xref: /dflybsd-src/sys/dev/disk/advansys/adwlib.c (revision 3412cacb5a88ff95d06808eeed783b8499b5256e)
1 /*
2  * Low level routines for Second Generation
3  * Advanced Systems Inc. SCSI controllers chips
4  *
5  * Copyright (c) 1998, 1999, 2000 Justin Gibbs.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. The name of the author may not be used to endorse or promote products
18  *    derived from this software without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
24  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/dev/advansys/adwlib.c,v 1.6.2.1 2000/04/14 13:32:50 nyan Exp $
33  * $DragonFly: src/sys/dev/disk/advansys/adwlib.c,v 1.3 2003/08/07 21:16:50 dillon Exp $
34  */
35 /*
36  * Ported from:
37  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
38  *
39  * Copyright (c) 1995-1998 Advanced System Products, Inc.
40  * All Rights Reserved.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that redistributions of source
44  * code retain the above copyright notice and this comment without
45  * modification.
46  */
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/bus.h>
51 
52 #include <machine/bus_pio.h>
53 #include <machine/bus_memio.h>
54 #include <machine/bus.h>
55 #include <machine/clock.h>
56 
57 #include <bus/cam/cam.h>
58 #include <bus/cam/cam_ccb.h>
59 #include <bus/cam/cam_sim.h>
60 #include <bus/cam/cam_xpt_sim.h>
61 #include <bus/cam/scsi/scsi_all.h>
62 
63 #include "adwlib.h"
64 
65 const struct adw_eeprom adw_asc3550_default_eeprom =
66 {
67 	ADW_EEPROM_BIOS_ENABLE,		/* cfg_lsw */
68 	0x0000,				/* cfg_msw */
69 	0xFFFF,				/* disc_enable */
70 	0xFFFF,				/* wdtr_able */
71 	{ 0xFFFF },			/* sdtr_able */
72 	0xFFFF,				/* start_motor */
73 	0xFFFF,				/* tagqng_able */
74 	0xFFFF,				/* bios_scan */
75 	0,				/* scam_tolerant */
76 	7,				/* adapter_scsi_id */
77 	0,				/* bios_boot_delay */
78 	3,				/* scsi_reset_delay */
79 	0,				/* bios_id_lun */
80 	0,				/* termination */
81 	0,				/* reserved1 */
82 	0xFFE7,				/* bios_ctrl */
83 	{ 0xFFFF },			/* ultra_able */
84 	{ 0 },				/* reserved2 */
85 	ADW_DEF_MAX_HOST_QNG,		/* max_host_qng */
86 	ADW_DEF_MAX_DVC_QNG,		/* max_dvc_qng */
87 	0,				/* dvc_cntl */
88 	{ 0 },				/* bug_fix */
89 	{ 0, 0, 0 },			/* serial_number */
90 	0,				/* check_sum */
91 	{				/* oem_name[16] */
92 	  0, 0, 0, 0, 0, 0, 0, 0,
93 	  0, 0, 0, 0, 0, 0, 0, 0
94 	},
95 	0,				/* dvc_err_code */
96 	0,				/* adv_err_code */
97 	0,				/* adv_err_addr */
98 	0,				/* saved_dvc_err_code */
99 	0,				/* saved_adv_err_code */
100 	0				/* saved_adv_err_addr */
101 };
102 
103 const struct adw_eeprom adw_asc38C0800_default_eeprom =
104 {
105 	ADW_EEPROM_BIOS_ENABLE,		/* 00 cfg_lsw */
106 	0x0000,				/* 01 cfg_msw */
107 	0xFFFF,				/* 02 disc_enable */
108 	0xFFFF,				/* 03 wdtr_able */
109 	{ 0x4444 },			/* 04 sdtr_speed1 */
110 	0xFFFF,				/* 05 start_motor */
111 	0xFFFF,				/* 06 tagqng_able */
112 	0xFFFF,				/* 07 bios_scan */
113 	0,				/* 08 scam_tolerant */
114 	7,				/* 09 adapter_scsi_id */
115 	0,				/*    bios_boot_delay */
116 	3,				/* 10 scsi_reset_delay */
117 	0,				/*    bios_id_lun */
118 	0,				/* 11 termination_se */
119 	0,				/*    termination_lvd */
120 	0xFFE7,				/* 12 bios_ctrl */
121 	{ 0x4444 },			/* 13 sdtr_speed2 */
122 	{ 0x4444 },			/* 14 sdtr_speed3 */
123 	ADW_DEF_MAX_HOST_QNG,		/* 15 max_host_qng */
124 	ADW_DEF_MAX_DVC_QNG,		/*    max_dvc_qng */
125 	0,				/* 16 dvc_cntl */
126 	{ 0x4444 } ,			/* 17 sdtr_speed4 */
127 	{ 0, 0, 0 },			/* 18-20 serial_number */
128 	0,				/* 21 check_sum */
129 	{				/* 22-29 oem_name[16] */
130 	  0, 0, 0, 0, 0, 0, 0, 0,
131 	  0, 0, 0, 0, 0, 0, 0, 0
132 	},
133 	0,				/* 30 dvc_err_code */
134 	0,				/* 31 adv_err_code */
135 	0,				/* 32 adv_err_addr */
136 	0,				/* 33 saved_dvc_err_code */
137 	0,				/* 34 saved_adv_err_code */
138 	0,				/* 35 saved_adv_err_addr */
139 	{				/* 36 - 55 reserved */
140 	  0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
141 	  0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
142 	},
143 	0,				/* 56 cisptr_lsw */
144 	0,				/* 57 cisprt_msw */
145 					/* 58-59 sub-id */
146 	(PCI_ID_ADVANSYS_38C0800_REV1 & PCI_ID_DEV_VENDOR_MASK) >> 32,
147 };
148 
149 #define ADW_MC_SDTR_OFFSET_ULTRA2_DT	0
150 #define ADW_MC_SDTR_OFFSET_ULTRA2	1
151 #define ADW_MC_SDTR_OFFSET_ULTRA	2
152 const struct adw_syncrate adw_syncrates[] =
153 {
154 	/*   mc_sdtr		  period      rate */
155 	{ ADW_MC_SDTR_80,	    9,	     "80.0"  },
156 	{ ADW_MC_SDTR_40,	    10,	     "40.0"  },
157 	{ ADW_MC_SDTR_20,	    12,	     "20.0"  },
158 	{ ADW_MC_SDTR_10,	    25,	     "10.0"  },
159 	{ ADW_MC_SDTR_5,	    50,	     "5.0"   },
160 	{ ADW_MC_SDTR_ASYNC,	    0,	     "async" }
161 };
162 
163 const int adw_num_syncrates = sizeof(adw_syncrates) / sizeof(adw_syncrates[0]);
164 
165 static u_int16_t	adw_eeprom_read_16(struct adw_softc *adw, int addr);
166 static void		adw_eeprom_write_16(struct adw_softc *adw, int addr,
167 					    u_int data);
168 static void		adw_eeprom_wait(struct adw_softc *adw);
169 
170 int
171 adw_find_signature(struct adw_softc *adw)
172 {
173 	if (adw_inb(adw, ADW_SIGNATURE_BYTE) == ADW_CHIP_ID_BYTE
174 	 && adw_inw(adw, ADW_SIGNATURE_WORD) == ADW_CHIP_ID_WORD)
175 		return (1);
176 	return (0);
177 }
178 
179 /*
180  * Reset Chip.
181  */
182 void
183 adw_reset_chip(struct adw_softc *adw)
184 {
185 	adw_outw(adw, ADW_CTRL_REG, ADW_CTRL_REG_CMD_RESET);
186 	DELAY(1000 * 100);
187 	adw_outw(adw, ADW_CTRL_REG, ADW_CTRL_REG_CMD_WR_IO_REG);
188 
189 	/*
190 	 * Initialize Chip registers.
191 	 */
192 	adw_outw(adw, ADW_SCSI_CFG1,
193 		 adw_inw(adw, ADW_SCSI_CFG1) & ~ADW_SCSI_CFG1_BIG_ENDIAN);
194 }
195 
196 /*
197  * Reset the SCSI bus.
198  */
199 int
200 adw_reset_bus(struct adw_softc *adw)
201 {
202 	adw_idle_cmd_status_t status;
203 
204 	status =
205 	    adw_idle_cmd_send(adw, ADW_IDLE_CMD_SCSI_RESET_START, /*param*/0);
206 	if (status != ADW_IDLE_CMD_SUCCESS) {
207 		xpt_print_path(adw->path);
208 		printf("Bus Reset start attempt failed\n");
209 		return (1);
210 	}
211 	DELAY(ADW_BUS_RESET_HOLD_DELAY_US);
212 	status =
213 	    adw_idle_cmd_send(adw, ADW_IDLE_CMD_SCSI_RESET_END, /*param*/0);
214 	if (status != ADW_IDLE_CMD_SUCCESS) {
215 		xpt_print_path(adw->path);
216 		printf("Bus Reset end attempt failed\n");
217 		return (1);
218 	}
219 	return (0);
220 }
221 
222 /*
223  * Read the specified EEPROM location
224  */
225 static u_int16_t
226 adw_eeprom_read_16(struct adw_softc *adw, int addr)
227 {
228 	adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_READ | addr);
229 	adw_eeprom_wait(adw);
230 	return (adw_inw(adw, ADW_EEP_DATA));
231 }
232 
233 static void
234 adw_eeprom_write_16(struct adw_softc *adw, int addr, u_int data)
235 {
236 	adw_outw(adw, ADW_EEP_DATA, data);
237 	adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_WRITE | addr);
238 	adw_eeprom_wait(adw);
239 }
240 
241 /*
242  * Wait for and EEPROM command to complete
243  */
244 static void
245 adw_eeprom_wait(struct adw_softc *adw)
246 {
247 	int i;
248 
249 	for (i = 0; i < ADW_EEP_DELAY_MS; i++) {
250 		if ((adw_inw(adw, ADW_EEP_CMD) & ADW_EEP_CMD_DONE) != 0)
251             		break;
252 		DELAY(1000);
253     	}
254 	if (i == ADW_EEP_DELAY_MS)
255 		panic("%s: Timedout Reading EEPROM", adw_name(adw));
256 }
257 
258 /*
259  * Read EEPROM configuration into the specified buffer.
260  *
261  * Return a checksum based on the EEPROM configuration read.
262  */
263 u_int16_t
264 adw_eeprom_read(struct adw_softc *adw, struct adw_eeprom *eep_buf)
265 {
266 	u_int16_t *wbuf;
267 	u_int16_t  wval;
268 	u_int16_t  chksum;
269 	int	   eep_addr;
270 
271 	wbuf = (u_int16_t *)eep_buf;
272 	chksum = 0;
273 
274 	for (eep_addr = ADW_EEP_DVC_CFG_BEGIN;
275 	     eep_addr < ADW_EEP_DVC_CFG_END;
276 	     eep_addr++, wbuf++) {
277 		wval = adw_eeprom_read_16(adw, eep_addr);
278 		chksum += wval;
279 		*wbuf = wval;
280 	}
281 
282 	/* checksum field is not counted in the checksum */
283 	*wbuf = adw_eeprom_read_16(adw, eep_addr);
284 	wbuf++;
285 
286 	/* Driver seeprom variables are not included in the checksum */
287 	for (eep_addr = ADW_EEP_DVC_CTL_BEGIN;
288 	     eep_addr < ADW_EEP_MAX_WORD_ADDR;
289 	     eep_addr++, wbuf++)
290 		*wbuf = adw_eeprom_read_16(adw, eep_addr);
291 
292 	return (chksum);
293 }
294 
295 void
296 adw_eeprom_write(struct adw_softc *adw, struct adw_eeprom *eep_buf)
297 {
298 	u_int16_t *wbuf;
299 	u_int16_t  addr;
300 	u_int16_t  chksum;
301 
302 	wbuf = (u_int16_t *)eep_buf;
303 	chksum = 0;
304 
305 	adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_WRITE_ABLE);
306 	adw_eeprom_wait(adw);
307 
308 	/*
309 	 * Write EEPROM until checksum.
310 	 */
311 	for (addr = ADW_EEP_DVC_CFG_BEGIN;
312 	     addr < ADW_EEP_DVC_CFG_END; addr++, wbuf++) {
313 		chksum += *wbuf;
314 		adw_eeprom_write_16(adw, addr, *wbuf);
315 	}
316 
317 	/*
318 	 * Write calculated EEPROM checksum
319 	 */
320 	adw_eeprom_write_16(adw, addr, chksum);
321 
322 	/* skip over buffer's checksum */
323 	wbuf++;
324 
325 	/*
326 	 * Write the rest.
327 	 */
328 	for (addr = ADW_EEP_DVC_CTL_BEGIN;
329 	     addr < ADW_EEP_MAX_WORD_ADDR; addr++, wbuf++)
330 		adw_eeprom_write_16(adw, addr, *wbuf);
331 
332 	adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_WRITE_DISABLE);
333 	adw_eeprom_wait(adw);
334 }
335 
336 int
337 adw_init_chip(struct adw_softc *adw, u_int term_scsicfg1)
338 {
339 	u_int8_t	    biosmem[ADW_MC_BIOSLEN];
340 	const u_int16_t    *word_table;
341 	const u_int8_t     *byte_codes;
342 	const u_int8_t     *byte_codes_end;
343 	u_int		    bios_sig;
344 	u_int		    bytes_downloaded;
345 	u_int		    addr;
346 	u_int		    end_addr;
347 	u_int		    checksum;
348 	u_int		    scsicfg1;
349 	u_int		    tid;
350 
351 	/*
352 	 * Save the RISC memory BIOS region before writing the microcode.
353 	 * The BIOS may already be loaded and using its RISC LRAM region
354 	 * so its region must be saved and restored.
355 	 */
356 	for (addr = 0; addr < ADW_MC_BIOSLEN; addr++)
357 		biosmem[addr] = adw_lram_read_8(adw, ADW_MC_BIOSMEM + addr);
358 
359 	/*
360 	 * Save current per TID negotiated values if the BIOS has been
361 	 * loaded (BIOS signature is present).  These will be used if
362 	 * we cannot get information from the EEPROM.
363 	 */
364 	addr = ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM;
365 	bios_sig = biosmem[addr]
366 		 | (biosmem[addr + 1] << 8);
367 	if (bios_sig == 0x55AA
368 	 && (adw->flags & ADW_EEPROM_FAILED) != 0) {
369 		u_int major_ver;
370 		u_int minor_ver;
371 		u_int sdtr_able;
372 
373 		addr = ADW_MC_BIOS_VERSION - ADW_MC_BIOSMEM;
374 		minor_ver = biosmem[addr + 1] & 0xF;
375 		major_ver = (biosmem[addr + 1] >> 4) & 0xF;
376 		if ((adw->chip == ADW_CHIP_ASC3550)
377 		 && (major_ver <= 3
378 		  || (major_ver == 3 && minor_ver == 1))) {
379 			/*
380 			 * BIOS 3.1 and earlier location of
381 			 * 'wdtr_able' variable.
382 			 */
383 			adw->user_wdtr =
384 			    adw_lram_read_16(adw, ADW_MC_WDTR_ABLE_BIOS_31);
385 		} else {
386 			adw->user_wdtr =
387 			    adw_lram_read_16(adw, ADW_MC_WDTR_ABLE);
388 		}
389 		sdtr_able = adw_lram_read_16(adw, ADW_MC_SDTR_ABLE);
390 		for (tid = 0; tid < ADW_MAX_TID; tid++) {
391 			u_int tid_mask;
392 			u_int mc_sdtr;
393 
394 			tid_mask = 0x1 << tid;
395 			if ((sdtr_able & tid_mask) == 0)
396 				mc_sdtr = ADW_MC_SDTR_ASYNC;
397 			else if ((adw->features & ADW_DT) != 0)
398 				mc_sdtr = ADW_MC_SDTR_80;
399 			else if ((adw->features & ADW_ULTRA2) != 0)
400 				mc_sdtr = ADW_MC_SDTR_40;
401 			else
402 				mc_sdtr = ADW_MC_SDTR_20;
403 			adw_set_user_sdtr(adw, tid, mc_sdtr);
404 		}
405 		adw->user_tagenb = adw_lram_read_16(adw, ADW_MC_TAGQNG_ABLE);
406 	}
407 
408 	/*
409 	 * Load the Microcode.
410 	 *
411 	 * Assume the following compressed format of the microcode buffer:
412 	 *
413 	 *	253 word (506 byte) table indexed by byte code followed
414 	 *	by the following byte codes:
415 	 *
416 	 *	1-Byte Code:
417 	 *		00: Emit word 0 in table.
418 	 *		01: Emit word 1 in table.
419 	 *		.
420 	 *		FD: Emit word 253 in table.
421 	 *
422 	 *	Multi-Byte Code:
423 	 *		FD RESEVED
424 	 *
425 	 *		FE WW WW: (3 byte code)
426 	 *			Word to emit is the next word WW WW.
427 	 *		FF BB WW WW: (4 byte code)
428 	 *			Emit BB count times next word WW WW.
429 	 *
430 	 */
431 	bytes_downloaded = 0;
432 	word_table = (const u_int16_t *)adw->mcode_data->mcode_buf;
433 	byte_codes = (const u_int8_t *)&word_table[253];
434 	byte_codes_end = adw->mcode_data->mcode_buf
435 		       + adw->mcode_data->mcode_size;
436 	adw_outw(adw, ADW_RAM_ADDR, 0);
437 	while (byte_codes < byte_codes_end) {
438 		if (*byte_codes == 0xFF) {
439 			u_int16_t value;
440 
441 			value = byte_codes[2]
442 			      | byte_codes[3] << 8;
443 			adw_set_multi_2(adw, ADW_RAM_DATA,
444 					value, byte_codes[1]);
445 			bytes_downloaded += byte_codes[1];
446 			byte_codes += 4;
447 		} else if (*byte_codes == 0xFE) {
448 			u_int16_t value;
449 
450 			value = byte_codes[1]
451 			      | byte_codes[2] << 8;
452 			adw_outw(adw, ADW_RAM_DATA, value);
453 			bytes_downloaded++;
454 			byte_codes += 3;
455 		} else {
456 			adw_outw(adw, ADW_RAM_DATA, word_table[*byte_codes]);
457 			bytes_downloaded++;
458 			byte_codes++;
459 		}
460 	}
461 	/* Convert from words to bytes */
462 	bytes_downloaded *= 2;
463 
464 	/*
465 	 * Clear the rest of LRAM.
466 	 */
467 	for (addr = bytes_downloaded; addr < adw->memsize; addr += 2)
468 		adw_outw(adw, ADW_RAM_DATA, 0);
469 
470 	/*
471 	 * Verify the microcode checksum.
472 	 */
473 	checksum = 0;
474 	adw_outw(adw, ADW_RAM_ADDR, 0);
475 	for (addr = 0; addr < bytes_downloaded; addr += 2)
476 		checksum += adw_inw(adw, ADW_RAM_DATA);
477 
478 	if (checksum != adw->mcode_data->mcode_chksum) {
479 		printf("%s: Firmware load failed!\n", adw_name(adw));
480 		return (EIO);
481 	}
482 
483 	/*
484 	 * Restore the RISC memory BIOS region.
485 	 */
486 	for (addr = 0; addr < ADW_MC_BIOSLEN; addr++)
487 		adw_lram_write_8(adw, addr + ADW_MC_BIOSLEN, biosmem[addr]);
488 
489 	/*
490 	 * Calculate and write the microcode code checksum to
491 	 * the microcode code checksum location.
492 	 */
493 	addr = adw_lram_read_16(adw, ADW_MC_CODE_BEGIN_ADDR);
494 	end_addr = adw_lram_read_16(adw, ADW_MC_CODE_END_ADDR);
495 	checksum = 0;
496 	adw_outw(adw, ADW_RAM_ADDR, addr);
497 	for (; addr < end_addr; addr += 2)
498 		checksum += adw_inw(adw, ADW_RAM_DATA);
499 	adw_lram_write_16(adw, ADW_MC_CODE_CHK_SUM, checksum);
500 
501 	/*
502 	 * Tell the microcode what kind of chip it's running on.
503 	 */
504 	adw_lram_write_16(adw, ADW_MC_CHIP_TYPE, adw->chip);
505 
506 	/*
507 	 * Leave WDTR and SDTR negotiation disabled until the XPT has
508 	 * informed us of device capabilities, but do set the desired
509 	 * user rates in case we receive an SDTR request from the target
510 	 * before we negotiate.  We turn on tagged queuing at the microcode
511 	 * level for all devices, and modulate this on a per command basis.
512 	 */
513 	adw_lram_write_16(adw, ADW_MC_SDTR_SPEED1, adw->user_sdtr[0]);
514 	adw_lram_write_16(adw, ADW_MC_SDTR_SPEED2, adw->user_sdtr[1]);
515 	adw_lram_write_16(adw, ADW_MC_SDTR_SPEED3, adw->user_sdtr[2]);
516 	adw_lram_write_16(adw, ADW_MC_SDTR_SPEED4, adw->user_sdtr[3]);
517 	adw_lram_write_16(adw, ADW_MC_DISC_ENABLE, adw->user_discenb);
518 	for (tid = 0; tid < ADW_MAX_TID; tid++) {
519 		/* Cam limits the maximum number of commands for us */
520 		adw_lram_write_8(adw, ADW_MC_NUMBER_OF_MAX_CMD + tid,
521 				 adw->max_acbs);
522 	}
523 	adw_lram_write_16(adw, ADW_MC_TAGQNG_ABLE, ~0);
524 
525 	/*
526 	 * Set SCSI_CFG0 Microcode Default Value.
527 	 *
528 	 * The microcode will set the SCSI_CFG0 register using this value
529 	 * after it is started.
530 	 */
531 	adw_lram_write_16(adw, ADW_MC_DEFAULT_SCSI_CFG0,
532 			  ADW_SCSI_CFG0_PARITY_EN|ADW_SCSI_CFG0_SEL_TMO_LONG|
533 			  ADW_SCSI_CFG0_OUR_ID_EN|adw->initiator_id);
534 
535 	/*
536 	 * Tell the MC about the memory size that
537 	 * was setup by the probe code.
538 	 */
539 	adw_lram_write_16(adw, ADW_MC_DEFAULT_MEM_CFG,
540 			  adw_inb(adw, ADW_MEM_CFG) & ADW_MEM_CFG_RAM_SZ_MASK);
541 
542 	/*
543 	 * Determine SCSI_CFG1 Microcode Default Value.
544 	 *
545 	 * The microcode will set the SCSI_CFG1 register using this value
546 	 * after it is started below.
547 	 */
548 	scsicfg1 = adw_inw(adw, ADW_SCSI_CFG1);
549 
550 	/*
551 	 * If the internal narrow cable is reversed all of the SCSI_CTRL
552 	 * register signals will be set. Check for and return an error if
553 	 * this condition is found.
554 	 */
555 	if ((adw_inw(adw, ADW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
556 		printf("%s: Illegal Cable Config!\n", adw_name(adw));
557 		printf("%s: Internal cable is reversed!\n", adw_name(adw));
558 		return (EIO);
559 	}
560 
561 	/*
562 	 * If this is a differential board and a single-ended device
563 	 * is attached to one of the connectors, return an error.
564 	 */
565 	if ((adw->features & ADW_ULTRA) != 0)  {
566 		if ((scsicfg1 & ADW_SCSI_CFG1_DIFF_MODE) != 0
567 		 && (scsicfg1 & ADW_SCSI_CFG1_DIFF_SENSE) == 0) {
568 			printf("%s: A Single Ended Device is attached to our "
569 			       "differential bus!\n", adw_name(adw));
570 		        return (EIO);
571 		}
572 	} else {
573 		if ((scsicfg1 & ADW2_SCSI_CFG1_DEV_DETECT_HVD) != 0) {
574 			printf("%s: A High Voltage Differential Device "
575 			       "is attached to this controller.\n",
576 			       adw_name(adw));
577 			printf("%s: HVD devices are not supported.\n",
578 			       adw_name(adw));
579 		        return (EIO);
580 		}
581 	}
582 
583 	/*
584 	 * Perform automatic termination control if desired.
585 	 */
586 	if ((adw->features & ADW_ULTRA2) != 0) {
587 		u_int cable_det;
588 
589 		/*
590 		 * Ultra2 Chips require termination disabled to
591 		 * detect cable presence.
592 		 */
593 		adw_outw(adw, ADW_SCSI_CFG1,
594 			 scsicfg1 | ADW2_SCSI_CFG1_DIS_TERM_DRV);
595 		cable_det = adw_inw(adw, ADW_SCSI_CFG1);
596 		adw_outw(adw, ADW_SCSI_CFG1, scsicfg1);
597 
598 		/* SE Termination first if auto-term has been specified */
599 		if ((term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK) == 0) {
600 
601 			/*
602 			 * For all SE cable configurations, high byte
603 			 * termination is enabled.
604 			 */
605 			term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H;
606 			if ((cable_det & ADW_SCSI_CFG1_INT8_MASK) != 0
607 			 || (cable_det & ADW_SCSI_CFG1_INT16_MASK) != 0) {
608 				/*
609 				 * If either cable is not present, the
610 				 * low byte must be terminated as well.
611 				 */
612 				term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_L;
613 			}
614 		}
615 
616 		/* LVD auto-term */
617 		if ((term_scsicfg1 & ADW2_SCSI_CFG1_TERM_CTL_LVD) == 0
618 		 && (term_scsicfg1 & ADW2_SCSI_CFG1_DIS_TERM_DRV) == 0) {
619 			/*
620 			 * If both cables are installed, termination
621 			 * is disabled.  Otherwise it is enabled.
622 			 */
623 			if ((cable_det & ADW2_SCSI_CFG1_EXTLVD_MASK) != 0
624 			 || (cable_det & ADW2_SCSI_CFG1_INTLVD_MASK) != 0) {
625 
626 				term_scsicfg1 |= ADW2_SCSI_CFG1_TERM_CTL_LVD;
627 			}
628 		}
629 		term_scsicfg1 &= ~ADW2_SCSI_CFG1_DIS_TERM_DRV;
630 	} else {
631 		/* Ultra Controller Termination */
632 		if ((term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK) == 0) {
633 			int cable_count;
634 			int wide_cable_count;
635 
636 			cable_count = 0;
637 			wide_cable_count = 0;
638 			if ((scsicfg1 & ADW_SCSI_CFG1_INT16_MASK) == 0) {
639 				cable_count++;
640 				wide_cable_count++;
641 			}
642 			if ((scsicfg1 & ADW_SCSI_CFG1_INT8_MASK) == 0)
643 				cable_count++;
644 
645 			/* There is only one external port */
646 			if ((scsicfg1 & ADW_SCSI_CFG1_EXT16_MASK) == 0) {
647 				cable_count++;
648 				wide_cable_count++;
649 			} else if ((scsicfg1 & ADW_SCSI_CFG1_EXT8_MASK) == 0)
650 				cable_count++;
651 
652 			if (cable_count == 3) {
653 				printf("%s: Illegal Cable Config!\n",
654 				       adw_name(adw));
655 				printf("%s: Only Two Ports may be used at "
656 				       "a time!\n", adw_name(adw));
657 			} else if (cable_count <= 1) {
658 				/*
659 				 * At least two out of three cables missing.
660 				 * Terminate both bytes.
661 				 */
662 				term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H
663 					      |  ADW_SCSI_CFG1_TERM_CTL_L;
664 			} else if (wide_cable_count <= 1) {
665 				/* No two 16bit cables present.  High on. */
666 				term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H;
667 			}
668 		}
669         }
670 
671 	/* Tell the user about our decission */
672 	switch (term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK) {
673 	case ADW_SCSI_CFG1_TERM_CTL_MASK:
674 		printf("High & Low SE Term Enabled, ");
675 		break;
676 	case ADW_SCSI_CFG1_TERM_CTL_H:
677 		printf("High SE Termination Enabled, ");
678 		break;
679 	case ADW_SCSI_CFG1_TERM_CTL_L:
680 		printf("Low SE Term Enabled, ");
681 		break;
682 	default:
683 		break;
684 	}
685 
686 	if ((adw->features & ADW_ULTRA2) != 0
687 	 && (term_scsicfg1 & ADW2_SCSI_CFG1_TERM_CTL_LVD) != 0)
688 		printf("LVD Term Enabled, ");
689 
690 	/*
691 	 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
692 	 * set 'scsicfg1'. The TERM_POL bit does not need to be
693 	 * referenced, because the hardware internally inverts
694 	 * the Termination High and Low bits if TERM_POL is set.
695 	 */
696 	if ((adw->features & ADW_ULTRA2) != 0) {
697 		term_scsicfg1 = ~term_scsicfg1;
698 		term_scsicfg1 &= ADW_SCSI_CFG1_TERM_CTL_MASK
699 			      |  ADW2_SCSI_CFG1_TERM_CTL_LVD;
700 		scsicfg1 &= ~(ADW_SCSI_CFG1_TERM_CTL_MASK
701 			     |ADW2_SCSI_CFG1_TERM_CTL_LVD
702 			     |ADW_SCSI_CFG1_BIG_ENDIAN
703 			     |ADW_SCSI_CFG1_TERM_POL
704 			     |ADW2_SCSI_CFG1_DEV_DETECT);
705 		scsicfg1 |= term_scsicfg1;
706 	} else {
707 		term_scsicfg1 = ~term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK;
708 		scsicfg1 &= ~ADW_SCSI_CFG1_TERM_CTL_MASK;
709 		scsicfg1 |= term_scsicfg1 | ADW_SCSI_CFG1_TERM_CTL_MANUAL;
710 		scsicfg1 |= ADW_SCSI_CFG1_FLTR_DISABLE;
711 	}
712 
713 	/*
714 	 * Set SCSI_CFG1 Microcode Default Value
715 	 *
716 	 * The microcode will set the SCSI_CFG1 register using this value
717 	 * after it is started below.
718 	 */
719 	adw_lram_write_16(adw, ADW_MC_DEFAULT_SCSI_CFG1, scsicfg1);
720 
721 	/*
722 	 * Only accept selections on our initiator target id.
723 	 * This may change in target mode scenarios...
724 	 */
725 	adw_lram_write_16(adw, ADW_MC_DEFAULT_SEL_MASK,
726 			  (0x01 << adw->initiator_id));
727 
728 	/*
729 	 * Tell the microcode where it can find our
730 	 * Initiator Command Queue (ICQ).  It is
731 	 * currently empty hence the "stopper" address.
732 	 */
733 	adw->commandq = adw->free_carriers;
734 	adw->free_carriers = carrierbotov(adw, adw->commandq->next_ba);
735 	adw->commandq->next_ba = ADW_CQ_STOPPER;
736 	adw_lram_write_32(adw, ADW_MC_ICQ, adw->commandq->carr_ba);
737 
738 	/*
739 	 * Tell the microcode where it can find our
740 	 * Initiator Response Queue (IRQ).  It too
741 	 * is currently empty.
742 	 */
743 	adw->responseq = adw->free_carriers;
744 	adw->free_carriers = carrierbotov(adw, adw->responseq->next_ba);
745 	adw->responseq->next_ba = ADW_CQ_STOPPER;
746 	adw_lram_write_32(adw, ADW_MC_IRQ, adw->responseq->carr_ba);
747 
748 	adw_outb(adw, ADW_INTR_ENABLES,
749 		 ADW_INTR_ENABLE_HOST_INTR|ADW_INTR_ENABLE_GLOBAL_INTR);
750 
751 	adw_outw(adw, ADW_PC, adw_lram_read_16(adw, ADW_MC_CODE_BEGIN_ADDR));
752 
753 	return (0);
754 }
755 
756 void
757 adw_set_user_sdtr(struct adw_softc *adw, u_int tid, u_int mc_sdtr)
758 {
759 	adw->user_sdtr[ADW_TARGET_GROUP(tid)] &= ~ADW_TARGET_GROUP_MASK(tid);
760 	adw->user_sdtr[ADW_TARGET_GROUP(tid)] |=
761 	    mc_sdtr << ADW_TARGET_GROUP_SHIFT(tid);
762 }
763 
764 u_int
765 adw_get_user_sdtr(struct adw_softc *adw, u_int tid)
766 {
767 	u_int mc_sdtr;
768 
769 	mc_sdtr = adw->user_sdtr[ADW_TARGET_GROUP(tid)];
770 	mc_sdtr &= ADW_TARGET_GROUP_MASK(tid);
771 	mc_sdtr >>= ADW_TARGET_GROUP_SHIFT(tid);
772 	return (mc_sdtr);
773 }
774 
775 void
776 adw_set_chip_sdtr(struct adw_softc *adw, u_int tid, u_int sdtr)
777 {
778 	u_int mc_sdtr_offset;
779 	u_int mc_sdtr;
780 
781 	mc_sdtr_offset = ADW_MC_SDTR_SPEED1;
782 	mc_sdtr_offset += ADW_TARGET_GROUP(tid) * 2;
783 	mc_sdtr = adw_lram_read_16(adw, mc_sdtr_offset);
784 	mc_sdtr &= ~ADW_TARGET_GROUP_MASK(tid);
785 	mc_sdtr |= sdtr << ADW_TARGET_GROUP_SHIFT(tid);
786 	adw_lram_write_16(adw, mc_sdtr_offset, mc_sdtr);
787 }
788 
789 u_int
790 adw_get_chip_sdtr(struct adw_softc *adw, u_int tid)
791 {
792 	u_int mc_sdtr_offset;
793 	u_int mc_sdtr;
794 
795 	mc_sdtr_offset = ADW_MC_SDTR_SPEED1;
796 	mc_sdtr_offset += ADW_TARGET_GROUP(tid) * 2;
797 	mc_sdtr = adw_lram_read_16(adw, mc_sdtr_offset);
798 	mc_sdtr &= ADW_TARGET_GROUP_MASK(tid);
799 	mc_sdtr >>= ADW_TARGET_GROUP_SHIFT(tid);
800 	return (mc_sdtr);
801 }
802 
803 u_int
804 adw_find_sdtr(struct adw_softc *adw, u_int period)
805 {
806 	int i;
807 
808 	i = 0;
809 	if ((adw->features & ADW_DT) == 0)
810 		i = ADW_MC_SDTR_OFFSET_ULTRA2;
811 	if ((adw->features & ADW_ULTRA2) == 0)
812 		i = ADW_MC_SDTR_OFFSET_ULTRA;
813 	if (period == 0)
814 		return ADW_MC_SDTR_ASYNC;
815 
816 	for (; i < adw_num_syncrates; i++) {
817 		if (period <= adw_syncrates[i].period)
818 			return (adw_syncrates[i].mc_sdtr);
819 	}
820 	return ADW_MC_SDTR_ASYNC;
821 }
822 
823 u_int
824 adw_find_period(struct adw_softc *adw, u_int mc_sdtr)
825 {
826 	int i;
827 
828 	for (i = 0; i < adw_num_syncrates; i++) {
829 		if (mc_sdtr == adw_syncrates[i].mc_sdtr)
830 			break;
831 	}
832 	return (adw_syncrates[i].period);
833 }
834 
835 u_int
836 adw_hshk_cfg_period_factor(u_int tinfo)
837 {
838 	tinfo &= ADW_HSHK_CFG_RATE_MASK;
839 	tinfo >>= ADW_HSHK_CFG_RATE_SHIFT;
840 	if (tinfo == 0x11)
841 		/* 80MHz/DT */
842 		return (9);
843 	else if (tinfo == 0x10)
844 		/* 40MHz */
845 		return (10);
846 	else
847 		return (((tinfo * 25) + 50) / 4);
848 }
849 
850 /*
851  * Send an idle command to the chip and wait for completion.
852  */
853 adw_idle_cmd_status_t
854 adw_idle_cmd_send(struct adw_softc *adw, adw_idle_cmd_t cmd, u_int parameter)
855 {
856 	u_int		      timeout;
857 	adw_idle_cmd_status_t status;
858 	int		      s;
859 
860 	s = splcam();
861 
862 	/*
863 	 * Clear the idle command status which is set by the microcode
864 	 * to a non-zero value to indicate when the command is completed.
865 	 */
866 	adw_lram_write_16(adw, ADW_MC_IDLE_CMD_STATUS, 0);
867 
868 	/*
869 	 * Write the idle command value after the idle command parameter
870 	 * has been written to avoid a race condition. If the order is not
871 	 * followed, the microcode may process the idle command before the
872 	 * parameters have been written to LRAM.
873 	 */
874 	adw_lram_write_32(adw, ADW_MC_IDLE_CMD_PARAMETER, parameter);
875     	adw_lram_write_16(adw, ADW_MC_IDLE_CMD, cmd);
876 
877 	/*
878 	 * Tickle the RISC to tell it to process the idle command.
879 	 */
880 	adw_tickle_risc(adw, ADW_TICKLE_B);
881 
882 	/* Wait for up to 10 seconds for the command to complete */
883 	timeout = 5000000;
884 	while (--timeout) {
885 		status = adw_lram_read_16(adw, ADW_MC_IDLE_CMD_STATUS);
886        		if (status != 0)
887 			break;
888 		DELAY(20);
889 	}
890 
891 	if (timeout == 0)
892 		panic("%s: Idle Command Timed Out!\n", adw_name(adw));
893 	splx(s);
894 	return (status);
895 }
896