xref: /dflybsd-src/sys/dev/drm/amd/amdgpu/amdgpu_ttm.c (revision b843c749addef9340ee7d4e250b09fdd492602a1)
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 #include <drm/ttm/ttm_bo_api.h>
33 #include <drm/ttm/ttm_bo_driver.h>
34 #include <drm/ttm/ttm_placement.h>
35 #include <drm/ttm/ttm_module.h>
36 #include <drm/ttm/ttm_page_alloc.h>
37 #include <drm/drmP.h>
38 #include <drm/amdgpu_drm.h>
39 #include <linux/seq_file.h>
40 #include <linux/slab.h>
41 #include <linux/swiotlb.h>
42 #include <linux/swap.h>
43 #include <linux/pagemap.h>
44 #include <linux/debugfs.h>
45 #include <linux/iommu.h>
46 #include "amdgpu.h"
47 #include "amdgpu_object.h"
48 #include "amdgpu_trace.h"
49 #include "amdgpu_amdkfd.h"
50 #include "bif/bif_4_1_d.h"
51 
52 #define DRM_FILE_PAGE_OFFSET (0x100000000ULL >> PAGE_SHIFT)
53 
54 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
55 			     struct ttm_mem_reg *mem, unsigned num_pages,
56 			     uint64_t offset, unsigned window,
57 			     struct amdgpu_ring *ring,
58 			     uint64_t *addr);
59 
60 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev);
61 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev);
62 
63 /*
64  * Global memory.
65  */
66 
67 /**
68  * amdgpu_ttm_mem_global_init - Initialize and acquire reference to
69  * memory object
70  *
71  * @ref: Object for initialization.
72  *
73  * This is called by drm_global_item_ref() when an object is being
74  * initialized.
75  */
76 static int amdgpu_ttm_mem_global_init(struct drm_global_reference *ref)
77 {
78 	return ttm_mem_global_init(ref->object);
79 }
80 
81 /**
82  * amdgpu_ttm_mem_global_release - Drop reference to a memory object
83  *
84  * @ref: Object being removed
85  *
86  * This is called by drm_global_item_unref() when an object is being
87  * released.
88  */
89 static void amdgpu_ttm_mem_global_release(struct drm_global_reference *ref)
90 {
91 	ttm_mem_global_release(ref->object);
92 }
93 
94 /**
95  * amdgpu_ttm_global_init - Initialize global TTM memory reference structures.
96  *
97  * @adev: AMDGPU device for which the global structures need to be registered.
98  *
99  * This is called as part of the AMDGPU ttm init from amdgpu_ttm_init()
100  * during bring up.
101  */
102 static int amdgpu_ttm_global_init(struct amdgpu_device *adev)
103 {
104 	struct drm_global_reference *global_ref;
105 	int r;
106 
107 	/* ensure reference is false in case init fails */
108 	adev->mman.mem_global_referenced = false;
109 
110 	global_ref = &adev->mman.mem_global_ref;
111 	global_ref->global_type = DRM_GLOBAL_TTM_MEM;
112 	global_ref->size = sizeof(struct ttm_mem_global);
113 	global_ref->init = &amdgpu_ttm_mem_global_init;
114 	global_ref->release = &amdgpu_ttm_mem_global_release;
115 	r = drm_global_item_ref(global_ref);
116 	if (r) {
117 		DRM_ERROR("Failed setting up TTM memory accounting "
118 			  "subsystem.\n");
119 		goto error_mem;
120 	}
121 
122 	adev->mman.bo_global_ref.mem_glob =
123 		adev->mman.mem_global_ref.object;
124 	global_ref = &adev->mman.bo_global_ref.ref;
125 	global_ref->global_type = DRM_GLOBAL_TTM_BO;
126 	global_ref->size = sizeof(struct ttm_bo_global);
127 	global_ref->init = &ttm_bo_global_init;
128 	global_ref->release = &ttm_bo_global_release;
129 	r = drm_global_item_ref(global_ref);
130 	if (r) {
131 		DRM_ERROR("Failed setting up TTM BO subsystem.\n");
132 		goto error_bo;
133 	}
134 
135 	mutex_init(&adev->mman.gtt_window_lock);
136 
137 	adev->mman.mem_global_referenced = true;
138 
139 	return 0;
140 
141 error_bo:
142 	drm_global_item_unref(&adev->mman.mem_global_ref);
143 error_mem:
144 	return r;
145 }
146 
147 static void amdgpu_ttm_global_fini(struct amdgpu_device *adev)
148 {
149 	if (adev->mman.mem_global_referenced) {
150 		mutex_destroy(&adev->mman.gtt_window_lock);
151 		drm_global_item_unref(&adev->mman.bo_global_ref.ref);
152 		drm_global_item_unref(&adev->mman.mem_global_ref);
153 		adev->mman.mem_global_referenced = false;
154 	}
155 }
156 
157 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
158 {
159 	return 0;
160 }
161 
162 /**
163  * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
164  * memory request.
165  *
166  * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
167  * @type: The type of memory requested
168  * @man: The memory type manager for each domain
169  *
170  * This is called by ttm_bo_init_mm() when a buffer object is being
171  * initialized.
172  */
173 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
174 				struct ttm_mem_type_manager *man)
175 {
176 	struct amdgpu_device *adev;
177 
178 	adev = amdgpu_ttm_adev(bdev);
179 
180 	switch (type) {
181 	case TTM_PL_SYSTEM:
182 		/* System memory */
183 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
184 		man->available_caching = TTM_PL_MASK_CACHING;
185 		man->default_caching = TTM_PL_FLAG_CACHED;
186 		break;
187 	case TTM_PL_TT:
188 		/* GTT memory  */
189 		man->func = &amdgpu_gtt_mgr_func;
190 		man->gpu_offset = adev->gmc.gart_start;
191 		man->available_caching = TTM_PL_MASK_CACHING;
192 		man->default_caching = TTM_PL_FLAG_CACHED;
193 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
194 		break;
195 	case TTM_PL_VRAM:
196 		/* "On-card" video ram */
197 		man->func = &amdgpu_vram_mgr_func;
198 		man->gpu_offset = adev->gmc.vram_start;
199 		man->flags = TTM_MEMTYPE_FLAG_FIXED |
200 			     TTM_MEMTYPE_FLAG_MAPPABLE;
201 		man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
202 		man->default_caching = TTM_PL_FLAG_WC;
203 		break;
204 	case AMDGPU_PL_GDS:
205 	case AMDGPU_PL_GWS:
206 	case AMDGPU_PL_OA:
207 		/* On-chip GDS memory*/
208 		man->func = &ttm_bo_manager_func;
209 		man->gpu_offset = 0;
210 		man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA;
211 		man->available_caching = TTM_PL_FLAG_UNCACHED;
212 		man->default_caching = TTM_PL_FLAG_UNCACHED;
213 		break;
214 	default:
215 		DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
216 		return -EINVAL;
217 	}
218 	return 0;
219 }
220 
221 /**
222  * amdgpu_evict_flags - Compute placement flags
223  *
224  * @bo: The buffer object to evict
225  * @placement: Possible destination(s) for evicted BO
226  *
227  * Fill in placement data when ttm_bo_evict() is called
228  */
229 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
230 				struct ttm_placement *placement)
231 {
232 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
233 	struct amdgpu_bo *abo;
234 	static const struct ttm_place placements = {
235 		.fpfn = 0,
236 		.lpfn = 0,
237 		.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
238 	};
239 
240 	/* Don't handle scatter gather BOs */
241 	if (bo->type == ttm_bo_type_sg) {
242 		placement->num_placement = 0;
243 		placement->num_busy_placement = 0;
244 		return;
245 	}
246 
247 	/* Object isn't an AMDGPU object so ignore */
248 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
249 		placement->placement = &placements;
250 		placement->busy_placement = &placements;
251 		placement->num_placement = 1;
252 		placement->num_busy_placement = 1;
253 		return;
254 	}
255 
256 	abo = ttm_to_amdgpu_bo(bo);
257 	switch (bo->mem.mem_type) {
258 	case TTM_PL_VRAM:
259 		if (!adev->mman.buffer_funcs_enabled) {
260 			/* Move to system memory */
261 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
262 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
263 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
264 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
265 
266 			/* Try evicting to the CPU inaccessible part of VRAM
267 			 * first, but only set GTT as busy placement, so this
268 			 * BO will be evicted to GTT rather than causing other
269 			 * BOs to be evicted from VRAM
270 			 */
271 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
272 							 AMDGPU_GEM_DOMAIN_GTT);
273 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
274 			abo->placements[0].lpfn = 0;
275 			abo->placement.busy_placement = &abo->placements[1];
276 			abo->placement.num_busy_placement = 1;
277 		} else {
278 			/* Move to GTT memory */
279 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
280 		}
281 		break;
282 	case TTM_PL_TT:
283 	default:
284 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
285 	}
286 	*placement = abo->placement;
287 }
288 
289 /**
290  * amdgpu_verify_access - Verify access for a mmap call
291  *
292  * @bo:	The buffer object to map
293  * @filp: The file pointer from the process performing the mmap
294  *
295  * This is called by ttm_bo_mmap() to verify whether a process
296  * has the right to mmap a BO to their process space.
297  */
298 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
299 {
300 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
301 
302 	/*
303 	 * Don't verify access for KFD BOs. They don't have a GEM
304 	 * object associated with them.
305 	 */
306 	if (abo->kfd_bo)
307 		return 0;
308 
309 	if (amdgpu_ttm_tt_get_usermm(bo->ttm))
310 		return -EPERM;
311 	return drm_vma_node_verify_access(&abo->gem_base.vma_node,
312 					  filp->private_data);
313 }
314 
315 /**
316  * amdgpu_move_null - Register memory for a buffer object
317  *
318  * @bo: The bo to assign the memory to
319  * @new_mem: The memory to be assigned.
320  *
321  * Assign the memory from new_mem to the memory of the buffer object bo.
322  */
323 static void amdgpu_move_null(struct ttm_buffer_object *bo,
324 			     struct ttm_mem_reg *new_mem)
325 {
326 	struct ttm_mem_reg *old_mem = &bo->mem;
327 
328 	BUG_ON(old_mem->mm_node != NULL);
329 	*old_mem = *new_mem;
330 	new_mem->mm_node = NULL;
331 }
332 
333 /**
334  * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
335  *
336  * @bo: The bo to assign the memory to.
337  * @mm_node: Memory manager node for drm allocator.
338  * @mem: The region where the bo resides.
339  *
340  */
341 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
342 				    struct drm_mm_node *mm_node,
343 				    struct ttm_mem_reg *mem)
344 {
345 	uint64_t addr = 0;
346 
347 	if (mem->mem_type != TTM_PL_TT || amdgpu_gtt_mgr_has_gart_addr(mem)) {
348 		addr = mm_node->start << PAGE_SHIFT;
349 		addr += bo->bdev->man[mem->mem_type].gpu_offset;
350 	}
351 	return addr;
352 }
353 
354 /**
355  * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
356  * @offset. It also modifies the offset to be within the drm_mm_node returned
357  *
358  * @mem: The region where the bo resides.
359  * @offset: The offset that drm_mm_node is used for finding.
360  *
361  */
362 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
363 					       unsigned long *offset)
364 {
365 	struct drm_mm_node *mm_node = mem->mm_node;
366 
367 	while (*offset >= (mm_node->size << PAGE_SHIFT)) {
368 		*offset -= (mm_node->size << PAGE_SHIFT);
369 		++mm_node;
370 	}
371 	return mm_node;
372 }
373 
374 /**
375  * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
376  *
377  * The function copies @size bytes from {src->mem + src->offset} to
378  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
379  * move and different for a BO to BO copy.
380  *
381  * @f: Returns the last fence if multiple jobs are submitted.
382  */
383 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
384 			       struct amdgpu_copy_mem *src,
385 			       struct amdgpu_copy_mem *dst,
386 			       uint64_t size,
387 			       struct reservation_object *resv,
388 			       struct dma_fence **f)
389 {
390 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
391 	struct drm_mm_node *src_mm, *dst_mm;
392 	uint64_t src_node_start, dst_node_start, src_node_size,
393 		 dst_node_size, src_page_offset, dst_page_offset;
394 	struct dma_fence *fence = NULL;
395 	int r = 0;
396 	const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
397 					AMDGPU_GPU_PAGE_SIZE);
398 
399 	if (!adev->mman.buffer_funcs_enabled) {
400 		DRM_ERROR("Trying to move memory with ring turned off.\n");
401 		return -EINVAL;
402 	}
403 
404 	src_mm = amdgpu_find_mm_node(src->mem, &src->offset);
405 	src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) +
406 					     src->offset;
407 	src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset;
408 	src_page_offset = src_node_start & (PAGE_SIZE - 1);
409 
410 	dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset);
411 	dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) +
412 					     dst->offset;
413 	dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset;
414 	dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
415 
416 	mutex_lock(&adev->mman.gtt_window_lock);
417 
418 	while (size) {
419 		unsigned long cur_size;
420 		uint64_t from = src_node_start, to = dst_node_start;
421 		struct dma_fence *next;
422 
423 		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
424 		 * begins at an offset, then adjust the size accordingly
425 		 */
426 		cur_size = min3(min(src_node_size, dst_node_size), size,
427 				GTT_MAX_BYTES);
428 		if (cur_size + src_page_offset > GTT_MAX_BYTES ||
429 		    cur_size + dst_page_offset > GTT_MAX_BYTES)
430 			cur_size -= max(src_page_offset, dst_page_offset);
431 
432 		/* Map only what needs to be accessed. Map src to window 0 and
433 		 * dst to window 1
434 		 */
435 		if (src->mem->mem_type == TTM_PL_TT &&
436 		    !amdgpu_gtt_mgr_has_gart_addr(src->mem)) {
437 			r = amdgpu_map_buffer(src->bo, src->mem,
438 					PFN_UP(cur_size + src_page_offset),
439 					src_node_start, 0, ring,
440 					&from);
441 			if (r)
442 				goto error;
443 			/* Adjust the offset because amdgpu_map_buffer returns
444 			 * start of mapped page
445 			 */
446 			from += src_page_offset;
447 		}
448 
449 		if (dst->mem->mem_type == TTM_PL_TT &&
450 		    !amdgpu_gtt_mgr_has_gart_addr(dst->mem)) {
451 			r = amdgpu_map_buffer(dst->bo, dst->mem,
452 					PFN_UP(cur_size + dst_page_offset),
453 					dst_node_start, 1, ring,
454 					&to);
455 			if (r)
456 				goto error;
457 			to += dst_page_offset;
458 		}
459 
460 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
461 				       resv, &next, false, true);
462 		if (r)
463 			goto error;
464 
465 		dma_fence_put(fence);
466 		fence = next;
467 
468 		size -= cur_size;
469 		if (!size)
470 			break;
471 
472 		src_node_size -= cur_size;
473 		if (!src_node_size) {
474 			src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm,
475 							     src->mem);
476 			src_node_size = (src_mm->size << PAGE_SHIFT);
477 		} else {
478 			src_node_start += cur_size;
479 			src_page_offset = src_node_start & (PAGE_SIZE - 1);
480 		}
481 		dst_node_size -= cur_size;
482 		if (!dst_node_size) {
483 			dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm,
484 							     dst->mem);
485 			dst_node_size = (dst_mm->size << PAGE_SHIFT);
486 		} else {
487 			dst_node_start += cur_size;
488 			dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
489 		}
490 	}
491 error:
492 	mutex_unlock(&adev->mman.gtt_window_lock);
493 	if (f)
494 		*f = dma_fence_get(fence);
495 	dma_fence_put(fence);
496 	return r;
497 }
498 
499 /**
500  * amdgpu_move_blit - Copy an entire buffer to another buffer
501  *
502  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
503  * help move buffers to and from VRAM.
504  */
505 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
506 			    bool evict, bool no_wait_gpu,
507 			    struct ttm_mem_reg *new_mem,
508 			    struct ttm_mem_reg *old_mem)
509 {
510 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
511 	struct amdgpu_copy_mem src, dst;
512 	struct dma_fence *fence = NULL;
513 	int r;
514 
515 	src.bo = bo;
516 	dst.bo = bo;
517 	src.mem = old_mem;
518 	dst.mem = new_mem;
519 	src.offset = 0;
520 	dst.offset = 0;
521 
522 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
523 				       new_mem->num_pages << PAGE_SHIFT,
524 				       bo->resv, &fence);
525 	if (r)
526 		goto error;
527 
528 	r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
529 	dma_fence_put(fence);
530 	return r;
531 
532 error:
533 	if (fence)
534 		dma_fence_wait(fence, false);
535 	dma_fence_put(fence);
536 	return r;
537 }
538 
539 /**
540  * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
541  *
542  * Called by amdgpu_bo_move().
543  */
544 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
545 				struct ttm_operation_ctx *ctx,
546 				struct ttm_mem_reg *new_mem)
547 {
548 	struct amdgpu_device *adev;
549 	struct ttm_mem_reg *old_mem = &bo->mem;
550 	struct ttm_mem_reg tmp_mem;
551 	struct ttm_place placements;
552 	struct ttm_placement placement;
553 	int r;
554 
555 	adev = amdgpu_ttm_adev(bo->bdev);
556 
557 	/* create space/pages for new_mem in GTT space */
558 	tmp_mem = *new_mem;
559 	tmp_mem.mm_node = NULL;
560 	placement.num_placement = 1;
561 	placement.placement = &placements;
562 	placement.num_busy_placement = 1;
563 	placement.busy_placement = &placements;
564 	placements.fpfn = 0;
565 	placements.lpfn = 0;
566 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
567 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
568 	if (unlikely(r)) {
569 		return r;
570 	}
571 
572 	/* set caching flags */
573 	r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
574 	if (unlikely(r)) {
575 		goto out_cleanup;
576 	}
577 
578 	/* Bind the memory to the GTT space */
579 	r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
580 	if (unlikely(r)) {
581 		goto out_cleanup;
582 	}
583 
584 	/* blit VRAM to GTT */
585 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
586 	if (unlikely(r)) {
587 		goto out_cleanup;
588 	}
589 
590 	/* move BO (in tmp_mem) to new_mem */
591 	r = ttm_bo_move_ttm(bo, ctx, new_mem);
592 out_cleanup:
593 	ttm_bo_mem_put(bo, &tmp_mem);
594 	return r;
595 }
596 
597 /**
598  * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
599  *
600  * Called by amdgpu_bo_move().
601  */
602 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
603 				struct ttm_operation_ctx *ctx,
604 				struct ttm_mem_reg *new_mem)
605 {
606 	struct amdgpu_device *adev;
607 	struct ttm_mem_reg *old_mem = &bo->mem;
608 	struct ttm_mem_reg tmp_mem;
609 	struct ttm_placement placement;
610 	struct ttm_place placements;
611 	int r;
612 
613 	adev = amdgpu_ttm_adev(bo->bdev);
614 
615 	/* make space in GTT for old_mem buffer */
616 	tmp_mem = *new_mem;
617 	tmp_mem.mm_node = NULL;
618 	placement.num_placement = 1;
619 	placement.placement = &placements;
620 	placement.num_busy_placement = 1;
621 	placement.busy_placement = &placements;
622 	placements.fpfn = 0;
623 	placements.lpfn = 0;
624 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
625 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
626 	if (unlikely(r)) {
627 		return r;
628 	}
629 
630 	/* move/bind old memory to GTT space */
631 	r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
632 	if (unlikely(r)) {
633 		goto out_cleanup;
634 	}
635 
636 	/* copy to VRAM */
637 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
638 	if (unlikely(r)) {
639 		goto out_cleanup;
640 	}
641 out_cleanup:
642 	ttm_bo_mem_put(bo, &tmp_mem);
643 	return r;
644 }
645 
646 /**
647  * amdgpu_bo_move - Move a buffer object to a new memory location
648  *
649  * Called by ttm_bo_handle_move_mem()
650  */
651 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
652 			  struct ttm_operation_ctx *ctx,
653 			  struct ttm_mem_reg *new_mem)
654 {
655 	struct amdgpu_device *adev;
656 	struct amdgpu_bo *abo;
657 	struct ttm_mem_reg *old_mem = &bo->mem;
658 	int r;
659 
660 	/* Can't move a pinned BO */
661 	abo = ttm_to_amdgpu_bo(bo);
662 	if (WARN_ON_ONCE(abo->pin_count > 0))
663 		return -EINVAL;
664 
665 	adev = amdgpu_ttm_adev(bo->bdev);
666 
667 	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
668 		amdgpu_move_null(bo, new_mem);
669 		return 0;
670 	}
671 	if ((old_mem->mem_type == TTM_PL_TT &&
672 	     new_mem->mem_type == TTM_PL_SYSTEM) ||
673 	    (old_mem->mem_type == TTM_PL_SYSTEM &&
674 	     new_mem->mem_type == TTM_PL_TT)) {
675 		/* bind is enough */
676 		amdgpu_move_null(bo, new_mem);
677 		return 0;
678 	}
679 
680 	if (!adev->mman.buffer_funcs_enabled)
681 		goto memcpy;
682 
683 	if (old_mem->mem_type == TTM_PL_VRAM &&
684 	    new_mem->mem_type == TTM_PL_SYSTEM) {
685 		r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
686 	} else if (old_mem->mem_type == TTM_PL_SYSTEM &&
687 		   new_mem->mem_type == TTM_PL_VRAM) {
688 		r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
689 	} else {
690 		r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
691 				     new_mem, old_mem);
692 	}
693 
694 	if (r) {
695 memcpy:
696 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
697 		if (r) {
698 			return r;
699 		}
700 	}
701 
702 	if (bo->type == ttm_bo_type_device &&
703 	    new_mem->mem_type == TTM_PL_VRAM &&
704 	    old_mem->mem_type != TTM_PL_VRAM) {
705 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
706 		 * accesses the BO after it's moved.
707 		 */
708 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
709 	}
710 
711 	/* update statistics */
712 	atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
713 	return 0;
714 }
715 
716 /**
717  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
718  *
719  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
720  */
721 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
722 {
723 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
724 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
725 	struct drm_mm_node *mm_node = mem->mm_node;
726 
727 	mem->bus.addr = NULL;
728 	mem->bus.offset = 0;
729 	mem->bus.size = mem->num_pages << PAGE_SHIFT;
730 	mem->bus.base = 0;
731 	mem->bus.is_iomem = false;
732 	if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
733 		return -EINVAL;
734 	switch (mem->mem_type) {
735 	case TTM_PL_SYSTEM:
736 		/* system memory */
737 		return 0;
738 	case TTM_PL_TT:
739 		break;
740 	case TTM_PL_VRAM:
741 		mem->bus.offset = mem->start << PAGE_SHIFT;
742 		/* check if it's visible */
743 		if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
744 			return -EINVAL;
745 		/* Only physically contiguous buffers apply. In a contiguous
746 		 * buffer, size of the first mm_node would match the number of
747 		 * pages in ttm_mem_reg.
748 		 */
749 		if (adev->mman.aper_base_kaddr &&
750 		    (mm_node->size == mem->num_pages))
751 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
752 					mem->bus.offset;
753 
754 		mem->bus.base = adev->gmc.aper_base;
755 		mem->bus.is_iomem = true;
756 		break;
757 	default:
758 		return -EINVAL;
759 	}
760 	return 0;
761 }
762 
763 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
764 {
765 }
766 
767 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
768 					   unsigned long page_offset)
769 {
770 	struct drm_mm_node *mm;
771 	unsigned long offset = (page_offset << PAGE_SHIFT);
772 
773 	mm = amdgpu_find_mm_node(&bo->mem, &offset);
774 	return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
775 		(offset >> PAGE_SHIFT);
776 }
777 
778 /*
779  * TTM backend functions.
780  */
781 struct amdgpu_ttm_gup_task_list {
782 	struct list_head	list;
783 	struct task_struct	*task;
784 };
785 
786 struct amdgpu_ttm_tt {
787 	struct ttm_dma_tt	ttm;
788 	u64			offset;
789 	uint64_t		userptr;
790 	struct task_struct	*usertask;
791 	uint32_t		userflags;
792 	spinlock_t              guptasklock;
793 	struct list_head        guptasks;
794 	atomic_t		mmu_invalidations;
795 	uint32_t		last_set_pages;
796 };
797 
798 /**
799  * amdgpu_ttm_tt_get_user_pages - Pin pages of memory pointed to by a USERPTR
800  * pointer to memory
801  *
802  * Called by amdgpu_gem_userptr_ioctl() and amdgpu_cs_parser_bos().
803  * This provides a wrapper around the get_user_pages() call to provide
804  * device accessible pages that back user memory.
805  */
806 int amdgpu_ttm_tt_get_user_pages(struct ttm_tt *ttm, struct page **pages)
807 {
808 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
809 	struct mm_struct *mm = gtt->usertask->mm;
810 	unsigned int flags = 0;
811 	unsigned pinned = 0;
812 	int r;
813 
814 	if (!mm) /* Happens during process shutdown */
815 		return -ESRCH;
816 
817 	if (!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY))
818 		flags |= FOLL_WRITE;
819 
820 	down_read(&mm->mmap_sem);
821 
822 	if (gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) {
823 		/*
824 		 * check that we only use anonymous memory to prevent problems
825 		 * with writeback
826 		 */
827 		unsigned long end = gtt->userptr + ttm->num_pages * PAGE_SIZE;
828 		struct vm_area_struct *vma;
829 
830 		vma = find_vma(mm, gtt->userptr);
831 		if (!vma || vma->vm_file || vma->vm_end < end) {
832 			up_read(&mm->mmap_sem);
833 			return -EPERM;
834 		}
835 	}
836 
837 	/* loop enough times using contiguous pages of memory */
838 	do {
839 		unsigned num_pages = ttm->num_pages - pinned;
840 		uint64_t userptr = gtt->userptr + pinned * PAGE_SIZE;
841 		struct page **p = pages + pinned;
842 		struct amdgpu_ttm_gup_task_list guptask;
843 
844 		guptask.task = current;
845 		spin_lock(&gtt->guptasklock);
846 		list_add(&guptask.list, &gtt->guptasks);
847 		spin_unlock(&gtt->guptasklock);
848 
849 		if (mm == current->mm)
850 			r = get_user_pages(userptr, num_pages, flags, p, NULL);
851 		else
852 			r = get_user_pages_remote(gtt->usertask,
853 					mm, userptr, num_pages,
854 					flags, p, NULL, NULL);
855 
856 		spin_lock(&gtt->guptasklock);
857 		list_del(&guptask.list);
858 		spin_unlock(&gtt->guptasklock);
859 
860 		if (r < 0)
861 			goto release_pages;
862 
863 		pinned += r;
864 
865 	} while (pinned < ttm->num_pages);
866 
867 	up_read(&mm->mmap_sem);
868 	return 0;
869 
870 release_pages:
871 	release_pages(pages, pinned);
872 	up_read(&mm->mmap_sem);
873 	return r;
874 }
875 
876 /**
877  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
878  *
879  * Called by amdgpu_cs_list_validate(). This creates the page list
880  * that backs user memory and will ultimately be mapped into the device
881  * address space.
882  */
883 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
884 {
885 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
886 	unsigned i;
887 
888 	gtt->last_set_pages = atomic_read(&gtt->mmu_invalidations);
889 	for (i = 0; i < ttm->num_pages; ++i) {
890 		if (ttm->pages[i])
891 			put_page(ttm->pages[i]);
892 
893 		ttm->pages[i] = pages ? pages[i] : NULL;
894 	}
895 }
896 
897 /**
898  * amdgpu_ttm_tt_mark_user_page - Mark pages as dirty
899  *
900  * Called while unpinning userptr pages
901  */
902 void amdgpu_ttm_tt_mark_user_pages(struct ttm_tt *ttm)
903 {
904 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
905 	unsigned i;
906 
907 	for (i = 0; i < ttm->num_pages; ++i) {
908 		struct page *page = ttm->pages[i];
909 
910 		if (!page)
911 			continue;
912 
913 		if (!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY))
914 			set_page_dirty(page);
915 
916 		mark_page_accessed(page);
917 	}
918 }
919 
920 /**
921  * amdgpu_ttm_tt_pin_userptr - 	prepare the sg table with the user pages
922  *
923  * Called by amdgpu_ttm_backend_bind()
924  **/
925 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
926 {
927 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
928 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
929 	unsigned nents;
930 	int r;
931 
932 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
933 	enum dma_data_direction direction = write ?
934 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
935 
936 	/* Allocate an SG array and squash pages into it */
937 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
938 				      ttm->num_pages << PAGE_SHIFT,
939 				      GFP_KERNEL);
940 	if (r)
941 		goto release_sg;
942 
943 	/* Map SG to device */
944 	r = -ENOMEM;
945 	nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
946 	if (nents != ttm->sg->nents)
947 		goto release_sg;
948 
949 	/* convert SG to linear array of pages and dma addresses */
950 	drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
951 					 gtt->ttm.dma_address, ttm->num_pages);
952 
953 	return 0;
954 
955 release_sg:
956 	kfree(ttm->sg);
957 	ttm->sg = NULL;
958 	return r;
959 }
960 
961 /**
962  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
963  */
964 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
965 {
966 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
967 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
968 
969 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
970 	enum dma_data_direction direction = write ?
971 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
972 
973 	/* double check that we don't free the table twice */
974 	if (!ttm->sg || !ttm->sg->sgl)
975 		return;
976 
977 	/* unmap the pages mapped to the device */
978 	dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
979 
980 	/* mark the pages as dirty */
981 	amdgpu_ttm_tt_mark_user_pages(ttm);
982 
983 	sg_free_table(ttm->sg);
984 }
985 
986 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
987 				struct ttm_buffer_object *tbo,
988 				uint64_t flags)
989 {
990 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
991 	struct ttm_tt *ttm = tbo->ttm;
992 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
993 	int r;
994 
995 	if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) {
996 		uint64_t page_idx = 1;
997 
998 		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
999 				ttm->pages, gtt->ttm.dma_address, flags);
1000 		if (r)
1001 			goto gart_bind_fail;
1002 
1003 		/* Patch mtype of the second part BO */
1004 		flags &=  ~AMDGPU_PTE_MTYPE_MASK;
1005 		flags |= AMDGPU_PTE_MTYPE(AMDGPU_MTYPE_NC);
1006 
1007 		r = amdgpu_gart_bind(adev,
1008 				gtt->offset + (page_idx << PAGE_SHIFT),
1009 				ttm->num_pages - page_idx,
1010 				&ttm->pages[page_idx],
1011 				&(gtt->ttm.dma_address[page_idx]), flags);
1012 	} else {
1013 		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1014 				     ttm->pages, gtt->ttm.dma_address, flags);
1015 	}
1016 
1017 gart_bind_fail:
1018 	if (r)
1019 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1020 			  ttm->num_pages, gtt->offset);
1021 
1022 	return r;
1023 }
1024 
1025 /**
1026  * amdgpu_ttm_backend_bind - Bind GTT memory
1027  *
1028  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1029  * This handles binding GTT memory to the device address space.
1030  */
1031 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
1032 				   struct ttm_mem_reg *bo_mem)
1033 {
1034 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1035 	struct amdgpu_ttm_tt *gtt = (void*)ttm;
1036 	uint64_t flags;
1037 	int r = 0;
1038 
1039 	if (gtt->userptr) {
1040 		r = amdgpu_ttm_tt_pin_userptr(ttm);
1041 		if (r) {
1042 			DRM_ERROR("failed to pin userptr\n");
1043 			return r;
1044 		}
1045 	}
1046 	if (!ttm->num_pages) {
1047 		WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1048 		     ttm->num_pages, bo_mem, ttm);
1049 	}
1050 
1051 	if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1052 	    bo_mem->mem_type == AMDGPU_PL_GWS ||
1053 	    bo_mem->mem_type == AMDGPU_PL_OA)
1054 		return -EINVAL;
1055 
1056 	if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1057 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1058 		return 0;
1059 	}
1060 
1061 	/* compute PTE flags relevant to this BO memory */
1062 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1063 
1064 	/* bind pages into GART page tables */
1065 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1066 	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1067 		ttm->pages, gtt->ttm.dma_address, flags);
1068 
1069 	if (r)
1070 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1071 			  ttm->num_pages, gtt->offset);
1072 	return r;
1073 }
1074 
1075 /**
1076  * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1077  */
1078 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1079 {
1080 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1081 	struct ttm_operation_ctx ctx = { false, false };
1082 	struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1083 	struct ttm_mem_reg tmp;
1084 	struct ttm_placement placement;
1085 	struct ttm_place placements;
1086 	uint64_t flags;
1087 	int r;
1088 
1089 	if (bo->mem.mem_type != TTM_PL_TT ||
1090 	    amdgpu_gtt_mgr_has_gart_addr(&bo->mem))
1091 		return 0;
1092 
1093 	/* allocate GTT space */
1094 	tmp = bo->mem;
1095 	tmp.mm_node = NULL;
1096 	placement.num_placement = 1;
1097 	placement.placement = &placements;
1098 	placement.num_busy_placement = 1;
1099 	placement.busy_placement = &placements;
1100 	placements.fpfn = 0;
1101 	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1102 	placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1103 		TTM_PL_FLAG_TT;
1104 
1105 	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1106 	if (unlikely(r))
1107 		return r;
1108 
1109 	/* compute PTE flags for this buffer object */
1110 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1111 
1112 	/* Bind pages */
1113 	gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1114 	r = amdgpu_ttm_gart_bind(adev, bo, flags);
1115 	if (unlikely(r)) {
1116 		ttm_bo_mem_put(bo, &tmp);
1117 		return r;
1118 	}
1119 
1120 	ttm_bo_mem_put(bo, &bo->mem);
1121 	bo->mem = tmp;
1122 	bo->offset = (bo->mem.start << PAGE_SHIFT) +
1123 		bo->bdev->man[bo->mem.mem_type].gpu_offset;
1124 
1125 	return 0;
1126 }
1127 
1128 /**
1129  * amdgpu_ttm_recover_gart - Rebind GTT pages
1130  *
1131  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1132  * rebind GTT pages during a GPU reset.
1133  */
1134 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1135 {
1136 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1137 	uint64_t flags;
1138 	int r;
1139 
1140 	if (!tbo->ttm)
1141 		return 0;
1142 
1143 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1144 	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1145 
1146 	return r;
1147 }
1148 
1149 /**
1150  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1151  *
1152  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1153  * ttm_tt_destroy().
1154  */
1155 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1156 {
1157 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1158 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1159 	int r;
1160 
1161 	/* if the pages have userptr pinning then clear that first */
1162 	if (gtt->userptr)
1163 		amdgpu_ttm_tt_unpin_userptr(ttm);
1164 
1165 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1166 		return 0;
1167 
1168 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1169 	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1170 	if (r)
1171 		DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1172 			  gtt->ttm.ttm.num_pages, gtt->offset);
1173 	return r;
1174 }
1175 
1176 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1177 {
1178 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1179 
1180 	if (gtt->usertask)
1181 		put_task_struct(gtt->usertask);
1182 
1183 	ttm_dma_tt_fini(&gtt->ttm);
1184 	kfree(gtt);
1185 }
1186 
1187 static struct ttm_backend_func amdgpu_backend_func = {
1188 	.bind = &amdgpu_ttm_backend_bind,
1189 	.unbind = &amdgpu_ttm_backend_unbind,
1190 	.destroy = &amdgpu_ttm_backend_destroy,
1191 };
1192 
1193 /**
1194  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1195  *
1196  * @bo: The buffer object to create a GTT ttm_tt object around
1197  *
1198  * Called by ttm_tt_create().
1199  */
1200 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1201 					   uint32_t page_flags)
1202 {
1203 	struct amdgpu_device *adev;
1204 	struct amdgpu_ttm_tt *gtt;
1205 
1206 	adev = amdgpu_ttm_adev(bo->bdev);
1207 
1208 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1209 	if (gtt == NULL) {
1210 		return NULL;
1211 	}
1212 	gtt->ttm.ttm.func = &amdgpu_backend_func;
1213 
1214 	/* allocate space for the uninitialized page entries */
1215 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
1216 		kfree(gtt);
1217 		return NULL;
1218 	}
1219 	return &gtt->ttm.ttm;
1220 }
1221 
1222 /**
1223  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1224  *
1225  * Map the pages of a ttm_tt object to an address space visible
1226  * to the underlying device.
1227  */
1228 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1229 			struct ttm_operation_ctx *ctx)
1230 {
1231 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1232 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1233 	bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1234 
1235 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1236 	if (gtt && gtt->userptr) {
1237 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1238 		if (!ttm->sg)
1239 			return -ENOMEM;
1240 
1241 		ttm->page_flags |= TTM_PAGE_FLAG_SG;
1242 		ttm->state = tt_unbound;
1243 		return 0;
1244 	}
1245 
1246 	if (slave && ttm->sg) {
1247 		drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1248 						 gtt->ttm.dma_address,
1249 						 ttm->num_pages);
1250 		ttm->state = tt_unbound;
1251 		return 0;
1252 	}
1253 
1254 #ifdef CONFIG_SWIOTLB
1255 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1256 		return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
1257 	}
1258 #endif
1259 
1260 	/* fall back to generic helper to populate the page array
1261 	 * and map them to the device */
1262 	return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
1263 }
1264 
1265 /**
1266  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1267  *
1268  * Unmaps pages of a ttm_tt object from the device address space and
1269  * unpopulates the page array backing it.
1270  */
1271 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1272 {
1273 	struct amdgpu_device *adev;
1274 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1275 	bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1276 
1277 	if (gtt && gtt->userptr) {
1278 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1279 		kfree(ttm->sg);
1280 		ttm->sg = NULL;
1281 		ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1282 		return;
1283 	}
1284 
1285 	if (slave)
1286 		return;
1287 
1288 	adev = amdgpu_ttm_adev(ttm->bdev);
1289 
1290 #ifdef CONFIG_SWIOTLB
1291 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1292 		ttm_dma_unpopulate(&gtt->ttm, adev->dev);
1293 		return;
1294 	}
1295 #endif
1296 
1297 	/* fall back to generic helper to unmap and unpopulate array */
1298 	ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
1299 }
1300 
1301 /**
1302  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1303  * task
1304  *
1305  * @ttm: The ttm_tt object to bind this userptr object to
1306  * @addr:  The address in the current tasks VM space to use
1307  * @flags: Requirements of userptr object.
1308  *
1309  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1310  * to current task
1311  */
1312 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1313 			      uint32_t flags)
1314 {
1315 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1316 
1317 	if (gtt == NULL)
1318 		return -EINVAL;
1319 
1320 	gtt->userptr = addr;
1321 	gtt->userflags = flags;
1322 
1323 	if (gtt->usertask)
1324 		put_task_struct(gtt->usertask);
1325 	gtt->usertask = current->group_leader;
1326 	get_task_struct(gtt->usertask);
1327 
1328 	spin_lock_init(&gtt->guptasklock);
1329 	INIT_LIST_HEAD(&gtt->guptasks);
1330 	atomic_set(&gtt->mmu_invalidations, 0);
1331 	gtt->last_set_pages = 0;
1332 
1333 	return 0;
1334 }
1335 
1336 /**
1337  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1338  */
1339 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1340 {
1341 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1342 
1343 	if (gtt == NULL)
1344 		return NULL;
1345 
1346 	if (gtt->usertask == NULL)
1347 		return NULL;
1348 
1349 	return gtt->usertask->mm;
1350 }
1351 
1352 /**
1353  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1354  * address range for the current task.
1355  *
1356  */
1357 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1358 				  unsigned long end)
1359 {
1360 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1361 	struct amdgpu_ttm_gup_task_list *entry;
1362 	unsigned long size;
1363 
1364 	if (gtt == NULL || !gtt->userptr)
1365 		return false;
1366 
1367 	/* Return false if no part of the ttm_tt object lies within
1368 	 * the range
1369 	 */
1370 	size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1371 	if (gtt->userptr > end || gtt->userptr + size <= start)
1372 		return false;
1373 
1374 	/* Search the lists of tasks that hold this mapping and see
1375 	 * if current is one of them.  If it is return false.
1376 	 */
1377 	spin_lock(&gtt->guptasklock);
1378 	list_for_each_entry(entry, &gtt->guptasks, list) {
1379 		if (entry->task == current) {
1380 			spin_unlock(&gtt->guptasklock);
1381 			return false;
1382 		}
1383 	}
1384 	spin_unlock(&gtt->guptasklock);
1385 
1386 	atomic_inc(&gtt->mmu_invalidations);
1387 
1388 	return true;
1389 }
1390 
1391 /**
1392  * amdgpu_ttm_tt_userptr_invalidated - Has the ttm_tt object been invalidated?
1393  */
1394 bool amdgpu_ttm_tt_userptr_invalidated(struct ttm_tt *ttm,
1395 				       int *last_invalidated)
1396 {
1397 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1398 	int prev_invalidated = *last_invalidated;
1399 
1400 	*last_invalidated = atomic_read(&gtt->mmu_invalidations);
1401 	return prev_invalidated != *last_invalidated;
1402 }
1403 
1404 /**
1405  * amdgpu_ttm_tt_userptr_needs_pages - Have the pages backing this ttm_tt object
1406  * been invalidated since the last time they've been set?
1407  */
1408 bool amdgpu_ttm_tt_userptr_needs_pages(struct ttm_tt *ttm)
1409 {
1410 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1411 
1412 	if (gtt == NULL || !gtt->userptr)
1413 		return false;
1414 
1415 	return atomic_read(&gtt->mmu_invalidations) != gtt->last_set_pages;
1416 }
1417 
1418 /**
1419  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1420  */
1421 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1422 {
1423 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1424 
1425 	if (gtt == NULL)
1426 		return false;
1427 
1428 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1429 }
1430 
1431 /**
1432  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1433  *
1434  * @ttm: The ttm_tt object to compute the flags for
1435  * @mem: The memory registry backing this ttm_tt object
1436  */
1437 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1438 				 struct ttm_mem_reg *mem)
1439 {
1440 	uint64_t flags = 0;
1441 
1442 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1443 		flags |= AMDGPU_PTE_VALID;
1444 
1445 	if (mem && mem->mem_type == TTM_PL_TT) {
1446 		flags |= AMDGPU_PTE_SYSTEM;
1447 
1448 		if (ttm->caching_state == tt_cached)
1449 			flags |= AMDGPU_PTE_SNOOPED;
1450 	}
1451 
1452 	flags |= adev->gart.gart_pte_flags;
1453 	flags |= AMDGPU_PTE_READABLE;
1454 
1455 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1456 		flags |= AMDGPU_PTE_WRITEABLE;
1457 
1458 	return flags;
1459 }
1460 
1461 /**
1462  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1463  * object.
1464  *
1465  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1466  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1467  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1468  * used to clean out a memory space.
1469  */
1470 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1471 					    const struct ttm_place *place)
1472 {
1473 	unsigned long num_pages = bo->mem.num_pages;
1474 	struct drm_mm_node *node = bo->mem.mm_node;
1475 	struct reservation_object_list *flist;
1476 	struct dma_fence *f;
1477 	int i;
1478 
1479 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1480 	 * If true, then return false as any KFD process needs all its BOs to
1481 	 * be resident to run successfully
1482 	 */
1483 	flist = reservation_object_get_list(bo->resv);
1484 	if (flist) {
1485 		for (i = 0; i < flist->shared_count; ++i) {
1486 			f = rcu_dereference_protected(flist->shared[i],
1487 				reservation_object_held(bo->resv));
1488 			if (amdkfd_fence_check_mm(f, current->mm))
1489 				return false;
1490 		}
1491 	}
1492 
1493 	switch (bo->mem.mem_type) {
1494 	case TTM_PL_TT:
1495 		return true;
1496 
1497 	case TTM_PL_VRAM:
1498 		/* Check each drm MM node individually */
1499 		while (num_pages) {
1500 			if (place->fpfn < (node->start + node->size) &&
1501 			    !(place->lpfn && place->lpfn <= node->start))
1502 				return true;
1503 
1504 			num_pages -= node->size;
1505 			++node;
1506 		}
1507 		return false;
1508 
1509 	default:
1510 		break;
1511 	}
1512 
1513 	return ttm_bo_eviction_valuable(bo, place);
1514 }
1515 
1516 /**
1517  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1518  *
1519  * @bo:  The buffer object to read/write
1520  * @offset:  Offset into buffer object
1521  * @buf:  Secondary buffer to write/read from
1522  * @len: Length in bytes of access
1523  * @write:  true if writing
1524  *
1525  * This is used to access VRAM that backs a buffer object via MMIO
1526  * access for debugging purposes.
1527  */
1528 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1529 				    unsigned long offset,
1530 				    void *buf, int len, int write)
1531 {
1532 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1533 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1534 	struct drm_mm_node *nodes;
1535 	uint32_t value = 0;
1536 	int ret = 0;
1537 	uint64_t pos;
1538 	unsigned long flags;
1539 
1540 	if (bo->mem.mem_type != TTM_PL_VRAM)
1541 		return -EIO;
1542 
1543 	nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset);
1544 	pos = (nodes->start << PAGE_SHIFT) + offset;
1545 
1546 	while (len && pos < adev->gmc.mc_vram_size) {
1547 		uint64_t aligned_pos = pos & ~(uint64_t)3;
1548 		uint32_t bytes = 4 - (pos & 3);
1549 		uint32_t shift = (pos & 3) * 8;
1550 		uint32_t mask = 0xffffffff << shift;
1551 
1552 		if (len < bytes) {
1553 			mask &= 0xffffffff >> (bytes - len) * 8;
1554 			bytes = len;
1555 		}
1556 
1557 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1558 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1559 		WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1560 		if (!write || mask != 0xffffffff)
1561 			value = RREG32_NO_KIQ(mmMM_DATA);
1562 		if (write) {
1563 			value &= ~mask;
1564 			value |= (*(uint32_t *)buf << shift) & mask;
1565 			WREG32_NO_KIQ(mmMM_DATA, value);
1566 		}
1567 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1568 		if (!write) {
1569 			value = (value & mask) >> shift;
1570 			memcpy(buf, &value, bytes);
1571 		}
1572 
1573 		ret += bytes;
1574 		buf = (uint8_t *)buf + bytes;
1575 		pos += bytes;
1576 		len -= bytes;
1577 		if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1578 			++nodes;
1579 			pos = (nodes->start << PAGE_SHIFT);
1580 		}
1581 	}
1582 
1583 	return ret;
1584 }
1585 
1586 static struct ttm_bo_driver amdgpu_bo_driver = {
1587 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1588 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1589 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1590 	.invalidate_caches = &amdgpu_invalidate_caches,
1591 	.init_mem_type = &amdgpu_init_mem_type,
1592 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1593 	.evict_flags = &amdgpu_evict_flags,
1594 	.move = &amdgpu_bo_move,
1595 	.verify_access = &amdgpu_verify_access,
1596 	.move_notify = &amdgpu_bo_move_notify,
1597 	.fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1598 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1599 	.io_mem_free = &amdgpu_ttm_io_mem_free,
1600 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1601 	.access_memory = &amdgpu_ttm_access_memory
1602 };
1603 
1604 /*
1605  * Firmware Reservation functions
1606  */
1607 /**
1608  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1609  *
1610  * @adev: amdgpu_device pointer
1611  *
1612  * free fw reserved vram if it has been reserved.
1613  */
1614 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1615 {
1616 	amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1617 		NULL, &adev->fw_vram_usage.va);
1618 }
1619 
1620 /**
1621  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1622  *
1623  * @adev: amdgpu_device pointer
1624  *
1625  * create bo vram reservation from fw.
1626  */
1627 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1628 {
1629 	struct ttm_operation_ctx ctx = { false, false };
1630 	struct amdgpu_bo_param bp;
1631 	int r = 0;
1632 	int i;
1633 	u64 vram_size = adev->gmc.visible_vram_size;
1634 	u64 offset = adev->fw_vram_usage.start_offset;
1635 	u64 size = adev->fw_vram_usage.size;
1636 	struct amdgpu_bo *bo;
1637 
1638 	memset(&bp, 0, sizeof(bp));
1639 	bp.size = adev->fw_vram_usage.size;
1640 	bp.byte_align = PAGE_SIZE;
1641 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
1642 	bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
1643 		AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
1644 	bp.type = ttm_bo_type_kernel;
1645 	bp.resv = NULL;
1646 	adev->fw_vram_usage.va = NULL;
1647 	adev->fw_vram_usage.reserved_bo = NULL;
1648 
1649 	if (adev->fw_vram_usage.size > 0 &&
1650 		adev->fw_vram_usage.size <= vram_size) {
1651 
1652 		r = amdgpu_bo_create(adev, &bp,
1653 				     &adev->fw_vram_usage.reserved_bo);
1654 		if (r)
1655 			goto error_create;
1656 
1657 		r = amdgpu_bo_reserve(adev->fw_vram_usage.reserved_bo, false);
1658 		if (r)
1659 			goto error_reserve;
1660 
1661 		/* remove the original mem node and create a new one at the
1662 		 * request position
1663 		 */
1664 		bo = adev->fw_vram_usage.reserved_bo;
1665 		offset = ALIGN(offset, PAGE_SIZE);
1666 		for (i = 0; i < bo->placement.num_placement; ++i) {
1667 			bo->placements[i].fpfn = offset >> PAGE_SHIFT;
1668 			bo->placements[i].lpfn = (offset + size) >> PAGE_SHIFT;
1669 		}
1670 
1671 		ttm_bo_mem_put(&bo->tbo, &bo->tbo.mem);
1672 		r = ttm_bo_mem_space(&bo->tbo, &bo->placement,
1673 				     &bo->tbo.mem, &ctx);
1674 		if (r)
1675 			goto error_pin;
1676 
1677 		r = amdgpu_bo_pin_restricted(adev->fw_vram_usage.reserved_bo,
1678 			AMDGPU_GEM_DOMAIN_VRAM,
1679 			adev->fw_vram_usage.start_offset,
1680 			(adev->fw_vram_usage.start_offset +
1681 			adev->fw_vram_usage.size));
1682 		if (r)
1683 			goto error_pin;
1684 		r = amdgpu_bo_kmap(adev->fw_vram_usage.reserved_bo,
1685 			&adev->fw_vram_usage.va);
1686 		if (r)
1687 			goto error_kmap;
1688 
1689 		amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1690 	}
1691 	return r;
1692 
1693 error_kmap:
1694 	amdgpu_bo_unpin(adev->fw_vram_usage.reserved_bo);
1695 error_pin:
1696 	amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1697 error_reserve:
1698 	amdgpu_bo_unref(&adev->fw_vram_usage.reserved_bo);
1699 error_create:
1700 	adev->fw_vram_usage.va = NULL;
1701 	adev->fw_vram_usage.reserved_bo = NULL;
1702 	return r;
1703 }
1704 /**
1705  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1706  * gtt/vram related fields.
1707  *
1708  * This initializes all of the memory space pools that the TTM layer
1709  * will need such as the GTT space (system memory mapped to the device),
1710  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1711  * can be mapped per VMID.
1712  */
1713 int amdgpu_ttm_init(struct amdgpu_device *adev)
1714 {
1715 	uint64_t gtt_size;
1716 	int r;
1717 	u64 vis_vram_limit;
1718 
1719 	/* initialize global references for vram/gtt */
1720 	r = amdgpu_ttm_global_init(adev);
1721 	if (r) {
1722 		return r;
1723 	}
1724 	/* No others user of address space so set it to 0 */
1725 	r = ttm_bo_device_init(&adev->mman.bdev,
1726 			       adev->mman.bo_global_ref.ref.object,
1727 			       &amdgpu_bo_driver,
1728 			       adev->ddev->anon_inode->i_mapping,
1729 			       DRM_FILE_PAGE_OFFSET,
1730 			       adev->need_dma32);
1731 	if (r) {
1732 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1733 		return r;
1734 	}
1735 	adev->mman.initialized = true;
1736 
1737 	/* We opt to avoid OOM on system pages allocations */
1738 	adev->mman.bdev.no_retry = true;
1739 
1740 	/* Initialize VRAM pool with all of VRAM divided into pages */
1741 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1742 				adev->gmc.real_vram_size >> PAGE_SHIFT);
1743 	if (r) {
1744 		DRM_ERROR("Failed initializing VRAM heap.\n");
1745 		return r;
1746 	}
1747 
1748 	/* Reduce size of CPU-visible VRAM if requested */
1749 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1750 	if (amdgpu_vis_vram_limit > 0 &&
1751 	    vis_vram_limit <= adev->gmc.visible_vram_size)
1752 		adev->gmc.visible_vram_size = vis_vram_limit;
1753 
1754 	/* Change the size here instead of the init above so only lpfn is affected */
1755 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1756 #ifdef CONFIG_64BIT
1757 	adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1758 						adev->gmc.visible_vram_size);
1759 #endif
1760 
1761 	/*
1762 	 *The reserved vram for firmware must be pinned to the specified
1763 	 *place on the VRAM, so reserve it early.
1764 	 */
1765 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1766 	if (r) {
1767 		return r;
1768 	}
1769 
1770 	/* allocate memory as required for VGA
1771 	 * This is used for VGA emulation and pre-OS scanout buffers to
1772 	 * avoid display artifacts while transitioning between pre-OS
1773 	 * and driver.  */
1774 	if (adev->gmc.stolen_size) {
1775 		r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1776 					    AMDGPU_GEM_DOMAIN_VRAM,
1777 					    &adev->stolen_vga_memory,
1778 					    NULL, NULL);
1779 		if (r)
1780 			return r;
1781 	}
1782 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1783 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1784 
1785 	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
1786 	 * or whatever the user passed on module init */
1787 	if (amdgpu_gtt_size == -1) {
1788 		struct sysinfo si;
1789 
1790 		si_meminfo(&si);
1791 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1792 			       adev->gmc.mc_vram_size),
1793 			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
1794 	}
1795 	else
1796 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1797 
1798 	/* Initialize GTT memory pool */
1799 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
1800 	if (r) {
1801 		DRM_ERROR("Failed initializing GTT heap.\n");
1802 		return r;
1803 	}
1804 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1805 		 (unsigned)(gtt_size / (1024 * 1024)));
1806 
1807 	/* Initialize various on-chip memory pools */
1808 	adev->gds.mem.total_size = adev->gds.mem.total_size << AMDGPU_GDS_SHIFT;
1809 	adev->gds.mem.gfx_partition_size = adev->gds.mem.gfx_partition_size << AMDGPU_GDS_SHIFT;
1810 	adev->gds.mem.cs_partition_size = adev->gds.mem.cs_partition_size << AMDGPU_GDS_SHIFT;
1811 	adev->gds.gws.total_size = adev->gds.gws.total_size << AMDGPU_GWS_SHIFT;
1812 	adev->gds.gws.gfx_partition_size = adev->gds.gws.gfx_partition_size << AMDGPU_GWS_SHIFT;
1813 	adev->gds.gws.cs_partition_size = adev->gds.gws.cs_partition_size << AMDGPU_GWS_SHIFT;
1814 	adev->gds.oa.total_size = adev->gds.oa.total_size << AMDGPU_OA_SHIFT;
1815 	adev->gds.oa.gfx_partition_size = adev->gds.oa.gfx_partition_size << AMDGPU_OA_SHIFT;
1816 	adev->gds.oa.cs_partition_size = adev->gds.oa.cs_partition_size << AMDGPU_OA_SHIFT;
1817 	/* GDS Memory */
1818 	if (adev->gds.mem.total_size) {
1819 		r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
1820 				   adev->gds.mem.total_size >> PAGE_SHIFT);
1821 		if (r) {
1822 			DRM_ERROR("Failed initializing GDS heap.\n");
1823 			return r;
1824 		}
1825 	}
1826 
1827 	/* GWS */
1828 	if (adev->gds.gws.total_size) {
1829 		r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
1830 				   adev->gds.gws.total_size >> PAGE_SHIFT);
1831 		if (r) {
1832 			DRM_ERROR("Failed initializing gws heap.\n");
1833 			return r;
1834 		}
1835 	}
1836 
1837 	/* OA */
1838 	if (adev->gds.oa.total_size) {
1839 		r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
1840 				   adev->gds.oa.total_size >> PAGE_SHIFT);
1841 		if (r) {
1842 			DRM_ERROR("Failed initializing oa heap.\n");
1843 			return r;
1844 		}
1845 	}
1846 
1847 	/* Register debugfs entries for amdgpu_ttm */
1848 	r = amdgpu_ttm_debugfs_init(adev);
1849 	if (r) {
1850 		DRM_ERROR("Failed to init debugfs\n");
1851 		return r;
1852 	}
1853 	return 0;
1854 }
1855 
1856 /**
1857  * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
1858  */
1859 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
1860 {
1861 	/* return the VGA stolen memory (if any) back to VRAM */
1862 	amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, NULL);
1863 }
1864 
1865 /**
1866  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1867  */
1868 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1869 {
1870 	if (!adev->mman.initialized)
1871 		return;
1872 
1873 	amdgpu_ttm_debugfs_fini(adev);
1874 	amdgpu_ttm_fw_reserve_vram_fini(adev);
1875 	if (adev->mman.aper_base_kaddr)
1876 		iounmap(adev->mman.aper_base_kaddr);
1877 	adev->mman.aper_base_kaddr = NULL;
1878 
1879 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
1880 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
1881 	if (adev->gds.mem.total_size)
1882 		ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
1883 	if (adev->gds.gws.total_size)
1884 		ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
1885 	if (adev->gds.oa.total_size)
1886 		ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
1887 	ttm_bo_device_release(&adev->mman.bdev);
1888 	amdgpu_ttm_global_fini(adev);
1889 	adev->mman.initialized = false;
1890 	DRM_INFO("amdgpu: ttm finalized\n");
1891 }
1892 
1893 /**
1894  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1895  *
1896  * @adev: amdgpu_device pointer
1897  * @enable: true when we can use buffer functions.
1898  *
1899  * Enable/disable use of buffer functions during suspend/resume. This should
1900  * only be called at bootup or when userspace isn't running.
1901  */
1902 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1903 {
1904 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
1905 	uint64_t size;
1906 	int r;
1907 
1908 	if (!adev->mman.initialized || adev->in_gpu_reset ||
1909 	    adev->mman.buffer_funcs_enabled == enable)
1910 		return;
1911 
1912 	if (enable) {
1913 		struct amdgpu_ring *ring;
1914 		struct drm_sched_rq *rq;
1915 
1916 		ring = adev->mman.buffer_funcs_ring;
1917 		rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL];
1918 		r = drm_sched_entity_init(&adev->mman.entity, &rq, 1, NULL);
1919 		if (r) {
1920 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1921 				  r);
1922 			return;
1923 		}
1924 	} else {
1925 		drm_sched_entity_destroy(&adev->mman.entity);
1926 		dma_fence_put(man->move);
1927 		man->move = NULL;
1928 	}
1929 
1930 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
1931 	if (enable)
1932 		size = adev->gmc.real_vram_size;
1933 	else
1934 		size = adev->gmc.visible_vram_size;
1935 	man->size = size >> PAGE_SHIFT;
1936 	adev->mman.buffer_funcs_enabled = enable;
1937 }
1938 
1939 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
1940 {
1941 	struct drm_file *file_priv;
1942 	struct amdgpu_device *adev;
1943 
1944 	if (unlikely(vma->vm_pgoff < DRM_FILE_PAGE_OFFSET))
1945 		return -EINVAL;
1946 
1947 	file_priv = filp->private_data;
1948 	adev = file_priv->minor->dev->dev_private;
1949 	if (adev == NULL)
1950 		return -EINVAL;
1951 
1952 	return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
1953 }
1954 
1955 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
1956 			     struct ttm_mem_reg *mem, unsigned num_pages,
1957 			     uint64_t offset, unsigned window,
1958 			     struct amdgpu_ring *ring,
1959 			     uint64_t *addr)
1960 {
1961 	struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
1962 	struct amdgpu_device *adev = ring->adev;
1963 	struct ttm_tt *ttm = bo->ttm;
1964 	struct amdgpu_job *job;
1965 	unsigned num_dw, num_bytes;
1966 	dma_addr_t *dma_address;
1967 	struct dma_fence *fence;
1968 	uint64_t src_addr, dst_addr;
1969 	uint64_t flags;
1970 	int r;
1971 
1972 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
1973 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
1974 
1975 	*addr = adev->gmc.gart_start;
1976 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
1977 		AMDGPU_GPU_PAGE_SIZE;
1978 
1979 	num_dw = adev->mman.buffer_funcs->copy_num_dw;
1980 	while (num_dw & 0x7)
1981 		num_dw++;
1982 
1983 	num_bytes = num_pages * 8;
1984 
1985 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job);
1986 	if (r)
1987 		return r;
1988 
1989 	src_addr = num_dw * 4;
1990 	src_addr += job->ibs[0].gpu_addr;
1991 
1992 	dst_addr = adev->gart.table_addr;
1993 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
1994 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
1995 				dst_addr, num_bytes);
1996 
1997 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
1998 	WARN_ON(job->ibs[0].length_dw > num_dw);
1999 
2000 	dma_address = &gtt->ttm.dma_address[offset >> PAGE_SHIFT];
2001 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem);
2002 	r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
2003 			    &job->ibs[0].ptr[num_dw]);
2004 	if (r)
2005 		goto error_free;
2006 
2007 	r = amdgpu_job_submit(job, &adev->mman.entity,
2008 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
2009 	if (r)
2010 		goto error_free;
2011 
2012 	dma_fence_put(fence);
2013 
2014 	return r;
2015 
2016 error_free:
2017 	amdgpu_job_free(job);
2018 	return r;
2019 }
2020 
2021 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2022 		       uint64_t dst_offset, uint32_t byte_count,
2023 		       struct reservation_object *resv,
2024 		       struct dma_fence **fence, bool direct_submit,
2025 		       bool vm_needs_flush)
2026 {
2027 	struct amdgpu_device *adev = ring->adev;
2028 	struct amdgpu_job *job;
2029 
2030 	uint32_t max_bytes;
2031 	unsigned num_loops, num_dw;
2032 	unsigned i;
2033 	int r;
2034 
2035 	if (direct_submit && !ring->ready) {
2036 		DRM_ERROR("Trying to move memory with ring turned off.\n");
2037 		return -EINVAL;
2038 	}
2039 
2040 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2041 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2042 	num_dw = num_loops * adev->mman.buffer_funcs->copy_num_dw;
2043 
2044 	/* for IB padding */
2045 	while (num_dw & 0x7)
2046 		num_dw++;
2047 
2048 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2049 	if (r)
2050 		return r;
2051 
2052 	job->vm_needs_flush = vm_needs_flush;
2053 	if (resv) {
2054 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2055 				     AMDGPU_FENCE_OWNER_UNDEFINED,
2056 				     false);
2057 		if (r) {
2058 			DRM_ERROR("sync failed (%d).\n", r);
2059 			goto error_free;
2060 		}
2061 	}
2062 
2063 	for (i = 0; i < num_loops; i++) {
2064 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2065 
2066 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2067 					dst_offset, cur_size_in_bytes);
2068 
2069 		src_offset += cur_size_in_bytes;
2070 		dst_offset += cur_size_in_bytes;
2071 		byte_count -= cur_size_in_bytes;
2072 	}
2073 
2074 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2075 	WARN_ON(job->ibs[0].length_dw > num_dw);
2076 	if (direct_submit)
2077 		r = amdgpu_job_submit_direct(job, ring, fence);
2078 	else
2079 		r = amdgpu_job_submit(job, &adev->mman.entity,
2080 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2081 	if (r)
2082 		goto error_free;
2083 
2084 	return r;
2085 
2086 error_free:
2087 	amdgpu_job_free(job);
2088 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2089 	return r;
2090 }
2091 
2092 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2093 		       uint32_t src_data,
2094 		       struct reservation_object *resv,
2095 		       struct dma_fence **fence)
2096 {
2097 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2098 	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2099 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2100 
2101 	struct drm_mm_node *mm_node;
2102 	unsigned long num_pages;
2103 	unsigned int num_loops, num_dw;
2104 
2105 	struct amdgpu_job *job;
2106 	int r;
2107 
2108 	if (!adev->mman.buffer_funcs_enabled) {
2109 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2110 		return -EINVAL;
2111 	}
2112 
2113 	if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2114 		r = amdgpu_ttm_alloc_gart(&bo->tbo);
2115 		if (r)
2116 			return r;
2117 	}
2118 
2119 	num_pages = bo->tbo.num_pages;
2120 	mm_node = bo->tbo.mem.mm_node;
2121 	num_loops = 0;
2122 	while (num_pages) {
2123 		uint32_t byte_count = mm_node->size << PAGE_SHIFT;
2124 
2125 		num_loops += DIV_ROUND_UP(byte_count, max_bytes);
2126 		num_pages -= mm_node->size;
2127 		++mm_node;
2128 	}
2129 	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2130 
2131 	/* for IB padding */
2132 	num_dw += 64;
2133 
2134 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2135 	if (r)
2136 		return r;
2137 
2138 	if (resv) {
2139 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2140 				     AMDGPU_FENCE_OWNER_UNDEFINED, false);
2141 		if (r) {
2142 			DRM_ERROR("sync failed (%d).\n", r);
2143 			goto error_free;
2144 		}
2145 	}
2146 
2147 	num_pages = bo->tbo.num_pages;
2148 	mm_node = bo->tbo.mem.mm_node;
2149 
2150 	while (num_pages) {
2151 		uint32_t byte_count = mm_node->size << PAGE_SHIFT;
2152 		uint64_t dst_addr;
2153 
2154 		dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2155 		while (byte_count) {
2156 			uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2157 
2158 			amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2159 						dst_addr, cur_size_in_bytes);
2160 
2161 			dst_addr += cur_size_in_bytes;
2162 			byte_count -= cur_size_in_bytes;
2163 		}
2164 
2165 		num_pages -= mm_node->size;
2166 		++mm_node;
2167 	}
2168 
2169 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2170 	WARN_ON(job->ibs[0].length_dw > num_dw);
2171 	r = amdgpu_job_submit(job, &adev->mman.entity,
2172 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2173 	if (r)
2174 		goto error_free;
2175 
2176 	return 0;
2177 
2178 error_free:
2179 	amdgpu_job_free(job);
2180 	return r;
2181 }
2182 
2183 #if defined(CONFIG_DEBUG_FS)
2184 
2185 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2186 {
2187 	struct drm_info_node *node = (struct drm_info_node *)m->private;
2188 	unsigned ttm_pl = *(int *)node->info_ent->data;
2189 	struct drm_device *dev = node->minor->dev;
2190 	struct amdgpu_device *adev = dev->dev_private;
2191 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2192 	struct drm_printer p = drm_seq_file_printer(m);
2193 
2194 	man->func->debug(man, &p);
2195 	return 0;
2196 }
2197 
2198 static int ttm_pl_vram = TTM_PL_VRAM;
2199 static int ttm_pl_tt = TTM_PL_TT;
2200 
2201 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2202 	{"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, &ttm_pl_vram},
2203 	{"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, &ttm_pl_tt},
2204 	{"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2205 #ifdef CONFIG_SWIOTLB
2206 	{"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2207 #endif
2208 };
2209 
2210 /**
2211  * amdgpu_ttm_vram_read - Linear read access to VRAM
2212  *
2213  * Accesses VRAM via MMIO for debugging purposes.
2214  */
2215 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2216 				    size_t size, loff_t *pos)
2217 {
2218 	struct amdgpu_device *adev = file_inode(f)->i_private;
2219 	ssize_t result = 0;
2220 	int r;
2221 
2222 	if (size & 0x3 || *pos & 0x3)
2223 		return -EINVAL;
2224 
2225 	if (*pos >= adev->gmc.mc_vram_size)
2226 		return -ENXIO;
2227 
2228 	while (size) {
2229 		unsigned long flags;
2230 		uint32_t value;
2231 
2232 		if (*pos >= adev->gmc.mc_vram_size)
2233 			return result;
2234 
2235 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2236 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2237 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2238 		value = RREG32_NO_KIQ(mmMM_DATA);
2239 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2240 
2241 		r = put_user(value, (uint32_t *)buf);
2242 		if (r)
2243 			return r;
2244 
2245 		result += 4;
2246 		buf += 4;
2247 		*pos += 4;
2248 		size -= 4;
2249 	}
2250 
2251 	return result;
2252 }
2253 
2254 /**
2255  * amdgpu_ttm_vram_write - Linear write access to VRAM
2256  *
2257  * Accesses VRAM via MMIO for debugging purposes.
2258  */
2259 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2260 				    size_t size, loff_t *pos)
2261 {
2262 	struct amdgpu_device *adev = file_inode(f)->i_private;
2263 	ssize_t result = 0;
2264 	int r;
2265 
2266 	if (size & 0x3 || *pos & 0x3)
2267 		return -EINVAL;
2268 
2269 	if (*pos >= adev->gmc.mc_vram_size)
2270 		return -ENXIO;
2271 
2272 	while (size) {
2273 		unsigned long flags;
2274 		uint32_t value;
2275 
2276 		if (*pos >= adev->gmc.mc_vram_size)
2277 			return result;
2278 
2279 		r = get_user(value, (uint32_t *)buf);
2280 		if (r)
2281 			return r;
2282 
2283 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2284 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2285 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2286 		WREG32_NO_KIQ(mmMM_DATA, value);
2287 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2288 
2289 		result += 4;
2290 		buf += 4;
2291 		*pos += 4;
2292 		size -= 4;
2293 	}
2294 
2295 	return result;
2296 }
2297 
2298 static const struct file_operations amdgpu_ttm_vram_fops = {
2299 	.owner = THIS_MODULE,
2300 	.read = amdgpu_ttm_vram_read,
2301 	.write = amdgpu_ttm_vram_write,
2302 	.llseek = default_llseek,
2303 };
2304 
2305 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2306 
2307 /**
2308  * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2309  */
2310 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2311 				   size_t size, loff_t *pos)
2312 {
2313 	struct amdgpu_device *adev = file_inode(f)->i_private;
2314 	ssize_t result = 0;
2315 	int r;
2316 
2317 	while (size) {
2318 		loff_t p = *pos / PAGE_SIZE;
2319 		unsigned off = *pos & ~PAGE_MASK;
2320 		size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2321 		struct page *page;
2322 		void *ptr;
2323 
2324 		if (p >= adev->gart.num_cpu_pages)
2325 			return result;
2326 
2327 		page = adev->gart.pages[p];
2328 		if (page) {
2329 			ptr = kmap(page);
2330 			ptr += off;
2331 
2332 			r = copy_to_user(buf, ptr, cur_size);
2333 			kunmap(adev->gart.pages[p]);
2334 		} else
2335 			r = clear_user(buf, cur_size);
2336 
2337 		if (r)
2338 			return -EFAULT;
2339 
2340 		result += cur_size;
2341 		buf += cur_size;
2342 		*pos += cur_size;
2343 		size -= cur_size;
2344 	}
2345 
2346 	return result;
2347 }
2348 
2349 static const struct file_operations amdgpu_ttm_gtt_fops = {
2350 	.owner = THIS_MODULE,
2351 	.read = amdgpu_ttm_gtt_read,
2352 	.llseek = default_llseek
2353 };
2354 
2355 #endif
2356 
2357 /**
2358  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2359  *
2360  * This function is used to read memory that has been mapped to the
2361  * GPU and the known addresses are not physical addresses but instead
2362  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2363  */
2364 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2365 				 size_t size, loff_t *pos)
2366 {
2367 	struct amdgpu_device *adev = file_inode(f)->i_private;
2368 	struct iommu_domain *dom;
2369 	ssize_t result = 0;
2370 	int r;
2371 
2372 	/* retrieve the IOMMU domain if any for this device */
2373 	dom = iommu_get_domain_for_dev(adev->dev);
2374 
2375 	while (size) {
2376 		phys_addr_t addr = *pos & PAGE_MASK;
2377 		loff_t off = *pos & ~PAGE_MASK;
2378 		size_t bytes = PAGE_SIZE - off;
2379 		unsigned long pfn;
2380 		struct page *p;
2381 		void *ptr;
2382 
2383 		bytes = bytes < size ? bytes : size;
2384 
2385 		/* Translate the bus address to a physical address.  If
2386 		 * the domain is NULL it means there is no IOMMU active
2387 		 * and the address translation is the identity
2388 		 */
2389 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2390 
2391 		pfn = addr >> PAGE_SHIFT;
2392 		if (!pfn_valid(pfn))
2393 			return -EPERM;
2394 
2395 		p = pfn_to_page(pfn);
2396 		if (p->mapping != adev->mman.bdev.dev_mapping)
2397 			return -EPERM;
2398 
2399 		ptr = kmap(p);
2400 		r = copy_to_user(buf, ptr + off, bytes);
2401 		kunmap(p);
2402 		if (r)
2403 			return -EFAULT;
2404 
2405 		size -= bytes;
2406 		*pos += bytes;
2407 		result += bytes;
2408 	}
2409 
2410 	return result;
2411 }
2412 
2413 /**
2414  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2415  *
2416  * This function is used to write memory that has been mapped to the
2417  * GPU and the known addresses are not physical addresses but instead
2418  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2419  */
2420 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2421 				 size_t size, loff_t *pos)
2422 {
2423 	struct amdgpu_device *adev = file_inode(f)->i_private;
2424 	struct iommu_domain *dom;
2425 	ssize_t result = 0;
2426 	int r;
2427 
2428 	dom = iommu_get_domain_for_dev(adev->dev);
2429 
2430 	while (size) {
2431 		phys_addr_t addr = *pos & PAGE_MASK;
2432 		loff_t off = *pos & ~PAGE_MASK;
2433 		size_t bytes = PAGE_SIZE - off;
2434 		unsigned long pfn;
2435 		struct page *p;
2436 		void *ptr;
2437 
2438 		bytes = bytes < size ? bytes : size;
2439 
2440 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2441 
2442 		pfn = addr >> PAGE_SHIFT;
2443 		if (!pfn_valid(pfn))
2444 			return -EPERM;
2445 
2446 		p = pfn_to_page(pfn);
2447 		if (p->mapping != adev->mman.bdev.dev_mapping)
2448 			return -EPERM;
2449 
2450 		ptr = kmap(p);
2451 		r = copy_from_user(ptr + off, buf, bytes);
2452 		kunmap(p);
2453 		if (r)
2454 			return -EFAULT;
2455 
2456 		size -= bytes;
2457 		*pos += bytes;
2458 		result += bytes;
2459 	}
2460 
2461 	return result;
2462 }
2463 
2464 static const struct file_operations amdgpu_ttm_iomem_fops = {
2465 	.owner = THIS_MODULE,
2466 	.read = amdgpu_iomem_read,
2467 	.write = amdgpu_iomem_write,
2468 	.llseek = default_llseek
2469 };
2470 
2471 static const struct {
2472 	char *name;
2473 	const struct file_operations *fops;
2474 	int domain;
2475 } ttm_debugfs_entries[] = {
2476 	{ "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2477 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2478 	{ "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2479 #endif
2480 	{ "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2481 };
2482 
2483 #endif
2484 
2485 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2486 {
2487 #if defined(CONFIG_DEBUG_FS)
2488 	unsigned count;
2489 
2490 	struct drm_minor *minor = adev->ddev->primary;
2491 	struct dentry *ent, *root = minor->debugfs_root;
2492 
2493 	for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2494 		ent = debugfs_create_file(
2495 				ttm_debugfs_entries[count].name,
2496 				S_IFREG | S_IRUGO, root,
2497 				adev,
2498 				ttm_debugfs_entries[count].fops);
2499 		if (IS_ERR(ent))
2500 			return PTR_ERR(ent);
2501 		if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2502 			i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2503 		else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2504 			i_size_write(ent->d_inode, adev->gmc.gart_size);
2505 		adev->mman.debugfs_entries[count] = ent;
2506 	}
2507 
2508 	count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2509 
2510 #ifdef CONFIG_SWIOTLB
2511 	if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2512 		--count;
2513 #endif
2514 
2515 	return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2516 #else
2517 	return 0;
2518 #endif
2519 }
2520 
2521 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev)
2522 {
2523 #if defined(CONFIG_DEBUG_FS)
2524 	unsigned i;
2525 
2526 	for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++)
2527 		debugfs_remove(adev->mman.debugfs_entries[i]);
2528 #endif
2529 }
2530