DRM_IOCTL_ARGS: standard ioctl arguments
2416  *
2417  * Returns 0 if successful, else an error is returned with the remaining time in
2418  * the timeout parameter.
2419  *  -ETIME: object is still busy after timeout
2420  *  -ERESTARTSYS: signal interrupted the wait
2421  *  -ENONENT: object doesn't exist
2422  * Also possible, but rare:
2423  *  -EAGAIN: GPU wedged
2424  *  -ENOMEM: damn
2425  *  -ENODEV: Internal IRQ fail
2426  *  -E?: The add request failed
2427  *
2428  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2429  * non-zero timeout parameter the wait ioctl will wait for the given number of
2430  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2431  * without holding struct_mutex the object may become re-busied before this
2432  * function completes. A similar but shorter * race condition exists in the busy
2433  * ioctl
2434  */
2435 int
2436 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2437 {
2438 	drm_i915_private_t *dev_priv = dev->dev_private;
2439 	struct drm_i915_gem_wait *args = data;
2440 	struct drm_i915_gem_object *obj;
2441 	struct intel_ring_buffer *ring = NULL;
2442 	struct timespec timeout_stack, *timeout = NULL;
2443 	unsigned reset_counter;
2444 	u32 seqno = 0;
2445 	int ret = 0;
2446 
2447 	if (args->timeout_ns >= 0) {
2448 		timeout_stack = ns_to_timespec(args->timeout_ns);
2449 		timeout = &timeout_stack;
2450 	}
2451 
2452 	ret = i915_mutex_lock_interruptible(dev);
2453 	if (ret)
2454 		return ret;
2455 
2456 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2457 	if (&obj->base == NULL) {
2458 		mutex_unlock(&dev->struct_mutex);
2459 		return -ENOENT;
2460 	}
2461 
2462 	/* Need to make sure the object gets inactive eventually. */
2463 	ret = i915_gem_object_flush_active(obj);
2464 	if (ret)
2465 		goto out;
2466 
2467 	if (obj->active) {
2468 		seqno = obj->last_read_seqno;
2469 		ring = obj->ring;
2470 	}
2471 
2472 	if (seqno == 0)
2473 		 goto out;
2474 
2475 	/* Do this after OLR check to make sure we make forward progress polling
2476 	 * on this IOCTL with a 0 timeout (like busy ioctl)
2477 	 */
2478 	if (!args->timeout_ns) {
2479 		ret = -ETIMEDOUT;
2480 		goto out;
2481 	}
2482 
2483 	drm_gem_object_unreference(&obj->base);
2484 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2485 	mutex_unlock(&dev->struct_mutex);
2486 
2487 	ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2488 	if (timeout)
2489 		args->timeout_ns = timespec_to_ns(timeout);
2490 	return ret;
2491 
2492 out:
2493 	drm_gem_object_unreference(&obj->base);
2494 	mutex_unlock(&dev->struct_mutex);
2495 	return ret;
2496 }
2497 
2498 /**
2499  * i915_gem_object_sync - sync an object to a ring.
2500  *
2501  * @obj: object which may be in use on another ring.
2502  * @to: ring we wish to use the object on. May be NULL.
2503  *
2504  * This code is meant to abstract object synchronization with the GPU.
2505  * Calling with NULL implies synchronizing the object with the CPU
2506  * rather than a particular GPU ring.
2507  *
2508  * Returns 0 if successful, else propagates up the lower layer error.
2509  */
2510 int
2511 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2512 		     struct intel_ring_buffer *to)
2513 {
2514 	struct intel_ring_buffer *from = obj->ring;
2515 	u32 seqno;
2516 	int ret, idx;
2517 
2518 	if (from == NULL || to == from)
2519 		return 0;
2520 
2521 	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2522 		return i915_gem_object_wait_rendering(obj, false);
2523 
2524 	idx = intel_ring_sync_index(from, to);
2525 
2526 	seqno = obj->last_read_seqno;
2527 	if (seqno <= from->sync_seqno[idx])
2528 		return 0;
2529 
2530 	ret = i915_gem_check_olr(obj->ring, seqno);
2531 	if (ret)
2532 		return ret;
2533 
2534 	ret = to->sync_to(to, from, seqno);
2535 	if (!ret)
2536 		/* We use last_read_seqno because sync_to()
2537 		 * might have just caused seqno wrap under
2538 		 * the radar.
2539 		 */
2540 		from->sync_seqno[idx] = obj->last_read_seqno;
2541 
2542 	return ret;
2543 }
2544 
2545 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2546 {
2547 	u32 old_write_domain, old_read_domains;
2548 
2549 	/* Force a pagefault for domain tracking on next user access */
2550 	i915_gem_release_mmap(obj);
2551 
2552 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2553 		return;
2554 
2555 	/* Wait for any direct GTT access to complete */
2556 	cpu_mfence();
2557 
2558 	old_read_domains = obj->base.read_domains;
2559 	old_write_domain = obj->base.write_domain;
2560 
2561 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2562 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2563 
2564 	trace_i915_gem_object_change_domain(obj,
2565 					    old_read_domains,
2566 					    old_write_domain);
2567 }
2568 
2569 /**
2570  * Unbinds an object from the GTT aperture.
2571  */
2572 int
2573 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2574 {
2575 	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2576 	int ret;
2577 
2578 	if (obj->gtt_space == NULL)
2579 		return 0;
2580 
2581 	if (obj->pin_count)
2582 		return -EBUSY;
2583 
2584 	BUG_ON(obj->pages == NULL);
2585 
2586 	ret = i915_gem_object_finish_gpu(obj);
2587 	if (ret)
2588 		return ret;
2589 	/* Continue on if we fail due to EIO, the GPU is hung so we
2590 	 * should be safe and we need to cleanup or else we might
2591 	 * cause memory corruption through use-after-free.
2592 	 */
2593 
2594 	i915_gem_object_finish_gtt(obj);
2595 
2596 	/* Move the object to the CPU domain to ensure that
2597 	 * any possible CPU writes while it's not in the GTT
2598 	 * are flushed when we go to remap it.
2599 	 */
2600 	if (ret == 0)
2601 		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2602 	if (ret == -ERESTARTSYS)
2603 		return ret;
2604 	if (ret) {
2605 		/* In the event of a disaster, abandon all caches and
2606 		 * hope for the best.
2607 		 */
2608 		i915_gem_clflush_object(obj);
2609 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2610 	}
2611 
2612 	/* release the fence reg _after_ flushing */
2613 	ret = i915_gem_object_put_fence(obj);
2614 	if (ret)
2615 		return ret;
2616 
2617 	trace_i915_gem_object_unbind(obj);
2618 
2619 	if (obj->has_global_gtt_mapping)
2620 		i915_gem_gtt_unbind_object(obj);
2621 	if (obj->has_aliasing_ppgtt_mapping) {
2622 		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2623 		obj->has_aliasing_ppgtt_mapping = 0;
2624 	}
2625 	i915_gem_gtt_finish_object(obj);
2626 
2627 	i915_gem_object_put_pages_gtt(obj);
2628 
2629 	list_del_init(&obj->global_list);
2630 	list_del_init(&obj->mm_list);
2631 	/* Avoid an unnecessary call to unbind on rebind. */
2632 	obj->map_and_fenceable = true;
2633 
2634 	drm_mm_put_block(obj->gtt_space);
2635 	obj->gtt_space = NULL;
2636 	obj->gtt_offset = 0;
2637 
2638 	if (i915_gem_object_is_purgeable(obj))
2639 		i915_gem_object_truncate(obj);
2640 
2641 	return ret;
2642 }
2643 
2644 int i915_gpu_idle(struct drm_device *dev)
2645 {
2646 	drm_i915_private_t *dev_priv = dev->dev_private;
2647 	struct intel_ring_buffer *ring;
2648 	int ret, i;
2649 
2650 	/* Flush everything onto the inactive list. */
2651 	for_each_ring(ring, dev_priv, i) {
2652 		ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2653 		if (ret)
2654 			return ret;
2655 
2656 		ret = intel_ring_idle(ring);
2657 		if (ret)
2658 			return ret;
2659 	}
2660 
2661 	return 0;
2662 }
2663 
2664 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2665 				 struct drm_i915_gem_object *obj)
2666 {
2667 	drm_i915_private_t *dev_priv = dev->dev_private;
2668 	int fence_reg;
2669 	int fence_pitch_shift;
2670 
2671 	if (INTEL_INFO(dev)->gen >= 6) {
2672 		fence_reg = FENCE_REG_SANDYBRIDGE_0;
2673 		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2674 	} else {
2675 		fence_reg = FENCE_REG_965_0;
2676 		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2677 	}
2678 
2679 	fence_reg += reg * 8;
2680 
2681 	/* To w/a incoherency with non-atomic 64-bit register updates,
2682 	 * we split the 64-bit update into two 32-bit writes. In order
2683 	 * for a partial fence not to be evaluated between writes, we
2684 	 * precede the update with write to turn off the fence register,
2685 	 * and only enable the fence as the last step.
2686 	 *
2687 	 * For extra levels of paranoia, we make sure each step lands
2688 	 * before applying the next step.
2689 	 */
2690 	I915_WRITE(fence_reg, 0);
2691 	POSTING_READ(fence_reg);
2692 
2693 	if (obj) {
2694 		u32 size = obj->gtt_space->size;
2695 		uint64_t val;
2696 
2697 		val = (uint64_t)((obj->gtt_offset + size - 4096) &
2698 				 0xfffff000) << 32;
2699 		val |= obj->gtt_offset & 0xfffff000;
2700 		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2701 		if (obj->tiling_mode == I915_TILING_Y)
2702 			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2703 		val |= I965_FENCE_REG_VALID;
2704 
2705 		I915_WRITE(fence_reg + 4, val >> 32);
2706 		POSTING_READ(fence_reg + 4);
2707 
2708 		I915_WRITE(fence_reg + 0, val);
2709 		POSTING_READ(fence_reg);
2710 	} else {
2711 		I915_WRITE(fence_reg + 4, 0);
2712 		POSTING_READ(fence_reg + 4);
2713 	}
2714 }
2715 
2716 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2717 				 struct drm_i915_gem_object *obj)
2718 {
2719 	drm_i915_private_t *dev_priv = dev->dev_private;
2720 	u32 val;
2721 
2722 	if (obj) {
2723 		u32 size = obj->gtt_space->size;
2724 		int pitch_val;
2725 		int tile_width;
2726 
2727 		WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2728 		     (size & -size) != size ||
2729 		     (obj->gtt_offset & (size - 1)),
2730 		     "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2731 		     obj->gtt_offset, obj->map_and_fenceable, size);
2732 
2733 		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2734 			tile_width = 128;
2735 		else
2736 			tile_width = 512;
2737 
2738 		/* Note: pitch better be a power of two tile widths */
2739 		pitch_val = obj->stride / tile_width;
2740 		pitch_val = ffs(pitch_val) - 1;
2741 
2742 		val = obj->gtt_offset;
2743 		if (obj->tiling_mode == I915_TILING_Y)
2744 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2745 		val |= I915_FENCE_SIZE_BITS(size);
2746 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2747 		val |= I830_FENCE_REG_VALID;
2748 	} else
2749 		val = 0;
2750 
2751 	if (reg < 8)
2752 		reg = FENCE_REG_830_0 + reg * 4;
2753 	else
2754 		reg = FENCE_REG_945_8 + (reg - 8) * 4;
2755 
2756 	I915_WRITE(reg, val);
2757 	POSTING_READ(reg);
2758 }
2759 
2760 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2761 				struct drm_i915_gem_object *obj)
2762 {
2763 	drm_i915_private_t *dev_priv = dev->dev_private;
2764 	uint32_t val;
2765 
2766 	if (obj) {
2767 		u32 size = obj->gtt_space->size;
2768 		uint32_t pitch_val;
2769 
2770 		WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2771 		     (size & -size) != size ||
2772 		     (obj->gtt_offset & (size - 1)),
2773 		     "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2774 		     obj->gtt_offset, size);
2775 
2776 		pitch_val = obj->stride / 128;
2777 		pitch_val = ffs(pitch_val) - 1;
2778 
2779 		val = obj->gtt_offset;
2780 		if (obj->tiling_mode == I915_TILING_Y)
2781 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2782 		val |= I830_FENCE_SIZE_BITS(size);
2783 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2784 		val |= I830_FENCE_REG_VALID;
2785 	} else
2786 		val = 0;
2787 
2788 	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2789 	POSTING_READ(FENCE_REG_830_0 + reg * 4);
2790 }
2791 
2792 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2793 {
2794 	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2795 }
2796 
2797 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2798 				 struct drm_i915_gem_object *obj)
2799 {
2800 	struct drm_i915_private *dev_priv = dev->dev_private;
2801 
2802 	/* Ensure that all CPU reads are completed before installing a fence
2803 	 * and all writes before removing the fence.
2804 	 */
2805 	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2806 		cpu_mfence();
2807 
2808 	WARN(obj && (!obj->stride || !obj->tiling_mode),
2809 	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2810 	     obj->stride, obj->tiling_mode);
2811 
2812 	switch (INTEL_INFO(dev)->gen) {
2813 	case 7:
2814 	case 6:
2815 	case 5:
2816 	case 4: i965_write_fence_reg(dev, reg, obj); break;
2817 	case 3: i915_write_fence_reg(dev, reg, obj); break;
2818 	case 2: i830_write_fence_reg(dev, reg, obj); break;
2819 	default: BUG();
2820 	}
2821 
2822 	/* And similarly be paranoid that no direct access to this region
2823 	 * is reordered to before the fence is installed.
2824 	 */
2825 	if (i915_gem_object_needs_mb(obj))
2826 		cpu_mfence();
2827 }
2828 
2829 static inline int fence_number(struct drm_i915_private *dev_priv,
2830 			       struct drm_i915_fence_reg *fence)
2831 {
2832 	return fence - dev_priv->fence_regs;
2833 }
2834 
2835 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2836 					 struct drm_i915_fence_reg *fence,
2837 					 bool enable)
2838 {
2839 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2840 	int reg = fence_number(dev_priv, fence);
2841 
2842 	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2843 
2844 	if (enable) {
2845 		obj->fence_reg = reg;
2846 		fence->obj = obj;
2847 		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2848 	} else {
2849 		obj->fence_reg = I915_FENCE_REG_NONE;
2850 		fence->obj = NULL;
2851 		list_del_init(&fence->lru_list);
2852 	}
2853 	obj->fence_dirty = false;
2854 }
2855 
2856 static int
2857 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2858 {
2859 	if (obj->last_fenced_seqno) {
2860 		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2861 		if (ret)
2862 			return ret;
2863 
2864 		obj->last_fenced_seqno = 0;
2865 	}
2866 
2867 	obj->fenced_gpu_access = false;
2868 	return 0;
2869 }
2870 
2871 int
2872 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2873 {
2874 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2875 	struct drm_i915_fence_reg *fence;
2876 	int ret;
2877 
2878 	ret = i915_gem_object_wait_fence(obj);
2879 	if (ret)
2880 		return ret;
2881 
2882 	if (obj->fence_reg == I915_FENCE_REG_NONE)
2883 		return 0;
2884 
2885 	fence = &dev_priv->fence_regs[obj->fence_reg];
2886 
2887 	i915_gem_object_fence_lost(obj);
2888 	i915_gem_object_update_fence(obj, fence, false);
2889 
2890 	return 0;
2891 }
2892 
2893 static struct drm_i915_fence_reg *
2894 i915_find_fence_reg(struct drm_device *dev)
2895 {
2896 	struct drm_i915_private *dev_priv = dev->dev_private;
2897 	struct drm_i915_fence_reg *reg, *avail;
2898 	int i;
2899 
2900 	/* First try to find a free reg */
2901 	avail = NULL;
2902 	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2903 		reg = &dev_priv->fence_regs[i];
2904 		if (!reg->obj)
2905 			return reg;
2906 
2907 		if (!reg->pin_count)
2908 			avail = reg;
2909 	}
2910 
2911 	if (avail == NULL)
2912 		return NULL;
2913 
2914 	/* None available, try to steal one or wait for a user to finish */
2915 	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2916 		if (reg->pin_count)
2917 			continue;
2918 
2919 		return reg;
2920 	}
2921 
2922 	return NULL;
2923 }
2924 
2925 /**
2926  * i915_gem_object_get_fence - set up fencing for an object
2927  * @obj: object to map through a fence reg
2928  *
2929  * When mapping objects through the GTT, userspace wants to be able to write
2930  * to them without having to worry about swizzling if the object is tiled.
2931  * This function walks the fence regs looking for a free one for @obj,
2932  * stealing one if it can't find any.
2933  *
2934  * It then sets up the reg based on the object's properties: address, pitch
2935  * and tiling format.
2936  *
2937  * For an untiled surface, this removes any existing fence.
2938  */
2939 int
2940 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2941 {
2942 	struct drm_device *dev = obj->base.dev;
2943 	struct drm_i915_private *dev_priv = dev->dev_private;
2944 	bool enable = obj->tiling_mode != I915_TILING_NONE;
2945 	struct drm_i915_fence_reg *reg;
2946 	int ret;
2947 
2948 	/* Have we updated the tiling parameters upon the object and so
2949 	 * will need to serialise the write to the associated fence register?
2950 	 */
2951 	if (obj->fence_dirty) {
2952 		ret = i915_gem_object_wait_fence(obj);
2953 		if (ret)
2954 			return ret;
2955 	}
2956 
2957 	/* Just update our place in the LRU if our fence is getting reused. */
2958 	if (obj->fence_reg != I915_FENCE_REG_NONE) {
2959 		reg = &dev_priv->fence_regs[obj->fence_reg];
2960 		if (!obj->fence_dirty) {
2961 			list_move_tail(&reg->lru_list,
2962 				       &dev_priv->mm.fence_list);
2963 			return 0;
2964 		}
2965 	} else if (enable) {
2966 		reg = i915_find_fence_reg(dev);
2967 		if (reg == NULL)
2968 			return -EDEADLK;
2969 
2970 		if (reg->obj) {
2971 			struct drm_i915_gem_object *old = reg->obj;
2972 
2973 			ret = i915_gem_object_wait_fence(old);
2974 			if (ret)
2975 				return ret;
2976 
2977 			i915_gem_object_fence_lost(old);
2978 		}
2979 	} else
2980 		return 0;
2981 
2982 	i915_gem_object_update_fence(obj, reg, enable);
2983 
2984 	return 0;
2985 }
2986 
2987 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2988 				     struct drm_mm_node *gtt_space,
2989 				     unsigned long cache_level)
2990 {
2991 	struct drm_mm_node *other;
2992 
2993 	/* On non-LLC machines we have to be careful when putting differing
2994 	 * types of snoopable memory together to avoid the prefetcher
2995 	 * crossing memory domains and dying.
2996 	 */
2997 	if (HAS_LLC(dev))
2998 		return true;
2999 
3000 	if (gtt_space == NULL)
3001 		return true;
3002 
3003 	if (list_empty(&gtt_space->node_list))
3004 		return true;
3005 
3006 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3007 	if (other->allocated && !other->hole_follows && other->color != cache_level)
3008 		return false;
3009 
3010 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3011 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3012 		return false;
3013 
3014 	return true;
3015 }
3016 
3017 static void i915_gem_verify_gtt(struct drm_device *dev)
3018 {
3019 #if WATCH_GTT
3020 	struct drm_i915_private *dev_priv = dev->dev_private;
3021 	struct drm_i915_gem_object *obj;
3022 	int err = 0;
3023 
3024 	list_for_each_entry(obj, &dev_priv->mm.global_list, global_list) {
3025 		if (obj->gtt_space == NULL) {
3026 			printk(KERN_ERR "object found on GTT list with no space reserved\n");
3027 			err++;
3028 			continue;
3029 		}
3030 
3031 		if (obj->cache_level != obj->gtt_space->color) {
3032 			printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3033 			       obj->gtt_space->start,
3034 			       obj->gtt_space->start + obj->gtt_space->size,
3035 			       obj->cache_level,
3036 			       obj->gtt_space->color);
3037 			err++;
3038 			continue;
3039 		}
3040 
3041 		if (!i915_gem_valid_gtt_space(dev,
3042 					      obj->gtt_space,
3043 					      obj->cache_level)) {
3044 			printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3045 			       obj->gtt_space->start,
3046 			       obj->gtt_space->start + obj->gtt_space->size,
3047 			       obj->cache_level);
3048 			err++;
3049 			continue;
3050 		}
3051 	}
3052 
3053 	WARN_ON(err);
3054 #endif
3055 }
3056 
3057 /**
3058  * Finds free space in the GTT aperture and binds the object there.
3059  */
3060 static int
3061 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
3062 			    unsigned alignment,
3063 			    bool map_and_fenceable,
3064 			    bool nonblocking)
3065 {
3066 	struct drm_device *dev = obj->base.dev;
3067 	drm_i915_private_t *dev_priv = dev->dev_private;
3068 	struct drm_mm_node *node;
3069 	u32 size, fence_size, fence_alignment, unfenced_alignment;
3070 	bool mappable, fenceable;
3071 	size_t gtt_max = map_and_fenceable ?
3072 		dev_priv->gtt.mappable_end : dev_priv->gtt.total;
3073 	int ret;
3074 
3075 	fence_size = i915_gem_get_gtt_size(dev,
3076 					   obj->base.size,
3077 					   obj->tiling_mode);
3078 	fence_alignment = i915_gem_get_gtt_alignment(dev,
3079 						     obj->base.size,
3080 						     obj->tiling_mode, true);
3081 	unfenced_alignment =
3082 		i915_gem_get_gtt_alignment(dev,
3083 						    obj->base.size,
3084 						    obj->tiling_mode, false);
3085 
3086 	if (alignment == 0)
3087 		alignment = map_and_fenceable ? fence_alignment :
3088 						unfenced_alignment;
3089 	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3090 		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3091 		return -EINVAL;
3092 	}
3093 
3094 	size = map_and_fenceable ? fence_size : obj->base.size;
3095 
3096 	/* If the object is bigger than the entire aperture, reject it early
3097 	 * before evicting everything in a vain attempt to find space.
3098 	 */
3099 	if (obj->base.size > gtt_max) {
3100 		DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3101 			  obj->base.size,
3102 			  map_and_fenceable ? "mappable" : "total",
3103 			  gtt_max);
3104 		return -E2BIG;
3105 	}
3106 
3107  search_free:
3108 	if (map_and_fenceable)
3109 		node = drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
3110 							  size, alignment, obj->cache_level,
3111 							  0, dev_priv->gtt.mappable_end,
3112 							  false);
3113 	else
3114 		node = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
3115 						      size, alignment, obj->cache_level,
3116 						      false);
3117 	if (node != NULL) {
3118 		if (map_and_fenceable)
3119 			obj->gtt_space =
3120 				drm_mm_get_block_range_generic(node,
3121 							       size, alignment, obj->cache_level,
3122 							       0, dev_priv->gtt.mappable_end,
3123 							       false);
3124 		else
3125 			obj->gtt_space =
3126 				drm_mm_get_block_generic(node,
3127 							 size, alignment, obj->cache_level,
3128 							 false);
3129 	}
3130 	if (obj->gtt_space == NULL) {
3131 		ret = i915_gem_evict_something(dev, size, alignment,
3132 					       obj->cache_level,
3133 					       map_and_fenceable,
3134 					       nonblocking);
3135 		if (ret)
3136 			return ret;
3137 
3138 		goto search_free;
3139 	}
3140 
3141 	/*
3142 	 * NOTE: i915_gem_object_get_pages_gtt() cannot
3143 	 *	 return ENOMEM, since we used VM_ALLOC_RETRY.
3144 	 */
3145 	ret = i915_gem_object_get_pages_gtt(obj);
3146 	if (ret != 0) {
3147 		drm_mm_put_block(obj->gtt_space);
3148 		obj->gtt_space = NULL;
3149 		return ret;
3150 	}
3151 
3152 	i915_gem_gtt_bind_object(obj, obj->cache_level);
3153 	if (ret != 0) {
3154 		i915_gem_object_put_pages_gtt(obj);
3155 		drm_mm_put_block(obj->gtt_space);
3156 		obj->gtt_space = NULL;
3157 		if (i915_gem_evict_everything(dev))
3158 			return (ret);
3159 		goto search_free;
3160 	}
3161 
3162 	list_add_tail(&obj->global_list, &dev_priv->mm.bound_list);
3163 	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3164 
3165 	obj->gtt_offset = obj->gtt_space->start;
3166 
3167 	fenceable =
3168 		obj->gtt_space->size == fence_size &&
3169 		(obj->gtt_space->start & (fence_alignment - 1)) == 0;
3170 
3171 	mappable =
3172 		obj->gtt_offset + obj->base.size <= dev_priv->gtt.mappable_end;
3173 
3174 	obj->map_and_fenceable = mappable && fenceable;
3175 
3176 	trace_i915_gem_object_bind(obj, map_and_fenceable);
3177 	i915_gem_verify_gtt(dev);
3178 	return 0;
3179 }
3180 
3181 void
3182 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3183 {
3184 
3185 	/* If we don't have a page list set up, then we're not pinned
3186 	 * to GPU, and we can ignore the cache flush because it'll happen
3187 	 * again at bind time.
3188 	 */
3189 	if (obj->pages == NULL)
3190 		return;
3191 
3192 	/*
3193 	 * Stolen memory is always coherent with the GPU as it is explicitly
3194 	 * marked as wc by the system, or the system is cache-coherent.
3195 	 */
3196 	if (obj->stolen)
3197 		return;
3198 
3199 	/* If the GPU is snooping the contents of the CPU cache,
3200 	 * we do not need to manually clear the CPU cache lines.  However,
3201 	 * the caches are only snooped when the render cache is
3202 	 * flushed/invalidated.  As we always have to emit invalidations
3203 	 * and flushes when moving into and out of the RENDER domain, correct
3204 	 * snooping behaviour occurs naturally as the result of our domain
3205 	 * tracking.
3206 	 */
3207 	if (obj->cache_level != I915_CACHE_NONE)
3208 		return;
3209 
3210 	trace_i915_gem_object_clflush(obj);
3211 
3212 	drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
3213 }
3214 
3215 /** Flushes the GTT write domain for the object if it's dirty. */
3216 static void
3217 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3218 {
3219 	uint32_t old_write_domain;
3220 
3221 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3222 		return;
3223 
3224 	/* No actual flushing is required for the GTT write domain.  Writes
3225 	 * to it immediately go to main memory as far as we know, so there's
3226 	 * no chipset flush.  It also doesn't land in render cache.
3227 	 *
3228 	 * However, we do have to enforce the order so that all writes through
3229 	 * the GTT land before any writes to the device, such as updates to
3230 	 * the GATT itself.
3231 	 */
3232 	cpu_sfence();
3233 
3234 	old_write_domain = obj->base.write_domain;
3235 	obj->base.write_domain = 0;
3236 
3237 	trace_i915_gem_object_change_domain(obj,
3238 					    obj->base.read_domains,
3239 					    old_write_domain);
3240 }
3241 
3242 /** Flushes the CPU write domain for the object if it's dirty. */
3243 static void
3244 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3245 {
3246 	uint32_t old_write_domain;
3247 
3248 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3249 		return;
3250 
3251 	i915_gem_clflush_object(obj);
3252 	i915_gem_chipset_flush(obj->base.dev);
3253 	old_write_domain = obj->base.write_domain;
3254 	obj->base.write_domain = 0;
3255 
3256 	trace_i915_gem_object_change_domain(obj,
3257 					    obj->base.read_domains,
3258 					    old_write_domain);
3259 }
3260 
3261 /**
3262  * Moves a single object to the GTT read, and possibly write domain.
3263  *
3264  * This function returns when the move is complete, including waiting on
3265  * flushes to occur.
3266  */
3267 int
3268 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3269 {
3270 	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3271 	uint32_t old_write_domain, old_read_domains;
3272 	int ret;
3273 
3274 	/* Not valid to be called on unbound objects. */
3275 	if (obj->gtt_space == NULL)
3276 		return -EINVAL;
3277 
3278 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3279 		return 0;
3280 
3281 	ret = i915_gem_object_wait_rendering(obj, !write);
3282 	if (ret)
3283 		return ret;
3284 
3285 	i915_gem_object_flush_cpu_write_domain(obj);
3286 
3287 	/* Serialise direct access to this object with the barriers for
3288 	 * coherent writes from the GPU, by effectively invalidating the
3289 	 * GTT domain upon first access.
3290 	 */
3291 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3292 		cpu_mfence();
3293 
3294 	old_write_domain = obj->base.write_domain;
3295 	old_read_domains = obj->base.read_domains;
3296 
3297 	/* It should now be out of any other write domains, and we can update
3298 	 * the domain values for our changes.
3299 	 */
3300 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3301 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3302 	if (write) {
3303 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3304 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3305 		obj->dirty = 1;
3306 	}
3307 
3308 	trace_i915_gem_object_change_domain(obj,
3309 					    old_read_domains,
3310 					    old_write_domain);
3311 
3312 	/* And bump the LRU for this access */
3313 	if (i915_gem_object_is_inactive(obj))
3314 		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3315 
3316 	return 0;
3317 }
3318 
3319 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3320 				    enum i915_cache_level cache_level)
3321 {
3322 	struct drm_device *dev = obj->base.dev;
3323 	drm_i915_private_t *dev_priv = dev->dev_private;
3324 	int ret;
3325 
3326 	if (obj->cache_level == cache_level)
3327 		return 0;
3328 
3329 	if (obj->pin_count) {
3330 		DRM_DEBUG("can not change the cache level of pinned objects\n");
3331 		return -EBUSY;
3332 	}
3333 
3334 	if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3335 		ret = i915_gem_object_unbind(obj);
3336 		if (ret)
3337 			return ret;
3338 	}
3339 
3340 	if (obj->gtt_space) {
3341 		ret = i915_gem_object_finish_gpu(obj);
3342 		if (ret)
3343 			return ret;
3344 
3345 		i915_gem_object_finish_gtt(obj);
3346 
3347 		/* Before SandyBridge, you could not use tiling or fence
3348 		 * registers with snooped memory, so relinquish any fences
3349 		 * currently pointing to our region in the aperture.
3350 		 */
3351 		if (INTEL_INFO(dev)->gen < 6) {
3352 			ret = i915_gem_object_put_fence(obj);
3353 			if (ret)
3354 				return ret;
3355 		}
3356 
3357 		if (obj->has_global_gtt_mapping)
3358 			i915_gem_gtt_bind_object(obj, cache_level);
3359 		if (obj->has_aliasing_ppgtt_mapping)
3360 			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3361 					       obj, cache_level);
3362 
3363 		obj->gtt_space->color = cache_level;
3364 	}
3365 
3366 	if (cache_level == I915_CACHE_NONE) {
3367 		u32 old_read_domains, old_write_domain;
3368 
3369 		/* If we're coming from LLC cached, then we haven't
3370 		 * actually been tracking whether the data is in the
3371 		 * CPU cache or not, since we only allow one bit set
3372 		 * in obj->write_domain and have been skipping the clflushes.
3373 		 * Just set it to the CPU cache for now.
3374 		 */
3375 		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3376 		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3377 
3378 		old_read_domains = obj->base.read_domains;
3379 		old_write_domain = obj->base.write_domain;
3380 
3381 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3382 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3383 
3384 		trace_i915_gem_object_change_domain(obj,
3385 						    old_read_domains,
3386 						    old_write_domain);
3387 	}
3388 
3389 	obj->cache_level = cache_level;
3390 	i915_gem_verify_gtt(dev);
3391 	return 0;
3392 }
3393 
3394 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3395 			       struct drm_file *file)
3396 {
3397 	struct drm_i915_gem_caching *args = data;
3398 	struct drm_i915_gem_object *obj;
3399 	int ret;
3400 
3401 	ret = i915_mutex_lock_interruptible(dev);
3402 	if (ret)
3403 		return ret;
3404 
3405 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3406 	if (&obj->base == NULL) {
3407 		ret = -ENOENT;
3408 		goto unlock;
3409 	}
3410 
3411 	args->caching = obj->cache_level != I915_CACHE_NONE;
3412 
3413 	drm_gem_object_unreference(&obj->base);
3414 unlock:
3415 	mutex_unlock(&dev->struct_mutex);
3416 	return ret;
3417 }
3418 
3419 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3420 			       struct drm_file *file)
3421 {
3422 	struct drm_i915_gem_caching *args = data;
3423 	struct drm_i915_gem_object *obj;
3424 	enum i915_cache_level level;
3425 	int ret;
3426 
3427 	switch (args->caching) {
3428 	case I915_CACHING_NONE:
3429 		level = I915_CACHE_NONE;
3430 		break;
3431 	case I915_CACHING_CACHED:
3432 		level = I915_CACHE_LLC;
3433 		break;
3434 	default:
3435 		return -EINVAL;
3436 	}
3437 
3438 	ret = i915_mutex_lock_interruptible(dev);
3439 	if (ret)
3440 		return ret;
3441 
3442 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3443 	if (&obj->base == NULL) {
3444 		ret = -ENOENT;
3445 		goto unlock;
3446 	}
3447 
3448 	ret = i915_gem_object_set_cache_level(obj, level);
3449 
3450 	drm_gem_object_unreference(&obj->base);
3451 unlock:
3452 	mutex_unlock(&dev->struct_mutex);
3453 	return ret;
3454 }
3455 
3456 /*
3457  * Prepare buffer for display plane (scanout, cursors, etc).
3458  * Can be called from an uninterruptible phase (modesetting) and allows
3459  * any flushes to be pipelined (for pageflips).
3460  */
3461 int
3462 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3463 				     u32 alignment,
3464 				     struct intel_ring_buffer *pipelined)
3465 {
3466 	u32 old_read_domains, old_write_domain;
3467 	int ret;
3468 
3469 	if (pipelined != obj->ring) {
3470 		ret = i915_gem_object_sync(obj, pipelined);
3471 		if (ret)
3472 			return ret;
3473 	}
3474 
3475 	/* The display engine is not coherent with the LLC cache on gen6.  As
3476 	 * a result, we make sure that the pinning that is about to occur is
3477 	 * done with uncached PTEs. This is lowest common denominator for all
3478 	 * chipsets.
3479 	 *
3480 	 * However for gen6+, we could do better by using the GFDT bit instead
3481 	 * of uncaching, which would allow us to flush all the LLC-cached data
3482 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3483 	 */
3484 	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3485 	if (ret)
3486 		return ret;
3487 
3488 	/* As the user may map the buffer once pinned in the display plane
3489 	 * (e.g. libkms for the bootup splash), we have to ensure that we
3490 	 * always use map_and_fenceable for all scanout buffers.
3491 	 */
3492 	ret = i915_gem_object_pin(obj, alignment, true, false);
3493 	if (ret)
3494 		return ret;
3495 
3496 	i915_gem_object_flush_cpu_write_domain(obj);
3497 
3498 	old_write_domain = obj->base.write_domain;
3499 	old_read_domains = obj->base.read_domains;
3500 
3501 	/* It should now be out of any other write domains, and we can update
3502 	 * the domain values for our changes.
3503 	 */
3504 	obj->base.write_domain = 0;
3505 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3506 
3507 	trace_i915_gem_object_change_domain(obj,
3508 					    old_read_domains,
3509 					    old_write_domain);
3510 
3511 	return 0;
3512 }
3513 
3514 int
3515 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3516 {
3517 	int ret;
3518 
3519 	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3520 		return 0;
3521 
3522 	ret = i915_gem_object_wait_rendering(obj, false);
3523 	if (ret)
3524 		return ret;
3525 
3526 	/* Ensure that we invalidate the GPU's caches and TLBs. */
3527 	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3528 	return 0;
3529 }
3530 
3531 /**
3532  * Moves a single object to the CPU read, and possibly write domain.
3533  *
3534  * This function returns when the move is complete, including waiting on
3535  * flushes to occur.
3536  */
3537 int
3538 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3539 {
3540 	uint32_t old_write_domain, old_read_domains;
3541 	int ret;
3542 
3543 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3544 		return 0;
3545 
3546 	ret = i915_gem_object_wait_rendering(obj, !write);
3547 	if (ret)
3548 		return ret;
3549 
3550 	i915_gem_object_flush_gtt_write_domain(obj);
3551 
3552 	old_write_domain = obj->base.write_domain;
3553 	old_read_domains = obj->base.read_domains;
3554 
3555 	/* Flush the CPU cache if it's still invalid. */
3556 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3557 		i915_gem_clflush_object(obj);
3558 
3559 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3560 	}
3561 
3562 	/* It should now be out of any other write domains, and we can update
3563 	 * the domain values for our changes.
3564 	 */
3565 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3566 
3567 	/* If we're writing through the CPU, then the GPU read domains will
3568 	 * need to be invalidated at next use.
3569 	 */
3570 	if (write) {
3571 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3572 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3573 	}
3574 
3575 	trace_i915_gem_object_change_domain(obj,
3576 					    old_read_domains,
3577 					    old_write_domain);
3578 
3579 	return 0;
3580 }
3581 
3582 /* Throttle our rendering by waiting until the ring has completed our requests
3583  * emitted over 20 msec ago.
3584  *
3585  * Note that if we were to use the current jiffies each time around the loop,
3586  * we wouldn't escape the function with any frames outstanding if the time to
3587  * render a frame was over 20ms.
3588  *
3589  * This should get us reasonable parallelism between CPU and GPU but also
3590  * relatively low latency when blocking on a particular request to finish.
3591  */
3592 static int
3593 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3594 {
3595 	struct drm_i915_private *dev_priv = dev->dev_private;
3596 	struct drm_i915_file_private *file_priv = file->driver_priv;
3597 	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3598 	struct drm_i915_gem_request *request;
3599 	struct intel_ring_buffer *ring = NULL;
3600 	unsigned reset_counter;
3601 	u32 seqno = 0;
3602 	int ret;
3603 
3604 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3605 	if (ret)
3606 		return ret;
3607 
3608 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3609 	if (ret)
3610 		return ret;
3611 
3612 	spin_lock(&file_priv->mm.lock);
3613 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3614 		if (time_after_eq(request->emitted_jiffies, recent_enough))
3615 			break;
3616 
3617 		ring = request->ring;
3618 		seqno = request->seqno;
3619 	}
3620 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3621 	spin_unlock(&file_priv->mm.lock);
3622 
3623 	if (seqno == 0)
3624 		return 0;
3625 
3626 	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3627 	if (ret == 0)
3628 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3629 
3630 	return ret;
3631 }
3632 
3633 int
3634 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3635 		    uint32_t alignment,
3636 		    bool map_and_fenceable,
3637 		    bool nonblocking)
3638 {
3639 	int ret;
3640 
3641 	if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3642 		return -EBUSY;
3643 
3644 	if (obj->gtt_space != NULL) {
3645 		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3646 		    (map_and_fenceable && !obj->map_and_fenceable)) {
3647 			WARN(obj->pin_count,
3648 			     "bo is already pinned with incorrect alignment:"
3649 			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3650 			     " obj->map_and_fenceable=%d\n",
3651 			     obj->gtt_offset, alignment,
3652 			     map_and_fenceable,
3653 			     obj->map_and_fenceable);
3654 			ret = i915_gem_object_unbind(obj);
3655 			if (ret)
3656 				return ret;
3657 		}
3658 	}
3659 
3660 	if (obj->gtt_space == NULL) {
3661 		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3662 
3663 		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3664 						  map_and_fenceable,
3665 						  nonblocking);
3666 		if (ret)
3667 			return ret;
3668 
3669 		if (!dev_priv->mm.aliasing_ppgtt)
3670 			i915_gem_gtt_bind_object(obj, obj->cache_level);
3671 	}
3672 
3673 	if (!obj->has_global_gtt_mapping && map_and_fenceable)
3674 		i915_gem_gtt_bind_object(obj, obj->cache_level);
3675 
3676 	obj->pin_count++;
3677 	obj->pin_mappable |= map_and_fenceable;
3678 
3679 	return 0;
3680 }
3681 
3682 void
3683 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3684 {
3685 	BUG_ON(obj->pin_count == 0);
3686 	BUG_ON(obj->gtt_space == NULL);
3687 
3688 	if (--obj->pin_count == 0)
3689 		obj->pin_mappable = false;
3690 }
3691 
3692 int
3693 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3694 		   struct drm_file *file)
3695 {
3696 	struct drm_i915_gem_pin *args = data;
3697 	struct drm_i915_gem_object *obj;
3698 	int ret;
3699 
3700 	ret = i915_mutex_lock_interruptible(dev);
3701 	if (ret)
3702 		return ret;
3703 
3704 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3705 	if (&obj->base == NULL) {
3706 		ret = -ENOENT;
3707 		goto unlock;
3708 	}
3709 
3710 	if (obj->madv != I915_MADV_WILLNEED) {
3711 		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3712 		ret = -EINVAL;
3713 		goto out;
3714 	}
3715 
3716 	if (obj->pin_filp != NULL && obj->pin_filp != file) {
3717 		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3718 			  args->handle);
3719 		ret = -EINVAL;
3720 		goto out;
3721 	}
3722 
3723 	if (obj->user_pin_count == 0) {
3724 		ret = i915_gem_object_pin(obj, args->alignment, true, false);
3725 		if (ret)
3726 			goto out;
3727 	}
3728 
3729 	obj->user_pin_count++;
3730 	obj->pin_filp = file;
3731 
3732 	/* XXX - flush the CPU caches for pinned objects
3733 	 * as the X server doesn't manage domains yet
3734 	 */
3735 	i915_gem_object_flush_cpu_write_domain(obj);
3736 	args->offset = obj->gtt_offset;
3737 out:
3738 	drm_gem_object_unreference(&obj->base);
3739 unlock:
3740 	mutex_unlock(&dev->struct_mutex);
3741 	return ret;
3742 }
3743 
3744 int
3745 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3746 		     struct drm_file *file)
3747 {
3748 	struct drm_i915_gem_pin *args = data;
3749 	struct drm_i915_gem_object *obj;
3750 	int ret;
3751 
3752 	ret = i915_mutex_lock_interruptible(dev);
3753 	if (ret)
3754 		return ret;
3755 
3756 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3757 	if (&obj->base == NULL) {
3758 		ret = -ENOENT;
3759 		goto unlock;
3760 	}
3761 
3762 	if (obj->pin_filp != file) {
3763 		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3764 			  args->handle);
3765 		ret = -EINVAL;
3766 		goto out;
3767 	}
3768 	obj->user_pin_count--;
3769 	if (obj->user_pin_count == 0) {
3770 		obj->pin_filp = NULL;
3771 		i915_gem_object_unpin(obj);
3772 	}
3773 
3774 out:
3775 	drm_gem_object_unreference(&obj->base);
3776 unlock:
3777 	mutex_unlock(&dev->struct_mutex);
3778 	return ret;
3779 }
3780 
3781 int
3782 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3783 		    struct drm_file *file)
3784 {
3785 	struct drm_i915_gem_busy *args = data;
3786 	struct drm_i915_gem_object *obj;
3787 	int ret;
3788 
3789 	ret = i915_mutex_lock_interruptible(dev);
3790 	if (ret)
3791 		return ret;
3792 
3793 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3794 	if (&obj->base == NULL) {
3795 		ret = -ENOENT;
3796 		goto unlock;
3797 	}
3798 
3799 	/* Count all active objects as busy, even if they are currently not used
3800 	 * by the gpu. Users of this interface expect objects to eventually
3801 	 * become non-busy without any further actions, therefore emit any
3802 	 * necessary flushes here.
3803 	 */
3804 	ret = i915_gem_object_flush_active(obj);
3805 
3806 	args->busy = obj->active;
3807 	if (obj->ring) {
3808 		args->busy |= intel_ring_flag(obj->ring) << 16;
3809 	}
3810 
3811 	drm_gem_object_unreference(&obj->base);
3812 unlock:
3813 	mutex_unlock(&dev->struct_mutex);
3814 	return ret;
3815 }
3816 
3817 int
3818 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3819 			struct drm_file *file_priv)
3820 {
3821 	return i915_gem_ring_throttle(dev, file_priv);
3822 }
3823 
3824 int
3825 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3826 		       struct drm_file *file_priv)
3827 {
3828 	struct drm_i915_gem_madvise *args = data;
3829 	struct drm_i915_gem_object *obj;
3830 	int ret;
3831 
3832 	switch (args->madv) {
3833 	case I915_MADV_DONTNEED:
3834 	case I915_MADV_WILLNEED:
3835 	    break;
3836 	default:
3837 	    return -EINVAL;
3838 	}
3839 
3840 	ret = i915_mutex_lock_interruptible(dev);
3841 	if (ret)
3842 		return ret;
3843 
3844 	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3845 	if (&obj->base == NULL) {
3846 		ret = -ENOENT;
3847 		goto unlock;
3848 	}
3849 
3850 	if (obj->pin_count) {
3851 		ret = -EINVAL;
3852 		goto out;
3853 	}
3854 
3855 	if (obj->madv != __I915_MADV_PURGED)
3856 		obj->madv = args->madv;
3857 
3858 	/* if the object is no longer attached, discard its backing storage */
3859 	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3860 		i915_gem_object_truncate(obj);
3861 
3862 	args->retained = obj->madv != __I915_MADV_PURGED;
3863 
3864 out:
3865 	drm_gem_object_unreference(&obj->base);
3866 unlock:
3867 	mutex_unlock(&dev->struct_mutex);
3868 	return ret;
3869 }
3870 
3871 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3872 			  const struct drm_i915_gem_object_ops *ops)
3873 {
3874 	INIT_LIST_HEAD(&obj->mm_list);
3875 	INIT_LIST_HEAD(&obj->global_list);
3876 	INIT_LIST_HEAD(&obj->ring_list);
3877 	INIT_LIST_HEAD(&obj->exec_list);
3878 
3879 	obj->ops = ops;
3880 
3881 	obj->fence_reg = I915_FENCE_REG_NONE;
3882 	obj->madv = I915_MADV_WILLNEED;
3883 	/* Avoid an unnecessary call to unbind on the first bind. */
3884 	obj->map_and_fenceable = true;
3885 
3886 	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3887 }
3888 
3889 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3890 	.get_pages = i915_gem_object_get_pages_gtt,
3891 	.put_pages = i915_gem_object_put_pages_gtt,
3892 };
3893 
3894 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3895 						  size_t size)
3896 {
3897 	struct drm_i915_gem_object *obj;
3898 #if 0
3899 	struct address_space *mapping;
3900 	u32 mask;
3901 #endif
3902 
3903 	obj = kmalloc(sizeof(*obj), M_DRM, M_WAITOK | M_ZERO);
3904 	if (obj == NULL)
3905 		return NULL;
3906 
3907 	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3908 		kfree(obj);
3909 		return NULL;
3910 	}
3911 
3912 #if 0
3913 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3914 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3915 		/* 965gm cannot relocate objects above 4GiB. */
3916 		mask &= ~__GFP_HIGHMEM;
3917 		mask |= __GFP_DMA32;
3918 	}
3919 
3920 	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3921 	mapping_set_gfp_mask(mapping, mask);
3922 #endif
3923 
3924 	i915_gem_object_init(obj, &i915_gem_object_ops);
3925 
3926 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3927 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3928 
3929 	if (HAS_LLC(dev)) {
3930 		/* On some devices, we can have the GPU use the LLC (the CPU
3931 		 * cache) for about a 10% performance improvement
3932 		 * compared to uncached.  Graphics requests other than
3933 		 * display scanout are coherent with the CPU in
3934 		 * accessing this cache.  This means in this mode we
3935 		 * don't need to clflush on the CPU side, and on the
3936 		 * GPU side we only need to flush internal caches to
3937 		 * get data visible to the CPU.
3938 		 *
3939 		 * However, we maintain the display planes as UC, and so
3940 		 * need to rebind when first used as such.
3941 		 */
3942 		obj->cache_level = I915_CACHE_LLC;
3943 	} else
3944 		obj->cache_level = I915_CACHE_NONE;
3945 
3946 	return obj;
3947 }
3948 
3949 int i915_gem_init_object(struct drm_gem_object *obj)
3950 {
3951 	BUG();
3952 
3953 	return 0;
3954 }
3955 
3956 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3957 {
3958 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3959 	struct drm_device *dev = obj->base.dev;
3960 	drm_i915_private_t *dev_priv = dev->dev_private;
3961 
3962 	trace_i915_gem_object_destroy(obj);
3963 
3964 	if (obj->phys_obj)
3965 		i915_gem_detach_phys_object(dev, obj);
3966 
3967 	obj->pin_count = 0;
3968 	if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3969 		bool was_interruptible;
3970 
3971 		was_interruptible = dev_priv->mm.interruptible;
3972 		dev_priv->mm.interruptible = false;
3973 
3974 		WARN_ON(i915_gem_object_unbind(obj));
3975 
3976 		dev_priv->mm.interruptible = was_interruptible;
3977 	}
3978 
3979 	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
3980 	 * before progressing. */
3981 	if (obj->stolen)
3982 		i915_gem_object_unpin_pages(obj);
3983 
3984 	if (WARN_ON(obj->pages_pin_count))
3985 		obj->pages_pin_count = 0;
3986 	i915_gem_object_put_pages(obj);
3987 	drm_gem_free_mmap_offset(&obj->base);
3988 
3989 	BUG_ON(obj->pages);
3990 
3991 	drm_gem_object_release(&obj->base);
3992 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
3993 
3994 	kfree(obj->bit_17);
3995 	i915_gem_object_free(obj);
3996 }
3997 
3998 int
3999 i915_gem_idle(struct drm_device *dev)
4000 {
4001 	drm_i915_private_t *dev_priv = dev->dev_private;
4002 	int ret;
4003 
4004 	mutex_lock(&dev->struct_mutex);
4005 
4006 	if (dev_priv->mm.suspended) {
4007 		mutex_unlock(&dev->struct_mutex);
4008 		return 0;
4009 	}
4010 
4011 	ret = i915_gpu_idle(dev);
4012 	if (ret) {
4013 		mutex_unlock(&dev->struct_mutex);
4014 		return ret;
4015 	}
4016 	i915_gem_retire_requests(dev);
4017 
4018 	/* Under UMS, be paranoid and evict. */
4019 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4020 		i915_gem_evict_everything(dev);
4021 
4022 	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
4023 	 * We need to replace this with a semaphore, or something.
4024 	 * And not confound mm.suspended!
4025 	 */
4026 	dev_priv->mm.suspended = 1;
4027 	del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4028 
4029 	i915_kernel_lost_context(dev);
4030 	i915_gem_cleanup_ringbuffer(dev);
4031 
4032 	mutex_unlock(&dev->struct_mutex);
4033 
4034 	/* Cancel the retire work handler, which should be idle now. */
4035 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4036 
4037 	return 0;
4038 }
4039 
4040 void i915_gem_l3_remap(struct drm_device *dev)
4041 {
4042 	drm_i915_private_t *dev_priv = dev->dev_private;
4043 	u32 misccpctl;
4044 	int i;
4045 
4046 	if (!HAS_L3_GPU_CACHE(dev))
4047 		return;
4048 
4049 	if (!dev_priv->l3_parity.remap_info)
4050 		return;
4051 
4052 	misccpctl = I915_READ(GEN7_MISCCPCTL);
4053 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
4054 	POSTING_READ(GEN7_MISCCPCTL);
4055 
4056 	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4057 		u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
4058 		if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
4059 			DRM_DEBUG("0x%x was already programmed to %x\n",
4060 				  GEN7_L3LOG_BASE + i, remap);
4061 		if (remap && !dev_priv->l3_parity.remap_info[i/4])
4062 			DRM_DEBUG_DRIVER("Clearing remapped register\n");
4063 		I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
4064 	}
4065 
4066 	/* Make sure all the writes land before disabling dop clock gating */
4067 	POSTING_READ(GEN7_L3LOG_BASE);
4068 
4069 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
4070 }
4071 
4072 void i915_gem_init_swizzling(struct drm_device *dev)
4073 {
4074 	drm_i915_private_t *dev_priv = dev->dev_private;
4075 
4076 	if (INTEL_INFO(dev)->gen < 5 ||
4077 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4078 		return;
4079 
4080 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4081 				 DISP_TILE_SURFACE_SWIZZLING);
4082 
4083 	if (IS_GEN5(dev))
4084 		return;
4085 
4086 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4087 	if (IS_GEN6(dev))
4088 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4089 	else if (IS_GEN7(dev))
4090 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4091 	else
4092 		BUG();
4093 }
4094 
4095 static bool
4096 intel_enable_blt(struct drm_device *dev)
4097 {
4098 	int revision;
4099 
4100 	if (!HAS_BLT(dev))
4101 		return false;
4102 
4103 	/* The blitter was dysfunctional on early prototypes */
4104 	revision = pci_read_config(dev->dev, PCIR_REVID, 1);
4105 	if (IS_GEN6(dev) && revision < 8) {
4106 		DRM_INFO("BLT not supported on this pre-production hardware;"
4107 			 " graphics performance will be degraded.\n");
4108 		return false;
4109 	}
4110 
4111 	return true;
4112 }
4113 
4114 static int i915_gem_init_rings(struct drm_device *dev)
4115 {
4116 	struct drm_i915_private *dev_priv = dev->dev_private;
4117 	int ret;
4118 
4119 	ret = intel_init_render_ring_buffer(dev);
4120 	if (ret)
4121 		return ret;
4122 
4123 	if (HAS_BSD(dev)) {
4124 		ret = intel_init_bsd_ring_buffer(dev);
4125 		if (ret)
4126 			goto cleanup_render_ring;
4127 	}
4128 
4129 	if (intel_enable_blt(dev)) {
4130 		ret = intel_init_blt_ring_buffer(dev);
4131 		if (ret)
4132 			goto cleanup_bsd_ring;
4133 	}
4134 
4135 	if (HAS_VEBOX(dev)) {
4136 		ret = intel_init_vebox_ring_buffer(dev);
4137 		if (ret)
4138 			goto cleanup_blt_ring;
4139 	}
4140 
4141 
4142 	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4143 	if (ret)
4144 		goto cleanup_vebox_ring;
4145 
4146 	return 0;
4147 
4148 cleanup_vebox_ring:
4149 	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4150 cleanup_blt_ring:
4151 	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4152 cleanup_bsd_ring:
4153 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4154 cleanup_render_ring:
4155 	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4156 
4157 	return ret;
4158 }
4159 
4160 int
4161 i915_gem_init_hw(struct drm_device *dev)
4162 {
4163 	drm_i915_private_t *dev_priv = dev->dev_private;
4164 	int ret;
4165 
4166 #if 0
4167 	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4168 		return -EIO;
4169 #endif
4170 
4171 	if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
4172 		I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
4173 
4174 	if (HAS_PCH_NOP(dev)) {
4175 		u32 temp = I915_READ(GEN7_MSG_CTL);
4176 		temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4177 		I915_WRITE(GEN7_MSG_CTL, temp);
4178 	}
4179 
4180 	i915_gem_l3_remap(dev);
4181 
4182 	i915_gem_init_swizzling(dev);
4183 
4184 	ret = i915_gem_init_rings(dev);
4185 	if (ret)
4186 		return ret;
4187 
4188 	/*
4189 	 * XXX: There was some w/a described somewhere suggesting loading
4190 	 * contexts before PPGTT.
4191 	 */
4192 	i915_gem_context_init(dev);
4193 	if (dev_priv->mm.aliasing_ppgtt) {
4194 		ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4195 		if (ret) {
4196 			i915_gem_cleanup_aliasing_ppgtt(dev);
4197 			DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4198 		}
4199 	}
4200 
4201 	return 0;
4202 }
4203 
4204 int i915_gem_init(struct drm_device *dev)
4205 {
4206 	struct drm_i915_private *dev_priv = dev->dev_private;
4207 	int ret;
4208 
4209 	mutex_lock(&dev->struct_mutex);
4210 
4211 	if (IS_VALLEYVIEW(dev)) {
4212 		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4213 		I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4214 		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4215 			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4216 	}
4217 
4218 	i915_gem_init_global_gtt(dev);
4219 
4220 	ret = i915_gem_init_hw(dev);
4221 	mutex_unlock(&dev->struct_mutex);
4222 	if (ret) {
4223 		i915_gem_cleanup_aliasing_ppgtt(dev);
4224 		return ret;
4225 	}
4226 
4227 	/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4228 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4229 		dev_priv->dri1.allow_batchbuffer = 1;
4230 	return 0;
4231 }
4232 
4233 void
4234 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4235 {
4236 	drm_i915_private_t *dev_priv = dev->dev_private;
4237 	struct intel_ring_buffer *ring;
4238 	int i;
4239 
4240 	for_each_ring(ring, dev_priv, i)
4241 		intel_cleanup_ring_buffer(ring);
4242 }
4243 
4244 int
4245 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4246 		       struct drm_file *file_priv)
4247 {
4248 	drm_i915_private_t *dev_priv = dev->dev_private;
4249 	int ret;
4250 
4251 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4252 		return 0;
4253 
4254 	if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4255 		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4256 		atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4257 	}
4258 
4259 	mutex_lock(&dev->struct_mutex);
4260 	dev_priv->mm.suspended = 0;
4261 
4262 	ret = i915_gem_init_hw(dev);
4263 	if (ret != 0) {
4264 		mutex_unlock(&dev->struct_mutex);
4265 		return ret;
4266 	}
4267 
4268 	KASSERT(list_empty(&dev_priv->mm.active_list), ("active list"));
4269 	mutex_unlock(&dev->struct_mutex);
4270 
4271 	ret = drm_irq_install(dev);
4272 	if (ret)
4273 		goto cleanup_ringbuffer;
4274 
4275 	return 0;
4276 
4277 cleanup_ringbuffer:
4278 	mutex_lock(&dev->struct_mutex);
4279 	i915_gem_cleanup_ringbuffer(dev);
4280 	dev_priv->mm.suspended = 1;
4281 	mutex_unlock(&dev->struct_mutex);
4282 
4283 	return ret;
4284 }
4285 
4286 int
4287 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4288 		       struct drm_file *file_priv)
4289 {
4290 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4291 		return 0;
4292 
4293 	drm_irq_uninstall(dev);
4294 	return i915_gem_idle(dev);
4295 }
4296 
4297 void
4298 i915_gem_lastclose(struct drm_device *dev)
4299 {
4300 	int ret;
4301 
4302 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4303 		return;
4304 
4305 	ret = i915_gem_idle(dev);
4306 	if (ret)
4307 		DRM_ERROR("failed to idle hardware: %d\n", ret);
4308 }
4309 
4310 static void
4311 init_ring_lists(struct intel_ring_buffer *ring)
4312 {
4313 	INIT_LIST_HEAD(&ring->active_list);
4314 	INIT_LIST_HEAD(&ring->request_list);
4315 }
4316 
4317 void
4318 i915_gem_load(struct drm_device *dev)
4319 {
4320 	int i;
4321 	drm_i915_private_t *dev_priv = dev->dev_private;
4322 
4323 	INIT_LIST_HEAD(&dev_priv->mm.active_list);
4324 	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4325 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4326 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4327 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4328 	for (i = 0; i < I915_NUM_RINGS; i++)
4329 		init_ring_lists(&dev_priv->ring[i]);
4330 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4331 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4332 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4333 			  i915_gem_retire_work_handler);
4334 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4335 
4336 	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4337 	if (IS_GEN3(dev)) {
4338 		I915_WRITE(MI_ARB_STATE,
4339 			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4340 	}
4341 
4342 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4343 
4344 	/* Old X drivers will take 0-2 for front, back, depth buffers */
4345 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4346 		dev_priv->fence_reg_start = 3;
4347 
4348 	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4349 		dev_priv->num_fence_regs = 32;
4350 	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4351 		dev_priv->num_fence_regs = 16;
4352 	else
4353 		dev_priv->num_fence_regs = 8;
4354 
4355 	/* Initialize fence registers to zero */
4356 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4357 	i915_gem_restore_fences(dev);
4358 
4359 	i915_gem_detect_bit_6_swizzle(dev);
4360 	init_waitqueue_head(&dev_priv->pending_flip_queue);
4361 
4362 	dev_priv->mm.interruptible = true;
4363 
4364 #if 0
4365 	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4366 	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4367 	register_shrinker(&dev_priv->mm.inactive_shrinker);
4368 #else
4369 	dev_priv->mm.inactive_shrinker = EVENTHANDLER_REGISTER(vm_lowmem,
4370 	    i915_gem_lowmem, dev, EVENTHANDLER_PRI_ANY);
4371 #endif
4372 }
4373 
4374 /*
4375  * Create a physically contiguous memory object for this object
4376  * e.g. for cursor + overlay regs
4377  */
4378 static int i915_gem_init_phys_object(struct drm_device *dev,
4379 				     int id, int size, int align)
4380 {
4381 	drm_i915_private_t *dev_priv = dev->dev_private;
4382 	struct drm_i915_gem_phys_object *phys_obj;
4383 	int ret;
4384 
4385 	if (dev_priv->mm.phys_objs[id - 1] || !size)
4386 		return 0;
4387 
4388 	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4389 	if (!phys_obj)
4390 		return -ENOMEM;
4391 
4392 	phys_obj->id = id;
4393 
4394 	phys_obj->handle = drm_pci_alloc(dev, size, align);
4395 	if (!phys_obj->handle) {
4396 		ret = -ENOMEM;
4397 		goto kfree_obj;
4398 	}
4399 	pmap_change_attr((vm_offset_t)phys_obj->handle->vaddr,
4400 	    size / PAGE_SIZE, PAT_WRITE_COMBINING);
4401 
4402 	dev_priv->mm.phys_objs[id - 1] = phys_obj;
4403 
4404 	return 0;
4405 
4406 kfree_obj:
4407 	kfree(phys_obj);
4408 	return ret;
4409 }
4410 
4411 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4412 {
4413 	drm_i915_private_t *dev_priv = dev->dev_private;
4414 	struct drm_i915_gem_phys_object *phys_obj;
4415 
4416 	if (!dev_priv->mm.phys_objs[id - 1])
4417 		return;
4418 
4419 	phys_obj = dev_priv->mm.phys_objs[id - 1];
4420 	if (phys_obj->cur_obj) {
4421 		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4422 	}
4423 
4424 	drm_pci_free(dev, phys_obj->handle);
4425 	kfree(phys_obj);
4426 	dev_priv->mm.phys_objs[id - 1] = NULL;
4427 }
4428 
4429 void i915_gem_free_all_phys_object(struct drm_device *dev)
4430 {
4431 	int i;
4432 
4433 	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4434 		i915_gem_free_phys_object(dev, i);
4435 }
4436 
4437 void i915_gem_detach_phys_object(struct drm_device *dev,
4438 				 struct drm_i915_gem_object *obj)
4439 {
4440 	struct vm_object *mapping = obj->base.vm_obj;
4441 	char *vaddr;
4442 	int i;
4443 	int page_count;
4444 
4445 	if (!obj->phys_obj)
4446 		return;
4447 	vaddr = obj->phys_obj->handle->vaddr;
4448 
4449 	page_count = obj->base.size / PAGE_SIZE;
4450 	VM_OBJECT_LOCK(obj->base.vm_obj);
4451 	for (i = 0; i < page_count; i++) {
4452 		struct vm_page *page = shmem_read_mapping_page(mapping, i);
4453 		if (!IS_ERR(page)) {
4454 			VM_OBJECT_UNLOCK(obj->base.vm_obj);
4455 			char *dst = kmap_atomic(page);
4456 			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4457 			kunmap_atomic(dst);
4458 
4459 			drm_clflush_pages(&page, 1);
4460 
4461 #if 0
4462 			set_page_dirty(page);
4463 			mark_page_accessed(page);
4464 			page_cache_release(page);
4465 #endif
4466 			VM_OBJECT_LOCK(obj->base.vm_obj);
4467 			vm_page_reference(page);
4468 			vm_page_dirty(page);
4469 			vm_page_busy_wait(page, FALSE, "i915gem");
4470 			vm_page_unwire(page, 0);
4471 			vm_page_wakeup(page);
4472 		}
4473 	}
4474 	VM_OBJECT_UNLOCK(obj->base.vm_obj);
4475 	intel_gtt_chipset_flush();
4476 
4477 	obj->phys_obj->cur_obj = NULL;
4478 	obj->phys_obj = NULL;
4479 }
4480 
4481 int
4482 i915_gem_attach_phys_object(struct drm_device *dev,
4483 			    struct drm_i915_gem_object *obj,
4484 			    int id,
4485 			    int align)
4486 {
4487 	struct vm_object *mapping = obj->base.vm_obj;
4488 	drm_i915_private_t *dev_priv = dev->dev_private;
4489 	int ret = 0;
4490 	int page_count;
4491 	int i;
4492 
4493 	if (id > I915_MAX_PHYS_OBJECT)
4494 		return -EINVAL;
4495 
4496 	if (obj->phys_obj) {
4497 		if (obj->phys_obj->id == id)
4498 			return 0;
4499 		i915_gem_detach_phys_object(dev, obj);
4500 	}
4501 
4502 	/* create a new object */
4503 	if (!dev_priv->mm.phys_objs[id - 1]) {
4504 		ret = i915_gem_init_phys_object(dev, id,
4505 						obj->base.size, align);
4506 		if (ret) {
4507 			DRM_ERROR("failed to init phys object %d size: %zu\n",
4508 				  id, obj->base.size);
4509 			return ret;
4510 		}
4511 	}
4512 
4513 	/* bind to the object */
4514 	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4515 	obj->phys_obj->cur_obj = obj;
4516 
4517 	page_count = obj->base.size / PAGE_SIZE;
4518 
4519 	VM_OBJECT_LOCK(obj->base.vm_obj);
4520 	for (i = 0; i < page_count; i++) {
4521 		struct vm_page *page;
4522 		char *dst, *src;
4523 
4524 		page = shmem_read_mapping_page(mapping, i);
4525 		VM_OBJECT_UNLOCK(obj->base.vm_obj);
4526 		if (IS_ERR(page))
4527 			return PTR_ERR(page);
4528 
4529 		src = kmap_atomic(page);
4530 		dst = (char*)obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4531 		memcpy(dst, src, PAGE_SIZE);
4532 		kunmap_atomic(src);
4533 
4534 #if 0
4535 		mark_page_accessed(page);
4536 		page_cache_release(page);
4537 #endif
4538 		VM_OBJECT_LOCK(obj->base.vm_obj);
4539 		vm_page_reference(page);
4540 		vm_page_busy_wait(page, FALSE, "i915gem");
4541 		vm_page_unwire(page, 0);
4542 		vm_page_wakeup(page);
4543 	}
4544 	VM_OBJECT_UNLOCK(obj->base.vm_obj);
4545 
4546 	return 0;
4547 }
4548 
4549 static int
4550 i915_gem_phys_pwrite(struct drm_device *dev,
4551 		     struct drm_i915_gem_object *obj,
4552 		     struct drm_i915_gem_pwrite *args,
4553 		     struct drm_file *file_priv)
4554 {
4555 	void *vaddr = (char *)obj->phys_obj->handle->vaddr + args->offset;
4556 	char __user *user_data = to_user_ptr(args->data_ptr);
4557 
4558 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4559 		unsigned long unwritten;
4560 
4561 		/* The physical object once assigned is fixed for the lifetime
4562 		 * of the obj, so we can safely drop the lock and continue
4563 		 * to access vaddr.
4564 		 */
4565 		mutex_unlock(&dev->struct_mutex);
4566 		unwritten = copy_from_user(vaddr, user_data, args->size);
4567 		mutex_lock(&dev->struct_mutex);
4568 		if (unwritten)
4569 			return -EFAULT;
4570 	}
4571 
4572 	i915_gem_chipset_flush(dev);
4573 	return 0;
4574 }
4575 
4576 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4577 {
4578 	struct drm_i915_file_private *file_priv = file->driver_priv;
4579 
4580 	/* Clean up our request list when the client is going away, so that
4581 	 * later retire_requests won't dereference our soon-to-be-gone
4582 	 * file_priv.
4583 	 */
4584 	spin_lock(&file_priv->mm.lock);
4585 	while (!list_empty(&file_priv->mm.request_list)) {
4586 		struct drm_i915_gem_request *request;
4587 
4588 		request = list_first_entry(&file_priv->mm.request_list,
4589 					   struct drm_i915_gem_request,
4590 					   client_list);
4591 		list_del(&request->client_list);
4592 		request->file_priv = NULL;
4593 	}
4594 	spin_unlock(&file_priv->mm.lock);
4595 }
4596 
4597 int
4598 i915_gem_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
4599     vm_ooffset_t foff, struct ucred *cred, u_short *color)
4600 {
4601 
4602 	*color = 0; /* XXXKIB */
4603 	return (0);
4604 }
4605 
4606 void
4607 i915_gem_pager_dtor(void *handle)
4608 {
4609 	struct drm_gem_object *obj;
4610 	struct drm_device *dev;
4611 
4612 	obj = handle;
4613 	dev = obj->dev;
4614 
4615 	mutex_lock(&dev->struct_mutex);
4616 	drm_gem_free_mmap_offset(obj);
4617 	i915_gem_release_mmap(to_intel_bo(obj));
4618 	drm_gem_object_unreference(obj);
4619 	mutex_unlock(&dev->struct_mutex);
4620 }
4621 
4622 #define	GEM_PARANOID_CHECK_GTT 0
4623 #if GEM_PARANOID_CHECK_GTT
4624 static void
4625 i915_gem_assert_pages_not_mapped(struct drm_device *dev, vm_page_t *ma,
4626     int page_count)
4627 {
4628 	struct drm_i915_private *dev_priv;
4629 	vm_paddr_t pa;
4630 	unsigned long start, end;
4631 	u_int i;
4632 	int j;
4633 
4634 	dev_priv = dev->dev_private;
4635 	start = OFF_TO_IDX(dev_priv->mm.gtt_start);
4636 	end = OFF_TO_IDX(dev_priv->mm.gtt_end);
4637 	for (i = start; i < end; i++) {
4638 		pa = intel_gtt_read_pte_paddr(i);
4639 		for (j = 0; j < page_count; j++) {
4640 			if (pa == VM_PAGE_TO_PHYS(ma[j])) {
4641 				panic("Page %p in GTT pte index %d pte %x",
4642 				    ma[i], i, intel_gtt_read_pte(i));
4643 			}
4644 		}
4645 	}
4646 	obj->fence_dirty = false;
4647 }
4648 #endif
4649 
4650 static int
4651 i915_gpu_is_active(struct drm_device *dev)
4652 {
4653 	drm_i915_private_t *dev_priv = dev->dev_private;
4654 
4655 	return !list_empty(&dev_priv->mm.active_list);
4656 }
4657 
4658 static void
4659 i915_gem_lowmem(void *arg)
4660 {
4661 	struct drm_device *dev;
4662 	struct drm_i915_private *dev_priv;
4663 	struct drm_i915_gem_object *obj, *next;
4664 	int cnt, cnt_fail, cnt_total;
4665 
4666 	dev = arg;
4667 	dev_priv = dev->dev_private;
4668 
4669 	if (lockmgr(&dev->struct_mutex, LK_EXCLUSIVE|LK_NOWAIT))
4670 		return;
4671 
4672 rescan:
4673 	/* first scan for clean buffers */
4674 	i915_gem_retire_requests(dev);
4675 
4676 	cnt_total = cnt_fail = cnt = 0;
4677 
4678 	list_for_each_entry_safe(obj, next, &dev_priv->mm.inactive_list,
4679 	    mm_list) {
4680 		if (i915_gem_object_is_purgeable(obj)) {
4681 			if (i915_gem_object_unbind(obj) != 0)
4682 				cnt_total++;
4683 		} else
4684 			cnt_total++;
4685 	}
4686 
4687 	/* second pass, evict/count anything still on the inactive list */
4688 	list_for_each_entry_safe(obj, next, &dev_priv->mm.inactive_list,
4689 	    mm_list) {
4690 		if (i915_gem_object_unbind(obj) == 0)
4691 			cnt++;
4692 		else
4693 			cnt_fail++;
4694 	}
4695 
4696 	if (cnt_fail > cnt_total / 100 && i915_gpu_is_active(dev)) {
4697 		/*
4698 		 * We are desperate for pages, so as a last resort, wait
4699 		 * for the GPU to finish and discard whatever we can.
4700 		 * This has a dramatic impact to reduce the number of
4701 		 * OOM-killer events whilst running the GPU aggressively.
4702 		 */
4703 		if (i915_gpu_idle(dev) == 0)
4704 			goto rescan;
4705 	}
4706 	mutex_unlock(&dev->struct_mutex);
4707 }
4708