xref: /dflybsd-src/sys/dev/crypto/ubsec/ubsec.c (revision a0e087c360c37449ce8304aeafa6cd59067202a8)
1 /* $FreeBSD: src/sys/dev/ubsec/ubsec.c,v 1.6.2.12 2003/06/04 17:56:59 sam Exp $ */
2 /* $DragonFly: src/sys/dev/crypto/ubsec/ubsec.c,v 1.13 2006/12/22 23:26:15 swildner Exp $ */
3 /*	$OpenBSD: ubsec.c,v 1.115 2002/09/24 18:33:26 jason Exp $	*/
4 
5 /*
6  * Copyright (c) 2000 Jason L. Wright (jason@thought.net)
7  * Copyright (c) 2000 Theo de Raadt (deraadt@openbsd.org)
8  * Copyright (c) 2001 Patrik Lindergren (patrik@ipunplugged.com)
9  *
10  * All rights reserved.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by Jason L. Wright
23  * 4. The name of the author may not be used to endorse or promote products
24  *    derived from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
27  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
28  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
29  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
30  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
31  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
32  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
34  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
35  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  *
38  * Effort sponsored in part by the Defense Advanced Research Projects
39  * Agency (DARPA) and Air Force Research Laboratory, Air Force
40  * Materiel Command, USAF, under agreement number F30602-01-2-0537.
41  *
42  */
43 
44 /*
45  * uBsec 5[56]01, 58xx hardware crypto accelerator
46  */
47 
48 #include "opt_ubsec.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/proc.h>
53 #include <sys/errno.h>
54 #include <sys/malloc.h>
55 #include <sys/kernel.h>
56 #include <sys/mbuf.h>
57 #include <sys/sysctl.h>
58 #include <sys/endian.h>
59 #include <sys/bus.h>
60 #include <sys/rman.h>
61 #include <sys/md5.h>
62 #include <sys/random.h>
63 #include <sys/thread2.h>
64 
65 #include <vm/vm.h>
66 #include <vm/pmap.h>
67 
68 #include <machine/clock.h>
69 
70 #include <crypto/sha1.h>
71 #include <opencrypto/cryptodev.h>
72 #include <opencrypto/cryptosoft.h>
73 
74 #include "cryptodev_if.h"
75 
76 #include <bus/pci/pcivar.h>
77 #include <bus/pci/pcireg.h>
78 
79 /* grr, #defines for gratuitous incompatibility in queue.h */
80 #define	SIMPLEQ_HEAD		STAILQ_HEAD
81 #define	SIMPLEQ_ENTRY		STAILQ_ENTRY
82 #define	SIMPLEQ_INIT		STAILQ_INIT
83 #define	SIMPLEQ_INSERT_TAIL	STAILQ_INSERT_TAIL
84 #define	SIMPLEQ_EMPTY		STAILQ_EMPTY
85 #define	SIMPLEQ_FIRST		STAILQ_FIRST
86 #define	SIMPLEQ_REMOVE_HEAD	STAILQ_REMOVE_HEAD
87 #define	SIMPLEQ_FOREACH		STAILQ_FOREACH
88 /* ditto for endian.h */
89 #define	letoh16(x)		le16toh(x)
90 #define	letoh32(x)		le32toh(x)
91 
92 #ifdef UBSEC_RNDTEST
93 #include "../rndtest/rndtest.h"
94 #endif
95 #include "ubsecreg.h"
96 #include "ubsecvar.h"
97 
98 /*
99  * Prototypes and count for the pci_device structure
100  */
101 static	int ubsec_probe(device_t);
102 static	int ubsec_attach(device_t);
103 static	int ubsec_detach(device_t);
104 static	int ubsec_suspend(device_t);
105 static	int ubsec_resume(device_t);
106 static	void ubsec_shutdown(device_t);
107 static	void ubsec_intr(void *);
108 static	int ubsec_newsession(void *, u_int32_t *, struct cryptoini *);
109 static	int ubsec_freesession(void *, u_int64_t);
110 static	int ubsec_process(void *, struct cryptop *, int);
111 static	void ubsec_callback(struct ubsec_softc *, struct ubsec_q *);
112 static	void ubsec_feed(struct ubsec_softc *);
113 static	void ubsec_mcopy(struct mbuf *, struct mbuf *, int, int);
114 static	void ubsec_callback2(struct ubsec_softc *, struct ubsec_q2 *);
115 static	int ubsec_feed2(struct ubsec_softc *);
116 static	void ubsec_rng(void *);
117 static	int ubsec_dma_malloc(struct ubsec_softc *, bus_size_t,
118 			     struct ubsec_dma_alloc *, int);
119 #define	ubsec_dma_sync(_dma, _flags) \
120 	bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags))
121 static	void ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *);
122 static	int ubsec_dmamap_aligned(struct ubsec_operand *op);
123 
124 static	void ubsec_reset_board(struct ubsec_softc *sc);
125 static	void ubsec_init_board(struct ubsec_softc *sc);
126 static	void ubsec_init_pciregs(device_t dev);
127 static	void ubsec_totalreset(struct ubsec_softc *sc);
128 
129 static	int ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q);
130 
131 static	int ubsec_kprocess(void*, struct cryptkop *, int);
132 static	int ubsec_kprocess_modexp_hw(struct ubsec_softc *, struct cryptkop *, int);
133 static	int ubsec_kprocess_modexp_sw(struct ubsec_softc *, struct cryptkop *, int);
134 static	int ubsec_kprocess_rsapriv(struct ubsec_softc *, struct cryptkop *, int);
135 static	void ubsec_kfree(struct ubsec_softc *, struct ubsec_q2 *);
136 static	int ubsec_ksigbits(struct crparam *);
137 static	void ubsec_kshift_r(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
138 static	void ubsec_kshift_l(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
139 
140 
141 static device_method_t ubsec_methods[] = {
142 	/* Device interface */
143 	DEVMETHOD(device_probe,		ubsec_probe),
144 	DEVMETHOD(device_attach,	ubsec_attach),
145 	DEVMETHOD(device_detach,	ubsec_detach),
146 	DEVMETHOD(device_suspend,	ubsec_suspend),
147 	DEVMETHOD(device_resume,	ubsec_resume),
148 	DEVMETHOD(device_shutdown,	ubsec_shutdown),
149 
150 	/* bus interface */
151 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
152 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
153 
154 	/* crypto device methods */
155 	DEVMETHOD(cryptodev_newsession,	ubsec_newsession),
156 	DEVMETHOD(cryptodev_freesession,ubsec_freesession),
157 	DEVMETHOD(cryptodev_process,	ubsec_process),
158 	DEVMETHOD(cryptodev_kprocess,	ubsec_kprocess),
159 
160 	{ 0, 0 }
161 };
162 static driver_t ubsec_driver = {
163 	"ubsec",
164 	ubsec_methods,
165 	sizeof (struct ubsec_softc)
166 };
167 static devclass_t ubsec_devclass;
168 
169 DECLARE_DUMMY_MODULE(ubsec);
170 DRIVER_MODULE(ubsec, pci, ubsec_driver, ubsec_devclass, 0, 0);
171 MODULE_DEPEND(ubsec, crypto, 1, 1, 1);
172 #ifdef UBSEC_RNDTEST
173 MODULE_DEPEND(ubsec, rndtest, 1, 1, 1);
174 #endif
175 
176 SYSCTL_NODE(_hw, OID_AUTO, ubsec, CTLFLAG_RD, 0, "Broadcom driver parameters");
177 
178 #ifdef UBSEC_DEBUG
179 static	void ubsec_dump_pb(volatile struct ubsec_pktbuf *);
180 static	void ubsec_dump_mcr(struct ubsec_mcr *);
181 static	void ubsec_dump_ctx2(struct ubsec_ctx_keyop *);
182 
183 static	int ubsec_debug = 0;
184 SYSCTL_INT(_hw_ubsec, OID_AUTO, debug, CTLFLAG_RW, &ubsec_debug,
185 	    0, "control debugging msgs");
186 #endif
187 
188 #define	READ_REG(sc,r) \
189 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
190 
191 #define WRITE_REG(sc,reg,val) \
192 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
193 
194 #define	SWAP32(x) (x) = htole32(ntohl((x)))
195 #define	HTOLE32(x) (x) = htole32(x)
196 
197 
198 struct ubsec_stats ubsecstats;
199 SYSCTL_STRUCT(_hw_ubsec, OID_AUTO, stats, CTLFLAG_RD, &ubsecstats,
200 	    ubsec_stats, "driver statistics");
201 
202 static int
203 ubsec_probe(device_t dev)
204 {
205 	if (pci_get_vendor(dev) == PCI_VENDOR_SUN &&
206 	    (pci_get_device(dev) == PCI_PRODUCT_SUN_5821 ||
207 	     pci_get_device(dev) == PCI_PRODUCT_SUN_SCA1K))
208 		return (0);
209 	if (pci_get_vendor(dev) == PCI_VENDOR_BLUESTEEL &&
210 	    (pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5501 ||
211 	     pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5601))
212 		return (0);
213 	if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
214 	    (pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5801 ||
215 	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5802 ||
216 	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5805 ||
217 	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5820 ||
218 	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5821 ||
219 	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5822 ||
220 	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5823
221 	     ))
222 		return (0);
223 	return (ENXIO);
224 }
225 
226 static const char*
227 ubsec_partname(struct ubsec_softc *sc)
228 {
229 	/* XXX sprintf numbers when not decoded */
230 	switch (pci_get_vendor(sc->sc_dev)) {
231 	case PCI_VENDOR_BROADCOM:
232 		switch (pci_get_device(sc->sc_dev)) {
233 		case PCI_PRODUCT_BROADCOM_5801:	return "Broadcom 5801";
234 		case PCI_PRODUCT_BROADCOM_5802:	return "Broadcom 5802";
235 		case PCI_PRODUCT_BROADCOM_5805:	return "Broadcom 5805";
236 		case PCI_PRODUCT_BROADCOM_5820:	return "Broadcom 5820";
237 		case PCI_PRODUCT_BROADCOM_5821:	return "Broadcom 5821";
238 		case PCI_PRODUCT_BROADCOM_5822:	return "Broadcom 5822";
239 		case PCI_PRODUCT_BROADCOM_5823:	return "Broadcom 5823";
240 		}
241 		return "Broadcom unknown-part";
242 	case PCI_VENDOR_BLUESTEEL:
243 		switch (pci_get_device(sc->sc_dev)) {
244 		case PCI_PRODUCT_BLUESTEEL_5601: return "Bluesteel 5601";
245 		}
246 		return "Bluesteel unknown-part";
247 	case PCI_VENDOR_SUN:
248 		switch (pci_get_device(sc->sc_dev)) {
249 		case PCI_PRODUCT_SUN_5821: return "Sun Crypto 5821";
250 		case PCI_PRODUCT_SUN_SCA1K: return "Sun Crypto 1K";
251 		}
252 		return "Sun unknown-part";
253 	}
254 	return "Unknown-vendor unknown-part";
255 }
256 
257 static void
258 default_harvest(struct rndtest_state *rsp, void *buf, u_int count)
259 {
260 	u_int32_t *p = (u_int32_t *)buf;
261 	for (count /= sizeof (u_int32_t); count; count--)
262 		add_true_randomness(*p++);
263 }
264 
265 static int
266 ubsec_attach(device_t dev)
267 {
268 	struct ubsec_softc *sc = device_get_softc(dev);
269 	struct ubsec_dma *dmap;
270 	u_int32_t cmd, i;
271 	int rid;
272 
273 	KASSERT(sc != NULL, ("ubsec_attach: null software carrier!"));
274 	bzero(sc, sizeof (*sc));
275 	sc->sc_dev = dev;
276 
277 	SIMPLEQ_INIT(&sc->sc_queue);
278 	SIMPLEQ_INIT(&sc->sc_qchip);
279 	SIMPLEQ_INIT(&sc->sc_queue2);
280 	SIMPLEQ_INIT(&sc->sc_qchip2);
281 	SIMPLEQ_INIT(&sc->sc_q2free);
282 
283 	/* XXX handle power management */
284 
285 	sc->sc_statmask = BS_STAT_MCR1_DONE | BS_STAT_DMAERR;
286 
287 	if (pci_get_vendor(dev) == PCI_VENDOR_BLUESTEEL &&
288 	    pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5601)
289 		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG;
290 
291 	if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
292 	    (pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5802 ||
293 	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5805))
294 		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG;
295 
296 	if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
297 	    pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5820)
298 		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG |
299 		    UBS_FLAGS_LONGCTX | UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY;
300 
301 	if ((pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
302 	     (pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5821 ||
303 	      pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5822 ||
304 	      pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5823)) ||
305 	    (pci_get_vendor(dev) == PCI_VENDOR_SUN &&
306 	     (pci_get_device(dev) == PCI_PRODUCT_SUN_SCA1K ||
307 	      pci_get_device(dev) == PCI_PRODUCT_SUN_5821))) {
308 		/* NB: the 5821/5822 defines some additional status bits */
309 		sc->sc_statmask |= BS_STAT_MCR1_ALLEMPTY |
310 		    BS_STAT_MCR2_ALLEMPTY;
311 		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG |
312 		    UBS_FLAGS_LONGCTX | UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY;
313 	}
314 
315 	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
316 	cmd |= PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN;
317 	pci_write_config(dev, PCIR_COMMAND, cmd, 4);
318 	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
319 
320 	if (!(cmd & PCIM_CMD_MEMEN)) {
321 		device_printf(dev, "failed to enable memory mapping\n");
322 		goto bad;
323 	}
324 
325 	if (!(cmd & PCIM_CMD_BUSMASTEREN)) {
326 		device_printf(dev, "failed to enable bus mastering\n");
327 		goto bad;
328 	}
329 
330 	/*
331 	 * Setup memory-mapping of PCI registers.
332 	 */
333 	rid = BS_BAR;
334 	sc->sc_sr = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
335 				       0, ~0, 1, RF_ACTIVE);
336 	if (sc->sc_sr == NULL) {
337 		device_printf(dev, "cannot map register space\n");
338 		goto bad;
339 	}
340 	sc->sc_st = rman_get_bustag(sc->sc_sr);
341 	sc->sc_sh = rman_get_bushandle(sc->sc_sr);
342 
343 	/*
344 	 * Arrange interrupt line.
345 	 */
346 	rid = 0;
347 	sc->sc_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid,
348 					0, ~0, 1, RF_SHAREABLE|RF_ACTIVE);
349 	if (sc->sc_irq == NULL) {
350 		device_printf(dev, "could not map interrupt\n");
351 		goto bad1;
352 	}
353 	/*
354 	 * NB: Network code assumes we are blocked with splimp()
355 	 *     so make sure the IRQ is mapped appropriately.
356 	 */
357 	if (bus_setup_intr(dev, sc->sc_irq, 0,
358 			   ubsec_intr, sc,
359 			   &sc->sc_ih, NULL)) {
360 		device_printf(dev, "could not establish interrupt\n");
361 		goto bad2;
362 	}
363 
364 	sc->sc_cid = crypto_get_driverid(dev, CRYPTOCAP_F_HARDWARE);
365 	if (sc->sc_cid < 0) {
366 		device_printf(dev, "could not get crypto driver id\n");
367 		goto bad3;
368 	}
369 
370 	/*
371 	 * Setup DMA descriptor area.
372 	 */
373 	if (bus_dma_tag_create(NULL,			/* parent */
374 			       1, 0,			/* alignment, bounds */
375 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
376 			       BUS_SPACE_MAXADDR,	/* highaddr */
377 			       NULL, NULL,		/* filter, filterarg */
378 			       0x3ffff,			/* maxsize */
379 			       UBS_MAX_SCATTER,		/* nsegments */
380 			       0xffff,			/* maxsegsize */
381 			       BUS_DMA_ALLOCNOW,	/* flags */
382 			       &sc->sc_dmat)) {
383 		device_printf(dev, "cannot allocate DMA tag\n");
384 		goto bad4;
385 	}
386 	SIMPLEQ_INIT(&sc->sc_freequeue);
387 	dmap = sc->sc_dmaa;
388 	for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) {
389 		struct ubsec_q *q;
390 
391 		q = kmalloc(sizeof(struct ubsec_q), M_DEVBUF, M_WAITOK);
392 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_dmachunk),
393 		    &dmap->d_alloc, 0)) {
394 			device_printf(dev, "cannot allocate dma buffers\n");
395 			kfree(q, M_DEVBUF);
396 			break;
397 		}
398 		dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr;
399 
400 		q->q_dma = dmap;
401 		sc->sc_queuea[i] = q;
402 
403 		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
404 	}
405 
406 	device_printf(sc->sc_dev, "%s\n", ubsec_partname(sc));
407 
408 	crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0);
409 	crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0);
410 	crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0);
411 	crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0);
412 
413 	/*
414 	 * Reset Broadcom chip
415 	 */
416 	ubsec_reset_board(sc);
417 
418 	/*
419 	 * Init Broadcom specific PCI settings
420 	 */
421 	ubsec_init_pciregs(dev);
422 
423 	/*
424 	 * Init Broadcom chip
425 	 */
426 	ubsec_init_board(sc);
427 
428 #ifndef UBSEC_NO_RNG
429 	if (sc->sc_flags & UBS_FLAGS_RNG) {
430 		sc->sc_statmask |= BS_STAT_MCR2_DONE;
431 #ifdef UBSEC_RNDTEST
432 		sc->sc_rndtest = rndtest_attach(dev);
433 		if (sc->sc_rndtest)
434 			sc->sc_harvest = rndtest_harvest;
435 		else
436 			sc->sc_harvest = default_harvest;
437 #else
438 		sc->sc_harvest = default_harvest;
439 #endif
440 
441 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
442 		    &sc->sc_rng.rng_q.q_mcr, 0))
443 			goto skip_rng;
444 
445 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rngbypass),
446 		    &sc->sc_rng.rng_q.q_ctx, 0)) {
447 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
448 			goto skip_rng;
449 		}
450 
451 		if (ubsec_dma_malloc(sc, sizeof(u_int32_t) *
452 		    UBSEC_RNG_BUFSIZ, &sc->sc_rng.rng_buf, 0)) {
453 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
454 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
455 			goto skip_rng;
456 		}
457 
458 		if (hz >= 100)
459 			sc->sc_rnghz = hz / 100;
460 		else
461 			sc->sc_rnghz = 1;
462 		callout_init(&sc->sc_rngto);
463 		callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
464 skip_rng:
465 	;
466 	}
467 #endif /* UBSEC_NO_RNG */
468 
469 	if (sc->sc_flags & UBS_FLAGS_KEY) {
470 		sc->sc_statmask |= BS_STAT_MCR2_DONE;
471 
472 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0);
473 #if 0
474 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0);
475 #endif
476 	}
477 	return (0);
478 bad4:
479 	crypto_unregister_all(sc->sc_cid);
480 bad3:
481 	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
482 bad2:
483 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
484 bad1:
485 	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
486 bad:
487 	return (ENXIO);
488 }
489 
490 /*
491  * Detach a device that successfully probed.
492  */
493 static int
494 ubsec_detach(device_t dev)
495 {
496 	struct ubsec_softc *sc = device_get_softc(dev);
497 
498 	KASSERT(sc != NULL, ("ubsec_detach: null software carrier"));
499 
500 	/* XXX wait/abort active ops */
501 
502 	crit_enter();
503 
504 	callout_stop(&sc->sc_rngto);
505 
506 	crypto_unregister_all(sc->sc_cid);
507 
508 #ifdef UBSEC_RNDTEST
509 	if (sc->sc_rndtest)
510 		rndtest_detach(sc->sc_rndtest);
511 #endif
512 
513 	while (!SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
514 		struct ubsec_q *q;
515 
516 		q = SIMPLEQ_FIRST(&sc->sc_freequeue);
517 		SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, q_next);
518 		ubsec_dma_free(sc, &q->q_dma->d_alloc);
519 		kfree(q, M_DEVBUF);
520 	}
521 #ifndef UBSEC_NO_RNG
522 	if (sc->sc_flags & UBS_FLAGS_RNG) {
523 		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
524 		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
525 		ubsec_dma_free(sc, &sc->sc_rng.rng_buf);
526 	}
527 #endif /* UBSEC_NO_RNG */
528 
529 	bus_generic_detach(dev);
530 	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
531 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
532 
533 	bus_dma_tag_destroy(sc->sc_dmat);
534 	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
535 
536 	crit_exit();
537 
538 	return (0);
539 }
540 
541 /*
542  * Stop all chip i/o so that the kernel's probe routines don't
543  * get confused by errant DMAs when rebooting.
544  */
545 static void
546 ubsec_shutdown(device_t dev)
547 {
548 #ifdef notyet
549 	ubsec_stop(device_get_softc(dev));
550 #endif
551 }
552 
553 /*
554  * Device suspend routine.
555  */
556 static int
557 ubsec_suspend(device_t dev)
558 {
559 	struct ubsec_softc *sc = device_get_softc(dev);
560 
561 	KASSERT(sc != NULL, ("ubsec_suspend: null software carrier"));
562 #ifdef notyet
563 	/* XXX stop the device and save PCI settings */
564 #endif
565 	sc->sc_suspended = 1;
566 
567 	return (0);
568 }
569 
570 static int
571 ubsec_resume(device_t dev)
572 {
573 	struct ubsec_softc *sc = device_get_softc(dev);
574 
575 	KASSERT(sc != NULL, ("ubsec_resume: null software carrier"));
576 #ifdef notyet
577 	/* XXX retore PCI settings and start the device */
578 #endif
579 	sc->sc_suspended = 0;
580 	return (0);
581 }
582 
583 /*
584  * UBSEC Interrupt routine
585  */
586 static void
587 ubsec_intr(void *arg)
588 {
589 	struct ubsec_softc *sc = arg;
590 	volatile u_int32_t stat;
591 	struct ubsec_q *q;
592 	struct ubsec_dma *dmap;
593 	int npkts = 0, i;
594 
595 	stat = READ_REG(sc, BS_STAT);
596 	stat &= sc->sc_statmask;
597 	if (stat == 0) {
598 		return;
599 	}
600 
601 	WRITE_REG(sc, BS_STAT, stat);		/* IACK */
602 
603 	/*
604 	 * Check to see if we have any packets waiting for us
605 	 */
606 	if ((stat & BS_STAT_MCR1_DONE)) {
607 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
608 			q = SIMPLEQ_FIRST(&sc->sc_qchip);
609 			dmap = q->q_dma;
610 
611 			if ((dmap->d_dma->d_mcr.mcr_flags & htole16(UBS_MCR_DONE)) == 0)
612 				break;
613 
614 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q_next);
615 
616 			npkts = q->q_nstacked_mcrs;
617 			sc->sc_nqchip -= 1+npkts;
618 			/*
619 			 * search for further sc_qchip ubsec_q's that share
620 			 * the same MCR, and complete them too, they must be
621 			 * at the top.
622 			 */
623 			for (i = 0; i < npkts; i++) {
624 				if(q->q_stacked_mcr[i]) {
625 					ubsec_callback(sc, q->q_stacked_mcr[i]);
626 				} else {
627 					break;
628 				}
629 			}
630 			ubsec_callback(sc, q);
631 		}
632 
633 		/*
634 		 * Don't send any more packet to chip if there has been
635 		 * a DMAERR.
636 		 */
637 		if (!(stat & BS_STAT_DMAERR))
638 			ubsec_feed(sc);
639 	}
640 
641 	/*
642 	 * Check to see if we have any key setups/rng's waiting for us
643 	 */
644 	if ((sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG)) &&
645 	    (stat & BS_STAT_MCR2_DONE)) {
646 		struct ubsec_q2 *q2;
647 		struct ubsec_mcr *mcr;
648 
649 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip2)) {
650 			q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
651 
652 			ubsec_dma_sync(&q2->q_mcr,
653 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
654 
655 			mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
656 			if ((mcr->mcr_flags & htole16(UBS_MCR_DONE)) == 0) {
657 				ubsec_dma_sync(&q2->q_mcr,
658 				    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
659 				break;
660 			}
661 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip2, q_next);
662 			ubsec_callback2(sc, q2);
663 			/*
664 			 * Don't send any more packet to chip if there has been
665 			 * a DMAERR.
666 			 */
667 			if (!(stat & BS_STAT_DMAERR))
668 				ubsec_feed2(sc);
669 		}
670 	}
671 
672 	/*
673 	 * Check to see if we got any DMA Error
674 	 */
675 	if (stat & BS_STAT_DMAERR) {
676 #ifdef UBSEC_DEBUG
677 		if (ubsec_debug) {
678 			volatile u_int32_t a = READ_REG(sc, BS_ERR);
679 
680 			kprintf("dmaerr %s@%08x\n",
681 			    (a & BS_ERR_READ) ? "read" : "write",
682 			    a & BS_ERR_ADDR);
683 		}
684 #endif /* UBSEC_DEBUG */
685 		ubsecstats.hst_dmaerr++;
686 		ubsec_totalreset(sc);
687 		ubsec_feed(sc);
688 	}
689 
690 	if (sc->sc_needwakeup) {		/* XXX check high watermark */
691 		int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
692 #ifdef UBSEC_DEBUG
693 		if (ubsec_debug)
694 			device_printf(sc->sc_dev, "wakeup crypto (%x)\n",
695 				sc->sc_needwakeup);
696 #endif /* UBSEC_DEBUG */
697 		sc->sc_needwakeup &= ~wakeup;
698 		crypto_unblock(sc->sc_cid, wakeup);
699 	}
700 }
701 
702 /*
703  * ubsec_feed() - aggregate and post requests to chip
704  */
705 static void
706 ubsec_feed(struct ubsec_softc *sc)
707 {
708 	struct ubsec_q *q, *q2;
709 	int npkts, i;
710 	void *v;
711 	u_int32_t stat;
712 
713 	/*
714 	 * Decide how many ops to combine in a single MCR.  We cannot
715 	 * aggregate more than UBS_MAX_AGGR because this is the number
716 	 * of slots defined in the data structure.  Note that
717 	 * aggregation only happens if ops are marked batch'able.
718 	 * Aggregating ops reduces the number of interrupts to the host
719 	 * but also (potentially) increases the latency for processing
720 	 * completed ops as we only get an interrupt when all aggregated
721 	 * ops have completed.
722 	 */
723 	if (sc->sc_nqueue == 0)
724 		return;
725 	if (sc->sc_nqueue > 1) {
726 		npkts = 0;
727 		SIMPLEQ_FOREACH(q, &sc->sc_queue, q_next) {
728 			npkts++;
729 			if ((q->q_crp->crp_flags & CRYPTO_F_BATCH) == 0)
730 				break;
731 		}
732 	} else
733 		npkts = 1;
734 	/*
735 	 * Check device status before going any further.
736 	 */
737 	if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
738 		if (stat & BS_STAT_DMAERR) {
739 			ubsec_totalreset(sc);
740 			ubsecstats.hst_dmaerr++;
741 		} else
742 			ubsecstats.hst_mcr1full++;
743 		return;
744 	}
745 	if (sc->sc_nqueue > ubsecstats.hst_maxqueue)
746 		ubsecstats.hst_maxqueue = sc->sc_nqueue;
747 	if (npkts > UBS_MAX_AGGR)
748 		npkts = UBS_MAX_AGGR;
749 	if (npkts < 2)				/* special case 1 op */
750 		goto feed1;
751 
752 	ubsecstats.hst_totbatch += npkts-1;
753 #ifdef UBSEC_DEBUG
754 	if (ubsec_debug)
755 		kprintf("merging %d records\n", npkts);
756 #endif /* UBSEC_DEBUG */
757 
758 	q = SIMPLEQ_FIRST(&sc->sc_queue);
759 	SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q_next);
760 	--sc->sc_nqueue;
761 
762 	bus_dmamap_sync(sc->sc_dmat, q->q_src_map, BUS_DMASYNC_PREWRITE);
763 	if (q->q_dst_map != NULL)
764 		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map, BUS_DMASYNC_PREREAD);
765 
766 	q->q_nstacked_mcrs = npkts - 1;		/* Number of packets stacked */
767 
768 	for (i = 0; i < q->q_nstacked_mcrs; i++) {
769 		q2 = SIMPLEQ_FIRST(&sc->sc_queue);
770 		bus_dmamap_sync(sc->sc_dmat, q2->q_src_map,
771 		    BUS_DMASYNC_PREWRITE);
772 		if (q2->q_dst_map != NULL)
773 			bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map,
774 			    BUS_DMASYNC_PREREAD);
775 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q_next);
776 		--sc->sc_nqueue;
777 
778 		v = (void*)(((char *)&q2->q_dma->d_dma->d_mcr) + sizeof(struct ubsec_mcr) -
779 		    sizeof(struct ubsec_mcr_add));
780 		bcopy(v, &q->q_dma->d_dma->d_mcradd[i], sizeof(struct ubsec_mcr_add));
781 		q->q_stacked_mcr[i] = q2;
782 	}
783 	q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts);
784 	SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
785 	sc->sc_nqchip += npkts;
786 	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
787 		ubsecstats.hst_maxqchip = sc->sc_nqchip;
788 	ubsec_dma_sync(&q->q_dma->d_alloc,
789 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
790 	WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
791 	    offsetof(struct ubsec_dmachunk, d_mcr));
792 	return;
793 
794 feed1:
795 	q = SIMPLEQ_FIRST(&sc->sc_queue);
796 
797 	bus_dmamap_sync(sc->sc_dmat, q->q_src_map, BUS_DMASYNC_PREWRITE);
798 	if (q->q_dst_map != NULL)
799 		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map, BUS_DMASYNC_PREREAD);
800 	ubsec_dma_sync(&q->q_dma->d_alloc,
801 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
802 
803 	WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
804 	    offsetof(struct ubsec_dmachunk, d_mcr));
805 #ifdef UBSEC_DEBUG
806 	if (ubsec_debug)
807 		kprintf("feed1: q->chip %p %08x stat %08x\n",
808 		      q, (u_int32_t)vtophys(&q->q_dma->d_dma->d_mcr),
809 		      stat);
810 #endif /* UBSEC_DEBUG */
811 	SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q_next);
812 	--sc->sc_nqueue;
813 	SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
814 	sc->sc_nqchip++;
815 	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
816 		ubsecstats.hst_maxqchip = sc->sc_nqchip;
817 	return;
818 }
819 
820 static void
821 ubsec_setup_enckey(struct ubsec_session *ses, int algo, caddr_t key)
822 {
823 
824 	/* Go ahead and compute key in ubsec's byte order */
825 	if (algo == CRYPTO_DES_CBC) {
826 		bcopy(key, &ses->ses_deskey[0], 8);
827 		bcopy(key, &ses->ses_deskey[2], 8);
828 		bcopy(key, &ses->ses_deskey[4], 8);
829 	} else
830 		bcopy(key, ses->ses_deskey, 24);
831 
832 	SWAP32(ses->ses_deskey[0]);
833 	SWAP32(ses->ses_deskey[1]);
834 	SWAP32(ses->ses_deskey[2]);
835 	SWAP32(ses->ses_deskey[3]);
836 	SWAP32(ses->ses_deskey[4]);
837 	SWAP32(ses->ses_deskey[5]);
838 }
839 
840 static void
841 ubsec_setup_mackey(struct ubsec_session *ses, int algo, caddr_t key, int klen)
842 {
843 	MD5_CTX md5ctx;
844 	SHA1_CTX sha1ctx;
845 	int i;
846 
847 	for (i = 0; i < klen; i++)
848 		key[i] ^= HMAC_IPAD_VAL;
849 
850 	if (algo == CRYPTO_MD5_HMAC) {
851 		MD5Init(&md5ctx);
852 		MD5Update(&md5ctx, key, klen);
853 		MD5Update(&md5ctx, hmac_ipad_buffer, MD5_HMAC_BLOCK_LEN - klen);
854 		bcopy(md5ctx.state, ses->ses_hminner, sizeof(md5ctx.state));
855 	} else {
856 		SHA1Init(&sha1ctx);
857 		SHA1Update(&sha1ctx, key, klen);
858 		SHA1Update(&sha1ctx, hmac_ipad_buffer,
859 		    SHA1_HMAC_BLOCK_LEN - klen);
860 		bcopy(sha1ctx.h.b32, ses->ses_hminner, sizeof(sha1ctx.h.b32));
861 	}
862 
863 	for (i = 0; i < klen; i++)
864 		key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
865 
866 	if (algo == CRYPTO_MD5_HMAC) {
867 		MD5Init(&md5ctx);
868 		MD5Update(&md5ctx, key, klen);
869 		MD5Update(&md5ctx, hmac_opad_buffer, MD5_HMAC_BLOCK_LEN - klen);
870 		bcopy(md5ctx.state, ses->ses_hmouter, sizeof(md5ctx.state));
871 	} else {
872 		SHA1Init(&sha1ctx);
873 		SHA1Update(&sha1ctx, key, klen);
874 		SHA1Update(&sha1ctx, hmac_opad_buffer,
875 		    SHA1_HMAC_BLOCK_LEN - klen);
876 		bcopy(sha1ctx.h.b32, ses->ses_hmouter, sizeof(sha1ctx.h.b32));
877 	}
878 
879 	for (i = 0; i < klen; i++)
880 		key[i] ^= HMAC_OPAD_VAL;
881 }
882 
883 /*
884  * Allocate a new 'session' and return an encoded session id.  'sidp'
885  * contains our registration id, and should contain an encoded session
886  * id on successful allocation.
887  */
888 static int
889 ubsec_newsession(void *arg, u_int32_t *sidp, struct cryptoini *cri)
890 {
891 	struct cryptoini *c, *encini = NULL, *macini = NULL;
892 	struct ubsec_softc *sc = arg;
893 	struct ubsec_session *ses = NULL;
894 	MD5_CTX md5ctx;
895 	SHA1_CTX sha1ctx;
896 	int i, sesn;
897 
898 	KASSERT(sc != NULL, ("ubsec_newsession: null softc"));
899 	if (sidp == NULL || cri == NULL || sc == NULL)
900 		return (EINVAL);
901 
902 	for (c = cri; c != NULL; c = c->cri_next) {
903 		if (c->cri_alg == CRYPTO_MD5_HMAC ||
904 		    c->cri_alg == CRYPTO_SHA1_HMAC) {
905 			if (macini)
906 				return (EINVAL);
907 			macini = c;
908 		} else if (c->cri_alg == CRYPTO_DES_CBC ||
909 		    c->cri_alg == CRYPTO_3DES_CBC) {
910 			if (encini)
911 				return (EINVAL);
912 			encini = c;
913 		} else
914 			return (EINVAL);
915 	}
916 	if (encini == NULL && macini == NULL)
917 		return (EINVAL);
918 
919 	if (sc->sc_sessions == NULL) {
920 		ses = sc->sc_sessions = kmalloc(sizeof(struct ubsec_session),
921 						M_DEVBUF, M_INTWAIT);
922 		sesn = 0;
923 		sc->sc_nsessions = 1;
924 	} else {
925 		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
926 			if (sc->sc_sessions[sesn].ses_used == 0) {
927 				ses = &sc->sc_sessions[sesn];
928 				break;
929 			}
930 		}
931 
932 		if (ses == NULL) {
933 			sesn = sc->sc_nsessions;
934 			ses = kmalloc((sesn + 1) * sizeof(struct ubsec_session),
935 					M_DEVBUF, M_INTWAIT);
936 			bcopy(sc->sc_sessions, ses, sesn *
937 			    sizeof(struct ubsec_session));
938 			bzero(sc->sc_sessions, sesn *
939 			    sizeof(struct ubsec_session));
940 			kfree(sc->sc_sessions, M_DEVBUF);
941 			sc->sc_sessions = ses;
942 			ses = &sc->sc_sessions[sesn];
943 			sc->sc_nsessions++;
944 		}
945 	}
946 
947 	bzero(ses, sizeof(struct ubsec_session));
948 	ses->ses_used = 1;
949 	if (encini) {
950 		read_random(ses->ses_iv, sizeof(ses->ses_iv));
951 		if (encini->cri_key != NULL) {
952 			ubsec_setup_enckey(ses, encini->cri_alg,
953 			    encini->cri_key);
954 		}
955 #if 0
956 		/* get an IV, network byte order */
957 		/* XXX may read fewer than requested */
958 		read_random(ses->ses_iv, sizeof(ses->ses_iv));
959 
960 		/* Go ahead and compute key in ubsec's byte order */
961 		if (encini->cri_alg == CRYPTO_DES_CBC) {
962 			bcopy(encini->cri_key, &ses->ses_deskey[0], 8);
963 			bcopy(encini->cri_key, &ses->ses_deskey[2], 8);
964 			bcopy(encini->cri_key, &ses->ses_deskey[4], 8);
965 		} else
966 			bcopy(encini->cri_key, ses->ses_deskey, 24);
967 
968 		SWAP32(ses->ses_deskey[0]);
969 		SWAP32(ses->ses_deskey[1]);
970 		SWAP32(ses->ses_deskey[2]);
971 		SWAP32(ses->ses_deskey[3]);
972 		SWAP32(ses->ses_deskey[4]);
973 		SWAP32(ses->ses_deskey[5]);
974 #endif
975 	}
976 
977 	if (macini) {
978 		ses->ses_mlen = macini->cri_mlen;
979 		if (ses->ses_mlen == 0) {
980 			if (macini->cri_alg == CRYPTO_MD5_HMAC)
981 				ses->ses_mlen = MD5_HASH_LEN;
982 			else
983 				ses->ses_mlen = SHA1_HASH_LEN;
984 		}
985 
986 		if (macini->cri_key != NULL) {
987 			ubsec_setup_mackey(ses, macini->cri_alg,
988 			    macini->cri_key, macini->cri_klen/8);
989 		}
990 #if 0
991 		for (i = 0; i < macini->cri_klen / 8; i++)
992 			macini->cri_key[i] ^= HMAC_IPAD_VAL;
993 
994 		if (macini->cri_alg == CRYPTO_MD5_HMAC) {
995 			MD5Init(&md5ctx);
996 			MD5Update(&md5ctx, macini->cri_key,
997 			    macini->cri_klen / 8);
998 			MD5Update(&md5ctx, hmac_ipad_buffer,
999 			    MD5_HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1000 			bcopy(md5ctx.state, ses->ses_hminner,
1001 			    sizeof(md5ctx.state));
1002 		} else {
1003 			SHA1Init(&sha1ctx);
1004 			SHA1Update(&sha1ctx, macini->cri_key,
1005 			    macini->cri_klen / 8);
1006 			SHA1Update(&sha1ctx, hmac_ipad_buffer,
1007 			    SHA1_HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1008 			bcopy(sha1ctx.h.b32, ses->ses_hminner,
1009 			    sizeof(sha1ctx.h.b32));
1010 		}
1011 
1012 		for (i = 0; i < macini->cri_klen / 8; i++)
1013 			macini->cri_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
1014 
1015 		if (macini->cri_alg == CRYPTO_MD5_HMAC) {
1016 			MD5Init(&md5ctx);
1017 			MD5Update(&md5ctx, macini->cri_key,
1018 			    macini->cri_klen / 8);
1019 			MD5Update(&md5ctx, hmac_opad_buffer,
1020 			    MD5_HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1021 			bcopy(md5ctx.state, ses->ses_hmouter,
1022 			    sizeof(md5ctx.state));
1023 		} else {
1024 			SHA1Init(&sha1ctx);
1025 			SHA1Update(&sha1ctx, macini->cri_key,
1026 			    macini->cri_klen / 8);
1027 			SHA1Update(&sha1ctx, hmac_opad_buffer,
1028 			    SHA1_HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1029 			bcopy(sha1ctx.h.b32, ses->ses_hmouter,
1030 			    sizeof(sha1ctx.h.b32));
1031 		}
1032 
1033 		for (i = 0; i < macini->cri_klen / 8; i++)
1034 			macini->cri_key[i] ^= HMAC_OPAD_VAL;
1035 #endif
1036 	}
1037 
1038 	*sidp = UBSEC_SID(device_get_unit(sc->sc_dev), sesn);
1039 	return (0);
1040 }
1041 
1042 /*
1043  * Deallocate a session.
1044  */
1045 static int
1046 ubsec_freesession(void *arg, u_int64_t tid)
1047 {
1048 	struct ubsec_softc *sc = arg;
1049 	int session;
1050 	u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
1051 
1052 	KASSERT(sc != NULL, ("ubsec_freesession: null softc"));
1053 	if (sc == NULL)
1054 		return (EINVAL);
1055 
1056 	session = UBSEC_SESSION(sid);
1057 	if (session >= sc->sc_nsessions)
1058 		return (EINVAL);
1059 
1060 	bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
1061 	return (0);
1062 }
1063 
1064 static void
1065 ubsec_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
1066 {
1067 	struct ubsec_operand *op = arg;
1068 
1069 	KASSERT(nsegs <= UBS_MAX_SCATTER,
1070 		("Too many DMA segments returned when mapping operand"));
1071 #ifdef UBSEC_DEBUG
1072 	if (ubsec_debug)
1073 		kprintf("ubsec_op_cb: mapsize %u nsegs %d\n",
1074 			(u_int) mapsize, nsegs);
1075 #endif
1076 	op->mapsize = mapsize;
1077 	op->nsegs = nsegs;
1078 	bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
1079 }
1080 
1081 static int
1082 ubsec_process(void *arg, struct cryptop *crp, int hint)
1083 {
1084 	struct ubsec_q *q = NULL;
1085 	int err = 0, i, j, nicealign;
1086 	struct ubsec_softc *sc = arg;
1087 	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
1088 	int encoffset = 0, macoffset = 0, cpskip, cpoffset;
1089 	int sskip, dskip, stheend, dtheend;
1090 	int16_t coffset;
1091 	struct ubsec_session *ses;
1092 	struct ubsec_pktctx ctx;
1093 	struct ubsec_dma *dmap = NULL;
1094 
1095 	if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
1096 		ubsecstats.hst_invalid++;
1097 		return (EINVAL);
1098 	}
1099 	if (UBSEC_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
1100 		ubsecstats.hst_badsession++;
1101 		return (EINVAL);
1102 	}
1103 
1104 	crit_enter();
1105 
1106 	if (SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
1107 		ubsecstats.hst_queuefull++;
1108 		sc->sc_needwakeup |= CRYPTO_SYMQ;
1109 		crit_exit();
1110 		return (ERESTART);
1111 	}
1112 	q = SIMPLEQ_FIRST(&sc->sc_freequeue);
1113 	SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, q_next);
1114 	crit_exit();
1115 
1116 	dmap = q->q_dma; /* Save dma pointer */
1117 	bzero(q, sizeof(struct ubsec_q));
1118 	bzero(&ctx, sizeof(ctx));
1119 
1120 	q->q_sesn = UBSEC_SESSION(crp->crp_sid);
1121 	q->q_dma = dmap;
1122 	ses = &sc->sc_sessions[q->q_sesn];
1123 
1124 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1125 		q->q_src_m = (struct mbuf *)crp->crp_buf;
1126 		q->q_dst_m = (struct mbuf *)crp->crp_buf;
1127 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1128 		q->q_src_io = (struct uio *)crp->crp_buf;
1129 		q->q_dst_io = (struct uio *)crp->crp_buf;
1130 	} else {
1131 		ubsecstats.hst_badflags++;
1132 		err = EINVAL;
1133 		goto errout;	/* XXX we don't handle contiguous blocks! */
1134 	}
1135 
1136 	bzero(&dmap->d_dma->d_mcr, sizeof(struct ubsec_mcr));
1137 
1138 	dmap->d_dma->d_mcr.mcr_pkts = htole16(1);
1139 	dmap->d_dma->d_mcr.mcr_flags = 0;
1140 	q->q_crp = crp;
1141 
1142 	crd1 = crp->crp_desc;
1143 	if (crd1 == NULL) {
1144 		ubsecstats.hst_nodesc++;
1145 		err = EINVAL;
1146 		goto errout;
1147 	}
1148 	crd2 = crd1->crd_next;
1149 
1150 	if (crd2 == NULL) {
1151 		if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
1152 		    crd1->crd_alg == CRYPTO_SHA1_HMAC) {
1153 			maccrd = crd1;
1154 			enccrd = NULL;
1155 		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
1156 		    crd1->crd_alg == CRYPTO_3DES_CBC) {
1157 			maccrd = NULL;
1158 			enccrd = crd1;
1159 		} else {
1160 			ubsecstats.hst_badalg++;
1161 			err = EINVAL;
1162 			goto errout;
1163 		}
1164 	} else {
1165 		if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
1166 		    crd1->crd_alg == CRYPTO_SHA1_HMAC) &&
1167 		    (crd2->crd_alg == CRYPTO_DES_CBC ||
1168 			crd2->crd_alg == CRYPTO_3DES_CBC) &&
1169 		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
1170 			maccrd = crd1;
1171 			enccrd = crd2;
1172 		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
1173 		    crd1->crd_alg == CRYPTO_3DES_CBC) &&
1174 		    (crd2->crd_alg == CRYPTO_MD5_HMAC ||
1175 			crd2->crd_alg == CRYPTO_SHA1_HMAC) &&
1176 		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
1177 			enccrd = crd1;
1178 			maccrd = crd2;
1179 		} else {
1180 			/*
1181 			 * We cannot order the ubsec as requested
1182 			 */
1183 			ubsecstats.hst_badalg++;
1184 			err = EINVAL;
1185 			goto errout;
1186 		}
1187 	}
1188 
1189 	if (enccrd) {
1190 		encoffset = enccrd->crd_skip;
1191 		ctx.pc_flags |= htole16(UBS_PKTCTX_ENC_3DES);
1192 
1193 		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1194 			q->q_flags |= UBSEC_QFLAGS_COPYOUTIV;
1195 
1196 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1197 				bcopy(enccrd->crd_iv, ctx.pc_iv, 8);
1198 			else {
1199 				ctx.pc_iv[0] = ses->ses_iv[0];
1200 				ctx.pc_iv[1] = ses->ses_iv[1];
1201 			}
1202 
1203 			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1204 				if (crp->crp_flags & CRYPTO_F_IMBUF)
1205 					m_copyback(q->q_src_m,
1206 					    enccrd->crd_inject,
1207 					    8, (caddr_t)ctx.pc_iv);
1208 				else if (crp->crp_flags & CRYPTO_F_IOV)
1209 					cuio_copyback(q->q_src_io,
1210 					    enccrd->crd_inject,
1211 					    8, (caddr_t)ctx.pc_iv);
1212 			}
1213 		} else {
1214 			ctx.pc_flags |= htole16(UBS_PKTCTX_INBOUND);
1215 
1216 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1217 				bcopy(enccrd->crd_iv, ctx.pc_iv, 8);
1218 			else if (crp->crp_flags & CRYPTO_F_IMBUF)
1219 				m_copydata(q->q_src_m, enccrd->crd_inject,
1220 				    8, (caddr_t)ctx.pc_iv);
1221 			else if (crp->crp_flags & CRYPTO_F_IOV)
1222 				cuio_copydata(q->q_src_io,
1223 				    enccrd->crd_inject, 8,
1224 				    (caddr_t)ctx.pc_iv);
1225 		}
1226 
1227 		ctx.pc_deskey[0] = ses->ses_deskey[0];
1228 		ctx.pc_deskey[1] = ses->ses_deskey[1];
1229 		ctx.pc_deskey[2] = ses->ses_deskey[2];
1230 		ctx.pc_deskey[3] = ses->ses_deskey[3];
1231 		ctx.pc_deskey[4] = ses->ses_deskey[4];
1232 		ctx.pc_deskey[5] = ses->ses_deskey[5];
1233 		SWAP32(ctx.pc_iv[0]);
1234 		SWAP32(ctx.pc_iv[1]);
1235 	}
1236 
1237 	if (maccrd) {
1238 		macoffset = maccrd->crd_skip;
1239 
1240 		if (maccrd->crd_alg == CRYPTO_MD5_HMAC)
1241 			ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_MD5);
1242 		else
1243 			ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_SHA1);
1244 
1245 		for (i = 0; i < 5; i++) {
1246 			ctx.pc_hminner[i] = ses->ses_hminner[i];
1247 			ctx.pc_hmouter[i] = ses->ses_hmouter[i];
1248 
1249 			HTOLE32(ctx.pc_hminner[i]);
1250 			HTOLE32(ctx.pc_hmouter[i]);
1251 		}
1252 	}
1253 
1254 	if (enccrd && maccrd) {
1255 		/*
1256 		 * ubsec cannot handle packets where the end of encryption
1257 		 * and authentication are not the same, or where the
1258 		 * encrypted part begins before the authenticated part.
1259 		 */
1260 		if ((encoffset + enccrd->crd_len) !=
1261 		    (macoffset + maccrd->crd_len)) {
1262 			ubsecstats.hst_lenmismatch++;
1263 			err = EINVAL;
1264 			goto errout;
1265 		}
1266 		if (enccrd->crd_skip < maccrd->crd_skip) {
1267 			ubsecstats.hst_skipmismatch++;
1268 			err = EINVAL;
1269 			goto errout;
1270 		}
1271 		sskip = maccrd->crd_skip;
1272 		cpskip = dskip = enccrd->crd_skip;
1273 		stheend = maccrd->crd_len;
1274 		dtheend = enccrd->crd_len;
1275 		coffset = enccrd->crd_skip - maccrd->crd_skip;
1276 		cpoffset = cpskip + dtheend;
1277 #ifdef UBSEC_DEBUG
1278 		if (ubsec_debug) {
1279 			kprintf("mac: skip %d, len %d, inject %d\n",
1280 			    maccrd->crd_skip, maccrd->crd_len, maccrd->crd_inject);
1281 			kprintf("enc: skip %d, len %d, inject %d\n",
1282 			    enccrd->crd_skip, enccrd->crd_len, enccrd->crd_inject);
1283 			kprintf("src: skip %d, len %d\n", sskip, stheend);
1284 			kprintf("dst: skip %d, len %d\n", dskip, dtheend);
1285 			kprintf("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n",
1286 			    coffset, stheend, cpskip, cpoffset);
1287 		}
1288 #endif
1289 	} else {
1290 		cpskip = dskip = sskip = macoffset + encoffset;
1291 		dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len;
1292 		cpoffset = cpskip + dtheend;
1293 		coffset = 0;
1294 	}
1295 	ctx.pc_offset = htole16(coffset >> 2);
1296 
1297 	if (bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &q->q_src_map)) {
1298 		ubsecstats.hst_nomap++;
1299 		err = ENOMEM;
1300 		goto errout;
1301 	}
1302 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1303 		if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map,
1304 		    q->q_src_m, ubsec_op_cb, &q->q_src, BUS_DMA_NOWAIT) != 0) {
1305 			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1306 			q->q_src_map = NULL;
1307 			ubsecstats.hst_noload++;
1308 			err = ENOMEM;
1309 			goto errout;
1310 		}
1311 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1312 		if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map,
1313 		    q->q_src_io, ubsec_op_cb, &q->q_src, BUS_DMA_NOWAIT) != 0) {
1314 			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1315 			q->q_src_map = NULL;
1316 			ubsecstats.hst_noload++;
1317 			err = ENOMEM;
1318 			goto errout;
1319 		}
1320 	}
1321 	nicealign = ubsec_dmamap_aligned(&q->q_src);
1322 
1323 	dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend);
1324 
1325 #ifdef UBSEC_DEBUG
1326 	if (ubsec_debug)
1327 		kprintf("src skip: %d nicealign: %u\n", sskip, nicealign);
1328 #endif
1329 	for (i = j = 0; i < q->q_src_nsegs; i++) {
1330 		struct ubsec_pktbuf *pb;
1331 		bus_size_t packl = q->q_src_segs[i].ds_len;
1332 		bus_addr_t packp = q->q_src_segs[i].ds_addr;
1333 
1334 		if (sskip >= packl) {
1335 			sskip -= packl;
1336 			continue;
1337 		}
1338 
1339 		packl -= sskip;
1340 		packp += sskip;
1341 		sskip = 0;
1342 
1343 		if (packl > 0xfffc) {
1344 			err = EIO;
1345 			goto errout;
1346 		}
1347 
1348 		if (j == 0)
1349 			pb = &dmap->d_dma->d_mcr.mcr_ipktbuf;
1350 		else
1351 			pb = &dmap->d_dma->d_sbuf[j - 1];
1352 
1353 		pb->pb_addr = htole32(packp);
1354 
1355 		if (stheend) {
1356 			if (packl > stheend) {
1357 				pb->pb_len = htole32(stheend);
1358 				stheend = 0;
1359 			} else {
1360 				pb->pb_len = htole32(packl);
1361 				stheend -= packl;
1362 			}
1363 		} else
1364 			pb->pb_len = htole32(packl);
1365 
1366 		if ((i + 1) == q->q_src_nsegs)
1367 			pb->pb_next = 0;
1368 		else
1369 			pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1370 			    offsetof(struct ubsec_dmachunk, d_sbuf[j]));
1371 		j++;
1372 	}
1373 
1374 	if (enccrd == NULL && maccrd != NULL) {
1375 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0;
1376 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0;
1377 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_next = htole32(dmap->d_alloc.dma_paddr +
1378 		    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1379 #ifdef UBSEC_DEBUG
1380 		if (ubsec_debug)
1381 			kprintf("opkt: %x %x %x\n",
1382 			    dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr,
1383 			    dmap->d_dma->d_mcr.mcr_opktbuf.pb_len,
1384 			    dmap->d_dma->d_mcr.mcr_opktbuf.pb_next);
1385 #endif
1386 	} else {
1387 		if (crp->crp_flags & CRYPTO_F_IOV) {
1388 			if (!nicealign) {
1389 				ubsecstats.hst_iovmisaligned++;
1390 				err = EINVAL;
1391 				goto errout;
1392 			}
1393 			if (bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1394 			     &q->q_dst_map)) {
1395 				ubsecstats.hst_nomap++;
1396 				err = ENOMEM;
1397 				goto errout;
1398 			}
1399 			if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map,
1400 			    q->q_dst_io, ubsec_op_cb, &q->q_dst, BUS_DMA_NOWAIT) != 0) {
1401 				bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1402 				q->q_dst_map = NULL;
1403 				ubsecstats.hst_noload++;
1404 				err = ENOMEM;
1405 				goto errout;
1406 			}
1407 		} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1408 			if (nicealign) {
1409 				q->q_dst = q->q_src;
1410 			} else {
1411 				int totlen, len;
1412 				struct mbuf *m, *top, **mp;
1413 
1414 				ubsecstats.hst_unaligned++;
1415 				totlen = q->q_src_mapsize;
1416 				if (q->q_src_m->m_flags & M_PKTHDR) {
1417 					len = MHLEN;
1418 					MGETHDR(m, MB_DONTWAIT, MT_DATA);
1419 					if (m && !m_dup_pkthdr(m, q->q_src_m, MB_DONTWAIT)) {
1420 						m_free(m);
1421 						m = NULL;
1422 					}
1423 				} else {
1424 					len = MLEN;
1425 					MGET(m, MB_DONTWAIT, MT_DATA);
1426 				}
1427 				if (m == NULL) {
1428 					ubsecstats.hst_nombuf++;
1429 					err = sc->sc_nqueue ? ERESTART : ENOMEM;
1430 					goto errout;
1431 				}
1432 				if (totlen >= MINCLSIZE) {
1433 					MCLGET(m, MB_DONTWAIT);
1434 					if ((m->m_flags & M_EXT) == 0) {
1435 						m_free(m);
1436 						ubsecstats.hst_nomcl++;
1437 						err = sc->sc_nqueue ? ERESTART : ENOMEM;
1438 						goto errout;
1439 					}
1440 					len = MCLBYTES;
1441 				}
1442 				m->m_len = len;
1443 				top = NULL;
1444 				mp = &top;
1445 
1446 				while (totlen > 0) {
1447 					if (top) {
1448 						MGET(m, MB_DONTWAIT, MT_DATA);
1449 						if (m == NULL) {
1450 							m_freem(top);
1451 							ubsecstats.hst_nombuf++;
1452 							err = sc->sc_nqueue ? ERESTART : ENOMEM;
1453 							goto errout;
1454 						}
1455 						len = MLEN;
1456 					}
1457 					if (top && totlen >= MINCLSIZE) {
1458 						MCLGET(m, MB_DONTWAIT);
1459 						if ((m->m_flags & M_EXT) == 0) {
1460 							*mp = m;
1461 							m_freem(top);
1462 							ubsecstats.hst_nomcl++;
1463 							err = sc->sc_nqueue ? ERESTART : ENOMEM;
1464 							goto errout;
1465 						}
1466 						len = MCLBYTES;
1467 					}
1468 					m->m_len = len = min(totlen, len);
1469 					totlen -= len;
1470 					*mp = m;
1471 					mp = &m->m_next;
1472 				}
1473 				q->q_dst_m = top;
1474 				ubsec_mcopy(q->q_src_m, q->q_dst_m,
1475 				    cpskip, cpoffset);
1476 				if (bus_dmamap_create(sc->sc_dmat,
1477 				    BUS_DMA_NOWAIT, &q->q_dst_map) != 0) {
1478 					ubsecstats.hst_nomap++;
1479 					err = ENOMEM;
1480 					goto errout;
1481 				}
1482 				if (bus_dmamap_load_mbuf(sc->sc_dmat,
1483 				    q->q_dst_map, q->q_dst_m,
1484 				    ubsec_op_cb, &q->q_dst,
1485 				    BUS_DMA_NOWAIT) != 0) {
1486 					bus_dmamap_destroy(sc->sc_dmat,
1487 					q->q_dst_map);
1488 					q->q_dst_map = NULL;
1489 					ubsecstats.hst_noload++;
1490 					err = ENOMEM;
1491 					goto errout;
1492 				}
1493 			}
1494 		} else {
1495 			ubsecstats.hst_badflags++;
1496 			err = EINVAL;
1497 			goto errout;
1498 		}
1499 
1500 #ifdef UBSEC_DEBUG
1501 		if (ubsec_debug)
1502 			kprintf("dst skip: %d\n", dskip);
1503 #endif
1504 		for (i = j = 0; i < q->q_dst_nsegs; i++) {
1505 			struct ubsec_pktbuf *pb;
1506 			bus_size_t packl = q->q_dst_segs[i].ds_len;
1507 			bus_addr_t packp = q->q_dst_segs[i].ds_addr;
1508 
1509 			if (dskip >= packl) {
1510 				dskip -= packl;
1511 				continue;
1512 			}
1513 
1514 			packl -= dskip;
1515 			packp += dskip;
1516 			dskip = 0;
1517 
1518 			if (packl > 0xfffc) {
1519 				err = EIO;
1520 				goto errout;
1521 			}
1522 
1523 			if (j == 0)
1524 				pb = &dmap->d_dma->d_mcr.mcr_opktbuf;
1525 			else
1526 				pb = &dmap->d_dma->d_dbuf[j - 1];
1527 
1528 			pb->pb_addr = htole32(packp);
1529 
1530 			if (dtheend) {
1531 				if (packl > dtheend) {
1532 					pb->pb_len = htole32(dtheend);
1533 					dtheend = 0;
1534 				} else {
1535 					pb->pb_len = htole32(packl);
1536 					dtheend -= packl;
1537 				}
1538 			} else
1539 				pb->pb_len = htole32(packl);
1540 
1541 			if ((i + 1) == q->q_dst_nsegs) {
1542 				if (maccrd)
1543 					pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1544 					    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1545 				else
1546 					pb->pb_next = 0;
1547 			} else
1548 				pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1549 				    offsetof(struct ubsec_dmachunk, d_dbuf[j]));
1550 			j++;
1551 		}
1552 	}
1553 
1554 	dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr +
1555 	    offsetof(struct ubsec_dmachunk, d_ctx));
1556 
1557 	if (sc->sc_flags & UBS_FLAGS_LONGCTX) {
1558 		struct ubsec_pktctx_long *ctxl;
1559 
1560 		ctxl = (struct ubsec_pktctx_long *)(dmap->d_alloc.dma_vaddr +
1561 		    offsetof(struct ubsec_dmachunk, d_ctx));
1562 
1563 		/* transform small context into long context */
1564 		ctxl->pc_len = htole16(sizeof(struct ubsec_pktctx_long));
1565 		ctxl->pc_type = htole16(UBS_PKTCTX_TYPE_IPSEC);
1566 		ctxl->pc_flags = ctx.pc_flags;
1567 		ctxl->pc_offset = ctx.pc_offset;
1568 		for (i = 0; i < 6; i++)
1569 			ctxl->pc_deskey[i] = ctx.pc_deskey[i];
1570 		for (i = 0; i < 5; i++)
1571 			ctxl->pc_hminner[i] = ctx.pc_hminner[i];
1572 		for (i = 0; i < 5; i++)
1573 			ctxl->pc_hmouter[i] = ctx.pc_hmouter[i];
1574 		ctxl->pc_iv[0] = ctx.pc_iv[0];
1575 		ctxl->pc_iv[1] = ctx.pc_iv[1];
1576 	} else
1577 		bcopy(&ctx, dmap->d_alloc.dma_vaddr +
1578 		    offsetof(struct ubsec_dmachunk, d_ctx),
1579 		    sizeof(struct ubsec_pktctx));
1580 
1581 	crit_enter();
1582 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next);
1583 	sc->sc_nqueue++;
1584 	ubsecstats.hst_ipackets++;
1585 	ubsecstats.hst_ibytes += dmap->d_alloc.dma_size;
1586 	if ((hint & CRYPTO_HINT_MORE) == 0 || sc->sc_nqueue >= UBS_MAX_AGGR)
1587 		ubsec_feed(sc);
1588 	crit_exit();
1589 	return (0);
1590 
1591 errout:
1592 	if (q != NULL) {
1593 		if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
1594 			m_freem(q->q_dst_m);
1595 
1596 		if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1597 			bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1598 			bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1599 		}
1600 		if (q->q_src_map != NULL) {
1601 			bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1602 			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1603 		}
1604 
1605 		crit_enter();
1606 		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1607 		crit_exit();
1608 	}
1609 	if (err != ERESTART) {
1610 		crp->crp_etype = err;
1611 		crypto_done(crp);
1612 	} else {
1613 		sc->sc_needwakeup |= CRYPTO_SYMQ;
1614 	}
1615 	return (err);
1616 }
1617 
1618 static void
1619 ubsec_callback(struct ubsec_softc *sc, struct ubsec_q *q)
1620 {
1621 	struct cryptop *crp = (struct cryptop *)q->q_crp;
1622 	struct cryptodesc *crd;
1623 	struct ubsec_dma *dmap = q->q_dma;
1624 
1625 	ubsecstats.hst_opackets++;
1626 	ubsecstats.hst_obytes += dmap->d_alloc.dma_size;
1627 
1628 	ubsec_dma_sync(&dmap->d_alloc,
1629 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1630 	if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1631 		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
1632 		    BUS_DMASYNC_POSTREAD);
1633 		bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1634 		bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1635 	}
1636 	bus_dmamap_sync(sc->sc_dmat, q->q_src_map, BUS_DMASYNC_POSTWRITE);
1637 	bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1638 	bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1639 
1640 	if ((crp->crp_flags & CRYPTO_F_IMBUF) && (q->q_src_m != q->q_dst_m)) {
1641 		m_freem(q->q_src_m);
1642 		crp->crp_buf = (caddr_t)q->q_dst_m;
1643 	}
1644 	ubsecstats.hst_obytes += ((struct mbuf *)crp->crp_buf)->m_len;
1645 
1646 	/* copy out IV for future use */
1647 	if (q->q_flags & UBSEC_QFLAGS_COPYOUTIV) {
1648 		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1649 			if (crd->crd_alg != CRYPTO_DES_CBC &&
1650 			    crd->crd_alg != CRYPTO_3DES_CBC)
1651 				continue;
1652 			if (crp->crp_flags & CRYPTO_F_IMBUF)
1653 				m_copydata((struct mbuf *)crp->crp_buf,
1654 				    crd->crd_skip + crd->crd_len - 8, 8,
1655 				    (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1656 			else if (crp->crp_flags & CRYPTO_F_IOV) {
1657 				cuio_copydata((struct uio *)crp->crp_buf,
1658 				    crd->crd_skip + crd->crd_len - 8, 8,
1659 				    (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1660 			}
1661 			break;
1662 		}
1663 	}
1664 
1665 	for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1666 		if (crd->crd_alg != CRYPTO_MD5_HMAC &&
1667 		    crd->crd_alg != CRYPTO_SHA1_HMAC)
1668 			continue;
1669 		crypto_copyback(crp->crp_flags, crp->crp_buf, crd->crd_inject,
1670 		    sc->sc_sessions[q->q_sesn].ses_mlen,
1671 		    (caddr_t)dmap->d_dma->d_macbuf);
1672 #if 0
1673 		if (crp->crp_flags & CRYPTO_F_IMBUF)
1674 			m_copyback((struct mbuf *)crp->crp_buf,
1675 			    crd->crd_inject, 12,
1676 			    (caddr_t)dmap->d_dma->d_macbuf);
1677 		else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac)
1678 			bcopy((caddr_t)dmap->d_dma->d_macbuf,
1679 			    crp->crp_mac, 12);
1680 		break;
1681 #endif
1682 	}
1683 	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1684 	crypto_done(crp);
1685 }
1686 
1687 static void
1688 ubsec_mcopy(struct mbuf *srcm, struct mbuf *dstm, int hoffset, int toffset)
1689 {
1690 	int i, j, dlen, slen;
1691 	caddr_t dptr, sptr;
1692 
1693 	j = 0;
1694 	sptr = srcm->m_data;
1695 	slen = srcm->m_len;
1696 	dptr = dstm->m_data;
1697 	dlen = dstm->m_len;
1698 
1699 	while (1) {
1700 		for (i = 0; i < min(slen, dlen); i++) {
1701 			if (j < hoffset || j >= toffset)
1702 				*dptr++ = *sptr++;
1703 			slen--;
1704 			dlen--;
1705 			j++;
1706 		}
1707 		if (slen == 0) {
1708 			srcm = srcm->m_next;
1709 			if (srcm == NULL)
1710 				return;
1711 			sptr = srcm->m_data;
1712 			slen = srcm->m_len;
1713 		}
1714 		if (dlen == 0) {
1715 			dstm = dstm->m_next;
1716 			if (dstm == NULL)
1717 				return;
1718 			dptr = dstm->m_data;
1719 			dlen = dstm->m_len;
1720 		}
1721 	}
1722 }
1723 
1724 /*
1725  * feed the key generator, must be called at splimp() or higher.
1726  */
1727 static int
1728 ubsec_feed2(struct ubsec_softc *sc)
1729 {
1730 	struct ubsec_q2 *q;
1731 
1732 	while (!SIMPLEQ_EMPTY(&sc->sc_queue2)) {
1733 		if (READ_REG(sc, BS_STAT) & BS_STAT_MCR2_FULL)
1734 			break;
1735 		q = SIMPLEQ_FIRST(&sc->sc_queue2);
1736 
1737 		ubsec_dma_sync(&q->q_mcr,
1738 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1739 		ubsec_dma_sync(&q->q_ctx, BUS_DMASYNC_PREWRITE);
1740 
1741 		WRITE_REG(sc, BS_MCR2, q->q_mcr.dma_paddr);
1742 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue2, q_next);
1743 		--sc->sc_nqueue2;
1744 		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip2, q, q_next);
1745 	}
1746 	return (0);
1747 }
1748 
1749 /*
1750  * Callback for handling random numbers
1751  */
1752 static void
1753 ubsec_callback2(struct ubsec_softc *sc, struct ubsec_q2 *q)
1754 {
1755 	struct cryptkop *krp;
1756 	struct ubsec_ctx_keyop *ctx;
1757 
1758 	ctx = (struct ubsec_ctx_keyop *)q->q_ctx.dma_vaddr;
1759 	ubsec_dma_sync(&q->q_ctx, BUS_DMASYNC_POSTWRITE);
1760 
1761 	switch (q->q_type) {
1762 #ifndef UBSEC_NO_RNG
1763 	case UBS_CTXOP_RNGBYPASS: {
1764 		struct ubsec_q2_rng *rng = (struct ubsec_q2_rng *)q;
1765 
1766 		ubsec_dma_sync(&rng->rng_buf, BUS_DMASYNC_POSTREAD);
1767 		(*sc->sc_harvest)(sc->sc_rndtest,
1768 			rng->rng_buf.dma_vaddr,
1769 			UBSEC_RNG_BUFSIZ*sizeof (u_int32_t));
1770 		rng->rng_used = 0;
1771 		callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
1772 		break;
1773 	}
1774 #endif
1775 	case UBS_CTXOP_MODEXP: {
1776 		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
1777 		u_int rlen, clen;
1778 
1779 		krp = me->me_krp;
1780 		rlen = (me->me_modbits + 7) / 8;
1781 		clen = (krp->krp_param[krp->krp_iparams].crp_nbits + 7) / 8;
1782 
1783 		ubsec_dma_sync(&me->me_M, BUS_DMASYNC_POSTWRITE);
1784 		ubsec_dma_sync(&me->me_E, BUS_DMASYNC_POSTWRITE);
1785 		ubsec_dma_sync(&me->me_C, BUS_DMASYNC_POSTREAD);
1786 		ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_POSTWRITE);
1787 
1788 		if (clen < rlen)
1789 			krp->krp_status = E2BIG;
1790 		else {
1791 			if (sc->sc_flags & UBS_FLAGS_HWNORM) {
1792 				bzero(krp->krp_param[krp->krp_iparams].crp_p,
1793 				    (krp->krp_param[krp->krp_iparams].crp_nbits
1794 					+ 7) / 8);
1795 				bcopy(me->me_C.dma_vaddr,
1796 				    krp->krp_param[krp->krp_iparams].crp_p,
1797 				    (me->me_modbits + 7) / 8);
1798 			} else
1799 				ubsec_kshift_l(me->me_shiftbits,
1800 				    me->me_C.dma_vaddr, me->me_normbits,
1801 				    krp->krp_param[krp->krp_iparams].crp_p,
1802 				    krp->krp_param[krp->krp_iparams].crp_nbits);
1803 		}
1804 
1805 		crypto_kdone(krp);
1806 
1807 		/* bzero all potentially sensitive data */
1808 		bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
1809 		bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
1810 		bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
1811 		bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
1812 
1813 		/* Can't free here, so put us on the free list. */
1814 		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &me->me_q, q_next);
1815 		break;
1816 	}
1817 	case UBS_CTXOP_RSAPRIV: {
1818 		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
1819 		u_int len;
1820 
1821 		krp = rp->rpr_krp;
1822 		ubsec_dma_sync(&rp->rpr_msgin, BUS_DMASYNC_POSTWRITE);
1823 		ubsec_dma_sync(&rp->rpr_msgout, BUS_DMASYNC_POSTREAD);
1824 
1825 		len = (krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_nbits + 7) / 8;
1826 		bcopy(rp->rpr_msgout.dma_vaddr,
1827 		    krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_p, len);
1828 
1829 		crypto_kdone(krp);
1830 
1831 		bzero(rp->rpr_msgin.dma_vaddr, rp->rpr_msgin.dma_size);
1832 		bzero(rp->rpr_msgout.dma_vaddr, rp->rpr_msgout.dma_size);
1833 		bzero(rp->rpr_q.q_ctx.dma_vaddr, rp->rpr_q.q_ctx.dma_size);
1834 
1835 		/* Can't free here, so put us on the free list. */
1836 		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &rp->rpr_q, q_next);
1837 		break;
1838 	}
1839 	default:
1840 		device_printf(sc->sc_dev, "unknown ctx op: %x\n",
1841 		    letoh16(ctx->ctx_op));
1842 		break;
1843 	}
1844 }
1845 
1846 #ifndef UBSEC_NO_RNG
1847 static void
1848 ubsec_rng(void *vsc)
1849 {
1850 	struct ubsec_softc *sc = vsc;
1851 	struct ubsec_q2_rng *rng = &sc->sc_rng;
1852 	struct ubsec_mcr *mcr;
1853 	struct ubsec_ctx_rngbypass *ctx;
1854 
1855 	crit_enter();
1856 	if (rng->rng_used) {
1857 		crit_exit();
1858 		return;
1859 	}
1860 	sc->sc_nqueue2++;
1861 	if (sc->sc_nqueue2 >= UBS_MAX_NQUEUE)
1862 		goto out;
1863 
1864 	mcr = (struct ubsec_mcr *)rng->rng_q.q_mcr.dma_vaddr;
1865 	ctx = (struct ubsec_ctx_rngbypass *)rng->rng_q.q_ctx.dma_vaddr;
1866 
1867 	mcr->mcr_pkts = htole16(1);
1868 	mcr->mcr_flags = 0;
1869 	mcr->mcr_cmdctxp = htole32(rng->rng_q.q_ctx.dma_paddr);
1870 	mcr->mcr_ipktbuf.pb_addr = mcr->mcr_ipktbuf.pb_next = 0;
1871 	mcr->mcr_ipktbuf.pb_len = 0;
1872 	mcr->mcr_reserved = mcr->mcr_pktlen = 0;
1873 	mcr->mcr_opktbuf.pb_addr = htole32(rng->rng_buf.dma_paddr);
1874 	mcr->mcr_opktbuf.pb_len = htole32(((sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ)) &
1875 	    UBS_PKTBUF_LEN);
1876 	mcr->mcr_opktbuf.pb_next = 0;
1877 
1878 	ctx->rbp_len = htole16(sizeof(struct ubsec_ctx_rngbypass));
1879 	ctx->rbp_op = htole16(UBS_CTXOP_RNGBYPASS);
1880 	rng->rng_q.q_type = UBS_CTXOP_RNGBYPASS;
1881 
1882 	ubsec_dma_sync(&rng->rng_buf, BUS_DMASYNC_PREREAD);
1883 
1884 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rng->rng_q, q_next);
1885 	rng->rng_used = 1;
1886 	ubsec_feed2(sc);
1887 	ubsecstats.hst_rng++;
1888 	crit_exit();
1889 
1890 	return;
1891 
1892 out:
1893 	/*
1894 	 * Something weird happened, generate our own call back.
1895 	 */
1896 	sc->sc_nqueue2--;
1897 	crit_exit();
1898 	callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
1899 }
1900 #endif /* UBSEC_NO_RNG */
1901 
1902 static void
1903 ubsec_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1904 {
1905 	bus_addr_t *paddr = (bus_addr_t*) arg;
1906 	*paddr = segs->ds_addr;
1907 }
1908 
1909 static int
1910 ubsec_dma_malloc(
1911 	struct ubsec_softc *sc,
1912 	bus_size_t size,
1913 	struct ubsec_dma_alloc *dma,
1914 	int mapflags
1915 )
1916 {
1917 	int r;
1918 
1919 	/* XXX could specify sc_dmat as parent but that just adds overhead */
1920 	r = bus_dma_tag_create(NULL,			/* parent */
1921 			       1, 0,			/* alignment, bounds */
1922 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1923 			       BUS_SPACE_MAXADDR,	/* highaddr */
1924 			       NULL, NULL,		/* filter, filterarg */
1925 			       size,			/* maxsize */
1926 			       1,			/* nsegments */
1927 			       size,			/* maxsegsize */
1928 			       BUS_DMA_ALLOCNOW,	/* flags */
1929 			       &dma->dma_tag);
1930 	if (r != 0) {
1931 		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1932 			"bus_dma_tag_create failed; error %u\n", r);
1933 		goto fail_0;
1934 	}
1935 
1936 	r = bus_dmamap_create(dma->dma_tag, BUS_DMA_NOWAIT, &dma->dma_map);
1937 	if (r != 0) {
1938 		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1939 			"bus_dmamap_create failed; error %u\n", r);
1940 		goto fail_1;
1941 	}
1942 
1943 	r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
1944 			     BUS_DMA_NOWAIT, &dma->dma_map);
1945 	if (r != 0) {
1946 		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1947 			"bus_dmammem_alloc failed; size %ju, error %u\n",
1948 			(intmax_t)size, r);
1949 		goto fail_2;
1950 	}
1951 
1952 	r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
1953 		            size,
1954 			    ubsec_dmamap_cb,
1955 			    &dma->dma_paddr,
1956 			    mapflags | BUS_DMA_NOWAIT);
1957 	if (r != 0) {
1958 		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1959 			"bus_dmamap_load failed; error %u\n", r);
1960 		goto fail_3;
1961 	}
1962 
1963 	dma->dma_size = size;
1964 	return (0);
1965 
1966 fail_3:
1967 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1968 fail_2:
1969 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1970 fail_1:
1971 	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1972 	bus_dma_tag_destroy(dma->dma_tag);
1973 fail_0:
1974 	dma->dma_map = NULL;
1975 	dma->dma_tag = NULL;
1976 	return (r);
1977 }
1978 
1979 static void
1980 ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma)
1981 {
1982 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1983 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1984 	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1985 	bus_dma_tag_destroy(dma->dma_tag);
1986 }
1987 
1988 /*
1989  * Resets the board.  Values in the regesters are left as is
1990  * from the reset (i.e. initial values are assigned elsewhere).
1991  */
1992 static void
1993 ubsec_reset_board(struct ubsec_softc *sc)
1994 {
1995     volatile u_int32_t ctrl;
1996 
1997     ctrl = READ_REG(sc, BS_CTRL);
1998     ctrl |= BS_CTRL_RESET;
1999     WRITE_REG(sc, BS_CTRL, ctrl);
2000 
2001     /*
2002      * Wait aprox. 30 PCI clocks = 900 ns = 0.9 us
2003      */
2004     DELAY(10);
2005 }
2006 
2007 /*
2008  * Init Broadcom registers
2009  */
2010 static void
2011 ubsec_init_board(struct ubsec_softc *sc)
2012 {
2013 	u_int32_t ctrl;
2014 
2015 	ctrl = READ_REG(sc, BS_CTRL);
2016 	ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64);
2017 	ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT;
2018 
2019 	if (sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG))
2020 		ctrl |= BS_CTRL_MCR2INT;
2021 	else
2022 		ctrl &= ~BS_CTRL_MCR2INT;
2023 
2024 	if (sc->sc_flags & UBS_FLAGS_HWNORM)
2025 		ctrl &= ~BS_CTRL_SWNORM;
2026 
2027 	WRITE_REG(sc, BS_CTRL, ctrl);
2028 }
2029 
2030 /*
2031  * Init Broadcom PCI registers
2032  */
2033 static void
2034 ubsec_init_pciregs(device_t dev)
2035 {
2036 #if 0
2037 	u_int32_t misc;
2038 
2039 	misc = pci_conf_read(pc, pa->pa_tag, BS_RTY_TOUT);
2040 	misc = (misc & ~(UBS_PCI_RTY_MASK << UBS_PCI_RTY_SHIFT))
2041 	    | ((UBS_DEF_RTY & 0xff) << UBS_PCI_RTY_SHIFT);
2042 	misc = (misc & ~(UBS_PCI_TOUT_MASK << UBS_PCI_TOUT_SHIFT))
2043 	    | ((UBS_DEF_TOUT & 0xff) << UBS_PCI_TOUT_SHIFT);
2044 	pci_conf_write(pc, pa->pa_tag, BS_RTY_TOUT, misc);
2045 #endif
2046 
2047 	/*
2048 	 * This will set the cache line size to 1, this will
2049 	 * force the BCM58xx chip just to do burst read/writes.
2050 	 * Cache line read/writes are to slow
2051 	 */
2052 	pci_write_config(dev, PCIR_CACHELNSZ, UBS_DEF_CACHELINE, 1);
2053 }
2054 
2055 /*
2056  * Clean up after a chip crash.
2057  * It is assumed that the caller in splimp()
2058  */
2059 static void
2060 ubsec_cleanchip(struct ubsec_softc *sc)
2061 {
2062 	struct ubsec_q *q;
2063 
2064 	while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
2065 		q = SIMPLEQ_FIRST(&sc->sc_qchip);
2066 		SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q_next);
2067 		ubsec_free_q(sc, q);
2068 	}
2069 	sc->sc_nqchip = 0;
2070 }
2071 
2072 /*
2073  * free a ubsec_q
2074  * It is assumed that the caller is within spimp()
2075  */
2076 static int
2077 ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q)
2078 {
2079 	struct ubsec_q *q2;
2080 	struct cryptop *crp;
2081 	int npkts;
2082 	int i;
2083 
2084 	npkts = q->q_nstacked_mcrs;
2085 
2086 	for (i = 0; i < npkts; i++) {
2087 		if(q->q_stacked_mcr[i]) {
2088 			q2 = q->q_stacked_mcr[i];
2089 
2090 			if ((q2->q_dst_m != NULL) && (q2->q_src_m != q2->q_dst_m))
2091 				m_freem(q2->q_dst_m);
2092 
2093 			crp = (struct cryptop *)q2->q_crp;
2094 
2095 			SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next);
2096 
2097 			crp->crp_etype = EFAULT;
2098 			crypto_done(crp);
2099 		} else {
2100 			break;
2101 		}
2102 	}
2103 
2104 	/*
2105 	 * Free header MCR
2106 	 */
2107 	if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
2108 		m_freem(q->q_dst_m);
2109 
2110 	crp = (struct cryptop *)q->q_crp;
2111 
2112 	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
2113 
2114 	crp->crp_etype = EFAULT;
2115 	crypto_done(crp);
2116 	return(0);
2117 }
2118 
2119 /*
2120  * Routine to reset the chip and clean up.
2121  * It is assumed that the caller is in splimp()
2122  */
2123 static void
2124 ubsec_totalreset(struct ubsec_softc *sc)
2125 {
2126 	ubsec_reset_board(sc);
2127 	ubsec_init_board(sc);
2128 	ubsec_cleanchip(sc);
2129 }
2130 
2131 static int
2132 ubsec_dmamap_aligned(struct ubsec_operand *op)
2133 {
2134 	int i;
2135 
2136 	for (i = 0; i < op->nsegs; i++) {
2137 		if (op->segs[i].ds_addr & 3)
2138 			return (0);
2139 		if ((i != (op->nsegs - 1)) &&
2140 		    (op->segs[i].ds_len & 3))
2141 			return (0);
2142 	}
2143 	return (1);
2144 }
2145 
2146 static void
2147 ubsec_kfree(struct ubsec_softc *sc, struct ubsec_q2 *q)
2148 {
2149 	switch (q->q_type) {
2150 	case UBS_CTXOP_MODEXP: {
2151 		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
2152 
2153 		ubsec_dma_free(sc, &me->me_q.q_mcr);
2154 		ubsec_dma_free(sc, &me->me_q.q_ctx);
2155 		ubsec_dma_free(sc, &me->me_M);
2156 		ubsec_dma_free(sc, &me->me_E);
2157 		ubsec_dma_free(sc, &me->me_C);
2158 		ubsec_dma_free(sc, &me->me_epb);
2159 		kfree(me, M_DEVBUF);
2160 		break;
2161 	}
2162 	case UBS_CTXOP_RSAPRIV: {
2163 		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
2164 
2165 		ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2166 		ubsec_dma_free(sc, &rp->rpr_q.q_ctx);
2167 		ubsec_dma_free(sc, &rp->rpr_msgin);
2168 		ubsec_dma_free(sc, &rp->rpr_msgout);
2169 		kfree(rp, M_DEVBUF);
2170 		break;
2171 	}
2172 	default:
2173 		device_printf(sc->sc_dev, "invalid kfree 0x%x\n", q->q_type);
2174 		break;
2175 	}
2176 }
2177 
2178 static int
2179 ubsec_kprocess(void *arg, struct cryptkop *krp, int hint)
2180 {
2181 	struct ubsec_softc *sc = arg;
2182 	int r;
2183 
2184 	if (krp == NULL || krp->krp_callback == NULL)
2185 		return (EINVAL);
2186 
2187 	while (!SIMPLEQ_EMPTY(&sc->sc_q2free)) {
2188 		struct ubsec_q2 *q;
2189 
2190 		q = SIMPLEQ_FIRST(&sc->sc_q2free);
2191 		SIMPLEQ_REMOVE_HEAD(&sc->sc_q2free, q_next);
2192 		ubsec_kfree(sc, q);
2193 	}
2194 
2195 	switch (krp->krp_op) {
2196 	case CRK_MOD_EXP:
2197 		if (sc->sc_flags & UBS_FLAGS_HWNORM)
2198 			r = ubsec_kprocess_modexp_hw(sc, krp, hint);
2199 		else
2200 			r = ubsec_kprocess_modexp_sw(sc, krp, hint);
2201 		break;
2202 	case CRK_MOD_EXP_CRT:
2203 		return (ubsec_kprocess_rsapriv(sc, krp, hint));
2204 	default:
2205 		device_printf(sc->sc_dev, "kprocess: invalid op 0x%x\n",
2206 		    krp->krp_op);
2207 		krp->krp_status = EOPNOTSUPP;
2208 		crypto_kdone(krp);
2209 		return (0);
2210 	}
2211 	return (0);			/* silence compiler */
2212 }
2213 
2214 /*
2215  * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (sw normalization)
2216  */
2217 static int
2218 ubsec_kprocess_modexp_sw(struct ubsec_softc *sc, struct cryptkop *krp, int hint)
2219 {
2220 	struct ubsec_q2_modexp *me;
2221 	struct ubsec_mcr *mcr;
2222 	struct ubsec_ctx_modexp *ctx;
2223 	struct ubsec_pktbuf *epb;
2224 	int err = 0;
2225 	u_int nbits, normbits, mbits, shiftbits, ebits;
2226 
2227 	me = kmalloc(sizeof *me, M_DEVBUF, M_INTWAIT | M_ZERO);
2228 	me->me_krp = krp;
2229 	me->me_q.q_type = UBS_CTXOP_MODEXP;
2230 
2231 	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2232 	if (nbits <= 512)
2233 		normbits = 512;
2234 	else if (nbits <= 768)
2235 		normbits = 768;
2236 	else if (nbits <= 1024)
2237 		normbits = 1024;
2238 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2239 		normbits = 1536;
2240 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2241 		normbits = 2048;
2242 	else {
2243 		err = E2BIG;
2244 		goto errout;
2245 	}
2246 
2247 	shiftbits = normbits - nbits;
2248 
2249 	me->me_modbits = nbits;
2250 	me->me_shiftbits = shiftbits;
2251 	me->me_normbits = normbits;
2252 
2253 	/* Sanity check: result bits must be >= true modulus bits. */
2254 	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2255 		err = ERANGE;
2256 		goto errout;
2257 	}
2258 
2259 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2260 	    &me->me_q.q_mcr, 0)) {
2261 		err = ENOMEM;
2262 		goto errout;
2263 	}
2264 	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2265 
2266 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2267 	    &me->me_q.q_ctx, 0)) {
2268 		err = ENOMEM;
2269 		goto errout;
2270 	}
2271 
2272 	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2273 	if (mbits > nbits) {
2274 		err = E2BIG;
2275 		goto errout;
2276 	}
2277 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2278 		err = ENOMEM;
2279 		goto errout;
2280 	}
2281 	ubsec_kshift_r(shiftbits,
2282 	    krp->krp_param[UBS_MODEXP_PAR_M].crp_p, mbits,
2283 	    me->me_M.dma_vaddr, normbits);
2284 
2285 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2286 		err = ENOMEM;
2287 		goto errout;
2288 	}
2289 	bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2290 
2291 	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2292 	if (ebits > nbits) {
2293 		err = E2BIG;
2294 		goto errout;
2295 	}
2296 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2297 		err = ENOMEM;
2298 		goto errout;
2299 	}
2300 	ubsec_kshift_r(shiftbits,
2301 	    krp->krp_param[UBS_MODEXP_PAR_E].crp_p, ebits,
2302 	    me->me_E.dma_vaddr, normbits);
2303 
2304 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2305 	    &me->me_epb, 0)) {
2306 		err = ENOMEM;
2307 		goto errout;
2308 	}
2309 	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2310 	epb->pb_addr = htole32(me->me_E.dma_paddr);
2311 	epb->pb_next = 0;
2312 	epb->pb_len = htole32(normbits / 8);
2313 
2314 #ifdef UBSEC_DEBUG
2315 	if (ubsec_debug) {
2316 		kprintf("Epb ");
2317 		ubsec_dump_pb(epb);
2318 	}
2319 #endif
2320 
2321 	mcr->mcr_pkts = htole16(1);
2322 	mcr->mcr_flags = 0;
2323 	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2324 	mcr->mcr_reserved = 0;
2325 	mcr->mcr_pktlen = 0;
2326 
2327 	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2328 	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2329 	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2330 
2331 	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2332 	mcr->mcr_opktbuf.pb_next = 0;
2333 	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2334 
2335 #ifdef DIAGNOSTIC
2336 	/* Misaligned output buffer will hang the chip. */
2337 	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2338 		panic("%s: modexp invalid addr 0x%x\n",
2339 		    device_get_nameunit(sc->sc_dev),
2340 		    letoh32(mcr->mcr_opktbuf.pb_addr));
2341 	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2342 		panic("%s: modexp invalid len 0x%x\n",
2343 		    device_get_nameunit(sc->sc_dev),
2344 		    letoh32(mcr->mcr_opktbuf.pb_len));
2345 #endif
2346 
2347 	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2348 	bzero(ctx, sizeof(*ctx));
2349 	ubsec_kshift_r(shiftbits,
2350 	    krp->krp_param[UBS_MODEXP_PAR_N].crp_p, nbits,
2351 	    ctx->me_N, normbits);
2352 	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2353 	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2354 	ctx->me_E_len = htole16(nbits);
2355 	ctx->me_N_len = htole16(nbits);
2356 
2357 #ifdef UBSEC_DEBUG
2358 	if (ubsec_debug) {
2359 		ubsec_dump_mcr(mcr);
2360 		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2361 	}
2362 #endif
2363 
2364 	/*
2365 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2366 	 * everything else.
2367 	 */
2368 	ubsec_dma_sync(&me->me_M, BUS_DMASYNC_PREWRITE);
2369 	ubsec_dma_sync(&me->me_E, BUS_DMASYNC_PREWRITE);
2370 	ubsec_dma_sync(&me->me_C, BUS_DMASYNC_PREREAD);
2371 	ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_PREWRITE);
2372 
2373 	/* Enqueue and we're done... */
2374 	crit_enter();
2375 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2376 	ubsec_feed2(sc);
2377 	ubsecstats.hst_modexp++;
2378 	crit_exit();
2379 
2380 	return (0);
2381 
2382 errout:
2383 	if (me != NULL) {
2384 		if (me->me_q.q_mcr.dma_map != NULL)
2385 			ubsec_dma_free(sc, &me->me_q.q_mcr);
2386 		if (me->me_q.q_ctx.dma_map != NULL) {
2387 			bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
2388 			ubsec_dma_free(sc, &me->me_q.q_ctx);
2389 		}
2390 		if (me->me_M.dma_map != NULL) {
2391 			bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
2392 			ubsec_dma_free(sc, &me->me_M);
2393 		}
2394 		if (me->me_E.dma_map != NULL) {
2395 			bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
2396 			ubsec_dma_free(sc, &me->me_E);
2397 		}
2398 		if (me->me_C.dma_map != NULL) {
2399 			bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2400 			ubsec_dma_free(sc, &me->me_C);
2401 		}
2402 		if (me->me_epb.dma_map != NULL)
2403 			ubsec_dma_free(sc, &me->me_epb);
2404 		kfree(me, M_DEVBUF);
2405 	}
2406 	krp->krp_status = err;
2407 	crypto_kdone(krp);
2408 	return (0);
2409 }
2410 
2411 /*
2412  * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (hw normalization)
2413  */
2414 static int
2415 ubsec_kprocess_modexp_hw(struct ubsec_softc *sc, struct cryptkop *krp, int hint)
2416 {
2417 	struct ubsec_q2_modexp *me;
2418 	struct ubsec_mcr *mcr;
2419 	struct ubsec_ctx_modexp *ctx;
2420 	struct ubsec_pktbuf *epb;
2421 	int err = 0;
2422 	u_int nbits, normbits, mbits, shiftbits, ebits;
2423 
2424 	me = kmalloc(sizeof *me, M_DEVBUF, M_INTWAIT | M_ZERO);
2425 	me->me_krp = krp;
2426 	me->me_q.q_type = UBS_CTXOP_MODEXP;
2427 
2428 	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2429 	if (nbits <= 512)
2430 		normbits = 512;
2431 	else if (nbits <= 768)
2432 		normbits = 768;
2433 	else if (nbits <= 1024)
2434 		normbits = 1024;
2435 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2436 		normbits = 1536;
2437 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2438 		normbits = 2048;
2439 	else {
2440 		err = E2BIG;
2441 		goto errout;
2442 	}
2443 
2444 	shiftbits = normbits - nbits;
2445 
2446 	/* XXX ??? */
2447 	me->me_modbits = nbits;
2448 	me->me_shiftbits = shiftbits;
2449 	me->me_normbits = normbits;
2450 
2451 	/* Sanity check: result bits must be >= true modulus bits. */
2452 	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2453 		err = ERANGE;
2454 		goto errout;
2455 	}
2456 
2457 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2458 	    &me->me_q.q_mcr, 0)) {
2459 		err = ENOMEM;
2460 		goto errout;
2461 	}
2462 	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2463 
2464 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2465 	    &me->me_q.q_ctx, 0)) {
2466 		err = ENOMEM;
2467 		goto errout;
2468 	}
2469 
2470 	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2471 	if (mbits > nbits) {
2472 		err = E2BIG;
2473 		goto errout;
2474 	}
2475 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2476 		err = ENOMEM;
2477 		goto errout;
2478 	}
2479 	bzero(me->me_M.dma_vaddr, normbits / 8);
2480 	bcopy(krp->krp_param[UBS_MODEXP_PAR_M].crp_p,
2481 	    me->me_M.dma_vaddr, (mbits + 7) / 8);
2482 
2483 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2484 		err = ENOMEM;
2485 		goto errout;
2486 	}
2487 	bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2488 
2489 	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2490 	if (ebits > nbits) {
2491 		err = E2BIG;
2492 		goto errout;
2493 	}
2494 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2495 		err = ENOMEM;
2496 		goto errout;
2497 	}
2498 	bzero(me->me_E.dma_vaddr, normbits / 8);
2499 	bcopy(krp->krp_param[UBS_MODEXP_PAR_E].crp_p,
2500 	    me->me_E.dma_vaddr, (ebits + 7) / 8);
2501 
2502 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2503 	    &me->me_epb, 0)) {
2504 		err = ENOMEM;
2505 		goto errout;
2506 	}
2507 	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2508 	epb->pb_addr = htole32(me->me_E.dma_paddr);
2509 	epb->pb_next = 0;
2510 	epb->pb_len = htole32((ebits + 7) / 8);
2511 
2512 #ifdef UBSEC_DEBUG
2513 	if (ubsec_debug) {
2514 		kprintf("Epb ");
2515 		ubsec_dump_pb(epb);
2516 	}
2517 #endif
2518 
2519 	mcr->mcr_pkts = htole16(1);
2520 	mcr->mcr_flags = 0;
2521 	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2522 	mcr->mcr_reserved = 0;
2523 	mcr->mcr_pktlen = 0;
2524 
2525 	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2526 	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2527 	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2528 
2529 	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2530 	mcr->mcr_opktbuf.pb_next = 0;
2531 	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2532 
2533 #ifdef DIAGNOSTIC
2534 	/* Misaligned output buffer will hang the chip. */
2535 	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2536 		panic("%s: modexp invalid addr 0x%x\n",
2537 		    device_get_nameunit(sc->sc_dev),
2538 		    letoh32(mcr->mcr_opktbuf.pb_addr));
2539 	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2540 		panic("%s: modexp invalid len 0x%x\n",
2541 		    device_get_nameunit(sc->sc_dev),
2542 		    letoh32(mcr->mcr_opktbuf.pb_len));
2543 #endif
2544 
2545 	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2546 	bzero(ctx, sizeof(*ctx));
2547 	bcopy(krp->krp_param[UBS_MODEXP_PAR_N].crp_p, ctx->me_N,
2548 	    (nbits + 7) / 8);
2549 	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2550 	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2551 	ctx->me_E_len = htole16(ebits);
2552 	ctx->me_N_len = htole16(nbits);
2553 
2554 #ifdef UBSEC_DEBUG
2555 	if (ubsec_debug) {
2556 		ubsec_dump_mcr(mcr);
2557 		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2558 	}
2559 #endif
2560 
2561 	/*
2562 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2563 	 * everything else.
2564 	 */
2565 	ubsec_dma_sync(&me->me_M, BUS_DMASYNC_PREWRITE);
2566 	ubsec_dma_sync(&me->me_E, BUS_DMASYNC_PREWRITE);
2567 	ubsec_dma_sync(&me->me_C, BUS_DMASYNC_PREREAD);
2568 	ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_PREWRITE);
2569 
2570 	/* Enqueue and we're done... */
2571 	crit_enter();
2572 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2573 	ubsec_feed2(sc);
2574 	crit_exit();
2575 
2576 	return (0);
2577 
2578 errout:
2579 	if (me != NULL) {
2580 		if (me->me_q.q_mcr.dma_map != NULL)
2581 			ubsec_dma_free(sc, &me->me_q.q_mcr);
2582 		if (me->me_q.q_ctx.dma_map != NULL) {
2583 			bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
2584 			ubsec_dma_free(sc, &me->me_q.q_ctx);
2585 		}
2586 		if (me->me_M.dma_map != NULL) {
2587 			bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
2588 			ubsec_dma_free(sc, &me->me_M);
2589 		}
2590 		if (me->me_E.dma_map != NULL) {
2591 			bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
2592 			ubsec_dma_free(sc, &me->me_E);
2593 		}
2594 		if (me->me_C.dma_map != NULL) {
2595 			bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2596 			ubsec_dma_free(sc, &me->me_C);
2597 		}
2598 		if (me->me_epb.dma_map != NULL)
2599 			ubsec_dma_free(sc, &me->me_epb);
2600 		kfree(me, M_DEVBUF);
2601 	}
2602 	krp->krp_status = err;
2603 	crypto_kdone(krp);
2604 	return (0);
2605 }
2606 
2607 static int
2608 ubsec_kprocess_rsapriv(struct ubsec_softc *sc, struct cryptkop *krp, int hint)
2609 {
2610 	struct ubsec_q2_rsapriv *rp = NULL;
2611 	struct ubsec_mcr *mcr;
2612 	struct ubsec_ctx_rsapriv *ctx;
2613 	int err = 0;
2614 	u_int padlen, msglen;
2615 
2616 	msglen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_P]);
2617 	padlen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_Q]);
2618 	if (msglen > padlen)
2619 		padlen = msglen;
2620 
2621 	if (padlen <= 256)
2622 		padlen = 256;
2623 	else if (padlen <= 384)
2624 		padlen = 384;
2625 	else if (padlen <= 512)
2626 		padlen = 512;
2627 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 768)
2628 		padlen = 768;
2629 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 1024)
2630 		padlen = 1024;
2631 	else {
2632 		err = E2BIG;
2633 		goto errout;
2634 	}
2635 
2636 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DP]) > padlen) {
2637 		err = E2BIG;
2638 		goto errout;
2639 	}
2640 
2641 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DQ]) > padlen) {
2642 		err = E2BIG;
2643 		goto errout;
2644 	}
2645 
2646 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_PINV]) > padlen) {
2647 		err = E2BIG;
2648 		goto errout;
2649 	}
2650 
2651 	rp = kmalloc(sizeof *rp, M_DEVBUF, M_INTWAIT | M_ZERO);
2652 	rp->rpr_krp = krp;
2653 	rp->rpr_q.q_type = UBS_CTXOP_RSAPRIV;
2654 
2655 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2656 	    &rp->rpr_q.q_mcr, 0)) {
2657 		err = ENOMEM;
2658 		goto errout;
2659 	}
2660 	mcr = (struct ubsec_mcr *)rp->rpr_q.q_mcr.dma_vaddr;
2661 
2662 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rsapriv),
2663 	    &rp->rpr_q.q_ctx, 0)) {
2664 		err = ENOMEM;
2665 		goto errout;
2666 	}
2667 	ctx = (struct ubsec_ctx_rsapriv *)rp->rpr_q.q_ctx.dma_vaddr;
2668 	bzero(ctx, sizeof *ctx);
2669 
2670 	/* Copy in p */
2671 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_P].crp_p,
2672 	    &ctx->rpr_buf[0 * (padlen / 8)],
2673 	    (krp->krp_param[UBS_RSAPRIV_PAR_P].crp_nbits + 7) / 8);
2674 
2675 	/* Copy in q */
2676 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_p,
2677 	    &ctx->rpr_buf[1 * (padlen / 8)],
2678 	    (krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_nbits + 7) / 8);
2679 
2680 	/* Copy in dp */
2681 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_p,
2682 	    &ctx->rpr_buf[2 * (padlen / 8)],
2683 	    (krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_nbits + 7) / 8);
2684 
2685 	/* Copy in dq */
2686 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_p,
2687 	    &ctx->rpr_buf[3 * (padlen / 8)],
2688 	    (krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_nbits + 7) / 8);
2689 
2690 	/* Copy in pinv */
2691 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_p,
2692 	    &ctx->rpr_buf[4 * (padlen / 8)],
2693 	    (krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_nbits + 7) / 8);
2694 
2695 	msglen = padlen * 2;
2696 
2697 	/* Copy in input message (aligned buffer/length). */
2698 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGIN]) > msglen) {
2699 		/* Is this likely? */
2700 		err = E2BIG;
2701 		goto errout;
2702 	}
2703 	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgin, 0)) {
2704 		err = ENOMEM;
2705 		goto errout;
2706 	}
2707 	bzero(rp->rpr_msgin.dma_vaddr, (msglen + 7) / 8);
2708 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_p,
2709 	    rp->rpr_msgin.dma_vaddr,
2710 	    (krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_nbits + 7) / 8);
2711 
2712 	/* Prepare space for output message (aligned buffer/length). */
2713 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT]) < msglen) {
2714 		/* Is this likely? */
2715 		err = E2BIG;
2716 		goto errout;
2717 	}
2718 	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgout, 0)) {
2719 		err = ENOMEM;
2720 		goto errout;
2721 	}
2722 	bzero(rp->rpr_msgout.dma_vaddr, (msglen + 7) / 8);
2723 
2724 	mcr->mcr_pkts = htole16(1);
2725 	mcr->mcr_flags = 0;
2726 	mcr->mcr_cmdctxp = htole32(rp->rpr_q.q_ctx.dma_paddr);
2727 	mcr->mcr_ipktbuf.pb_addr = htole32(rp->rpr_msgin.dma_paddr);
2728 	mcr->mcr_ipktbuf.pb_next = 0;
2729 	mcr->mcr_ipktbuf.pb_len = htole32(rp->rpr_msgin.dma_size);
2730 	mcr->mcr_reserved = 0;
2731 	mcr->mcr_pktlen = htole16(msglen);
2732 	mcr->mcr_opktbuf.pb_addr = htole32(rp->rpr_msgout.dma_paddr);
2733 	mcr->mcr_opktbuf.pb_next = 0;
2734 	mcr->mcr_opktbuf.pb_len = htole32(rp->rpr_msgout.dma_size);
2735 
2736 #ifdef DIAGNOSTIC
2737 	if (rp->rpr_msgin.dma_paddr & 3 || rp->rpr_msgin.dma_size & 3) {
2738 		panic("%s: rsapriv: invalid msgin %x(0x%x)",
2739 		    device_get_nameunit(sc->sc_dev),
2740 		    rp->rpr_msgin.dma_paddr, rp->rpr_msgin.dma_size);
2741 	}
2742 	if (rp->rpr_msgout.dma_paddr & 3 || rp->rpr_msgout.dma_size & 3) {
2743 		panic("%s: rsapriv: invalid msgout %x(0x%x)",
2744 		    device_get_nameunit(sc->sc_dev),
2745 		    rp->rpr_msgout.dma_paddr, rp->rpr_msgout.dma_size);
2746 	}
2747 #endif
2748 
2749 	ctx->rpr_len = (sizeof(u_int16_t) * 4) + (5 * (padlen / 8));
2750 	ctx->rpr_op = htole16(UBS_CTXOP_RSAPRIV);
2751 	ctx->rpr_q_len = htole16(padlen);
2752 	ctx->rpr_p_len = htole16(padlen);
2753 
2754 	/*
2755 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2756 	 * everything else.
2757 	 */
2758 	ubsec_dma_sync(&rp->rpr_msgin, BUS_DMASYNC_PREWRITE);
2759 	ubsec_dma_sync(&rp->rpr_msgout, BUS_DMASYNC_PREREAD);
2760 
2761 	/* Enqueue and we're done... */
2762 	crit_enter();
2763 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rp->rpr_q, q_next);
2764 	ubsec_feed2(sc);
2765 	ubsecstats.hst_modexpcrt++;
2766 	crit_exit();
2767 	return (0);
2768 
2769 errout:
2770 	if (rp != NULL) {
2771 		if (rp->rpr_q.q_mcr.dma_map != NULL)
2772 			ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2773 		if (rp->rpr_msgin.dma_map != NULL) {
2774 			bzero(rp->rpr_msgin.dma_vaddr, rp->rpr_msgin.dma_size);
2775 			ubsec_dma_free(sc, &rp->rpr_msgin);
2776 		}
2777 		if (rp->rpr_msgout.dma_map != NULL) {
2778 			bzero(rp->rpr_msgout.dma_vaddr, rp->rpr_msgout.dma_size);
2779 			ubsec_dma_free(sc, &rp->rpr_msgout);
2780 		}
2781 		kfree(rp, M_DEVBUF);
2782 	}
2783 	krp->krp_status = err;
2784 	crypto_kdone(krp);
2785 	return (0);
2786 }
2787 
2788 #ifdef UBSEC_DEBUG
2789 static void
2790 ubsec_dump_pb(volatile struct ubsec_pktbuf *pb)
2791 {
2792 	kprintf("addr 0x%x (0x%x) next 0x%x\n",
2793 	    pb->pb_addr, pb->pb_len, pb->pb_next);
2794 }
2795 
2796 static void
2797 ubsec_dump_ctx2(struct ubsec_ctx_keyop *c)
2798 {
2799 	kprintf("CTX (0x%x):\n", c->ctx_len);
2800 	switch (letoh16(c->ctx_op)) {
2801 	case UBS_CTXOP_RNGBYPASS:
2802 	case UBS_CTXOP_RNGSHA1:
2803 		break;
2804 	case UBS_CTXOP_MODEXP:
2805 	{
2806 		struct ubsec_ctx_modexp *cx = (void *)c;
2807 		int i, len;
2808 
2809 		kprintf(" Elen %u, Nlen %u\n",
2810 		    letoh16(cx->me_E_len), letoh16(cx->me_N_len));
2811 		len = (cx->me_N_len + 7)/8;
2812 		for (i = 0; i < len; i++)
2813 			kprintf("%s%02x", (i == 0) ? " N: " : ":", cx->me_N[i]);
2814 		kprintf("\n");
2815 		break;
2816 	}
2817 	default:
2818 		kprintf("unknown context: %x\n", c->ctx_op);
2819 	}
2820 	kprintf("END CTX\n");
2821 }
2822 
2823 static void
2824 ubsec_dump_mcr(struct ubsec_mcr *mcr)
2825 {
2826 	volatile struct ubsec_mcr_add *ma;
2827 	int i;
2828 
2829 	kprintf("MCR:\n");
2830 	kprintf(" pkts: %u, flags 0x%x\n",
2831 	    letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags));
2832 	ma = (volatile struct ubsec_mcr_add *)&mcr->mcr_cmdctxp;
2833 	for (i = 0; i < letoh16(mcr->mcr_pkts); i++) {
2834 		kprintf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i,
2835 		    letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen),
2836 		    letoh16(ma->mcr_reserved));
2837 		kprintf(" %d: ipkt ", i);
2838 		ubsec_dump_pb(&ma->mcr_ipktbuf);
2839 		kprintf(" %d: opkt ", i);
2840 		ubsec_dump_pb(&ma->mcr_opktbuf);
2841 		ma++;
2842 	}
2843 	kprintf("END MCR\n");
2844 }
2845 #endif /* UBSEC_DEBUG */
2846 
2847 /*
2848  * Return the number of significant bits of a big number.
2849  */
2850 static int
2851 ubsec_ksigbits(struct crparam *cr)
2852 {
2853 	u_int plen = (cr->crp_nbits + 7) / 8;
2854 	int i, sig = plen * 8;
2855 	u_int8_t c, *p = cr->crp_p;
2856 
2857 	for (i = plen - 1; i >= 0; i--) {
2858 		c = p[i];
2859 		if (c != 0) {
2860 			while ((c & 0x80) == 0) {
2861 				sig--;
2862 				c <<= 1;
2863 			}
2864 			break;
2865 		}
2866 		sig -= 8;
2867 	}
2868 	return (sig);
2869 }
2870 
2871 static void
2872 ubsec_kshift_r(
2873 	u_int shiftbits,
2874 	u_int8_t *src, u_int srcbits,
2875 	u_int8_t *dst, u_int dstbits)
2876 {
2877 	u_int slen, dlen;
2878 	int i, si, di, n;
2879 
2880 	slen = (srcbits + 7) / 8;
2881 	dlen = (dstbits + 7) / 8;
2882 
2883 	for (i = 0; i < slen; i++)
2884 		dst[i] = src[i];
2885 	for (i = 0; i < dlen - slen; i++)
2886 		dst[slen + i] = 0;
2887 
2888 	n = shiftbits / 8;
2889 	if (n != 0) {
2890 		si = dlen - n - 1;
2891 		di = dlen - 1;
2892 		while (si >= 0)
2893 			dst[di--] = dst[si--];
2894 		while (di >= 0)
2895 			dst[di--] = 0;
2896 	}
2897 
2898 	n = shiftbits % 8;
2899 	if (n != 0) {
2900 		for (i = dlen - 1; i > 0; i--)
2901 			dst[i] = (dst[i] << n) |
2902 			    (dst[i - 1] >> (8 - n));
2903 		dst[0] = dst[0] << n;
2904 	}
2905 }
2906 
2907 static void
2908 ubsec_kshift_l(
2909 	u_int shiftbits,
2910 	u_int8_t *src, u_int srcbits,
2911 	u_int8_t *dst, u_int dstbits)
2912 {
2913 	int slen, dlen, i, n;
2914 
2915 	slen = (srcbits + 7) / 8;
2916 	dlen = (dstbits + 7) / 8;
2917 
2918 	n = shiftbits / 8;
2919 	for (i = 0; i < slen; i++)
2920 		dst[i] = src[i + n];
2921 	for (i = 0; i < dlen - slen; i++)
2922 		dst[slen + i] = 0;
2923 
2924 	n = shiftbits % 8;
2925 	if (n != 0) {
2926 		for (i = 0; i < (dlen - 1); i++)
2927 			dst[i] = (dst[i] >> n) | (dst[i + 1] << (8 - n));
2928 		dst[dlen - 1] = dst[dlen - 1] >> n;
2929 	}
2930 }
2931