1 /* 2 * Copyright © 2008 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 * Copyright (c) 2011 The FreeBSD Foundation 27 * All rights reserved. 28 * 29 * This software was developed by Konstantin Belousov under sponsorship from 30 * the FreeBSD Foundation. 31 * 32 * Redistribution and use in source and binary forms, with or without 33 * modification, are permitted provided that the following conditions 34 * are met: 35 * 1. Redistributions of source code must retain the above copyright 36 * notice, this list of conditions and the following disclaimer. 37 * 2. Redistributions in binary form must reproduce the above copyright 38 * notice, this list of conditions and the following disclaimer in the 39 * documentation and/or other materials provided with the distribution. 40 * 41 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 51 * SUCH DAMAGE. 52 * 53 */ 54 55 #include <sys/resourcevar.h> 56 #include <sys/sfbuf.h> 57 #include <machine/md_var.h> 58 59 #include <drm/drmP.h> 60 #include <drm/i915_drm.h> 61 #include "i915_drv.h" 62 #include "i915_trace.h" 63 #include "intel_drv.h" 64 #include <linux/shmem_fs.h> 65 #include <linux/slab.h> 66 #include <linux/swap.h> 67 #include <linux/pci.h> 68 69 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj); 70 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj); 71 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj, 72 unsigned alignment, 73 bool map_and_fenceable, 74 bool nonblocking); 75 static int i915_gem_phys_pwrite(struct drm_device *dev, 76 struct drm_i915_gem_object *obj, 77 struct drm_i915_gem_pwrite *args, 78 struct drm_file *file); 79 80 static void i915_gem_write_fence(struct drm_device *dev, int reg, 81 struct drm_i915_gem_object *obj); 82 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj, 83 struct drm_i915_fence_reg *fence, 84 bool enable); 85 86 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target); 87 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj); 88 89 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj) 90 { 91 if (obj->tiling_mode) 92 i915_gem_release_mmap(obj); 93 94 /* As we do not have an associated fence register, we will force 95 * a tiling change if we ever need to acquire one. 96 */ 97 obj->fence_dirty = false; 98 obj->fence_reg = I915_FENCE_REG_NONE; 99 } 100 101 static bool i915_gem_object_is_inactive(struct drm_i915_gem_object *obj); 102 static void i915_gem_lowmem(void *arg); 103 104 /* some bookkeeping */ 105 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv, 106 size_t size) 107 { 108 dev_priv->mm.object_count++; 109 dev_priv->mm.object_memory += size; 110 } 111 112 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv, 113 size_t size) 114 { 115 dev_priv->mm.object_count--; 116 dev_priv->mm.object_memory -= size; 117 } 118 119 static int 120 i915_gem_wait_for_error(struct i915_gpu_error *error) 121 { 122 int ret; 123 124 #define EXIT_COND (!i915_reset_in_progress(error) || \ 125 i915_terminally_wedged(error)) 126 if (EXIT_COND) 127 return 0; 128 129 /* 130 * Only wait 10 seconds for the gpu reset to complete to avoid hanging 131 * userspace. If it takes that long something really bad is going on and 132 * we should simply try to bail out and fail as gracefully as possible. 133 */ 134 ret = wait_event_interruptible_timeout(error->reset_queue, 135 EXIT_COND, 136 10*HZ); 137 if (ret == 0) { 138 DRM_ERROR("Timed out waiting for the gpu reset to complete\n"); 139 return -EIO; 140 } else if (ret < 0) { 141 return ret; 142 } 143 #undef EXIT_COND 144 145 return 0; 146 } 147 148 int i915_mutex_lock_interruptible(struct drm_device *dev) 149 { 150 struct drm_i915_private *dev_priv = dev->dev_private; 151 int ret; 152 153 ret = i915_gem_wait_for_error(&dev_priv->gpu_error); 154 if (ret) 155 return ret; 156 157 ret = lockmgr(&dev->struct_mutex, LK_EXCLUSIVE|LK_SLEEPFAIL); 158 if (ret) 159 return -EINTR; 160 161 WARN_ON(i915_verify_lists(dev)); 162 return 0; 163 } 164 165 static inline bool 166 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj) 167 { 168 return !obj->active; 169 } 170 171 int 172 i915_gem_init_ioctl(struct drm_device *dev, void *data, 173 struct drm_file *file) 174 { 175 struct drm_i915_private *dev_priv = dev->dev_private; 176 struct drm_i915_gem_init *args = data; 177 178 if (drm_core_check_feature(dev, DRIVER_MODESET)) 179 return -ENODEV; 180 181 if (args->gtt_start >= args->gtt_end || 182 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1)) 183 return -EINVAL; 184 185 /* GEM with user mode setting was never supported on ilk and later. */ 186 if (INTEL_INFO(dev)->gen >= 5) 187 return -ENODEV; 188 189 mutex_lock(&dev->struct_mutex); 190 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end, 191 args->gtt_end); 192 dev_priv->gtt.mappable_end = args->gtt_end; 193 mutex_unlock(&dev->struct_mutex); 194 195 return 0; 196 } 197 198 int 199 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 200 struct drm_file *file) 201 { 202 struct drm_i915_private *dev_priv = dev->dev_private; 203 struct drm_i915_gem_get_aperture *args = data; 204 struct drm_i915_gem_object *obj; 205 size_t pinned; 206 207 pinned = 0; 208 mutex_lock(&dev->struct_mutex); 209 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) 210 if (obj->pin_count) 211 pinned += obj->gtt_space->size; 212 mutex_unlock(&dev->struct_mutex); 213 214 args->aper_size = dev_priv->gtt.total; 215 args->aper_available_size = args->aper_size - pinned; 216 217 return 0; 218 } 219 220 void i915_gem_object_free(struct drm_i915_gem_object *obj) 221 { 222 kfree(obj); 223 } 224 225 static int 226 i915_gem_create(struct drm_file *file, 227 struct drm_device *dev, 228 uint64_t size, 229 uint32_t *handle_p) 230 { 231 struct drm_i915_gem_object *obj; 232 int ret; 233 u32 handle; 234 235 size = roundup(size, PAGE_SIZE); 236 if (size == 0) 237 return -EINVAL; 238 239 /* Allocate the new object */ 240 obj = i915_gem_alloc_object(dev, size); 241 if (obj == NULL) 242 return -ENOMEM; 243 244 ret = drm_gem_handle_create(file, &obj->base, &handle); 245 if (ret) { 246 drm_gem_object_release(&obj->base); 247 i915_gem_info_remove_obj(dev->dev_private, obj->base.size); 248 i915_gem_object_free(obj); 249 return ret; 250 } 251 252 /* drop reference from allocate - handle holds it now */ 253 drm_gem_object_unreference(&obj->base); 254 trace_i915_gem_object_create(obj); 255 256 *handle_p = handle; 257 return 0; 258 } 259 260 int 261 i915_gem_dumb_create(struct drm_file *file, 262 struct drm_device *dev, 263 struct drm_mode_create_dumb *args) 264 { 265 266 /* have to work out size/pitch and return them */ 267 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64); 268 args->size = args->pitch * args->height; 269 return i915_gem_create(file, dev, 270 args->size, &args->handle); 271 } 272 273 int i915_gem_dumb_destroy(struct drm_file *file, 274 struct drm_device *dev, 275 uint32_t handle) 276 { 277 278 return drm_gem_handle_delete(file, handle); 279 } 280 281 /** 282 * Creates a new mm object and returns a handle to it. 283 */ 284 int 285 i915_gem_create_ioctl(struct drm_device *dev, void *data, 286 struct drm_file *file) 287 { 288 struct drm_i915_gem_create *args = data; 289 290 return i915_gem_create(file, dev, 291 args->size, &args->handle); 292 } 293 294 static inline int 295 __copy_to_user_swizzled(char __user *cpu_vaddr, 296 const char *gpu_vaddr, int gpu_offset, 297 int length) 298 { 299 int ret, cpu_offset = 0; 300 301 while (length > 0) { 302 int cacheline_end = ALIGN(gpu_offset + 1, 64); 303 int this_length = min(cacheline_end - gpu_offset, length); 304 int swizzled_gpu_offset = gpu_offset ^ 64; 305 306 ret = __copy_to_user(cpu_vaddr + cpu_offset, 307 gpu_vaddr + swizzled_gpu_offset, 308 this_length); 309 if (ret) 310 return ret + length; 311 312 cpu_offset += this_length; 313 gpu_offset += this_length; 314 length -= this_length; 315 } 316 317 return 0; 318 } 319 320 static inline int 321 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset, 322 const char __user *cpu_vaddr, 323 int length) 324 { 325 int ret, cpu_offset = 0; 326 327 while (length > 0) { 328 int cacheline_end = ALIGN(gpu_offset + 1, 64); 329 int this_length = min(cacheline_end - gpu_offset, length); 330 int swizzled_gpu_offset = gpu_offset ^ 64; 331 332 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset, 333 cpu_vaddr + cpu_offset, 334 this_length); 335 if (ret) 336 return ret + length; 337 338 cpu_offset += this_length; 339 gpu_offset += this_length; 340 length -= this_length; 341 } 342 343 return 0; 344 } 345 346 /* Per-page copy function for the shmem pread fastpath. 347 * Flushes invalid cachelines before reading the target if 348 * needs_clflush is set. */ 349 static int 350 shmem_pread_fast(struct vm_page *page, int shmem_page_offset, int page_length, 351 char __user *user_data, 352 bool page_do_bit17_swizzling, bool needs_clflush) 353 { 354 char *vaddr; 355 int ret; 356 357 if (unlikely(page_do_bit17_swizzling)) 358 return -EINVAL; 359 360 vaddr = kmap_atomic(page); 361 if (needs_clflush) 362 drm_clflush_virt_range(vaddr + shmem_page_offset, 363 page_length); 364 ret = __copy_to_user_inatomic(user_data, 365 vaddr + shmem_page_offset, 366 page_length); 367 kunmap_atomic(vaddr); 368 369 return ret ? -EFAULT : 0; 370 } 371 372 static void 373 shmem_clflush_swizzled_range(char *addr, unsigned long length, 374 bool swizzled) 375 { 376 if (unlikely(swizzled)) { 377 unsigned long start = (unsigned long) addr; 378 unsigned long end = (unsigned long) addr + length; 379 380 /* For swizzling simply ensure that we always flush both 381 * channels. Lame, but simple and it works. Swizzled 382 * pwrite/pread is far from a hotpath - current userspace 383 * doesn't use it at all. */ 384 start = round_down(start, 128); 385 end = round_up(end, 128); 386 387 drm_clflush_virt_range((void *)start, end - start); 388 } else { 389 drm_clflush_virt_range(addr, length); 390 } 391 392 } 393 394 /* Only difference to the fast-path function is that this can handle bit17 395 * and uses non-atomic copy and kmap functions. */ 396 static int 397 shmem_pread_slow(struct vm_page *page, int shmem_page_offset, int page_length, 398 char __user *user_data, 399 bool page_do_bit17_swizzling, bool needs_clflush) 400 { 401 char *vaddr; 402 int ret; 403 404 vaddr = kmap(page); 405 if (needs_clflush) 406 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 407 page_length, 408 page_do_bit17_swizzling); 409 410 if (page_do_bit17_swizzling) 411 ret = __copy_to_user_swizzled(user_data, 412 vaddr, shmem_page_offset, 413 page_length); 414 else 415 ret = __copy_to_user(user_data, 416 vaddr + shmem_page_offset, 417 page_length); 418 kunmap(page); 419 420 return ret ? - EFAULT : 0; 421 } 422 423 static inline void vm_page_reference(vm_page_t m) 424 { 425 vm_page_flag_set(m, PG_REFERENCED); 426 } 427 428 static int 429 i915_gem_shmem_pread(struct drm_device *dev, 430 struct drm_i915_gem_object *obj, 431 struct drm_i915_gem_pread *args, 432 struct drm_file *file) 433 { 434 char __user *user_data; 435 ssize_t remain; 436 loff_t offset; 437 int shmem_page_offset, page_length, ret = 0; 438 int obj_do_bit17_swizzling, page_do_bit17_swizzling; 439 int needs_clflush = 0; 440 int i; 441 442 user_data = to_user_ptr(args->data_ptr); 443 remain = args->size; 444 445 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); 446 447 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) { 448 /* If we're not in the cpu read domain, set ourself into the gtt 449 * read domain and manually flush cachelines (if required). This 450 * optimizes for the case when the gpu will dirty the data 451 * anyway again before the next pread happens. */ 452 if (obj->cache_level == I915_CACHE_NONE) 453 needs_clflush = 1; 454 if (obj->gtt_space) { 455 ret = i915_gem_object_set_to_gtt_domain(obj, false); 456 if (ret) 457 return ret; 458 } 459 } 460 461 ret = i915_gem_object_get_pages(obj); 462 if (ret) 463 return ret; 464 465 i915_gem_object_pin_pages(obj); 466 467 offset = args->offset; 468 469 for (i = 0; i < (obj->base.size >> PAGE_SHIFT); i++) { 470 struct vm_page *page = obj->pages[i]; 471 472 if (i < offset >> PAGE_SHIFT) 473 continue; 474 475 if (remain <= 0) 476 break; 477 478 /* Operation in this page 479 * 480 * shmem_page_offset = offset within page in shmem file 481 * page_length = bytes to copy for this page 482 */ 483 shmem_page_offset = offset_in_page(offset); 484 page_length = remain; 485 if ((shmem_page_offset + page_length) > PAGE_SIZE) 486 page_length = PAGE_SIZE - shmem_page_offset; 487 488 page_do_bit17_swizzling = obj_do_bit17_swizzling && 489 (VM_PAGE_TO_PHYS(page) & (1 << 17)) != 0; 490 491 ret = shmem_pread_fast(page, shmem_page_offset, page_length, 492 user_data, page_do_bit17_swizzling, 493 needs_clflush); 494 if (ret == 0) 495 goto next_page; 496 497 mutex_unlock(&dev->struct_mutex); 498 499 #ifdef __linux__ 500 if (!prefaulted) { 501 ret = fault_in_multipages_writeable(user_data, remain); 502 /* Userspace is tricking us, but we've already clobbered 503 * its pages with the prefault and promised to write the 504 * data up to the first fault. Hence ignore any errors 505 * and just continue. */ 506 (void)ret; 507 prefaulted = 1; 508 } 509 #endif 510 511 ret = shmem_pread_slow(page, shmem_page_offset, page_length, 512 user_data, page_do_bit17_swizzling, 513 needs_clflush); 514 515 mutex_lock(&dev->struct_mutex); 516 517 next_page: 518 mark_page_accessed(page); 519 520 if (ret) 521 goto out; 522 523 remain -= page_length; 524 user_data += page_length; 525 offset += page_length; 526 } 527 528 out: 529 i915_gem_object_unpin_pages(obj); 530 531 return ret; 532 } 533 534 /** 535 * Reads data from the object referenced by handle. 536 * 537 * On error, the contents of *data are undefined. 538 */ 539 int 540 i915_gem_pread_ioctl(struct drm_device *dev, void *data, 541 struct drm_file *file) 542 { 543 struct drm_i915_gem_pread *args = data; 544 struct drm_i915_gem_object *obj; 545 int ret = 0; 546 547 if (args->size == 0) 548 return 0; 549 550 ret = i915_mutex_lock_interruptible(dev); 551 if (ret) 552 return ret; 553 554 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 555 if (&obj->base == NULL) { 556 ret = -ENOENT; 557 goto unlock; 558 } 559 560 /* Bounds check source. */ 561 if (args->offset > obj->base.size || 562 args->size > obj->base.size - args->offset) { 563 ret = -EINVAL; 564 goto out; 565 } 566 567 trace_i915_gem_object_pread(obj, args->offset, args->size); 568 569 ret = i915_gem_shmem_pread(dev, obj, args, file); 570 571 out: 572 drm_gem_object_unreference(&obj->base); 573 unlock: 574 mutex_unlock(&dev->struct_mutex); 575 return ret; 576 } 577 578 #if 0 579 /* This is the fast write path which cannot handle 580 * page faults in the source data 581 */ 582 583 static inline int 584 fast_user_write(struct io_mapping *mapping, 585 loff_t page_base, int page_offset, 586 char __user *user_data, 587 int length) 588 { 589 void __iomem *vaddr_atomic; 590 void *vaddr; 591 unsigned long unwritten; 592 593 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base); 594 /* We can use the cpu mem copy function because this is X86. */ 595 vaddr = (void __force*)vaddr_atomic + page_offset; 596 unwritten = __copy_from_user_inatomic_nocache(vaddr, 597 user_data, length); 598 io_mapping_unmap_atomic(vaddr_atomic); 599 return unwritten; 600 } 601 602 /** 603 * This is the fast pwrite path, where we copy the data directly from the 604 * user into the GTT, uncached. 605 */ 606 static int 607 i915_gem_gtt_pwrite_fast(struct drm_device *dev, 608 struct drm_i915_gem_object *obj, 609 struct drm_i915_gem_pwrite *args, 610 struct drm_file *file) 611 { 612 drm_i915_private_t *dev_priv = dev->dev_private; 613 ssize_t remain; 614 loff_t offset, page_base; 615 char __user *user_data; 616 int page_offset, page_length, ret; 617 618 ret = i915_gem_object_pin(obj, 0, true, true); 619 if (ret) 620 goto out; 621 622 ret = i915_gem_object_set_to_gtt_domain(obj, true); 623 if (ret) 624 goto out_unpin; 625 626 ret = i915_gem_object_put_fence(obj); 627 if (ret) 628 goto out_unpin; 629 630 user_data = to_user_ptr(args->data_ptr); 631 remain = args->size; 632 633 offset = obj->gtt_offset + args->offset; 634 635 while (remain > 0) { 636 /* Operation in this page 637 * 638 * page_base = page offset within aperture 639 * page_offset = offset within page 640 * page_length = bytes to copy for this page 641 */ 642 page_base = offset & PAGE_MASK; 643 page_offset = offset_in_page(offset); 644 page_length = remain; 645 if ((page_offset + remain) > PAGE_SIZE) 646 page_length = PAGE_SIZE - page_offset; 647 648 /* If we get a fault while copying data, then (presumably) our 649 * source page isn't available. Return the error and we'll 650 * retry in the slow path. 651 */ 652 if (fast_user_write(dev_priv->gtt.mappable, page_base, 653 page_offset, user_data, page_length)) { 654 ret = -EFAULT; 655 goto out_unpin; 656 } 657 658 remain -= page_length; 659 user_data += page_length; 660 offset += page_length; 661 } 662 663 out_unpin: 664 i915_gem_object_unpin(obj); 665 out: 666 return ret; 667 } 668 #endif 669 670 static int 671 i915_gem_gtt_write(struct drm_device *dev, struct drm_i915_gem_object *obj, 672 uint64_t data_ptr, uint64_t size, uint64_t offset, struct drm_file *file) 673 { 674 vm_offset_t mkva; 675 int ret; 676 677 /* 678 * Pass the unaligned physical address and size to pmap_mapdev_attr() 679 * so it can properly calculate whether an extra page needs to be 680 * mapped or not to cover the requested range. The function will 681 * add the page offset into the returned mkva for us. 682 */ 683 mkva = (vm_offset_t)pmap_mapdev_attr(dev->agp->base + obj->gtt_offset + 684 offset, size, PAT_WRITE_COMBINING); 685 ret = -copyin_nofault((void *)(uintptr_t)data_ptr, (char *)mkva, size); 686 pmap_unmapdev(mkva, size); 687 return ret; 688 } 689 690 #if 0 691 /* Per-page copy function for the shmem pwrite fastpath. 692 * Flushes invalid cachelines before writing to the target if 693 * needs_clflush_before is set and flushes out any written cachelines after 694 * writing if needs_clflush is set. */ 695 static int 696 shmem_pwrite_fast(struct vm_page *page, int shmem_page_offset, int page_length, 697 char __user *user_data, 698 bool page_do_bit17_swizzling, 699 bool needs_clflush_before, 700 bool needs_clflush_after) 701 { 702 char *vaddr; 703 int ret; 704 705 if (unlikely(page_do_bit17_swizzling)) 706 return -EINVAL; 707 708 vaddr = kmap_atomic(page); 709 if (needs_clflush_before) 710 drm_clflush_virt_range(vaddr + shmem_page_offset, 711 page_length); 712 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset, 713 user_data, 714 page_length); 715 if (needs_clflush_after) 716 drm_clflush_virt_range(vaddr + shmem_page_offset, 717 page_length); 718 kunmap_atomic(vaddr); 719 720 return ret ? -EFAULT : 0; 721 } 722 723 /* Only difference to the fast-path function is that this can handle bit17 724 * and uses non-atomic copy and kmap functions. */ 725 static int 726 shmem_pwrite_slow(struct vm_page *page, int shmem_page_offset, int page_length, 727 char __user *user_data, 728 bool page_do_bit17_swizzling, 729 bool needs_clflush_before, 730 bool needs_clflush_after) 731 { 732 char *vaddr; 733 int ret; 734 735 vaddr = kmap(page); 736 if (unlikely(needs_clflush_before || page_do_bit17_swizzling)) 737 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 738 page_length, 739 page_do_bit17_swizzling); 740 if (page_do_bit17_swizzling) 741 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset, 742 user_data, 743 page_length); 744 else 745 ret = __copy_from_user(vaddr + shmem_page_offset, 746 user_data, 747 page_length); 748 if (needs_clflush_after) 749 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 750 page_length, 751 page_do_bit17_swizzling); 752 kunmap(page); 753 754 return ret ? -EFAULT : 0; 755 } 756 #endif 757 758 static int 759 i915_gem_shmem_pwrite(struct drm_device *dev, 760 struct drm_i915_gem_object *obj, 761 struct drm_i915_gem_pwrite *args, 762 struct drm_file *file) 763 { 764 vm_object_t vm_obj; 765 vm_page_t m; 766 struct sf_buf *sf; 767 vm_offset_t mkva; 768 vm_pindex_t obj_pi; 769 int cnt, do_bit17_swizzling, length, obj_po, ret, swizzled_po; 770 771 do_bit17_swizzling = 0; 772 773 obj->dirty = 1; 774 vm_obj = obj->base.vm_obj; 775 ret = 0; 776 777 VM_OBJECT_LOCK(vm_obj); 778 vm_object_pip_add(vm_obj, 1); 779 while (args->size > 0) { 780 obj_pi = OFF_TO_IDX(args->offset); 781 obj_po = args->offset & PAGE_MASK; 782 783 m = shmem_read_mapping_page(vm_obj, obj_pi); 784 VM_OBJECT_UNLOCK(vm_obj); 785 786 sf = sf_buf_alloc(m); 787 mkva = sf_buf_kva(sf); 788 length = min(args->size, PAGE_SIZE - obj_po); 789 while (length > 0) { 790 if (do_bit17_swizzling && 791 (VM_PAGE_TO_PHYS(m) & (1 << 17)) != 0) { 792 cnt = roundup2(obj_po + 1, 64); 793 cnt = min(cnt - obj_po, length); 794 swizzled_po = obj_po ^ 64; 795 } else { 796 cnt = length; 797 swizzled_po = obj_po; 798 } 799 ret = -copyin_nofault( 800 (void *)(uintptr_t)args->data_ptr, 801 (char *)mkva + swizzled_po, cnt); 802 if (ret != 0) 803 break; 804 args->data_ptr += cnt; 805 args->size -= cnt; 806 length -= cnt; 807 args->offset += cnt; 808 obj_po += cnt; 809 } 810 sf_buf_free(sf); 811 VM_OBJECT_LOCK(vm_obj); 812 vm_page_dirty(m); 813 vm_page_reference(m); 814 vm_page_busy_wait(m, FALSE, "i915gem"); 815 vm_page_unwire(m, 1); 816 vm_page_wakeup(m); 817 818 if (ret != 0) 819 break; 820 } 821 vm_object_pip_wakeup(vm_obj); 822 VM_OBJECT_UNLOCK(vm_obj); 823 824 return (ret); 825 } 826 827 /** 828 * Writes data to the object referenced by handle. 829 * 830 * On error, the contents of the buffer that were to be modified are undefined. 831 */ 832 int 833 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 834 struct drm_file *file) 835 { 836 struct drm_i915_gem_pwrite *args = data; 837 struct drm_i915_gem_object *obj; 838 vm_page_t *ma; 839 vm_offset_t start, end; 840 int npages, ret; 841 842 if (args->size == 0) 843 return 0; 844 845 start = trunc_page(args->data_ptr); 846 end = round_page(args->data_ptr + args->size); 847 npages = howmany(end - start, PAGE_SIZE); 848 ma = kmalloc(npages * sizeof(vm_page_t), M_DRM, M_WAITOK | 849 M_ZERO); 850 npages = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map, 851 (vm_offset_t)args->data_ptr, args->size, 852 VM_PROT_READ, ma, npages); 853 if (npages == -1) { 854 ret = -EFAULT; 855 goto free_ma; 856 } 857 858 ret = i915_mutex_lock_interruptible(dev); 859 if (ret != 0) 860 goto unlocked; 861 862 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 863 if (&obj->base == NULL) { 864 ret = -ENOENT; 865 goto unlock; 866 } 867 868 /* Bounds check destination. */ 869 if (args->offset > obj->base.size || 870 args->size > obj->base.size - args->offset) { 871 ret = -EINVAL; 872 goto out; 873 } 874 875 trace_i915_gem_object_pwrite(obj, args->offset, args->size); 876 877 if (obj->phys_obj) { 878 ret = i915_gem_phys_pwrite(dev, obj, args, file); 879 } else if (obj->gtt_space && 880 obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 881 ret = i915_gem_object_pin(obj, 0, true, false); 882 if (ret != 0) 883 goto out; 884 ret = i915_gem_object_set_to_gtt_domain(obj, true); 885 if (ret != 0) 886 goto out_unpin; 887 ret = i915_gem_object_put_fence(obj); 888 if (ret != 0) 889 goto out_unpin; 890 ret = i915_gem_gtt_write(dev, obj, args->data_ptr, args->size, 891 args->offset, file); 892 out_unpin: 893 i915_gem_object_unpin(obj); 894 } else { 895 ret = i915_gem_object_set_to_cpu_domain(obj, true); 896 if (ret != 0) 897 goto out; 898 ret = i915_gem_shmem_pwrite(dev, obj, args, file); 899 } 900 out: 901 drm_gem_object_unreference(&obj->base); 902 unlock: 903 mutex_unlock(&dev->struct_mutex); 904 unlocked: 905 vm_page_unhold_pages(ma, npages); 906 free_ma: 907 drm_free(ma, M_DRM); 908 return ret; 909 } 910 911 int 912 i915_gem_check_wedge(struct i915_gpu_error *error, 913 bool interruptible) 914 { 915 if (i915_reset_in_progress(error)) { 916 /* Non-interruptible callers can't handle -EAGAIN, hence return 917 * -EIO unconditionally for these. */ 918 if (!interruptible) 919 return -EIO; 920 921 /* Recovery complete, but the reset failed ... */ 922 if (i915_terminally_wedged(error)) 923 return -EIO; 924 925 return -EAGAIN; 926 } 927 928 return 0; 929 } 930 931 /* 932 * Compare seqno against outstanding lazy request. Emit a request if they are 933 * equal. 934 */ 935 static int 936 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno) 937 { 938 int ret; 939 940 DRM_LOCK_ASSERT(ring->dev); 941 942 ret = 0; 943 if (seqno == ring->outstanding_lazy_request) 944 ret = i915_add_request(ring, NULL); 945 946 return ret; 947 } 948 949 /** 950 * __wait_seqno - wait until execution of seqno has finished 951 * @ring: the ring expected to report seqno 952 * @seqno: duh! 953 * @reset_counter: reset sequence associated with the given seqno 954 * @interruptible: do an interruptible wait (normally yes) 955 * @timeout: in - how long to wait (NULL forever); out - how much time remaining 956 * 957 * Note: It is of utmost importance that the passed in seqno and reset_counter 958 * values have been read by the caller in an smp safe manner. Where read-side 959 * locks are involved, it is sufficient to read the reset_counter before 960 * unlocking the lock that protects the seqno. For lockless tricks, the 961 * reset_counter _must_ be read before, and an appropriate smp_rmb must be 962 * inserted. 963 * 964 * Returns 0 if the seqno was found within the alloted time. Else returns the 965 * errno with remaining time filled in timeout argument. 966 */ 967 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno, 968 unsigned reset_counter, 969 bool interruptible, struct timespec *timeout) 970 { 971 drm_i915_private_t *dev_priv = ring->dev->dev_private; 972 struct timespec before, now, wait_time={1,0}; 973 unsigned long timeout_jiffies; 974 long end; 975 bool wait_forever = true; 976 int ret; 977 978 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno)) 979 return 0; 980 981 trace_i915_gem_request_wait_begin(ring, seqno); 982 983 if (timeout != NULL) { 984 wait_time = *timeout; 985 wait_forever = false; 986 } 987 988 timeout_jiffies = timespec_to_jiffies_timeout(&wait_time); 989 990 if (WARN_ON(!ring->irq_get(ring))) 991 return -ENODEV; 992 993 /* Record current time in case interrupted by signal, or wedged * */ 994 getrawmonotonic(&before); 995 996 #define EXIT_COND \ 997 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \ 998 i915_reset_in_progress(&dev_priv->gpu_error) || \ 999 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) 1000 do { 1001 if (interruptible) 1002 end = wait_event_interruptible_timeout(ring->irq_queue, 1003 EXIT_COND, 1004 timeout_jiffies); 1005 else 1006 end = wait_event_timeout(ring->irq_queue, EXIT_COND, 1007 timeout_jiffies); 1008 1009 /* We need to check whether any gpu reset happened in between 1010 * the caller grabbing the seqno and now ... */ 1011 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) 1012 end = -EAGAIN; 1013 1014 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely 1015 * gone. */ 1016 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible); 1017 if (ret) 1018 end = ret; 1019 } while (end == 0 && wait_forever); 1020 1021 getrawmonotonic(&now); 1022 1023 ring->irq_put(ring); 1024 trace_i915_gem_request_wait_end(ring, seqno); 1025 #undef EXIT_COND 1026 1027 if (timeout) { 1028 struct timespec sleep_time = timespec_sub(now, before); 1029 *timeout = timespec_sub(*timeout, sleep_time); 1030 if (!timespec_valid(timeout)) /* i.e. negative time remains */ 1031 set_normalized_timespec(timeout, 0, 0); 1032 } 1033 1034 switch (end) { 1035 case -EIO: 1036 case -EAGAIN: /* Wedged */ 1037 case -ERESTARTSYS: /* Signal */ 1038 return (int)end; 1039 case 0: /* Timeout */ 1040 return -ETIMEDOUT; /* -ETIME on Linux */ 1041 default: /* Completed */ 1042 WARN_ON(end < 0); /* We're not aware of other errors */ 1043 return 0; 1044 } 1045 } 1046 1047 /** 1048 * Waits for a sequence number to be signaled, and cleans up the 1049 * request and object lists appropriately for that event. 1050 */ 1051 int 1052 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno) 1053 { 1054 struct drm_device *dev = ring->dev; 1055 struct drm_i915_private *dev_priv = dev->dev_private; 1056 bool interruptible = dev_priv->mm.interruptible; 1057 int ret; 1058 1059 DRM_LOCK_ASSERT(dev); 1060 BUG_ON(seqno == 0); 1061 1062 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible); 1063 if (ret) 1064 return ret; 1065 1066 ret = i915_gem_check_olr(ring, seqno); 1067 if (ret) 1068 return ret; 1069 1070 return __wait_seqno(ring, seqno, 1071 atomic_read(&dev_priv->gpu_error.reset_counter), 1072 interruptible, NULL); 1073 } 1074 1075 static int 1076 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj, 1077 struct intel_ring_buffer *ring) 1078 { 1079 i915_gem_retire_requests_ring(ring); 1080 1081 /* Manually manage the write flush as we may have not yet 1082 * retired the buffer. 1083 * 1084 * Note that the last_write_seqno is always the earlier of 1085 * the two (read/write) seqno, so if we haved successfully waited, 1086 * we know we have passed the last write. 1087 */ 1088 obj->last_write_seqno = 0; 1089 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS; 1090 1091 return 0; 1092 } 1093 1094 /** 1095 * Ensures that all rendering to the object has completed and the object is 1096 * safe to unbind from the GTT or access from the CPU. 1097 */ 1098 static __must_check int 1099 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj, 1100 bool readonly) 1101 { 1102 struct intel_ring_buffer *ring = obj->ring; 1103 u32 seqno; 1104 int ret; 1105 1106 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno; 1107 if (seqno == 0) 1108 return 0; 1109 1110 ret = i915_wait_seqno(ring, seqno); 1111 if (ret) 1112 return ret; 1113 1114 return i915_gem_object_wait_rendering__tail(obj, ring); 1115 } 1116 1117 /* A nonblocking variant of the above wait. This is a highly dangerous routine 1118 * as the object state may change during this call. 1119 */ 1120 static __must_check int 1121 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj, 1122 bool readonly) 1123 { 1124 struct drm_device *dev = obj->base.dev; 1125 struct drm_i915_private *dev_priv = dev->dev_private; 1126 struct intel_ring_buffer *ring = obj->ring; 1127 unsigned reset_counter; 1128 u32 seqno; 1129 int ret; 1130 1131 DRM_LOCK_ASSERT(dev); 1132 BUG_ON(!dev_priv->mm.interruptible); 1133 1134 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno; 1135 if (seqno == 0) 1136 return 0; 1137 1138 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true); 1139 if (ret) 1140 return ret; 1141 1142 ret = i915_gem_check_olr(ring, seqno); 1143 if (ret) 1144 return ret; 1145 1146 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 1147 mutex_unlock(&dev->struct_mutex); 1148 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL); 1149 mutex_lock(&dev->struct_mutex); 1150 if (ret) 1151 return ret; 1152 1153 return i915_gem_object_wait_rendering__tail(obj, ring); 1154 } 1155 1156 /** 1157 * Called when user space prepares to use an object with the CPU, either 1158 * through the mmap ioctl's mapping or a GTT mapping. 1159 */ 1160 int 1161 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 1162 struct drm_file *file) 1163 { 1164 struct drm_i915_gem_set_domain *args = data; 1165 struct drm_i915_gem_object *obj; 1166 uint32_t read_domains = args->read_domains; 1167 uint32_t write_domain = args->write_domain; 1168 int ret; 1169 1170 /* Only handle setting domains to types used by the CPU. */ 1171 if (write_domain & I915_GEM_GPU_DOMAINS) 1172 return -EINVAL; 1173 1174 if (read_domains & I915_GEM_GPU_DOMAINS) 1175 return -EINVAL; 1176 1177 /* Having something in the write domain implies it's in the read 1178 * domain, and only that read domain. Enforce that in the request. 1179 */ 1180 if (write_domain != 0 && read_domains != write_domain) 1181 return -EINVAL; 1182 1183 ret = i915_mutex_lock_interruptible(dev); 1184 if (ret) 1185 return ret; 1186 1187 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 1188 if (&obj->base == NULL) { 1189 ret = -ENOENT; 1190 goto unlock; 1191 } 1192 1193 /* Try to flush the object off the GPU without holding the lock. 1194 * We will repeat the flush holding the lock in the normal manner 1195 * to catch cases where we are gazumped. 1196 */ 1197 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain); 1198 if (ret) 1199 goto unref; 1200 1201 if (read_domains & I915_GEM_DOMAIN_GTT) { 1202 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0); 1203 1204 /* Silently promote "you're not bound, there was nothing to do" 1205 * to success, since the client was just asking us to 1206 * make sure everything was done. 1207 */ 1208 if (ret == -EINVAL) 1209 ret = 0; 1210 } else { 1211 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0); 1212 } 1213 1214 unref: 1215 drm_gem_object_unreference(&obj->base); 1216 unlock: 1217 mutex_unlock(&dev->struct_mutex); 1218 return ret; 1219 } 1220 1221 /** 1222 * Called when user space has done writes to this buffer 1223 */ 1224 int 1225 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 1226 struct drm_file *file) 1227 { 1228 struct drm_i915_gem_sw_finish *args = data; 1229 struct drm_i915_gem_object *obj; 1230 int ret = 0; 1231 1232 ret = i915_mutex_lock_interruptible(dev); 1233 if (ret) 1234 return ret; 1235 1236 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 1237 if (&obj->base == NULL) { 1238 ret = -ENOENT; 1239 goto unlock; 1240 } 1241 1242 /* Pinned buffers may be scanout, so flush the cache */ 1243 if (obj->pin_count) 1244 i915_gem_object_flush_cpu_write_domain(obj); 1245 1246 drm_gem_object_unreference(&obj->base); 1247 unlock: 1248 mutex_unlock(&dev->struct_mutex); 1249 return ret; 1250 } 1251 1252 /** 1253 * Maps the contents of an object, returning the address it is mapped 1254 * into. 1255 * 1256 * While the mapping holds a reference on the contents of the object, it doesn't 1257 * imply a ref on the object itself. 1258 */ 1259 int 1260 i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 1261 struct drm_file *file) 1262 { 1263 struct drm_i915_gem_mmap *args = data; 1264 struct drm_gem_object *obj; 1265 struct proc *p = curproc; 1266 vm_map_t map = &p->p_vmspace->vm_map; 1267 vm_offset_t addr; 1268 vm_size_t size; 1269 int error = 0, rv; 1270 1271 obj = drm_gem_object_lookup(dev, file, args->handle); 1272 if (obj == NULL) 1273 return -ENOENT; 1274 1275 if (args->size == 0) 1276 goto out; 1277 1278 size = round_page(args->size); 1279 if (map->size + size > p->p_rlimit[RLIMIT_VMEM].rlim_cur) { 1280 error = ENOMEM; 1281 goto out; 1282 } 1283 1284 addr = 0; 1285 vm_object_hold(obj->vm_obj); 1286 vm_object_reference_locked(obj->vm_obj); 1287 vm_object_drop(obj->vm_obj); 1288 rv = vm_map_find(map, obj->vm_obj, NULL, 1289 args->offset, &addr, args->size, 1290 PAGE_SIZE, /* align */ 1291 TRUE, /* fitit */ 1292 VM_MAPTYPE_NORMAL, /* maptype */ 1293 VM_PROT_READ | VM_PROT_WRITE, /* prot */ 1294 VM_PROT_READ | VM_PROT_WRITE, /* max */ 1295 MAP_SHARED /* cow */); 1296 if (rv != KERN_SUCCESS) { 1297 vm_object_deallocate(obj->vm_obj); 1298 error = -vm_mmap_to_errno(rv); 1299 } else { 1300 args->addr_ptr = (uint64_t)addr; 1301 } 1302 out: 1303 drm_gem_object_unreference(obj); 1304 return (error); 1305 } 1306 1307 int i915_intr_pf; 1308 1309 /** 1310 * i915_gem_fault - fault a page into the GTT 1311 * vma: VMA in question 1312 * vmf: fault info 1313 * 1314 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped 1315 * from userspace. The fault handler takes care of binding the object to 1316 * the GTT (if needed), allocating and programming a fence register (again, 1317 * only if needed based on whether the old reg is still valid or the object 1318 * is tiled) and inserting a new PTE into the faulting process. 1319 * 1320 * Note that the faulting process may involve evicting existing objects 1321 * from the GTT and/or fence registers to make room. So performance may 1322 * suffer if the GTT working set is large or there are few fence registers 1323 * left. 1324 */ 1325 int 1326 i915_gem_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot, 1327 vm_page_t *mres) 1328 { 1329 struct drm_gem_object *gem_obj; 1330 struct drm_i915_gem_object *obj; 1331 struct drm_device *dev; 1332 drm_i915_private_t *dev_priv; 1333 vm_page_t m, oldm; 1334 int cause, ret; 1335 bool write; 1336 1337 gem_obj = vm_obj->handle; 1338 obj = to_intel_bo(gem_obj); 1339 dev = obj->base.dev; 1340 dev_priv = dev->dev_private; 1341 #if 0 1342 write = (prot & VM_PROT_WRITE) != 0; 1343 #else 1344 write = true; 1345 #endif 1346 vm_object_pip_add(vm_obj, 1); 1347 1348 /* 1349 * Remove the placeholder page inserted by vm_fault() from the 1350 * object before dropping the object lock. If 1351 * i915_gem_release_mmap() is active in parallel on this gem 1352 * object, then it owns the drm device sx and might find the 1353 * placeholder already. Then, since the page is busy, 1354 * i915_gem_release_mmap() sleeps waiting for the busy state 1355 * of the page cleared. We will be not able to acquire drm 1356 * device lock until i915_gem_release_mmap() is able to make a 1357 * progress. 1358 */ 1359 if (*mres != NULL) { 1360 oldm = *mres; 1361 vm_page_remove(oldm); 1362 *mres = NULL; 1363 } else 1364 oldm = NULL; 1365 retry: 1366 VM_OBJECT_UNLOCK(vm_obj); 1367 unlocked_vmobj: 1368 cause = ret = 0; 1369 m = NULL; 1370 1371 if (i915_intr_pf) { 1372 ret = i915_mutex_lock_interruptible(dev); 1373 if (ret != 0) { 1374 cause = 10; 1375 goto out; 1376 } 1377 } else 1378 mutex_lock(&dev->struct_mutex); 1379 1380 /* 1381 * Since the object lock was dropped, other thread might have 1382 * faulted on the same GTT address and instantiated the 1383 * mapping for the page. Recheck. 1384 */ 1385 VM_OBJECT_LOCK(vm_obj); 1386 m = vm_page_lookup(vm_obj, OFF_TO_IDX(offset)); 1387 if (m != NULL) { 1388 if ((m->flags & PG_BUSY) != 0) { 1389 mutex_unlock(&dev->struct_mutex); 1390 #if 0 /* XXX */ 1391 vm_page_sleep(m, "915pee"); 1392 #endif 1393 goto retry; 1394 } 1395 goto have_page; 1396 } else 1397 VM_OBJECT_UNLOCK(vm_obj); 1398 1399 trace_i915_gem_object_fault(obj, page_offset, true, write); 1400 1401 /* Access to snoopable pages through the GTT is incoherent. */ 1402 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) { 1403 ret = -EINVAL; 1404 goto unlock; 1405 } 1406 1407 /* Now bind it into the GTT if needed */ 1408 if (!obj->map_and_fenceable) { 1409 ret = i915_gem_object_unbind(obj); 1410 if (ret != 0) { 1411 cause = 20; 1412 goto unlock; 1413 } 1414 } 1415 if (!obj->gtt_space) { 1416 ret = i915_gem_object_bind_to_gtt(obj, 0, true, false); 1417 if (ret != 0) { 1418 cause = 30; 1419 goto unlock; 1420 } 1421 1422 ret = i915_gem_object_set_to_gtt_domain(obj, write); 1423 if (ret != 0) { 1424 cause = 40; 1425 goto unlock; 1426 } 1427 } 1428 1429 if (obj->tiling_mode == I915_TILING_NONE) 1430 ret = i915_gem_object_put_fence(obj); 1431 else 1432 ret = i915_gem_object_get_fence(obj); 1433 if (ret != 0) { 1434 cause = 50; 1435 goto unlock; 1436 } 1437 1438 if (i915_gem_object_is_inactive(obj)) 1439 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list); 1440 1441 obj->fault_mappable = true; 1442 VM_OBJECT_LOCK(vm_obj); 1443 m = vm_phys_fictitious_to_vm_page(dev->agp->base + obj->gtt_offset + 1444 offset); 1445 if (m == NULL) { 1446 cause = 60; 1447 ret = -EFAULT; 1448 goto unlock; 1449 } 1450 KASSERT((m->flags & PG_FICTITIOUS) != 0, 1451 ("not fictitious %p", m)); 1452 KASSERT(m->wire_count == 1, ("wire_count not 1 %p", m)); 1453 1454 if ((m->flags & PG_BUSY) != 0) { 1455 mutex_unlock(&dev->struct_mutex); 1456 #if 0 /* XXX */ 1457 vm_page_sleep(m, "915pbs"); 1458 #endif 1459 goto retry; 1460 } 1461 m->valid = VM_PAGE_BITS_ALL; 1462 vm_page_insert(m, vm_obj, OFF_TO_IDX(offset)); 1463 have_page: 1464 *mres = m; 1465 vm_page_busy_try(m, false); 1466 1467 mutex_unlock(&dev->struct_mutex); 1468 if (oldm != NULL) { 1469 vm_page_free(oldm); 1470 } 1471 vm_object_pip_wakeup(vm_obj); 1472 return (VM_PAGER_OK); 1473 1474 unlock: 1475 mutex_unlock(&dev->struct_mutex); 1476 out: 1477 KASSERT(ret != 0, ("i915_gem_pager_fault: wrong return")); 1478 if (ret == -EAGAIN || ret == -EIO || ret == -EINTR) { 1479 goto unlocked_vmobj; 1480 } 1481 VM_OBJECT_LOCK(vm_obj); 1482 vm_object_pip_wakeup(vm_obj); 1483 return (VM_PAGER_ERROR); 1484 } 1485 1486 /** 1487 * i915_gem_release_mmap - remove physical page mappings 1488 * @obj: obj in question 1489 * 1490 * Preserve the reservation of the mmapping with the DRM core code, but 1491 * relinquish ownership of the pages back to the system. 1492 * 1493 * It is vital that we remove the page mapping if we have mapped a tiled 1494 * object through the GTT and then lose the fence register due to 1495 * resource pressure. Similarly if the object has been moved out of the 1496 * aperture, than pages mapped into userspace must be revoked. Removing the 1497 * mapping will then trigger a page fault on the next user access, allowing 1498 * fixup by i915_gem_fault(). 1499 */ 1500 void 1501 i915_gem_release_mmap(struct drm_i915_gem_object *obj) 1502 { 1503 vm_object_t devobj; 1504 vm_page_t m; 1505 int i, page_count; 1506 1507 if (!obj->fault_mappable) 1508 return; 1509 1510 devobj = cdev_pager_lookup(obj); 1511 if (devobj != NULL) { 1512 page_count = OFF_TO_IDX(obj->base.size); 1513 1514 VM_OBJECT_LOCK(devobj); 1515 for (i = 0; i < page_count; i++) { 1516 m = vm_page_lookup_busy_wait(devobj, i, TRUE, "915unm"); 1517 if (m == NULL) 1518 continue; 1519 cdev_pager_free_page(devobj, m); 1520 } 1521 VM_OBJECT_UNLOCK(devobj); 1522 vm_object_deallocate(devobj); 1523 } 1524 1525 obj->fault_mappable = false; 1526 } 1527 1528 uint32_t 1529 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode) 1530 { 1531 uint32_t gtt_size; 1532 1533 if (INTEL_INFO(dev)->gen >= 4 || 1534 tiling_mode == I915_TILING_NONE) 1535 return size; 1536 1537 /* Previous chips need a power-of-two fence region when tiling */ 1538 if (INTEL_INFO(dev)->gen == 3) 1539 gtt_size = 1024*1024; 1540 else 1541 gtt_size = 512*1024; 1542 1543 while (gtt_size < size) 1544 gtt_size <<= 1; 1545 1546 return gtt_size; 1547 } 1548 1549 /** 1550 * i915_gem_get_gtt_alignment - return required GTT alignment for an object 1551 * @obj: object to check 1552 * 1553 * Return the required GTT alignment for an object, taking into account 1554 * potential fence register mapping. 1555 */ 1556 uint32_t 1557 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size, 1558 int tiling_mode, bool fenced) 1559 { 1560 /* 1561 * Minimum alignment is 4k (GTT page size), but might be greater 1562 * if a fence register is needed for the object. 1563 */ 1564 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) || 1565 tiling_mode == I915_TILING_NONE) 1566 return 4096; 1567 1568 /* 1569 * Previous chips need to be aligned to the size of the smallest 1570 * fence register that can contain the object. 1571 */ 1572 return i915_gem_get_gtt_size(dev, size, tiling_mode); 1573 } 1574 1575 int 1576 i915_gem_mmap_gtt(struct drm_file *file, 1577 struct drm_device *dev, 1578 uint32_t handle, 1579 uint64_t *offset) 1580 { 1581 struct drm_i915_private *dev_priv = dev->dev_private; 1582 struct drm_i915_gem_object *obj; 1583 int ret; 1584 1585 ret = i915_mutex_lock_interruptible(dev); 1586 if (ret) 1587 return ret; 1588 1589 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle)); 1590 if (&obj->base == NULL) { 1591 ret = -ENOENT; 1592 goto unlock; 1593 } 1594 1595 if (obj->base.size > dev_priv->gtt.mappable_end) { 1596 ret = -E2BIG; 1597 goto out; 1598 } 1599 1600 if (obj->madv != I915_MADV_WILLNEED) { 1601 DRM_ERROR("Attempting to mmap a purgeable buffer\n"); 1602 ret = -EINVAL; 1603 goto out; 1604 } 1605 1606 ret = drm_gem_create_mmap_offset(&obj->base); 1607 if (ret) 1608 goto out; 1609 1610 *offset = DRM_GEM_MAPPING_OFF(obj->base.map_list.key) | 1611 DRM_GEM_MAPPING_KEY; 1612 out: 1613 drm_gem_object_unreference(&obj->base); 1614 unlock: 1615 mutex_unlock(&dev->struct_mutex); 1616 return ret; 1617 } 1618 1619 /** 1620 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing 1621 * @dev: DRM device 1622 * @data: GTT mapping ioctl data 1623 * @file: GEM object info 1624 * 1625 * Simply returns the fake offset to userspace so it can mmap it. 1626 * The mmap call will end up in drm_gem_mmap(), which will set things 1627 * up so we can get faults in the handler above. 1628 * 1629 * The fault handler will take care of binding the object into the GTT 1630 * (since it may have been evicted to make room for something), allocating 1631 * a fence register, and mapping the appropriate aperture address into 1632 * userspace. 1633 */ 1634 int 1635 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 1636 struct drm_file *file) 1637 { 1638 struct drm_i915_gem_mmap_gtt *args = data; 1639 1640 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset); 1641 } 1642 1643 /* Immediately discard the backing storage */ 1644 static void 1645 i915_gem_object_truncate(struct drm_i915_gem_object *obj) 1646 { 1647 vm_object_t vm_obj; 1648 1649 vm_obj = obj->base.vm_obj; 1650 VM_OBJECT_LOCK(vm_obj); 1651 vm_object_page_remove(vm_obj, 0, 0, false); 1652 VM_OBJECT_UNLOCK(vm_obj); 1653 1654 obj->madv = __I915_MADV_PURGED; 1655 } 1656 1657 static inline int 1658 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj) 1659 { 1660 return obj->madv == I915_MADV_DONTNEED; 1661 } 1662 1663 static void 1664 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj) 1665 { 1666 int page_count = obj->base.size / PAGE_SIZE; 1667 int i, ret; 1668 1669 if (!obj->pages) 1670 return; 1671 1672 BUG_ON(obj->madv == __I915_MADV_PURGED); 1673 1674 ret = i915_gem_object_set_to_cpu_domain(obj, true); 1675 if (ret) { 1676 /* In the event of a disaster, abandon all caches and 1677 * hope for the best. 1678 */ 1679 WARN_ON(ret != -EIO); 1680 i915_gem_clflush_object(obj); 1681 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU; 1682 } 1683 1684 if (i915_gem_object_needs_bit17_swizzle(obj)) 1685 i915_gem_object_save_bit_17_swizzle(obj); 1686 1687 if (obj->madv == I915_MADV_DONTNEED) 1688 obj->dirty = 0; 1689 1690 for (i = 0; i < page_count; i++) { 1691 if (obj->dirty) 1692 set_page_dirty(obj->pages[i]); 1693 1694 if (obj->madv == I915_MADV_WILLNEED) 1695 mark_page_accessed(obj->pages[i]); 1696 1697 vm_page_busy_wait(obj->pages[i], FALSE, "i915gem"); 1698 vm_page_unwire(obj->pages[i], 1); 1699 vm_page_wakeup(obj->pages[i]); 1700 } 1701 obj->dirty = 0; 1702 1703 kfree(obj->pages); 1704 obj->pages = NULL; 1705 } 1706 1707 int 1708 i915_gem_object_put_pages(struct drm_i915_gem_object *obj) 1709 { 1710 const struct drm_i915_gem_object_ops *ops = obj->ops; 1711 1712 if (obj->pages == NULL) 1713 return 0; 1714 1715 BUG_ON(obj->gtt_space); 1716 1717 if (obj->pages_pin_count) 1718 return -EBUSY; 1719 1720 /* ->put_pages might need to allocate memory for the bit17 swizzle 1721 * array, hence protect them from being reaped by removing them from gtt 1722 * lists early. */ 1723 list_del(&obj->global_list); 1724 1725 ops->put_pages(obj); 1726 obj->pages = NULL; 1727 1728 if (i915_gem_object_is_purgeable(obj)) 1729 i915_gem_object_truncate(obj); 1730 1731 return 0; 1732 } 1733 1734 static long 1735 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target, 1736 bool purgeable_only) 1737 { 1738 struct drm_i915_gem_object *obj, *next; 1739 long count = 0; 1740 1741 list_for_each_entry_safe(obj, next, 1742 &dev_priv->mm.unbound_list, 1743 global_list) { 1744 #if 0 1745 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) && 1746 i915_gem_object_put_pages(obj) == 0) { 1747 count += obj->base.size >> PAGE_SHIFT; 1748 if (count >= target) 1749 return count; 1750 } 1751 #endif 1752 } 1753 1754 list_for_each_entry_safe(obj, next, 1755 &dev_priv->mm.inactive_list, 1756 mm_list) { 1757 #if 0 1758 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) && 1759 i915_gem_object_unbind(obj) == 0 && 1760 i915_gem_object_put_pages(obj) == 0) { 1761 count += obj->base.size >> PAGE_SHIFT; 1762 if (count >= target) 1763 return count; 1764 } 1765 #endif 1766 } 1767 1768 return count; 1769 } 1770 1771 static long 1772 i915_gem_purge(struct drm_i915_private *dev_priv, long target) 1773 { 1774 return __i915_gem_shrink(dev_priv, target, true); 1775 } 1776 1777 static int 1778 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj) 1779 { 1780 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 1781 struct drm_device *dev; 1782 vm_object_t vm_obj; 1783 int page_count, i, j; 1784 struct vm_page *page; 1785 1786 dev = obj->base.dev; 1787 KASSERT(obj->pages == NULL, ("Obj already has pages")); 1788 page_count = obj->base.size / PAGE_SIZE; 1789 obj->pages = kmalloc(page_count * sizeof(vm_page_t), M_DRM, 1790 M_WAITOK); 1791 1792 vm_obj = obj->base.vm_obj; 1793 VM_OBJECT_LOCK(vm_obj); 1794 1795 for (i = 0; i < page_count; i++) { 1796 page = shmem_read_mapping_page(vm_obj, i); 1797 if (IS_ERR(page)) { 1798 i915_gem_purge(dev_priv, page_count); 1799 goto err_pages; 1800 } 1801 1802 obj->pages[i] = page; 1803 } 1804 1805 VM_OBJECT_UNLOCK(vm_obj); 1806 if (i915_gem_object_needs_bit17_swizzle(obj)) 1807 i915_gem_object_do_bit_17_swizzle(obj); 1808 1809 return 0; 1810 1811 err_pages: 1812 for (j = 0; j < i; j++) { 1813 page = obj->pages[j]; 1814 vm_page_busy_wait(page, FALSE, "i915gem"); 1815 vm_page_unwire(page, 0); 1816 vm_page_wakeup(page); 1817 } 1818 VM_OBJECT_UNLOCK(vm_obj); 1819 drm_free(obj->pages, M_DRM); 1820 obj->pages = NULL; 1821 return (-EIO); 1822 } 1823 1824 /* Ensure that the associated pages are gathered from the backing storage 1825 * and pinned into our object. i915_gem_object_get_pages() may be called 1826 * multiple times before they are released by a single call to 1827 * i915_gem_object_put_pages() - once the pages are no longer referenced 1828 * either as a result of memory pressure (reaping pages under the shrinker) 1829 * or as the object is itself released. 1830 */ 1831 int 1832 i915_gem_object_get_pages(struct drm_i915_gem_object *obj) 1833 { 1834 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 1835 const struct drm_i915_gem_object_ops *ops = obj->ops; 1836 int ret; 1837 1838 if (obj->pages) 1839 return 0; 1840 1841 if (obj->madv != I915_MADV_WILLNEED) { 1842 DRM_ERROR("Attempting to obtain a purgeable object\n"); 1843 return -EINVAL; 1844 } 1845 1846 BUG_ON(obj->pages_pin_count); 1847 1848 ret = ops->get_pages(obj); 1849 if (ret) 1850 return ret; 1851 1852 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list); 1853 return 0; 1854 } 1855 1856 void 1857 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj, 1858 struct intel_ring_buffer *ring) 1859 { 1860 struct drm_device *dev = obj->base.dev; 1861 struct drm_i915_private *dev_priv = dev->dev_private; 1862 u32 seqno = intel_ring_get_seqno(ring); 1863 1864 BUG_ON(ring == NULL); 1865 if (obj->ring != ring && obj->last_write_seqno) { 1866 /* Keep the seqno relative to the current ring */ 1867 obj->last_write_seqno = seqno; 1868 } 1869 obj->ring = ring; 1870 1871 /* Add a reference if we're newly entering the active list. */ 1872 if (!obj->active) { 1873 drm_gem_object_reference(&obj->base); 1874 obj->active = 1; 1875 } 1876 1877 /* Move from whatever list we were on to the tail of execution. */ 1878 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list); 1879 list_move_tail(&obj->ring_list, &ring->active_list); 1880 1881 obj->last_read_seqno = seqno; 1882 1883 if (obj->fenced_gpu_access) { 1884 obj->last_fenced_seqno = seqno; 1885 1886 /* Bump MRU to take account of the delayed flush */ 1887 if (obj->fence_reg != I915_FENCE_REG_NONE) { 1888 struct drm_i915_fence_reg *reg; 1889 1890 reg = &dev_priv->fence_regs[obj->fence_reg]; 1891 list_move_tail(®->lru_list, 1892 &dev_priv->mm.fence_list); 1893 } 1894 } 1895 } 1896 1897 static void 1898 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj) 1899 { 1900 struct drm_device *dev = obj->base.dev; 1901 struct drm_i915_private *dev_priv = dev->dev_private; 1902 1903 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS); 1904 BUG_ON(!obj->active); 1905 1906 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list); 1907 1908 list_del_init(&obj->ring_list); 1909 obj->ring = NULL; 1910 1911 obj->last_read_seqno = 0; 1912 obj->last_write_seqno = 0; 1913 obj->base.write_domain = 0; 1914 1915 obj->last_fenced_seqno = 0; 1916 obj->fenced_gpu_access = false; 1917 1918 obj->active = 0; 1919 drm_gem_object_unreference(&obj->base); 1920 1921 WARN_ON(i915_verify_lists(dev)); 1922 } 1923 1924 static int 1925 i915_gem_init_seqno(struct drm_device *dev, u32 seqno) 1926 { 1927 struct drm_i915_private *dev_priv = dev->dev_private; 1928 struct intel_ring_buffer *ring; 1929 int ret, i, j; 1930 1931 /* Carefully retire all requests without writing to the rings */ 1932 for_each_ring(ring, dev_priv, i) { 1933 ret = intel_ring_idle(ring); 1934 if (ret) 1935 return ret; 1936 } 1937 i915_gem_retire_requests(dev); 1938 1939 /* Finally reset hw state */ 1940 for_each_ring(ring, dev_priv, i) { 1941 intel_ring_init_seqno(ring, seqno); 1942 1943 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++) 1944 ring->sync_seqno[j] = 0; 1945 } 1946 1947 return 0; 1948 } 1949 1950 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno) 1951 { 1952 struct drm_i915_private *dev_priv = dev->dev_private; 1953 int ret; 1954 1955 if (seqno == 0) 1956 return -EINVAL; 1957 1958 /* HWS page needs to be set less than what we 1959 * will inject to ring 1960 */ 1961 ret = i915_gem_init_seqno(dev, seqno - 1); 1962 if (ret) 1963 return ret; 1964 1965 /* Carefully set the last_seqno value so that wrap 1966 * detection still works 1967 */ 1968 dev_priv->next_seqno = seqno; 1969 dev_priv->last_seqno = seqno - 1; 1970 if (dev_priv->last_seqno == 0) 1971 dev_priv->last_seqno--; 1972 1973 return 0; 1974 } 1975 1976 int 1977 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno) 1978 { 1979 struct drm_i915_private *dev_priv = dev->dev_private; 1980 1981 /* reserve 0 for non-seqno */ 1982 if (dev_priv->next_seqno == 0) { 1983 int ret = i915_gem_init_seqno(dev, 0); 1984 if (ret) 1985 return ret; 1986 1987 dev_priv->next_seqno = 1; 1988 } 1989 1990 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++; 1991 return 0; 1992 } 1993 1994 int __i915_add_request(struct intel_ring_buffer *ring, 1995 struct drm_file *file, 1996 struct drm_i915_gem_object *obj, 1997 u32 *out_seqno) 1998 { 1999 drm_i915_private_t *dev_priv = ring->dev->dev_private; 2000 struct drm_i915_gem_request *request; 2001 u32 request_ring_position, request_start; 2002 int was_empty; 2003 int ret; 2004 2005 request_start = intel_ring_get_tail(ring); 2006 /* 2007 * Emit any outstanding flushes - execbuf can fail to emit the flush 2008 * after having emitted the batchbuffer command. Hence we need to fix 2009 * things up similar to emitting the lazy request. The difference here 2010 * is that the flush _must_ happen before the next request, no matter 2011 * what. 2012 */ 2013 ret = intel_ring_flush_all_caches(ring); 2014 if (ret) 2015 return ret; 2016 2017 request = kmalloc(sizeof(*request), M_DRM, M_WAITOK); 2018 if (request == NULL) 2019 return -ENOMEM; 2020 2021 2022 /* Record the position of the start of the request so that 2023 * should we detect the updated seqno part-way through the 2024 * GPU processing the request, we never over-estimate the 2025 * position of the head. 2026 */ 2027 request_ring_position = intel_ring_get_tail(ring); 2028 2029 ret = ring->add_request(ring); 2030 if (ret) { 2031 kfree(request); 2032 return ret; 2033 } 2034 2035 request->seqno = intel_ring_get_seqno(ring); 2036 request->ring = ring; 2037 request->head = request_start; 2038 request->tail = request_ring_position; 2039 request->ctx = ring->last_context; 2040 request->batch_obj = obj; 2041 2042 /* Whilst this request exists, batch_obj will be on the 2043 * active_list, and so will hold the active reference. Only when this 2044 * request is retired will the the batch_obj be moved onto the 2045 * inactive_list and lose its active reference. Hence we do not need 2046 * to explicitly hold another reference here. 2047 */ 2048 2049 if (request->ctx) 2050 i915_gem_context_reference(request->ctx); 2051 2052 request->emitted_jiffies = jiffies; 2053 was_empty = list_empty(&ring->request_list); 2054 list_add_tail(&request->list, &ring->request_list); 2055 request->file_priv = NULL; 2056 2057 if (file) { 2058 struct drm_i915_file_private *file_priv = file->driver_priv; 2059 2060 spin_lock(&file_priv->mm.lock); 2061 request->file_priv = file_priv; 2062 list_add_tail(&request->client_list, 2063 &file_priv->mm.request_list); 2064 spin_unlock(&file_priv->mm.lock); 2065 } 2066 2067 trace_i915_gem_request_add(ring, request->seqno); 2068 ring->outstanding_lazy_request = 0; 2069 2070 if (!dev_priv->mm.suspended) { 2071 if (i915_enable_hangcheck) { 2072 mod_timer(&dev_priv->gpu_error.hangcheck_timer, 2073 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES)); 2074 } 2075 if (was_empty) { 2076 queue_delayed_work(dev_priv->wq, 2077 &dev_priv->mm.retire_work, 2078 round_jiffies_up_relative(hz)); 2079 intel_mark_busy(dev_priv->dev); 2080 } 2081 } 2082 2083 if (out_seqno) 2084 *out_seqno = request->seqno; 2085 return 0; 2086 } 2087 2088 static inline void 2089 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request) 2090 { 2091 struct drm_i915_file_private *file_priv = request->file_priv; 2092 2093 if (!file_priv) 2094 return; 2095 2096 spin_lock(&file_priv->mm.lock); 2097 if (request->file_priv) { 2098 list_del(&request->client_list); 2099 request->file_priv = NULL; 2100 } 2101 spin_unlock(&file_priv->mm.lock); 2102 } 2103 2104 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj) 2105 { 2106 if (acthd >= obj->gtt_offset && 2107 acthd < obj->gtt_offset + obj->base.size) 2108 return true; 2109 2110 return false; 2111 } 2112 2113 static bool i915_head_inside_request(const u32 acthd_unmasked, 2114 const u32 request_start, 2115 const u32 request_end) 2116 { 2117 const u32 acthd = acthd_unmasked & HEAD_ADDR; 2118 2119 if (request_start < request_end) { 2120 if (acthd >= request_start && acthd < request_end) 2121 return true; 2122 } else if (request_start > request_end) { 2123 if (acthd >= request_start || acthd < request_end) 2124 return true; 2125 } 2126 2127 return false; 2128 } 2129 2130 static bool i915_request_guilty(struct drm_i915_gem_request *request, 2131 const u32 acthd, bool *inside) 2132 { 2133 /* There is a possibility that unmasked head address 2134 * pointing inside the ring, matches the batch_obj address range. 2135 * However this is extremely unlikely. 2136 */ 2137 2138 if (request->batch_obj) { 2139 if (i915_head_inside_object(acthd, request->batch_obj)) { 2140 *inside = true; 2141 return true; 2142 } 2143 } 2144 2145 if (i915_head_inside_request(acthd, request->head, request->tail)) { 2146 *inside = false; 2147 return true; 2148 } 2149 2150 return false; 2151 } 2152 2153 static void i915_set_reset_status(struct intel_ring_buffer *ring, 2154 struct drm_i915_gem_request *request, 2155 u32 acthd) 2156 { 2157 struct i915_ctx_hang_stats *hs = NULL; 2158 bool inside, guilty; 2159 2160 /* Innocent until proven guilty */ 2161 guilty = false; 2162 2163 if (ring->hangcheck.action != wait && 2164 i915_request_guilty(request, acthd, &inside)) { 2165 DRM_ERROR("%s hung %s bo (0x%x ctx %d) at 0x%x\n", 2166 ring->name, 2167 inside ? "inside" : "flushing", 2168 request->batch_obj ? 2169 request->batch_obj->gtt_offset : 0, 2170 request->ctx ? request->ctx->id : 0, 2171 acthd); 2172 2173 guilty = true; 2174 } 2175 2176 /* If contexts are disabled or this is the default context, use 2177 * file_priv->reset_state 2178 */ 2179 if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID) 2180 hs = &request->ctx->hang_stats; 2181 else if (request->file_priv) 2182 hs = &request->file_priv->hang_stats; 2183 2184 if (hs) { 2185 if (guilty) 2186 hs->batch_active++; 2187 else 2188 hs->batch_pending++; 2189 } 2190 } 2191 2192 static void i915_gem_free_request(struct drm_i915_gem_request *request) 2193 { 2194 list_del(&request->list); 2195 i915_gem_request_remove_from_client(request); 2196 2197 if (request->ctx) 2198 i915_gem_context_unreference(request->ctx); 2199 2200 kfree(request); 2201 } 2202 2203 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv, 2204 struct intel_ring_buffer *ring) 2205 { 2206 u32 completed_seqno; 2207 u32 acthd; 2208 2209 acthd = intel_ring_get_active_head(ring); 2210 completed_seqno = ring->get_seqno(ring, false); 2211 2212 while (!list_empty(&ring->request_list)) { 2213 struct drm_i915_gem_request *request; 2214 2215 request = list_first_entry(&ring->request_list, 2216 struct drm_i915_gem_request, 2217 list); 2218 2219 if (request->seqno > completed_seqno) 2220 i915_set_reset_status(ring, request, acthd); 2221 2222 i915_gem_free_request(request); 2223 } 2224 2225 while (!list_empty(&ring->active_list)) { 2226 struct drm_i915_gem_object *obj; 2227 2228 obj = list_first_entry(&ring->active_list, 2229 struct drm_i915_gem_object, 2230 ring_list); 2231 2232 i915_gem_object_move_to_inactive(obj); 2233 } 2234 } 2235 2236 void i915_gem_restore_fences(struct drm_device *dev) 2237 { 2238 struct drm_i915_private *dev_priv = dev->dev_private; 2239 int i; 2240 2241 for (i = 0; i < dev_priv->num_fence_regs; i++) { 2242 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i]; 2243 2244 /* 2245 * Commit delayed tiling changes if we have an object still 2246 * attached to the fence, otherwise just clear the fence. 2247 */ 2248 if (reg->obj) { 2249 i915_gem_object_update_fence(reg->obj, reg, 2250 reg->obj->tiling_mode); 2251 } else { 2252 i915_gem_write_fence(dev, i, NULL); 2253 } 2254 } 2255 } 2256 2257 void i915_gem_reset(struct drm_device *dev) 2258 { 2259 struct drm_i915_private *dev_priv = dev->dev_private; 2260 struct drm_i915_gem_object *obj; 2261 struct intel_ring_buffer *ring; 2262 int i; 2263 2264 for_each_ring(ring, dev_priv, i) 2265 i915_gem_reset_ring_lists(dev_priv, ring); 2266 2267 /* Move everything out of the GPU domains to ensure we do any 2268 * necessary invalidation upon reuse. 2269 */ 2270 list_for_each_entry(obj, 2271 &dev_priv->mm.inactive_list, 2272 mm_list) 2273 { 2274 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS; 2275 } 2276 2277 i915_gem_restore_fences(dev); 2278 } 2279 2280 /** 2281 * This function clears the request list as sequence numbers are passed. 2282 */ 2283 void 2284 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring) 2285 { 2286 uint32_t seqno; 2287 2288 if (list_empty(&ring->request_list)) 2289 return; 2290 2291 WARN_ON(i915_verify_lists(ring->dev)); 2292 2293 seqno = ring->get_seqno(ring, true); 2294 2295 while (!list_empty(&ring->request_list)) { 2296 struct drm_i915_gem_request *request; 2297 2298 request = list_first_entry(&ring->request_list, 2299 struct drm_i915_gem_request, 2300 list); 2301 2302 if (!i915_seqno_passed(seqno, request->seqno)) 2303 break; 2304 2305 trace_i915_gem_request_retire(ring, request->seqno); 2306 /* We know the GPU must have read the request to have 2307 * sent us the seqno + interrupt, so use the position 2308 * of tail of the request to update the last known position 2309 * of the GPU head. 2310 */ 2311 ring->last_retired_head = request->tail; 2312 2313 i915_gem_free_request(request); 2314 } 2315 2316 /* Move any buffers on the active list that are no longer referenced 2317 * by the ringbuffer to the flushing/inactive lists as appropriate. 2318 */ 2319 while (!list_empty(&ring->active_list)) { 2320 struct drm_i915_gem_object *obj; 2321 2322 obj = list_first_entry(&ring->active_list, 2323 struct drm_i915_gem_object, 2324 ring_list); 2325 2326 if (!i915_seqno_passed(seqno, obj->last_read_seqno)) 2327 break; 2328 2329 i915_gem_object_move_to_inactive(obj); 2330 } 2331 2332 if (unlikely(ring->trace_irq_seqno && 2333 i915_seqno_passed(seqno, ring->trace_irq_seqno))) { 2334 ring->irq_put(ring); 2335 ring->trace_irq_seqno = 0; 2336 } 2337 2338 } 2339 2340 void 2341 i915_gem_retire_requests(struct drm_device *dev) 2342 { 2343 drm_i915_private_t *dev_priv = dev->dev_private; 2344 struct intel_ring_buffer *ring; 2345 int i; 2346 2347 for_each_ring(ring, dev_priv, i) 2348 i915_gem_retire_requests_ring(ring); 2349 } 2350 2351 static void 2352 i915_gem_retire_work_handler(struct work_struct *work) 2353 { 2354 drm_i915_private_t *dev_priv; 2355 struct drm_device *dev; 2356 struct intel_ring_buffer *ring; 2357 bool idle; 2358 int i; 2359 2360 dev_priv = container_of(work, drm_i915_private_t, 2361 mm.retire_work.work); 2362 dev = dev_priv->dev; 2363 2364 /* Come back later if the device is busy... */ 2365 if (lockmgr(&dev->struct_mutex, LK_EXCLUSIVE|LK_NOWAIT)) { 2366 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 2367 round_jiffies_up_relative(hz)); 2368 return; 2369 } 2370 2371 i915_gem_retire_requests(dev); 2372 2373 /* Send a periodic flush down the ring so we don't hold onto GEM 2374 * objects indefinitely. 2375 */ 2376 idle = true; 2377 for_each_ring(ring, dev_priv, i) { 2378 if (ring->gpu_caches_dirty) 2379 i915_add_request(ring, NULL); 2380 2381 idle &= list_empty(&ring->request_list); 2382 } 2383 2384 if (!dev_priv->mm.suspended && !idle) 2385 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 2386 round_jiffies_up_relative(hz)); 2387 if (idle) 2388 intel_mark_idle(dev); 2389 2390 mutex_unlock(&dev->struct_mutex); 2391 } 2392 /** 2393 * Ensures that an object will eventually get non-busy by flushing any required 2394 * write domains, emitting any outstanding lazy request and retiring and 2395 * completed requests. 2396 */ 2397 static int 2398 i915_gem_object_flush_active(struct drm_i915_gem_object *obj) 2399 { 2400 int ret; 2401 2402 if (obj->active) { 2403 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno); 2404 if (ret) 2405 return ret; 2406 2407 i915_gem_retire_requests_ring(obj->ring); 2408 } 2409 2410 return 0; 2411 } 2412 2413 /** 2414 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT 2415 * @DRM_IOCTL_ARGS: standard ioctl arguments 2416 * 2417 * Returns 0 if successful, else an error is returned with the remaining time in 2418 * the timeout parameter. 2419 * -ETIME: object is still busy after timeout 2420 * -ERESTARTSYS: signal interrupted the wait 2421 * -ENONENT: object doesn't exist 2422 * Also possible, but rare: 2423 * -EAGAIN: GPU wedged 2424 * -ENOMEM: damn 2425 * -ENODEV: Internal IRQ fail 2426 * -E?: The add request failed 2427 * 2428 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any 2429 * non-zero timeout parameter the wait ioctl will wait for the given number of 2430 * nanoseconds on an object becoming unbusy. Since the wait itself does so 2431 * without holding struct_mutex the object may become re-busied before this 2432 * function completes. A similar but shorter * race condition exists in the busy 2433 * ioctl 2434 */ 2435 int 2436 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file) 2437 { 2438 drm_i915_private_t *dev_priv = dev->dev_private; 2439 struct drm_i915_gem_wait *args = data; 2440 struct drm_i915_gem_object *obj; 2441 struct intel_ring_buffer *ring = NULL; 2442 struct timespec timeout_stack, *timeout = NULL; 2443 unsigned reset_counter; 2444 u32 seqno = 0; 2445 int ret = 0; 2446 2447 if (args->timeout_ns >= 0) { 2448 timeout_stack = ns_to_timespec(args->timeout_ns); 2449 timeout = &timeout_stack; 2450 } 2451 2452 ret = i915_mutex_lock_interruptible(dev); 2453 if (ret) 2454 return ret; 2455 2456 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle)); 2457 if (&obj->base == NULL) { 2458 mutex_unlock(&dev->struct_mutex); 2459 return -ENOENT; 2460 } 2461 2462 /* Need to make sure the object gets inactive eventually. */ 2463 ret = i915_gem_object_flush_active(obj); 2464 if (ret) 2465 goto out; 2466 2467 if (obj->active) { 2468 seqno = obj->last_read_seqno; 2469 ring = obj->ring; 2470 } 2471 2472 if (seqno == 0) 2473 goto out; 2474 2475 /* Do this after OLR check to make sure we make forward progress polling 2476 * on this IOCTL with a 0 timeout (like busy ioctl) 2477 */ 2478 if (!args->timeout_ns) { 2479 ret = -ETIMEDOUT; 2480 goto out; 2481 } 2482 2483 drm_gem_object_unreference(&obj->base); 2484 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 2485 mutex_unlock(&dev->struct_mutex); 2486 2487 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout); 2488 if (timeout) 2489 args->timeout_ns = timespec_to_ns(timeout); 2490 return ret; 2491 2492 out: 2493 drm_gem_object_unreference(&obj->base); 2494 mutex_unlock(&dev->struct_mutex); 2495 return ret; 2496 } 2497 2498 /** 2499 * i915_gem_object_sync - sync an object to a ring. 2500 * 2501 * @obj: object which may be in use on another ring. 2502 * @to: ring we wish to use the object on. May be NULL. 2503 * 2504 * This code is meant to abstract object synchronization with the GPU. 2505 * Calling with NULL implies synchronizing the object with the CPU 2506 * rather than a particular GPU ring. 2507 * 2508 * Returns 0 if successful, else propagates up the lower layer error. 2509 */ 2510 int 2511 i915_gem_object_sync(struct drm_i915_gem_object *obj, 2512 struct intel_ring_buffer *to) 2513 { 2514 struct intel_ring_buffer *from = obj->ring; 2515 u32 seqno; 2516 int ret, idx; 2517 2518 if (from == NULL || to == from) 2519 return 0; 2520 2521 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev)) 2522 return i915_gem_object_wait_rendering(obj, false); 2523 2524 idx = intel_ring_sync_index(from, to); 2525 2526 seqno = obj->last_read_seqno; 2527 if (seqno <= from->sync_seqno[idx]) 2528 return 0; 2529 2530 ret = i915_gem_check_olr(obj->ring, seqno); 2531 if (ret) 2532 return ret; 2533 2534 ret = to->sync_to(to, from, seqno); 2535 if (!ret) 2536 /* We use last_read_seqno because sync_to() 2537 * might have just caused seqno wrap under 2538 * the radar. 2539 */ 2540 from->sync_seqno[idx] = obj->last_read_seqno; 2541 2542 return ret; 2543 } 2544 2545 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj) 2546 { 2547 u32 old_write_domain, old_read_domains; 2548 2549 /* Force a pagefault for domain tracking on next user access */ 2550 i915_gem_release_mmap(obj); 2551 2552 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) 2553 return; 2554 2555 /* Wait for any direct GTT access to complete */ 2556 cpu_mfence(); 2557 2558 old_read_domains = obj->base.read_domains; 2559 old_write_domain = obj->base.write_domain; 2560 2561 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT; 2562 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT; 2563 2564 trace_i915_gem_object_change_domain(obj, 2565 old_read_domains, 2566 old_write_domain); 2567 } 2568 2569 /** 2570 * Unbinds an object from the GTT aperture. 2571 */ 2572 int 2573 i915_gem_object_unbind(struct drm_i915_gem_object *obj) 2574 { 2575 drm_i915_private_t *dev_priv = obj->base.dev->dev_private; 2576 int ret; 2577 2578 if (obj->gtt_space == NULL) 2579 return 0; 2580 2581 if (obj->pin_count) 2582 return -EBUSY; 2583 2584 BUG_ON(obj->pages == NULL); 2585 2586 ret = i915_gem_object_finish_gpu(obj); 2587 if (ret) 2588 return ret; 2589 /* Continue on if we fail due to EIO, the GPU is hung so we 2590 * should be safe and we need to cleanup or else we might 2591 * cause memory corruption through use-after-free. 2592 */ 2593 2594 i915_gem_object_finish_gtt(obj); 2595 2596 /* Move the object to the CPU domain to ensure that 2597 * any possible CPU writes while it's not in the GTT 2598 * are flushed when we go to remap it. 2599 */ 2600 if (ret == 0) 2601 ret = i915_gem_object_set_to_cpu_domain(obj, 1); 2602 if (ret == -ERESTARTSYS) 2603 return ret; 2604 if (ret) { 2605 /* In the event of a disaster, abandon all caches and 2606 * hope for the best. 2607 */ 2608 i915_gem_clflush_object(obj); 2609 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU; 2610 } 2611 2612 /* release the fence reg _after_ flushing */ 2613 ret = i915_gem_object_put_fence(obj); 2614 if (ret) 2615 return ret; 2616 2617 trace_i915_gem_object_unbind(obj); 2618 2619 if (obj->has_global_gtt_mapping) 2620 i915_gem_gtt_unbind_object(obj); 2621 if (obj->has_aliasing_ppgtt_mapping) { 2622 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj); 2623 obj->has_aliasing_ppgtt_mapping = 0; 2624 } 2625 i915_gem_gtt_finish_object(obj); 2626 2627 i915_gem_object_put_pages_gtt(obj); 2628 2629 list_del_init(&obj->global_list); 2630 list_del_init(&obj->mm_list); 2631 /* Avoid an unnecessary call to unbind on rebind. */ 2632 obj->map_and_fenceable = true; 2633 2634 drm_mm_put_block(obj->gtt_space); 2635 obj->gtt_space = NULL; 2636 obj->gtt_offset = 0; 2637 2638 if (i915_gem_object_is_purgeable(obj)) 2639 i915_gem_object_truncate(obj); 2640 2641 return ret; 2642 } 2643 2644 int i915_gpu_idle(struct drm_device *dev) 2645 { 2646 drm_i915_private_t *dev_priv = dev->dev_private; 2647 struct intel_ring_buffer *ring; 2648 int ret, i; 2649 2650 /* Flush everything onto the inactive list. */ 2651 for_each_ring(ring, dev_priv, i) { 2652 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID); 2653 if (ret) 2654 return ret; 2655 2656 ret = intel_ring_idle(ring); 2657 if (ret) 2658 return ret; 2659 } 2660 2661 return 0; 2662 } 2663 2664 static void i965_write_fence_reg(struct drm_device *dev, int reg, 2665 struct drm_i915_gem_object *obj) 2666 { 2667 drm_i915_private_t *dev_priv = dev->dev_private; 2668 int fence_reg; 2669 int fence_pitch_shift; 2670 2671 if (INTEL_INFO(dev)->gen >= 6) { 2672 fence_reg = FENCE_REG_SANDYBRIDGE_0; 2673 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT; 2674 } else { 2675 fence_reg = FENCE_REG_965_0; 2676 fence_pitch_shift = I965_FENCE_PITCH_SHIFT; 2677 } 2678 2679 fence_reg += reg * 8; 2680 2681 /* To w/a incoherency with non-atomic 64-bit register updates, 2682 * we split the 64-bit update into two 32-bit writes. In order 2683 * for a partial fence not to be evaluated between writes, we 2684 * precede the update with write to turn off the fence register, 2685 * and only enable the fence as the last step. 2686 * 2687 * For extra levels of paranoia, we make sure each step lands 2688 * before applying the next step. 2689 */ 2690 I915_WRITE(fence_reg, 0); 2691 POSTING_READ(fence_reg); 2692 2693 if (obj) { 2694 u32 size = obj->gtt_space->size; 2695 uint64_t val; 2696 2697 val = (uint64_t)((obj->gtt_offset + size - 4096) & 2698 0xfffff000) << 32; 2699 val |= obj->gtt_offset & 0xfffff000; 2700 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift; 2701 if (obj->tiling_mode == I915_TILING_Y) 2702 val |= 1 << I965_FENCE_TILING_Y_SHIFT; 2703 val |= I965_FENCE_REG_VALID; 2704 2705 I915_WRITE(fence_reg + 4, val >> 32); 2706 POSTING_READ(fence_reg + 4); 2707 2708 I915_WRITE(fence_reg + 0, val); 2709 POSTING_READ(fence_reg); 2710 } else { 2711 I915_WRITE(fence_reg + 4, 0); 2712 POSTING_READ(fence_reg + 4); 2713 } 2714 } 2715 2716 static void i915_write_fence_reg(struct drm_device *dev, int reg, 2717 struct drm_i915_gem_object *obj) 2718 { 2719 drm_i915_private_t *dev_priv = dev->dev_private; 2720 u32 val; 2721 2722 if (obj) { 2723 u32 size = obj->gtt_space->size; 2724 int pitch_val; 2725 int tile_width; 2726 2727 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) || 2728 (size & -size) != size || 2729 (obj->gtt_offset & (size - 1)), 2730 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n", 2731 obj->gtt_offset, obj->map_and_fenceable, size); 2732 2733 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)) 2734 tile_width = 128; 2735 else 2736 tile_width = 512; 2737 2738 /* Note: pitch better be a power of two tile widths */ 2739 pitch_val = obj->stride / tile_width; 2740 pitch_val = ffs(pitch_val) - 1; 2741 2742 val = obj->gtt_offset; 2743 if (obj->tiling_mode == I915_TILING_Y) 2744 val |= 1 << I830_FENCE_TILING_Y_SHIFT; 2745 val |= I915_FENCE_SIZE_BITS(size); 2746 val |= pitch_val << I830_FENCE_PITCH_SHIFT; 2747 val |= I830_FENCE_REG_VALID; 2748 } else 2749 val = 0; 2750 2751 if (reg < 8) 2752 reg = FENCE_REG_830_0 + reg * 4; 2753 else 2754 reg = FENCE_REG_945_8 + (reg - 8) * 4; 2755 2756 I915_WRITE(reg, val); 2757 POSTING_READ(reg); 2758 } 2759 2760 static void i830_write_fence_reg(struct drm_device *dev, int reg, 2761 struct drm_i915_gem_object *obj) 2762 { 2763 drm_i915_private_t *dev_priv = dev->dev_private; 2764 uint32_t val; 2765 2766 if (obj) { 2767 u32 size = obj->gtt_space->size; 2768 uint32_t pitch_val; 2769 2770 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) || 2771 (size & -size) != size || 2772 (obj->gtt_offset & (size - 1)), 2773 "object 0x%08x not 512K or pot-size 0x%08x aligned\n", 2774 obj->gtt_offset, size); 2775 2776 pitch_val = obj->stride / 128; 2777 pitch_val = ffs(pitch_val) - 1; 2778 2779 val = obj->gtt_offset; 2780 if (obj->tiling_mode == I915_TILING_Y) 2781 val |= 1 << I830_FENCE_TILING_Y_SHIFT; 2782 val |= I830_FENCE_SIZE_BITS(size); 2783 val |= pitch_val << I830_FENCE_PITCH_SHIFT; 2784 val |= I830_FENCE_REG_VALID; 2785 } else 2786 val = 0; 2787 2788 I915_WRITE(FENCE_REG_830_0 + reg * 4, val); 2789 POSTING_READ(FENCE_REG_830_0 + reg * 4); 2790 } 2791 2792 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj) 2793 { 2794 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT; 2795 } 2796 2797 static void i915_gem_write_fence(struct drm_device *dev, int reg, 2798 struct drm_i915_gem_object *obj) 2799 { 2800 struct drm_i915_private *dev_priv = dev->dev_private; 2801 2802 /* Ensure that all CPU reads are completed before installing a fence 2803 * and all writes before removing the fence. 2804 */ 2805 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj)) 2806 cpu_mfence(); 2807 2808 WARN(obj && (!obj->stride || !obj->tiling_mode), 2809 "bogus fence setup with stride: 0x%x, tiling mode: %i\n", 2810 obj->stride, obj->tiling_mode); 2811 2812 switch (INTEL_INFO(dev)->gen) { 2813 case 7: 2814 case 6: 2815 case 5: 2816 case 4: i965_write_fence_reg(dev, reg, obj); break; 2817 case 3: i915_write_fence_reg(dev, reg, obj); break; 2818 case 2: i830_write_fence_reg(dev, reg, obj); break; 2819 default: BUG(); 2820 } 2821 2822 /* And similarly be paranoid that no direct access to this region 2823 * is reordered to before the fence is installed. 2824 */ 2825 if (i915_gem_object_needs_mb(obj)) 2826 cpu_mfence(); 2827 } 2828 2829 static inline int fence_number(struct drm_i915_private *dev_priv, 2830 struct drm_i915_fence_reg *fence) 2831 { 2832 return fence - dev_priv->fence_regs; 2833 } 2834 2835 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj, 2836 struct drm_i915_fence_reg *fence, 2837 bool enable) 2838 { 2839 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2840 int reg = fence_number(dev_priv, fence); 2841 2842 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL); 2843 2844 if (enable) { 2845 obj->fence_reg = reg; 2846 fence->obj = obj; 2847 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list); 2848 } else { 2849 obj->fence_reg = I915_FENCE_REG_NONE; 2850 fence->obj = NULL; 2851 list_del_init(&fence->lru_list); 2852 } 2853 obj->fence_dirty = false; 2854 } 2855 2856 static int 2857 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj) 2858 { 2859 if (obj->last_fenced_seqno) { 2860 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno); 2861 if (ret) 2862 return ret; 2863 2864 obj->last_fenced_seqno = 0; 2865 } 2866 2867 obj->fenced_gpu_access = false; 2868 return 0; 2869 } 2870 2871 int 2872 i915_gem_object_put_fence(struct drm_i915_gem_object *obj) 2873 { 2874 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2875 struct drm_i915_fence_reg *fence; 2876 int ret; 2877 2878 ret = i915_gem_object_wait_fence(obj); 2879 if (ret) 2880 return ret; 2881 2882 if (obj->fence_reg == I915_FENCE_REG_NONE) 2883 return 0; 2884 2885 fence = &dev_priv->fence_regs[obj->fence_reg]; 2886 2887 i915_gem_object_fence_lost(obj); 2888 i915_gem_object_update_fence(obj, fence, false); 2889 2890 return 0; 2891 } 2892 2893 static struct drm_i915_fence_reg * 2894 i915_find_fence_reg(struct drm_device *dev) 2895 { 2896 struct drm_i915_private *dev_priv = dev->dev_private; 2897 struct drm_i915_fence_reg *reg, *avail; 2898 int i; 2899 2900 /* First try to find a free reg */ 2901 avail = NULL; 2902 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) { 2903 reg = &dev_priv->fence_regs[i]; 2904 if (!reg->obj) 2905 return reg; 2906 2907 if (!reg->pin_count) 2908 avail = reg; 2909 } 2910 2911 if (avail == NULL) 2912 return NULL; 2913 2914 /* None available, try to steal one or wait for a user to finish */ 2915 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) { 2916 if (reg->pin_count) 2917 continue; 2918 2919 return reg; 2920 } 2921 2922 return NULL; 2923 } 2924 2925 /** 2926 * i915_gem_object_get_fence - set up fencing for an object 2927 * @obj: object to map through a fence reg 2928 * 2929 * When mapping objects through the GTT, userspace wants to be able to write 2930 * to them without having to worry about swizzling if the object is tiled. 2931 * This function walks the fence regs looking for a free one for @obj, 2932 * stealing one if it can't find any. 2933 * 2934 * It then sets up the reg based on the object's properties: address, pitch 2935 * and tiling format. 2936 * 2937 * For an untiled surface, this removes any existing fence. 2938 */ 2939 int 2940 i915_gem_object_get_fence(struct drm_i915_gem_object *obj) 2941 { 2942 struct drm_device *dev = obj->base.dev; 2943 struct drm_i915_private *dev_priv = dev->dev_private; 2944 bool enable = obj->tiling_mode != I915_TILING_NONE; 2945 struct drm_i915_fence_reg *reg; 2946 int ret; 2947 2948 /* Have we updated the tiling parameters upon the object and so 2949 * will need to serialise the write to the associated fence register? 2950 */ 2951 if (obj->fence_dirty) { 2952 ret = i915_gem_object_wait_fence(obj); 2953 if (ret) 2954 return ret; 2955 } 2956 2957 /* Just update our place in the LRU if our fence is getting reused. */ 2958 if (obj->fence_reg != I915_FENCE_REG_NONE) { 2959 reg = &dev_priv->fence_regs[obj->fence_reg]; 2960 if (!obj->fence_dirty) { 2961 list_move_tail(®->lru_list, 2962 &dev_priv->mm.fence_list); 2963 return 0; 2964 } 2965 } else if (enable) { 2966 reg = i915_find_fence_reg(dev); 2967 if (reg == NULL) 2968 return -EDEADLK; 2969 2970 if (reg->obj) { 2971 struct drm_i915_gem_object *old = reg->obj; 2972 2973 ret = i915_gem_object_wait_fence(old); 2974 if (ret) 2975 return ret; 2976 2977 i915_gem_object_fence_lost(old); 2978 } 2979 } else 2980 return 0; 2981 2982 i915_gem_object_update_fence(obj, reg, enable); 2983 2984 return 0; 2985 } 2986 2987 static bool i915_gem_valid_gtt_space(struct drm_device *dev, 2988 struct drm_mm_node *gtt_space, 2989 unsigned long cache_level) 2990 { 2991 struct drm_mm_node *other; 2992 2993 /* On non-LLC machines we have to be careful when putting differing 2994 * types of snoopable memory together to avoid the prefetcher 2995 * crossing memory domains and dying. 2996 */ 2997 if (HAS_LLC(dev)) 2998 return true; 2999 3000 if (gtt_space == NULL) 3001 return true; 3002 3003 if (list_empty(>t_space->node_list)) 3004 return true; 3005 3006 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list); 3007 if (other->allocated && !other->hole_follows && other->color != cache_level) 3008 return false; 3009 3010 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list); 3011 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level) 3012 return false; 3013 3014 return true; 3015 } 3016 3017 static void i915_gem_verify_gtt(struct drm_device *dev) 3018 { 3019 #if WATCH_GTT 3020 struct drm_i915_private *dev_priv = dev->dev_private; 3021 struct drm_i915_gem_object *obj; 3022 int err = 0; 3023 3024 list_for_each_entry(obj, &dev_priv->mm.global_list, global_list) { 3025 if (obj->gtt_space == NULL) { 3026 printk(KERN_ERR "object found on GTT list with no space reserved\n"); 3027 err++; 3028 continue; 3029 } 3030 3031 if (obj->cache_level != obj->gtt_space->color) { 3032 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n", 3033 obj->gtt_space->start, 3034 obj->gtt_space->start + obj->gtt_space->size, 3035 obj->cache_level, 3036 obj->gtt_space->color); 3037 err++; 3038 continue; 3039 } 3040 3041 if (!i915_gem_valid_gtt_space(dev, 3042 obj->gtt_space, 3043 obj->cache_level)) { 3044 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n", 3045 obj->gtt_space->start, 3046 obj->gtt_space->start + obj->gtt_space->size, 3047 obj->cache_level); 3048 err++; 3049 continue; 3050 } 3051 } 3052 3053 WARN_ON(err); 3054 #endif 3055 } 3056 3057 /** 3058 * Finds free space in the GTT aperture and binds the object there. 3059 */ 3060 static int 3061 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj, 3062 unsigned alignment, 3063 bool map_and_fenceable, 3064 bool nonblocking) 3065 { 3066 struct drm_device *dev = obj->base.dev; 3067 drm_i915_private_t *dev_priv = dev->dev_private; 3068 struct drm_mm_node *node; 3069 u32 size, fence_size, fence_alignment, unfenced_alignment; 3070 bool mappable, fenceable; 3071 size_t gtt_max = map_and_fenceable ? 3072 dev_priv->gtt.mappable_end : dev_priv->gtt.total; 3073 int ret; 3074 3075 fence_size = i915_gem_get_gtt_size(dev, 3076 obj->base.size, 3077 obj->tiling_mode); 3078 fence_alignment = i915_gem_get_gtt_alignment(dev, 3079 obj->base.size, 3080 obj->tiling_mode, true); 3081 unfenced_alignment = 3082 i915_gem_get_gtt_alignment(dev, 3083 obj->base.size, 3084 obj->tiling_mode, false); 3085 3086 if (alignment == 0) 3087 alignment = map_and_fenceable ? fence_alignment : 3088 unfenced_alignment; 3089 if (map_and_fenceable && alignment & (fence_alignment - 1)) { 3090 DRM_ERROR("Invalid object alignment requested %u\n", alignment); 3091 return -EINVAL; 3092 } 3093 3094 size = map_and_fenceable ? fence_size : obj->base.size; 3095 3096 /* If the object is bigger than the entire aperture, reject it early 3097 * before evicting everything in a vain attempt to find space. 3098 */ 3099 if (obj->base.size > gtt_max) { 3100 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n", 3101 obj->base.size, 3102 map_and_fenceable ? "mappable" : "total", 3103 gtt_max); 3104 return -E2BIG; 3105 } 3106 3107 search_free: 3108 if (map_and_fenceable) 3109 node = drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space, 3110 size, alignment, obj->cache_level, 3111 0, dev_priv->gtt.mappable_end, 3112 false); 3113 else 3114 node = drm_mm_search_free_color(&dev_priv->mm.gtt_space, 3115 size, alignment, obj->cache_level, 3116 false); 3117 if (node != NULL) { 3118 if (map_and_fenceable) 3119 obj->gtt_space = 3120 drm_mm_get_block_range_generic(node, 3121 size, alignment, obj->cache_level, 3122 0, dev_priv->gtt.mappable_end, 3123 false); 3124 else 3125 obj->gtt_space = 3126 drm_mm_get_block_generic(node, 3127 size, alignment, obj->cache_level, 3128 false); 3129 } 3130 if (obj->gtt_space == NULL) { 3131 ret = i915_gem_evict_something(dev, size, alignment, 3132 obj->cache_level, 3133 map_and_fenceable, 3134 nonblocking); 3135 if (ret) 3136 return ret; 3137 3138 goto search_free; 3139 } 3140 3141 /* 3142 * NOTE: i915_gem_object_get_pages_gtt() cannot 3143 * return ENOMEM, since we used VM_ALLOC_RETRY. 3144 */ 3145 ret = i915_gem_object_get_pages_gtt(obj); 3146 if (ret != 0) { 3147 drm_mm_put_block(obj->gtt_space); 3148 obj->gtt_space = NULL; 3149 return ret; 3150 } 3151 3152 i915_gem_gtt_bind_object(obj, obj->cache_level); 3153 if (ret != 0) { 3154 i915_gem_object_put_pages_gtt(obj); 3155 drm_mm_put_block(obj->gtt_space); 3156 obj->gtt_space = NULL; 3157 if (i915_gem_evict_everything(dev)) 3158 return (ret); 3159 goto search_free; 3160 } 3161 3162 list_add_tail(&obj->global_list, &dev_priv->mm.bound_list); 3163 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list); 3164 3165 obj->gtt_offset = obj->gtt_space->start; 3166 3167 fenceable = 3168 obj->gtt_space->size == fence_size && 3169 (obj->gtt_space->start & (fence_alignment - 1)) == 0; 3170 3171 mappable = 3172 obj->gtt_offset + obj->base.size <= dev_priv->gtt.mappable_end; 3173 3174 obj->map_and_fenceable = mappable && fenceable; 3175 3176 trace_i915_gem_object_bind(obj, map_and_fenceable); 3177 i915_gem_verify_gtt(dev); 3178 return 0; 3179 } 3180 3181 void 3182 i915_gem_clflush_object(struct drm_i915_gem_object *obj) 3183 { 3184 3185 /* If we don't have a page list set up, then we're not pinned 3186 * to GPU, and we can ignore the cache flush because it'll happen 3187 * again at bind time. 3188 */ 3189 if (obj->pages == NULL) 3190 return; 3191 3192 /* 3193 * Stolen memory is always coherent with the GPU as it is explicitly 3194 * marked as wc by the system, or the system is cache-coherent. 3195 */ 3196 if (obj->stolen) 3197 return; 3198 3199 /* If the GPU is snooping the contents of the CPU cache, 3200 * we do not need to manually clear the CPU cache lines. However, 3201 * the caches are only snooped when the render cache is 3202 * flushed/invalidated. As we always have to emit invalidations 3203 * and flushes when moving into and out of the RENDER domain, correct 3204 * snooping behaviour occurs naturally as the result of our domain 3205 * tracking. 3206 */ 3207 if (obj->cache_level != I915_CACHE_NONE) 3208 return; 3209 3210 trace_i915_gem_object_clflush(obj); 3211 3212 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE); 3213 } 3214 3215 /** Flushes the GTT write domain for the object if it's dirty. */ 3216 static void 3217 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj) 3218 { 3219 uint32_t old_write_domain; 3220 3221 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT) 3222 return; 3223 3224 /* No actual flushing is required for the GTT write domain. Writes 3225 * to it immediately go to main memory as far as we know, so there's 3226 * no chipset flush. It also doesn't land in render cache. 3227 * 3228 * However, we do have to enforce the order so that all writes through 3229 * the GTT land before any writes to the device, such as updates to 3230 * the GATT itself. 3231 */ 3232 cpu_sfence(); 3233 3234 old_write_domain = obj->base.write_domain; 3235 obj->base.write_domain = 0; 3236 3237 trace_i915_gem_object_change_domain(obj, 3238 obj->base.read_domains, 3239 old_write_domain); 3240 } 3241 3242 /** Flushes the CPU write domain for the object if it's dirty. */ 3243 static void 3244 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj) 3245 { 3246 uint32_t old_write_domain; 3247 3248 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) 3249 return; 3250 3251 i915_gem_clflush_object(obj); 3252 i915_gem_chipset_flush(obj->base.dev); 3253 old_write_domain = obj->base.write_domain; 3254 obj->base.write_domain = 0; 3255 3256 trace_i915_gem_object_change_domain(obj, 3257 obj->base.read_domains, 3258 old_write_domain); 3259 } 3260 3261 /** 3262 * Moves a single object to the GTT read, and possibly write domain. 3263 * 3264 * This function returns when the move is complete, including waiting on 3265 * flushes to occur. 3266 */ 3267 int 3268 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write) 3269 { 3270 drm_i915_private_t *dev_priv = obj->base.dev->dev_private; 3271 uint32_t old_write_domain, old_read_domains; 3272 int ret; 3273 3274 /* Not valid to be called on unbound objects. */ 3275 if (obj->gtt_space == NULL) 3276 return -EINVAL; 3277 3278 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT) 3279 return 0; 3280 3281 ret = i915_gem_object_wait_rendering(obj, !write); 3282 if (ret) 3283 return ret; 3284 3285 i915_gem_object_flush_cpu_write_domain(obj); 3286 3287 /* Serialise direct access to this object with the barriers for 3288 * coherent writes from the GPU, by effectively invalidating the 3289 * GTT domain upon first access. 3290 */ 3291 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) 3292 cpu_mfence(); 3293 3294 old_write_domain = obj->base.write_domain; 3295 old_read_domains = obj->base.read_domains; 3296 3297 /* It should now be out of any other write domains, and we can update 3298 * the domain values for our changes. 3299 */ 3300 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0); 3301 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 3302 if (write) { 3303 obj->base.read_domains = I915_GEM_DOMAIN_GTT; 3304 obj->base.write_domain = I915_GEM_DOMAIN_GTT; 3305 obj->dirty = 1; 3306 } 3307 3308 trace_i915_gem_object_change_domain(obj, 3309 old_read_domains, 3310 old_write_domain); 3311 3312 /* And bump the LRU for this access */ 3313 if (i915_gem_object_is_inactive(obj)) 3314 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list); 3315 3316 return 0; 3317 } 3318 3319 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 3320 enum i915_cache_level cache_level) 3321 { 3322 struct drm_device *dev = obj->base.dev; 3323 drm_i915_private_t *dev_priv = dev->dev_private; 3324 int ret; 3325 3326 if (obj->cache_level == cache_level) 3327 return 0; 3328 3329 if (obj->pin_count) { 3330 DRM_DEBUG("can not change the cache level of pinned objects\n"); 3331 return -EBUSY; 3332 } 3333 3334 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) { 3335 ret = i915_gem_object_unbind(obj); 3336 if (ret) 3337 return ret; 3338 } 3339 3340 if (obj->gtt_space) { 3341 ret = i915_gem_object_finish_gpu(obj); 3342 if (ret) 3343 return ret; 3344 3345 i915_gem_object_finish_gtt(obj); 3346 3347 /* Before SandyBridge, you could not use tiling or fence 3348 * registers with snooped memory, so relinquish any fences 3349 * currently pointing to our region in the aperture. 3350 */ 3351 if (INTEL_INFO(dev)->gen < 6) { 3352 ret = i915_gem_object_put_fence(obj); 3353 if (ret) 3354 return ret; 3355 } 3356 3357 if (obj->has_global_gtt_mapping) 3358 i915_gem_gtt_bind_object(obj, cache_level); 3359 if (obj->has_aliasing_ppgtt_mapping) 3360 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt, 3361 obj, cache_level); 3362 3363 obj->gtt_space->color = cache_level; 3364 } 3365 3366 if (cache_level == I915_CACHE_NONE) { 3367 u32 old_read_domains, old_write_domain; 3368 3369 /* If we're coming from LLC cached, then we haven't 3370 * actually been tracking whether the data is in the 3371 * CPU cache or not, since we only allow one bit set 3372 * in obj->write_domain and have been skipping the clflushes. 3373 * Just set it to the CPU cache for now. 3374 */ 3375 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU); 3376 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU); 3377 3378 old_read_domains = obj->base.read_domains; 3379 old_write_domain = obj->base.write_domain; 3380 3381 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 3382 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 3383 3384 trace_i915_gem_object_change_domain(obj, 3385 old_read_domains, 3386 old_write_domain); 3387 } 3388 3389 obj->cache_level = cache_level; 3390 i915_gem_verify_gtt(dev); 3391 return 0; 3392 } 3393 3394 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, 3395 struct drm_file *file) 3396 { 3397 struct drm_i915_gem_caching *args = data; 3398 struct drm_i915_gem_object *obj; 3399 int ret; 3400 3401 ret = i915_mutex_lock_interruptible(dev); 3402 if (ret) 3403 return ret; 3404 3405 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3406 if (&obj->base == NULL) { 3407 ret = -ENOENT; 3408 goto unlock; 3409 } 3410 3411 args->caching = obj->cache_level != I915_CACHE_NONE; 3412 3413 drm_gem_object_unreference(&obj->base); 3414 unlock: 3415 mutex_unlock(&dev->struct_mutex); 3416 return ret; 3417 } 3418 3419 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, 3420 struct drm_file *file) 3421 { 3422 struct drm_i915_gem_caching *args = data; 3423 struct drm_i915_gem_object *obj; 3424 enum i915_cache_level level; 3425 int ret; 3426 3427 switch (args->caching) { 3428 case I915_CACHING_NONE: 3429 level = I915_CACHE_NONE; 3430 break; 3431 case I915_CACHING_CACHED: 3432 level = I915_CACHE_LLC; 3433 break; 3434 default: 3435 return -EINVAL; 3436 } 3437 3438 ret = i915_mutex_lock_interruptible(dev); 3439 if (ret) 3440 return ret; 3441 3442 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3443 if (&obj->base == NULL) { 3444 ret = -ENOENT; 3445 goto unlock; 3446 } 3447 3448 ret = i915_gem_object_set_cache_level(obj, level); 3449 3450 drm_gem_object_unreference(&obj->base); 3451 unlock: 3452 mutex_unlock(&dev->struct_mutex); 3453 return ret; 3454 } 3455 3456 /* 3457 * Prepare buffer for display plane (scanout, cursors, etc). 3458 * Can be called from an uninterruptible phase (modesetting) and allows 3459 * any flushes to be pipelined (for pageflips). 3460 */ 3461 int 3462 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 3463 u32 alignment, 3464 struct intel_ring_buffer *pipelined) 3465 { 3466 u32 old_read_domains, old_write_domain; 3467 int ret; 3468 3469 if (pipelined != obj->ring) { 3470 ret = i915_gem_object_sync(obj, pipelined); 3471 if (ret) 3472 return ret; 3473 } 3474 3475 /* The display engine is not coherent with the LLC cache on gen6. As 3476 * a result, we make sure that the pinning that is about to occur is 3477 * done with uncached PTEs. This is lowest common denominator for all 3478 * chipsets. 3479 * 3480 * However for gen6+, we could do better by using the GFDT bit instead 3481 * of uncaching, which would allow us to flush all the LLC-cached data 3482 * with that bit in the PTE to main memory with just one PIPE_CONTROL. 3483 */ 3484 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE); 3485 if (ret) 3486 return ret; 3487 3488 /* As the user may map the buffer once pinned in the display plane 3489 * (e.g. libkms for the bootup splash), we have to ensure that we 3490 * always use map_and_fenceable for all scanout buffers. 3491 */ 3492 ret = i915_gem_object_pin(obj, alignment, true, false); 3493 if (ret) 3494 return ret; 3495 3496 i915_gem_object_flush_cpu_write_domain(obj); 3497 3498 old_write_domain = obj->base.write_domain; 3499 old_read_domains = obj->base.read_domains; 3500 3501 /* It should now be out of any other write domains, and we can update 3502 * the domain values for our changes. 3503 */ 3504 obj->base.write_domain = 0; 3505 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 3506 3507 trace_i915_gem_object_change_domain(obj, 3508 old_read_domains, 3509 old_write_domain); 3510 3511 return 0; 3512 } 3513 3514 int 3515 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj) 3516 { 3517 int ret; 3518 3519 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0) 3520 return 0; 3521 3522 ret = i915_gem_object_wait_rendering(obj, false); 3523 if (ret) 3524 return ret; 3525 3526 /* Ensure that we invalidate the GPU's caches and TLBs. */ 3527 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS; 3528 return 0; 3529 } 3530 3531 /** 3532 * Moves a single object to the CPU read, and possibly write domain. 3533 * 3534 * This function returns when the move is complete, including waiting on 3535 * flushes to occur. 3536 */ 3537 int 3538 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write) 3539 { 3540 uint32_t old_write_domain, old_read_domains; 3541 int ret; 3542 3543 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) 3544 return 0; 3545 3546 ret = i915_gem_object_wait_rendering(obj, !write); 3547 if (ret) 3548 return ret; 3549 3550 i915_gem_object_flush_gtt_write_domain(obj); 3551 3552 old_write_domain = obj->base.write_domain; 3553 old_read_domains = obj->base.read_domains; 3554 3555 /* Flush the CPU cache if it's still invalid. */ 3556 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) { 3557 i915_gem_clflush_object(obj); 3558 3559 obj->base.read_domains |= I915_GEM_DOMAIN_CPU; 3560 } 3561 3562 /* It should now be out of any other write domains, and we can update 3563 * the domain values for our changes. 3564 */ 3565 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0); 3566 3567 /* If we're writing through the CPU, then the GPU read domains will 3568 * need to be invalidated at next use. 3569 */ 3570 if (write) { 3571 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 3572 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 3573 } 3574 3575 trace_i915_gem_object_change_domain(obj, 3576 old_read_domains, 3577 old_write_domain); 3578 3579 return 0; 3580 } 3581 3582 /* Throttle our rendering by waiting until the ring has completed our requests 3583 * emitted over 20 msec ago. 3584 * 3585 * Note that if we were to use the current jiffies each time around the loop, 3586 * we wouldn't escape the function with any frames outstanding if the time to 3587 * render a frame was over 20ms. 3588 * 3589 * This should get us reasonable parallelism between CPU and GPU but also 3590 * relatively low latency when blocking on a particular request to finish. 3591 */ 3592 static int 3593 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file) 3594 { 3595 struct drm_i915_private *dev_priv = dev->dev_private; 3596 struct drm_i915_file_private *file_priv = file->driver_priv; 3597 unsigned long recent_enough = jiffies - msecs_to_jiffies(20); 3598 struct drm_i915_gem_request *request; 3599 struct intel_ring_buffer *ring = NULL; 3600 unsigned reset_counter; 3601 u32 seqno = 0; 3602 int ret; 3603 3604 ret = i915_gem_wait_for_error(&dev_priv->gpu_error); 3605 if (ret) 3606 return ret; 3607 3608 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false); 3609 if (ret) 3610 return ret; 3611 3612 spin_lock(&file_priv->mm.lock); 3613 list_for_each_entry(request, &file_priv->mm.request_list, client_list) { 3614 if (time_after_eq(request->emitted_jiffies, recent_enough)) 3615 break; 3616 3617 ring = request->ring; 3618 seqno = request->seqno; 3619 } 3620 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 3621 spin_unlock(&file_priv->mm.lock); 3622 3623 if (seqno == 0) 3624 return 0; 3625 3626 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL); 3627 if (ret == 0) 3628 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0); 3629 3630 return ret; 3631 } 3632 3633 int 3634 i915_gem_object_pin(struct drm_i915_gem_object *obj, 3635 uint32_t alignment, 3636 bool map_and_fenceable, 3637 bool nonblocking) 3638 { 3639 int ret; 3640 3641 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT)) 3642 return -EBUSY; 3643 3644 if (obj->gtt_space != NULL) { 3645 if ((alignment && obj->gtt_offset & (alignment - 1)) || 3646 (map_and_fenceable && !obj->map_and_fenceable)) { 3647 WARN(obj->pin_count, 3648 "bo is already pinned with incorrect alignment:" 3649 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d," 3650 " obj->map_and_fenceable=%d\n", 3651 obj->gtt_offset, alignment, 3652 map_and_fenceable, 3653 obj->map_and_fenceable); 3654 ret = i915_gem_object_unbind(obj); 3655 if (ret) 3656 return ret; 3657 } 3658 } 3659 3660 if (obj->gtt_space == NULL) { 3661 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 3662 3663 ret = i915_gem_object_bind_to_gtt(obj, alignment, 3664 map_and_fenceable, 3665 nonblocking); 3666 if (ret) 3667 return ret; 3668 3669 if (!dev_priv->mm.aliasing_ppgtt) 3670 i915_gem_gtt_bind_object(obj, obj->cache_level); 3671 } 3672 3673 if (!obj->has_global_gtt_mapping && map_and_fenceable) 3674 i915_gem_gtt_bind_object(obj, obj->cache_level); 3675 3676 obj->pin_count++; 3677 obj->pin_mappable |= map_and_fenceable; 3678 3679 return 0; 3680 } 3681 3682 void 3683 i915_gem_object_unpin(struct drm_i915_gem_object *obj) 3684 { 3685 BUG_ON(obj->pin_count == 0); 3686 BUG_ON(obj->gtt_space == NULL); 3687 3688 if (--obj->pin_count == 0) 3689 obj->pin_mappable = false; 3690 } 3691 3692 int 3693 i915_gem_pin_ioctl(struct drm_device *dev, void *data, 3694 struct drm_file *file) 3695 { 3696 struct drm_i915_gem_pin *args = data; 3697 struct drm_i915_gem_object *obj; 3698 int ret; 3699 3700 ret = i915_mutex_lock_interruptible(dev); 3701 if (ret) 3702 return ret; 3703 3704 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3705 if (&obj->base == NULL) { 3706 ret = -ENOENT; 3707 goto unlock; 3708 } 3709 3710 if (obj->madv != I915_MADV_WILLNEED) { 3711 DRM_ERROR("Attempting to pin a purgeable buffer\n"); 3712 ret = -EINVAL; 3713 goto out; 3714 } 3715 3716 if (obj->pin_filp != NULL && obj->pin_filp != file) { 3717 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n", 3718 args->handle); 3719 ret = -EINVAL; 3720 goto out; 3721 } 3722 3723 if (obj->user_pin_count == 0) { 3724 ret = i915_gem_object_pin(obj, args->alignment, true, false); 3725 if (ret) 3726 goto out; 3727 } 3728 3729 obj->user_pin_count++; 3730 obj->pin_filp = file; 3731 3732 /* XXX - flush the CPU caches for pinned objects 3733 * as the X server doesn't manage domains yet 3734 */ 3735 i915_gem_object_flush_cpu_write_domain(obj); 3736 args->offset = obj->gtt_offset; 3737 out: 3738 drm_gem_object_unreference(&obj->base); 3739 unlock: 3740 mutex_unlock(&dev->struct_mutex); 3741 return ret; 3742 } 3743 3744 int 3745 i915_gem_unpin_ioctl(struct drm_device *dev, void *data, 3746 struct drm_file *file) 3747 { 3748 struct drm_i915_gem_pin *args = data; 3749 struct drm_i915_gem_object *obj; 3750 int ret; 3751 3752 ret = i915_mutex_lock_interruptible(dev); 3753 if (ret) 3754 return ret; 3755 3756 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3757 if (&obj->base == NULL) { 3758 ret = -ENOENT; 3759 goto unlock; 3760 } 3761 3762 if (obj->pin_filp != file) { 3763 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n", 3764 args->handle); 3765 ret = -EINVAL; 3766 goto out; 3767 } 3768 obj->user_pin_count--; 3769 if (obj->user_pin_count == 0) { 3770 obj->pin_filp = NULL; 3771 i915_gem_object_unpin(obj); 3772 } 3773 3774 out: 3775 drm_gem_object_unreference(&obj->base); 3776 unlock: 3777 mutex_unlock(&dev->struct_mutex); 3778 return ret; 3779 } 3780 3781 int 3782 i915_gem_busy_ioctl(struct drm_device *dev, void *data, 3783 struct drm_file *file) 3784 { 3785 struct drm_i915_gem_busy *args = data; 3786 struct drm_i915_gem_object *obj; 3787 int ret; 3788 3789 ret = i915_mutex_lock_interruptible(dev); 3790 if (ret) 3791 return ret; 3792 3793 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3794 if (&obj->base == NULL) { 3795 ret = -ENOENT; 3796 goto unlock; 3797 } 3798 3799 /* Count all active objects as busy, even if they are currently not used 3800 * by the gpu. Users of this interface expect objects to eventually 3801 * become non-busy without any further actions, therefore emit any 3802 * necessary flushes here. 3803 */ 3804 ret = i915_gem_object_flush_active(obj); 3805 3806 args->busy = obj->active; 3807 if (obj->ring) { 3808 args->busy |= intel_ring_flag(obj->ring) << 16; 3809 } 3810 3811 drm_gem_object_unreference(&obj->base); 3812 unlock: 3813 mutex_unlock(&dev->struct_mutex); 3814 return ret; 3815 } 3816 3817 int 3818 i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 3819 struct drm_file *file_priv) 3820 { 3821 return i915_gem_ring_throttle(dev, file_priv); 3822 } 3823 3824 int 3825 i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 3826 struct drm_file *file_priv) 3827 { 3828 struct drm_i915_gem_madvise *args = data; 3829 struct drm_i915_gem_object *obj; 3830 int ret; 3831 3832 switch (args->madv) { 3833 case I915_MADV_DONTNEED: 3834 case I915_MADV_WILLNEED: 3835 break; 3836 default: 3837 return -EINVAL; 3838 } 3839 3840 ret = i915_mutex_lock_interruptible(dev); 3841 if (ret) 3842 return ret; 3843 3844 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle)); 3845 if (&obj->base == NULL) { 3846 ret = -ENOENT; 3847 goto unlock; 3848 } 3849 3850 if (obj->pin_count) { 3851 ret = -EINVAL; 3852 goto out; 3853 } 3854 3855 if (obj->madv != __I915_MADV_PURGED) 3856 obj->madv = args->madv; 3857 3858 /* if the object is no longer attached, discard its backing storage */ 3859 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL) 3860 i915_gem_object_truncate(obj); 3861 3862 args->retained = obj->madv != __I915_MADV_PURGED; 3863 3864 out: 3865 drm_gem_object_unreference(&obj->base); 3866 unlock: 3867 mutex_unlock(&dev->struct_mutex); 3868 return ret; 3869 } 3870 3871 void i915_gem_object_init(struct drm_i915_gem_object *obj, 3872 const struct drm_i915_gem_object_ops *ops) 3873 { 3874 INIT_LIST_HEAD(&obj->mm_list); 3875 INIT_LIST_HEAD(&obj->global_list); 3876 INIT_LIST_HEAD(&obj->ring_list); 3877 INIT_LIST_HEAD(&obj->exec_list); 3878 3879 obj->ops = ops; 3880 3881 obj->fence_reg = I915_FENCE_REG_NONE; 3882 obj->madv = I915_MADV_WILLNEED; 3883 /* Avoid an unnecessary call to unbind on the first bind. */ 3884 obj->map_and_fenceable = true; 3885 3886 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size); 3887 } 3888 3889 static const struct drm_i915_gem_object_ops i915_gem_object_ops = { 3890 .get_pages = i915_gem_object_get_pages_gtt, 3891 .put_pages = i915_gem_object_put_pages_gtt, 3892 }; 3893 3894 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev, 3895 size_t size) 3896 { 3897 struct drm_i915_gem_object *obj; 3898 #if 0 3899 struct address_space *mapping; 3900 u32 mask; 3901 #endif 3902 3903 obj = kmalloc(sizeof(*obj), M_DRM, M_WAITOK | M_ZERO); 3904 if (obj == NULL) 3905 return NULL; 3906 3907 if (drm_gem_object_init(dev, &obj->base, size) != 0) { 3908 kfree(obj); 3909 return NULL; 3910 } 3911 3912 #if 0 3913 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE; 3914 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) { 3915 /* 965gm cannot relocate objects above 4GiB. */ 3916 mask &= ~__GFP_HIGHMEM; 3917 mask |= __GFP_DMA32; 3918 } 3919 3920 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping; 3921 mapping_set_gfp_mask(mapping, mask); 3922 #endif 3923 3924 i915_gem_object_init(obj, &i915_gem_object_ops); 3925 3926 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 3927 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 3928 3929 if (HAS_LLC(dev)) { 3930 /* On some devices, we can have the GPU use the LLC (the CPU 3931 * cache) for about a 10% performance improvement 3932 * compared to uncached. Graphics requests other than 3933 * display scanout are coherent with the CPU in 3934 * accessing this cache. This means in this mode we 3935 * don't need to clflush on the CPU side, and on the 3936 * GPU side we only need to flush internal caches to 3937 * get data visible to the CPU. 3938 * 3939 * However, we maintain the display planes as UC, and so 3940 * need to rebind when first used as such. 3941 */ 3942 obj->cache_level = I915_CACHE_LLC; 3943 } else 3944 obj->cache_level = I915_CACHE_NONE; 3945 3946 return obj; 3947 } 3948 3949 int i915_gem_init_object(struct drm_gem_object *obj) 3950 { 3951 BUG(); 3952 3953 return 0; 3954 } 3955 3956 void i915_gem_free_object(struct drm_gem_object *gem_obj) 3957 { 3958 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj); 3959 struct drm_device *dev = obj->base.dev; 3960 drm_i915_private_t *dev_priv = dev->dev_private; 3961 3962 trace_i915_gem_object_destroy(obj); 3963 3964 if (obj->phys_obj) 3965 i915_gem_detach_phys_object(dev, obj); 3966 3967 obj->pin_count = 0; 3968 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) { 3969 bool was_interruptible; 3970 3971 was_interruptible = dev_priv->mm.interruptible; 3972 dev_priv->mm.interruptible = false; 3973 3974 WARN_ON(i915_gem_object_unbind(obj)); 3975 3976 dev_priv->mm.interruptible = was_interruptible; 3977 } 3978 3979 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up 3980 * before progressing. */ 3981 if (obj->stolen) 3982 i915_gem_object_unpin_pages(obj); 3983 3984 if (WARN_ON(obj->pages_pin_count)) 3985 obj->pages_pin_count = 0; 3986 i915_gem_object_put_pages(obj); 3987 drm_gem_free_mmap_offset(&obj->base); 3988 3989 BUG_ON(obj->pages); 3990 3991 drm_gem_object_release(&obj->base); 3992 i915_gem_info_remove_obj(dev_priv, obj->base.size); 3993 3994 kfree(obj->bit_17); 3995 i915_gem_object_free(obj); 3996 } 3997 3998 int 3999 i915_gem_idle(struct drm_device *dev) 4000 { 4001 drm_i915_private_t *dev_priv = dev->dev_private; 4002 int ret; 4003 4004 mutex_lock(&dev->struct_mutex); 4005 4006 if (dev_priv->mm.suspended) { 4007 mutex_unlock(&dev->struct_mutex); 4008 return 0; 4009 } 4010 4011 ret = i915_gpu_idle(dev); 4012 if (ret) { 4013 mutex_unlock(&dev->struct_mutex); 4014 return ret; 4015 } 4016 i915_gem_retire_requests(dev); 4017 4018 /* Under UMS, be paranoid and evict. */ 4019 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 4020 i915_gem_evict_everything(dev); 4021 4022 /* Hack! Don't let anybody do execbuf while we don't control the chip. 4023 * We need to replace this with a semaphore, or something. 4024 * And not confound mm.suspended! 4025 */ 4026 dev_priv->mm.suspended = 1; 4027 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer); 4028 4029 i915_kernel_lost_context(dev); 4030 i915_gem_cleanup_ringbuffer(dev); 4031 4032 mutex_unlock(&dev->struct_mutex); 4033 4034 /* Cancel the retire work handler, which should be idle now. */ 4035 cancel_delayed_work_sync(&dev_priv->mm.retire_work); 4036 4037 return 0; 4038 } 4039 4040 void i915_gem_l3_remap(struct drm_device *dev) 4041 { 4042 drm_i915_private_t *dev_priv = dev->dev_private; 4043 u32 misccpctl; 4044 int i; 4045 4046 if (!HAS_L3_GPU_CACHE(dev)) 4047 return; 4048 4049 if (!dev_priv->l3_parity.remap_info) 4050 return; 4051 4052 misccpctl = I915_READ(GEN7_MISCCPCTL); 4053 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE); 4054 POSTING_READ(GEN7_MISCCPCTL); 4055 4056 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) { 4057 u32 remap = I915_READ(GEN7_L3LOG_BASE + i); 4058 if (remap && remap != dev_priv->l3_parity.remap_info[i/4]) 4059 DRM_DEBUG("0x%x was already programmed to %x\n", 4060 GEN7_L3LOG_BASE + i, remap); 4061 if (remap && !dev_priv->l3_parity.remap_info[i/4]) 4062 DRM_DEBUG_DRIVER("Clearing remapped register\n"); 4063 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]); 4064 } 4065 4066 /* Make sure all the writes land before disabling dop clock gating */ 4067 POSTING_READ(GEN7_L3LOG_BASE); 4068 4069 I915_WRITE(GEN7_MISCCPCTL, misccpctl); 4070 } 4071 4072 void i915_gem_init_swizzling(struct drm_device *dev) 4073 { 4074 drm_i915_private_t *dev_priv = dev->dev_private; 4075 4076 if (INTEL_INFO(dev)->gen < 5 || 4077 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE) 4078 return; 4079 4080 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) | 4081 DISP_TILE_SURFACE_SWIZZLING); 4082 4083 if (IS_GEN5(dev)) 4084 return; 4085 4086 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL); 4087 if (IS_GEN6(dev)) 4088 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB)); 4089 else if (IS_GEN7(dev)) 4090 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB)); 4091 else 4092 BUG(); 4093 } 4094 4095 static bool 4096 intel_enable_blt(struct drm_device *dev) 4097 { 4098 int revision; 4099 4100 if (!HAS_BLT(dev)) 4101 return false; 4102 4103 /* The blitter was dysfunctional on early prototypes */ 4104 revision = pci_read_config(dev->dev, PCIR_REVID, 1); 4105 if (IS_GEN6(dev) && revision < 8) { 4106 DRM_INFO("BLT not supported on this pre-production hardware;" 4107 " graphics performance will be degraded.\n"); 4108 return false; 4109 } 4110 4111 return true; 4112 } 4113 4114 static int i915_gem_init_rings(struct drm_device *dev) 4115 { 4116 struct drm_i915_private *dev_priv = dev->dev_private; 4117 int ret; 4118 4119 ret = intel_init_render_ring_buffer(dev); 4120 if (ret) 4121 return ret; 4122 4123 if (HAS_BSD(dev)) { 4124 ret = intel_init_bsd_ring_buffer(dev); 4125 if (ret) 4126 goto cleanup_render_ring; 4127 } 4128 4129 if (intel_enable_blt(dev)) { 4130 ret = intel_init_blt_ring_buffer(dev); 4131 if (ret) 4132 goto cleanup_bsd_ring; 4133 } 4134 4135 if (HAS_VEBOX(dev)) { 4136 ret = intel_init_vebox_ring_buffer(dev); 4137 if (ret) 4138 goto cleanup_blt_ring; 4139 } 4140 4141 4142 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000)); 4143 if (ret) 4144 goto cleanup_vebox_ring; 4145 4146 return 0; 4147 4148 cleanup_vebox_ring: 4149 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]); 4150 cleanup_blt_ring: 4151 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]); 4152 cleanup_bsd_ring: 4153 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]); 4154 cleanup_render_ring: 4155 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]); 4156 4157 return ret; 4158 } 4159 4160 int 4161 i915_gem_init_hw(struct drm_device *dev) 4162 { 4163 drm_i915_private_t *dev_priv = dev->dev_private; 4164 int ret; 4165 4166 #if 0 4167 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt()) 4168 return -EIO; 4169 #endif 4170 4171 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1)) 4172 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000); 4173 4174 if (HAS_PCH_NOP(dev)) { 4175 u32 temp = I915_READ(GEN7_MSG_CTL); 4176 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK); 4177 I915_WRITE(GEN7_MSG_CTL, temp); 4178 } 4179 4180 i915_gem_l3_remap(dev); 4181 4182 i915_gem_init_swizzling(dev); 4183 4184 ret = i915_gem_init_rings(dev); 4185 if (ret) 4186 return ret; 4187 4188 /* 4189 * XXX: There was some w/a described somewhere suggesting loading 4190 * contexts before PPGTT. 4191 */ 4192 i915_gem_context_init(dev); 4193 if (dev_priv->mm.aliasing_ppgtt) { 4194 ret = dev_priv->mm.aliasing_ppgtt->enable(dev); 4195 if (ret) { 4196 i915_gem_cleanup_aliasing_ppgtt(dev); 4197 DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n"); 4198 } 4199 } 4200 4201 return 0; 4202 } 4203 4204 int i915_gem_init(struct drm_device *dev) 4205 { 4206 struct drm_i915_private *dev_priv = dev->dev_private; 4207 int ret; 4208 4209 mutex_lock(&dev->struct_mutex); 4210 4211 if (IS_VALLEYVIEW(dev)) { 4212 /* VLVA0 (potential hack), BIOS isn't actually waking us */ 4213 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1); 4214 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10)) 4215 DRM_DEBUG_DRIVER("allow wake ack timed out\n"); 4216 } 4217 4218 i915_gem_init_global_gtt(dev); 4219 4220 ret = i915_gem_init_hw(dev); 4221 mutex_unlock(&dev->struct_mutex); 4222 if (ret) { 4223 i915_gem_cleanup_aliasing_ppgtt(dev); 4224 return ret; 4225 } 4226 4227 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */ 4228 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 4229 dev_priv->dri1.allow_batchbuffer = 1; 4230 return 0; 4231 } 4232 4233 void 4234 i915_gem_cleanup_ringbuffer(struct drm_device *dev) 4235 { 4236 drm_i915_private_t *dev_priv = dev->dev_private; 4237 struct intel_ring_buffer *ring; 4238 int i; 4239 4240 for_each_ring(ring, dev_priv, i) 4241 intel_cleanup_ring_buffer(ring); 4242 } 4243 4244 int 4245 i915_gem_entervt_ioctl(struct drm_device *dev, void *data, 4246 struct drm_file *file_priv) 4247 { 4248 drm_i915_private_t *dev_priv = dev->dev_private; 4249 int ret; 4250 4251 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4252 return 0; 4253 4254 if (i915_reset_in_progress(&dev_priv->gpu_error)) { 4255 DRM_ERROR("Reenabling wedged hardware, good luck\n"); 4256 atomic_set(&dev_priv->gpu_error.reset_counter, 0); 4257 } 4258 4259 mutex_lock(&dev->struct_mutex); 4260 dev_priv->mm.suspended = 0; 4261 4262 ret = i915_gem_init_hw(dev); 4263 if (ret != 0) { 4264 mutex_unlock(&dev->struct_mutex); 4265 return ret; 4266 } 4267 4268 KASSERT(list_empty(&dev_priv->mm.active_list), ("active list")); 4269 mutex_unlock(&dev->struct_mutex); 4270 4271 ret = drm_irq_install(dev); 4272 if (ret) 4273 goto cleanup_ringbuffer; 4274 4275 return 0; 4276 4277 cleanup_ringbuffer: 4278 mutex_lock(&dev->struct_mutex); 4279 i915_gem_cleanup_ringbuffer(dev); 4280 dev_priv->mm.suspended = 1; 4281 mutex_unlock(&dev->struct_mutex); 4282 4283 return ret; 4284 } 4285 4286 int 4287 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data, 4288 struct drm_file *file_priv) 4289 { 4290 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4291 return 0; 4292 4293 drm_irq_uninstall(dev); 4294 return i915_gem_idle(dev); 4295 } 4296 4297 void 4298 i915_gem_lastclose(struct drm_device *dev) 4299 { 4300 int ret; 4301 4302 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4303 return; 4304 4305 ret = i915_gem_idle(dev); 4306 if (ret) 4307 DRM_ERROR("failed to idle hardware: %d\n", ret); 4308 } 4309 4310 static void 4311 init_ring_lists(struct intel_ring_buffer *ring) 4312 { 4313 INIT_LIST_HEAD(&ring->active_list); 4314 INIT_LIST_HEAD(&ring->request_list); 4315 } 4316 4317 void 4318 i915_gem_load(struct drm_device *dev) 4319 { 4320 int i; 4321 drm_i915_private_t *dev_priv = dev->dev_private; 4322 4323 INIT_LIST_HEAD(&dev_priv->mm.active_list); 4324 INIT_LIST_HEAD(&dev_priv->mm.inactive_list); 4325 INIT_LIST_HEAD(&dev_priv->mm.unbound_list); 4326 INIT_LIST_HEAD(&dev_priv->mm.bound_list); 4327 INIT_LIST_HEAD(&dev_priv->mm.fence_list); 4328 for (i = 0; i < I915_NUM_RINGS; i++) 4329 init_ring_lists(&dev_priv->ring[i]); 4330 for (i = 0; i < I915_MAX_NUM_FENCES; i++) 4331 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list); 4332 INIT_DELAYED_WORK(&dev_priv->mm.retire_work, 4333 i915_gem_retire_work_handler); 4334 init_waitqueue_head(&dev_priv->gpu_error.reset_queue); 4335 4336 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */ 4337 if (IS_GEN3(dev)) { 4338 I915_WRITE(MI_ARB_STATE, 4339 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE)); 4340 } 4341 4342 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL; 4343 4344 /* Old X drivers will take 0-2 for front, back, depth buffers */ 4345 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 4346 dev_priv->fence_reg_start = 3; 4347 4348 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev)) 4349 dev_priv->num_fence_regs = 32; 4350 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) 4351 dev_priv->num_fence_regs = 16; 4352 else 4353 dev_priv->num_fence_regs = 8; 4354 4355 /* Initialize fence registers to zero */ 4356 INIT_LIST_HEAD(&dev_priv->mm.fence_list); 4357 i915_gem_restore_fences(dev); 4358 4359 i915_gem_detect_bit_6_swizzle(dev); 4360 init_waitqueue_head(&dev_priv->pending_flip_queue); 4361 4362 dev_priv->mm.interruptible = true; 4363 4364 #if 0 4365 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink; 4366 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS; 4367 register_shrinker(&dev_priv->mm.inactive_shrinker); 4368 #else 4369 dev_priv->mm.inactive_shrinker = EVENTHANDLER_REGISTER(vm_lowmem, 4370 i915_gem_lowmem, dev, EVENTHANDLER_PRI_ANY); 4371 #endif 4372 } 4373 4374 /* 4375 * Create a physically contiguous memory object for this object 4376 * e.g. for cursor + overlay regs 4377 */ 4378 static int i915_gem_init_phys_object(struct drm_device *dev, 4379 int id, int size, int align) 4380 { 4381 drm_i915_private_t *dev_priv = dev->dev_private; 4382 struct drm_i915_gem_phys_object *phys_obj; 4383 int ret; 4384 4385 if (dev_priv->mm.phys_objs[id - 1] || !size) 4386 return 0; 4387 4388 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL); 4389 if (!phys_obj) 4390 return -ENOMEM; 4391 4392 phys_obj->id = id; 4393 4394 phys_obj->handle = drm_pci_alloc(dev, size, align); 4395 if (!phys_obj->handle) { 4396 ret = -ENOMEM; 4397 goto kfree_obj; 4398 } 4399 pmap_change_attr((vm_offset_t)phys_obj->handle->vaddr, 4400 size / PAGE_SIZE, PAT_WRITE_COMBINING); 4401 4402 dev_priv->mm.phys_objs[id - 1] = phys_obj; 4403 4404 return 0; 4405 4406 kfree_obj: 4407 kfree(phys_obj); 4408 return ret; 4409 } 4410 4411 static void i915_gem_free_phys_object(struct drm_device *dev, int id) 4412 { 4413 drm_i915_private_t *dev_priv = dev->dev_private; 4414 struct drm_i915_gem_phys_object *phys_obj; 4415 4416 if (!dev_priv->mm.phys_objs[id - 1]) 4417 return; 4418 4419 phys_obj = dev_priv->mm.phys_objs[id - 1]; 4420 if (phys_obj->cur_obj) { 4421 i915_gem_detach_phys_object(dev, phys_obj->cur_obj); 4422 } 4423 4424 drm_pci_free(dev, phys_obj->handle); 4425 kfree(phys_obj); 4426 dev_priv->mm.phys_objs[id - 1] = NULL; 4427 } 4428 4429 void i915_gem_free_all_phys_object(struct drm_device *dev) 4430 { 4431 int i; 4432 4433 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++) 4434 i915_gem_free_phys_object(dev, i); 4435 } 4436 4437 void i915_gem_detach_phys_object(struct drm_device *dev, 4438 struct drm_i915_gem_object *obj) 4439 { 4440 struct vm_object *mapping = obj->base.vm_obj; 4441 char *vaddr; 4442 int i; 4443 int page_count; 4444 4445 if (!obj->phys_obj) 4446 return; 4447 vaddr = obj->phys_obj->handle->vaddr; 4448 4449 page_count = obj->base.size / PAGE_SIZE; 4450 VM_OBJECT_LOCK(obj->base.vm_obj); 4451 for (i = 0; i < page_count; i++) { 4452 struct vm_page *page = shmem_read_mapping_page(mapping, i); 4453 if (!IS_ERR(page)) { 4454 VM_OBJECT_UNLOCK(obj->base.vm_obj); 4455 char *dst = kmap_atomic(page); 4456 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE); 4457 kunmap_atomic(dst); 4458 4459 drm_clflush_pages(&page, 1); 4460 4461 #if 0 4462 set_page_dirty(page); 4463 mark_page_accessed(page); 4464 page_cache_release(page); 4465 #endif 4466 VM_OBJECT_LOCK(obj->base.vm_obj); 4467 vm_page_reference(page); 4468 vm_page_dirty(page); 4469 vm_page_busy_wait(page, FALSE, "i915gem"); 4470 vm_page_unwire(page, 0); 4471 vm_page_wakeup(page); 4472 } 4473 } 4474 VM_OBJECT_UNLOCK(obj->base.vm_obj); 4475 intel_gtt_chipset_flush(); 4476 4477 obj->phys_obj->cur_obj = NULL; 4478 obj->phys_obj = NULL; 4479 } 4480 4481 int 4482 i915_gem_attach_phys_object(struct drm_device *dev, 4483 struct drm_i915_gem_object *obj, 4484 int id, 4485 int align) 4486 { 4487 struct vm_object *mapping = obj->base.vm_obj; 4488 drm_i915_private_t *dev_priv = dev->dev_private; 4489 int ret = 0; 4490 int page_count; 4491 int i; 4492 4493 if (id > I915_MAX_PHYS_OBJECT) 4494 return -EINVAL; 4495 4496 if (obj->phys_obj) { 4497 if (obj->phys_obj->id == id) 4498 return 0; 4499 i915_gem_detach_phys_object(dev, obj); 4500 } 4501 4502 /* create a new object */ 4503 if (!dev_priv->mm.phys_objs[id - 1]) { 4504 ret = i915_gem_init_phys_object(dev, id, 4505 obj->base.size, align); 4506 if (ret) { 4507 DRM_ERROR("failed to init phys object %d size: %zu\n", 4508 id, obj->base.size); 4509 return ret; 4510 } 4511 } 4512 4513 /* bind to the object */ 4514 obj->phys_obj = dev_priv->mm.phys_objs[id - 1]; 4515 obj->phys_obj->cur_obj = obj; 4516 4517 page_count = obj->base.size / PAGE_SIZE; 4518 4519 VM_OBJECT_LOCK(obj->base.vm_obj); 4520 for (i = 0; i < page_count; i++) { 4521 struct vm_page *page; 4522 char *dst, *src; 4523 4524 page = shmem_read_mapping_page(mapping, i); 4525 VM_OBJECT_UNLOCK(obj->base.vm_obj); 4526 if (IS_ERR(page)) 4527 return PTR_ERR(page); 4528 4529 src = kmap_atomic(page); 4530 dst = (char*)obj->phys_obj->handle->vaddr + (i * PAGE_SIZE); 4531 memcpy(dst, src, PAGE_SIZE); 4532 kunmap_atomic(src); 4533 4534 #if 0 4535 mark_page_accessed(page); 4536 page_cache_release(page); 4537 #endif 4538 VM_OBJECT_LOCK(obj->base.vm_obj); 4539 vm_page_reference(page); 4540 vm_page_busy_wait(page, FALSE, "i915gem"); 4541 vm_page_unwire(page, 0); 4542 vm_page_wakeup(page); 4543 } 4544 VM_OBJECT_UNLOCK(obj->base.vm_obj); 4545 4546 return 0; 4547 } 4548 4549 static int 4550 i915_gem_phys_pwrite(struct drm_device *dev, 4551 struct drm_i915_gem_object *obj, 4552 struct drm_i915_gem_pwrite *args, 4553 struct drm_file *file_priv) 4554 { 4555 void *vaddr = (char *)obj->phys_obj->handle->vaddr + args->offset; 4556 char __user *user_data = to_user_ptr(args->data_ptr); 4557 4558 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) { 4559 unsigned long unwritten; 4560 4561 /* The physical object once assigned is fixed for the lifetime 4562 * of the obj, so we can safely drop the lock and continue 4563 * to access vaddr. 4564 */ 4565 mutex_unlock(&dev->struct_mutex); 4566 unwritten = copy_from_user(vaddr, user_data, args->size); 4567 mutex_lock(&dev->struct_mutex); 4568 if (unwritten) 4569 return -EFAULT; 4570 } 4571 4572 i915_gem_chipset_flush(dev); 4573 return 0; 4574 } 4575 4576 void i915_gem_release(struct drm_device *dev, struct drm_file *file) 4577 { 4578 struct drm_i915_file_private *file_priv = file->driver_priv; 4579 4580 /* Clean up our request list when the client is going away, so that 4581 * later retire_requests won't dereference our soon-to-be-gone 4582 * file_priv. 4583 */ 4584 spin_lock(&file_priv->mm.lock); 4585 while (!list_empty(&file_priv->mm.request_list)) { 4586 struct drm_i915_gem_request *request; 4587 4588 request = list_first_entry(&file_priv->mm.request_list, 4589 struct drm_i915_gem_request, 4590 client_list); 4591 list_del(&request->client_list); 4592 request->file_priv = NULL; 4593 } 4594 spin_unlock(&file_priv->mm.lock); 4595 } 4596 4597 int 4598 i915_gem_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot, 4599 vm_ooffset_t foff, struct ucred *cred, u_short *color) 4600 { 4601 4602 *color = 0; /* XXXKIB */ 4603 return (0); 4604 } 4605 4606 void 4607 i915_gem_pager_dtor(void *handle) 4608 { 4609 struct drm_gem_object *obj; 4610 struct drm_device *dev; 4611 4612 obj = handle; 4613 dev = obj->dev; 4614 4615 mutex_lock(&dev->struct_mutex); 4616 drm_gem_free_mmap_offset(obj); 4617 i915_gem_release_mmap(to_intel_bo(obj)); 4618 drm_gem_object_unreference(obj); 4619 mutex_unlock(&dev->struct_mutex); 4620 } 4621 4622 #define GEM_PARANOID_CHECK_GTT 0 4623 #if GEM_PARANOID_CHECK_GTT 4624 static void 4625 i915_gem_assert_pages_not_mapped(struct drm_device *dev, vm_page_t *ma, 4626 int page_count) 4627 { 4628 struct drm_i915_private *dev_priv; 4629 vm_paddr_t pa; 4630 unsigned long start, end; 4631 u_int i; 4632 int j; 4633 4634 dev_priv = dev->dev_private; 4635 start = OFF_TO_IDX(dev_priv->mm.gtt_start); 4636 end = OFF_TO_IDX(dev_priv->mm.gtt_end); 4637 for (i = start; i < end; i++) { 4638 pa = intel_gtt_read_pte_paddr(i); 4639 for (j = 0; j < page_count; j++) { 4640 if (pa == VM_PAGE_TO_PHYS(ma[j])) { 4641 panic("Page %p in GTT pte index %d pte %x", 4642 ma[i], i, intel_gtt_read_pte(i)); 4643 } 4644 } 4645 } 4646 obj->fence_dirty = false; 4647 } 4648 #endif 4649 4650 static int 4651 i915_gpu_is_active(struct drm_device *dev) 4652 { 4653 drm_i915_private_t *dev_priv = dev->dev_private; 4654 4655 return !list_empty(&dev_priv->mm.active_list); 4656 } 4657 4658 static void 4659 i915_gem_lowmem(void *arg) 4660 { 4661 struct drm_device *dev; 4662 struct drm_i915_private *dev_priv; 4663 struct drm_i915_gem_object *obj, *next; 4664 int cnt, cnt_fail, cnt_total; 4665 4666 dev = arg; 4667 dev_priv = dev->dev_private; 4668 4669 if (lockmgr(&dev->struct_mutex, LK_EXCLUSIVE|LK_NOWAIT)) 4670 return; 4671 4672 rescan: 4673 /* first scan for clean buffers */ 4674 i915_gem_retire_requests(dev); 4675 4676 cnt_total = cnt_fail = cnt = 0; 4677 4678 list_for_each_entry_safe(obj, next, &dev_priv->mm.inactive_list, 4679 mm_list) { 4680 if (i915_gem_object_is_purgeable(obj)) { 4681 if (i915_gem_object_unbind(obj) != 0) 4682 cnt_total++; 4683 } else 4684 cnt_total++; 4685 } 4686 4687 /* second pass, evict/count anything still on the inactive list */ 4688 list_for_each_entry_safe(obj, next, &dev_priv->mm.inactive_list, 4689 mm_list) { 4690 if (i915_gem_object_unbind(obj) == 0) 4691 cnt++; 4692 else 4693 cnt_fail++; 4694 } 4695 4696 if (cnt_fail > cnt_total / 100 && i915_gpu_is_active(dev)) { 4697 /* 4698 * We are desperate for pages, so as a last resort, wait 4699 * for the GPU to finish and discard whatever we can. 4700 * This has a dramatic impact to reduce the number of 4701 * OOM-killer events whilst running the GPU aggressively. 4702 */ 4703 if (i915_gpu_idle(dev) == 0) 4704 goto rescan; 4705 } 4706 mutex_unlock(&dev->struct_mutex); 4707 } 4708