xref: /dflybsd-src/sys/dev/drm/i915/i915_drv.c (revision 8b07b5e82a38bb7f04797b88aca14d3ccb08532c)
1 /* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
2  */
3 /*
4  *
5  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6  * All Rights Reserved.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the
10  * "Software"), to deal in the Software without restriction, including
11  * without limitation the rights to use, copy, modify, merge, publish,
12  * distribute, sub license, and/or sell copies of the Software, and to
13  * permit persons to whom the Software is furnished to do so, subject to
14  * the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the
17  * next paragraph) shall be included in all copies or substantial portions
18  * of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27  *
28  */
29 
30 #include <linux/device.h>
31 #include <linux/acpi.h>
32 #include <drm/drmP.h>
33 #include <drm/i915_drm.h>
34 #include "i915_drv.h"
35 #include "i915_trace.h"
36 #include "intel_drv.h"
37 
38 #include <linux/apple-gmux.h>
39 #include <linux/console.h>
40 #include <linux/module.h>
41 #include <linux/pm_runtime.h>
42 #include <linux/vgaarb.h>
43 #include <linux/vga_switcheroo.h>
44 #include <drm/drm_crtc_helper.h>
45 
46 static struct drm_driver driver;
47 
48 #define GEN_DEFAULT_PIPEOFFSETS \
49 	.pipe_offsets = { PIPE_A_OFFSET, PIPE_B_OFFSET, \
50 			  PIPE_C_OFFSET, PIPE_EDP_OFFSET }, \
51 	.trans_offsets = { TRANSCODER_A_OFFSET, TRANSCODER_B_OFFSET, \
52 			   TRANSCODER_C_OFFSET, TRANSCODER_EDP_OFFSET }, \
53 	.palette_offsets = { PALETTE_A_OFFSET, PALETTE_B_OFFSET }
54 
55 #define GEN_CHV_PIPEOFFSETS \
56 	.pipe_offsets = { PIPE_A_OFFSET, PIPE_B_OFFSET, \
57 			  CHV_PIPE_C_OFFSET }, \
58 	.trans_offsets = { TRANSCODER_A_OFFSET, TRANSCODER_B_OFFSET, \
59 			   CHV_TRANSCODER_C_OFFSET, }, \
60 	.palette_offsets = { PALETTE_A_OFFSET, PALETTE_B_OFFSET, \
61 			     CHV_PALETTE_C_OFFSET }
62 
63 #define CURSOR_OFFSETS \
64 	.cursor_offsets = { CURSOR_A_OFFSET, CURSOR_B_OFFSET, CHV_CURSOR_C_OFFSET }
65 
66 #define IVB_CURSOR_OFFSETS \
67 	.cursor_offsets = { CURSOR_A_OFFSET, IVB_CURSOR_B_OFFSET, IVB_CURSOR_C_OFFSET }
68 
69 #define BDW_COLORS \
70 	.color = { .degamma_lut_size = 512, .gamma_lut_size = 512 }
71 #define CHV_COLORS \
72 	.color = { .degamma_lut_size = 65, .gamma_lut_size = 257 }
73 
74 static const struct intel_device_info intel_i830_info = {
75 	.gen = 2, .is_mobile = 1, .cursor_needs_physical = 1, .num_pipes = 2,
76 	.has_overlay = 1, .overlay_needs_physical = 1,
77 	.ring_mask = RENDER_RING,
78 	GEN_DEFAULT_PIPEOFFSETS,
79 	CURSOR_OFFSETS,
80 };
81 
82 static const struct intel_device_info intel_845g_info = {
83 	.gen = 2, .num_pipes = 1,
84 	.has_overlay = 1, .overlay_needs_physical = 1,
85 	.ring_mask = RENDER_RING,
86 	GEN_DEFAULT_PIPEOFFSETS,
87 	CURSOR_OFFSETS,
88 };
89 
90 static const struct intel_device_info intel_i85x_info = {
91 	.gen = 2, .is_i85x = 1, .is_mobile = 1, .num_pipes = 2,
92 	.cursor_needs_physical = 1,
93 	.has_overlay = 1, .overlay_needs_physical = 1,
94 	.has_fbc = 1,
95 	.ring_mask = RENDER_RING,
96 	GEN_DEFAULT_PIPEOFFSETS,
97 	CURSOR_OFFSETS,
98 };
99 
100 static const struct intel_device_info intel_i865g_info = {
101 	.gen = 2, .num_pipes = 1,
102 	.has_overlay = 1, .overlay_needs_physical = 1,
103 	.ring_mask = RENDER_RING,
104 	GEN_DEFAULT_PIPEOFFSETS,
105 	CURSOR_OFFSETS,
106 };
107 
108 static const struct intel_device_info intel_i915g_info = {
109 	.gen = 3, .is_i915g = 1, .cursor_needs_physical = 1, .num_pipes = 2,
110 	.has_overlay = 1, .overlay_needs_physical = 1,
111 	.ring_mask = RENDER_RING,
112 	GEN_DEFAULT_PIPEOFFSETS,
113 	CURSOR_OFFSETS,
114 };
115 static const struct intel_device_info intel_i915gm_info = {
116 	.gen = 3, .is_mobile = 1, .num_pipes = 2,
117 	.cursor_needs_physical = 1,
118 	.has_overlay = 1, .overlay_needs_physical = 1,
119 	.supports_tv = 1,
120 	.has_fbc = 1,
121 	.ring_mask = RENDER_RING,
122 	GEN_DEFAULT_PIPEOFFSETS,
123 	CURSOR_OFFSETS,
124 };
125 static const struct intel_device_info intel_i945g_info = {
126 	.gen = 3, .has_hotplug = 1, .cursor_needs_physical = 1, .num_pipes = 2,
127 	.has_overlay = 1, .overlay_needs_physical = 1,
128 	.ring_mask = RENDER_RING,
129 	GEN_DEFAULT_PIPEOFFSETS,
130 	CURSOR_OFFSETS,
131 };
132 static const struct intel_device_info intel_i945gm_info = {
133 	.gen = 3, .is_i945gm = 1, .is_mobile = 1, .num_pipes = 2,
134 	.has_hotplug = 1, .cursor_needs_physical = 1,
135 	.has_overlay = 1, .overlay_needs_physical = 1,
136 	.supports_tv = 1,
137 	.has_fbc = 1,
138 	.ring_mask = RENDER_RING,
139 	GEN_DEFAULT_PIPEOFFSETS,
140 	CURSOR_OFFSETS,
141 };
142 
143 static const struct intel_device_info intel_i965g_info = {
144 	.gen = 4, .is_broadwater = 1, .num_pipes = 2,
145 	.has_hotplug = 1,
146 	.has_overlay = 1,
147 	.ring_mask = RENDER_RING,
148 	GEN_DEFAULT_PIPEOFFSETS,
149 	CURSOR_OFFSETS,
150 };
151 
152 static const struct intel_device_info intel_i965gm_info = {
153 	.gen = 4, .is_crestline = 1, .num_pipes = 2,
154 	.is_mobile = 1, .has_fbc = 1, .has_hotplug = 1,
155 	.has_overlay = 1,
156 	.supports_tv = 1,
157 	.ring_mask = RENDER_RING,
158 	GEN_DEFAULT_PIPEOFFSETS,
159 	CURSOR_OFFSETS,
160 };
161 
162 static const struct intel_device_info intel_g33_info = {
163 	.gen = 3, .is_g33 = 1, .num_pipes = 2,
164 	.need_gfx_hws = 1, .has_hotplug = 1,
165 	.has_overlay = 1,
166 	.ring_mask = RENDER_RING,
167 	GEN_DEFAULT_PIPEOFFSETS,
168 	CURSOR_OFFSETS,
169 };
170 
171 static const struct intel_device_info intel_g45_info = {
172 	.gen = 4, .is_g4x = 1, .need_gfx_hws = 1, .num_pipes = 2,
173 	.has_pipe_cxsr = 1, .has_hotplug = 1,
174 	.ring_mask = RENDER_RING | BSD_RING,
175 	GEN_DEFAULT_PIPEOFFSETS,
176 	CURSOR_OFFSETS,
177 };
178 
179 static const struct intel_device_info intel_gm45_info = {
180 	.gen = 4, .is_g4x = 1, .num_pipes = 2,
181 	.is_mobile = 1, .need_gfx_hws = 1, .has_fbc = 1,
182 	.has_pipe_cxsr = 1, .has_hotplug = 1,
183 	.supports_tv = 1,
184 	.ring_mask = RENDER_RING | BSD_RING,
185 	GEN_DEFAULT_PIPEOFFSETS,
186 	CURSOR_OFFSETS,
187 };
188 
189 static const struct intel_device_info intel_pineview_info = {
190 	.gen = 3, .is_g33 = 1, .is_pineview = 1, .is_mobile = 1, .num_pipes = 2,
191 	.need_gfx_hws = 1, .has_hotplug = 1,
192 	.has_overlay = 1,
193 	GEN_DEFAULT_PIPEOFFSETS,
194 	CURSOR_OFFSETS,
195 };
196 
197 static const struct intel_device_info intel_ironlake_d_info = {
198 	.gen = 5, .num_pipes = 2,
199 	.need_gfx_hws = 1, .has_hotplug = 1,
200 	.ring_mask = RENDER_RING | BSD_RING,
201 	GEN_DEFAULT_PIPEOFFSETS,
202 	CURSOR_OFFSETS,
203 };
204 
205 static const struct intel_device_info intel_ironlake_m_info = {
206 	.gen = 5, .is_mobile = 1, .num_pipes = 2,
207 	.need_gfx_hws = 1, .has_hotplug = 1,
208 	.has_fbc = 1,
209 	.ring_mask = RENDER_RING | BSD_RING,
210 	GEN_DEFAULT_PIPEOFFSETS,
211 	CURSOR_OFFSETS,
212 };
213 
214 static const struct intel_device_info intel_sandybridge_d_info = {
215 	.gen = 6, .num_pipes = 2,
216 	.need_gfx_hws = 1, .has_hotplug = 1,
217 	.has_fbc = 1,
218 	.ring_mask = RENDER_RING | BSD_RING | BLT_RING,
219 	.has_llc = 1,
220 	GEN_DEFAULT_PIPEOFFSETS,
221 	CURSOR_OFFSETS,
222 };
223 
224 static const struct intel_device_info intel_sandybridge_m_info = {
225 	.gen = 6, .is_mobile = 1, .num_pipes = 2,
226 	.need_gfx_hws = 1, .has_hotplug = 1,
227 	.has_fbc = 1,
228 	.ring_mask = RENDER_RING | BSD_RING | BLT_RING,
229 	.has_llc = 1,
230 	GEN_DEFAULT_PIPEOFFSETS,
231 	CURSOR_OFFSETS,
232 };
233 
234 #define GEN7_FEATURES  \
235 	.gen = 7, .num_pipes = 3, \
236 	.need_gfx_hws = 1, .has_hotplug = 1, \
237 	.has_fbc = 1, \
238 	.ring_mask = RENDER_RING | BSD_RING | BLT_RING, \
239 	.has_llc = 1, \
240 	GEN_DEFAULT_PIPEOFFSETS, \
241 	IVB_CURSOR_OFFSETS
242 
243 static const struct intel_device_info intel_ivybridge_d_info = {
244 	GEN7_FEATURES,
245 	.is_ivybridge = 1,
246 };
247 
248 static const struct intel_device_info intel_ivybridge_m_info = {
249 	GEN7_FEATURES,
250 	.is_ivybridge = 1,
251 	.is_mobile = 1,
252 };
253 
254 static const struct intel_device_info intel_ivybridge_q_info = {
255 	GEN7_FEATURES,
256 	.is_ivybridge = 1,
257 	.num_pipes = 0, /* legal, last one wins */
258 };
259 
260 #define VLV_FEATURES  \
261 	.gen = 7, .num_pipes = 2, \
262 	.need_gfx_hws = 1, .has_hotplug = 1, \
263 	.ring_mask = RENDER_RING | BSD_RING | BLT_RING, \
264 	.display_mmio_offset = VLV_DISPLAY_BASE, \
265 	GEN_DEFAULT_PIPEOFFSETS, \
266 	CURSOR_OFFSETS
267 
268 static const struct intel_device_info intel_valleyview_m_info = {
269 	VLV_FEATURES,
270 	.is_valleyview = 1,
271 	.is_mobile = 1,
272 };
273 
274 static const struct intel_device_info intel_valleyview_d_info = {
275 	VLV_FEATURES,
276 	.is_valleyview = 1,
277 };
278 
279 #define HSW_FEATURES  \
280 	GEN7_FEATURES, \
281 	.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING, \
282 	.has_ddi = 1, \
283 	.has_fpga_dbg = 1
284 
285 static const struct intel_device_info intel_haswell_d_info = {
286 	HSW_FEATURES,
287 	.is_haswell = 1,
288 };
289 
290 static const struct intel_device_info intel_haswell_m_info = {
291 	HSW_FEATURES,
292 	.is_haswell = 1,
293 	.is_mobile = 1,
294 };
295 
296 #define BDW_FEATURES \
297 	HSW_FEATURES, \
298 	BDW_COLORS
299 
300 static const struct intel_device_info intel_broadwell_d_info = {
301 	BDW_FEATURES,
302 	.gen = 8,
303 };
304 
305 static const struct intel_device_info intel_broadwell_m_info = {
306 	BDW_FEATURES,
307 	.gen = 8, .is_mobile = 1,
308 };
309 
310 static const struct intel_device_info intel_broadwell_gt3d_info = {
311 	BDW_FEATURES,
312 	.gen = 8,
313 	.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
314 };
315 
316 static const struct intel_device_info intel_broadwell_gt3m_info = {
317 	BDW_FEATURES,
318 	.gen = 8, .is_mobile = 1,
319 	.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
320 };
321 
322 static const struct intel_device_info intel_cherryview_info = {
323 	.gen = 8, .num_pipes = 3,
324 	.need_gfx_hws = 1, .has_hotplug = 1,
325 	.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
326 	.is_cherryview = 1,
327 	.display_mmio_offset = VLV_DISPLAY_BASE,
328 	GEN_CHV_PIPEOFFSETS,
329 	CURSOR_OFFSETS,
330 	CHV_COLORS,
331 };
332 
333 static const struct intel_device_info intel_skylake_info = {
334 	BDW_FEATURES,
335 	.is_skylake = 1,
336 	.gen = 9,
337 };
338 
339 static const struct intel_device_info intel_skylake_gt3_info = {
340 	BDW_FEATURES,
341 	.is_skylake = 1,
342 	.gen = 9,
343 	.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
344 };
345 
346 static const struct intel_device_info intel_broxton_info = {
347 	.is_preliminary = 1,
348 	.is_broxton = 1,
349 	.gen = 9,
350 	.need_gfx_hws = 1, .has_hotplug = 1,
351 	.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
352 	.num_pipes = 3,
353 	.has_ddi = 1,
354 	.has_fpga_dbg = 1,
355 	.has_fbc = 1,
356 	GEN_DEFAULT_PIPEOFFSETS,
357 	IVB_CURSOR_OFFSETS,
358 	BDW_COLORS,
359 };
360 
361 static const struct intel_device_info intel_kabylake_info = {
362 	BDW_FEATURES,
363 	.is_kabylake = 1,
364 	.gen = 9,
365 };
366 
367 static const struct intel_device_info intel_kabylake_gt2_info = {
368 	BDW_FEATURES,
369 	.is_kabylake = 1,
370 	.gen = 9,
371 };
372 
373 static const struct intel_device_info intel_kabylake_gt3_info = {
374 	BDW_FEATURES,
375 	.is_kabylake = 1,
376 	.gen = 9,
377 	.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
378 };
379 
380 static const struct intel_device_info intel_coffeelake_gt1_info = {
381 	BDW_FEATURES, \
382 	.is_kabylake = 1,
383 	.gen = 9,
384 };
385 
386 static const struct intel_device_info intel_coffeelake_gt2_info = {
387 	BDW_FEATURES, \
388 	.is_kabylake = 1,
389 	.gen = 9,
390 };
391 
392 static const struct intel_device_info intel_coffeelake_gt3_info = {
393 	BDW_FEATURES, \
394 	.is_kabylake = 1,
395 	.gen = 9,
396 	.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
397 };
398 
399 /*
400  * Make sure any device matches here are from most specific to most
401  * general.  For example, since the Quanta match is based on the subsystem
402  * and subvendor IDs, we need it to come before the more general IVB
403  * PCI ID matches, otherwise we'll use the wrong info struct above.
404  */
405 
406 static const struct pci_device_id pciidlist[] = {
407 	INTEL_I830_IDS(&intel_i830_info),
408 	INTEL_I845G_IDS(&intel_845g_info),
409 	INTEL_I85X_IDS(&intel_i85x_info),
410 	INTEL_I865G_IDS(&intel_i865g_info),
411 	INTEL_I915G_IDS(&intel_i915g_info),
412 	INTEL_I915GM_IDS(&intel_i915gm_info),
413 	INTEL_I945G_IDS(&intel_i945g_info),
414 	INTEL_I945GM_IDS(&intel_i945gm_info),
415 	INTEL_I965G_IDS(&intel_i965g_info),
416 	INTEL_G33_IDS(&intel_g33_info),
417 	INTEL_I965GM_IDS(&intel_i965gm_info),
418 	INTEL_GM45_IDS(&intel_gm45_info),
419 	INTEL_G45_IDS(&intel_g45_info),
420 	INTEL_PINEVIEW_IDS(&intel_pineview_info),
421 	INTEL_IRONLAKE_D_IDS(&intel_ironlake_d_info),
422 	INTEL_IRONLAKE_M_IDS(&intel_ironlake_m_info),
423 	INTEL_SNB_D_IDS(&intel_sandybridge_d_info),
424 	INTEL_SNB_M_IDS(&intel_sandybridge_m_info),
425 	INTEL_IVB_Q_IDS(&intel_ivybridge_q_info), /* must be first IVB */
426 	INTEL_IVB_M_IDS(&intel_ivybridge_m_info),
427 	INTEL_IVB_D_IDS(&intel_ivybridge_d_info),
428 	INTEL_HSW_D_IDS(&intel_haswell_d_info),
429 	INTEL_HSW_M_IDS(&intel_haswell_m_info),
430 	INTEL_VLV_M_IDS(&intel_valleyview_m_info),
431 	INTEL_VLV_D_IDS(&intel_valleyview_d_info),
432 	INTEL_BDW_GT12M_IDS(&intel_broadwell_m_info),
433 	INTEL_BDW_GT12D_IDS(&intel_broadwell_d_info),
434 	INTEL_BDW_GT3M_IDS(&intel_broadwell_gt3m_info),
435 	INTEL_BDW_GT3D_IDS(&intel_broadwell_gt3d_info),
436 	INTEL_CHV_IDS(&intel_cherryview_info),
437 	INTEL_SKL_GT1_IDS(&intel_skylake_info),
438 	INTEL_SKL_GT2_IDS(&intel_skylake_info),
439 	INTEL_SKL_GT3_IDS(&intel_skylake_gt3_info),
440 	INTEL_SKL_GT4_IDS(&intel_skylake_gt3_info),
441 	INTEL_BXT_IDS(&intel_broxton_info),
442 	INTEL_KBL_GT1_IDS(&intel_kabylake_info),
443 	INTEL_KBL_GT2_IDS(&intel_kabylake_info),
444 	INTEL_KBL_GT3_IDS(&intel_kabylake_gt3_info),
445 	INTEL_KBL_GT4_IDS(&intel_kabylake_gt3_info),
446 	INTEL_AML_GT2_IDS(&intel_kabylake_gt2_info),
447 	INTEL_CFL_S_GT1_IDS(&intel_coffeelake_gt1_info),
448 	INTEL_CFL_S_GT2_IDS(&intel_coffeelake_gt2_info),
449 	INTEL_CFL_H_GT2_IDS(&intel_coffeelake_gt2_info),
450 	INTEL_CFL_U_GT2_IDS(&intel_coffeelake_gt2_info),
451 	INTEL_CFL_U_GT3_IDS(&intel_coffeelake_gt3_info),
452 	INTEL_WHL_U_GT1_IDS(&intel_coffeelake_gt1_info),
453 	INTEL_WHL_U_GT2_IDS(&intel_coffeelake_gt2_info),
454 	INTEL_WHL_U_GT3_IDS(&intel_coffeelake_gt3_info),
455 	{0, 0, 0}
456 };
457 
458 #define	PCI_VENDOR_INTEL	0x8086
459 
460 static enum intel_pch intel_virt_detect_pch(struct drm_device *dev)
461 {
462 	enum intel_pch ret = PCH_NOP;
463 
464 	/*
465 	 * In a virtualized passthrough environment we can be in a
466 	 * setup where the ISA bridge is not able to be passed through.
467 	 * In this case, a south bridge can be emulated and we have to
468 	 * make an educated guess as to which PCH is really there.
469 	 */
470 
471 	if (IS_GEN5(dev)) {
472 		ret = PCH_IBX;
473 		DRM_DEBUG_KMS("Assuming Ibex Peak PCH\n");
474 	} else if (IS_GEN6(dev) || IS_IVYBRIDGE(dev)) {
475 		ret = PCH_CPT;
476 		DRM_DEBUG_KMS("Assuming CouarPoint PCH\n");
477 	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
478 		ret = PCH_LPT;
479 		DRM_DEBUG_KMS("Assuming LynxPoint PCH\n");
480 	} else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
481 		ret = PCH_SPT;
482 		DRM_DEBUG_KMS("Assuming SunrisePoint PCH\n");
483 	}
484 
485 	return ret;
486 }
487 
488 void intel_detect_pch(struct drm_device *dev)
489 {
490 	struct drm_i915_private *dev_priv = dev->dev_private;
491 	device_t pch = NULL;
492 	struct pci_devinfo *di;
493 
494 	/* In all current cases, num_pipes is equivalent to the PCH_NOP setting
495 	 * (which really amounts to a PCH but no South Display).
496 	 */
497 	if (INTEL_INFO(dev)->num_pipes == 0) {
498 		dev_priv->pch_type = PCH_NOP;
499 		return;
500 	}
501 
502 	/* XXX The ISA bridge probe causes some old Core2 machines to hang */
503 	if (INTEL_INFO(dev)->gen < 5)
504 		return;
505 
506 	/*
507 	 * The reason to probe ISA bridge instead of Dev31:Fun0 is to
508 	 * make graphics device passthrough work easy for VMM, that only
509 	 * need to expose ISA bridge to let driver know the real hardware
510 	 * underneath. This is a requirement from virtualization team.
511 	 *
512 	 * In some virtualized environments (e.g. XEN), there is irrelevant
513 	 * ISA bridge in the system. To work reliably, we should scan trhough
514 	 * all the ISA bridge devices and check for the first match, instead
515 	 * of only checking the first one.
516 	 */
517 	di = NULL;
518 
519 	while ((pch = pci_iterate_class(&di, PCIC_BRIDGE, PCIS_BRIDGE_ISA))) {
520 		if (pci_get_vendor(pch) == PCI_VENDOR_INTEL) {
521 			unsigned short id = pci_get_device(pch) & INTEL_PCH_DEVICE_ID_MASK;
522 			dev_priv->pch_id = id;
523 
524 			if (id == INTEL_PCH_IBX_DEVICE_ID_TYPE) {
525 				dev_priv->pch_type = PCH_IBX;
526 				DRM_DEBUG_KMS("Found Ibex Peak PCH\n");
527 				WARN_ON(!IS_GEN5(dev));
528 			} else if (id == INTEL_PCH_CPT_DEVICE_ID_TYPE) {
529 				dev_priv->pch_type = PCH_CPT;
530 				DRM_DEBUG_KMS("Found CougarPoint PCH\n");
531 				WARN_ON(!(IS_GEN6(dev) || IS_IVYBRIDGE(dev)));
532 			} else if (id == INTEL_PCH_PPT_DEVICE_ID_TYPE) {
533 				/* PantherPoint is CPT compatible */
534 				dev_priv->pch_type = PCH_CPT;
535 				DRM_DEBUG_KMS("Found PantherPoint PCH\n");
536 				WARN_ON(!(IS_GEN6(dev) || IS_IVYBRIDGE(dev)));
537 			} else if (id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
538 				dev_priv->pch_type = PCH_LPT;
539 				DRM_DEBUG_KMS("Found LynxPoint PCH\n");
540 				WARN_ON(!IS_HASWELL(dev) && !IS_BROADWELL(dev));
541 				WARN_ON(IS_HSW_ULT(dev) || IS_BDW_ULT(dev));
542 			} else if (id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
543 				dev_priv->pch_type = PCH_LPT;
544 				DRM_DEBUG_KMS("Found LynxPoint LP PCH\n");
545 				WARN_ON(!IS_HASWELL(dev) && !IS_BROADWELL(dev));
546 				WARN_ON(!IS_HSW_ULT(dev) && !IS_BDW_ULT(dev));
547 			} else if (id == INTEL_PCH_SPT_DEVICE_ID_TYPE) {
548 				dev_priv->pch_type = PCH_SPT;
549 				DRM_DEBUG_KMS("Found SunrisePoint PCH\n");
550 				WARN_ON(!IS_SKYLAKE(dev) &&
551 					!IS_KABYLAKE(dev));
552 			} else if (id == INTEL_PCH_SPT_LP_DEVICE_ID_TYPE) {
553 				dev_priv->pch_type = PCH_SPT;
554 				DRM_DEBUG_KMS("Found SunrisePoint LP PCH\n");
555 				WARN_ON(!IS_SKYLAKE(dev) &&
556 					!IS_KABYLAKE(dev));
557 			} else if (id == INTEL_PCH_KBP_DEVICE_ID_TYPE) {
558 				dev_priv->pch_type = PCH_KBP;
559 				DRM_DEBUG_KMS("Found KabyPoint PCH\n");
560 				WARN_ON(!IS_KABYLAKE(dev));
561 			} else if ((id == INTEL_PCH_P2X_DEVICE_ID_TYPE) ||
562 				   (id == INTEL_PCH_P3X_DEVICE_ID_TYPE) ||
563 				   ((id == INTEL_PCH_QEMU_DEVICE_ID_TYPE) &&
564 				    1)) {
565 				dev_priv->pch_type = intel_virt_detect_pch(dev);
566 			} else
567 				continue;
568 
569 			break;
570 		}
571 	}
572 	if (!pch)
573 		DRM_DEBUG_KMS("No PCH found.\n");
574 
575 #if 0
576 	pci_dev_put(pch);
577 #endif
578 }
579 
580 bool i915_semaphore_is_enabled(struct drm_device *dev)
581 {
582 	if (INTEL_INFO(dev)->gen < 6)
583 		return false;
584 
585 	if (i915.semaphores >= 0)
586 		return i915.semaphores;
587 
588 	/* TODO: make semaphores and Execlists play nicely together */
589 	if (i915.enable_execlists)
590 		return false;
591 
592 	/* Until we get further testing... */
593 	if (IS_GEN8(dev))
594 		return false;
595 
596 #ifdef CONFIG_INTEL_IOMMU
597 	/* Enable semaphores on SNB when IO remapping is off */
598 	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
599 		return false;
600 #endif
601 
602 	return true;
603 }
604 
605 #ifdef __DragonFly__
606 #define IS_BUILTIN(blah)	0
607 #endif
608 
609 static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
610 {
611 	struct drm_device *dev = dev_priv->dev;
612 	struct intel_encoder *encoder;
613 
614 	drm_modeset_lock_all(dev);
615 	for_each_intel_encoder(dev, encoder)
616 		if (encoder->suspend)
617 			encoder->suspend(encoder);
618 	drm_modeset_unlock_all(dev);
619 }
620 
621 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
622 			      bool rpm_resume);
623 static int vlv_suspend_complete(struct drm_i915_private *dev_priv);
624 
625 static bool suspend_to_idle(struct drm_i915_private *dev_priv)
626 {
627 #if IS_ENABLED(CONFIG_ACPI_SLEEP)
628 	if (acpi_target_system_state() < ACPI_STATE_S3)
629 		return true;
630 #endif
631 	return false;
632 }
633 
634 static int i915_drm_suspend(struct drm_device *dev)
635 {
636 	struct drm_i915_private *dev_priv = dev->dev_private;
637 	pci_power_t opregion_target_state;
638 	int error;
639 
640 	/* ignore lid events during suspend */
641 	mutex_lock(&dev_priv->modeset_restore_lock);
642 	dev_priv->modeset_restore = MODESET_SUSPENDED;
643 	mutex_unlock(&dev_priv->modeset_restore_lock);
644 
645 	disable_rpm_wakeref_asserts(dev_priv);
646 
647 	/* We do a lot of poking in a lot of registers, make sure they work
648 	 * properly. */
649 	intel_display_set_init_power(dev_priv, true);
650 
651 	drm_kms_helper_poll_disable(dev);
652 
653 #if 0
654 	pci_save_state(dev->pdev);
655 #endif
656 
657 	error = i915_gem_suspend(dev);
658 	if (error) {
659 		dev_err(dev->dev,
660 			"GEM idle failed, resume might fail\n");
661 		goto out;
662 	}
663 
664 	intel_guc_suspend(dev);
665 
666 	intel_suspend_gt_powersave(dev);
667 
668 	intel_display_suspend(dev);
669 
670 #if 0
671 	intel_dp_mst_suspend(dev);
672 #endif
673 
674 	intel_runtime_pm_disable_interrupts(dev_priv);
675 	intel_hpd_cancel_work(dev_priv);
676 
677 	intel_suspend_encoders(dev_priv);
678 
679 	intel_suspend_hw(dev);
680 
681 	i915_gem_suspend_gtt_mappings(dev);
682 
683 	i915_save_state(dev);
684 
685 	opregion_target_state = suspend_to_idle(dev_priv) ? PCI_D1 : PCI_D3cold;
686 	intel_opregion_notify_adapter(dev, opregion_target_state);
687 
688 	intel_uncore_forcewake_reset(dev, false);
689 	intel_opregion_fini(dev);
690 
691 #if 0
692 	intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
693 #endif
694 
695 	dev_priv->suspend_count++;
696 
697 	intel_display_set_init_power(dev_priv, false);
698 
699 	intel_csr_ucode_suspend(dev_priv);
700 
701 out:
702 	enable_rpm_wakeref_asserts(dev_priv);
703 
704 	return error;
705 }
706 
707 static int i915_drm_suspend_late(struct drm_device *drm_dev, bool hibernation)
708 {
709 	struct drm_i915_private *dev_priv = drm_dev->dev_private;
710 	bool fw_csr;
711 	int ret;
712 
713 	disable_rpm_wakeref_asserts(dev_priv);
714 
715 	fw_csr = !IS_BROXTON(dev_priv) &&
716 		suspend_to_idle(dev_priv) && dev_priv->csr.dmc_payload;
717 	/*
718 	 * In case of firmware assisted context save/restore don't manually
719 	 * deinit the power domains. This also means the CSR/DMC firmware will
720 	 * stay active, it will power down any HW resources as required and
721 	 * also enable deeper system power states that would be blocked if the
722 	 * firmware was inactive.
723 	 */
724 	if (!fw_csr)
725 		intel_power_domains_suspend(dev_priv);
726 
727 	ret = 0;
728 	if (IS_BROXTON(dev_priv))
729 		bxt_enable_dc9(dev_priv);
730 	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
731 		hsw_enable_pc8(dev_priv);
732 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
733 		ret = vlv_suspend_complete(dev_priv);
734 
735 	if (ret) {
736 		DRM_ERROR("Suspend complete failed: %d\n", ret);
737 		if (!fw_csr)
738 			intel_power_domains_init_hw(dev_priv, true);
739 
740 		goto out;
741 	}
742 
743 #if 0
744 	pci_disable_device(drm_dev->pdev);
745 	/*
746 	 * During hibernation on some platforms the BIOS may try to access
747 	 * the device even though it's already in D3 and hang the machine. So
748 	 * leave the device in D0 on those platforms and hope the BIOS will
749 	 * power down the device properly. The issue was seen on multiple old
750 	 * GENs with different BIOS vendors, so having an explicit blacklist
751 	 * is inpractical; apply the workaround on everything pre GEN6. The
752 	 * platforms where the issue was seen:
753 	 * Lenovo Thinkpad X301, X61s, X60, T60, X41
754 	 * Fujitsu FSC S7110
755 	 * Acer Aspire 1830T
756 	 */
757 	if (!(hibernation && INTEL_INFO(dev_priv)->gen < 6))
758 		pci_set_power_state(drm_dev->pdev, PCI_D3hot);
759 #endif
760 
761 	dev_priv->suspended_to_idle = suspend_to_idle(dev_priv);
762 
763 out:
764 	enable_rpm_wakeref_asserts(dev_priv);
765 
766 	return ret;
767 }
768 
769 int i915_suspend_switcheroo(device_t kdev)
770 {
771 	struct drm_device *dev = device_get_softc(kdev);
772 	int error;
773 
774 	if (!dev || !dev->dev_private) {
775 		DRM_ERROR("dev: %p\n", dev);
776 		DRM_ERROR("DRM not initialized, aborting suspend.\n");
777 		return -ENODEV;
778 	}
779 
780 #if 0
781 	if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND &&
782 			 state.event != PM_EVENT_FREEZE))
783 		return -EINVAL;
784 #endif
785 
786 	if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
787 		return 0;
788 
789 	error = i915_drm_suspend(dev);
790 	if (error)
791 		return error;
792 
793 	return i915_drm_suspend_late(dev, false);
794 }
795 
796 static int i915_drm_resume(struct drm_device *dev)
797 {
798 	struct drm_i915_private *dev_priv = dev->dev_private;
799 	int ret;
800 
801 	disable_rpm_wakeref_asserts(dev_priv);
802 
803 	ret = i915_ggtt_enable_hw(dev);
804 	if (ret)
805 		DRM_ERROR("failed to re-enable GGTT\n");
806 
807 	intel_csr_ucode_resume(dev_priv);
808 
809 	mutex_lock(&dev->struct_mutex);
810 	i915_gem_restore_gtt_mappings(dev);
811 	mutex_unlock(&dev->struct_mutex);
812 
813 	i915_restore_state(dev);
814 	intel_opregion_setup(dev);
815 
816 	intel_init_pch_refclk(dev);
817 	drm_mode_config_reset(dev);
818 
819 	/*
820 	 * Interrupts have to be enabled before any batches are run. If not the
821 	 * GPU will hang. i915_gem_init_hw() will initiate batches to
822 	 * update/restore the context.
823 	 *
824 	 * Modeset enabling in intel_modeset_init_hw() also needs working
825 	 * interrupts.
826 	 */
827 	intel_runtime_pm_enable_interrupts(dev_priv);
828 
829 	mutex_lock(&dev->struct_mutex);
830 	if (i915_gem_init_hw(dev)) {
831 		DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
832 			atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
833 	}
834 	mutex_unlock(&dev->struct_mutex);
835 
836 	intel_guc_resume(dev);
837 
838 	intel_modeset_init_hw(dev);
839 
840 	spin_lock_irq(&dev_priv->irq_lock);
841 	if (dev_priv->display.hpd_irq_setup)
842 		dev_priv->display.hpd_irq_setup(dev);
843 	spin_unlock_irq(&dev_priv->irq_lock);
844 
845 	intel_dp_mst_resume(dev);
846 
847 	intel_display_resume(dev);
848 
849 	/*
850 	 * ... but also need to make sure that hotplug processing
851 	 * doesn't cause havoc. Like in the driver load code we don't
852 	 * bother with the tiny race here where we might loose hotplug
853 	 * notifications.
854 	 * */
855 	intel_hpd_init(dev_priv);
856 	/* Config may have changed between suspend and resume */
857 	drm_helper_hpd_irq_event(dev);
858 
859 	intel_opregion_init(dev);
860 
861 	intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
862 
863 	mutex_lock(&dev_priv->modeset_restore_lock);
864 	dev_priv->modeset_restore = MODESET_DONE;
865 	mutex_unlock(&dev_priv->modeset_restore_lock);
866 
867 	intel_opregion_notify_adapter(dev, PCI_D0);
868 
869 	drm_kms_helper_poll_enable(dev);
870 
871 	enable_rpm_wakeref_asserts(dev_priv);
872 
873 	return 0;
874 }
875 
876 static int i915_drm_resume_early(struct drm_device *dev)
877 {
878 	struct drm_i915_private *dev_priv = dev->dev_private;
879 	int ret = 0;
880 
881 	/*
882 	 * We have a resume ordering issue with the snd-hda driver also
883 	 * requiring our device to be power up. Due to the lack of a
884 	 * parent/child relationship we currently solve this with an early
885 	 * resume hook.
886 	 *
887 	 * FIXME: This should be solved with a special hdmi sink device or
888 	 * similar so that power domains can be employed.
889 	 */
890 
891 	/*
892 	 * Note that we need to set the power state explicitly, since we
893 	 * powered off the device during freeze and the PCI core won't power
894 	 * it back up for us during thaw. Powering off the device during
895 	 * freeze is not a hard requirement though, and during the
896 	 * suspend/resume phases the PCI core makes sure we get here with the
897 	 * device powered on. So in case we change our freeze logic and keep
898 	 * the device powered we can also remove the following set power state
899 	 * call.
900 	 */
901 #if 0
902 	ret = pci_set_power_state(dev->pdev, PCI_D0);
903 	if (ret) {
904 		DRM_ERROR("failed to set PCI D0 power state (%d)\n", ret);
905 		goto out;
906 	}
907 
908 	/*
909 	 * Note that pci_enable_device() first enables any parent bridge
910 	 * device and only then sets the power state for this device. The
911 	 * bridge enabling is a nop though, since bridge devices are resumed
912 	 * first. The order of enabling power and enabling the device is
913 	 * imposed by the PCI core as described above, so here we preserve the
914 	 * same order for the freeze/thaw phases.
915 	 *
916 	 * TODO: eventually we should remove pci_disable_device() /
917 	 * pci_enable_enable_device() from suspend/resume. Due to how they
918 	 * depend on the device enable refcount we can't anyway depend on them
919 	 * disabling/enabling the device.
920 	 */
921 	if (pci_enable_device(dev->pdev)) {
922 		ret = -EIO;
923 		goto out;
924 	}
925 
926 	pci_set_master(dev->pdev);
927 #endif
928 
929 	disable_rpm_wakeref_asserts(dev_priv);
930 
931 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
932 		ret = vlv_resume_prepare(dev_priv, false);
933 	if (ret)
934 		DRM_ERROR("Resume prepare failed: %d, continuing anyway\n",
935 			  ret);
936 
937 	intel_uncore_early_sanitize(dev, true);
938 
939 	if (IS_BROXTON(dev)) {
940 		if (!dev_priv->suspended_to_idle)
941 			gen9_sanitize_dc_state(dev_priv);
942 		bxt_disable_dc9(dev_priv);
943 	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
944 		hsw_disable_pc8(dev_priv);
945 	}
946 
947 	intel_uncore_sanitize(dev);
948 
949 	if (IS_BROXTON(dev_priv) ||
950 	    !(dev_priv->suspended_to_idle && dev_priv->csr.dmc_payload))
951 		intel_power_domains_init_hw(dev_priv, true);
952 
953 	enable_rpm_wakeref_asserts(dev_priv);
954 
955 #if 0
956 out:
957 #endif
958 	dev_priv->suspended_to_idle = false;
959 
960 	return ret;
961 }
962 
963 int i915_resume_switcheroo(struct drm_device *dev)
964 {
965 	int ret;
966 
967 	if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
968 		return 0;
969 
970 	ret = i915_drm_resume_early(dev);
971 	if (ret)
972 		return ret;
973 
974 	return i915_drm_resume(dev);
975 }
976 
977 struct intel_device_info *
978 i915_get_device_id(int device)
979 {
980 	const struct pci_device_id *did;
981 
982 	for (did = &pciidlist[0]; did->device != 0; did++) {
983 		if (did->device != device)
984 			continue;
985 		return (struct intel_device_info *)did->driver_data;
986 	}
987 	return (NULL);
988 }
989 
990 static int i915_sysctl_init(struct drm_device *dev, struct sysctl_ctx_list *ctx,
991 			    struct sysctl_oid *top)
992 {
993 	return drm_add_busid_modesetting(dev, ctx, top);
994 }
995 
996 extern devclass_t drm_devclass;
997 
998 /**
999  * i915_reset - reset chip after a hang
1000  * @dev: drm device to reset
1001  *
1002  * Reset the chip.  Useful if a hang is detected. Returns zero on successful
1003  * reset or otherwise an error code.
1004  *
1005  * Procedure is fairly simple:
1006  *   - reset the chip using the reset reg
1007  *   - re-init context state
1008  *   - re-init hardware status page
1009  *   - re-init ring buffer
1010  *   - re-init interrupt state
1011  *   - re-init display
1012  */
1013 int i915_reset(struct drm_device *dev)
1014 {
1015 	struct drm_i915_private *dev_priv = dev->dev_private;
1016 	struct i915_gpu_error *error = &dev_priv->gpu_error;
1017 	unsigned reset_counter;
1018 	int ret;
1019 
1020 	intel_reset_gt_powersave(dev);
1021 
1022 	mutex_lock(&dev->struct_mutex);
1023 
1024 	/* Clear any previous failed attempts at recovery. Time to try again. */
1025 	atomic_andnot(I915_WEDGED, &error->reset_counter);
1026 
1027 	/* Clear the reset-in-progress flag and increment the reset epoch. */
1028 	reset_counter = atomic_inc_return(&error->reset_counter);
1029 	if (WARN_ON(__i915_reset_in_progress(reset_counter))) {
1030 		ret = -EIO;
1031 		goto error;
1032 	}
1033 
1034 	i915_gem_reset(dev);
1035 
1036 	ret = intel_gpu_reset(dev, ALL_ENGINES);
1037 
1038 	/* Also reset the gpu hangman. */
1039 	if (error->stop_rings != 0) {
1040 		DRM_INFO("Simulated gpu hang, resetting stop_rings\n");
1041 		error->stop_rings = 0;
1042 		if (ret == -ENODEV) {
1043 			DRM_INFO("Reset not implemented, but ignoring "
1044 				 "error for simulated gpu hangs\n");
1045 			ret = 0;
1046 		}
1047 	}
1048 
1049 	if (i915_stop_ring_allow_warn(dev_priv))
1050 		pr_notice("drm/i915: Resetting chip after gpu hang\n");
1051 
1052 	if (ret) {
1053 		if (ret != -ENODEV)
1054 			DRM_ERROR("Failed to reset chip: %i\n", ret);
1055 		else
1056 			DRM_DEBUG_DRIVER("GPU reset disabled\n");
1057 		goto error;
1058 	}
1059 
1060 	intel_overlay_reset(dev_priv);
1061 
1062 	/* Ok, now get things going again... */
1063 
1064 	/*
1065 	 * Everything depends on having the GTT running, so we need to start
1066 	 * there.  Fortunately we don't need to do this unless we reset the
1067 	 * chip at a PCI level.
1068 	 *
1069 	 * Next we need to restore the context, but we don't use those
1070 	 * yet either...
1071 	 *
1072 	 * Ring buffer needs to be re-initialized in the KMS case, or if X
1073 	 * was running at the time of the reset (i.e. we weren't VT
1074 	 * switched away).
1075 	 */
1076 	ret = i915_gem_init_hw(dev);
1077 	if (ret) {
1078 		DRM_ERROR("Failed hw init on reset %d\n", ret);
1079 		goto error;
1080 	}
1081 
1082 	mutex_unlock(&dev->struct_mutex);
1083 
1084 	/*
1085 	 * rps/rc6 re-init is necessary to restore state lost after the
1086 	 * reset and the re-install of gt irqs. Skip for ironlake per
1087 	 * previous concerns that it doesn't respond well to some forms
1088 	 * of re-init after reset.
1089 	 */
1090 	if (INTEL_INFO(dev)->gen > 5)
1091 		intel_enable_gt_powersave(dev);
1092 
1093 	return 0;
1094 
1095 error:
1096 	atomic_or(I915_WEDGED, &error->reset_counter);
1097 	mutex_unlock(&dev->struct_mutex);
1098 	return ret;
1099 }
1100 
1101 #if 0
1102 static void
1103 i915_pci_remove(struct pci_dev *pdev)
1104 {
1105 	struct drm_device *dev = pci_get_drvdata(pdev);
1106 
1107 	drm_put_dev(dev);
1108 }
1109 
1110 static int i915_pm_suspend(struct device *dev)
1111 {
1112 	struct pci_dev *pdev = to_pci_dev(dev);
1113 	struct drm_device *drm_dev = pci_get_drvdata(pdev);
1114 
1115 	if (!drm_dev || !drm_dev->dev_private) {
1116 		dev_err(dev, "DRM not initialized, aborting suspend.\n");
1117 		return -ENODEV;
1118 	}
1119 
1120 	if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1121 		return 0;
1122 
1123 	return i915_drm_suspend(drm_dev);
1124 }
1125 
1126 static int i915_pm_suspend_late(struct device *dev)
1127 {
1128 	struct drm_device *drm_dev = dev_to_i915(dev)->dev;
1129 
1130 	/*
1131 	 * We have a suspend ordering issue with the snd-hda driver also
1132 	 * requiring our device to be power up. Due to the lack of a
1133 	 * parent/child relationship we currently solve this with an late
1134 	 * suspend hook.
1135 	 *
1136 	 * FIXME: This should be solved with a special hdmi sink device or
1137 	 * similar so that power domains can be employed.
1138 	 */
1139 	if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1140 		return 0;
1141 
1142 	return i915_drm_suspend_late(drm_dev, false);
1143 }
1144 
1145 static int i915_pm_poweroff_late(struct device *dev)
1146 {
1147 	struct drm_device *drm_dev = dev_to_i915(dev)->dev;
1148 
1149 	if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1150 		return 0;
1151 
1152 	return i915_drm_suspend_late(drm_dev, true);
1153 }
1154 
1155 static int i915_pm_resume_early(struct device *dev)
1156 {
1157 	struct drm_device *drm_dev = dev_to_i915(dev)->dev;
1158 
1159 	if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1160 		return 0;
1161 
1162 	return i915_drm_resume_early(drm_dev);
1163 }
1164 
1165 static int i915_pm_resume(struct device *dev)
1166 {
1167 	struct drm_device *drm_dev = dev_to_i915(dev)->dev;
1168 
1169 	if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1170 		return 0;
1171 
1172 	return i915_drm_resume(drm_dev);
1173 }
1174 #endif
1175 
1176 /*
1177  * Save all Gunit registers that may be lost after a D3 and a subsequent
1178  * S0i[R123] transition. The list of registers needing a save/restore is
1179  * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
1180  * registers in the following way:
1181  * - Driver: saved/restored by the driver
1182  * - Punit : saved/restored by the Punit firmware
1183  * - No, w/o marking: no need to save/restore, since the register is R/O or
1184  *                    used internally by the HW in a way that doesn't depend
1185  *                    keeping the content across a suspend/resume.
1186  * - Debug : used for debugging
1187  *
1188  * We save/restore all registers marked with 'Driver', with the following
1189  * exceptions:
1190  * - Registers out of use, including also registers marked with 'Debug'.
1191  *   These have no effect on the driver's operation, so we don't save/restore
1192  *   them to reduce the overhead.
1193  * - Registers that are fully setup by an initialization function called from
1194  *   the resume path. For example many clock gating and RPS/RC6 registers.
1195  * - Registers that provide the right functionality with their reset defaults.
1196  *
1197  * TODO: Except for registers that based on the above 3 criteria can be safely
1198  * ignored, we save/restore all others, practically treating the HW context as
1199  * a black-box for the driver. Further investigation is needed to reduce the
1200  * saved/restored registers even further, by following the same 3 criteria.
1201  */
1202 static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
1203 {
1204 	struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
1205 	int i;
1206 
1207 	/* GAM 0x4000-0x4770 */
1208 	s->wr_watermark		= I915_READ(GEN7_WR_WATERMARK);
1209 	s->gfx_prio_ctrl	= I915_READ(GEN7_GFX_PRIO_CTRL);
1210 	s->arb_mode		= I915_READ(ARB_MODE);
1211 	s->gfx_pend_tlb0	= I915_READ(GEN7_GFX_PEND_TLB0);
1212 	s->gfx_pend_tlb1	= I915_READ(GEN7_GFX_PEND_TLB1);
1213 
1214 	for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
1215 		s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS(i));
1216 
1217 	s->media_max_req_count	= I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
1218 	s->gfx_max_req_count	= I915_READ(GEN7_GFX_MAX_REQ_COUNT);
1219 
1220 	s->render_hwsp		= I915_READ(RENDER_HWS_PGA_GEN7);
1221 	s->ecochk		= I915_READ(GAM_ECOCHK);
1222 	s->bsd_hwsp		= I915_READ(BSD_HWS_PGA_GEN7);
1223 	s->blt_hwsp		= I915_READ(BLT_HWS_PGA_GEN7);
1224 
1225 	s->tlb_rd_addr		= I915_READ(GEN7_TLB_RD_ADDR);
1226 
1227 	/* MBC 0x9024-0x91D0, 0x8500 */
1228 	s->g3dctl		= I915_READ(VLV_G3DCTL);
1229 	s->gsckgctl		= I915_READ(VLV_GSCKGCTL);
1230 	s->mbctl		= I915_READ(GEN6_MBCTL);
1231 
1232 	/* GCP 0x9400-0x9424, 0x8100-0x810C */
1233 	s->ucgctl1		= I915_READ(GEN6_UCGCTL1);
1234 	s->ucgctl3		= I915_READ(GEN6_UCGCTL3);
1235 	s->rcgctl1		= I915_READ(GEN6_RCGCTL1);
1236 	s->rcgctl2		= I915_READ(GEN6_RCGCTL2);
1237 	s->rstctl		= I915_READ(GEN6_RSTCTL);
1238 	s->misccpctl		= I915_READ(GEN7_MISCCPCTL);
1239 
1240 	/* GPM 0xA000-0xAA84, 0x8000-0x80FC */
1241 	s->gfxpause		= I915_READ(GEN6_GFXPAUSE);
1242 	s->rpdeuhwtc		= I915_READ(GEN6_RPDEUHWTC);
1243 	s->rpdeuc		= I915_READ(GEN6_RPDEUC);
1244 	s->ecobus		= I915_READ(ECOBUS);
1245 	s->pwrdwnupctl		= I915_READ(VLV_PWRDWNUPCTL);
1246 	s->rp_down_timeout	= I915_READ(GEN6_RP_DOWN_TIMEOUT);
1247 	s->rp_deucsw		= I915_READ(GEN6_RPDEUCSW);
1248 	s->rcubmabdtmr		= I915_READ(GEN6_RCUBMABDTMR);
1249 	s->rcedata		= I915_READ(VLV_RCEDATA);
1250 	s->spare2gh		= I915_READ(VLV_SPAREG2H);
1251 
1252 	/* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
1253 	s->gt_imr		= I915_READ(GTIMR);
1254 	s->gt_ier		= I915_READ(GTIER);
1255 	s->pm_imr		= I915_READ(GEN6_PMIMR);
1256 	s->pm_ier		= I915_READ(GEN6_PMIER);
1257 
1258 	for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
1259 		s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH(i));
1260 
1261 	/* GT SA CZ domain, 0x100000-0x138124 */
1262 	s->tilectl		= I915_READ(TILECTL);
1263 	s->gt_fifoctl		= I915_READ(GTFIFOCTL);
1264 	s->gtlc_wake_ctrl	= I915_READ(VLV_GTLC_WAKE_CTRL);
1265 	s->gtlc_survive		= I915_READ(VLV_GTLC_SURVIVABILITY_REG);
1266 	s->pmwgicz		= I915_READ(VLV_PMWGICZ);
1267 
1268 	/* Gunit-Display CZ domain, 0x182028-0x1821CF */
1269 	s->gu_ctl0		= I915_READ(VLV_GU_CTL0);
1270 	s->gu_ctl1		= I915_READ(VLV_GU_CTL1);
1271 	s->pcbr			= I915_READ(VLV_PCBR);
1272 	s->clock_gate_dis2	= I915_READ(VLV_GUNIT_CLOCK_GATE2);
1273 
1274 	/*
1275 	 * Not saving any of:
1276 	 * DFT,		0x9800-0x9EC0
1277 	 * SARB,	0xB000-0xB1FC
1278 	 * GAC,		0x5208-0x524C, 0x14000-0x14C000
1279 	 * PCI CFG
1280 	 */
1281 }
1282 
1283 static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
1284 {
1285 	struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
1286 	u32 val;
1287 	int i;
1288 
1289 	/* GAM 0x4000-0x4770 */
1290 	I915_WRITE(GEN7_WR_WATERMARK,	s->wr_watermark);
1291 	I915_WRITE(GEN7_GFX_PRIO_CTRL,	s->gfx_prio_ctrl);
1292 	I915_WRITE(ARB_MODE,		s->arb_mode | (0xffff << 16));
1293 	I915_WRITE(GEN7_GFX_PEND_TLB0,	s->gfx_pend_tlb0);
1294 	I915_WRITE(GEN7_GFX_PEND_TLB1,	s->gfx_pend_tlb1);
1295 
1296 	for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
1297 		I915_WRITE(GEN7_LRA_LIMITS(i), s->lra_limits[i]);
1298 
1299 	I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
1300 	I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count);
1301 
1302 	I915_WRITE(RENDER_HWS_PGA_GEN7,	s->render_hwsp);
1303 	I915_WRITE(GAM_ECOCHK,		s->ecochk);
1304 	I915_WRITE(BSD_HWS_PGA_GEN7,	s->bsd_hwsp);
1305 	I915_WRITE(BLT_HWS_PGA_GEN7,	s->blt_hwsp);
1306 
1307 	I915_WRITE(GEN7_TLB_RD_ADDR,	s->tlb_rd_addr);
1308 
1309 	/* MBC 0x9024-0x91D0, 0x8500 */
1310 	I915_WRITE(VLV_G3DCTL,		s->g3dctl);
1311 	I915_WRITE(VLV_GSCKGCTL,	s->gsckgctl);
1312 	I915_WRITE(GEN6_MBCTL,		s->mbctl);
1313 
1314 	/* GCP 0x9400-0x9424, 0x8100-0x810C */
1315 	I915_WRITE(GEN6_UCGCTL1,	s->ucgctl1);
1316 	I915_WRITE(GEN6_UCGCTL3,	s->ucgctl3);
1317 	I915_WRITE(GEN6_RCGCTL1,	s->rcgctl1);
1318 	I915_WRITE(GEN6_RCGCTL2,	s->rcgctl2);
1319 	I915_WRITE(GEN6_RSTCTL,		s->rstctl);
1320 	I915_WRITE(GEN7_MISCCPCTL,	s->misccpctl);
1321 
1322 	/* GPM 0xA000-0xAA84, 0x8000-0x80FC */
1323 	I915_WRITE(GEN6_GFXPAUSE,	s->gfxpause);
1324 	I915_WRITE(GEN6_RPDEUHWTC,	s->rpdeuhwtc);
1325 	I915_WRITE(GEN6_RPDEUC,		s->rpdeuc);
1326 	I915_WRITE(ECOBUS,		s->ecobus);
1327 	I915_WRITE(VLV_PWRDWNUPCTL,	s->pwrdwnupctl);
1328 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
1329 	I915_WRITE(GEN6_RPDEUCSW,	s->rp_deucsw);
1330 	I915_WRITE(GEN6_RCUBMABDTMR,	s->rcubmabdtmr);
1331 	I915_WRITE(VLV_RCEDATA,		s->rcedata);
1332 	I915_WRITE(VLV_SPAREG2H,	s->spare2gh);
1333 
1334 	/* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
1335 	I915_WRITE(GTIMR,		s->gt_imr);
1336 	I915_WRITE(GTIER,		s->gt_ier);
1337 	I915_WRITE(GEN6_PMIMR,		s->pm_imr);
1338 	I915_WRITE(GEN6_PMIER,		s->pm_ier);
1339 
1340 	for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
1341 		I915_WRITE(GEN7_GT_SCRATCH(i), s->gt_scratch[i]);
1342 
1343 	/* GT SA CZ domain, 0x100000-0x138124 */
1344 	I915_WRITE(TILECTL,			s->tilectl);
1345 	I915_WRITE(GTFIFOCTL,			s->gt_fifoctl);
1346 	/*
1347 	 * Preserve the GT allow wake and GFX force clock bit, they are not
1348 	 * be restored, as they are used to control the s0ix suspend/resume
1349 	 * sequence by the caller.
1350 	 */
1351 	val = I915_READ(VLV_GTLC_WAKE_CTRL);
1352 	val &= VLV_GTLC_ALLOWWAKEREQ;
1353 	val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
1354 	I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
1355 
1356 	val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
1357 	val &= VLV_GFX_CLK_FORCE_ON_BIT;
1358 	val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
1359 	I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
1360 
1361 	I915_WRITE(VLV_PMWGICZ,			s->pmwgicz);
1362 
1363 	/* Gunit-Display CZ domain, 0x182028-0x1821CF */
1364 	I915_WRITE(VLV_GU_CTL0,			s->gu_ctl0);
1365 	I915_WRITE(VLV_GU_CTL1,			s->gu_ctl1);
1366 	I915_WRITE(VLV_PCBR,			s->pcbr);
1367 	I915_WRITE(VLV_GUNIT_CLOCK_GATE2,	s->clock_gate_dis2);
1368 }
1369 
1370 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
1371 {
1372 	u32 val;
1373 	int err;
1374 
1375 #define COND (I915_READ(VLV_GTLC_SURVIVABILITY_REG) & VLV_GFX_CLK_STATUS_BIT)
1376 
1377 	val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
1378 	val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
1379 	if (force_on)
1380 		val |= VLV_GFX_CLK_FORCE_ON_BIT;
1381 	I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
1382 
1383 	if (!force_on)
1384 		return 0;
1385 
1386 	err = wait_for(COND, 20);
1387 	if (err)
1388 		DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
1389 			  I915_READ(VLV_GTLC_SURVIVABILITY_REG));
1390 
1391 	return err;
1392 #undef COND
1393 }
1394 
1395 static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
1396 {
1397 	u32 val;
1398 	int err = 0;
1399 
1400 	val = I915_READ(VLV_GTLC_WAKE_CTRL);
1401 	val &= ~VLV_GTLC_ALLOWWAKEREQ;
1402 	if (allow)
1403 		val |= VLV_GTLC_ALLOWWAKEREQ;
1404 	I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
1405 	POSTING_READ(VLV_GTLC_WAKE_CTRL);
1406 
1407 #define COND (!!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEACK) == \
1408 	      allow)
1409 	err = wait_for(COND, 1);
1410 	if (err)
1411 		DRM_ERROR("timeout disabling GT waking\n");
1412 	return err;
1413 #undef COND
1414 }
1415 
1416 static int vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
1417 				 bool wait_for_on)
1418 {
1419 	u32 mask;
1420 	u32 val;
1421 	int err;
1422 
1423 	mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
1424 	val = wait_for_on ? mask : 0;
1425 #define COND ((I915_READ(VLV_GTLC_PW_STATUS) & mask) == val)
1426 	if (COND)
1427 		return 0;
1428 
1429 	DRM_DEBUG_KMS("waiting for GT wells to go %s (%08x)\n",
1430 		      onoff(wait_for_on),
1431 		      I915_READ(VLV_GTLC_PW_STATUS));
1432 
1433 	/*
1434 	 * RC6 transitioning can be delayed up to 2 msec (see
1435 	 * valleyview_enable_rps), use 3 msec for safety.
1436 	 */
1437 	err = wait_for(COND, 3);
1438 	if (err)
1439 		DRM_ERROR("timeout waiting for GT wells to go %s\n",
1440 			  onoff(wait_for_on));
1441 
1442 	return err;
1443 #undef COND
1444 }
1445 
1446 static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
1447 {
1448 	if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
1449 		return;
1450 
1451 	DRM_DEBUG_DRIVER("GT register access while GT waking disabled\n");
1452 	I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
1453 }
1454 
1455 static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
1456 {
1457 	u32 mask;
1458 	int err;
1459 
1460 	/*
1461 	 * Bspec defines the following GT well on flags as debug only, so
1462 	 * don't treat them as hard failures.
1463 	 */
1464 	(void)vlv_wait_for_gt_wells(dev_priv, false);
1465 
1466 	mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
1467 	WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
1468 
1469 	vlv_check_no_gt_access(dev_priv);
1470 
1471 	err = vlv_force_gfx_clock(dev_priv, true);
1472 	if (err)
1473 		goto err1;
1474 
1475 	err = vlv_allow_gt_wake(dev_priv, false);
1476 	if (err)
1477 		goto err2;
1478 
1479 	if (!IS_CHERRYVIEW(dev_priv))
1480 		vlv_save_gunit_s0ix_state(dev_priv);
1481 
1482 	err = vlv_force_gfx_clock(dev_priv, false);
1483 	if (err)
1484 		goto err2;
1485 
1486 	return 0;
1487 
1488 err2:
1489 	/* For safety always re-enable waking and disable gfx clock forcing */
1490 	vlv_allow_gt_wake(dev_priv, true);
1491 err1:
1492 	vlv_force_gfx_clock(dev_priv, false);
1493 
1494 	return err;
1495 }
1496 
1497 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
1498 				bool rpm_resume)
1499 {
1500 	struct drm_device *dev = dev_priv->dev;
1501 	int err;
1502 	int ret;
1503 
1504 	/*
1505 	 * If any of the steps fail just try to continue, that's the best we
1506 	 * can do at this point. Return the first error code (which will also
1507 	 * leave RPM permanently disabled).
1508 	 */
1509 	ret = vlv_force_gfx_clock(dev_priv, true);
1510 
1511 	if (!IS_CHERRYVIEW(dev_priv))
1512 		vlv_restore_gunit_s0ix_state(dev_priv);
1513 
1514 	err = vlv_allow_gt_wake(dev_priv, true);
1515 	if (!ret)
1516 		ret = err;
1517 
1518 	err = vlv_force_gfx_clock(dev_priv, false);
1519 	if (!ret)
1520 		ret = err;
1521 
1522 	vlv_check_no_gt_access(dev_priv);
1523 
1524 	if (rpm_resume) {
1525 		intel_init_clock_gating(dev);
1526 		i915_gem_restore_fences(dev);
1527 	}
1528 
1529 	return ret;
1530 }
1531 
1532 #if 0
1533 static int intel_runtime_suspend(struct device *device)
1534 {
1535 	struct pci_dev *pdev = to_pci_dev(device);
1536 	struct drm_device *dev = pci_get_drvdata(pdev);
1537 	struct drm_i915_private *dev_priv = dev->dev_private;
1538 	int ret;
1539 
1540 	if (WARN_ON_ONCE(!(dev_priv->rps.enabled && intel_enable_rc6(dev))))
1541 		return -ENODEV;
1542 
1543 	if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev)))
1544 		return -ENODEV;
1545 
1546 	DRM_DEBUG_KMS("Suspending device\n");
1547 
1548 	/*
1549 	 * We could deadlock here in case another thread holding struct_mutex
1550 	 * calls RPM suspend concurrently, since the RPM suspend will wait
1551 	 * first for this RPM suspend to finish. In this case the concurrent
1552 	 * RPM resume will be followed by its RPM suspend counterpart. Still
1553 	 * for consistency return -EAGAIN, which will reschedule this suspend.
1554 	 */
1555 	if (!mutex_trylock(&dev->struct_mutex)) {
1556 		DRM_DEBUG_KMS("device lock contention, deffering suspend\n");
1557 		/*
1558 		 * Bump the expiration timestamp, otherwise the suspend won't
1559 		 * be rescheduled.
1560 		 */
1561 		pm_runtime_mark_last_busy(device);
1562 
1563 		return -EAGAIN;
1564 	}
1565 
1566 	disable_rpm_wakeref_asserts(dev_priv);
1567 
1568 	/*
1569 	 * We are safe here against re-faults, since the fault handler takes
1570 	 * an RPM reference.
1571 	 */
1572 	i915_gem_release_all_mmaps(dev_priv);
1573 	mutex_unlock(&dev->struct_mutex);
1574 
1575 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
1576 
1577 	intel_guc_suspend(dev);
1578 
1579 	intel_suspend_gt_powersave(dev);
1580 	intel_runtime_pm_disable_interrupts(dev_priv);
1581 
1582 	ret = 0;
1583 	if (IS_BROXTON(dev_priv)) {
1584 		bxt_display_core_uninit(dev_priv);
1585 		bxt_enable_dc9(dev_priv);
1586 	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
1587 		hsw_enable_pc8(dev_priv);
1588 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1589 		ret = vlv_suspend_complete(dev_priv);
1590 	}
1591 
1592 	if (ret) {
1593 		DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
1594 		intel_runtime_pm_enable_interrupts(dev_priv);
1595 
1596 		enable_rpm_wakeref_asserts(dev_priv);
1597 
1598 		return ret;
1599 	}
1600 
1601 	intel_uncore_forcewake_reset(dev, false);
1602 
1603 	enable_rpm_wakeref_asserts(dev_priv);
1604 	WARN_ON_ONCE(atomic_read(&dev_priv->pm.wakeref_count));
1605 
1606 	if (intel_uncore_arm_unclaimed_mmio_detection(dev_priv))
1607 		DRM_ERROR("Unclaimed access detected prior to suspending\n");
1608 
1609 	dev_priv->pm.suspended = true;
1610 
1611 	/*
1612 	 * FIXME: We really should find a document that references the arguments
1613 	 * used below!
1614 	 */
1615 	if (IS_BROADWELL(dev)) {
1616 		/*
1617 		 * On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
1618 		 * being detected, and the call we do at intel_runtime_resume()
1619 		 * won't be able to restore them. Since PCI_D3hot matches the
1620 		 * actual specification and appears to be working, use it.
1621 		 */
1622 		intel_opregion_notify_adapter(dev, PCI_D3hot);
1623 	} else {
1624 		/*
1625 		 * current versions of firmware which depend on this opregion
1626 		 * notification have repurposed the D1 definition to mean
1627 		 * "runtime suspended" vs. what you would normally expect (D3)
1628 		 * to distinguish it from notifications that might be sent via
1629 		 * the suspend path.
1630 		 */
1631 		intel_opregion_notify_adapter(dev, PCI_D1);
1632 	}
1633 
1634 	assert_forcewakes_inactive(dev_priv);
1635 
1636 	if (!IS_VALLEYVIEW(dev_priv) || !IS_CHERRYVIEW(dev_priv))
1637 		intel_hpd_poll_init(dev_priv);
1638 
1639 	DRM_DEBUG_KMS("Device suspended\n");
1640 	return 0;
1641 }
1642 
1643 static int intel_runtime_resume(struct device *device)
1644 {
1645 	struct pci_dev *pdev = to_pci_dev(device);
1646 	struct drm_device *dev = pci_get_drvdata(pdev);
1647 	struct drm_i915_private *dev_priv = dev->dev_private;
1648 	int ret = 0;
1649 
1650 	if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev)))
1651 		return -ENODEV;
1652 
1653 	DRM_DEBUG_KMS("Resuming device\n");
1654 
1655 	WARN_ON_ONCE(atomic_read(&dev_priv->pm.wakeref_count));
1656 	disable_rpm_wakeref_asserts(dev_priv);
1657 
1658 	intel_opregion_notify_adapter(dev, PCI_D0);
1659 	dev_priv->pm.suspended = false;
1660 	if (intel_uncore_unclaimed_mmio(dev_priv))
1661 		DRM_DEBUG_DRIVER("Unclaimed access during suspend, bios?\n");
1662 
1663 	intel_guc_resume(dev);
1664 
1665 	if (IS_GEN6(dev_priv))
1666 		intel_init_pch_refclk(dev);
1667 
1668 	if (IS_BROXTON(dev)) {
1669 		bxt_disable_dc9(dev_priv);
1670 		bxt_display_core_init(dev_priv, true);
1671 		if (dev_priv->csr.dmc_payload &&
1672 		    (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
1673 			gen9_enable_dc5(dev_priv);
1674 	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
1675 		hsw_disable_pc8(dev_priv);
1676 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1677 		ret = vlv_resume_prepare(dev_priv, true);
1678 	}
1679 
1680 	/*
1681 	 * No point of rolling back things in case of an error, as the best
1682 	 * we can do is to hope that things will still work (and disable RPM).
1683 	 */
1684 	i915_gem_init_swizzling(dev);
1685 	gen6_update_ring_freq(dev);
1686 
1687 	intel_runtime_pm_enable_interrupts(dev_priv);
1688 
1689 	/*
1690 	 * On VLV/CHV display interrupts are part of the display
1691 	 * power well, so hpd is reinitialized from there. For
1692 	 * everyone else do it here.
1693 	 */
1694 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
1695 		intel_hpd_init(dev_priv);
1696 
1697 	intel_enable_gt_powersave(dev);
1698 
1699 	enable_rpm_wakeref_asserts(dev_priv);
1700 
1701 	if (ret)
1702 		DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
1703 	else
1704 		DRM_DEBUG_KMS("Device resumed\n");
1705 
1706 	return ret;
1707 }
1708 
1709 static const struct dev_pm_ops i915_pm_ops = {
1710 	/*
1711 	 * S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND,
1712 	 * PMSG_RESUME]
1713 	 */
1714 	.suspend = i915_pm_suspend,
1715 	.suspend_late = i915_pm_suspend_late,
1716 	.resume_early = i915_pm_resume_early,
1717 	.resume = i915_pm_resume,
1718 
1719 	/*
1720 	 * S4 event handlers
1721 	 * @freeze, @freeze_late    : called (1) before creating the
1722 	 *                            hibernation image [PMSG_FREEZE] and
1723 	 *                            (2) after rebooting, before restoring
1724 	 *                            the image [PMSG_QUIESCE]
1725 	 * @thaw, @thaw_early       : called (1) after creating the hibernation
1726 	 *                            image, before writing it [PMSG_THAW]
1727 	 *                            and (2) after failing to create or
1728 	 *                            restore the image [PMSG_RECOVER]
1729 	 * @poweroff, @poweroff_late: called after writing the hibernation
1730 	 *                            image, before rebooting [PMSG_HIBERNATE]
1731 	 * @restore, @restore_early : called after rebooting and restoring the
1732 	 *                            hibernation image [PMSG_RESTORE]
1733 	 */
1734 	.freeze = i915_pm_suspend,
1735 	.freeze_late = i915_pm_suspend_late,
1736 	.thaw_early = i915_pm_resume_early,
1737 	.thaw = i915_pm_resume,
1738 	.poweroff = i915_pm_suspend,
1739 	.poweroff_late = i915_pm_poweroff_late,
1740 	.restore_early = i915_pm_resume_early,
1741 	.restore = i915_pm_resume,
1742 
1743 	/* S0ix (via runtime suspend) event handlers */
1744 	.runtime_suspend = intel_runtime_suspend,
1745 	.runtime_resume = intel_runtime_resume,
1746 };
1747 
1748 static const struct vm_operations_struct i915_gem_vm_ops = {
1749 	.fault = i915_gem_fault,
1750 	.open = drm_gem_vm_open,
1751 	.close = drm_gem_vm_close,
1752 };
1753 #endif
1754 
1755 static const struct file_operations i915_driver_fops = {
1756 	.owner = THIS_MODULE,
1757 #if 0
1758 	.open = drm_open,
1759 	.release = drm_release,
1760 	.unlocked_ioctl = drm_ioctl,
1761 	.mmap = drm_gem_mmap,
1762 	.poll = drm_poll,
1763 	.read = drm_read,
1764 #ifdef CONFIG_COMPAT
1765 	.compat_ioctl = i915_compat_ioctl,
1766 #endif
1767 	.llseek = noop_llseek,
1768 #endif
1769 };
1770 
1771 static struct cdev_pager_ops i915_gem_vm_ops = {
1772 	.cdev_pg_fault	= i915_gem_fault,
1773 	.cdev_pg_ctor	= i915_gem_pager_ctor,
1774 	.cdev_pg_dtor	= i915_gem_pager_dtor
1775 };
1776 
1777 static struct drm_driver driver = {
1778 	/* Don't use MTRRs here; the Xserver or userspace app should
1779 	 * deal with them for Intel hardware.
1780 	 */
1781 	.driver_features =
1782 	    DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_GEM |
1783 	    DRIVER_RENDER | DRIVER_MODESET,
1784 	.load = i915_driver_load,
1785 	.unload = i915_driver_unload,
1786 	.open = i915_driver_open,
1787 	.lastclose = i915_driver_lastclose,
1788 	.preclose = i915_driver_preclose,
1789 	.postclose = i915_driver_postclose,
1790 	.set_busid = drm_pci_set_busid,
1791 
1792 #if defined(CONFIG_DEBUG_FS)
1793 	.debugfs_init = i915_debugfs_init,
1794 	.debugfs_cleanup = i915_debugfs_cleanup,
1795 #endif
1796 	.gem_free_object = i915_gem_free_object,
1797 	.gem_vm_ops = &i915_gem_vm_ops,
1798 
1799 	.prime_handle_to_fd = drm_gem_prime_handle_to_fd,
1800 	.prime_fd_to_handle = drm_gem_prime_fd_to_handle,
1801 	.gem_prime_export = i915_gem_prime_export,
1802 	.gem_prime_import = i915_gem_prime_import,
1803 
1804 	.dumb_create = i915_gem_dumb_create,
1805 	.dumb_map_offset = i915_gem_mmap_gtt,
1806 	.dumb_destroy = drm_gem_dumb_destroy,
1807 	.ioctls = i915_ioctls,
1808 	.sysctl_init = i915_sysctl_init,
1809 	.fops = &i915_driver_fops,
1810 	.name = DRIVER_NAME,
1811 	.desc = DRIVER_DESC,
1812 	.date = DRIVER_DATE,
1813 	.major = DRIVER_MAJOR,
1814 	.minor = DRIVER_MINOR,
1815 	.patchlevel = DRIVER_PATCHLEVEL,
1816 };
1817 
1818 static int i915_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1819 {
1820 	struct intel_device_info *intel_info =
1821 		(struct intel_device_info *) ent->driver_data;
1822 
1823 	if (IS_PRELIMINARY_HW(intel_info) && !i915.preliminary_hw_support) {
1824 		DRM_INFO("This hardware requires preliminary hardware support.\n"
1825 			 "See CONFIG_DRM_I915_PRELIMINARY_HW_SUPPORT, and/or modparam preliminary_hw_support\n");
1826 		return -ENODEV;
1827 	}
1828 
1829 	/* Only bind to function 0 of the device. Early generations
1830 	 * used function 1 as a placeholder for multi-head. This causes
1831 	 * us confusion instead, especially on the systems where both
1832 	 * functions have the same PCI-ID!
1833 	 */
1834 	if (PCI_FUNC(pdev->devfn))
1835 		return -ENODEV;
1836 
1837 	/*
1838 	 * apple-gmux is needed on dual GPU MacBook Pro
1839 	 * to probe the panel if we're the inactive GPU.
1840 	 */
1841 #if 0
1842 	if (IS_ENABLED(CONFIG_VGA_ARB) && IS_ENABLED(CONFIG_VGA_SWITCHEROO) &&
1843 	    apple_gmux_present() && pdev != vga_default_device() &&
1844 	    !vga_switcheroo_handler_flags())
1845 		return -EPROBE_DEFER;
1846 #endif
1847 
1848 	return drm_get_pci_dev(pdev, ent, &driver);
1849 }
1850 
1851 static int
1852 i915_pci_probe_dfly(device_t kdev)
1853 {
1854 	int device, i = 0;
1855 	const struct pci_device_id *ent;
1856 	static struct pci_dev *pdev = NULL;
1857 	static device_t bsddev;
1858 
1859 	if (pci_get_class(kdev) != PCIC_DISPLAY)
1860 		return ENXIO;
1861 
1862 	if (pci_get_vendor(kdev) != PCI_VENDOR_ID_INTEL)
1863 		return ENXIO;
1864 
1865 	device = pci_get_device(kdev);
1866 
1867 	for (i = 0; pciidlist[i].device != 0; i++) {
1868 		if (pciidlist[i].device == device) {
1869 			ent = &pciidlist[i];
1870 			goto found;
1871 		}
1872 	}
1873 
1874 	return ENXIO;
1875 found:
1876 	if (!strcmp(device_get_name(kdev), "drmsub"))
1877 		bsddev = device_get_parent(kdev);
1878 	else
1879 		bsddev = kdev;
1880 
1881 	drm_init_pdev(bsddev, &pdev);
1882 
1883 	/* Print the contents of pdev struct. */
1884 	drm_print_pdev(pdev);
1885 
1886 	return i915_pci_probe(pdev, ent);
1887 }
1888 
1889 static int i915_driver_attach(device_t kdev)
1890 {
1891 	return 0;
1892 }
1893 
1894 static device_method_t i915_methods[] = {
1895 	/* Device interface */
1896 	DEVMETHOD(device_probe,		i915_pci_probe_dfly),
1897 	DEVMETHOD(device_attach,	i915_driver_attach),
1898 	DEVMETHOD(device_suspend,	i915_suspend_switcheroo),
1899 	DEVMETHOD(device_resume,	i915_resume_switcheroo),
1900 	DEVMETHOD(device_detach,	drm_release),
1901 	DEVMETHOD_END
1902 };
1903 
1904 static driver_t i915_driver = {
1905 	"drm",
1906 	i915_methods,
1907 	sizeof(struct drm_device)
1908 };
1909 
1910 static int __init i915_init(void)
1911 {
1912 	driver.num_ioctls = i915_max_ioctl;
1913 
1914 	/*
1915 	 * Enable KMS by default, unless explicitly overriden by
1916 	 * either the i915.modeset prarameter or by the
1917 	 * vga_text_mode_force boot option.
1918 	 */
1919 
1920 	if (i915.modeset == 0)
1921 		driver.driver_features &= ~DRIVER_MODESET;
1922 
1923 	if (vgacon_text_force() && i915.modeset == -1)
1924 		driver.driver_features &= ~DRIVER_MODESET;
1925 
1926 	if (!(driver.driver_features & DRIVER_MODESET)) {
1927 		/* Silently fail loading to not upset userspace. */
1928 		DRM_DEBUG_DRIVER("KMS and UMS disabled.\n");
1929 		return 0;
1930 	}
1931 
1932 	if (i915.nuclear_pageflip)
1933 		driver.driver_features |= DRIVER_ATOMIC;
1934 
1935 #if 0
1936 	return drm_pci_init(&driver, &i915_pci_driver);
1937 #else
1938 	return 1;
1939 #endif
1940 }
1941 
1942 #if 0
1943 static void __exit i915_exit(void)
1944 {
1945 	if (!(driver.driver_features & DRIVER_MODESET))
1946 		return; /* Never loaded a driver. */
1947 
1948 	drm_pci_exit(&driver, &i915_pci_driver);
1949 }
1950 #endif
1951 
1952 module_init(i915_init);
1953 
1954 DRIVER_MODULE_ORDERED(i915, vgapci, i915_driver, drm_devclass, NULL, NULL, SI_ORDER_ANY);
1955 MODULE_DEPEND(i915, drm, 1, 1, 1);
1956 #ifdef CONFIG_ACPI
1957 MODULE_DEPEND(i915, acpi, 1, 1, 1);
1958 #endif
1959