1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 #include <drm/ttm/ttm_bo_api.h> 33 #include <drm/ttm/ttm_bo_driver.h> 34 #include <drm/ttm/ttm_placement.h> 35 #include <drm/ttm/ttm_module.h> 36 #include <drm/ttm/ttm_page_alloc.h> 37 #include <drm/drmP.h> 38 #include <drm/amdgpu_drm.h> 39 #include <linux/seq_file.h> 40 #include <linux/slab.h> 41 #include <linux/swiotlb.h> 42 #include <linux/swap.h> 43 #include <linux/pagemap.h> 44 #include <linux/debugfs.h> 45 #include <linux/iommu.h> 46 #include "amdgpu.h" 47 #include "amdgpu_object.h" 48 #include "amdgpu_trace.h" 49 #include "amdgpu_amdkfd.h" 50 #include "bif/bif_4_1_d.h" 51 52 #define DRM_FILE_PAGE_OFFSET (0x100000000ULL >> PAGE_SHIFT) 53 54 static int amdgpu_map_buffer(struct ttm_buffer_object *bo, 55 struct ttm_mem_reg *mem, unsigned num_pages, 56 uint64_t offset, unsigned window, 57 struct amdgpu_ring *ring, 58 uint64_t *addr); 59 60 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev); 61 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev); 62 63 /* 64 * Global memory. 65 */ 66 67 /** 68 * amdgpu_ttm_mem_global_init - Initialize and acquire reference to 69 * memory object 70 * 71 * @ref: Object for initialization. 72 * 73 * This is called by drm_global_item_ref() when an object is being 74 * initialized. 75 */ 76 static int amdgpu_ttm_mem_global_init(struct drm_global_reference *ref) 77 { 78 return ttm_mem_global_init(ref->object); 79 } 80 81 /** 82 * amdgpu_ttm_mem_global_release - Drop reference to a memory object 83 * 84 * @ref: Object being removed 85 * 86 * This is called by drm_global_item_unref() when an object is being 87 * released. 88 */ 89 static void amdgpu_ttm_mem_global_release(struct drm_global_reference *ref) 90 { 91 ttm_mem_global_release(ref->object); 92 } 93 94 /** 95 * amdgpu_ttm_global_init - Initialize global TTM memory reference structures. 96 * 97 * @adev: AMDGPU device for which the global structures need to be registered. 98 * 99 * This is called as part of the AMDGPU ttm init from amdgpu_ttm_init() 100 * during bring up. 101 */ 102 static int amdgpu_ttm_global_init(struct amdgpu_device *adev) 103 { 104 struct drm_global_reference *global_ref; 105 int r; 106 107 /* ensure reference is false in case init fails */ 108 adev->mman.mem_global_referenced = false; 109 110 global_ref = &adev->mman.mem_global_ref; 111 global_ref->global_type = DRM_GLOBAL_TTM_MEM; 112 global_ref->size = sizeof(struct ttm_mem_global); 113 global_ref->init = &amdgpu_ttm_mem_global_init; 114 global_ref->release = &amdgpu_ttm_mem_global_release; 115 r = drm_global_item_ref(global_ref); 116 if (r) { 117 DRM_ERROR("Failed setting up TTM memory accounting " 118 "subsystem.\n"); 119 goto error_mem; 120 } 121 122 adev->mman.bo_global_ref.mem_glob = 123 adev->mman.mem_global_ref.object; 124 global_ref = &adev->mman.bo_global_ref.ref; 125 global_ref->global_type = DRM_GLOBAL_TTM_BO; 126 global_ref->size = sizeof(struct ttm_bo_global); 127 global_ref->init = &ttm_bo_global_init; 128 global_ref->release = &ttm_bo_global_release; 129 r = drm_global_item_ref(global_ref); 130 if (r) { 131 DRM_ERROR("Failed setting up TTM BO subsystem.\n"); 132 goto error_bo; 133 } 134 135 mutex_init(&adev->mman.gtt_window_lock); 136 137 adev->mman.mem_global_referenced = true; 138 139 return 0; 140 141 error_bo: 142 drm_global_item_unref(&adev->mman.mem_global_ref); 143 error_mem: 144 return r; 145 } 146 147 static void amdgpu_ttm_global_fini(struct amdgpu_device *adev) 148 { 149 if (adev->mman.mem_global_referenced) { 150 mutex_destroy(&adev->mman.gtt_window_lock); 151 drm_global_item_unref(&adev->mman.bo_global_ref.ref); 152 drm_global_item_unref(&adev->mman.mem_global_ref); 153 adev->mman.mem_global_referenced = false; 154 } 155 } 156 157 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags) 158 { 159 return 0; 160 } 161 162 /** 163 * amdgpu_init_mem_type - Initialize a memory manager for a specific type of 164 * memory request. 165 * 166 * @bdev: The TTM BO device object (contains a reference to amdgpu_device) 167 * @type: The type of memory requested 168 * @man: The memory type manager for each domain 169 * 170 * This is called by ttm_bo_init_mm() when a buffer object is being 171 * initialized. 172 */ 173 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type, 174 struct ttm_mem_type_manager *man) 175 { 176 struct amdgpu_device *adev; 177 178 adev = amdgpu_ttm_adev(bdev); 179 180 switch (type) { 181 case TTM_PL_SYSTEM: 182 /* System memory */ 183 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE; 184 man->available_caching = TTM_PL_MASK_CACHING; 185 man->default_caching = TTM_PL_FLAG_CACHED; 186 break; 187 case TTM_PL_TT: 188 /* GTT memory */ 189 man->func = &amdgpu_gtt_mgr_func; 190 man->gpu_offset = adev->gmc.gart_start; 191 man->available_caching = TTM_PL_MASK_CACHING; 192 man->default_caching = TTM_PL_FLAG_CACHED; 193 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA; 194 break; 195 case TTM_PL_VRAM: 196 /* "On-card" video ram */ 197 man->func = &amdgpu_vram_mgr_func; 198 man->gpu_offset = adev->gmc.vram_start; 199 man->flags = TTM_MEMTYPE_FLAG_FIXED | 200 TTM_MEMTYPE_FLAG_MAPPABLE; 201 man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC; 202 man->default_caching = TTM_PL_FLAG_WC; 203 break; 204 case AMDGPU_PL_GDS: 205 case AMDGPU_PL_GWS: 206 case AMDGPU_PL_OA: 207 /* On-chip GDS memory*/ 208 man->func = &ttm_bo_manager_func; 209 man->gpu_offset = 0; 210 man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA; 211 man->available_caching = TTM_PL_FLAG_UNCACHED; 212 man->default_caching = TTM_PL_FLAG_UNCACHED; 213 break; 214 default: 215 DRM_ERROR("Unsupported memory type %u\n", (unsigned)type); 216 return -EINVAL; 217 } 218 return 0; 219 } 220 221 /** 222 * amdgpu_evict_flags - Compute placement flags 223 * 224 * @bo: The buffer object to evict 225 * @placement: Possible destination(s) for evicted BO 226 * 227 * Fill in placement data when ttm_bo_evict() is called 228 */ 229 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 230 struct ttm_placement *placement) 231 { 232 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 233 struct amdgpu_bo *abo; 234 static const struct ttm_place placements = { 235 .fpfn = 0, 236 .lpfn = 0, 237 .flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM 238 }; 239 240 /* Don't handle scatter gather BOs */ 241 if (bo->type == ttm_bo_type_sg) { 242 placement->num_placement = 0; 243 placement->num_busy_placement = 0; 244 return; 245 } 246 247 /* Object isn't an AMDGPU object so ignore */ 248 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 249 placement->placement = &placements; 250 placement->busy_placement = &placements; 251 placement->num_placement = 1; 252 placement->num_busy_placement = 1; 253 return; 254 } 255 256 abo = ttm_to_amdgpu_bo(bo); 257 switch (bo->mem.mem_type) { 258 case TTM_PL_VRAM: 259 if (!adev->mman.buffer_funcs_enabled) { 260 /* Move to system memory */ 261 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 262 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 263 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 264 amdgpu_bo_in_cpu_visible_vram(abo)) { 265 266 /* Try evicting to the CPU inaccessible part of VRAM 267 * first, but only set GTT as busy placement, so this 268 * BO will be evicted to GTT rather than causing other 269 * BOs to be evicted from VRAM 270 */ 271 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 272 AMDGPU_GEM_DOMAIN_GTT); 273 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 274 abo->placements[0].lpfn = 0; 275 abo->placement.busy_placement = &abo->placements[1]; 276 abo->placement.num_busy_placement = 1; 277 } else { 278 /* Move to GTT memory */ 279 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT); 280 } 281 break; 282 case TTM_PL_TT: 283 default: 284 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 285 } 286 *placement = abo->placement; 287 } 288 289 /** 290 * amdgpu_verify_access - Verify access for a mmap call 291 * 292 * @bo: The buffer object to map 293 * @filp: The file pointer from the process performing the mmap 294 * 295 * This is called by ttm_bo_mmap() to verify whether a process 296 * has the right to mmap a BO to their process space. 297 */ 298 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp) 299 { 300 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 301 302 /* 303 * Don't verify access for KFD BOs. They don't have a GEM 304 * object associated with them. 305 */ 306 if (abo->kfd_bo) 307 return 0; 308 309 if (amdgpu_ttm_tt_get_usermm(bo->ttm)) 310 return -EPERM; 311 return drm_vma_node_verify_access(&abo->gem_base.vma_node, 312 filp->private_data); 313 } 314 315 /** 316 * amdgpu_move_null - Register memory for a buffer object 317 * 318 * @bo: The bo to assign the memory to 319 * @new_mem: The memory to be assigned. 320 * 321 * Assign the memory from new_mem to the memory of the buffer object bo. 322 */ 323 static void amdgpu_move_null(struct ttm_buffer_object *bo, 324 struct ttm_mem_reg *new_mem) 325 { 326 struct ttm_mem_reg *old_mem = &bo->mem; 327 328 BUG_ON(old_mem->mm_node != NULL); 329 *old_mem = *new_mem; 330 new_mem->mm_node = NULL; 331 } 332 333 /** 334 * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer. 335 * 336 * @bo: The bo to assign the memory to. 337 * @mm_node: Memory manager node for drm allocator. 338 * @mem: The region where the bo resides. 339 * 340 */ 341 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo, 342 struct drm_mm_node *mm_node, 343 struct ttm_mem_reg *mem) 344 { 345 uint64_t addr = 0; 346 347 if (mem->mem_type != TTM_PL_TT || amdgpu_gtt_mgr_has_gart_addr(mem)) { 348 addr = mm_node->start << PAGE_SHIFT; 349 addr += bo->bdev->man[mem->mem_type].gpu_offset; 350 } 351 return addr; 352 } 353 354 /** 355 * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to 356 * @offset. It also modifies the offset to be within the drm_mm_node returned 357 * 358 * @mem: The region where the bo resides. 359 * @offset: The offset that drm_mm_node is used for finding. 360 * 361 */ 362 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem, 363 unsigned long *offset) 364 { 365 struct drm_mm_node *mm_node = mem->mm_node; 366 367 while (*offset >= (mm_node->size << PAGE_SHIFT)) { 368 *offset -= (mm_node->size << PAGE_SHIFT); 369 ++mm_node; 370 } 371 return mm_node; 372 } 373 374 /** 375 * amdgpu_copy_ttm_mem_to_mem - Helper function for copy 376 * 377 * The function copies @size bytes from {src->mem + src->offset} to 378 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 379 * move and different for a BO to BO copy. 380 * 381 * @f: Returns the last fence if multiple jobs are submitted. 382 */ 383 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 384 struct amdgpu_copy_mem *src, 385 struct amdgpu_copy_mem *dst, 386 uint64_t size, 387 struct reservation_object *resv, 388 struct dma_fence **f) 389 { 390 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 391 struct drm_mm_node *src_mm, *dst_mm; 392 uint64_t src_node_start, dst_node_start, src_node_size, 393 dst_node_size, src_page_offset, dst_page_offset; 394 struct dma_fence *fence = NULL; 395 int r = 0; 396 const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE * 397 AMDGPU_GPU_PAGE_SIZE); 398 399 if (!adev->mman.buffer_funcs_enabled) { 400 DRM_ERROR("Trying to move memory with ring turned off.\n"); 401 return -EINVAL; 402 } 403 404 src_mm = amdgpu_find_mm_node(src->mem, &src->offset); 405 src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) + 406 src->offset; 407 src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset; 408 src_page_offset = src_node_start & (PAGE_SIZE - 1); 409 410 dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset); 411 dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) + 412 dst->offset; 413 dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset; 414 dst_page_offset = dst_node_start & (PAGE_SIZE - 1); 415 416 mutex_lock(&adev->mman.gtt_window_lock); 417 418 while (size) { 419 unsigned long cur_size; 420 uint64_t from = src_node_start, to = dst_node_start; 421 struct dma_fence *next; 422 423 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst 424 * begins at an offset, then adjust the size accordingly 425 */ 426 cur_size = min3(min(src_node_size, dst_node_size), size, 427 GTT_MAX_BYTES); 428 if (cur_size + src_page_offset > GTT_MAX_BYTES || 429 cur_size + dst_page_offset > GTT_MAX_BYTES) 430 cur_size -= max(src_page_offset, dst_page_offset); 431 432 /* Map only what needs to be accessed. Map src to window 0 and 433 * dst to window 1 434 */ 435 if (src->mem->mem_type == TTM_PL_TT && 436 !amdgpu_gtt_mgr_has_gart_addr(src->mem)) { 437 r = amdgpu_map_buffer(src->bo, src->mem, 438 PFN_UP(cur_size + src_page_offset), 439 src_node_start, 0, ring, 440 &from); 441 if (r) 442 goto error; 443 /* Adjust the offset because amdgpu_map_buffer returns 444 * start of mapped page 445 */ 446 from += src_page_offset; 447 } 448 449 if (dst->mem->mem_type == TTM_PL_TT && 450 !amdgpu_gtt_mgr_has_gart_addr(dst->mem)) { 451 r = amdgpu_map_buffer(dst->bo, dst->mem, 452 PFN_UP(cur_size + dst_page_offset), 453 dst_node_start, 1, ring, 454 &to); 455 if (r) 456 goto error; 457 to += dst_page_offset; 458 } 459 460 r = amdgpu_copy_buffer(ring, from, to, cur_size, 461 resv, &next, false, true); 462 if (r) 463 goto error; 464 465 dma_fence_put(fence); 466 fence = next; 467 468 size -= cur_size; 469 if (!size) 470 break; 471 472 src_node_size -= cur_size; 473 if (!src_node_size) { 474 src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm, 475 src->mem); 476 src_node_size = (src_mm->size << PAGE_SHIFT); 477 } else { 478 src_node_start += cur_size; 479 src_page_offset = src_node_start & (PAGE_SIZE - 1); 480 } 481 dst_node_size -= cur_size; 482 if (!dst_node_size) { 483 dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm, 484 dst->mem); 485 dst_node_size = (dst_mm->size << PAGE_SHIFT); 486 } else { 487 dst_node_start += cur_size; 488 dst_page_offset = dst_node_start & (PAGE_SIZE - 1); 489 } 490 } 491 error: 492 mutex_unlock(&adev->mman.gtt_window_lock); 493 if (f) 494 *f = dma_fence_get(fence); 495 dma_fence_put(fence); 496 return r; 497 } 498 499 /** 500 * amdgpu_move_blit - Copy an entire buffer to another buffer 501 * 502 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 503 * help move buffers to and from VRAM. 504 */ 505 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 506 bool evict, bool no_wait_gpu, 507 struct ttm_mem_reg *new_mem, 508 struct ttm_mem_reg *old_mem) 509 { 510 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 511 struct amdgpu_copy_mem src, dst; 512 struct dma_fence *fence = NULL; 513 int r; 514 515 src.bo = bo; 516 dst.bo = bo; 517 src.mem = old_mem; 518 dst.mem = new_mem; 519 src.offset = 0; 520 dst.offset = 0; 521 522 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 523 new_mem->num_pages << PAGE_SHIFT, 524 bo->resv, &fence); 525 if (r) 526 goto error; 527 528 r = ttm_bo_pipeline_move(bo, fence, evict, new_mem); 529 dma_fence_put(fence); 530 return r; 531 532 error: 533 if (fence) 534 dma_fence_wait(fence, false); 535 dma_fence_put(fence); 536 return r; 537 } 538 539 /** 540 * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer 541 * 542 * Called by amdgpu_bo_move(). 543 */ 544 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict, 545 struct ttm_operation_ctx *ctx, 546 struct ttm_mem_reg *new_mem) 547 { 548 struct amdgpu_device *adev; 549 struct ttm_mem_reg *old_mem = &bo->mem; 550 struct ttm_mem_reg tmp_mem; 551 struct ttm_place placements; 552 struct ttm_placement placement; 553 int r; 554 555 adev = amdgpu_ttm_adev(bo->bdev); 556 557 /* create space/pages for new_mem in GTT space */ 558 tmp_mem = *new_mem; 559 tmp_mem.mm_node = NULL; 560 placement.num_placement = 1; 561 placement.placement = &placements; 562 placement.num_busy_placement = 1; 563 placement.busy_placement = &placements; 564 placements.fpfn = 0; 565 placements.lpfn = 0; 566 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; 567 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); 568 if (unlikely(r)) { 569 return r; 570 } 571 572 /* set caching flags */ 573 r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement); 574 if (unlikely(r)) { 575 goto out_cleanup; 576 } 577 578 /* Bind the memory to the GTT space */ 579 r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx); 580 if (unlikely(r)) { 581 goto out_cleanup; 582 } 583 584 /* blit VRAM to GTT */ 585 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem); 586 if (unlikely(r)) { 587 goto out_cleanup; 588 } 589 590 /* move BO (in tmp_mem) to new_mem */ 591 r = ttm_bo_move_ttm(bo, ctx, new_mem); 592 out_cleanup: 593 ttm_bo_mem_put(bo, &tmp_mem); 594 return r; 595 } 596 597 /** 598 * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM 599 * 600 * Called by amdgpu_bo_move(). 601 */ 602 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict, 603 struct ttm_operation_ctx *ctx, 604 struct ttm_mem_reg *new_mem) 605 { 606 struct amdgpu_device *adev; 607 struct ttm_mem_reg *old_mem = &bo->mem; 608 struct ttm_mem_reg tmp_mem; 609 struct ttm_placement placement; 610 struct ttm_place placements; 611 int r; 612 613 adev = amdgpu_ttm_adev(bo->bdev); 614 615 /* make space in GTT for old_mem buffer */ 616 tmp_mem = *new_mem; 617 tmp_mem.mm_node = NULL; 618 placement.num_placement = 1; 619 placement.placement = &placements; 620 placement.num_busy_placement = 1; 621 placement.busy_placement = &placements; 622 placements.fpfn = 0; 623 placements.lpfn = 0; 624 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; 625 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); 626 if (unlikely(r)) { 627 return r; 628 } 629 630 /* move/bind old memory to GTT space */ 631 r = ttm_bo_move_ttm(bo, ctx, &tmp_mem); 632 if (unlikely(r)) { 633 goto out_cleanup; 634 } 635 636 /* copy to VRAM */ 637 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem); 638 if (unlikely(r)) { 639 goto out_cleanup; 640 } 641 out_cleanup: 642 ttm_bo_mem_put(bo, &tmp_mem); 643 return r; 644 } 645 646 /** 647 * amdgpu_bo_move - Move a buffer object to a new memory location 648 * 649 * Called by ttm_bo_handle_move_mem() 650 */ 651 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 652 struct ttm_operation_ctx *ctx, 653 struct ttm_mem_reg *new_mem) 654 { 655 struct amdgpu_device *adev; 656 struct amdgpu_bo *abo; 657 struct ttm_mem_reg *old_mem = &bo->mem; 658 int r; 659 660 /* Can't move a pinned BO */ 661 abo = ttm_to_amdgpu_bo(bo); 662 if (WARN_ON_ONCE(abo->pin_count > 0)) 663 return -EINVAL; 664 665 adev = amdgpu_ttm_adev(bo->bdev); 666 667 if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { 668 amdgpu_move_null(bo, new_mem); 669 return 0; 670 } 671 if ((old_mem->mem_type == TTM_PL_TT && 672 new_mem->mem_type == TTM_PL_SYSTEM) || 673 (old_mem->mem_type == TTM_PL_SYSTEM && 674 new_mem->mem_type == TTM_PL_TT)) { 675 /* bind is enough */ 676 amdgpu_move_null(bo, new_mem); 677 return 0; 678 } 679 680 if (!adev->mman.buffer_funcs_enabled) 681 goto memcpy; 682 683 if (old_mem->mem_type == TTM_PL_VRAM && 684 new_mem->mem_type == TTM_PL_SYSTEM) { 685 r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem); 686 } else if (old_mem->mem_type == TTM_PL_SYSTEM && 687 new_mem->mem_type == TTM_PL_VRAM) { 688 r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem); 689 } else { 690 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, 691 new_mem, old_mem); 692 } 693 694 if (r) { 695 memcpy: 696 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 697 if (r) { 698 return r; 699 } 700 } 701 702 if (bo->type == ttm_bo_type_device && 703 new_mem->mem_type == TTM_PL_VRAM && 704 old_mem->mem_type != TTM_PL_VRAM) { 705 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 706 * accesses the BO after it's moved. 707 */ 708 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 709 } 710 711 /* update statistics */ 712 atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved); 713 return 0; 714 } 715 716 /** 717 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 718 * 719 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 720 */ 721 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 722 { 723 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; 724 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 725 struct drm_mm_node *mm_node = mem->mm_node; 726 727 mem->bus.addr = NULL; 728 mem->bus.offset = 0; 729 mem->bus.size = mem->num_pages << PAGE_SHIFT; 730 mem->bus.base = 0; 731 mem->bus.is_iomem = false; 732 if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE)) 733 return -EINVAL; 734 switch (mem->mem_type) { 735 case TTM_PL_SYSTEM: 736 /* system memory */ 737 return 0; 738 case TTM_PL_TT: 739 break; 740 case TTM_PL_VRAM: 741 mem->bus.offset = mem->start << PAGE_SHIFT; 742 /* check if it's visible */ 743 if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size) 744 return -EINVAL; 745 /* Only physically contiguous buffers apply. In a contiguous 746 * buffer, size of the first mm_node would match the number of 747 * pages in ttm_mem_reg. 748 */ 749 if (adev->mman.aper_base_kaddr && 750 (mm_node->size == mem->num_pages)) 751 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 752 mem->bus.offset; 753 754 mem->bus.base = adev->gmc.aper_base; 755 mem->bus.is_iomem = true; 756 break; 757 default: 758 return -EINVAL; 759 } 760 return 0; 761 } 762 763 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 764 { 765 } 766 767 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 768 unsigned long page_offset) 769 { 770 struct drm_mm_node *mm; 771 unsigned long offset = (page_offset << PAGE_SHIFT); 772 773 mm = amdgpu_find_mm_node(&bo->mem, &offset); 774 return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start + 775 (offset >> PAGE_SHIFT); 776 } 777 778 /* 779 * TTM backend functions. 780 */ 781 struct amdgpu_ttm_gup_task_list { 782 struct list_head list; 783 struct task_struct *task; 784 }; 785 786 struct amdgpu_ttm_tt { 787 struct ttm_dma_tt ttm; 788 u64 offset; 789 uint64_t userptr; 790 struct task_struct *usertask; 791 uint32_t userflags; 792 spinlock_t guptasklock; 793 struct list_head guptasks; 794 atomic_t mmu_invalidations; 795 uint32_t last_set_pages; 796 }; 797 798 /** 799 * amdgpu_ttm_tt_get_user_pages - Pin pages of memory pointed to by a USERPTR 800 * pointer to memory 801 * 802 * Called by amdgpu_gem_userptr_ioctl() and amdgpu_cs_parser_bos(). 803 * This provides a wrapper around the get_user_pages() call to provide 804 * device accessible pages that back user memory. 805 */ 806 int amdgpu_ttm_tt_get_user_pages(struct ttm_tt *ttm, struct page **pages) 807 { 808 struct amdgpu_ttm_tt *gtt = (void *)ttm; 809 struct mm_struct *mm = gtt->usertask->mm; 810 unsigned int flags = 0; 811 unsigned pinned = 0; 812 int r; 813 814 if (!mm) /* Happens during process shutdown */ 815 return -ESRCH; 816 817 if (!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY)) 818 flags |= FOLL_WRITE; 819 820 down_read(&mm->mmap_sem); 821 822 if (gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) { 823 /* 824 * check that we only use anonymous memory to prevent problems 825 * with writeback 826 */ 827 unsigned long end = gtt->userptr + ttm->num_pages * PAGE_SIZE; 828 struct vm_area_struct *vma; 829 830 vma = find_vma(mm, gtt->userptr); 831 if (!vma || vma->vm_file || vma->vm_end < end) { 832 up_read(&mm->mmap_sem); 833 return -EPERM; 834 } 835 } 836 837 /* loop enough times using contiguous pages of memory */ 838 do { 839 unsigned num_pages = ttm->num_pages - pinned; 840 uint64_t userptr = gtt->userptr + pinned * PAGE_SIZE; 841 struct page **p = pages + pinned; 842 struct amdgpu_ttm_gup_task_list guptask; 843 844 guptask.task = current; 845 spin_lock(>t->guptasklock); 846 list_add(&guptask.list, >t->guptasks); 847 spin_unlock(>t->guptasklock); 848 849 if (mm == current->mm) 850 r = get_user_pages(userptr, num_pages, flags, p, NULL); 851 else 852 r = get_user_pages_remote(gtt->usertask, 853 mm, userptr, num_pages, 854 flags, p, NULL, NULL); 855 856 spin_lock(>t->guptasklock); 857 list_del(&guptask.list); 858 spin_unlock(>t->guptasklock); 859 860 if (r < 0) 861 goto release_pages; 862 863 pinned += r; 864 865 } while (pinned < ttm->num_pages); 866 867 up_read(&mm->mmap_sem); 868 return 0; 869 870 release_pages: 871 release_pages(pages, pinned); 872 up_read(&mm->mmap_sem); 873 return r; 874 } 875 876 /** 877 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 878 * 879 * Called by amdgpu_cs_list_validate(). This creates the page list 880 * that backs user memory and will ultimately be mapped into the device 881 * address space. 882 */ 883 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 884 { 885 struct amdgpu_ttm_tt *gtt = (void *)ttm; 886 unsigned i; 887 888 gtt->last_set_pages = atomic_read(>t->mmu_invalidations); 889 for (i = 0; i < ttm->num_pages; ++i) { 890 if (ttm->pages[i]) 891 put_page(ttm->pages[i]); 892 893 ttm->pages[i] = pages ? pages[i] : NULL; 894 } 895 } 896 897 /** 898 * amdgpu_ttm_tt_mark_user_page - Mark pages as dirty 899 * 900 * Called while unpinning userptr pages 901 */ 902 void amdgpu_ttm_tt_mark_user_pages(struct ttm_tt *ttm) 903 { 904 struct amdgpu_ttm_tt *gtt = (void *)ttm; 905 unsigned i; 906 907 for (i = 0; i < ttm->num_pages; ++i) { 908 struct page *page = ttm->pages[i]; 909 910 if (!page) 911 continue; 912 913 if (!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY)) 914 set_page_dirty(page); 915 916 mark_page_accessed(page); 917 } 918 } 919 920 /** 921 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 922 * 923 * Called by amdgpu_ttm_backend_bind() 924 **/ 925 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm) 926 { 927 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 928 struct amdgpu_ttm_tt *gtt = (void *)ttm; 929 unsigned nents; 930 int r; 931 932 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 933 enum dma_data_direction direction = write ? 934 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 935 936 /* Allocate an SG array and squash pages into it */ 937 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 938 ttm->num_pages << PAGE_SHIFT, 939 GFP_KERNEL); 940 if (r) 941 goto release_sg; 942 943 /* Map SG to device */ 944 r = -ENOMEM; 945 nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction); 946 if (nents != ttm->sg->nents) 947 goto release_sg; 948 949 /* convert SG to linear array of pages and dma addresses */ 950 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, 951 gtt->ttm.dma_address, ttm->num_pages); 952 953 return 0; 954 955 release_sg: 956 kfree(ttm->sg); 957 ttm->sg = NULL; 958 return r; 959 } 960 961 /** 962 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 963 */ 964 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm) 965 { 966 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 967 struct amdgpu_ttm_tt *gtt = (void *)ttm; 968 969 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 970 enum dma_data_direction direction = write ? 971 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 972 973 /* double check that we don't free the table twice */ 974 if (!ttm->sg || !ttm->sg->sgl) 975 return; 976 977 /* unmap the pages mapped to the device */ 978 dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction); 979 980 /* mark the pages as dirty */ 981 amdgpu_ttm_tt_mark_user_pages(ttm); 982 983 sg_free_table(ttm->sg); 984 } 985 986 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 987 struct ttm_buffer_object *tbo, 988 uint64_t flags) 989 { 990 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 991 struct ttm_tt *ttm = tbo->ttm; 992 struct amdgpu_ttm_tt *gtt = (void *)ttm; 993 int r; 994 995 if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) { 996 uint64_t page_idx = 1; 997 998 r = amdgpu_gart_bind(adev, gtt->offset, page_idx, 999 ttm->pages, gtt->ttm.dma_address, flags); 1000 if (r) 1001 goto gart_bind_fail; 1002 1003 /* Patch mtype of the second part BO */ 1004 flags &= ~AMDGPU_PTE_MTYPE_MASK; 1005 flags |= AMDGPU_PTE_MTYPE(AMDGPU_MTYPE_NC); 1006 1007 r = amdgpu_gart_bind(adev, 1008 gtt->offset + (page_idx << PAGE_SHIFT), 1009 ttm->num_pages - page_idx, 1010 &ttm->pages[page_idx], 1011 &(gtt->ttm.dma_address[page_idx]), flags); 1012 } else { 1013 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 1014 ttm->pages, gtt->ttm.dma_address, flags); 1015 } 1016 1017 gart_bind_fail: 1018 if (r) 1019 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", 1020 ttm->num_pages, gtt->offset); 1021 1022 return r; 1023 } 1024 1025 /** 1026 * amdgpu_ttm_backend_bind - Bind GTT memory 1027 * 1028 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 1029 * This handles binding GTT memory to the device address space. 1030 */ 1031 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm, 1032 struct ttm_mem_reg *bo_mem) 1033 { 1034 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1035 struct amdgpu_ttm_tt *gtt = (void*)ttm; 1036 uint64_t flags; 1037 int r = 0; 1038 1039 if (gtt->userptr) { 1040 r = amdgpu_ttm_tt_pin_userptr(ttm); 1041 if (r) { 1042 DRM_ERROR("failed to pin userptr\n"); 1043 return r; 1044 } 1045 } 1046 if (!ttm->num_pages) { 1047 WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n", 1048 ttm->num_pages, bo_mem, ttm); 1049 } 1050 1051 if (bo_mem->mem_type == AMDGPU_PL_GDS || 1052 bo_mem->mem_type == AMDGPU_PL_GWS || 1053 bo_mem->mem_type == AMDGPU_PL_OA) 1054 return -EINVAL; 1055 1056 if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 1057 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 1058 return 0; 1059 } 1060 1061 /* compute PTE flags relevant to this BO memory */ 1062 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 1063 1064 /* bind pages into GART page tables */ 1065 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 1066 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 1067 ttm->pages, gtt->ttm.dma_address, flags); 1068 1069 if (r) 1070 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", 1071 ttm->num_pages, gtt->offset); 1072 return r; 1073 } 1074 1075 /** 1076 * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object 1077 */ 1078 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 1079 { 1080 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1081 struct ttm_operation_ctx ctx = { false, false }; 1082 struct amdgpu_ttm_tt *gtt = (void*)bo->ttm; 1083 struct ttm_mem_reg tmp; 1084 struct ttm_placement placement; 1085 struct ttm_place placements; 1086 uint64_t flags; 1087 int r; 1088 1089 if (bo->mem.mem_type != TTM_PL_TT || 1090 amdgpu_gtt_mgr_has_gart_addr(&bo->mem)) 1091 return 0; 1092 1093 /* allocate GTT space */ 1094 tmp = bo->mem; 1095 tmp.mm_node = NULL; 1096 placement.num_placement = 1; 1097 placement.placement = &placements; 1098 placement.num_busy_placement = 1; 1099 placement.busy_placement = &placements; 1100 placements.fpfn = 0; 1101 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 1102 placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) | 1103 TTM_PL_FLAG_TT; 1104 1105 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 1106 if (unlikely(r)) 1107 return r; 1108 1109 /* compute PTE flags for this buffer object */ 1110 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp); 1111 1112 /* Bind pages */ 1113 gtt->offset = (u64)tmp.start << PAGE_SHIFT; 1114 r = amdgpu_ttm_gart_bind(adev, bo, flags); 1115 if (unlikely(r)) { 1116 ttm_bo_mem_put(bo, &tmp); 1117 return r; 1118 } 1119 1120 ttm_bo_mem_put(bo, &bo->mem); 1121 bo->mem = tmp; 1122 bo->offset = (bo->mem.start << PAGE_SHIFT) + 1123 bo->bdev->man[bo->mem.mem_type].gpu_offset; 1124 1125 return 0; 1126 } 1127 1128 /** 1129 * amdgpu_ttm_recover_gart - Rebind GTT pages 1130 * 1131 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 1132 * rebind GTT pages during a GPU reset. 1133 */ 1134 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 1135 { 1136 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 1137 uint64_t flags; 1138 int r; 1139 1140 if (!tbo->ttm) 1141 return 0; 1142 1143 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem); 1144 r = amdgpu_ttm_gart_bind(adev, tbo, flags); 1145 1146 return r; 1147 } 1148 1149 /** 1150 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1151 * 1152 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1153 * ttm_tt_destroy(). 1154 */ 1155 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm) 1156 { 1157 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1158 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1159 int r; 1160 1161 /* if the pages have userptr pinning then clear that first */ 1162 if (gtt->userptr) 1163 amdgpu_ttm_tt_unpin_userptr(ttm); 1164 1165 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1166 return 0; 1167 1168 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1169 r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1170 if (r) 1171 DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n", 1172 gtt->ttm.ttm.num_pages, gtt->offset); 1173 return r; 1174 } 1175 1176 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm) 1177 { 1178 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1179 1180 if (gtt->usertask) 1181 put_task_struct(gtt->usertask); 1182 1183 ttm_dma_tt_fini(>t->ttm); 1184 kfree(gtt); 1185 } 1186 1187 static struct ttm_backend_func amdgpu_backend_func = { 1188 .bind = &amdgpu_ttm_backend_bind, 1189 .unbind = &amdgpu_ttm_backend_unbind, 1190 .destroy = &amdgpu_ttm_backend_destroy, 1191 }; 1192 1193 /** 1194 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1195 * 1196 * @bo: The buffer object to create a GTT ttm_tt object around 1197 * 1198 * Called by ttm_tt_create(). 1199 */ 1200 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1201 uint32_t page_flags) 1202 { 1203 struct amdgpu_device *adev; 1204 struct amdgpu_ttm_tt *gtt; 1205 1206 adev = amdgpu_ttm_adev(bo->bdev); 1207 1208 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1209 if (gtt == NULL) { 1210 return NULL; 1211 } 1212 gtt->ttm.ttm.func = &amdgpu_backend_func; 1213 1214 /* allocate space for the uninitialized page entries */ 1215 if (ttm_sg_tt_init(>t->ttm, bo, page_flags)) { 1216 kfree(gtt); 1217 return NULL; 1218 } 1219 return >t->ttm.ttm; 1220 } 1221 1222 /** 1223 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1224 * 1225 * Map the pages of a ttm_tt object to an address space visible 1226 * to the underlying device. 1227 */ 1228 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm, 1229 struct ttm_operation_ctx *ctx) 1230 { 1231 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1232 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1233 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG); 1234 1235 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1236 if (gtt && gtt->userptr) { 1237 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1238 if (!ttm->sg) 1239 return -ENOMEM; 1240 1241 ttm->page_flags |= TTM_PAGE_FLAG_SG; 1242 ttm->state = tt_unbound; 1243 return 0; 1244 } 1245 1246 if (slave && ttm->sg) { 1247 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, 1248 gtt->ttm.dma_address, 1249 ttm->num_pages); 1250 ttm->state = tt_unbound; 1251 return 0; 1252 } 1253 1254 #ifdef CONFIG_SWIOTLB 1255 if (adev->need_swiotlb && swiotlb_nr_tbl()) { 1256 return ttm_dma_populate(>t->ttm, adev->dev, ctx); 1257 } 1258 #endif 1259 1260 /* fall back to generic helper to populate the page array 1261 * and map them to the device */ 1262 return ttm_populate_and_map_pages(adev->dev, >t->ttm, ctx); 1263 } 1264 1265 /** 1266 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1267 * 1268 * Unmaps pages of a ttm_tt object from the device address space and 1269 * unpopulates the page array backing it. 1270 */ 1271 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm) 1272 { 1273 struct amdgpu_device *adev; 1274 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1275 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG); 1276 1277 if (gtt && gtt->userptr) { 1278 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1279 kfree(ttm->sg); 1280 ttm->sg = NULL; 1281 ttm->page_flags &= ~TTM_PAGE_FLAG_SG; 1282 return; 1283 } 1284 1285 if (slave) 1286 return; 1287 1288 adev = amdgpu_ttm_adev(ttm->bdev); 1289 1290 #ifdef CONFIG_SWIOTLB 1291 if (adev->need_swiotlb && swiotlb_nr_tbl()) { 1292 ttm_dma_unpopulate(>t->ttm, adev->dev); 1293 return; 1294 } 1295 #endif 1296 1297 /* fall back to generic helper to unmap and unpopulate array */ 1298 ttm_unmap_and_unpopulate_pages(adev->dev, >t->ttm); 1299 } 1300 1301 /** 1302 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1303 * task 1304 * 1305 * @ttm: The ttm_tt object to bind this userptr object to 1306 * @addr: The address in the current tasks VM space to use 1307 * @flags: Requirements of userptr object. 1308 * 1309 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages 1310 * to current task 1311 */ 1312 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr, 1313 uint32_t flags) 1314 { 1315 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1316 1317 if (gtt == NULL) 1318 return -EINVAL; 1319 1320 gtt->userptr = addr; 1321 gtt->userflags = flags; 1322 1323 if (gtt->usertask) 1324 put_task_struct(gtt->usertask); 1325 gtt->usertask = current->group_leader; 1326 get_task_struct(gtt->usertask); 1327 1328 spin_lock_init(>t->guptasklock); 1329 INIT_LIST_HEAD(>t->guptasks); 1330 atomic_set(>t->mmu_invalidations, 0); 1331 gtt->last_set_pages = 0; 1332 1333 return 0; 1334 } 1335 1336 /** 1337 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1338 */ 1339 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1340 { 1341 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1342 1343 if (gtt == NULL) 1344 return NULL; 1345 1346 if (gtt->usertask == NULL) 1347 return NULL; 1348 1349 return gtt->usertask->mm; 1350 } 1351 1352 /** 1353 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1354 * address range for the current task. 1355 * 1356 */ 1357 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1358 unsigned long end) 1359 { 1360 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1361 struct amdgpu_ttm_gup_task_list *entry; 1362 unsigned long size; 1363 1364 if (gtt == NULL || !gtt->userptr) 1365 return false; 1366 1367 /* Return false if no part of the ttm_tt object lies within 1368 * the range 1369 */ 1370 size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE; 1371 if (gtt->userptr > end || gtt->userptr + size <= start) 1372 return false; 1373 1374 /* Search the lists of tasks that hold this mapping and see 1375 * if current is one of them. If it is return false. 1376 */ 1377 spin_lock(>t->guptasklock); 1378 list_for_each_entry(entry, >t->guptasks, list) { 1379 if (entry->task == current) { 1380 spin_unlock(>t->guptasklock); 1381 return false; 1382 } 1383 } 1384 spin_unlock(>t->guptasklock); 1385 1386 atomic_inc(>t->mmu_invalidations); 1387 1388 return true; 1389 } 1390 1391 /** 1392 * amdgpu_ttm_tt_userptr_invalidated - Has the ttm_tt object been invalidated? 1393 */ 1394 bool amdgpu_ttm_tt_userptr_invalidated(struct ttm_tt *ttm, 1395 int *last_invalidated) 1396 { 1397 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1398 int prev_invalidated = *last_invalidated; 1399 1400 *last_invalidated = atomic_read(>t->mmu_invalidations); 1401 return prev_invalidated != *last_invalidated; 1402 } 1403 1404 /** 1405 * amdgpu_ttm_tt_userptr_needs_pages - Have the pages backing this ttm_tt object 1406 * been invalidated since the last time they've been set? 1407 */ 1408 bool amdgpu_ttm_tt_userptr_needs_pages(struct ttm_tt *ttm) 1409 { 1410 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1411 1412 if (gtt == NULL || !gtt->userptr) 1413 return false; 1414 1415 return atomic_read(>t->mmu_invalidations) != gtt->last_set_pages; 1416 } 1417 1418 /** 1419 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1420 */ 1421 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1422 { 1423 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1424 1425 if (gtt == NULL) 1426 return false; 1427 1428 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1429 } 1430 1431 /** 1432 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1433 * 1434 * @ttm: The ttm_tt object to compute the flags for 1435 * @mem: The memory registry backing this ttm_tt object 1436 */ 1437 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1438 struct ttm_mem_reg *mem) 1439 { 1440 uint64_t flags = 0; 1441 1442 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1443 flags |= AMDGPU_PTE_VALID; 1444 1445 if (mem && mem->mem_type == TTM_PL_TT) { 1446 flags |= AMDGPU_PTE_SYSTEM; 1447 1448 if (ttm->caching_state == tt_cached) 1449 flags |= AMDGPU_PTE_SNOOPED; 1450 } 1451 1452 flags |= adev->gart.gart_pte_flags; 1453 flags |= AMDGPU_PTE_READABLE; 1454 1455 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1456 flags |= AMDGPU_PTE_WRITEABLE; 1457 1458 return flags; 1459 } 1460 1461 /** 1462 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1463 * object. 1464 * 1465 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1466 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1467 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1468 * used to clean out a memory space. 1469 */ 1470 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1471 const struct ttm_place *place) 1472 { 1473 unsigned long num_pages = bo->mem.num_pages; 1474 struct drm_mm_node *node = bo->mem.mm_node; 1475 struct reservation_object_list *flist; 1476 struct dma_fence *f; 1477 int i; 1478 1479 /* If bo is a KFD BO, check if the bo belongs to the current process. 1480 * If true, then return false as any KFD process needs all its BOs to 1481 * be resident to run successfully 1482 */ 1483 flist = reservation_object_get_list(bo->resv); 1484 if (flist) { 1485 for (i = 0; i < flist->shared_count; ++i) { 1486 f = rcu_dereference_protected(flist->shared[i], 1487 reservation_object_held(bo->resv)); 1488 if (amdkfd_fence_check_mm(f, current->mm)) 1489 return false; 1490 } 1491 } 1492 1493 switch (bo->mem.mem_type) { 1494 case TTM_PL_TT: 1495 return true; 1496 1497 case TTM_PL_VRAM: 1498 /* Check each drm MM node individually */ 1499 while (num_pages) { 1500 if (place->fpfn < (node->start + node->size) && 1501 !(place->lpfn && place->lpfn <= node->start)) 1502 return true; 1503 1504 num_pages -= node->size; 1505 ++node; 1506 } 1507 return false; 1508 1509 default: 1510 break; 1511 } 1512 1513 return ttm_bo_eviction_valuable(bo, place); 1514 } 1515 1516 /** 1517 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1518 * 1519 * @bo: The buffer object to read/write 1520 * @offset: Offset into buffer object 1521 * @buf: Secondary buffer to write/read from 1522 * @len: Length in bytes of access 1523 * @write: true if writing 1524 * 1525 * This is used to access VRAM that backs a buffer object via MMIO 1526 * access for debugging purposes. 1527 */ 1528 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1529 unsigned long offset, 1530 void *buf, int len, int write) 1531 { 1532 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1533 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1534 struct drm_mm_node *nodes; 1535 uint32_t value = 0; 1536 int ret = 0; 1537 uint64_t pos; 1538 unsigned long flags; 1539 1540 if (bo->mem.mem_type != TTM_PL_VRAM) 1541 return -EIO; 1542 1543 nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset); 1544 pos = (nodes->start << PAGE_SHIFT) + offset; 1545 1546 while (len && pos < adev->gmc.mc_vram_size) { 1547 uint64_t aligned_pos = pos & ~(uint64_t)3; 1548 uint32_t bytes = 4 - (pos & 3); 1549 uint32_t shift = (pos & 3) * 8; 1550 uint32_t mask = 0xffffffff << shift; 1551 1552 if (len < bytes) { 1553 mask &= 0xffffffff >> (bytes - len) * 8; 1554 bytes = len; 1555 } 1556 1557 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 1558 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000); 1559 WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31); 1560 if (!write || mask != 0xffffffff) 1561 value = RREG32_NO_KIQ(mmMM_DATA); 1562 if (write) { 1563 value &= ~mask; 1564 value |= (*(uint32_t *)buf << shift) & mask; 1565 WREG32_NO_KIQ(mmMM_DATA, value); 1566 } 1567 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 1568 if (!write) { 1569 value = (value & mask) >> shift; 1570 memcpy(buf, &value, bytes); 1571 } 1572 1573 ret += bytes; 1574 buf = (uint8_t *)buf + bytes; 1575 pos += bytes; 1576 len -= bytes; 1577 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) { 1578 ++nodes; 1579 pos = (nodes->start << PAGE_SHIFT); 1580 } 1581 } 1582 1583 return ret; 1584 } 1585 1586 static struct ttm_bo_driver amdgpu_bo_driver = { 1587 .ttm_tt_create = &amdgpu_ttm_tt_create, 1588 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1589 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1590 .invalidate_caches = &amdgpu_invalidate_caches, 1591 .init_mem_type = &amdgpu_init_mem_type, 1592 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1593 .evict_flags = &amdgpu_evict_flags, 1594 .move = &amdgpu_bo_move, 1595 .verify_access = &amdgpu_verify_access, 1596 .move_notify = &amdgpu_bo_move_notify, 1597 .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify, 1598 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1599 .io_mem_free = &amdgpu_ttm_io_mem_free, 1600 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1601 .access_memory = &amdgpu_ttm_access_memory 1602 }; 1603 1604 /* 1605 * Firmware Reservation functions 1606 */ 1607 /** 1608 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1609 * 1610 * @adev: amdgpu_device pointer 1611 * 1612 * free fw reserved vram if it has been reserved. 1613 */ 1614 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1615 { 1616 amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo, 1617 NULL, &adev->fw_vram_usage.va); 1618 } 1619 1620 /** 1621 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1622 * 1623 * @adev: amdgpu_device pointer 1624 * 1625 * create bo vram reservation from fw. 1626 */ 1627 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1628 { 1629 struct ttm_operation_ctx ctx = { false, false }; 1630 struct amdgpu_bo_param bp; 1631 int r = 0; 1632 int i; 1633 u64 vram_size = adev->gmc.visible_vram_size; 1634 u64 offset = adev->fw_vram_usage.start_offset; 1635 u64 size = adev->fw_vram_usage.size; 1636 struct amdgpu_bo *bo; 1637 1638 memset(&bp, 0, sizeof(bp)); 1639 bp.size = adev->fw_vram_usage.size; 1640 bp.byte_align = PAGE_SIZE; 1641 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 1642 bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED | 1643 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 1644 bp.type = ttm_bo_type_kernel; 1645 bp.resv = NULL; 1646 adev->fw_vram_usage.va = NULL; 1647 adev->fw_vram_usage.reserved_bo = NULL; 1648 1649 if (adev->fw_vram_usage.size > 0 && 1650 adev->fw_vram_usage.size <= vram_size) { 1651 1652 r = amdgpu_bo_create(adev, &bp, 1653 &adev->fw_vram_usage.reserved_bo); 1654 if (r) 1655 goto error_create; 1656 1657 r = amdgpu_bo_reserve(adev->fw_vram_usage.reserved_bo, false); 1658 if (r) 1659 goto error_reserve; 1660 1661 /* remove the original mem node and create a new one at the 1662 * request position 1663 */ 1664 bo = adev->fw_vram_usage.reserved_bo; 1665 offset = ALIGN(offset, PAGE_SIZE); 1666 for (i = 0; i < bo->placement.num_placement; ++i) { 1667 bo->placements[i].fpfn = offset >> PAGE_SHIFT; 1668 bo->placements[i].lpfn = (offset + size) >> PAGE_SHIFT; 1669 } 1670 1671 ttm_bo_mem_put(&bo->tbo, &bo->tbo.mem); 1672 r = ttm_bo_mem_space(&bo->tbo, &bo->placement, 1673 &bo->tbo.mem, &ctx); 1674 if (r) 1675 goto error_pin; 1676 1677 r = amdgpu_bo_pin_restricted(adev->fw_vram_usage.reserved_bo, 1678 AMDGPU_GEM_DOMAIN_VRAM, 1679 adev->fw_vram_usage.start_offset, 1680 (adev->fw_vram_usage.start_offset + 1681 adev->fw_vram_usage.size)); 1682 if (r) 1683 goto error_pin; 1684 r = amdgpu_bo_kmap(adev->fw_vram_usage.reserved_bo, 1685 &adev->fw_vram_usage.va); 1686 if (r) 1687 goto error_kmap; 1688 1689 amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo); 1690 } 1691 return r; 1692 1693 error_kmap: 1694 amdgpu_bo_unpin(adev->fw_vram_usage.reserved_bo); 1695 error_pin: 1696 amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo); 1697 error_reserve: 1698 amdgpu_bo_unref(&adev->fw_vram_usage.reserved_bo); 1699 error_create: 1700 adev->fw_vram_usage.va = NULL; 1701 adev->fw_vram_usage.reserved_bo = NULL; 1702 return r; 1703 } 1704 /** 1705 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1706 * gtt/vram related fields. 1707 * 1708 * This initializes all of the memory space pools that the TTM layer 1709 * will need such as the GTT space (system memory mapped to the device), 1710 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1711 * can be mapped per VMID. 1712 */ 1713 int amdgpu_ttm_init(struct amdgpu_device *adev) 1714 { 1715 uint64_t gtt_size; 1716 int r; 1717 u64 vis_vram_limit; 1718 1719 /* initialize global references for vram/gtt */ 1720 r = amdgpu_ttm_global_init(adev); 1721 if (r) { 1722 return r; 1723 } 1724 /* No others user of address space so set it to 0 */ 1725 r = ttm_bo_device_init(&adev->mman.bdev, 1726 adev->mman.bo_global_ref.ref.object, 1727 &amdgpu_bo_driver, 1728 adev->ddev->anon_inode->i_mapping, 1729 DRM_FILE_PAGE_OFFSET, 1730 adev->need_dma32); 1731 if (r) { 1732 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1733 return r; 1734 } 1735 adev->mman.initialized = true; 1736 1737 /* We opt to avoid OOM on system pages allocations */ 1738 adev->mman.bdev.no_retry = true; 1739 1740 /* Initialize VRAM pool with all of VRAM divided into pages */ 1741 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM, 1742 adev->gmc.real_vram_size >> PAGE_SHIFT); 1743 if (r) { 1744 DRM_ERROR("Failed initializing VRAM heap.\n"); 1745 return r; 1746 } 1747 1748 /* Reduce size of CPU-visible VRAM if requested */ 1749 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024; 1750 if (amdgpu_vis_vram_limit > 0 && 1751 vis_vram_limit <= adev->gmc.visible_vram_size) 1752 adev->gmc.visible_vram_size = vis_vram_limit; 1753 1754 /* Change the size here instead of the init above so only lpfn is affected */ 1755 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1756 #ifdef CONFIG_64BIT 1757 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1758 adev->gmc.visible_vram_size); 1759 #endif 1760 1761 /* 1762 *The reserved vram for firmware must be pinned to the specified 1763 *place on the VRAM, so reserve it early. 1764 */ 1765 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1766 if (r) { 1767 return r; 1768 } 1769 1770 /* allocate memory as required for VGA 1771 * This is used for VGA emulation and pre-OS scanout buffers to 1772 * avoid display artifacts while transitioning between pre-OS 1773 * and driver. */ 1774 if (adev->gmc.stolen_size) { 1775 r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE, 1776 AMDGPU_GEM_DOMAIN_VRAM, 1777 &adev->stolen_vga_memory, 1778 NULL, NULL); 1779 if (r) 1780 return r; 1781 } 1782 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1783 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024))); 1784 1785 /* Compute GTT size, either bsaed on 3/4th the size of RAM size 1786 * or whatever the user passed on module init */ 1787 if (amdgpu_gtt_size == -1) { 1788 struct sysinfo si; 1789 1790 si_meminfo(&si); 1791 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20), 1792 adev->gmc.mc_vram_size), 1793 ((uint64_t)si.totalram * si.mem_unit * 3/4)); 1794 } 1795 else 1796 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1797 1798 /* Initialize GTT memory pool */ 1799 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT); 1800 if (r) { 1801 DRM_ERROR("Failed initializing GTT heap.\n"); 1802 return r; 1803 } 1804 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1805 (unsigned)(gtt_size / (1024 * 1024))); 1806 1807 /* Initialize various on-chip memory pools */ 1808 adev->gds.mem.total_size = adev->gds.mem.total_size << AMDGPU_GDS_SHIFT; 1809 adev->gds.mem.gfx_partition_size = adev->gds.mem.gfx_partition_size << AMDGPU_GDS_SHIFT; 1810 adev->gds.mem.cs_partition_size = adev->gds.mem.cs_partition_size << AMDGPU_GDS_SHIFT; 1811 adev->gds.gws.total_size = adev->gds.gws.total_size << AMDGPU_GWS_SHIFT; 1812 adev->gds.gws.gfx_partition_size = adev->gds.gws.gfx_partition_size << AMDGPU_GWS_SHIFT; 1813 adev->gds.gws.cs_partition_size = adev->gds.gws.cs_partition_size << AMDGPU_GWS_SHIFT; 1814 adev->gds.oa.total_size = adev->gds.oa.total_size << AMDGPU_OA_SHIFT; 1815 adev->gds.oa.gfx_partition_size = adev->gds.oa.gfx_partition_size << AMDGPU_OA_SHIFT; 1816 adev->gds.oa.cs_partition_size = adev->gds.oa.cs_partition_size << AMDGPU_OA_SHIFT; 1817 /* GDS Memory */ 1818 if (adev->gds.mem.total_size) { 1819 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS, 1820 adev->gds.mem.total_size >> PAGE_SHIFT); 1821 if (r) { 1822 DRM_ERROR("Failed initializing GDS heap.\n"); 1823 return r; 1824 } 1825 } 1826 1827 /* GWS */ 1828 if (adev->gds.gws.total_size) { 1829 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS, 1830 adev->gds.gws.total_size >> PAGE_SHIFT); 1831 if (r) { 1832 DRM_ERROR("Failed initializing gws heap.\n"); 1833 return r; 1834 } 1835 } 1836 1837 /* OA */ 1838 if (adev->gds.oa.total_size) { 1839 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA, 1840 adev->gds.oa.total_size >> PAGE_SHIFT); 1841 if (r) { 1842 DRM_ERROR("Failed initializing oa heap.\n"); 1843 return r; 1844 } 1845 } 1846 1847 /* Register debugfs entries for amdgpu_ttm */ 1848 r = amdgpu_ttm_debugfs_init(adev); 1849 if (r) { 1850 DRM_ERROR("Failed to init debugfs\n"); 1851 return r; 1852 } 1853 return 0; 1854 } 1855 1856 /** 1857 * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm 1858 */ 1859 void amdgpu_ttm_late_init(struct amdgpu_device *adev) 1860 { 1861 /* return the VGA stolen memory (if any) back to VRAM */ 1862 amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, NULL); 1863 } 1864 1865 /** 1866 * amdgpu_ttm_fini - De-initialize the TTM memory pools 1867 */ 1868 void amdgpu_ttm_fini(struct amdgpu_device *adev) 1869 { 1870 if (!adev->mman.initialized) 1871 return; 1872 1873 amdgpu_ttm_debugfs_fini(adev); 1874 amdgpu_ttm_fw_reserve_vram_fini(adev); 1875 if (adev->mman.aper_base_kaddr) 1876 iounmap(adev->mman.aper_base_kaddr); 1877 adev->mman.aper_base_kaddr = NULL; 1878 1879 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM); 1880 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT); 1881 if (adev->gds.mem.total_size) 1882 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS); 1883 if (adev->gds.gws.total_size) 1884 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS); 1885 if (adev->gds.oa.total_size) 1886 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA); 1887 ttm_bo_device_release(&adev->mman.bdev); 1888 amdgpu_ttm_global_fini(adev); 1889 adev->mman.initialized = false; 1890 DRM_INFO("amdgpu: ttm finalized\n"); 1891 } 1892 1893 /** 1894 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 1895 * 1896 * @adev: amdgpu_device pointer 1897 * @enable: true when we can use buffer functions. 1898 * 1899 * Enable/disable use of buffer functions during suspend/resume. This should 1900 * only be called at bootup or when userspace isn't running. 1901 */ 1902 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 1903 { 1904 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM]; 1905 uint64_t size; 1906 int r; 1907 1908 if (!adev->mman.initialized || adev->in_gpu_reset || 1909 adev->mman.buffer_funcs_enabled == enable) 1910 return; 1911 1912 if (enable) { 1913 struct amdgpu_ring *ring; 1914 struct drm_sched_rq *rq; 1915 1916 ring = adev->mman.buffer_funcs_ring; 1917 rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL]; 1918 r = drm_sched_entity_init(&adev->mman.entity, &rq, 1, NULL); 1919 if (r) { 1920 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 1921 r); 1922 return; 1923 } 1924 } else { 1925 drm_sched_entity_destroy(&adev->mman.entity); 1926 dma_fence_put(man->move); 1927 man->move = NULL; 1928 } 1929 1930 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 1931 if (enable) 1932 size = adev->gmc.real_vram_size; 1933 else 1934 size = adev->gmc.visible_vram_size; 1935 man->size = size >> PAGE_SHIFT; 1936 adev->mman.buffer_funcs_enabled = enable; 1937 } 1938 1939 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma) 1940 { 1941 struct drm_file *file_priv; 1942 struct amdgpu_device *adev; 1943 1944 if (unlikely(vma->vm_pgoff < DRM_FILE_PAGE_OFFSET)) 1945 return -EINVAL; 1946 1947 file_priv = filp->private_data; 1948 adev = file_priv->minor->dev->dev_private; 1949 if (adev == NULL) 1950 return -EINVAL; 1951 1952 return ttm_bo_mmap(filp, vma, &adev->mman.bdev); 1953 } 1954 1955 static int amdgpu_map_buffer(struct ttm_buffer_object *bo, 1956 struct ttm_mem_reg *mem, unsigned num_pages, 1957 uint64_t offset, unsigned window, 1958 struct amdgpu_ring *ring, 1959 uint64_t *addr) 1960 { 1961 struct amdgpu_ttm_tt *gtt = (void *)bo->ttm; 1962 struct amdgpu_device *adev = ring->adev; 1963 struct ttm_tt *ttm = bo->ttm; 1964 struct amdgpu_job *job; 1965 unsigned num_dw, num_bytes; 1966 dma_addr_t *dma_address; 1967 struct dma_fence *fence; 1968 uint64_t src_addr, dst_addr; 1969 uint64_t flags; 1970 int r; 1971 1972 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 1973 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 1974 1975 *addr = adev->gmc.gart_start; 1976 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 1977 AMDGPU_GPU_PAGE_SIZE; 1978 1979 num_dw = adev->mman.buffer_funcs->copy_num_dw; 1980 while (num_dw & 0x7) 1981 num_dw++; 1982 1983 num_bytes = num_pages * 8; 1984 1985 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job); 1986 if (r) 1987 return r; 1988 1989 src_addr = num_dw * 4; 1990 src_addr += job->ibs[0].gpu_addr; 1991 1992 dst_addr = adev->gart.table_addr; 1993 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 1994 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 1995 dst_addr, num_bytes); 1996 1997 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 1998 WARN_ON(job->ibs[0].length_dw > num_dw); 1999 2000 dma_address = >t->ttm.dma_address[offset >> PAGE_SHIFT]; 2001 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem); 2002 r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags, 2003 &job->ibs[0].ptr[num_dw]); 2004 if (r) 2005 goto error_free; 2006 2007 r = amdgpu_job_submit(job, &adev->mman.entity, 2008 AMDGPU_FENCE_OWNER_UNDEFINED, &fence); 2009 if (r) 2010 goto error_free; 2011 2012 dma_fence_put(fence); 2013 2014 return r; 2015 2016 error_free: 2017 amdgpu_job_free(job); 2018 return r; 2019 } 2020 2021 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 2022 uint64_t dst_offset, uint32_t byte_count, 2023 struct reservation_object *resv, 2024 struct dma_fence **fence, bool direct_submit, 2025 bool vm_needs_flush) 2026 { 2027 struct amdgpu_device *adev = ring->adev; 2028 struct amdgpu_job *job; 2029 2030 uint32_t max_bytes; 2031 unsigned num_loops, num_dw; 2032 unsigned i; 2033 int r; 2034 2035 if (direct_submit && !ring->ready) { 2036 DRM_ERROR("Trying to move memory with ring turned off.\n"); 2037 return -EINVAL; 2038 } 2039 2040 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 2041 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 2042 num_dw = num_loops * adev->mman.buffer_funcs->copy_num_dw; 2043 2044 /* for IB padding */ 2045 while (num_dw & 0x7) 2046 num_dw++; 2047 2048 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job); 2049 if (r) 2050 return r; 2051 2052 job->vm_needs_flush = vm_needs_flush; 2053 if (resv) { 2054 r = amdgpu_sync_resv(adev, &job->sync, resv, 2055 AMDGPU_FENCE_OWNER_UNDEFINED, 2056 false); 2057 if (r) { 2058 DRM_ERROR("sync failed (%d).\n", r); 2059 goto error_free; 2060 } 2061 } 2062 2063 for (i = 0; i < num_loops; i++) { 2064 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2065 2066 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2067 dst_offset, cur_size_in_bytes); 2068 2069 src_offset += cur_size_in_bytes; 2070 dst_offset += cur_size_in_bytes; 2071 byte_count -= cur_size_in_bytes; 2072 } 2073 2074 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2075 WARN_ON(job->ibs[0].length_dw > num_dw); 2076 if (direct_submit) 2077 r = amdgpu_job_submit_direct(job, ring, fence); 2078 else 2079 r = amdgpu_job_submit(job, &adev->mman.entity, 2080 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2081 if (r) 2082 goto error_free; 2083 2084 return r; 2085 2086 error_free: 2087 amdgpu_job_free(job); 2088 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2089 return r; 2090 } 2091 2092 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2093 uint32_t src_data, 2094 struct reservation_object *resv, 2095 struct dma_fence **fence) 2096 { 2097 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2098 uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2099 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2100 2101 struct drm_mm_node *mm_node; 2102 unsigned long num_pages; 2103 unsigned int num_loops, num_dw; 2104 2105 struct amdgpu_job *job; 2106 int r; 2107 2108 if (!adev->mman.buffer_funcs_enabled) { 2109 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2110 return -EINVAL; 2111 } 2112 2113 if (bo->tbo.mem.mem_type == TTM_PL_TT) { 2114 r = amdgpu_ttm_alloc_gart(&bo->tbo); 2115 if (r) 2116 return r; 2117 } 2118 2119 num_pages = bo->tbo.num_pages; 2120 mm_node = bo->tbo.mem.mm_node; 2121 num_loops = 0; 2122 while (num_pages) { 2123 uint32_t byte_count = mm_node->size << PAGE_SHIFT; 2124 2125 num_loops += DIV_ROUND_UP(byte_count, max_bytes); 2126 num_pages -= mm_node->size; 2127 ++mm_node; 2128 } 2129 num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw; 2130 2131 /* for IB padding */ 2132 num_dw += 64; 2133 2134 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job); 2135 if (r) 2136 return r; 2137 2138 if (resv) { 2139 r = amdgpu_sync_resv(adev, &job->sync, resv, 2140 AMDGPU_FENCE_OWNER_UNDEFINED, false); 2141 if (r) { 2142 DRM_ERROR("sync failed (%d).\n", r); 2143 goto error_free; 2144 } 2145 } 2146 2147 num_pages = bo->tbo.num_pages; 2148 mm_node = bo->tbo.mem.mm_node; 2149 2150 while (num_pages) { 2151 uint32_t byte_count = mm_node->size << PAGE_SHIFT; 2152 uint64_t dst_addr; 2153 2154 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem); 2155 while (byte_count) { 2156 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2157 2158 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, 2159 dst_addr, cur_size_in_bytes); 2160 2161 dst_addr += cur_size_in_bytes; 2162 byte_count -= cur_size_in_bytes; 2163 } 2164 2165 num_pages -= mm_node->size; 2166 ++mm_node; 2167 } 2168 2169 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2170 WARN_ON(job->ibs[0].length_dw > num_dw); 2171 r = amdgpu_job_submit(job, &adev->mman.entity, 2172 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2173 if (r) 2174 goto error_free; 2175 2176 return 0; 2177 2178 error_free: 2179 amdgpu_job_free(job); 2180 return r; 2181 } 2182 2183 #if defined(CONFIG_DEBUG_FS) 2184 2185 static int amdgpu_mm_dump_table(struct seq_file *m, void *data) 2186 { 2187 struct drm_info_node *node = (struct drm_info_node *)m->private; 2188 unsigned ttm_pl = *(int *)node->info_ent->data; 2189 struct drm_device *dev = node->minor->dev; 2190 struct amdgpu_device *adev = dev->dev_private; 2191 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl]; 2192 struct drm_printer p = drm_seq_file_printer(m); 2193 2194 man->func->debug(man, &p); 2195 return 0; 2196 } 2197 2198 static int ttm_pl_vram = TTM_PL_VRAM; 2199 static int ttm_pl_tt = TTM_PL_TT; 2200 2201 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = { 2202 {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, &ttm_pl_vram}, 2203 {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, &ttm_pl_tt}, 2204 {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL}, 2205 #ifdef CONFIG_SWIOTLB 2206 {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL} 2207 #endif 2208 }; 2209 2210 /** 2211 * amdgpu_ttm_vram_read - Linear read access to VRAM 2212 * 2213 * Accesses VRAM via MMIO for debugging purposes. 2214 */ 2215 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2216 size_t size, loff_t *pos) 2217 { 2218 struct amdgpu_device *adev = file_inode(f)->i_private; 2219 ssize_t result = 0; 2220 int r; 2221 2222 if (size & 0x3 || *pos & 0x3) 2223 return -EINVAL; 2224 2225 if (*pos >= adev->gmc.mc_vram_size) 2226 return -ENXIO; 2227 2228 while (size) { 2229 unsigned long flags; 2230 uint32_t value; 2231 2232 if (*pos >= adev->gmc.mc_vram_size) 2233 return result; 2234 2235 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 2236 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000); 2237 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31); 2238 value = RREG32_NO_KIQ(mmMM_DATA); 2239 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 2240 2241 r = put_user(value, (uint32_t *)buf); 2242 if (r) 2243 return r; 2244 2245 result += 4; 2246 buf += 4; 2247 *pos += 4; 2248 size -= 4; 2249 } 2250 2251 return result; 2252 } 2253 2254 /** 2255 * amdgpu_ttm_vram_write - Linear write access to VRAM 2256 * 2257 * Accesses VRAM via MMIO for debugging purposes. 2258 */ 2259 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2260 size_t size, loff_t *pos) 2261 { 2262 struct amdgpu_device *adev = file_inode(f)->i_private; 2263 ssize_t result = 0; 2264 int r; 2265 2266 if (size & 0x3 || *pos & 0x3) 2267 return -EINVAL; 2268 2269 if (*pos >= adev->gmc.mc_vram_size) 2270 return -ENXIO; 2271 2272 while (size) { 2273 unsigned long flags; 2274 uint32_t value; 2275 2276 if (*pos >= adev->gmc.mc_vram_size) 2277 return result; 2278 2279 r = get_user(value, (uint32_t *)buf); 2280 if (r) 2281 return r; 2282 2283 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 2284 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000); 2285 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31); 2286 WREG32_NO_KIQ(mmMM_DATA, value); 2287 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 2288 2289 result += 4; 2290 buf += 4; 2291 *pos += 4; 2292 size -= 4; 2293 } 2294 2295 return result; 2296 } 2297 2298 static const struct file_operations amdgpu_ttm_vram_fops = { 2299 .owner = THIS_MODULE, 2300 .read = amdgpu_ttm_vram_read, 2301 .write = amdgpu_ttm_vram_write, 2302 .llseek = default_llseek, 2303 }; 2304 2305 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS 2306 2307 /** 2308 * amdgpu_ttm_gtt_read - Linear read access to GTT memory 2309 */ 2310 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf, 2311 size_t size, loff_t *pos) 2312 { 2313 struct amdgpu_device *adev = file_inode(f)->i_private; 2314 ssize_t result = 0; 2315 int r; 2316 2317 while (size) { 2318 loff_t p = *pos / PAGE_SIZE; 2319 unsigned off = *pos & ~PAGE_MASK; 2320 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off); 2321 struct page *page; 2322 void *ptr; 2323 2324 if (p >= adev->gart.num_cpu_pages) 2325 return result; 2326 2327 page = adev->gart.pages[p]; 2328 if (page) { 2329 ptr = kmap(page); 2330 ptr += off; 2331 2332 r = copy_to_user(buf, ptr, cur_size); 2333 kunmap(adev->gart.pages[p]); 2334 } else 2335 r = clear_user(buf, cur_size); 2336 2337 if (r) 2338 return -EFAULT; 2339 2340 result += cur_size; 2341 buf += cur_size; 2342 *pos += cur_size; 2343 size -= cur_size; 2344 } 2345 2346 return result; 2347 } 2348 2349 static const struct file_operations amdgpu_ttm_gtt_fops = { 2350 .owner = THIS_MODULE, 2351 .read = amdgpu_ttm_gtt_read, 2352 .llseek = default_llseek 2353 }; 2354 2355 #endif 2356 2357 /** 2358 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2359 * 2360 * This function is used to read memory that has been mapped to the 2361 * GPU and the known addresses are not physical addresses but instead 2362 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2363 */ 2364 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2365 size_t size, loff_t *pos) 2366 { 2367 struct amdgpu_device *adev = file_inode(f)->i_private; 2368 struct iommu_domain *dom; 2369 ssize_t result = 0; 2370 int r; 2371 2372 /* retrieve the IOMMU domain if any for this device */ 2373 dom = iommu_get_domain_for_dev(adev->dev); 2374 2375 while (size) { 2376 phys_addr_t addr = *pos & PAGE_MASK; 2377 loff_t off = *pos & ~PAGE_MASK; 2378 size_t bytes = PAGE_SIZE - off; 2379 unsigned long pfn; 2380 struct page *p; 2381 void *ptr; 2382 2383 bytes = bytes < size ? bytes : size; 2384 2385 /* Translate the bus address to a physical address. If 2386 * the domain is NULL it means there is no IOMMU active 2387 * and the address translation is the identity 2388 */ 2389 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2390 2391 pfn = addr >> PAGE_SHIFT; 2392 if (!pfn_valid(pfn)) 2393 return -EPERM; 2394 2395 p = pfn_to_page(pfn); 2396 if (p->mapping != adev->mman.bdev.dev_mapping) 2397 return -EPERM; 2398 2399 ptr = kmap(p); 2400 r = copy_to_user(buf, ptr + off, bytes); 2401 kunmap(p); 2402 if (r) 2403 return -EFAULT; 2404 2405 size -= bytes; 2406 *pos += bytes; 2407 result += bytes; 2408 } 2409 2410 return result; 2411 } 2412 2413 /** 2414 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2415 * 2416 * This function is used to write memory that has been mapped to the 2417 * GPU and the known addresses are not physical addresses but instead 2418 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2419 */ 2420 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2421 size_t size, loff_t *pos) 2422 { 2423 struct amdgpu_device *adev = file_inode(f)->i_private; 2424 struct iommu_domain *dom; 2425 ssize_t result = 0; 2426 int r; 2427 2428 dom = iommu_get_domain_for_dev(adev->dev); 2429 2430 while (size) { 2431 phys_addr_t addr = *pos & PAGE_MASK; 2432 loff_t off = *pos & ~PAGE_MASK; 2433 size_t bytes = PAGE_SIZE - off; 2434 unsigned long pfn; 2435 struct page *p; 2436 void *ptr; 2437 2438 bytes = bytes < size ? bytes : size; 2439 2440 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2441 2442 pfn = addr >> PAGE_SHIFT; 2443 if (!pfn_valid(pfn)) 2444 return -EPERM; 2445 2446 p = pfn_to_page(pfn); 2447 if (p->mapping != adev->mman.bdev.dev_mapping) 2448 return -EPERM; 2449 2450 ptr = kmap(p); 2451 r = copy_from_user(ptr + off, buf, bytes); 2452 kunmap(p); 2453 if (r) 2454 return -EFAULT; 2455 2456 size -= bytes; 2457 *pos += bytes; 2458 result += bytes; 2459 } 2460 2461 return result; 2462 } 2463 2464 static const struct file_operations amdgpu_ttm_iomem_fops = { 2465 .owner = THIS_MODULE, 2466 .read = amdgpu_iomem_read, 2467 .write = amdgpu_iomem_write, 2468 .llseek = default_llseek 2469 }; 2470 2471 static const struct { 2472 char *name; 2473 const struct file_operations *fops; 2474 int domain; 2475 } ttm_debugfs_entries[] = { 2476 { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM }, 2477 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS 2478 { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT }, 2479 #endif 2480 { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM }, 2481 }; 2482 2483 #endif 2484 2485 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2486 { 2487 #if defined(CONFIG_DEBUG_FS) 2488 unsigned count; 2489 2490 struct drm_minor *minor = adev->ddev->primary; 2491 struct dentry *ent, *root = minor->debugfs_root; 2492 2493 for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) { 2494 ent = debugfs_create_file( 2495 ttm_debugfs_entries[count].name, 2496 S_IFREG | S_IRUGO, root, 2497 adev, 2498 ttm_debugfs_entries[count].fops); 2499 if (IS_ERR(ent)) 2500 return PTR_ERR(ent); 2501 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM) 2502 i_size_write(ent->d_inode, adev->gmc.mc_vram_size); 2503 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT) 2504 i_size_write(ent->d_inode, adev->gmc.gart_size); 2505 adev->mman.debugfs_entries[count] = ent; 2506 } 2507 2508 count = ARRAY_SIZE(amdgpu_ttm_debugfs_list); 2509 2510 #ifdef CONFIG_SWIOTLB 2511 if (!(adev->need_swiotlb && swiotlb_nr_tbl())) 2512 --count; 2513 #endif 2514 2515 return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count); 2516 #else 2517 return 0; 2518 #endif 2519 } 2520 2521 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev) 2522 { 2523 #if defined(CONFIG_DEBUG_FS) 2524 unsigned i; 2525 2526 for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++) 2527 debugfs_remove(adev->mman.debugfs_entries[i]); 2528 #endif 2529 } 2530