xref: /dflybsd-src/sys/dev/crypto/ubsec/ubsec.c (revision 3cf94ecf50c1958c7b10de185222fd2816ccfff0)
1 /* $FreeBSD: src/sys/dev/ubsec/ubsec.c,v 1.6.2.12 2003/06/04 17:56:59 sam Exp $ */
2 /* $DragonFly: src/sys/dev/crypto/ubsec/ubsec.c,v 1.7 2005/05/24 20:58:59 dillon Exp $ */
3 /*	$OpenBSD: ubsec.c,v 1.115 2002/09/24 18:33:26 jason Exp $	*/
4 
5 /*
6  * Copyright (c) 2000 Jason L. Wright (jason@thought.net)
7  * Copyright (c) 2000 Theo de Raadt (deraadt@openbsd.org)
8  * Copyright (c) 2001 Patrik Lindergren (patrik@ipunplugged.com)
9  *
10  * All rights reserved.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by Jason L. Wright
23  * 4. The name of the author may not be used to endorse or promote products
24  *    derived from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
27  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
28  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
29  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
30  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
31  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
32  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
34  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
35  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  *
38  * Effort sponsored in part by the Defense Advanced Research Projects
39  * Agency (DARPA) and Air Force Research Laboratory, Air Force
40  * Materiel Command, USAF, under agreement number F30602-01-2-0537.
41  *
42  */
43 
44 /*
45  * uBsec 5[56]01, 58xx hardware crypto accelerator
46  */
47 
48 #include "opt_ubsec.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/proc.h>
53 #include <sys/errno.h>
54 #include <sys/malloc.h>
55 #include <sys/kernel.h>
56 #include <sys/mbuf.h>
57 #include <sys/sysctl.h>
58 #include <sys/endian.h>
59 
60 #include <vm/vm.h>
61 #include <vm/pmap.h>
62 
63 #include <machine/clock.h>
64 #include <machine/bus.h>
65 #include <machine/resource.h>
66 #include <sys/bus.h>
67 #include <sys/rman.h>
68 
69 #include <crypto/sha1.h>
70 #include <opencrypto/cryptodev.h>
71 #include <opencrypto/cryptosoft.h>
72 #include <sys/md5.h>
73 #include <sys/random.h>
74 
75 #include <bus/pci/pcivar.h>
76 #include <bus/pci/pcireg.h>
77 
78 /* grr, #defines for gratuitous incompatibility in queue.h */
79 #define	SIMPLEQ_HEAD		STAILQ_HEAD
80 #define	SIMPLEQ_ENTRY		STAILQ_ENTRY
81 #define	SIMPLEQ_INIT		STAILQ_INIT
82 #define	SIMPLEQ_INSERT_TAIL	STAILQ_INSERT_TAIL
83 #define	SIMPLEQ_EMPTY		STAILQ_EMPTY
84 #define	SIMPLEQ_FIRST		STAILQ_FIRST
85 #define	SIMPLEQ_REMOVE_HEAD	STAILQ_REMOVE_HEAD_UNTIL
86 #define	SIMPLEQ_FOREACH		STAILQ_FOREACH
87 /* ditto for endian.h */
88 #define	letoh16(x)		le16toh(x)
89 #define	letoh32(x)		le32toh(x)
90 
91 #ifdef UBSEC_RNDTEST
92 #include "../rndtest/rndtest.h"
93 #endif
94 #include "ubsecreg.h"
95 #include "ubsecvar.h"
96 
97 /*
98  * Prototypes and count for the pci_device structure
99  */
100 static	int ubsec_probe(device_t);
101 static	int ubsec_attach(device_t);
102 static	int ubsec_detach(device_t);
103 static	int ubsec_suspend(device_t);
104 static	int ubsec_resume(device_t);
105 static	void ubsec_shutdown(device_t);
106 
107 static device_method_t ubsec_methods[] = {
108 	/* Device interface */
109 	DEVMETHOD(device_probe,		ubsec_probe),
110 	DEVMETHOD(device_attach,	ubsec_attach),
111 	DEVMETHOD(device_detach,	ubsec_detach),
112 	DEVMETHOD(device_suspend,	ubsec_suspend),
113 	DEVMETHOD(device_resume,	ubsec_resume),
114 	DEVMETHOD(device_shutdown,	ubsec_shutdown),
115 
116 	/* bus interface */
117 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
118 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
119 
120 	{ 0, 0 }
121 };
122 static driver_t ubsec_driver = {
123 	"ubsec",
124 	ubsec_methods,
125 	sizeof (struct ubsec_softc)
126 };
127 static devclass_t ubsec_devclass;
128 
129 DECLARE_DUMMY_MODULE(ubsec);
130 DRIVER_MODULE(ubsec, pci, ubsec_driver, ubsec_devclass, 0, 0);
131 MODULE_DEPEND(ubsec, crypto, 1, 1, 1);
132 #ifdef UBSEC_RNDTEST
133 MODULE_DEPEND(ubsec, rndtest, 1, 1, 1);
134 #endif
135 
136 static	void ubsec_intr(void *);
137 static	int ubsec_newsession(void *, u_int32_t *, struct cryptoini *);
138 static	int ubsec_freesession(void *, u_int64_t);
139 static	int ubsec_process(void *, struct cryptop *, int);
140 static	void ubsec_callback(struct ubsec_softc *, struct ubsec_q *);
141 static	void ubsec_feed(struct ubsec_softc *);
142 static	void ubsec_mcopy(struct mbuf *, struct mbuf *, int, int);
143 static	void ubsec_callback2(struct ubsec_softc *, struct ubsec_q2 *);
144 static	int ubsec_feed2(struct ubsec_softc *);
145 static	void ubsec_rng(void *);
146 static	int ubsec_dma_malloc(struct ubsec_softc *, bus_size_t,
147 			     struct ubsec_dma_alloc *, int);
148 #define	ubsec_dma_sync(_dma, _flags) \
149 	bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags))
150 static	void ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *);
151 static	int ubsec_dmamap_aligned(struct ubsec_operand *op);
152 
153 static	void ubsec_reset_board(struct ubsec_softc *sc);
154 static	void ubsec_init_board(struct ubsec_softc *sc);
155 static	void ubsec_init_pciregs(device_t dev);
156 static	void ubsec_totalreset(struct ubsec_softc *sc);
157 
158 static	int ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q);
159 
160 static	int ubsec_kprocess(void*, struct cryptkop *, int);
161 static	int ubsec_kprocess_modexp_hw(struct ubsec_softc *, struct cryptkop *, int);
162 static	int ubsec_kprocess_modexp_sw(struct ubsec_softc *, struct cryptkop *, int);
163 static	int ubsec_kprocess_rsapriv(struct ubsec_softc *, struct cryptkop *, int);
164 static	void ubsec_kfree(struct ubsec_softc *, struct ubsec_q2 *);
165 static	int ubsec_ksigbits(struct crparam *);
166 static	void ubsec_kshift_r(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
167 static	void ubsec_kshift_l(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
168 
169 SYSCTL_NODE(_hw, OID_AUTO, ubsec, CTLFLAG_RD, 0, "Broadcom driver parameters");
170 
171 #ifdef UBSEC_DEBUG
172 static	void ubsec_dump_pb(volatile struct ubsec_pktbuf *);
173 static	void ubsec_dump_mcr(struct ubsec_mcr *);
174 static	void ubsec_dump_ctx2(struct ubsec_ctx_keyop *);
175 
176 static	int ubsec_debug = 0;
177 SYSCTL_INT(_hw_ubsec, OID_AUTO, debug, CTLFLAG_RW, &ubsec_debug,
178 	    0, "control debugging msgs");
179 #endif
180 
181 #define	READ_REG(sc,r) \
182 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
183 
184 #define WRITE_REG(sc,reg,val) \
185 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
186 
187 #define	SWAP32(x) (x) = htole32(ntohl((x)))
188 #define	HTOLE32(x) (x) = htole32(x)
189 
190 
191 struct ubsec_stats ubsecstats;
192 SYSCTL_STRUCT(_hw_ubsec, OID_AUTO, stats, CTLFLAG_RD, &ubsecstats,
193 	    ubsec_stats, "driver statistics");
194 
195 static int
196 ubsec_probe(device_t dev)
197 {
198 	if (pci_get_vendor(dev) == PCI_VENDOR_SUN &&
199 	    (pci_get_device(dev) == PCI_PRODUCT_SUN_5821 ||
200 	     pci_get_device(dev) == PCI_PRODUCT_SUN_SCA1K))
201 		return (0);
202 	if (pci_get_vendor(dev) == PCI_VENDOR_BLUESTEEL &&
203 	    (pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5501 ||
204 	     pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5601))
205 		return (0);
206 	if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
207 	    (pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5801 ||
208 	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5802 ||
209 	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5805 ||
210 	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5820 ||
211 	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5821 ||
212 	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5822 ||
213 	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5823
214 	     ))
215 		return (0);
216 	return (ENXIO);
217 }
218 
219 static const char*
220 ubsec_partname(struct ubsec_softc *sc)
221 {
222 	/* XXX sprintf numbers when not decoded */
223 	switch (pci_get_vendor(sc->sc_dev)) {
224 	case PCI_VENDOR_BROADCOM:
225 		switch (pci_get_device(sc->sc_dev)) {
226 		case PCI_PRODUCT_BROADCOM_5801:	return "Broadcom 5801";
227 		case PCI_PRODUCT_BROADCOM_5802:	return "Broadcom 5802";
228 		case PCI_PRODUCT_BROADCOM_5805:	return "Broadcom 5805";
229 		case PCI_PRODUCT_BROADCOM_5820:	return "Broadcom 5820";
230 		case PCI_PRODUCT_BROADCOM_5821:	return "Broadcom 5821";
231 		case PCI_PRODUCT_BROADCOM_5822:	return "Broadcom 5822";
232 		case PCI_PRODUCT_BROADCOM_5823:	return "Broadcom 5823";
233 		}
234 		return "Broadcom unknown-part";
235 	case PCI_VENDOR_BLUESTEEL:
236 		switch (pci_get_device(sc->sc_dev)) {
237 		case PCI_PRODUCT_BLUESTEEL_5601: return "Bluesteel 5601";
238 		}
239 		return "Bluesteel unknown-part";
240 	case PCI_VENDOR_SUN:
241 		switch (pci_get_device(sc->sc_dev)) {
242 		case PCI_PRODUCT_SUN_5821: return "Sun Crypto 5821";
243 		case PCI_PRODUCT_SUN_SCA1K: return "Sun Crypto 1K";
244 		}
245 		return "Sun unknown-part";
246 	}
247 	return "Unknown-vendor unknown-part";
248 }
249 
250 static void
251 default_harvest(struct rndtest_state *rsp, void *buf, u_int count)
252 {
253 	u_int32_t *p = (u_int32_t *)buf;
254 	for (count /= sizeof (u_int32_t); count; count--)
255 		add_true_randomness(*p++);
256 }
257 
258 static int
259 ubsec_attach(device_t dev)
260 {
261 	struct ubsec_softc *sc = device_get_softc(dev);
262 	struct ubsec_dma *dmap;
263 	u_int32_t cmd, i;
264 	int rid;
265 
266 	KASSERT(sc != NULL, ("ubsec_attach: null software carrier!"));
267 	bzero(sc, sizeof (*sc));
268 	sc->sc_dev = dev;
269 
270 	SIMPLEQ_INIT(&sc->sc_queue);
271 	SIMPLEQ_INIT(&sc->sc_qchip);
272 	SIMPLEQ_INIT(&sc->sc_queue2);
273 	SIMPLEQ_INIT(&sc->sc_qchip2);
274 	SIMPLEQ_INIT(&sc->sc_q2free);
275 
276 	/* XXX handle power management */
277 
278 	sc->sc_statmask = BS_STAT_MCR1_DONE | BS_STAT_DMAERR;
279 
280 	if (pci_get_vendor(dev) == PCI_VENDOR_BLUESTEEL &&
281 	    pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5601)
282 		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG;
283 
284 	if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
285 	    (pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5802 ||
286 	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5805))
287 		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG;
288 
289 	if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
290 	    pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5820)
291 		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG |
292 		    UBS_FLAGS_LONGCTX | UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY;
293 
294 	if ((pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
295 	     (pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5821 ||
296 	      pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5822 ||
297 	      pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5823)) ||
298 	    (pci_get_vendor(dev) == PCI_VENDOR_SUN &&
299 	     (pci_get_device(dev) == PCI_PRODUCT_SUN_SCA1K ||
300 	      pci_get_device(dev) == PCI_PRODUCT_SUN_5821))) {
301 		/* NB: the 5821/5822 defines some additional status bits */
302 		sc->sc_statmask |= BS_STAT_MCR1_ALLEMPTY |
303 		    BS_STAT_MCR2_ALLEMPTY;
304 		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG |
305 		    UBS_FLAGS_LONGCTX | UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY;
306 	}
307 
308 	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
309 	cmd |= PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN;
310 	pci_write_config(dev, PCIR_COMMAND, cmd, 4);
311 	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
312 
313 	if (!(cmd & PCIM_CMD_MEMEN)) {
314 		device_printf(dev, "failed to enable memory mapping\n");
315 		goto bad;
316 	}
317 
318 	if (!(cmd & PCIM_CMD_BUSMASTEREN)) {
319 		device_printf(dev, "failed to enable bus mastering\n");
320 		goto bad;
321 	}
322 
323 	/*
324 	 * Setup memory-mapping of PCI registers.
325 	 */
326 	rid = BS_BAR;
327 	sc->sc_sr = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
328 				       0, ~0, 1, RF_ACTIVE);
329 	if (sc->sc_sr == NULL) {
330 		device_printf(dev, "cannot map register space\n");
331 		goto bad;
332 	}
333 	sc->sc_st = rman_get_bustag(sc->sc_sr);
334 	sc->sc_sh = rman_get_bushandle(sc->sc_sr);
335 
336 	/*
337 	 * Arrange interrupt line.
338 	 */
339 	rid = 0;
340 	sc->sc_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid,
341 					0, ~0, 1, RF_SHAREABLE|RF_ACTIVE);
342 	if (sc->sc_irq == NULL) {
343 		device_printf(dev, "could not map interrupt\n");
344 		goto bad1;
345 	}
346 	/*
347 	 * NB: Network code assumes we are blocked with splimp()
348 	 *     so make sure the IRQ is mapped appropriately.
349 	 */
350 	if (bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET,
351 			   ubsec_intr, sc,
352 			   &sc->sc_ih, NULL)) {
353 		device_printf(dev, "could not establish interrupt\n");
354 		goto bad2;
355 	}
356 
357 	sc->sc_cid = crypto_get_driverid(0);
358 	if (sc->sc_cid < 0) {
359 		device_printf(dev, "could not get crypto driver id\n");
360 		goto bad3;
361 	}
362 
363 	/*
364 	 * Setup DMA descriptor area.
365 	 */
366 	if (bus_dma_tag_create(NULL,			/* parent */
367 			       1, 0,			/* alignment, bounds */
368 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
369 			       BUS_SPACE_MAXADDR,	/* highaddr */
370 			       NULL, NULL,		/* filter, filterarg */
371 			       0x3ffff,			/* maxsize */
372 			       UBS_MAX_SCATTER,		/* nsegments */
373 			       0xffff,			/* maxsegsize */
374 			       BUS_DMA_ALLOCNOW,	/* flags */
375 			       &sc->sc_dmat)) {
376 		device_printf(dev, "cannot allocate DMA tag\n");
377 		goto bad4;
378 	}
379 	SIMPLEQ_INIT(&sc->sc_freequeue);
380 	dmap = sc->sc_dmaa;
381 	for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) {
382 		struct ubsec_q *q;
383 
384 		q = malloc(sizeof(struct ubsec_q), M_DEVBUF, M_WAITOK);
385 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_dmachunk),
386 		    &dmap->d_alloc, 0)) {
387 			device_printf(dev, "cannot allocate dma buffers\n");
388 			free(q, M_DEVBUF);
389 			break;
390 		}
391 		dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr;
392 
393 		q->q_dma = dmap;
394 		sc->sc_queuea[i] = q;
395 
396 		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
397 	}
398 
399 	device_printf(sc->sc_dev, "%s\n", ubsec_partname(sc));
400 
401 	crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0,
402 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
403 	crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0,
404 	     ubsec_newsession, ubsec_freesession, ubsec_process, sc);
405 	crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0,
406 	     ubsec_newsession, ubsec_freesession, ubsec_process, sc);
407 	crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0,
408 	     ubsec_newsession, ubsec_freesession, ubsec_process, sc);
409 
410 	/*
411 	 * Reset Broadcom chip
412 	 */
413 	ubsec_reset_board(sc);
414 
415 	/*
416 	 * Init Broadcom specific PCI settings
417 	 */
418 	ubsec_init_pciregs(dev);
419 
420 	/*
421 	 * Init Broadcom chip
422 	 */
423 	ubsec_init_board(sc);
424 
425 #ifndef UBSEC_NO_RNG
426 	if (sc->sc_flags & UBS_FLAGS_RNG) {
427 		sc->sc_statmask |= BS_STAT_MCR2_DONE;
428 #ifdef UBSEC_RNDTEST
429 		sc->sc_rndtest = rndtest_attach(dev);
430 		if (sc->sc_rndtest)
431 			sc->sc_harvest = rndtest_harvest;
432 		else
433 			sc->sc_harvest = default_harvest;
434 #else
435 		sc->sc_harvest = default_harvest;
436 #endif
437 
438 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
439 		    &sc->sc_rng.rng_q.q_mcr, 0))
440 			goto skip_rng;
441 
442 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rngbypass),
443 		    &sc->sc_rng.rng_q.q_ctx, 0)) {
444 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
445 			goto skip_rng;
446 		}
447 
448 		if (ubsec_dma_malloc(sc, sizeof(u_int32_t) *
449 		    UBSEC_RNG_BUFSIZ, &sc->sc_rng.rng_buf, 0)) {
450 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
451 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
452 			goto skip_rng;
453 		}
454 
455 		if (hz >= 100)
456 			sc->sc_rnghz = hz / 100;
457 		else
458 			sc->sc_rnghz = 1;
459 		callout_init(&sc->sc_rngto);
460 		callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
461 skip_rng:
462 	;
463 	}
464 #endif /* UBSEC_NO_RNG */
465 
466 	if (sc->sc_flags & UBS_FLAGS_KEY) {
467 		sc->sc_statmask |= BS_STAT_MCR2_DONE;
468 
469 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0,
470 			ubsec_kprocess, sc);
471 #if 0
472 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0,
473 			ubsec_kprocess, sc);
474 #endif
475 	}
476 	return (0);
477 bad4:
478 	crypto_unregister_all(sc->sc_cid);
479 bad3:
480 	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
481 bad2:
482 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
483 bad1:
484 	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
485 bad:
486 	return (ENXIO);
487 }
488 
489 /*
490  * Detach a device that successfully probed.
491  */
492 static int
493 ubsec_detach(device_t dev)
494 {
495 	struct ubsec_softc *sc = device_get_softc(dev);
496 	int s;
497 
498 	KASSERT(sc != NULL, ("ubsec_detach: null software carrier"));
499 
500 	/* XXX wait/abort active ops */
501 
502 	s = splimp();
503 
504 	callout_stop(&sc->sc_rngto);
505 
506 	crypto_unregister_all(sc->sc_cid);
507 
508 #ifdef UBSEC_RNDTEST
509 	if (sc->sc_rndtest)
510 		rndtest_detach(sc->sc_rndtest);
511 #endif
512 
513 	while (!SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
514 		struct ubsec_q *q;
515 
516 		q = SIMPLEQ_FIRST(&sc->sc_freequeue);
517 		SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, q, q_next);
518 		ubsec_dma_free(sc, &q->q_dma->d_alloc);
519 		free(q, M_DEVBUF);
520 	}
521 #ifndef UBSEC_NO_RNG
522 	if (sc->sc_flags & UBS_FLAGS_RNG) {
523 		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
524 		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
525 		ubsec_dma_free(sc, &sc->sc_rng.rng_buf);
526 	}
527 #endif /* UBSEC_NO_RNG */
528 
529 	bus_generic_detach(dev);
530 	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
531 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
532 
533 	bus_dma_tag_destroy(sc->sc_dmat);
534 	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
535 
536 	splx(s);
537 
538 	return (0);
539 }
540 
541 /*
542  * Stop all chip i/o so that the kernel's probe routines don't
543  * get confused by errant DMAs when rebooting.
544  */
545 static void
546 ubsec_shutdown(device_t dev)
547 {
548 #ifdef notyet
549 	ubsec_stop(device_get_softc(dev));
550 #endif
551 }
552 
553 /*
554  * Device suspend routine.
555  */
556 static int
557 ubsec_suspend(device_t dev)
558 {
559 	struct ubsec_softc *sc = device_get_softc(dev);
560 
561 	KASSERT(sc != NULL, ("ubsec_suspend: null software carrier"));
562 #ifdef notyet
563 	/* XXX stop the device and save PCI settings */
564 #endif
565 	sc->sc_suspended = 1;
566 
567 	return (0);
568 }
569 
570 static int
571 ubsec_resume(device_t dev)
572 {
573 	struct ubsec_softc *sc = device_get_softc(dev);
574 
575 	KASSERT(sc != NULL, ("ubsec_resume: null software carrier"));
576 #ifdef notyet
577 	/* XXX retore PCI settings and start the device */
578 #endif
579 	sc->sc_suspended = 0;
580 	return (0);
581 }
582 
583 /*
584  * UBSEC Interrupt routine
585  */
586 static void
587 ubsec_intr(void *arg)
588 {
589 	struct ubsec_softc *sc = arg;
590 	volatile u_int32_t stat;
591 	struct ubsec_q *q;
592 	struct ubsec_dma *dmap;
593 	int npkts = 0, i;
594 
595 	stat = READ_REG(sc, BS_STAT);
596 	stat &= sc->sc_statmask;
597 	if (stat == 0) {
598 		return;
599 	}
600 
601 	WRITE_REG(sc, BS_STAT, stat);		/* IACK */
602 
603 	/*
604 	 * Check to see if we have any packets waiting for us
605 	 */
606 	if ((stat & BS_STAT_MCR1_DONE)) {
607 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
608 			q = SIMPLEQ_FIRST(&sc->sc_qchip);
609 			dmap = q->q_dma;
610 
611 			if ((dmap->d_dma->d_mcr.mcr_flags & htole16(UBS_MCR_DONE)) == 0)
612 				break;
613 
614 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q, q_next);
615 
616 			npkts = q->q_nstacked_mcrs;
617 			sc->sc_nqchip -= 1+npkts;
618 			/*
619 			 * search for further sc_qchip ubsec_q's that share
620 			 * the same MCR, and complete them too, they must be
621 			 * at the top.
622 			 */
623 			for (i = 0; i < npkts; i++) {
624 				if(q->q_stacked_mcr[i]) {
625 					ubsec_callback(sc, q->q_stacked_mcr[i]);
626 				} else {
627 					break;
628 				}
629 			}
630 			ubsec_callback(sc, q);
631 		}
632 
633 		/*
634 		 * Don't send any more packet to chip if there has been
635 		 * a DMAERR.
636 		 */
637 		if (!(stat & BS_STAT_DMAERR))
638 			ubsec_feed(sc);
639 	}
640 
641 	/*
642 	 * Check to see if we have any key setups/rng's waiting for us
643 	 */
644 	if ((sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG)) &&
645 	    (stat & BS_STAT_MCR2_DONE)) {
646 		struct ubsec_q2 *q2;
647 		struct ubsec_mcr *mcr;
648 
649 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip2)) {
650 			q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
651 
652 			ubsec_dma_sync(&q2->q_mcr,
653 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
654 
655 			mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
656 			if ((mcr->mcr_flags & htole16(UBS_MCR_DONE)) == 0) {
657 				ubsec_dma_sync(&q2->q_mcr,
658 				    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
659 				break;
660 			}
661 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip2, q2, q_next);
662 			ubsec_callback2(sc, q2);
663 			/*
664 			 * Don't send any more packet to chip if there has been
665 			 * a DMAERR.
666 			 */
667 			if (!(stat & BS_STAT_DMAERR))
668 				ubsec_feed2(sc);
669 		}
670 	}
671 
672 	/*
673 	 * Check to see if we got any DMA Error
674 	 */
675 	if (stat & BS_STAT_DMAERR) {
676 #ifdef UBSEC_DEBUG
677 		if (ubsec_debug) {
678 			volatile u_int32_t a = READ_REG(sc, BS_ERR);
679 
680 			printf("dmaerr %s@%08x\n",
681 			    (a & BS_ERR_READ) ? "read" : "write",
682 			    a & BS_ERR_ADDR);
683 		}
684 #endif /* UBSEC_DEBUG */
685 		ubsecstats.hst_dmaerr++;
686 		ubsec_totalreset(sc);
687 		ubsec_feed(sc);
688 	}
689 
690 	if (sc->sc_needwakeup) {		/* XXX check high watermark */
691 		int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
692 #ifdef UBSEC_DEBUG
693 		if (ubsec_debug)
694 			device_printf(sc->sc_dev, "wakeup crypto (%x)\n",
695 				sc->sc_needwakeup);
696 #endif /* UBSEC_DEBUG */
697 		sc->sc_needwakeup &= ~wakeup;
698 		crypto_unblock(sc->sc_cid, wakeup);
699 	}
700 }
701 
702 /*
703  * ubsec_feed() - aggregate and post requests to chip
704  */
705 static void
706 ubsec_feed(struct ubsec_softc *sc)
707 {
708 	struct ubsec_q *q, *q2;
709 	int npkts, i;
710 	void *v;
711 	u_int32_t stat;
712 
713 	/*
714 	 * Decide how many ops to combine in a single MCR.  We cannot
715 	 * aggregate more than UBS_MAX_AGGR because this is the number
716 	 * of slots defined in the data structure.  Note that
717 	 * aggregation only happens if ops are marked batch'able.
718 	 * Aggregating ops reduces the number of interrupts to the host
719 	 * but also (potentially) increases the latency for processing
720 	 * completed ops as we only get an interrupt when all aggregated
721 	 * ops have completed.
722 	 */
723 	if (sc->sc_nqueue == 0)
724 		return;
725 	if (sc->sc_nqueue > 1) {
726 		npkts = 0;
727 		SIMPLEQ_FOREACH(q, &sc->sc_queue, q_next) {
728 			npkts++;
729 			if ((q->q_crp->crp_flags & CRYPTO_F_BATCH) == 0)
730 				break;
731 		}
732 	} else
733 		npkts = 1;
734 	/*
735 	 * Check device status before going any further.
736 	 */
737 	if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
738 		if (stat & BS_STAT_DMAERR) {
739 			ubsec_totalreset(sc);
740 			ubsecstats.hst_dmaerr++;
741 		} else
742 			ubsecstats.hst_mcr1full++;
743 		return;
744 	}
745 	if (sc->sc_nqueue > ubsecstats.hst_maxqueue)
746 		ubsecstats.hst_maxqueue = sc->sc_nqueue;
747 	if (npkts > UBS_MAX_AGGR)
748 		npkts = UBS_MAX_AGGR;
749 	if (npkts < 2)				/* special case 1 op */
750 		goto feed1;
751 
752 	ubsecstats.hst_totbatch += npkts-1;
753 #ifdef UBSEC_DEBUG
754 	if (ubsec_debug)
755 		printf("merging %d records\n", npkts);
756 #endif /* UBSEC_DEBUG */
757 
758 	q = SIMPLEQ_FIRST(&sc->sc_queue);
759 	SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q, q_next);
760 	--sc->sc_nqueue;
761 
762 	bus_dmamap_sync(sc->sc_dmat, q->q_src_map, BUS_DMASYNC_PREWRITE);
763 	if (q->q_dst_map != NULL)
764 		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map, BUS_DMASYNC_PREREAD);
765 
766 	q->q_nstacked_mcrs = npkts - 1;		/* Number of packets stacked */
767 
768 	for (i = 0; i < q->q_nstacked_mcrs; i++) {
769 		q2 = SIMPLEQ_FIRST(&sc->sc_queue);
770 		bus_dmamap_sync(sc->sc_dmat, q2->q_src_map,
771 		    BUS_DMASYNC_PREWRITE);
772 		if (q2->q_dst_map != NULL)
773 			bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map,
774 			    BUS_DMASYNC_PREREAD);
775 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q2, q_next);
776 		--sc->sc_nqueue;
777 
778 		v = (void*)(((char *)&q2->q_dma->d_dma->d_mcr) + sizeof(struct ubsec_mcr) -
779 		    sizeof(struct ubsec_mcr_add));
780 		bcopy(v, &q->q_dma->d_dma->d_mcradd[i], sizeof(struct ubsec_mcr_add));
781 		q->q_stacked_mcr[i] = q2;
782 	}
783 	q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts);
784 	SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
785 	sc->sc_nqchip += npkts;
786 	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
787 		ubsecstats.hst_maxqchip = sc->sc_nqchip;
788 	ubsec_dma_sync(&q->q_dma->d_alloc,
789 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
790 	WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
791 	    offsetof(struct ubsec_dmachunk, d_mcr));
792 	return;
793 
794 feed1:
795 	q = SIMPLEQ_FIRST(&sc->sc_queue);
796 
797 	bus_dmamap_sync(sc->sc_dmat, q->q_src_map, BUS_DMASYNC_PREWRITE);
798 	if (q->q_dst_map != NULL)
799 		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map, BUS_DMASYNC_PREREAD);
800 	ubsec_dma_sync(&q->q_dma->d_alloc,
801 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
802 
803 	WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
804 	    offsetof(struct ubsec_dmachunk, d_mcr));
805 #ifdef UBSEC_DEBUG
806 	if (ubsec_debug)
807 		printf("feed1: q->chip %p %08x stat %08x\n",
808 		      q, (u_int32_t)vtophys(&q->q_dma->d_dma->d_mcr),
809 		      stat);
810 #endif /* UBSEC_DEBUG */
811 	SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q, q_next);
812 	--sc->sc_nqueue;
813 	SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
814 	sc->sc_nqchip++;
815 	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
816 		ubsecstats.hst_maxqchip = sc->sc_nqchip;
817 	return;
818 }
819 
820 /*
821  * Allocate a new 'session' and return an encoded session id.  'sidp'
822  * contains our registration id, and should contain an encoded session
823  * id on successful allocation.
824  */
825 static int
826 ubsec_newsession(void *arg, u_int32_t *sidp, struct cryptoini *cri)
827 {
828 	struct cryptoini *c, *encini = NULL, *macini = NULL;
829 	struct ubsec_softc *sc = arg;
830 	struct ubsec_session *ses = NULL;
831 	MD5_CTX md5ctx;
832 	SHA1_CTX sha1ctx;
833 	int i, sesn;
834 
835 	KASSERT(sc != NULL, ("ubsec_newsession: null softc"));
836 	if (sidp == NULL || cri == NULL || sc == NULL)
837 		return (EINVAL);
838 
839 	for (c = cri; c != NULL; c = c->cri_next) {
840 		if (c->cri_alg == CRYPTO_MD5_HMAC ||
841 		    c->cri_alg == CRYPTO_SHA1_HMAC) {
842 			if (macini)
843 				return (EINVAL);
844 			macini = c;
845 		} else if (c->cri_alg == CRYPTO_DES_CBC ||
846 		    c->cri_alg == CRYPTO_3DES_CBC) {
847 			if (encini)
848 				return (EINVAL);
849 			encini = c;
850 		} else
851 			return (EINVAL);
852 	}
853 	if (encini == NULL && macini == NULL)
854 		return (EINVAL);
855 
856 	if (sc->sc_sessions == NULL) {
857 		ses = sc->sc_sessions = malloc(sizeof(struct ubsec_session),
858 						M_DEVBUF, M_INTWAIT);
859 		sesn = 0;
860 		sc->sc_nsessions = 1;
861 	} else {
862 		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
863 			if (sc->sc_sessions[sesn].ses_used == 0) {
864 				ses = &sc->sc_sessions[sesn];
865 				break;
866 			}
867 		}
868 
869 		if (ses == NULL) {
870 			sesn = sc->sc_nsessions;
871 			ses = malloc((sesn + 1) * sizeof(struct ubsec_session),
872 					M_DEVBUF, M_INTWAIT);
873 			bcopy(sc->sc_sessions, ses, sesn *
874 			    sizeof(struct ubsec_session));
875 			bzero(sc->sc_sessions, sesn *
876 			    sizeof(struct ubsec_session));
877 			free(sc->sc_sessions, M_DEVBUF);
878 			sc->sc_sessions = ses;
879 			ses = &sc->sc_sessions[sesn];
880 			sc->sc_nsessions++;
881 		}
882 	}
883 
884 	bzero(ses, sizeof(struct ubsec_session));
885 	ses->ses_used = 1;
886 	if (encini) {
887 		/* get an IV, network byte order */
888 		/* XXX may read fewer than requested */
889 		read_random(ses->ses_iv, sizeof(ses->ses_iv));
890 
891 		/* Go ahead and compute key in ubsec's byte order */
892 		if (encini->cri_alg == CRYPTO_DES_CBC) {
893 			bcopy(encini->cri_key, &ses->ses_deskey[0], 8);
894 			bcopy(encini->cri_key, &ses->ses_deskey[2], 8);
895 			bcopy(encini->cri_key, &ses->ses_deskey[4], 8);
896 		} else
897 			bcopy(encini->cri_key, ses->ses_deskey, 24);
898 
899 		SWAP32(ses->ses_deskey[0]);
900 		SWAP32(ses->ses_deskey[1]);
901 		SWAP32(ses->ses_deskey[2]);
902 		SWAP32(ses->ses_deskey[3]);
903 		SWAP32(ses->ses_deskey[4]);
904 		SWAP32(ses->ses_deskey[5]);
905 	}
906 
907 	if (macini) {
908 		for (i = 0; i < macini->cri_klen / 8; i++)
909 			macini->cri_key[i] ^= HMAC_IPAD_VAL;
910 
911 		if (macini->cri_alg == CRYPTO_MD5_HMAC) {
912 			MD5Init(&md5ctx);
913 			MD5Update(&md5ctx, macini->cri_key,
914 			    macini->cri_klen / 8);
915 			MD5Update(&md5ctx, hmac_ipad_buffer,
916 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
917 			bcopy(md5ctx.state, ses->ses_hminner,
918 			    sizeof(md5ctx.state));
919 		} else {
920 			SHA1Init(&sha1ctx);
921 			SHA1Update(&sha1ctx, macini->cri_key,
922 			    macini->cri_klen / 8);
923 			SHA1Update(&sha1ctx, hmac_ipad_buffer,
924 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
925 			bcopy(sha1ctx.h.b32, ses->ses_hminner,
926 			    sizeof(sha1ctx.h.b32));
927 		}
928 
929 		for (i = 0; i < macini->cri_klen / 8; i++)
930 			macini->cri_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
931 
932 		if (macini->cri_alg == CRYPTO_MD5_HMAC) {
933 			MD5Init(&md5ctx);
934 			MD5Update(&md5ctx, macini->cri_key,
935 			    macini->cri_klen / 8);
936 			MD5Update(&md5ctx, hmac_opad_buffer,
937 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
938 			bcopy(md5ctx.state, ses->ses_hmouter,
939 			    sizeof(md5ctx.state));
940 		} else {
941 			SHA1Init(&sha1ctx);
942 			SHA1Update(&sha1ctx, macini->cri_key,
943 			    macini->cri_klen / 8);
944 			SHA1Update(&sha1ctx, hmac_opad_buffer,
945 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
946 			bcopy(sha1ctx.h.b32, ses->ses_hmouter,
947 			    sizeof(sha1ctx.h.b32));
948 		}
949 
950 		for (i = 0; i < macini->cri_klen / 8; i++)
951 			macini->cri_key[i] ^= HMAC_OPAD_VAL;
952 	}
953 
954 	*sidp = UBSEC_SID(device_get_unit(sc->sc_dev), sesn);
955 	return (0);
956 }
957 
958 /*
959  * Deallocate a session.
960  */
961 static int
962 ubsec_freesession(void *arg, u_int64_t tid)
963 {
964 	struct ubsec_softc *sc = arg;
965 	int session;
966 	u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
967 
968 	KASSERT(sc != NULL, ("ubsec_freesession: null softc"));
969 	if (sc == NULL)
970 		return (EINVAL);
971 
972 	session = UBSEC_SESSION(sid);
973 	if (session >= sc->sc_nsessions)
974 		return (EINVAL);
975 
976 	bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
977 	return (0);
978 }
979 
980 static void
981 ubsec_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
982 {
983 	struct ubsec_operand *op = arg;
984 
985 	KASSERT(nsegs <= UBS_MAX_SCATTER,
986 		("Too many DMA segments returned when mapping operand"));
987 #ifdef UBSEC_DEBUG
988 	if (ubsec_debug)
989 		printf("ubsec_op_cb: mapsize %u nsegs %d\n",
990 			(u_int) mapsize, nsegs);
991 #endif
992 	op->mapsize = mapsize;
993 	op->nsegs = nsegs;
994 	bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
995 }
996 
997 static int
998 ubsec_process(void *arg, struct cryptop *crp, int hint)
999 {
1000 	struct ubsec_q *q = NULL;
1001 	int err = 0, i, j, s, nicealign;
1002 	struct ubsec_softc *sc = arg;
1003 	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
1004 	int encoffset = 0, macoffset = 0, cpskip, cpoffset;
1005 	int sskip, dskip, stheend, dtheend;
1006 	int16_t coffset;
1007 	struct ubsec_session *ses;
1008 	struct ubsec_pktctx ctx;
1009 	struct ubsec_dma *dmap = NULL;
1010 
1011 	if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
1012 		ubsecstats.hst_invalid++;
1013 		return (EINVAL);
1014 	}
1015 	if (UBSEC_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
1016 		ubsecstats.hst_badsession++;
1017 		return (EINVAL);
1018 	}
1019 
1020 	s = splimp();
1021 
1022 	if (SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
1023 		ubsecstats.hst_queuefull++;
1024 		sc->sc_needwakeup |= CRYPTO_SYMQ;
1025 		splx(s);
1026 		return (ERESTART);
1027 	}
1028 	q = SIMPLEQ_FIRST(&sc->sc_freequeue);
1029 	SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, q, q_next);
1030 	splx(s);
1031 
1032 	dmap = q->q_dma; /* Save dma pointer */
1033 	bzero(q, sizeof(struct ubsec_q));
1034 	bzero(&ctx, sizeof(ctx));
1035 
1036 	q->q_sesn = UBSEC_SESSION(crp->crp_sid);
1037 	q->q_dma = dmap;
1038 	ses = &sc->sc_sessions[q->q_sesn];
1039 
1040 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1041 		q->q_src_m = (struct mbuf *)crp->crp_buf;
1042 		q->q_dst_m = (struct mbuf *)crp->crp_buf;
1043 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1044 		q->q_src_io = (struct uio *)crp->crp_buf;
1045 		q->q_dst_io = (struct uio *)crp->crp_buf;
1046 	} else {
1047 		ubsecstats.hst_badflags++;
1048 		err = EINVAL;
1049 		goto errout;	/* XXX we don't handle contiguous blocks! */
1050 	}
1051 
1052 	bzero(&dmap->d_dma->d_mcr, sizeof(struct ubsec_mcr));
1053 
1054 	dmap->d_dma->d_mcr.mcr_pkts = htole16(1);
1055 	dmap->d_dma->d_mcr.mcr_flags = 0;
1056 	q->q_crp = crp;
1057 
1058 	crd1 = crp->crp_desc;
1059 	if (crd1 == NULL) {
1060 		ubsecstats.hst_nodesc++;
1061 		err = EINVAL;
1062 		goto errout;
1063 	}
1064 	crd2 = crd1->crd_next;
1065 
1066 	if (crd2 == NULL) {
1067 		if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
1068 		    crd1->crd_alg == CRYPTO_SHA1_HMAC) {
1069 			maccrd = crd1;
1070 			enccrd = NULL;
1071 		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
1072 		    crd1->crd_alg == CRYPTO_3DES_CBC) {
1073 			maccrd = NULL;
1074 			enccrd = crd1;
1075 		} else {
1076 			ubsecstats.hst_badalg++;
1077 			err = EINVAL;
1078 			goto errout;
1079 		}
1080 	} else {
1081 		if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
1082 		    crd1->crd_alg == CRYPTO_SHA1_HMAC) &&
1083 		    (crd2->crd_alg == CRYPTO_DES_CBC ||
1084 			crd2->crd_alg == CRYPTO_3DES_CBC) &&
1085 		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
1086 			maccrd = crd1;
1087 			enccrd = crd2;
1088 		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
1089 		    crd1->crd_alg == CRYPTO_3DES_CBC) &&
1090 		    (crd2->crd_alg == CRYPTO_MD5_HMAC ||
1091 			crd2->crd_alg == CRYPTO_SHA1_HMAC) &&
1092 		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
1093 			enccrd = crd1;
1094 			maccrd = crd2;
1095 		} else {
1096 			/*
1097 			 * We cannot order the ubsec as requested
1098 			 */
1099 			ubsecstats.hst_badalg++;
1100 			err = EINVAL;
1101 			goto errout;
1102 		}
1103 	}
1104 
1105 	if (enccrd) {
1106 		encoffset = enccrd->crd_skip;
1107 		ctx.pc_flags |= htole16(UBS_PKTCTX_ENC_3DES);
1108 
1109 		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1110 			q->q_flags |= UBSEC_QFLAGS_COPYOUTIV;
1111 
1112 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1113 				bcopy(enccrd->crd_iv, ctx.pc_iv, 8);
1114 			else {
1115 				ctx.pc_iv[0] = ses->ses_iv[0];
1116 				ctx.pc_iv[1] = ses->ses_iv[1];
1117 			}
1118 
1119 			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1120 				if (crp->crp_flags & CRYPTO_F_IMBUF)
1121 					m_copyback(q->q_src_m,
1122 					    enccrd->crd_inject,
1123 					    8, (caddr_t)ctx.pc_iv);
1124 				else if (crp->crp_flags & CRYPTO_F_IOV)
1125 					cuio_copyback(q->q_src_io,
1126 					    enccrd->crd_inject,
1127 					    8, (caddr_t)ctx.pc_iv);
1128 			}
1129 		} else {
1130 			ctx.pc_flags |= htole16(UBS_PKTCTX_INBOUND);
1131 
1132 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1133 				bcopy(enccrd->crd_iv, ctx.pc_iv, 8);
1134 			else if (crp->crp_flags & CRYPTO_F_IMBUF)
1135 				m_copydata(q->q_src_m, enccrd->crd_inject,
1136 				    8, (caddr_t)ctx.pc_iv);
1137 			else if (crp->crp_flags & CRYPTO_F_IOV)
1138 				cuio_copydata(q->q_src_io,
1139 				    enccrd->crd_inject, 8,
1140 				    (caddr_t)ctx.pc_iv);
1141 		}
1142 
1143 		ctx.pc_deskey[0] = ses->ses_deskey[0];
1144 		ctx.pc_deskey[1] = ses->ses_deskey[1];
1145 		ctx.pc_deskey[2] = ses->ses_deskey[2];
1146 		ctx.pc_deskey[3] = ses->ses_deskey[3];
1147 		ctx.pc_deskey[4] = ses->ses_deskey[4];
1148 		ctx.pc_deskey[5] = ses->ses_deskey[5];
1149 		SWAP32(ctx.pc_iv[0]);
1150 		SWAP32(ctx.pc_iv[1]);
1151 	}
1152 
1153 	if (maccrd) {
1154 		macoffset = maccrd->crd_skip;
1155 
1156 		if (maccrd->crd_alg == CRYPTO_MD5_HMAC)
1157 			ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_MD5);
1158 		else
1159 			ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_SHA1);
1160 
1161 		for (i = 0; i < 5; i++) {
1162 			ctx.pc_hminner[i] = ses->ses_hminner[i];
1163 			ctx.pc_hmouter[i] = ses->ses_hmouter[i];
1164 
1165 			HTOLE32(ctx.pc_hminner[i]);
1166 			HTOLE32(ctx.pc_hmouter[i]);
1167 		}
1168 	}
1169 
1170 	if (enccrd && maccrd) {
1171 		/*
1172 		 * ubsec cannot handle packets where the end of encryption
1173 		 * and authentication are not the same, or where the
1174 		 * encrypted part begins before the authenticated part.
1175 		 */
1176 		if ((encoffset + enccrd->crd_len) !=
1177 		    (macoffset + maccrd->crd_len)) {
1178 			ubsecstats.hst_lenmismatch++;
1179 			err = EINVAL;
1180 			goto errout;
1181 		}
1182 		if (enccrd->crd_skip < maccrd->crd_skip) {
1183 			ubsecstats.hst_skipmismatch++;
1184 			err = EINVAL;
1185 			goto errout;
1186 		}
1187 		sskip = maccrd->crd_skip;
1188 		cpskip = dskip = enccrd->crd_skip;
1189 		stheend = maccrd->crd_len;
1190 		dtheend = enccrd->crd_len;
1191 		coffset = enccrd->crd_skip - maccrd->crd_skip;
1192 		cpoffset = cpskip + dtheend;
1193 #ifdef UBSEC_DEBUG
1194 		if (ubsec_debug) {
1195 			printf("mac: skip %d, len %d, inject %d\n",
1196 			    maccrd->crd_skip, maccrd->crd_len, maccrd->crd_inject);
1197 			printf("enc: skip %d, len %d, inject %d\n",
1198 			    enccrd->crd_skip, enccrd->crd_len, enccrd->crd_inject);
1199 			printf("src: skip %d, len %d\n", sskip, stheend);
1200 			printf("dst: skip %d, len %d\n", dskip, dtheend);
1201 			printf("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n",
1202 			    coffset, stheend, cpskip, cpoffset);
1203 		}
1204 #endif
1205 	} else {
1206 		cpskip = dskip = sskip = macoffset + encoffset;
1207 		dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len;
1208 		cpoffset = cpskip + dtheend;
1209 		coffset = 0;
1210 	}
1211 	ctx.pc_offset = htole16(coffset >> 2);
1212 
1213 	if (bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &q->q_src_map)) {
1214 		ubsecstats.hst_nomap++;
1215 		err = ENOMEM;
1216 		goto errout;
1217 	}
1218 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1219 		if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map,
1220 		    q->q_src_m, ubsec_op_cb, &q->q_src, BUS_DMA_NOWAIT) != 0) {
1221 			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1222 			q->q_src_map = NULL;
1223 			ubsecstats.hst_noload++;
1224 			err = ENOMEM;
1225 			goto errout;
1226 		}
1227 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1228 		if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map,
1229 		    q->q_src_io, ubsec_op_cb, &q->q_src, BUS_DMA_NOWAIT) != 0) {
1230 			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1231 			q->q_src_map = NULL;
1232 			ubsecstats.hst_noload++;
1233 			err = ENOMEM;
1234 			goto errout;
1235 		}
1236 	}
1237 	nicealign = ubsec_dmamap_aligned(&q->q_src);
1238 
1239 	dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend);
1240 
1241 #ifdef UBSEC_DEBUG
1242 	if (ubsec_debug)
1243 		printf("src skip: %d nicealign: %u\n", sskip, nicealign);
1244 #endif
1245 	for (i = j = 0; i < q->q_src_nsegs; i++) {
1246 		struct ubsec_pktbuf *pb;
1247 		bus_size_t packl = q->q_src_segs[i].ds_len;
1248 		bus_addr_t packp = q->q_src_segs[i].ds_addr;
1249 
1250 		if (sskip >= packl) {
1251 			sskip -= packl;
1252 			continue;
1253 		}
1254 
1255 		packl -= sskip;
1256 		packp += sskip;
1257 		sskip = 0;
1258 
1259 		if (packl > 0xfffc) {
1260 			err = EIO;
1261 			goto errout;
1262 		}
1263 
1264 		if (j == 0)
1265 			pb = &dmap->d_dma->d_mcr.mcr_ipktbuf;
1266 		else
1267 			pb = &dmap->d_dma->d_sbuf[j - 1];
1268 
1269 		pb->pb_addr = htole32(packp);
1270 
1271 		if (stheend) {
1272 			if (packl > stheend) {
1273 				pb->pb_len = htole32(stheend);
1274 				stheend = 0;
1275 			} else {
1276 				pb->pb_len = htole32(packl);
1277 				stheend -= packl;
1278 			}
1279 		} else
1280 			pb->pb_len = htole32(packl);
1281 
1282 		if ((i + 1) == q->q_src_nsegs)
1283 			pb->pb_next = 0;
1284 		else
1285 			pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1286 			    offsetof(struct ubsec_dmachunk, d_sbuf[j]));
1287 		j++;
1288 	}
1289 
1290 	if (enccrd == NULL && maccrd != NULL) {
1291 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0;
1292 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0;
1293 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_next = htole32(dmap->d_alloc.dma_paddr +
1294 		    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1295 #ifdef UBSEC_DEBUG
1296 		if (ubsec_debug)
1297 			printf("opkt: %x %x %x\n",
1298 			    dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr,
1299 			    dmap->d_dma->d_mcr.mcr_opktbuf.pb_len,
1300 			    dmap->d_dma->d_mcr.mcr_opktbuf.pb_next);
1301 #endif
1302 	} else {
1303 		if (crp->crp_flags & CRYPTO_F_IOV) {
1304 			if (!nicealign) {
1305 				ubsecstats.hst_iovmisaligned++;
1306 				err = EINVAL;
1307 				goto errout;
1308 			}
1309 			if (bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1310 			     &q->q_dst_map)) {
1311 				ubsecstats.hst_nomap++;
1312 				err = ENOMEM;
1313 				goto errout;
1314 			}
1315 			if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map,
1316 			    q->q_dst_io, ubsec_op_cb, &q->q_dst, BUS_DMA_NOWAIT) != 0) {
1317 				bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1318 				q->q_dst_map = NULL;
1319 				ubsecstats.hst_noload++;
1320 				err = ENOMEM;
1321 				goto errout;
1322 			}
1323 		} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1324 			if (nicealign) {
1325 				q->q_dst = q->q_src;
1326 			} else {
1327 				int totlen, len;
1328 				struct mbuf *m, *top, **mp;
1329 
1330 				ubsecstats.hst_unaligned++;
1331 				totlen = q->q_src_mapsize;
1332 				if (q->q_src_m->m_flags & M_PKTHDR) {
1333 					len = MHLEN;
1334 					MGETHDR(m, MB_DONTWAIT, MT_DATA);
1335 					if (m && !m_dup_pkthdr(m, q->q_src_m, MB_DONTWAIT)) {
1336 						m_free(m);
1337 						m = NULL;
1338 					}
1339 				} else {
1340 					len = MLEN;
1341 					MGET(m, MB_DONTWAIT, MT_DATA);
1342 				}
1343 				if (m == NULL) {
1344 					ubsecstats.hst_nombuf++;
1345 					err = sc->sc_nqueue ? ERESTART : ENOMEM;
1346 					goto errout;
1347 				}
1348 				if (totlen >= MINCLSIZE) {
1349 					MCLGET(m, MB_DONTWAIT);
1350 					if ((m->m_flags & M_EXT) == 0) {
1351 						m_free(m);
1352 						ubsecstats.hst_nomcl++;
1353 						err = sc->sc_nqueue ? ERESTART : ENOMEM;
1354 						goto errout;
1355 					}
1356 					len = MCLBYTES;
1357 				}
1358 				m->m_len = len;
1359 				top = NULL;
1360 				mp = &top;
1361 
1362 				while (totlen > 0) {
1363 					if (top) {
1364 						MGET(m, MB_DONTWAIT, MT_DATA);
1365 						if (m == NULL) {
1366 							m_freem(top);
1367 							ubsecstats.hst_nombuf++;
1368 							err = sc->sc_nqueue ? ERESTART : ENOMEM;
1369 							goto errout;
1370 						}
1371 						len = MLEN;
1372 					}
1373 					if (top && totlen >= MINCLSIZE) {
1374 						MCLGET(m, MB_DONTWAIT);
1375 						if ((m->m_flags & M_EXT) == 0) {
1376 							*mp = m;
1377 							m_freem(top);
1378 							ubsecstats.hst_nomcl++;
1379 							err = sc->sc_nqueue ? ERESTART : ENOMEM;
1380 							goto errout;
1381 						}
1382 						len = MCLBYTES;
1383 					}
1384 					m->m_len = len = min(totlen, len);
1385 					totlen -= len;
1386 					*mp = m;
1387 					mp = &m->m_next;
1388 				}
1389 				q->q_dst_m = top;
1390 				ubsec_mcopy(q->q_src_m, q->q_dst_m,
1391 				    cpskip, cpoffset);
1392 				if (bus_dmamap_create(sc->sc_dmat,
1393 				    BUS_DMA_NOWAIT, &q->q_dst_map) != 0) {
1394 					ubsecstats.hst_nomap++;
1395 					err = ENOMEM;
1396 					goto errout;
1397 				}
1398 				if (bus_dmamap_load_mbuf(sc->sc_dmat,
1399 				    q->q_dst_map, q->q_dst_m,
1400 				    ubsec_op_cb, &q->q_dst,
1401 				    BUS_DMA_NOWAIT) != 0) {
1402 					bus_dmamap_destroy(sc->sc_dmat,
1403 					q->q_dst_map);
1404 					q->q_dst_map = NULL;
1405 					ubsecstats.hst_noload++;
1406 					err = ENOMEM;
1407 					goto errout;
1408 				}
1409 			}
1410 		} else {
1411 			ubsecstats.hst_badflags++;
1412 			err = EINVAL;
1413 			goto errout;
1414 		}
1415 
1416 #ifdef UBSEC_DEBUG
1417 		if (ubsec_debug)
1418 			printf("dst skip: %d\n", dskip);
1419 #endif
1420 		for (i = j = 0; i < q->q_dst_nsegs; i++) {
1421 			struct ubsec_pktbuf *pb;
1422 			bus_size_t packl = q->q_dst_segs[i].ds_len;
1423 			bus_addr_t packp = q->q_dst_segs[i].ds_addr;
1424 
1425 			if (dskip >= packl) {
1426 				dskip -= packl;
1427 				continue;
1428 			}
1429 
1430 			packl -= dskip;
1431 			packp += dskip;
1432 			dskip = 0;
1433 
1434 			if (packl > 0xfffc) {
1435 				err = EIO;
1436 				goto errout;
1437 			}
1438 
1439 			if (j == 0)
1440 				pb = &dmap->d_dma->d_mcr.mcr_opktbuf;
1441 			else
1442 				pb = &dmap->d_dma->d_dbuf[j - 1];
1443 
1444 			pb->pb_addr = htole32(packp);
1445 
1446 			if (dtheend) {
1447 				if (packl > dtheend) {
1448 					pb->pb_len = htole32(dtheend);
1449 					dtheend = 0;
1450 				} else {
1451 					pb->pb_len = htole32(packl);
1452 					dtheend -= packl;
1453 				}
1454 			} else
1455 				pb->pb_len = htole32(packl);
1456 
1457 			if ((i + 1) == q->q_dst_nsegs) {
1458 				if (maccrd)
1459 					pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1460 					    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1461 				else
1462 					pb->pb_next = 0;
1463 			} else
1464 				pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1465 				    offsetof(struct ubsec_dmachunk, d_dbuf[j]));
1466 			j++;
1467 		}
1468 	}
1469 
1470 	dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr +
1471 	    offsetof(struct ubsec_dmachunk, d_ctx));
1472 
1473 	if (sc->sc_flags & UBS_FLAGS_LONGCTX) {
1474 		struct ubsec_pktctx_long *ctxl;
1475 
1476 		ctxl = (struct ubsec_pktctx_long *)(dmap->d_alloc.dma_vaddr +
1477 		    offsetof(struct ubsec_dmachunk, d_ctx));
1478 
1479 		/* transform small context into long context */
1480 		ctxl->pc_len = htole16(sizeof(struct ubsec_pktctx_long));
1481 		ctxl->pc_type = htole16(UBS_PKTCTX_TYPE_IPSEC);
1482 		ctxl->pc_flags = ctx.pc_flags;
1483 		ctxl->pc_offset = ctx.pc_offset;
1484 		for (i = 0; i < 6; i++)
1485 			ctxl->pc_deskey[i] = ctx.pc_deskey[i];
1486 		for (i = 0; i < 5; i++)
1487 			ctxl->pc_hminner[i] = ctx.pc_hminner[i];
1488 		for (i = 0; i < 5; i++)
1489 			ctxl->pc_hmouter[i] = ctx.pc_hmouter[i];
1490 		ctxl->pc_iv[0] = ctx.pc_iv[0];
1491 		ctxl->pc_iv[1] = ctx.pc_iv[1];
1492 	} else
1493 		bcopy(&ctx, dmap->d_alloc.dma_vaddr +
1494 		    offsetof(struct ubsec_dmachunk, d_ctx),
1495 		    sizeof(struct ubsec_pktctx));
1496 
1497 	s = splimp();
1498 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next);
1499 	sc->sc_nqueue++;
1500 	ubsecstats.hst_ipackets++;
1501 	ubsecstats.hst_ibytes += dmap->d_alloc.dma_size;
1502 	if ((hint & CRYPTO_HINT_MORE) == 0 || sc->sc_nqueue >= UBS_MAX_AGGR)
1503 		ubsec_feed(sc);
1504 	splx(s);
1505 	return (0);
1506 
1507 errout:
1508 	if (q != NULL) {
1509 		if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
1510 			m_freem(q->q_dst_m);
1511 
1512 		if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1513 			bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1514 			bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1515 		}
1516 		if (q->q_src_map != NULL) {
1517 			bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1518 			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1519 		}
1520 
1521 		s = splimp();
1522 		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1523 		splx(s);
1524 	}
1525 	if (err != ERESTART) {
1526 		crp->crp_etype = err;
1527 		crypto_done(crp);
1528 	} else {
1529 		sc->sc_needwakeup |= CRYPTO_SYMQ;
1530 	}
1531 	return (err);
1532 }
1533 
1534 static void
1535 ubsec_callback(struct ubsec_softc *sc, struct ubsec_q *q)
1536 {
1537 	struct cryptop *crp = (struct cryptop *)q->q_crp;
1538 	struct cryptodesc *crd;
1539 	struct ubsec_dma *dmap = q->q_dma;
1540 
1541 	ubsecstats.hst_opackets++;
1542 	ubsecstats.hst_obytes += dmap->d_alloc.dma_size;
1543 
1544 	ubsec_dma_sync(&dmap->d_alloc,
1545 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1546 	if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1547 		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
1548 		    BUS_DMASYNC_POSTREAD);
1549 		bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1550 		bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1551 	}
1552 	bus_dmamap_sync(sc->sc_dmat, q->q_src_map, BUS_DMASYNC_POSTWRITE);
1553 	bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1554 	bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1555 
1556 	if ((crp->crp_flags & CRYPTO_F_IMBUF) && (q->q_src_m != q->q_dst_m)) {
1557 		m_freem(q->q_src_m);
1558 		crp->crp_buf = (caddr_t)q->q_dst_m;
1559 	}
1560 	ubsecstats.hst_obytes += ((struct mbuf *)crp->crp_buf)->m_len;
1561 
1562 	/* copy out IV for future use */
1563 	if (q->q_flags & UBSEC_QFLAGS_COPYOUTIV) {
1564 		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1565 			if (crd->crd_alg != CRYPTO_DES_CBC &&
1566 			    crd->crd_alg != CRYPTO_3DES_CBC)
1567 				continue;
1568 			if (crp->crp_flags & CRYPTO_F_IMBUF)
1569 				m_copydata((struct mbuf *)crp->crp_buf,
1570 				    crd->crd_skip + crd->crd_len - 8, 8,
1571 				    (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1572 			else if (crp->crp_flags & CRYPTO_F_IOV) {
1573 				cuio_copydata((struct uio *)crp->crp_buf,
1574 				    crd->crd_skip + crd->crd_len - 8, 8,
1575 				    (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1576 			}
1577 			break;
1578 		}
1579 	}
1580 
1581 	for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1582 		if (crd->crd_alg != CRYPTO_MD5_HMAC &&
1583 		    crd->crd_alg != CRYPTO_SHA1_HMAC)
1584 			continue;
1585 		if (crp->crp_flags & CRYPTO_F_IMBUF)
1586 			m_copyback((struct mbuf *)crp->crp_buf,
1587 			    crd->crd_inject, 12,
1588 			    (caddr_t)dmap->d_dma->d_macbuf);
1589 		else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac)
1590 			bcopy((caddr_t)dmap->d_dma->d_macbuf,
1591 			    crp->crp_mac, 12);
1592 		break;
1593 	}
1594 	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1595 	crypto_done(crp);
1596 }
1597 
1598 static void
1599 ubsec_mcopy(struct mbuf *srcm, struct mbuf *dstm, int hoffset, int toffset)
1600 {
1601 	int i, j, dlen, slen;
1602 	caddr_t dptr, sptr;
1603 
1604 	j = 0;
1605 	sptr = srcm->m_data;
1606 	slen = srcm->m_len;
1607 	dptr = dstm->m_data;
1608 	dlen = dstm->m_len;
1609 
1610 	while (1) {
1611 		for (i = 0; i < min(slen, dlen); i++) {
1612 			if (j < hoffset || j >= toffset)
1613 				*dptr++ = *sptr++;
1614 			slen--;
1615 			dlen--;
1616 			j++;
1617 		}
1618 		if (slen == 0) {
1619 			srcm = srcm->m_next;
1620 			if (srcm == NULL)
1621 				return;
1622 			sptr = srcm->m_data;
1623 			slen = srcm->m_len;
1624 		}
1625 		if (dlen == 0) {
1626 			dstm = dstm->m_next;
1627 			if (dstm == NULL)
1628 				return;
1629 			dptr = dstm->m_data;
1630 			dlen = dstm->m_len;
1631 		}
1632 	}
1633 }
1634 
1635 /*
1636  * feed the key generator, must be called at splimp() or higher.
1637  */
1638 static int
1639 ubsec_feed2(struct ubsec_softc *sc)
1640 {
1641 	struct ubsec_q2 *q;
1642 
1643 	while (!SIMPLEQ_EMPTY(&sc->sc_queue2)) {
1644 		if (READ_REG(sc, BS_STAT) & BS_STAT_MCR2_FULL)
1645 			break;
1646 		q = SIMPLEQ_FIRST(&sc->sc_queue2);
1647 
1648 		ubsec_dma_sync(&q->q_mcr,
1649 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1650 		ubsec_dma_sync(&q->q_ctx, BUS_DMASYNC_PREWRITE);
1651 
1652 		WRITE_REG(sc, BS_MCR2, q->q_mcr.dma_paddr);
1653 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue2, q, q_next);
1654 		--sc->sc_nqueue2;
1655 		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip2, q, q_next);
1656 	}
1657 	return (0);
1658 }
1659 
1660 /*
1661  * Callback for handling random numbers
1662  */
1663 static void
1664 ubsec_callback2(struct ubsec_softc *sc, struct ubsec_q2 *q)
1665 {
1666 	struct cryptkop *krp;
1667 	struct ubsec_ctx_keyop *ctx;
1668 
1669 	ctx = (struct ubsec_ctx_keyop *)q->q_ctx.dma_vaddr;
1670 	ubsec_dma_sync(&q->q_ctx, BUS_DMASYNC_POSTWRITE);
1671 
1672 	switch (q->q_type) {
1673 #ifndef UBSEC_NO_RNG
1674 	case UBS_CTXOP_RNGBYPASS: {
1675 		struct ubsec_q2_rng *rng = (struct ubsec_q2_rng *)q;
1676 
1677 		ubsec_dma_sync(&rng->rng_buf, BUS_DMASYNC_POSTREAD);
1678 		(*sc->sc_harvest)(sc->sc_rndtest,
1679 			rng->rng_buf.dma_vaddr,
1680 			UBSEC_RNG_BUFSIZ*sizeof (u_int32_t));
1681 		rng->rng_used = 0;
1682 		callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
1683 		break;
1684 	}
1685 #endif
1686 	case UBS_CTXOP_MODEXP: {
1687 		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
1688 		u_int rlen, clen;
1689 
1690 		krp = me->me_krp;
1691 		rlen = (me->me_modbits + 7) / 8;
1692 		clen = (krp->krp_param[krp->krp_iparams].crp_nbits + 7) / 8;
1693 
1694 		ubsec_dma_sync(&me->me_M, BUS_DMASYNC_POSTWRITE);
1695 		ubsec_dma_sync(&me->me_E, BUS_DMASYNC_POSTWRITE);
1696 		ubsec_dma_sync(&me->me_C, BUS_DMASYNC_POSTREAD);
1697 		ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_POSTWRITE);
1698 
1699 		if (clen < rlen)
1700 			krp->krp_status = E2BIG;
1701 		else {
1702 			if (sc->sc_flags & UBS_FLAGS_HWNORM) {
1703 				bzero(krp->krp_param[krp->krp_iparams].crp_p,
1704 				    (krp->krp_param[krp->krp_iparams].crp_nbits
1705 					+ 7) / 8);
1706 				bcopy(me->me_C.dma_vaddr,
1707 				    krp->krp_param[krp->krp_iparams].crp_p,
1708 				    (me->me_modbits + 7) / 8);
1709 			} else
1710 				ubsec_kshift_l(me->me_shiftbits,
1711 				    me->me_C.dma_vaddr, me->me_normbits,
1712 				    krp->krp_param[krp->krp_iparams].crp_p,
1713 				    krp->krp_param[krp->krp_iparams].crp_nbits);
1714 		}
1715 
1716 		crypto_kdone(krp);
1717 
1718 		/* bzero all potentially sensitive data */
1719 		bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
1720 		bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
1721 		bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
1722 		bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
1723 
1724 		/* Can't free here, so put us on the free list. */
1725 		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &me->me_q, q_next);
1726 		break;
1727 	}
1728 	case UBS_CTXOP_RSAPRIV: {
1729 		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
1730 		u_int len;
1731 
1732 		krp = rp->rpr_krp;
1733 		ubsec_dma_sync(&rp->rpr_msgin, BUS_DMASYNC_POSTWRITE);
1734 		ubsec_dma_sync(&rp->rpr_msgout, BUS_DMASYNC_POSTREAD);
1735 
1736 		len = (krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_nbits + 7) / 8;
1737 		bcopy(rp->rpr_msgout.dma_vaddr,
1738 		    krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_p, len);
1739 
1740 		crypto_kdone(krp);
1741 
1742 		bzero(rp->rpr_msgin.dma_vaddr, rp->rpr_msgin.dma_size);
1743 		bzero(rp->rpr_msgout.dma_vaddr, rp->rpr_msgout.dma_size);
1744 		bzero(rp->rpr_q.q_ctx.dma_vaddr, rp->rpr_q.q_ctx.dma_size);
1745 
1746 		/* Can't free here, so put us on the free list. */
1747 		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &rp->rpr_q, q_next);
1748 		break;
1749 	}
1750 	default:
1751 		device_printf(sc->sc_dev, "unknown ctx op: %x\n",
1752 		    letoh16(ctx->ctx_op));
1753 		break;
1754 	}
1755 }
1756 
1757 #ifndef UBSEC_NO_RNG
1758 static void
1759 ubsec_rng(void *vsc)
1760 {
1761 	struct ubsec_softc *sc = vsc;
1762 	struct ubsec_q2_rng *rng = &sc->sc_rng;
1763 	struct ubsec_mcr *mcr;
1764 	struct ubsec_ctx_rngbypass *ctx;
1765 	int s;
1766 
1767 	s = splimp();
1768 	if (rng->rng_used) {
1769 		splx(s);
1770 		return;
1771 	}
1772 	sc->sc_nqueue2++;
1773 	if (sc->sc_nqueue2 >= UBS_MAX_NQUEUE)
1774 		goto out;
1775 
1776 	mcr = (struct ubsec_mcr *)rng->rng_q.q_mcr.dma_vaddr;
1777 	ctx = (struct ubsec_ctx_rngbypass *)rng->rng_q.q_ctx.dma_vaddr;
1778 
1779 	mcr->mcr_pkts = htole16(1);
1780 	mcr->mcr_flags = 0;
1781 	mcr->mcr_cmdctxp = htole32(rng->rng_q.q_ctx.dma_paddr);
1782 	mcr->mcr_ipktbuf.pb_addr = mcr->mcr_ipktbuf.pb_next = 0;
1783 	mcr->mcr_ipktbuf.pb_len = 0;
1784 	mcr->mcr_reserved = mcr->mcr_pktlen = 0;
1785 	mcr->mcr_opktbuf.pb_addr = htole32(rng->rng_buf.dma_paddr);
1786 	mcr->mcr_opktbuf.pb_len = htole32(((sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ)) &
1787 	    UBS_PKTBUF_LEN);
1788 	mcr->mcr_opktbuf.pb_next = 0;
1789 
1790 	ctx->rbp_len = htole16(sizeof(struct ubsec_ctx_rngbypass));
1791 	ctx->rbp_op = htole16(UBS_CTXOP_RNGBYPASS);
1792 	rng->rng_q.q_type = UBS_CTXOP_RNGBYPASS;
1793 
1794 	ubsec_dma_sync(&rng->rng_buf, BUS_DMASYNC_PREREAD);
1795 
1796 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rng->rng_q, q_next);
1797 	rng->rng_used = 1;
1798 	ubsec_feed2(sc);
1799 	ubsecstats.hst_rng++;
1800 	splx(s);
1801 
1802 	return;
1803 
1804 out:
1805 	/*
1806 	 * Something weird happened, generate our own call back.
1807 	 */
1808 	sc->sc_nqueue2--;
1809 	splx(s);
1810 	callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
1811 }
1812 #endif /* UBSEC_NO_RNG */
1813 
1814 static void
1815 ubsec_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1816 {
1817 	bus_addr_t *paddr = (bus_addr_t*) arg;
1818 	*paddr = segs->ds_addr;
1819 }
1820 
1821 static int
1822 ubsec_dma_malloc(
1823 	struct ubsec_softc *sc,
1824 	bus_size_t size,
1825 	struct ubsec_dma_alloc *dma,
1826 	int mapflags
1827 )
1828 {
1829 	int r;
1830 
1831 	/* XXX could specify sc_dmat as parent but that just adds overhead */
1832 	r = bus_dma_tag_create(NULL,			/* parent */
1833 			       1, 0,			/* alignment, bounds */
1834 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1835 			       BUS_SPACE_MAXADDR,	/* highaddr */
1836 			       NULL, NULL,		/* filter, filterarg */
1837 			       size,			/* maxsize */
1838 			       1,			/* nsegments */
1839 			       size,			/* maxsegsize */
1840 			       BUS_DMA_ALLOCNOW,	/* flags */
1841 			       &dma->dma_tag);
1842 	if (r != 0) {
1843 		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1844 			"bus_dma_tag_create failed; error %u\n", r);
1845 		goto fail_0;
1846 	}
1847 
1848 	r = bus_dmamap_create(dma->dma_tag, BUS_DMA_NOWAIT, &dma->dma_map);
1849 	if (r != 0) {
1850 		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1851 			"bus_dmamap_create failed; error %u\n", r);
1852 		goto fail_1;
1853 	}
1854 
1855 	r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
1856 			     BUS_DMA_NOWAIT, &dma->dma_map);
1857 	if (r != 0) {
1858 		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1859 			"bus_dmammem_alloc failed; size %u, error %u\n",
1860 			size, r);
1861 		goto fail_2;
1862 	}
1863 
1864 	r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
1865 		            size,
1866 			    ubsec_dmamap_cb,
1867 			    &dma->dma_paddr,
1868 			    mapflags | BUS_DMA_NOWAIT);
1869 	if (r != 0) {
1870 		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1871 			"bus_dmamap_load failed; error %u\n", r);
1872 		goto fail_3;
1873 	}
1874 
1875 	dma->dma_size = size;
1876 	return (0);
1877 
1878 fail_3:
1879 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1880 fail_2:
1881 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1882 fail_1:
1883 	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1884 	bus_dma_tag_destroy(dma->dma_tag);
1885 fail_0:
1886 	dma->dma_map = NULL;
1887 	dma->dma_tag = NULL;
1888 	return (r);
1889 }
1890 
1891 static void
1892 ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma)
1893 {
1894 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1895 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1896 	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1897 	bus_dma_tag_destroy(dma->dma_tag);
1898 }
1899 
1900 /*
1901  * Resets the board.  Values in the regesters are left as is
1902  * from the reset (i.e. initial values are assigned elsewhere).
1903  */
1904 static void
1905 ubsec_reset_board(struct ubsec_softc *sc)
1906 {
1907     volatile u_int32_t ctrl;
1908 
1909     ctrl = READ_REG(sc, BS_CTRL);
1910     ctrl |= BS_CTRL_RESET;
1911     WRITE_REG(sc, BS_CTRL, ctrl);
1912 
1913     /*
1914      * Wait aprox. 30 PCI clocks = 900 ns = 0.9 us
1915      */
1916     DELAY(10);
1917 }
1918 
1919 /*
1920  * Init Broadcom registers
1921  */
1922 static void
1923 ubsec_init_board(struct ubsec_softc *sc)
1924 {
1925 	u_int32_t ctrl;
1926 
1927 	ctrl = READ_REG(sc, BS_CTRL);
1928 	ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64);
1929 	ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT;
1930 
1931 	if (sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG))
1932 		ctrl |= BS_CTRL_MCR2INT;
1933 	else
1934 		ctrl &= ~BS_CTRL_MCR2INT;
1935 
1936 	if (sc->sc_flags & UBS_FLAGS_HWNORM)
1937 		ctrl &= ~BS_CTRL_SWNORM;
1938 
1939 	WRITE_REG(sc, BS_CTRL, ctrl);
1940 }
1941 
1942 /*
1943  * Init Broadcom PCI registers
1944  */
1945 static void
1946 ubsec_init_pciregs(device_t dev)
1947 {
1948 #if 0
1949 	u_int32_t misc;
1950 
1951 	misc = pci_conf_read(pc, pa->pa_tag, BS_RTY_TOUT);
1952 	misc = (misc & ~(UBS_PCI_RTY_MASK << UBS_PCI_RTY_SHIFT))
1953 	    | ((UBS_DEF_RTY & 0xff) << UBS_PCI_RTY_SHIFT);
1954 	misc = (misc & ~(UBS_PCI_TOUT_MASK << UBS_PCI_TOUT_SHIFT))
1955 	    | ((UBS_DEF_TOUT & 0xff) << UBS_PCI_TOUT_SHIFT);
1956 	pci_conf_write(pc, pa->pa_tag, BS_RTY_TOUT, misc);
1957 #endif
1958 
1959 	/*
1960 	 * This will set the cache line size to 1, this will
1961 	 * force the BCM58xx chip just to do burst read/writes.
1962 	 * Cache line read/writes are to slow
1963 	 */
1964 	pci_write_config(dev, PCIR_CACHELNSZ, UBS_DEF_CACHELINE, 1);
1965 }
1966 
1967 /*
1968  * Clean up after a chip crash.
1969  * It is assumed that the caller in splimp()
1970  */
1971 static void
1972 ubsec_cleanchip(struct ubsec_softc *sc)
1973 {
1974 	struct ubsec_q *q;
1975 
1976 	while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
1977 		q = SIMPLEQ_FIRST(&sc->sc_qchip);
1978 		SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q, q_next);
1979 		ubsec_free_q(sc, q);
1980 	}
1981 	sc->sc_nqchip = 0;
1982 }
1983 
1984 /*
1985  * free a ubsec_q
1986  * It is assumed that the caller is within spimp()
1987  */
1988 static int
1989 ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q)
1990 {
1991 	struct ubsec_q *q2;
1992 	struct cryptop *crp;
1993 	int npkts;
1994 	int i;
1995 
1996 	npkts = q->q_nstacked_mcrs;
1997 
1998 	for (i = 0; i < npkts; i++) {
1999 		if(q->q_stacked_mcr[i]) {
2000 			q2 = q->q_stacked_mcr[i];
2001 
2002 			if ((q2->q_dst_m != NULL) && (q2->q_src_m != q2->q_dst_m))
2003 				m_freem(q2->q_dst_m);
2004 
2005 			crp = (struct cryptop *)q2->q_crp;
2006 
2007 			SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next);
2008 
2009 			crp->crp_etype = EFAULT;
2010 			crypto_done(crp);
2011 		} else {
2012 			break;
2013 		}
2014 	}
2015 
2016 	/*
2017 	 * Free header MCR
2018 	 */
2019 	if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
2020 		m_freem(q->q_dst_m);
2021 
2022 	crp = (struct cryptop *)q->q_crp;
2023 
2024 	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
2025 
2026 	crp->crp_etype = EFAULT;
2027 	crypto_done(crp);
2028 	return(0);
2029 }
2030 
2031 /*
2032  * Routine to reset the chip and clean up.
2033  * It is assumed that the caller is in splimp()
2034  */
2035 static void
2036 ubsec_totalreset(struct ubsec_softc *sc)
2037 {
2038 	ubsec_reset_board(sc);
2039 	ubsec_init_board(sc);
2040 	ubsec_cleanchip(sc);
2041 }
2042 
2043 static int
2044 ubsec_dmamap_aligned(struct ubsec_operand *op)
2045 {
2046 	int i;
2047 
2048 	for (i = 0; i < op->nsegs; i++) {
2049 		if (op->segs[i].ds_addr & 3)
2050 			return (0);
2051 		if ((i != (op->nsegs - 1)) &&
2052 		    (op->segs[i].ds_len & 3))
2053 			return (0);
2054 	}
2055 	return (1);
2056 }
2057 
2058 static void
2059 ubsec_kfree(struct ubsec_softc *sc, struct ubsec_q2 *q)
2060 {
2061 	switch (q->q_type) {
2062 	case UBS_CTXOP_MODEXP: {
2063 		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
2064 
2065 		ubsec_dma_free(sc, &me->me_q.q_mcr);
2066 		ubsec_dma_free(sc, &me->me_q.q_ctx);
2067 		ubsec_dma_free(sc, &me->me_M);
2068 		ubsec_dma_free(sc, &me->me_E);
2069 		ubsec_dma_free(sc, &me->me_C);
2070 		ubsec_dma_free(sc, &me->me_epb);
2071 		free(me, M_DEVBUF);
2072 		break;
2073 	}
2074 	case UBS_CTXOP_RSAPRIV: {
2075 		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
2076 
2077 		ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2078 		ubsec_dma_free(sc, &rp->rpr_q.q_ctx);
2079 		ubsec_dma_free(sc, &rp->rpr_msgin);
2080 		ubsec_dma_free(sc, &rp->rpr_msgout);
2081 		free(rp, M_DEVBUF);
2082 		break;
2083 	}
2084 	default:
2085 		device_printf(sc->sc_dev, "invalid kfree 0x%x\n", q->q_type);
2086 		break;
2087 	}
2088 }
2089 
2090 static int
2091 ubsec_kprocess(void *arg, struct cryptkop *krp, int hint)
2092 {
2093 	struct ubsec_softc *sc = arg;
2094 	int r;
2095 
2096 	if (krp == NULL || krp->krp_callback == NULL)
2097 		return (EINVAL);
2098 
2099 	while (!SIMPLEQ_EMPTY(&sc->sc_q2free)) {
2100 		struct ubsec_q2 *q;
2101 
2102 		q = SIMPLEQ_FIRST(&sc->sc_q2free);
2103 		SIMPLEQ_REMOVE_HEAD(&sc->sc_q2free, q, q_next);
2104 		ubsec_kfree(sc, q);
2105 	}
2106 
2107 	switch (krp->krp_op) {
2108 	case CRK_MOD_EXP:
2109 		if (sc->sc_flags & UBS_FLAGS_HWNORM)
2110 			r = ubsec_kprocess_modexp_hw(sc, krp, hint);
2111 		else
2112 			r = ubsec_kprocess_modexp_sw(sc, krp, hint);
2113 		break;
2114 	case CRK_MOD_EXP_CRT:
2115 		return (ubsec_kprocess_rsapriv(sc, krp, hint));
2116 	default:
2117 		device_printf(sc->sc_dev, "kprocess: invalid op 0x%x\n",
2118 		    krp->krp_op);
2119 		krp->krp_status = EOPNOTSUPP;
2120 		crypto_kdone(krp);
2121 		return (0);
2122 	}
2123 	return (0);			/* silence compiler */
2124 }
2125 
2126 /*
2127  * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (sw normalization)
2128  */
2129 static int
2130 ubsec_kprocess_modexp_sw(struct ubsec_softc *sc, struct cryptkop *krp, int hint)
2131 {
2132 	struct ubsec_q2_modexp *me;
2133 	struct ubsec_mcr *mcr;
2134 	struct ubsec_ctx_modexp *ctx;
2135 	struct ubsec_pktbuf *epb;
2136 	int s, err = 0;
2137 	u_int nbits, normbits, mbits, shiftbits, ebits;
2138 
2139 	me = malloc(sizeof *me, M_DEVBUF, M_INTWAIT | M_ZERO);
2140 	me->me_krp = krp;
2141 	me->me_q.q_type = UBS_CTXOP_MODEXP;
2142 
2143 	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2144 	if (nbits <= 512)
2145 		normbits = 512;
2146 	else if (nbits <= 768)
2147 		normbits = 768;
2148 	else if (nbits <= 1024)
2149 		normbits = 1024;
2150 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2151 		normbits = 1536;
2152 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2153 		normbits = 2048;
2154 	else {
2155 		err = E2BIG;
2156 		goto errout;
2157 	}
2158 
2159 	shiftbits = normbits - nbits;
2160 
2161 	me->me_modbits = nbits;
2162 	me->me_shiftbits = shiftbits;
2163 	me->me_normbits = normbits;
2164 
2165 	/* Sanity check: result bits must be >= true modulus bits. */
2166 	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2167 		err = ERANGE;
2168 		goto errout;
2169 	}
2170 
2171 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2172 	    &me->me_q.q_mcr, 0)) {
2173 		err = ENOMEM;
2174 		goto errout;
2175 	}
2176 	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2177 
2178 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2179 	    &me->me_q.q_ctx, 0)) {
2180 		err = ENOMEM;
2181 		goto errout;
2182 	}
2183 
2184 	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2185 	if (mbits > nbits) {
2186 		err = E2BIG;
2187 		goto errout;
2188 	}
2189 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2190 		err = ENOMEM;
2191 		goto errout;
2192 	}
2193 	ubsec_kshift_r(shiftbits,
2194 	    krp->krp_param[UBS_MODEXP_PAR_M].crp_p, mbits,
2195 	    me->me_M.dma_vaddr, normbits);
2196 
2197 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2198 		err = ENOMEM;
2199 		goto errout;
2200 	}
2201 	bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2202 
2203 	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2204 	if (ebits > nbits) {
2205 		err = E2BIG;
2206 		goto errout;
2207 	}
2208 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2209 		err = ENOMEM;
2210 		goto errout;
2211 	}
2212 	ubsec_kshift_r(shiftbits,
2213 	    krp->krp_param[UBS_MODEXP_PAR_E].crp_p, ebits,
2214 	    me->me_E.dma_vaddr, normbits);
2215 
2216 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2217 	    &me->me_epb, 0)) {
2218 		err = ENOMEM;
2219 		goto errout;
2220 	}
2221 	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2222 	epb->pb_addr = htole32(me->me_E.dma_paddr);
2223 	epb->pb_next = 0;
2224 	epb->pb_len = htole32(normbits / 8);
2225 
2226 #ifdef UBSEC_DEBUG
2227 	if (ubsec_debug) {
2228 		printf("Epb ");
2229 		ubsec_dump_pb(epb);
2230 	}
2231 #endif
2232 
2233 	mcr->mcr_pkts = htole16(1);
2234 	mcr->mcr_flags = 0;
2235 	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2236 	mcr->mcr_reserved = 0;
2237 	mcr->mcr_pktlen = 0;
2238 
2239 	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2240 	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2241 	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2242 
2243 	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2244 	mcr->mcr_opktbuf.pb_next = 0;
2245 	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2246 
2247 #ifdef DIAGNOSTIC
2248 	/* Misaligned output buffer will hang the chip. */
2249 	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2250 		panic("%s: modexp invalid addr 0x%x\n",
2251 		    device_get_nameunit(sc->sc_dev),
2252 		    letoh32(mcr->mcr_opktbuf.pb_addr));
2253 	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2254 		panic("%s: modexp invalid len 0x%x\n",
2255 		    device_get_nameunit(sc->sc_dev),
2256 		    letoh32(mcr->mcr_opktbuf.pb_len));
2257 #endif
2258 
2259 	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2260 	bzero(ctx, sizeof(*ctx));
2261 	ubsec_kshift_r(shiftbits,
2262 	    krp->krp_param[UBS_MODEXP_PAR_N].crp_p, nbits,
2263 	    ctx->me_N, normbits);
2264 	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2265 	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2266 	ctx->me_E_len = htole16(nbits);
2267 	ctx->me_N_len = htole16(nbits);
2268 
2269 #ifdef UBSEC_DEBUG
2270 	if (ubsec_debug) {
2271 		ubsec_dump_mcr(mcr);
2272 		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2273 	}
2274 #endif
2275 
2276 	/*
2277 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2278 	 * everything else.
2279 	 */
2280 	ubsec_dma_sync(&me->me_M, BUS_DMASYNC_PREWRITE);
2281 	ubsec_dma_sync(&me->me_E, BUS_DMASYNC_PREWRITE);
2282 	ubsec_dma_sync(&me->me_C, BUS_DMASYNC_PREREAD);
2283 	ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_PREWRITE);
2284 
2285 	/* Enqueue and we're done... */
2286 	s = splimp();
2287 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2288 	ubsec_feed2(sc);
2289 	ubsecstats.hst_modexp++;
2290 	splx(s);
2291 
2292 	return (0);
2293 
2294 errout:
2295 	if (me != NULL) {
2296 		if (me->me_q.q_mcr.dma_map != NULL)
2297 			ubsec_dma_free(sc, &me->me_q.q_mcr);
2298 		if (me->me_q.q_ctx.dma_map != NULL) {
2299 			bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
2300 			ubsec_dma_free(sc, &me->me_q.q_ctx);
2301 		}
2302 		if (me->me_M.dma_map != NULL) {
2303 			bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
2304 			ubsec_dma_free(sc, &me->me_M);
2305 		}
2306 		if (me->me_E.dma_map != NULL) {
2307 			bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
2308 			ubsec_dma_free(sc, &me->me_E);
2309 		}
2310 		if (me->me_C.dma_map != NULL) {
2311 			bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2312 			ubsec_dma_free(sc, &me->me_C);
2313 		}
2314 		if (me->me_epb.dma_map != NULL)
2315 			ubsec_dma_free(sc, &me->me_epb);
2316 		free(me, M_DEVBUF);
2317 	}
2318 	krp->krp_status = err;
2319 	crypto_kdone(krp);
2320 	return (0);
2321 }
2322 
2323 /*
2324  * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (hw normalization)
2325  */
2326 static int
2327 ubsec_kprocess_modexp_hw(struct ubsec_softc *sc, struct cryptkop *krp, int hint)
2328 {
2329 	struct ubsec_q2_modexp *me;
2330 	struct ubsec_mcr *mcr;
2331 	struct ubsec_ctx_modexp *ctx;
2332 	struct ubsec_pktbuf *epb;
2333 	int s, err = 0;
2334 	u_int nbits, normbits, mbits, shiftbits, ebits;
2335 
2336 	me = malloc(sizeof *me, M_DEVBUF, M_INTWAIT | M_ZERO);
2337 	me->me_krp = krp;
2338 	me->me_q.q_type = UBS_CTXOP_MODEXP;
2339 
2340 	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2341 	if (nbits <= 512)
2342 		normbits = 512;
2343 	else if (nbits <= 768)
2344 		normbits = 768;
2345 	else if (nbits <= 1024)
2346 		normbits = 1024;
2347 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2348 		normbits = 1536;
2349 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2350 		normbits = 2048;
2351 	else {
2352 		err = E2BIG;
2353 		goto errout;
2354 	}
2355 
2356 	shiftbits = normbits - nbits;
2357 
2358 	/* XXX ??? */
2359 	me->me_modbits = nbits;
2360 	me->me_shiftbits = shiftbits;
2361 	me->me_normbits = normbits;
2362 
2363 	/* Sanity check: result bits must be >= true modulus bits. */
2364 	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2365 		err = ERANGE;
2366 		goto errout;
2367 	}
2368 
2369 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2370 	    &me->me_q.q_mcr, 0)) {
2371 		err = ENOMEM;
2372 		goto errout;
2373 	}
2374 	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2375 
2376 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2377 	    &me->me_q.q_ctx, 0)) {
2378 		err = ENOMEM;
2379 		goto errout;
2380 	}
2381 
2382 	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2383 	if (mbits > nbits) {
2384 		err = E2BIG;
2385 		goto errout;
2386 	}
2387 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2388 		err = ENOMEM;
2389 		goto errout;
2390 	}
2391 	bzero(me->me_M.dma_vaddr, normbits / 8);
2392 	bcopy(krp->krp_param[UBS_MODEXP_PAR_M].crp_p,
2393 	    me->me_M.dma_vaddr, (mbits + 7) / 8);
2394 
2395 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2396 		err = ENOMEM;
2397 		goto errout;
2398 	}
2399 	bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2400 
2401 	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2402 	if (ebits > nbits) {
2403 		err = E2BIG;
2404 		goto errout;
2405 	}
2406 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2407 		err = ENOMEM;
2408 		goto errout;
2409 	}
2410 	bzero(me->me_E.dma_vaddr, normbits / 8);
2411 	bcopy(krp->krp_param[UBS_MODEXP_PAR_E].crp_p,
2412 	    me->me_E.dma_vaddr, (ebits + 7) / 8);
2413 
2414 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2415 	    &me->me_epb, 0)) {
2416 		err = ENOMEM;
2417 		goto errout;
2418 	}
2419 	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2420 	epb->pb_addr = htole32(me->me_E.dma_paddr);
2421 	epb->pb_next = 0;
2422 	epb->pb_len = htole32((ebits + 7) / 8);
2423 
2424 #ifdef UBSEC_DEBUG
2425 	if (ubsec_debug) {
2426 		printf("Epb ");
2427 		ubsec_dump_pb(epb);
2428 	}
2429 #endif
2430 
2431 	mcr->mcr_pkts = htole16(1);
2432 	mcr->mcr_flags = 0;
2433 	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2434 	mcr->mcr_reserved = 0;
2435 	mcr->mcr_pktlen = 0;
2436 
2437 	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2438 	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2439 	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2440 
2441 	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2442 	mcr->mcr_opktbuf.pb_next = 0;
2443 	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2444 
2445 #ifdef DIAGNOSTIC
2446 	/* Misaligned output buffer will hang the chip. */
2447 	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2448 		panic("%s: modexp invalid addr 0x%x\n",
2449 		    device_get_nameunit(sc->sc_dev),
2450 		    letoh32(mcr->mcr_opktbuf.pb_addr));
2451 	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2452 		panic("%s: modexp invalid len 0x%x\n",
2453 		    device_get_nameunit(sc->sc_dev),
2454 		    letoh32(mcr->mcr_opktbuf.pb_len));
2455 #endif
2456 
2457 	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2458 	bzero(ctx, sizeof(*ctx));
2459 	bcopy(krp->krp_param[UBS_MODEXP_PAR_N].crp_p, ctx->me_N,
2460 	    (nbits + 7) / 8);
2461 	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2462 	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2463 	ctx->me_E_len = htole16(ebits);
2464 	ctx->me_N_len = htole16(nbits);
2465 
2466 #ifdef UBSEC_DEBUG
2467 	if (ubsec_debug) {
2468 		ubsec_dump_mcr(mcr);
2469 		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2470 	}
2471 #endif
2472 
2473 	/*
2474 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2475 	 * everything else.
2476 	 */
2477 	ubsec_dma_sync(&me->me_M, BUS_DMASYNC_PREWRITE);
2478 	ubsec_dma_sync(&me->me_E, BUS_DMASYNC_PREWRITE);
2479 	ubsec_dma_sync(&me->me_C, BUS_DMASYNC_PREREAD);
2480 	ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_PREWRITE);
2481 
2482 	/* Enqueue and we're done... */
2483 	s = splimp();
2484 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2485 	ubsec_feed2(sc);
2486 	splx(s);
2487 
2488 	return (0);
2489 
2490 errout:
2491 	if (me != NULL) {
2492 		if (me->me_q.q_mcr.dma_map != NULL)
2493 			ubsec_dma_free(sc, &me->me_q.q_mcr);
2494 		if (me->me_q.q_ctx.dma_map != NULL) {
2495 			bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
2496 			ubsec_dma_free(sc, &me->me_q.q_ctx);
2497 		}
2498 		if (me->me_M.dma_map != NULL) {
2499 			bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
2500 			ubsec_dma_free(sc, &me->me_M);
2501 		}
2502 		if (me->me_E.dma_map != NULL) {
2503 			bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
2504 			ubsec_dma_free(sc, &me->me_E);
2505 		}
2506 		if (me->me_C.dma_map != NULL) {
2507 			bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2508 			ubsec_dma_free(sc, &me->me_C);
2509 		}
2510 		if (me->me_epb.dma_map != NULL)
2511 			ubsec_dma_free(sc, &me->me_epb);
2512 		free(me, M_DEVBUF);
2513 	}
2514 	krp->krp_status = err;
2515 	crypto_kdone(krp);
2516 	return (0);
2517 }
2518 
2519 static int
2520 ubsec_kprocess_rsapriv(struct ubsec_softc *sc, struct cryptkop *krp, int hint)
2521 {
2522 	struct ubsec_q2_rsapriv *rp = NULL;
2523 	struct ubsec_mcr *mcr;
2524 	struct ubsec_ctx_rsapriv *ctx;
2525 	int s, err = 0;
2526 	u_int padlen, msglen;
2527 
2528 	msglen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_P]);
2529 	padlen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_Q]);
2530 	if (msglen > padlen)
2531 		padlen = msglen;
2532 
2533 	if (padlen <= 256)
2534 		padlen = 256;
2535 	else if (padlen <= 384)
2536 		padlen = 384;
2537 	else if (padlen <= 512)
2538 		padlen = 512;
2539 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 768)
2540 		padlen = 768;
2541 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 1024)
2542 		padlen = 1024;
2543 	else {
2544 		err = E2BIG;
2545 		goto errout;
2546 	}
2547 
2548 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DP]) > padlen) {
2549 		err = E2BIG;
2550 		goto errout;
2551 	}
2552 
2553 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DQ]) > padlen) {
2554 		err = E2BIG;
2555 		goto errout;
2556 	}
2557 
2558 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_PINV]) > padlen) {
2559 		err = E2BIG;
2560 		goto errout;
2561 	}
2562 
2563 	rp = malloc(sizeof *rp, M_DEVBUF, M_INTWAIT | M_ZERO);
2564 	rp->rpr_krp = krp;
2565 	rp->rpr_q.q_type = UBS_CTXOP_RSAPRIV;
2566 
2567 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2568 	    &rp->rpr_q.q_mcr, 0)) {
2569 		err = ENOMEM;
2570 		goto errout;
2571 	}
2572 	mcr = (struct ubsec_mcr *)rp->rpr_q.q_mcr.dma_vaddr;
2573 
2574 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rsapriv),
2575 	    &rp->rpr_q.q_ctx, 0)) {
2576 		err = ENOMEM;
2577 		goto errout;
2578 	}
2579 	ctx = (struct ubsec_ctx_rsapriv *)rp->rpr_q.q_ctx.dma_vaddr;
2580 	bzero(ctx, sizeof *ctx);
2581 
2582 	/* Copy in p */
2583 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_P].crp_p,
2584 	    &ctx->rpr_buf[0 * (padlen / 8)],
2585 	    (krp->krp_param[UBS_RSAPRIV_PAR_P].crp_nbits + 7) / 8);
2586 
2587 	/* Copy in q */
2588 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_p,
2589 	    &ctx->rpr_buf[1 * (padlen / 8)],
2590 	    (krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_nbits + 7) / 8);
2591 
2592 	/* Copy in dp */
2593 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_p,
2594 	    &ctx->rpr_buf[2 * (padlen / 8)],
2595 	    (krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_nbits + 7) / 8);
2596 
2597 	/* Copy in dq */
2598 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_p,
2599 	    &ctx->rpr_buf[3 * (padlen / 8)],
2600 	    (krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_nbits + 7) / 8);
2601 
2602 	/* Copy in pinv */
2603 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_p,
2604 	    &ctx->rpr_buf[4 * (padlen / 8)],
2605 	    (krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_nbits + 7) / 8);
2606 
2607 	msglen = padlen * 2;
2608 
2609 	/* Copy in input message (aligned buffer/length). */
2610 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGIN]) > msglen) {
2611 		/* Is this likely? */
2612 		err = E2BIG;
2613 		goto errout;
2614 	}
2615 	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgin, 0)) {
2616 		err = ENOMEM;
2617 		goto errout;
2618 	}
2619 	bzero(rp->rpr_msgin.dma_vaddr, (msglen + 7) / 8);
2620 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_p,
2621 	    rp->rpr_msgin.dma_vaddr,
2622 	    (krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_nbits + 7) / 8);
2623 
2624 	/* Prepare space for output message (aligned buffer/length). */
2625 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT]) < msglen) {
2626 		/* Is this likely? */
2627 		err = E2BIG;
2628 		goto errout;
2629 	}
2630 	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgout, 0)) {
2631 		err = ENOMEM;
2632 		goto errout;
2633 	}
2634 	bzero(rp->rpr_msgout.dma_vaddr, (msglen + 7) / 8);
2635 
2636 	mcr->mcr_pkts = htole16(1);
2637 	mcr->mcr_flags = 0;
2638 	mcr->mcr_cmdctxp = htole32(rp->rpr_q.q_ctx.dma_paddr);
2639 	mcr->mcr_ipktbuf.pb_addr = htole32(rp->rpr_msgin.dma_paddr);
2640 	mcr->mcr_ipktbuf.pb_next = 0;
2641 	mcr->mcr_ipktbuf.pb_len = htole32(rp->rpr_msgin.dma_size);
2642 	mcr->mcr_reserved = 0;
2643 	mcr->mcr_pktlen = htole16(msglen);
2644 	mcr->mcr_opktbuf.pb_addr = htole32(rp->rpr_msgout.dma_paddr);
2645 	mcr->mcr_opktbuf.pb_next = 0;
2646 	mcr->mcr_opktbuf.pb_len = htole32(rp->rpr_msgout.dma_size);
2647 
2648 #ifdef DIAGNOSTIC
2649 	if (rp->rpr_msgin.dma_paddr & 3 || rp->rpr_msgin.dma_size & 3) {
2650 		panic("%s: rsapriv: invalid msgin %x(0x%x)",
2651 		    device_get_nameunit(sc->sc_dev),
2652 		    rp->rpr_msgin.dma_paddr, rp->rpr_msgin.dma_size);
2653 	}
2654 	if (rp->rpr_msgout.dma_paddr & 3 || rp->rpr_msgout.dma_size & 3) {
2655 		panic("%s: rsapriv: invalid msgout %x(0x%x)",
2656 		    device_get_nameunit(sc->sc_dev),
2657 		    rp->rpr_msgout.dma_paddr, rp->rpr_msgout.dma_size);
2658 	}
2659 #endif
2660 
2661 	ctx->rpr_len = (sizeof(u_int16_t) * 4) + (5 * (padlen / 8));
2662 	ctx->rpr_op = htole16(UBS_CTXOP_RSAPRIV);
2663 	ctx->rpr_q_len = htole16(padlen);
2664 	ctx->rpr_p_len = htole16(padlen);
2665 
2666 	/*
2667 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2668 	 * everything else.
2669 	 */
2670 	ubsec_dma_sync(&rp->rpr_msgin, BUS_DMASYNC_PREWRITE);
2671 	ubsec_dma_sync(&rp->rpr_msgout, BUS_DMASYNC_PREREAD);
2672 
2673 	/* Enqueue and we're done... */
2674 	s = splimp();
2675 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rp->rpr_q, q_next);
2676 	ubsec_feed2(sc);
2677 	ubsecstats.hst_modexpcrt++;
2678 	splx(s);
2679 	return (0);
2680 
2681 errout:
2682 	if (rp != NULL) {
2683 		if (rp->rpr_q.q_mcr.dma_map != NULL)
2684 			ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2685 		if (rp->rpr_msgin.dma_map != NULL) {
2686 			bzero(rp->rpr_msgin.dma_vaddr, rp->rpr_msgin.dma_size);
2687 			ubsec_dma_free(sc, &rp->rpr_msgin);
2688 		}
2689 		if (rp->rpr_msgout.dma_map != NULL) {
2690 			bzero(rp->rpr_msgout.dma_vaddr, rp->rpr_msgout.dma_size);
2691 			ubsec_dma_free(sc, &rp->rpr_msgout);
2692 		}
2693 		free(rp, M_DEVBUF);
2694 	}
2695 	krp->krp_status = err;
2696 	crypto_kdone(krp);
2697 	return (0);
2698 }
2699 
2700 #ifdef UBSEC_DEBUG
2701 static void
2702 ubsec_dump_pb(volatile struct ubsec_pktbuf *pb)
2703 {
2704 	printf("addr 0x%x (0x%x) next 0x%x\n",
2705 	    pb->pb_addr, pb->pb_len, pb->pb_next);
2706 }
2707 
2708 static void
2709 ubsec_dump_ctx2(struct ubsec_ctx_keyop *c)
2710 {
2711 	printf("CTX (0x%x):\n", c->ctx_len);
2712 	switch (letoh16(c->ctx_op)) {
2713 	case UBS_CTXOP_RNGBYPASS:
2714 	case UBS_CTXOP_RNGSHA1:
2715 		break;
2716 	case UBS_CTXOP_MODEXP:
2717 	{
2718 		struct ubsec_ctx_modexp *cx = (void *)c;
2719 		int i, len;
2720 
2721 		printf(" Elen %u, Nlen %u\n",
2722 		    letoh16(cx->me_E_len), letoh16(cx->me_N_len));
2723 		len = (cx->me_N_len + 7)/8;
2724 		for (i = 0; i < len; i++)
2725 			printf("%s%02x", (i == 0) ? " N: " : ":", cx->me_N[i]);
2726 		printf("\n");
2727 		break;
2728 	}
2729 	default:
2730 		printf("unknown context: %x\n", c->ctx_op);
2731 	}
2732 	printf("END CTX\n");
2733 }
2734 
2735 static void
2736 ubsec_dump_mcr(struct ubsec_mcr *mcr)
2737 {
2738 	volatile struct ubsec_mcr_add *ma;
2739 	int i;
2740 
2741 	printf("MCR:\n");
2742 	printf(" pkts: %u, flags 0x%x\n",
2743 	    letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags));
2744 	ma = (volatile struct ubsec_mcr_add *)&mcr->mcr_cmdctxp;
2745 	for (i = 0; i < letoh16(mcr->mcr_pkts); i++) {
2746 		printf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i,
2747 		    letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen),
2748 		    letoh16(ma->mcr_reserved));
2749 		printf(" %d: ipkt ", i);
2750 		ubsec_dump_pb(&ma->mcr_ipktbuf);
2751 		printf(" %d: opkt ", i);
2752 		ubsec_dump_pb(&ma->mcr_opktbuf);
2753 		ma++;
2754 	}
2755 	printf("END MCR\n");
2756 }
2757 #endif /* UBSEC_DEBUG */
2758 
2759 /*
2760  * Return the number of significant bits of a big number.
2761  */
2762 static int
2763 ubsec_ksigbits(struct crparam *cr)
2764 {
2765 	u_int plen = (cr->crp_nbits + 7) / 8;
2766 	int i, sig = plen * 8;
2767 	u_int8_t c, *p = cr->crp_p;
2768 
2769 	for (i = plen - 1; i >= 0; i--) {
2770 		c = p[i];
2771 		if (c != 0) {
2772 			while ((c & 0x80) == 0) {
2773 				sig--;
2774 				c <<= 1;
2775 			}
2776 			break;
2777 		}
2778 		sig -= 8;
2779 	}
2780 	return (sig);
2781 }
2782 
2783 static void
2784 ubsec_kshift_r(
2785 	u_int shiftbits,
2786 	u_int8_t *src, u_int srcbits,
2787 	u_int8_t *dst, u_int dstbits)
2788 {
2789 	u_int slen, dlen;
2790 	int i, si, di, n;
2791 
2792 	slen = (srcbits + 7) / 8;
2793 	dlen = (dstbits + 7) / 8;
2794 
2795 	for (i = 0; i < slen; i++)
2796 		dst[i] = src[i];
2797 	for (i = 0; i < dlen - slen; i++)
2798 		dst[slen + i] = 0;
2799 
2800 	n = shiftbits / 8;
2801 	if (n != 0) {
2802 		si = dlen - n - 1;
2803 		di = dlen - 1;
2804 		while (si >= 0)
2805 			dst[di--] = dst[si--];
2806 		while (di >= 0)
2807 			dst[di--] = 0;
2808 	}
2809 
2810 	n = shiftbits % 8;
2811 	if (n != 0) {
2812 		for (i = dlen - 1; i > 0; i--)
2813 			dst[i] = (dst[i] << n) |
2814 			    (dst[i - 1] >> (8 - n));
2815 		dst[0] = dst[0] << n;
2816 	}
2817 }
2818 
2819 static void
2820 ubsec_kshift_l(
2821 	u_int shiftbits,
2822 	u_int8_t *src, u_int srcbits,
2823 	u_int8_t *dst, u_int dstbits)
2824 {
2825 	int slen, dlen, i, n;
2826 
2827 	slen = (srcbits + 7) / 8;
2828 	dlen = (dstbits + 7) / 8;
2829 
2830 	n = shiftbits / 8;
2831 	for (i = 0; i < slen; i++)
2832 		dst[i] = src[i + n];
2833 	for (i = 0; i < dlen - slen; i++)
2834 		dst[slen + i] = 0;
2835 
2836 	n = shiftbits % 8;
2837 	if (n != 0) {
2838 		for (i = 0; i < (dlen - 1); i++)
2839 			dst[i] = (dst[i] >> n) | (dst[i + 1] << (8 - n));
2840 		dst[dlen - 1] = dst[dlen - 1] >> n;
2841 	}
2842 }
2843