xref: /dflybsd-src/sys/dev/crypto/ubsec/ubsec.c (revision 0eb2eccd5a86ef7dd7492d2651de55c3589f23d7)
1 /* $FreeBSD: src/sys/dev/ubsec/ubsec.c,v 1.6.2.12 2003/06/04 17:56:59 sam Exp $ */
2 /*	$OpenBSD: ubsec.c,v 1.115 2002/09/24 18:33:26 jason Exp $	*/
3 
4 /*
5  * Copyright (c) 2000 Jason L. Wright (jason@thought.net)
6  * Copyright (c) 2000 Theo de Raadt (deraadt@openbsd.org)
7  * Copyright (c) 2001 Patrik Lindergren (patrik@ipunplugged.com)
8  *
9  * All rights reserved.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by Jason L. Wright
22  * 4. The name of the author may not be used to endorse or promote products
23  *    derived from this software without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
26  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
27  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
29  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
30  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
31  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
33  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
34  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  *
37  * Effort sponsored in part by the Defense Advanced Research Projects
38  * Agency (DARPA) and Air Force Research Laboratory, Air Force
39  * Materiel Command, USAF, under agreement number F30602-01-2-0537.
40  *
41  */
42 
43 /*
44  * uBsec 5[56]01, 58xx hardware crypto accelerator
45  */
46 
47 #include "opt_ubsec.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/proc.h>
52 #include <sys/errno.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/mbuf.h>
56 #include <sys/sysctl.h>
57 #include <sys/endian.h>
58 #include <sys/bus.h>
59 #include <sys/rman.h>
60 #include <sys/md5.h>
61 #include <sys/random.h>
62 #include <sys/thread2.h>
63 
64 #include <vm/vm.h>
65 #include <vm/pmap.h>
66 
67 #include <machine/clock.h>
68 
69 #include <crypto/sha1.h>
70 #include <opencrypto/cryptodev.h>
71 #include <opencrypto/cryptosoft.h>
72 
73 #include "cryptodev_if.h"
74 
75 #include <bus/pci/pcivar.h>
76 #include <bus/pci/pcireg.h>
77 
78 /* grr, #defines for gratuitous incompatibility in queue.h */
79 #define	SIMPLEQ_HEAD		STAILQ_HEAD
80 #define	SIMPLEQ_ENTRY		STAILQ_ENTRY
81 #define	SIMPLEQ_INIT		STAILQ_INIT
82 #define	SIMPLEQ_INSERT_TAIL	STAILQ_INSERT_TAIL
83 #define	SIMPLEQ_EMPTY		STAILQ_EMPTY
84 #define	SIMPLEQ_FIRST		STAILQ_FIRST
85 #define	SIMPLEQ_REMOVE_HEAD	STAILQ_REMOVE_HEAD
86 #define	SIMPLEQ_FOREACH		STAILQ_FOREACH
87 /* ditto for endian.h */
88 #define	letoh16(x)		le16toh(x)
89 #define	letoh32(x)		le32toh(x)
90 
91 #ifdef UBSEC_RNDTEST
92 #include "../rndtest/rndtest.h"
93 #endif
94 #include "ubsecreg.h"
95 #include "ubsecvar.h"
96 
97 /*
98  * Prototypes and count for the pci_device structure
99  */
100 static	int ubsec_probe(device_t);
101 static	int ubsec_attach(device_t);
102 static	int ubsec_detach(device_t);
103 static	int ubsec_suspend(device_t);
104 static	int ubsec_resume(device_t);
105 static	void ubsec_shutdown(device_t);
106 static	void ubsec_intr(void *);
107 static	int ubsec_newsession(void *, u_int32_t *, struct cryptoini *);
108 static	int ubsec_freesession(void *, u_int64_t);
109 static	int ubsec_process(void *, struct cryptop *, int);
110 static	void ubsec_callback(struct ubsec_softc *, struct ubsec_q *);
111 static	void ubsec_feed(struct ubsec_softc *);
112 static	void ubsec_mcopy(struct mbuf *, struct mbuf *, int, int);
113 static	void ubsec_callback2(struct ubsec_softc *, struct ubsec_q2 *);
114 static	int ubsec_feed2(struct ubsec_softc *);
115 static	void ubsec_rng(void *);
116 static	int ubsec_dma_malloc(struct ubsec_softc *, bus_size_t,
117 			     struct ubsec_dma_alloc *, int);
118 #define	ubsec_dma_sync(_dma, _flags) \
119 	bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags))
120 static	void ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *);
121 static	int ubsec_dmamap_aligned(struct ubsec_operand *op);
122 
123 static	void ubsec_reset_board(struct ubsec_softc *sc);
124 static	void ubsec_init_board(struct ubsec_softc *sc);
125 static	void ubsec_init_pciregs(device_t dev);
126 static	void ubsec_totalreset(struct ubsec_softc *sc);
127 
128 static	int ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q);
129 
130 static	int ubsec_kprocess(void*, struct cryptkop *, int);
131 static	int ubsec_kprocess_modexp_hw(struct ubsec_softc *, struct cryptkop *, int);
132 static	int ubsec_kprocess_modexp_sw(struct ubsec_softc *, struct cryptkop *, int);
133 static	int ubsec_kprocess_rsapriv(struct ubsec_softc *, struct cryptkop *, int);
134 static	void ubsec_kfree(struct ubsec_softc *, struct ubsec_q2 *);
135 static	int ubsec_ksigbits(struct crparam *);
136 static	void ubsec_kshift_r(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
137 static	void ubsec_kshift_l(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
138 
139 
140 static device_method_t ubsec_methods[] = {
141 	/* Device interface */
142 	DEVMETHOD(device_probe,		ubsec_probe),
143 	DEVMETHOD(device_attach,	ubsec_attach),
144 	DEVMETHOD(device_detach,	ubsec_detach),
145 	DEVMETHOD(device_suspend,	ubsec_suspend),
146 	DEVMETHOD(device_resume,	ubsec_resume),
147 	DEVMETHOD(device_shutdown,	ubsec_shutdown),
148 
149 	/* bus interface */
150 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
151 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
152 
153 	/* crypto device methods */
154 	DEVMETHOD(cryptodev_newsession,	ubsec_newsession),
155 	DEVMETHOD(cryptodev_freesession,ubsec_freesession),
156 	DEVMETHOD(cryptodev_process,	ubsec_process),
157 	DEVMETHOD(cryptodev_kprocess,	ubsec_kprocess),
158 
159 	{ 0, 0 }
160 };
161 static driver_t ubsec_driver = {
162 	"ubsec",
163 	ubsec_methods,
164 	sizeof (struct ubsec_softc)
165 };
166 static devclass_t ubsec_devclass;
167 
168 DECLARE_DUMMY_MODULE(ubsec);
169 DRIVER_MODULE(ubsec, pci, ubsec_driver, ubsec_devclass, 0, 0);
170 MODULE_DEPEND(ubsec, crypto, 1, 1, 1);
171 #ifdef UBSEC_RNDTEST
172 MODULE_DEPEND(ubsec, rndtest, 1, 1, 1);
173 #endif
174 
175 SYSCTL_NODE(_hw, OID_AUTO, ubsec, CTLFLAG_RD, 0, "Broadcom driver parameters");
176 
177 #ifdef UBSEC_DEBUG
178 static	void ubsec_dump_pb(volatile struct ubsec_pktbuf *);
179 static	void ubsec_dump_mcr(struct ubsec_mcr *);
180 static	void ubsec_dump_ctx2(struct ubsec_ctx_keyop *);
181 
182 static	int ubsec_debug = 0;
183 SYSCTL_INT(_hw_ubsec, OID_AUTO, debug, CTLFLAG_RW, &ubsec_debug,
184 	    0, "control debugging msgs");
185 #endif
186 
187 #define	READ_REG(sc,r) \
188 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
189 
190 #define WRITE_REG(sc,reg,val) \
191 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
192 
193 #define	SWAP32(x) (x) = htole32(ntohl((x)))
194 #define	HTOLE32(x) (x) = htole32(x)
195 
196 
197 struct ubsec_stats ubsecstats;
198 SYSCTL_STRUCT(_hw_ubsec, OID_AUTO, stats, CTLFLAG_RD, &ubsecstats,
199 	    ubsec_stats, "driver statistics");
200 
201 static int
202 ubsec_probe(device_t dev)
203 {
204 	if (pci_get_vendor(dev) == PCI_VENDOR_SUN &&
205 	    (pci_get_device(dev) == PCI_PRODUCT_SUN_5821 ||
206 	     pci_get_device(dev) == PCI_PRODUCT_SUN_SCA1K))
207 		return (0);
208 	if (pci_get_vendor(dev) == PCI_VENDOR_BLUESTEEL &&
209 	    (pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5501 ||
210 	     pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5601))
211 		return (0);
212 	if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
213 	    (pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5801 ||
214 	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5802 ||
215 	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5805 ||
216 	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5820 ||
217 	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5821 ||
218 	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5822 ||
219 	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5823
220 	     ))
221 		return (0);
222 	return (ENXIO);
223 }
224 
225 static const char*
226 ubsec_partname(struct ubsec_softc *sc)
227 {
228 	/* XXX sprintf numbers when not decoded */
229 	switch (pci_get_vendor(sc->sc_dev)) {
230 	case PCI_VENDOR_BROADCOM:
231 		switch (pci_get_device(sc->sc_dev)) {
232 		case PCI_PRODUCT_BROADCOM_5801:	return "Broadcom 5801";
233 		case PCI_PRODUCT_BROADCOM_5802:	return "Broadcom 5802";
234 		case PCI_PRODUCT_BROADCOM_5805:	return "Broadcom 5805";
235 		case PCI_PRODUCT_BROADCOM_5820:	return "Broadcom 5820";
236 		case PCI_PRODUCT_BROADCOM_5821:	return "Broadcom 5821";
237 		case PCI_PRODUCT_BROADCOM_5822:	return "Broadcom 5822";
238 		case PCI_PRODUCT_BROADCOM_5823:	return "Broadcom 5823";
239 		}
240 		return "Broadcom unknown-part";
241 	case PCI_VENDOR_BLUESTEEL:
242 		switch (pci_get_device(sc->sc_dev)) {
243 		case PCI_PRODUCT_BLUESTEEL_5601: return "Bluesteel 5601";
244 		}
245 		return "Bluesteel unknown-part";
246 	case PCI_VENDOR_SUN:
247 		switch (pci_get_device(sc->sc_dev)) {
248 		case PCI_PRODUCT_SUN_5821: return "Sun Crypto 5821";
249 		case PCI_PRODUCT_SUN_SCA1K: return "Sun Crypto 1K";
250 		}
251 		return "Sun unknown-part";
252 	}
253 	return "Unknown-vendor unknown-part";
254 }
255 
256 static void
257 default_harvest(struct rndtest_state *rsp, void *buf, u_int count)
258 {
259 	u_int32_t *p = (u_int32_t *)buf;
260 	for (count /= sizeof (u_int32_t); count; count--)
261 		add_true_randomness(*p++);
262 }
263 
264 static int
265 ubsec_attach(device_t dev)
266 {
267 	struct ubsec_softc *sc = device_get_softc(dev);
268 	struct ubsec_dma *dmap;
269 	u_int32_t cmd, i;
270 	int rid;
271 
272 	KASSERT(sc != NULL, ("ubsec_attach: null software carrier!"));
273 	bzero(sc, sizeof (*sc));
274 	sc->sc_dev = dev;
275 
276 	SIMPLEQ_INIT(&sc->sc_queue);
277 	SIMPLEQ_INIT(&sc->sc_qchip);
278 	SIMPLEQ_INIT(&sc->sc_queue2);
279 	SIMPLEQ_INIT(&sc->sc_qchip2);
280 	SIMPLEQ_INIT(&sc->sc_q2free);
281 
282 	/* XXX handle power management */
283 
284 	sc->sc_statmask = BS_STAT_MCR1_DONE | BS_STAT_DMAERR;
285 
286 	if (pci_get_vendor(dev) == PCI_VENDOR_BLUESTEEL &&
287 	    pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5601)
288 		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG;
289 
290 	if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
291 	    (pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5802 ||
292 	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5805))
293 		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG;
294 
295 	if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
296 	    pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5820)
297 		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG |
298 		    UBS_FLAGS_LONGCTX | UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY;
299 
300 	if ((pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
301 	     (pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5821 ||
302 	      pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5822 ||
303 	      pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5823)) ||
304 	    (pci_get_vendor(dev) == PCI_VENDOR_SUN &&
305 	     (pci_get_device(dev) == PCI_PRODUCT_SUN_SCA1K ||
306 	      pci_get_device(dev) == PCI_PRODUCT_SUN_5821))) {
307 		/* NB: the 5821/5822 defines some additional status bits */
308 		sc->sc_statmask |= BS_STAT_MCR1_ALLEMPTY |
309 		    BS_STAT_MCR2_ALLEMPTY;
310 		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG |
311 		    UBS_FLAGS_LONGCTX | UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY;
312 	}
313 
314 	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
315 	cmd |= PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN;
316 	pci_write_config(dev, PCIR_COMMAND, cmd, 4);
317 	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
318 
319 	if (!(cmd & PCIM_CMD_MEMEN)) {
320 		device_printf(dev, "failed to enable memory mapping\n");
321 		goto bad;
322 	}
323 
324 	if (!(cmd & PCIM_CMD_BUSMASTEREN)) {
325 		device_printf(dev, "failed to enable bus mastering\n");
326 		goto bad;
327 	}
328 
329 	/*
330 	 * Setup memory-mapping of PCI registers.
331 	 */
332 	rid = BS_BAR;
333 	sc->sc_sr = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
334 				       0, ~0, 1, RF_ACTIVE);
335 	if (sc->sc_sr == NULL) {
336 		device_printf(dev, "cannot map register space\n");
337 		goto bad;
338 	}
339 	sc->sc_st = rman_get_bustag(sc->sc_sr);
340 	sc->sc_sh = rman_get_bushandle(sc->sc_sr);
341 
342 	/*
343 	 * Arrange interrupt line.
344 	 */
345 	rid = 0;
346 	sc->sc_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid,
347 					0, ~0, 1, RF_SHAREABLE|RF_ACTIVE);
348 	if (sc->sc_irq == NULL) {
349 		device_printf(dev, "could not map interrupt\n");
350 		goto bad1;
351 	}
352 	/*
353 	 * NB: Network code assumes we are blocked with splimp()
354 	 *     so make sure the IRQ is mapped appropriately.
355 	 */
356 	if (bus_setup_intr(dev, sc->sc_irq, 0,
357 			   ubsec_intr, sc,
358 			   &sc->sc_ih, NULL)) {
359 		device_printf(dev, "could not establish interrupt\n");
360 		goto bad2;
361 	}
362 
363 	sc->sc_cid = crypto_get_driverid(dev, CRYPTOCAP_F_HARDWARE);
364 	if (sc->sc_cid < 0) {
365 		device_printf(dev, "could not get crypto driver id\n");
366 		goto bad3;
367 	}
368 
369 	/*
370 	 * Setup DMA descriptor area.
371 	 */
372 	if (bus_dma_tag_create(NULL,			/* parent */
373 			       1, 0,			/* alignment, bounds */
374 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
375 			       BUS_SPACE_MAXADDR,	/* highaddr */
376 			       NULL, NULL,		/* filter, filterarg */
377 			       0x3ffff,			/* maxsize */
378 			       UBS_MAX_SCATTER,		/* nsegments */
379 			       0xffff,			/* maxsegsize */
380 			       BUS_DMA_ALLOCNOW,	/* flags */
381 			       &sc->sc_dmat)) {
382 		device_printf(dev, "cannot allocate DMA tag\n");
383 		goto bad4;
384 	}
385 	SIMPLEQ_INIT(&sc->sc_freequeue);
386 	dmap = sc->sc_dmaa;
387 	for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) {
388 		struct ubsec_q *q;
389 
390 		q = kmalloc(sizeof(struct ubsec_q), M_DEVBUF, M_WAITOK);
391 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_dmachunk),
392 		    &dmap->d_alloc, 0)) {
393 			device_printf(dev, "cannot allocate dma buffers\n");
394 			kfree(q, M_DEVBUF);
395 			break;
396 		}
397 		dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr;
398 
399 		q->q_dma = dmap;
400 		sc->sc_queuea[i] = q;
401 
402 		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
403 	}
404 
405 	device_printf(sc->sc_dev, "%s\n", ubsec_partname(sc));
406 
407 	crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0);
408 	crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0);
409 	crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0);
410 	crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0);
411 
412 	/*
413 	 * Reset Broadcom chip
414 	 */
415 	ubsec_reset_board(sc);
416 
417 	/*
418 	 * Init Broadcom specific PCI settings
419 	 */
420 	ubsec_init_pciregs(dev);
421 
422 	/*
423 	 * Init Broadcom chip
424 	 */
425 	ubsec_init_board(sc);
426 
427 #ifndef UBSEC_NO_RNG
428 	if (sc->sc_flags & UBS_FLAGS_RNG) {
429 		sc->sc_statmask |= BS_STAT_MCR2_DONE;
430 #ifdef UBSEC_RNDTEST
431 		sc->sc_rndtest = rndtest_attach(dev);
432 		if (sc->sc_rndtest)
433 			sc->sc_harvest = rndtest_harvest;
434 		else
435 			sc->sc_harvest = default_harvest;
436 #else
437 		sc->sc_harvest = default_harvest;
438 #endif
439 
440 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
441 		    &sc->sc_rng.rng_q.q_mcr, 0))
442 			goto skip_rng;
443 
444 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rngbypass),
445 		    &sc->sc_rng.rng_q.q_ctx, 0)) {
446 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
447 			goto skip_rng;
448 		}
449 
450 		if (ubsec_dma_malloc(sc, sizeof(u_int32_t) *
451 		    UBSEC_RNG_BUFSIZ, &sc->sc_rng.rng_buf, 0)) {
452 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
453 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
454 			goto skip_rng;
455 		}
456 
457 		if (hz >= 100)
458 			sc->sc_rnghz = hz / 100;
459 		else
460 			sc->sc_rnghz = 1;
461 		callout_init(&sc->sc_rngto);
462 		callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
463 skip_rng:
464 	;
465 	}
466 #endif /* UBSEC_NO_RNG */
467 
468 	if (sc->sc_flags & UBS_FLAGS_KEY) {
469 		sc->sc_statmask |= BS_STAT_MCR2_DONE;
470 
471 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0);
472 #if 0
473 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0);
474 #endif
475 	}
476 	return (0);
477 bad4:
478 	crypto_unregister_all(sc->sc_cid);
479 bad3:
480 	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
481 bad2:
482 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
483 bad1:
484 	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
485 bad:
486 	return (ENXIO);
487 }
488 
489 /*
490  * Detach a device that successfully probed.
491  */
492 static int
493 ubsec_detach(device_t dev)
494 {
495 	struct ubsec_softc *sc = device_get_softc(dev);
496 
497 	KASSERT(sc != NULL, ("ubsec_detach: null software carrier"));
498 
499 	/* XXX wait/abort active ops */
500 
501 	crit_enter();
502 
503 	callout_stop(&sc->sc_rngto);
504 
505 	crypto_unregister_all(sc->sc_cid);
506 
507 #ifdef UBSEC_RNDTEST
508 	if (sc->sc_rndtest)
509 		rndtest_detach(sc->sc_rndtest);
510 #endif
511 
512 	while (!SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
513 		struct ubsec_q *q;
514 
515 		q = SIMPLEQ_FIRST(&sc->sc_freequeue);
516 		SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, q_next);
517 		ubsec_dma_free(sc, &q->q_dma->d_alloc);
518 		kfree(q, M_DEVBUF);
519 	}
520 #ifndef UBSEC_NO_RNG
521 	if (sc->sc_flags & UBS_FLAGS_RNG) {
522 		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
523 		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
524 		ubsec_dma_free(sc, &sc->sc_rng.rng_buf);
525 	}
526 #endif /* UBSEC_NO_RNG */
527 
528 	bus_generic_detach(dev);
529 	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
530 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
531 
532 	bus_dma_tag_destroy(sc->sc_dmat);
533 	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
534 
535 	crit_exit();
536 
537 	return (0);
538 }
539 
540 /*
541  * Stop all chip i/o so that the kernel's probe routines don't
542  * get confused by errant DMAs when rebooting.
543  */
544 static void
545 ubsec_shutdown(device_t dev)
546 {
547 #ifdef notyet
548 	ubsec_stop(device_get_softc(dev));
549 #endif
550 }
551 
552 /*
553  * Device suspend routine.
554  */
555 static int
556 ubsec_suspend(device_t dev)
557 {
558 	struct ubsec_softc *sc = device_get_softc(dev);
559 
560 	KASSERT(sc != NULL, ("ubsec_suspend: null software carrier"));
561 #ifdef notyet
562 	/* XXX stop the device and save PCI settings */
563 #endif
564 	sc->sc_suspended = 1;
565 
566 	return (0);
567 }
568 
569 static int
570 ubsec_resume(device_t dev)
571 {
572 	struct ubsec_softc *sc = device_get_softc(dev);
573 
574 	KASSERT(sc != NULL, ("ubsec_resume: null software carrier"));
575 #ifdef notyet
576 	/* XXX retore PCI settings and start the device */
577 #endif
578 	sc->sc_suspended = 0;
579 	return (0);
580 }
581 
582 /*
583  * UBSEC Interrupt routine
584  */
585 static void
586 ubsec_intr(void *arg)
587 {
588 	struct ubsec_softc *sc = arg;
589 	volatile u_int32_t stat;
590 	struct ubsec_q *q;
591 	struct ubsec_dma *dmap;
592 	int npkts = 0, i;
593 
594 	stat = READ_REG(sc, BS_STAT);
595 	stat &= sc->sc_statmask;
596 	if (stat == 0) {
597 		return;
598 	}
599 
600 	WRITE_REG(sc, BS_STAT, stat);		/* IACK */
601 
602 	/*
603 	 * Check to see if we have any packets waiting for us
604 	 */
605 	if ((stat & BS_STAT_MCR1_DONE)) {
606 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
607 			q = SIMPLEQ_FIRST(&sc->sc_qchip);
608 			dmap = q->q_dma;
609 
610 			if ((dmap->d_dma->d_mcr.mcr_flags & htole16(UBS_MCR_DONE)) == 0)
611 				break;
612 
613 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q_next);
614 
615 			npkts = q->q_nstacked_mcrs;
616 			sc->sc_nqchip -= 1+npkts;
617 			/*
618 			 * search for further sc_qchip ubsec_q's that share
619 			 * the same MCR, and complete them too, they must be
620 			 * at the top.
621 			 */
622 			for (i = 0; i < npkts; i++) {
623 				if(q->q_stacked_mcr[i]) {
624 					ubsec_callback(sc, q->q_stacked_mcr[i]);
625 				} else {
626 					break;
627 				}
628 			}
629 			ubsec_callback(sc, q);
630 		}
631 
632 		/*
633 		 * Don't send any more packet to chip if there has been
634 		 * a DMAERR.
635 		 */
636 		if (!(stat & BS_STAT_DMAERR))
637 			ubsec_feed(sc);
638 	}
639 
640 	/*
641 	 * Check to see if we have any key setups/rng's waiting for us
642 	 */
643 	if ((sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG)) &&
644 	    (stat & BS_STAT_MCR2_DONE)) {
645 		struct ubsec_q2 *q2;
646 		struct ubsec_mcr *mcr;
647 
648 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip2)) {
649 			q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
650 
651 			ubsec_dma_sync(&q2->q_mcr,
652 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
653 
654 			mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
655 			if ((mcr->mcr_flags & htole16(UBS_MCR_DONE)) == 0) {
656 				ubsec_dma_sync(&q2->q_mcr,
657 				    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
658 				break;
659 			}
660 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip2, q_next);
661 			ubsec_callback2(sc, q2);
662 			/*
663 			 * Don't send any more packet to chip if there has been
664 			 * a DMAERR.
665 			 */
666 			if (!(stat & BS_STAT_DMAERR))
667 				ubsec_feed2(sc);
668 		}
669 	}
670 
671 	/*
672 	 * Check to see if we got any DMA Error
673 	 */
674 	if (stat & BS_STAT_DMAERR) {
675 #ifdef UBSEC_DEBUG
676 		if (ubsec_debug) {
677 			volatile u_int32_t a = READ_REG(sc, BS_ERR);
678 
679 			kprintf("dmaerr %s@%08x\n",
680 			    (a & BS_ERR_READ) ? "read" : "write",
681 			    a & BS_ERR_ADDR);
682 		}
683 #endif /* UBSEC_DEBUG */
684 		ubsecstats.hst_dmaerr++;
685 		ubsec_totalreset(sc);
686 		ubsec_feed(sc);
687 	}
688 
689 	if (sc->sc_needwakeup) {		/* XXX check high watermark */
690 		int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
691 #ifdef UBSEC_DEBUG
692 		if (ubsec_debug)
693 			device_printf(sc->sc_dev, "wakeup crypto (%x)\n",
694 				sc->sc_needwakeup);
695 #endif /* UBSEC_DEBUG */
696 		sc->sc_needwakeup &= ~wakeup;
697 		crypto_unblock(sc->sc_cid, wakeup);
698 	}
699 }
700 
701 /*
702  * ubsec_feed() - aggregate and post requests to chip
703  */
704 static void
705 ubsec_feed(struct ubsec_softc *sc)
706 {
707 	struct ubsec_q *q, *q2;
708 	int npkts, i;
709 	void *v;
710 	u_int32_t stat;
711 
712 	/*
713 	 * Decide how many ops to combine in a single MCR.  We cannot
714 	 * aggregate more than UBS_MAX_AGGR because this is the number
715 	 * of slots defined in the data structure.  Note that
716 	 * aggregation only happens if ops are marked batch'able.
717 	 * Aggregating ops reduces the number of interrupts to the host
718 	 * but also (potentially) increases the latency for processing
719 	 * completed ops as we only get an interrupt when all aggregated
720 	 * ops have completed.
721 	 */
722 	if (sc->sc_nqueue == 0)
723 		return;
724 	if (sc->sc_nqueue > 1) {
725 		npkts = 0;
726 		SIMPLEQ_FOREACH(q, &sc->sc_queue, q_next) {
727 			npkts++;
728 			if ((q->q_crp->crp_flags & CRYPTO_F_BATCH) == 0)
729 				break;
730 		}
731 	} else
732 		npkts = 1;
733 	/*
734 	 * Check device status before going any further.
735 	 */
736 	if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
737 		if (stat & BS_STAT_DMAERR) {
738 			ubsec_totalreset(sc);
739 			ubsecstats.hst_dmaerr++;
740 		} else
741 			ubsecstats.hst_mcr1full++;
742 		return;
743 	}
744 	if (sc->sc_nqueue > ubsecstats.hst_maxqueue)
745 		ubsecstats.hst_maxqueue = sc->sc_nqueue;
746 	if (npkts > UBS_MAX_AGGR)
747 		npkts = UBS_MAX_AGGR;
748 	if (npkts < 2)				/* special case 1 op */
749 		goto feed1;
750 
751 	ubsecstats.hst_totbatch += npkts-1;
752 #ifdef UBSEC_DEBUG
753 	if (ubsec_debug)
754 		kprintf("merging %d records\n", npkts);
755 #endif /* UBSEC_DEBUG */
756 
757 	q = SIMPLEQ_FIRST(&sc->sc_queue);
758 	SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q_next);
759 	--sc->sc_nqueue;
760 
761 	bus_dmamap_sync(sc->sc_dmat, q->q_src_map, BUS_DMASYNC_PREWRITE);
762 	if (q->q_dst_map != NULL)
763 		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map, BUS_DMASYNC_PREREAD);
764 
765 	q->q_nstacked_mcrs = npkts - 1;		/* Number of packets stacked */
766 
767 	for (i = 0; i < q->q_nstacked_mcrs; i++) {
768 		q2 = SIMPLEQ_FIRST(&sc->sc_queue);
769 		bus_dmamap_sync(sc->sc_dmat, q2->q_src_map,
770 		    BUS_DMASYNC_PREWRITE);
771 		if (q2->q_dst_map != NULL)
772 			bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map,
773 			    BUS_DMASYNC_PREREAD);
774 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q_next);
775 		--sc->sc_nqueue;
776 
777 		v = (void*)(((char *)&q2->q_dma->d_dma->d_mcr) + sizeof(struct ubsec_mcr) -
778 		    sizeof(struct ubsec_mcr_add));
779 		bcopy(v, &q->q_dma->d_dma->d_mcradd[i], sizeof(struct ubsec_mcr_add));
780 		q->q_stacked_mcr[i] = q2;
781 	}
782 	q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts);
783 	SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
784 	sc->sc_nqchip += npkts;
785 	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
786 		ubsecstats.hst_maxqchip = sc->sc_nqchip;
787 	ubsec_dma_sync(&q->q_dma->d_alloc,
788 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
789 	WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
790 	    offsetof(struct ubsec_dmachunk, d_mcr));
791 	return;
792 
793 feed1:
794 	q = SIMPLEQ_FIRST(&sc->sc_queue);
795 
796 	bus_dmamap_sync(sc->sc_dmat, q->q_src_map, BUS_DMASYNC_PREWRITE);
797 	if (q->q_dst_map != NULL)
798 		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map, BUS_DMASYNC_PREREAD);
799 	ubsec_dma_sync(&q->q_dma->d_alloc,
800 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
801 
802 	WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
803 	    offsetof(struct ubsec_dmachunk, d_mcr));
804 #ifdef UBSEC_DEBUG
805 	if (ubsec_debug)
806 		kprintf("feed1: q->chip %p %08x stat %08x\n",
807 		      q, (u_int32_t)vtophys(&q->q_dma->d_dma->d_mcr),
808 		      stat);
809 #endif /* UBSEC_DEBUG */
810 	SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q_next);
811 	--sc->sc_nqueue;
812 	SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
813 	sc->sc_nqchip++;
814 	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
815 		ubsecstats.hst_maxqchip = sc->sc_nqchip;
816 	return;
817 }
818 
819 static void
820 ubsec_setup_enckey(struct ubsec_session *ses, int algo, caddr_t key)
821 {
822 
823 	/* Go ahead and compute key in ubsec's byte order */
824 	if (algo == CRYPTO_DES_CBC) {
825 		bcopy(key, &ses->ses_deskey[0], 8);
826 		bcopy(key, &ses->ses_deskey[2], 8);
827 		bcopy(key, &ses->ses_deskey[4], 8);
828 	} else
829 		bcopy(key, ses->ses_deskey, 24);
830 
831 	SWAP32(ses->ses_deskey[0]);
832 	SWAP32(ses->ses_deskey[1]);
833 	SWAP32(ses->ses_deskey[2]);
834 	SWAP32(ses->ses_deskey[3]);
835 	SWAP32(ses->ses_deskey[4]);
836 	SWAP32(ses->ses_deskey[5]);
837 }
838 
839 static void
840 ubsec_setup_mackey(struct ubsec_session *ses, int algo, caddr_t key, int klen)
841 {
842 	MD5_CTX md5ctx;
843 	SHA1_CTX sha1ctx;
844 	int i;
845 
846 	for (i = 0; i < klen; i++)
847 		key[i] ^= HMAC_IPAD_VAL;
848 
849 	if (algo == CRYPTO_MD5_HMAC) {
850 		MD5Init(&md5ctx);
851 		MD5Update(&md5ctx, key, klen);
852 		MD5Update(&md5ctx, hmac_ipad_buffer, MD5_HMAC_BLOCK_LEN - klen);
853 		bcopy(md5ctx.state, ses->ses_hminner, sizeof(md5ctx.state));
854 	} else {
855 		SHA1Init(&sha1ctx);
856 		SHA1Update(&sha1ctx, key, klen);
857 		SHA1Update(&sha1ctx, hmac_ipad_buffer,
858 		    SHA1_HMAC_BLOCK_LEN - klen);
859 		bcopy(sha1ctx.h.b32, ses->ses_hminner, sizeof(sha1ctx.h.b32));
860 	}
861 
862 	for (i = 0; i < klen; i++)
863 		key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
864 
865 	if (algo == CRYPTO_MD5_HMAC) {
866 		MD5Init(&md5ctx);
867 		MD5Update(&md5ctx, key, klen);
868 		MD5Update(&md5ctx, hmac_opad_buffer, MD5_HMAC_BLOCK_LEN - klen);
869 		bcopy(md5ctx.state, ses->ses_hmouter, sizeof(md5ctx.state));
870 	} else {
871 		SHA1Init(&sha1ctx);
872 		SHA1Update(&sha1ctx, key, klen);
873 		SHA1Update(&sha1ctx, hmac_opad_buffer,
874 		    SHA1_HMAC_BLOCK_LEN - klen);
875 		bcopy(sha1ctx.h.b32, ses->ses_hmouter, sizeof(sha1ctx.h.b32));
876 	}
877 
878 	for (i = 0; i < klen; i++)
879 		key[i] ^= HMAC_OPAD_VAL;
880 }
881 
882 /*
883  * Allocate a new 'session' and return an encoded session id.  'sidp'
884  * contains our registration id, and should contain an encoded session
885  * id on successful allocation.
886  */
887 static int
888 ubsec_newsession(void *arg, u_int32_t *sidp, struct cryptoini *cri)
889 {
890 	struct cryptoini *c, *encini = NULL, *macini = NULL;
891 	struct ubsec_softc *sc = arg;
892 	struct ubsec_session *ses = NULL;
893 	int sesn;
894 #if 0
895 	MD5_CTX md5ctx;
896 	SHA1_CTX sha1ctx;
897 	int i;
898 #endif
899 
900 	KASSERT(sc != NULL, ("ubsec_newsession: null softc"));
901 	if (sidp == NULL || cri == NULL || sc == NULL)
902 		return (EINVAL);
903 
904 	for (c = cri; c != NULL; c = c->cri_next) {
905 		if (c->cri_alg == CRYPTO_MD5_HMAC ||
906 		    c->cri_alg == CRYPTO_SHA1_HMAC) {
907 			if (macini)
908 				return (EINVAL);
909 			macini = c;
910 		} else if (c->cri_alg == CRYPTO_DES_CBC ||
911 		    c->cri_alg == CRYPTO_3DES_CBC) {
912 			if (encini)
913 				return (EINVAL);
914 			encini = c;
915 		} else
916 			return (EINVAL);
917 	}
918 	if (encini == NULL && macini == NULL)
919 		return (EINVAL);
920 
921 	if (sc->sc_sessions == NULL) {
922 		ses = sc->sc_sessions = kmalloc(sizeof(struct ubsec_session),
923 						M_DEVBUF, M_INTWAIT);
924 		sesn = 0;
925 		sc->sc_nsessions = 1;
926 	} else {
927 		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
928 			if (sc->sc_sessions[sesn].ses_used == 0) {
929 				ses = &sc->sc_sessions[sesn];
930 				break;
931 			}
932 		}
933 
934 		if (ses == NULL) {
935 			sesn = sc->sc_nsessions;
936 			ses = kmalloc((sesn + 1) * sizeof(struct ubsec_session),
937 					M_DEVBUF, M_INTWAIT);
938 			bcopy(sc->sc_sessions, ses, sesn *
939 			    sizeof(struct ubsec_session));
940 			bzero(sc->sc_sessions, sesn *
941 			    sizeof(struct ubsec_session));
942 			kfree(sc->sc_sessions, M_DEVBUF);
943 			sc->sc_sessions = ses;
944 			ses = &sc->sc_sessions[sesn];
945 			sc->sc_nsessions++;
946 		}
947 	}
948 
949 	bzero(ses, sizeof(struct ubsec_session));
950 	ses->ses_used = 1;
951 	if (encini) {
952 		read_random(ses->ses_iv, sizeof(ses->ses_iv));
953 		if (encini->cri_key != NULL) {
954 			ubsec_setup_enckey(ses, encini->cri_alg,
955 			    encini->cri_key);
956 		}
957 #if 0
958 		/* get an IV, network byte order */
959 		/* XXX may read fewer than requested */
960 		read_random(ses->ses_iv, sizeof(ses->ses_iv));
961 
962 		/* Go ahead and compute key in ubsec's byte order */
963 		if (encini->cri_alg == CRYPTO_DES_CBC) {
964 			bcopy(encini->cri_key, &ses->ses_deskey[0], 8);
965 			bcopy(encini->cri_key, &ses->ses_deskey[2], 8);
966 			bcopy(encini->cri_key, &ses->ses_deskey[4], 8);
967 		} else
968 			bcopy(encini->cri_key, ses->ses_deskey, 24);
969 
970 		SWAP32(ses->ses_deskey[0]);
971 		SWAP32(ses->ses_deskey[1]);
972 		SWAP32(ses->ses_deskey[2]);
973 		SWAP32(ses->ses_deskey[3]);
974 		SWAP32(ses->ses_deskey[4]);
975 		SWAP32(ses->ses_deskey[5]);
976 #endif
977 	}
978 
979 	if (macini) {
980 		ses->ses_mlen = macini->cri_mlen;
981 		if (ses->ses_mlen == 0) {
982 			if (macini->cri_alg == CRYPTO_MD5_HMAC)
983 				ses->ses_mlen = MD5_HASH_LEN;
984 			else
985 				ses->ses_mlen = SHA1_HASH_LEN;
986 		}
987 
988 		if (macini->cri_key != NULL) {
989 			ubsec_setup_mackey(ses, macini->cri_alg,
990 			    macini->cri_key, macini->cri_klen/8);
991 		}
992 #if 0
993 		for (i = 0; i < macini->cri_klen / 8; i++)
994 			macini->cri_key[i] ^= HMAC_IPAD_VAL;
995 
996 		if (macini->cri_alg == CRYPTO_MD5_HMAC) {
997 			MD5Init(&md5ctx);
998 			MD5Update(&md5ctx, macini->cri_key,
999 			    macini->cri_klen / 8);
1000 			MD5Update(&md5ctx, hmac_ipad_buffer,
1001 			    MD5_HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1002 			bcopy(md5ctx.state, ses->ses_hminner,
1003 			    sizeof(md5ctx.state));
1004 		} else {
1005 			SHA1Init(&sha1ctx);
1006 			SHA1Update(&sha1ctx, macini->cri_key,
1007 			    macini->cri_klen / 8);
1008 			SHA1Update(&sha1ctx, hmac_ipad_buffer,
1009 			    SHA1_HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1010 			bcopy(sha1ctx.h.b32, ses->ses_hminner,
1011 			    sizeof(sha1ctx.h.b32));
1012 		}
1013 
1014 		for (i = 0; i < macini->cri_klen / 8; i++)
1015 			macini->cri_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
1016 
1017 		if (macini->cri_alg == CRYPTO_MD5_HMAC) {
1018 			MD5Init(&md5ctx);
1019 			MD5Update(&md5ctx, macini->cri_key,
1020 			    macini->cri_klen / 8);
1021 			MD5Update(&md5ctx, hmac_opad_buffer,
1022 			    MD5_HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1023 			bcopy(md5ctx.state, ses->ses_hmouter,
1024 			    sizeof(md5ctx.state));
1025 		} else {
1026 			SHA1Init(&sha1ctx);
1027 			SHA1Update(&sha1ctx, macini->cri_key,
1028 			    macini->cri_klen / 8);
1029 			SHA1Update(&sha1ctx, hmac_opad_buffer,
1030 			    SHA1_HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1031 			bcopy(sha1ctx.h.b32, ses->ses_hmouter,
1032 			    sizeof(sha1ctx.h.b32));
1033 		}
1034 
1035 		for (i = 0; i < macini->cri_klen / 8; i++)
1036 			macini->cri_key[i] ^= HMAC_OPAD_VAL;
1037 #endif
1038 	}
1039 
1040 	*sidp = UBSEC_SID(device_get_unit(sc->sc_dev), sesn);
1041 	return (0);
1042 }
1043 
1044 /*
1045  * Deallocate a session.
1046  */
1047 static int
1048 ubsec_freesession(void *arg, u_int64_t tid)
1049 {
1050 	struct ubsec_softc *sc = arg;
1051 	int session;
1052 	u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
1053 
1054 	KASSERT(sc != NULL, ("ubsec_freesession: null softc"));
1055 	if (sc == NULL)
1056 		return (EINVAL);
1057 
1058 	session = UBSEC_SESSION(sid);
1059 	if (session >= sc->sc_nsessions)
1060 		return (EINVAL);
1061 
1062 	bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
1063 	return (0);
1064 }
1065 
1066 static void
1067 ubsec_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
1068 {
1069 	struct ubsec_operand *op = arg;
1070 
1071 	KASSERT(nsegs <= UBS_MAX_SCATTER,
1072 		("Too many DMA segments returned when mapping operand"));
1073 #ifdef UBSEC_DEBUG
1074 	if (ubsec_debug)
1075 		kprintf("ubsec_op_cb: mapsize %u nsegs %d\n",
1076 			(u_int) mapsize, nsegs);
1077 #endif
1078 	op->mapsize = mapsize;
1079 	op->nsegs = nsegs;
1080 	bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
1081 }
1082 
1083 static int
1084 ubsec_process(void *arg, struct cryptop *crp, int hint)
1085 {
1086 	struct ubsec_q *q = NULL;
1087 	int err = 0, i, j, nicealign;
1088 	struct ubsec_softc *sc = arg;
1089 	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
1090 	int encoffset = 0, macoffset = 0, cpskip, cpoffset;
1091 	int sskip, dskip, stheend, dtheend;
1092 	int16_t coffset;
1093 	struct ubsec_session *ses;
1094 	struct ubsec_pktctx ctx;
1095 	struct ubsec_dma *dmap = NULL;
1096 
1097 	if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
1098 		ubsecstats.hst_invalid++;
1099 		return (EINVAL);
1100 	}
1101 	if (UBSEC_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
1102 		ubsecstats.hst_badsession++;
1103 		return (EINVAL);
1104 	}
1105 
1106 	crit_enter();
1107 
1108 	if (SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
1109 		ubsecstats.hst_queuefull++;
1110 		sc->sc_needwakeup |= CRYPTO_SYMQ;
1111 		crit_exit();
1112 		return (ERESTART);
1113 	}
1114 	q = SIMPLEQ_FIRST(&sc->sc_freequeue);
1115 	SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, q_next);
1116 	crit_exit();
1117 
1118 	dmap = q->q_dma; /* Save dma pointer */
1119 	bzero(q, sizeof(struct ubsec_q));
1120 	bzero(&ctx, sizeof(ctx));
1121 
1122 	q->q_sesn = UBSEC_SESSION(crp->crp_sid);
1123 	q->q_dma = dmap;
1124 	ses = &sc->sc_sessions[q->q_sesn];
1125 
1126 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1127 		q->q_src_m = (struct mbuf *)crp->crp_buf;
1128 		q->q_dst_m = (struct mbuf *)crp->crp_buf;
1129 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1130 		q->q_src_io = (struct uio *)crp->crp_buf;
1131 		q->q_dst_io = (struct uio *)crp->crp_buf;
1132 	} else {
1133 		ubsecstats.hst_badflags++;
1134 		err = EINVAL;
1135 		goto errout;	/* XXX we don't handle contiguous blocks! */
1136 	}
1137 
1138 	bzero(&dmap->d_dma->d_mcr, sizeof(struct ubsec_mcr));
1139 
1140 	dmap->d_dma->d_mcr.mcr_pkts = htole16(1);
1141 	dmap->d_dma->d_mcr.mcr_flags = 0;
1142 	q->q_crp = crp;
1143 
1144 	crd1 = crp->crp_desc;
1145 	if (crd1 == NULL) {
1146 		ubsecstats.hst_nodesc++;
1147 		err = EINVAL;
1148 		goto errout;
1149 	}
1150 	crd2 = crd1->crd_next;
1151 
1152 	if (crd2 == NULL) {
1153 		if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
1154 		    crd1->crd_alg == CRYPTO_SHA1_HMAC) {
1155 			maccrd = crd1;
1156 			enccrd = NULL;
1157 		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
1158 		    crd1->crd_alg == CRYPTO_3DES_CBC) {
1159 			maccrd = NULL;
1160 			enccrd = crd1;
1161 		} else {
1162 			ubsecstats.hst_badalg++;
1163 			err = EINVAL;
1164 			goto errout;
1165 		}
1166 	} else {
1167 		if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
1168 		    crd1->crd_alg == CRYPTO_SHA1_HMAC) &&
1169 		    (crd2->crd_alg == CRYPTO_DES_CBC ||
1170 			crd2->crd_alg == CRYPTO_3DES_CBC) &&
1171 		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
1172 			maccrd = crd1;
1173 			enccrd = crd2;
1174 		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
1175 		    crd1->crd_alg == CRYPTO_3DES_CBC) &&
1176 		    (crd2->crd_alg == CRYPTO_MD5_HMAC ||
1177 			crd2->crd_alg == CRYPTO_SHA1_HMAC) &&
1178 		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
1179 			enccrd = crd1;
1180 			maccrd = crd2;
1181 		} else {
1182 			/*
1183 			 * We cannot order the ubsec as requested
1184 			 */
1185 			ubsecstats.hst_badalg++;
1186 			err = EINVAL;
1187 			goto errout;
1188 		}
1189 	}
1190 
1191 	if (enccrd) {
1192 		encoffset = enccrd->crd_skip;
1193 		ctx.pc_flags |= htole16(UBS_PKTCTX_ENC_3DES);
1194 
1195 		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1196 			q->q_flags |= UBSEC_QFLAGS_COPYOUTIV;
1197 
1198 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1199 				bcopy(enccrd->crd_iv, ctx.pc_iv, 8);
1200 			else {
1201 				ctx.pc_iv[0] = ses->ses_iv[0];
1202 				ctx.pc_iv[1] = ses->ses_iv[1];
1203 			}
1204 
1205 			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1206 				if (crp->crp_flags & CRYPTO_F_IMBUF)
1207 					m_copyback(q->q_src_m,
1208 					    enccrd->crd_inject,
1209 					    8, (caddr_t)ctx.pc_iv);
1210 				else if (crp->crp_flags & CRYPTO_F_IOV)
1211 					cuio_copyback(q->q_src_io,
1212 					    enccrd->crd_inject,
1213 					    8, (caddr_t)ctx.pc_iv);
1214 			}
1215 		} else {
1216 			ctx.pc_flags |= htole16(UBS_PKTCTX_INBOUND);
1217 
1218 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1219 				bcopy(enccrd->crd_iv, ctx.pc_iv, 8);
1220 			else if (crp->crp_flags & CRYPTO_F_IMBUF)
1221 				m_copydata(q->q_src_m, enccrd->crd_inject,
1222 				    8, (caddr_t)ctx.pc_iv);
1223 			else if (crp->crp_flags & CRYPTO_F_IOV)
1224 				cuio_copydata(q->q_src_io,
1225 				    enccrd->crd_inject, 8,
1226 				    (caddr_t)ctx.pc_iv);
1227 		}
1228 
1229 		ctx.pc_deskey[0] = ses->ses_deskey[0];
1230 		ctx.pc_deskey[1] = ses->ses_deskey[1];
1231 		ctx.pc_deskey[2] = ses->ses_deskey[2];
1232 		ctx.pc_deskey[3] = ses->ses_deskey[3];
1233 		ctx.pc_deskey[4] = ses->ses_deskey[4];
1234 		ctx.pc_deskey[5] = ses->ses_deskey[5];
1235 		SWAP32(ctx.pc_iv[0]);
1236 		SWAP32(ctx.pc_iv[1]);
1237 	}
1238 
1239 	if (maccrd) {
1240 		macoffset = maccrd->crd_skip;
1241 
1242 		if (maccrd->crd_alg == CRYPTO_MD5_HMAC)
1243 			ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_MD5);
1244 		else
1245 			ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_SHA1);
1246 
1247 		for (i = 0; i < 5; i++) {
1248 			ctx.pc_hminner[i] = ses->ses_hminner[i];
1249 			ctx.pc_hmouter[i] = ses->ses_hmouter[i];
1250 
1251 			HTOLE32(ctx.pc_hminner[i]);
1252 			HTOLE32(ctx.pc_hmouter[i]);
1253 		}
1254 	}
1255 
1256 	if (enccrd && maccrd) {
1257 		/*
1258 		 * ubsec cannot handle packets where the end of encryption
1259 		 * and authentication are not the same, or where the
1260 		 * encrypted part begins before the authenticated part.
1261 		 */
1262 		if ((encoffset + enccrd->crd_len) !=
1263 		    (macoffset + maccrd->crd_len)) {
1264 			ubsecstats.hst_lenmismatch++;
1265 			err = EINVAL;
1266 			goto errout;
1267 		}
1268 		if (enccrd->crd_skip < maccrd->crd_skip) {
1269 			ubsecstats.hst_skipmismatch++;
1270 			err = EINVAL;
1271 			goto errout;
1272 		}
1273 		sskip = maccrd->crd_skip;
1274 		cpskip = dskip = enccrd->crd_skip;
1275 		stheend = maccrd->crd_len;
1276 		dtheend = enccrd->crd_len;
1277 		coffset = enccrd->crd_skip - maccrd->crd_skip;
1278 		cpoffset = cpskip + dtheend;
1279 #ifdef UBSEC_DEBUG
1280 		if (ubsec_debug) {
1281 			kprintf("mac: skip %d, len %d, inject %d\n",
1282 			    maccrd->crd_skip, maccrd->crd_len, maccrd->crd_inject);
1283 			kprintf("enc: skip %d, len %d, inject %d\n",
1284 			    enccrd->crd_skip, enccrd->crd_len, enccrd->crd_inject);
1285 			kprintf("src: skip %d, len %d\n", sskip, stheend);
1286 			kprintf("dst: skip %d, len %d\n", dskip, dtheend);
1287 			kprintf("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n",
1288 			    coffset, stheend, cpskip, cpoffset);
1289 		}
1290 #endif
1291 	} else {
1292 		cpskip = dskip = sskip = macoffset + encoffset;
1293 		dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len;
1294 		cpoffset = cpskip + dtheend;
1295 		coffset = 0;
1296 	}
1297 	ctx.pc_offset = htole16(coffset >> 2);
1298 
1299 	if (bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &q->q_src_map)) {
1300 		ubsecstats.hst_nomap++;
1301 		err = ENOMEM;
1302 		goto errout;
1303 	}
1304 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1305 		if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map,
1306 		    q->q_src_m, ubsec_op_cb, &q->q_src, BUS_DMA_NOWAIT) != 0) {
1307 			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1308 			q->q_src_map = NULL;
1309 			ubsecstats.hst_noload++;
1310 			err = ENOMEM;
1311 			goto errout;
1312 		}
1313 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1314 		if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map,
1315 		    q->q_src_io, ubsec_op_cb, &q->q_src, BUS_DMA_NOWAIT) != 0) {
1316 			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1317 			q->q_src_map = NULL;
1318 			ubsecstats.hst_noload++;
1319 			err = ENOMEM;
1320 			goto errout;
1321 		}
1322 	}
1323 	nicealign = ubsec_dmamap_aligned(&q->q_src);
1324 
1325 	dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend);
1326 
1327 #ifdef UBSEC_DEBUG
1328 	if (ubsec_debug)
1329 		kprintf("src skip: %d nicealign: %u\n", sskip, nicealign);
1330 #endif
1331 	for (i = j = 0; i < q->q_src_nsegs; i++) {
1332 		struct ubsec_pktbuf *pb;
1333 		bus_size_t packl = q->q_src_segs[i].ds_len;
1334 		bus_addr_t packp = q->q_src_segs[i].ds_addr;
1335 
1336 		if (sskip >= packl) {
1337 			sskip -= packl;
1338 			continue;
1339 		}
1340 
1341 		packl -= sskip;
1342 		packp += sskip;
1343 		sskip = 0;
1344 
1345 		if (packl > 0xfffc) {
1346 			err = EIO;
1347 			goto errout;
1348 		}
1349 
1350 		if (j == 0)
1351 			pb = &dmap->d_dma->d_mcr.mcr_ipktbuf;
1352 		else
1353 			pb = &dmap->d_dma->d_sbuf[j - 1];
1354 
1355 		pb->pb_addr = htole32(packp);
1356 
1357 		if (stheend) {
1358 			if (packl > stheend) {
1359 				pb->pb_len = htole32(stheend);
1360 				stheend = 0;
1361 			} else {
1362 				pb->pb_len = htole32(packl);
1363 				stheend -= packl;
1364 			}
1365 		} else
1366 			pb->pb_len = htole32(packl);
1367 
1368 		if ((i + 1) == q->q_src_nsegs)
1369 			pb->pb_next = 0;
1370 		else
1371 			pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1372 			    offsetof(struct ubsec_dmachunk, d_sbuf[j]));
1373 		j++;
1374 	}
1375 
1376 	if (enccrd == NULL && maccrd != NULL) {
1377 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0;
1378 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0;
1379 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_next = htole32(dmap->d_alloc.dma_paddr +
1380 		    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1381 #ifdef UBSEC_DEBUG
1382 		if (ubsec_debug)
1383 			kprintf("opkt: %x %x %x\n",
1384 			    dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr,
1385 			    dmap->d_dma->d_mcr.mcr_opktbuf.pb_len,
1386 			    dmap->d_dma->d_mcr.mcr_opktbuf.pb_next);
1387 #endif
1388 	} else {
1389 		if (crp->crp_flags & CRYPTO_F_IOV) {
1390 			if (!nicealign) {
1391 				ubsecstats.hst_iovmisaligned++;
1392 				err = EINVAL;
1393 				goto errout;
1394 			}
1395 			if (bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1396 			     &q->q_dst_map)) {
1397 				ubsecstats.hst_nomap++;
1398 				err = ENOMEM;
1399 				goto errout;
1400 			}
1401 			if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map,
1402 			    q->q_dst_io, ubsec_op_cb, &q->q_dst, BUS_DMA_NOWAIT) != 0) {
1403 				bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1404 				q->q_dst_map = NULL;
1405 				ubsecstats.hst_noload++;
1406 				err = ENOMEM;
1407 				goto errout;
1408 			}
1409 		} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1410 			if (nicealign) {
1411 				q->q_dst = q->q_src;
1412 			} else {
1413 				int totlen, len;
1414 				struct mbuf *m, *top, **mp;
1415 
1416 				ubsecstats.hst_unaligned++;
1417 				totlen = q->q_src_mapsize;
1418 				if (q->q_src_m->m_flags & M_PKTHDR) {
1419 					len = MHLEN;
1420 					MGETHDR(m, MB_DONTWAIT, MT_DATA);
1421 					if (m && !m_dup_pkthdr(m, q->q_src_m, MB_DONTWAIT)) {
1422 						m_free(m);
1423 						m = NULL;
1424 					}
1425 				} else {
1426 					len = MLEN;
1427 					MGET(m, MB_DONTWAIT, MT_DATA);
1428 				}
1429 				if (m == NULL) {
1430 					ubsecstats.hst_nombuf++;
1431 					err = sc->sc_nqueue ? ERESTART : ENOMEM;
1432 					goto errout;
1433 				}
1434 				if (totlen >= MINCLSIZE) {
1435 					MCLGET(m, MB_DONTWAIT);
1436 					if ((m->m_flags & M_EXT) == 0) {
1437 						m_free(m);
1438 						ubsecstats.hst_nomcl++;
1439 						err = sc->sc_nqueue ? ERESTART : ENOMEM;
1440 						goto errout;
1441 					}
1442 					len = MCLBYTES;
1443 				}
1444 				m->m_len = len;
1445 				top = NULL;
1446 				mp = &top;
1447 
1448 				while (totlen > 0) {
1449 					if (top) {
1450 						MGET(m, MB_DONTWAIT, MT_DATA);
1451 						if (m == NULL) {
1452 							m_freem(top);
1453 							ubsecstats.hst_nombuf++;
1454 							err = sc->sc_nqueue ? ERESTART : ENOMEM;
1455 							goto errout;
1456 						}
1457 						len = MLEN;
1458 					}
1459 					if (top && totlen >= MINCLSIZE) {
1460 						MCLGET(m, MB_DONTWAIT);
1461 						if ((m->m_flags & M_EXT) == 0) {
1462 							*mp = m;
1463 							m_freem(top);
1464 							ubsecstats.hst_nomcl++;
1465 							err = sc->sc_nqueue ? ERESTART : ENOMEM;
1466 							goto errout;
1467 						}
1468 						len = MCLBYTES;
1469 					}
1470 					m->m_len = len = min(totlen, len);
1471 					totlen -= len;
1472 					*mp = m;
1473 					mp = &m->m_next;
1474 				}
1475 				q->q_dst_m = top;
1476 				ubsec_mcopy(q->q_src_m, q->q_dst_m,
1477 				    cpskip, cpoffset);
1478 				if (bus_dmamap_create(sc->sc_dmat,
1479 				    BUS_DMA_NOWAIT, &q->q_dst_map) != 0) {
1480 					ubsecstats.hst_nomap++;
1481 					err = ENOMEM;
1482 					goto errout;
1483 				}
1484 				if (bus_dmamap_load_mbuf(sc->sc_dmat,
1485 				    q->q_dst_map, q->q_dst_m,
1486 				    ubsec_op_cb, &q->q_dst,
1487 				    BUS_DMA_NOWAIT) != 0) {
1488 					bus_dmamap_destroy(sc->sc_dmat,
1489 					q->q_dst_map);
1490 					q->q_dst_map = NULL;
1491 					ubsecstats.hst_noload++;
1492 					err = ENOMEM;
1493 					goto errout;
1494 				}
1495 			}
1496 		} else {
1497 			ubsecstats.hst_badflags++;
1498 			err = EINVAL;
1499 			goto errout;
1500 		}
1501 
1502 #ifdef UBSEC_DEBUG
1503 		if (ubsec_debug)
1504 			kprintf("dst skip: %d\n", dskip);
1505 #endif
1506 		for (i = j = 0; i < q->q_dst_nsegs; i++) {
1507 			struct ubsec_pktbuf *pb;
1508 			bus_size_t packl = q->q_dst_segs[i].ds_len;
1509 			bus_addr_t packp = q->q_dst_segs[i].ds_addr;
1510 
1511 			if (dskip >= packl) {
1512 				dskip -= packl;
1513 				continue;
1514 			}
1515 
1516 			packl -= dskip;
1517 			packp += dskip;
1518 			dskip = 0;
1519 
1520 			if (packl > 0xfffc) {
1521 				err = EIO;
1522 				goto errout;
1523 			}
1524 
1525 			if (j == 0)
1526 				pb = &dmap->d_dma->d_mcr.mcr_opktbuf;
1527 			else
1528 				pb = &dmap->d_dma->d_dbuf[j - 1];
1529 
1530 			pb->pb_addr = htole32(packp);
1531 
1532 			if (dtheend) {
1533 				if (packl > dtheend) {
1534 					pb->pb_len = htole32(dtheend);
1535 					dtheend = 0;
1536 				} else {
1537 					pb->pb_len = htole32(packl);
1538 					dtheend -= packl;
1539 				}
1540 			} else
1541 				pb->pb_len = htole32(packl);
1542 
1543 			if ((i + 1) == q->q_dst_nsegs) {
1544 				if (maccrd)
1545 					pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1546 					    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1547 				else
1548 					pb->pb_next = 0;
1549 			} else
1550 				pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1551 				    offsetof(struct ubsec_dmachunk, d_dbuf[j]));
1552 			j++;
1553 		}
1554 	}
1555 
1556 	dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr +
1557 	    offsetof(struct ubsec_dmachunk, d_ctx));
1558 
1559 	if (sc->sc_flags & UBS_FLAGS_LONGCTX) {
1560 		struct ubsec_pktctx_long *ctxl;
1561 
1562 		ctxl = (struct ubsec_pktctx_long *)(dmap->d_alloc.dma_vaddr +
1563 		    offsetof(struct ubsec_dmachunk, d_ctx));
1564 
1565 		/* transform small context into long context */
1566 		ctxl->pc_len = htole16(sizeof(struct ubsec_pktctx_long));
1567 		ctxl->pc_type = htole16(UBS_PKTCTX_TYPE_IPSEC);
1568 		ctxl->pc_flags = ctx.pc_flags;
1569 		ctxl->pc_offset = ctx.pc_offset;
1570 		for (i = 0; i < 6; i++)
1571 			ctxl->pc_deskey[i] = ctx.pc_deskey[i];
1572 		for (i = 0; i < 5; i++)
1573 			ctxl->pc_hminner[i] = ctx.pc_hminner[i];
1574 		for (i = 0; i < 5; i++)
1575 			ctxl->pc_hmouter[i] = ctx.pc_hmouter[i];
1576 		ctxl->pc_iv[0] = ctx.pc_iv[0];
1577 		ctxl->pc_iv[1] = ctx.pc_iv[1];
1578 	} else
1579 		bcopy(&ctx, dmap->d_alloc.dma_vaddr +
1580 		    offsetof(struct ubsec_dmachunk, d_ctx),
1581 		    sizeof(struct ubsec_pktctx));
1582 
1583 	crit_enter();
1584 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next);
1585 	sc->sc_nqueue++;
1586 	ubsecstats.hst_ipackets++;
1587 	ubsecstats.hst_ibytes += dmap->d_alloc.dma_size;
1588 	if ((hint & CRYPTO_HINT_MORE) == 0 || sc->sc_nqueue >= UBS_MAX_AGGR)
1589 		ubsec_feed(sc);
1590 	crit_exit();
1591 	return (0);
1592 
1593 errout:
1594 	if (q != NULL) {
1595 		if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
1596 			m_freem(q->q_dst_m);
1597 
1598 		if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1599 			bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1600 			bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1601 		}
1602 		if (q->q_src_map != NULL) {
1603 			bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1604 			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1605 		}
1606 
1607 		crit_enter();
1608 		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1609 		crit_exit();
1610 	}
1611 	if (err != ERESTART) {
1612 		crp->crp_etype = err;
1613 		crypto_done(crp);
1614 	} else {
1615 		sc->sc_needwakeup |= CRYPTO_SYMQ;
1616 	}
1617 	return (err);
1618 }
1619 
1620 static void
1621 ubsec_callback(struct ubsec_softc *sc, struct ubsec_q *q)
1622 {
1623 	struct cryptop *crp = (struct cryptop *)q->q_crp;
1624 	struct cryptodesc *crd;
1625 	struct ubsec_dma *dmap = q->q_dma;
1626 
1627 	ubsecstats.hst_opackets++;
1628 	ubsecstats.hst_obytes += dmap->d_alloc.dma_size;
1629 
1630 	ubsec_dma_sync(&dmap->d_alloc,
1631 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1632 	if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1633 		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
1634 		    BUS_DMASYNC_POSTREAD);
1635 		bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1636 		bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1637 	}
1638 	bus_dmamap_sync(sc->sc_dmat, q->q_src_map, BUS_DMASYNC_POSTWRITE);
1639 	bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1640 	bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1641 
1642 	if ((crp->crp_flags & CRYPTO_F_IMBUF) && (q->q_src_m != q->q_dst_m)) {
1643 		m_freem(q->q_src_m);
1644 		crp->crp_buf = (caddr_t)q->q_dst_m;
1645 	}
1646 	ubsecstats.hst_obytes += ((struct mbuf *)crp->crp_buf)->m_len;
1647 
1648 	/* copy out IV for future use */
1649 	if (q->q_flags & UBSEC_QFLAGS_COPYOUTIV) {
1650 		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1651 			if (crd->crd_alg != CRYPTO_DES_CBC &&
1652 			    crd->crd_alg != CRYPTO_3DES_CBC)
1653 				continue;
1654 			if (crp->crp_flags & CRYPTO_F_IMBUF)
1655 				m_copydata((struct mbuf *)crp->crp_buf,
1656 				    crd->crd_skip + crd->crd_len - 8, 8,
1657 				    (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1658 			else if (crp->crp_flags & CRYPTO_F_IOV) {
1659 				cuio_copydata((struct uio *)crp->crp_buf,
1660 				    crd->crd_skip + crd->crd_len - 8, 8,
1661 				    (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1662 			}
1663 			break;
1664 		}
1665 	}
1666 
1667 	for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1668 		if (crd->crd_alg != CRYPTO_MD5_HMAC &&
1669 		    crd->crd_alg != CRYPTO_SHA1_HMAC)
1670 			continue;
1671 		crypto_copyback(crp->crp_flags, crp->crp_buf, crd->crd_inject,
1672 		    sc->sc_sessions[q->q_sesn].ses_mlen,
1673 		    (caddr_t)dmap->d_dma->d_macbuf);
1674 #if 0
1675 		if (crp->crp_flags & CRYPTO_F_IMBUF)
1676 			m_copyback((struct mbuf *)crp->crp_buf,
1677 			    crd->crd_inject, 12,
1678 			    (caddr_t)dmap->d_dma->d_macbuf);
1679 		else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac)
1680 			bcopy((caddr_t)dmap->d_dma->d_macbuf,
1681 			    crp->crp_mac, 12);
1682 		break;
1683 #endif
1684 	}
1685 	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1686 	crypto_done(crp);
1687 }
1688 
1689 static void
1690 ubsec_mcopy(struct mbuf *srcm, struct mbuf *dstm, int hoffset, int toffset)
1691 {
1692 	int i, j, dlen, slen;
1693 	caddr_t dptr, sptr;
1694 
1695 	j = 0;
1696 	sptr = srcm->m_data;
1697 	slen = srcm->m_len;
1698 	dptr = dstm->m_data;
1699 	dlen = dstm->m_len;
1700 
1701 	while (1) {
1702 		for (i = 0; i < min(slen, dlen); i++) {
1703 			if (j < hoffset || j >= toffset)
1704 				*dptr++ = *sptr++;
1705 			slen--;
1706 			dlen--;
1707 			j++;
1708 		}
1709 		if (slen == 0) {
1710 			srcm = srcm->m_next;
1711 			if (srcm == NULL)
1712 				return;
1713 			sptr = srcm->m_data;
1714 			slen = srcm->m_len;
1715 		}
1716 		if (dlen == 0) {
1717 			dstm = dstm->m_next;
1718 			if (dstm == NULL)
1719 				return;
1720 			dptr = dstm->m_data;
1721 			dlen = dstm->m_len;
1722 		}
1723 	}
1724 }
1725 
1726 /*
1727  * feed the key generator, must be called at splimp() or higher.
1728  */
1729 static int
1730 ubsec_feed2(struct ubsec_softc *sc)
1731 {
1732 	struct ubsec_q2 *q;
1733 
1734 	while (!SIMPLEQ_EMPTY(&sc->sc_queue2)) {
1735 		if (READ_REG(sc, BS_STAT) & BS_STAT_MCR2_FULL)
1736 			break;
1737 		q = SIMPLEQ_FIRST(&sc->sc_queue2);
1738 
1739 		ubsec_dma_sync(&q->q_mcr,
1740 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1741 		ubsec_dma_sync(&q->q_ctx, BUS_DMASYNC_PREWRITE);
1742 
1743 		WRITE_REG(sc, BS_MCR2, q->q_mcr.dma_paddr);
1744 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue2, q_next);
1745 		--sc->sc_nqueue2;
1746 		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip2, q, q_next);
1747 	}
1748 	return (0);
1749 }
1750 
1751 /*
1752  * Callback for handling random numbers
1753  */
1754 static void
1755 ubsec_callback2(struct ubsec_softc *sc, struct ubsec_q2 *q)
1756 {
1757 	struct cryptkop *krp;
1758 	struct ubsec_ctx_keyop *ctx;
1759 
1760 	ctx = (struct ubsec_ctx_keyop *)q->q_ctx.dma_vaddr;
1761 	ubsec_dma_sync(&q->q_ctx, BUS_DMASYNC_POSTWRITE);
1762 
1763 	switch (q->q_type) {
1764 #ifndef UBSEC_NO_RNG
1765 	case UBS_CTXOP_RNGBYPASS: {
1766 		struct ubsec_q2_rng *rng = (struct ubsec_q2_rng *)q;
1767 
1768 		ubsec_dma_sync(&rng->rng_buf, BUS_DMASYNC_POSTREAD);
1769 		(*sc->sc_harvest)(sc->sc_rndtest,
1770 			rng->rng_buf.dma_vaddr,
1771 			UBSEC_RNG_BUFSIZ*sizeof (u_int32_t));
1772 		rng->rng_used = 0;
1773 		callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
1774 		break;
1775 	}
1776 #endif
1777 	case UBS_CTXOP_MODEXP: {
1778 		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
1779 		u_int rlen, clen;
1780 
1781 		krp = me->me_krp;
1782 		rlen = (me->me_modbits + 7) / 8;
1783 		clen = (krp->krp_param[krp->krp_iparams].crp_nbits + 7) / 8;
1784 
1785 		ubsec_dma_sync(&me->me_M, BUS_DMASYNC_POSTWRITE);
1786 		ubsec_dma_sync(&me->me_E, BUS_DMASYNC_POSTWRITE);
1787 		ubsec_dma_sync(&me->me_C, BUS_DMASYNC_POSTREAD);
1788 		ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_POSTWRITE);
1789 
1790 		if (clen < rlen)
1791 			krp->krp_status = E2BIG;
1792 		else {
1793 			if (sc->sc_flags & UBS_FLAGS_HWNORM) {
1794 				bzero(krp->krp_param[krp->krp_iparams].crp_p,
1795 				    (krp->krp_param[krp->krp_iparams].crp_nbits
1796 					+ 7) / 8);
1797 				bcopy(me->me_C.dma_vaddr,
1798 				    krp->krp_param[krp->krp_iparams].crp_p,
1799 				    (me->me_modbits + 7) / 8);
1800 			} else
1801 				ubsec_kshift_l(me->me_shiftbits,
1802 				    me->me_C.dma_vaddr, me->me_normbits,
1803 				    krp->krp_param[krp->krp_iparams].crp_p,
1804 				    krp->krp_param[krp->krp_iparams].crp_nbits);
1805 		}
1806 
1807 		crypto_kdone(krp);
1808 
1809 		/* bzero all potentially sensitive data */
1810 		bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
1811 		bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
1812 		bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
1813 		bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
1814 
1815 		/* Can't free here, so put us on the free list. */
1816 		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &me->me_q, q_next);
1817 		break;
1818 	}
1819 	case UBS_CTXOP_RSAPRIV: {
1820 		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
1821 		u_int len;
1822 
1823 		krp = rp->rpr_krp;
1824 		ubsec_dma_sync(&rp->rpr_msgin, BUS_DMASYNC_POSTWRITE);
1825 		ubsec_dma_sync(&rp->rpr_msgout, BUS_DMASYNC_POSTREAD);
1826 
1827 		len = (krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_nbits + 7) / 8;
1828 		bcopy(rp->rpr_msgout.dma_vaddr,
1829 		    krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_p, len);
1830 
1831 		crypto_kdone(krp);
1832 
1833 		bzero(rp->rpr_msgin.dma_vaddr, rp->rpr_msgin.dma_size);
1834 		bzero(rp->rpr_msgout.dma_vaddr, rp->rpr_msgout.dma_size);
1835 		bzero(rp->rpr_q.q_ctx.dma_vaddr, rp->rpr_q.q_ctx.dma_size);
1836 
1837 		/* Can't free here, so put us on the free list. */
1838 		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &rp->rpr_q, q_next);
1839 		break;
1840 	}
1841 	default:
1842 		device_printf(sc->sc_dev, "unknown ctx op: %x\n",
1843 		    letoh16(ctx->ctx_op));
1844 		break;
1845 	}
1846 }
1847 
1848 #ifndef UBSEC_NO_RNG
1849 static void
1850 ubsec_rng(void *vsc)
1851 {
1852 	struct ubsec_softc *sc = vsc;
1853 	struct ubsec_q2_rng *rng = &sc->sc_rng;
1854 	struct ubsec_mcr *mcr;
1855 	struct ubsec_ctx_rngbypass *ctx;
1856 
1857 	crit_enter();
1858 	if (rng->rng_used) {
1859 		crit_exit();
1860 		return;
1861 	}
1862 	sc->sc_nqueue2++;
1863 	if (sc->sc_nqueue2 >= UBS_MAX_NQUEUE)
1864 		goto out;
1865 
1866 	mcr = (struct ubsec_mcr *)rng->rng_q.q_mcr.dma_vaddr;
1867 	ctx = (struct ubsec_ctx_rngbypass *)rng->rng_q.q_ctx.dma_vaddr;
1868 
1869 	mcr->mcr_pkts = htole16(1);
1870 	mcr->mcr_flags = 0;
1871 	mcr->mcr_cmdctxp = htole32(rng->rng_q.q_ctx.dma_paddr);
1872 	mcr->mcr_ipktbuf.pb_addr = mcr->mcr_ipktbuf.pb_next = 0;
1873 	mcr->mcr_ipktbuf.pb_len = 0;
1874 	mcr->mcr_reserved = mcr->mcr_pktlen = 0;
1875 	mcr->mcr_opktbuf.pb_addr = htole32(rng->rng_buf.dma_paddr);
1876 	mcr->mcr_opktbuf.pb_len = htole32(((sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ)) &
1877 	    UBS_PKTBUF_LEN);
1878 	mcr->mcr_opktbuf.pb_next = 0;
1879 
1880 	ctx->rbp_len = htole16(sizeof(struct ubsec_ctx_rngbypass));
1881 	ctx->rbp_op = htole16(UBS_CTXOP_RNGBYPASS);
1882 	rng->rng_q.q_type = UBS_CTXOP_RNGBYPASS;
1883 
1884 	ubsec_dma_sync(&rng->rng_buf, BUS_DMASYNC_PREREAD);
1885 
1886 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rng->rng_q, q_next);
1887 	rng->rng_used = 1;
1888 	ubsec_feed2(sc);
1889 	ubsecstats.hst_rng++;
1890 	crit_exit();
1891 
1892 	return;
1893 
1894 out:
1895 	/*
1896 	 * Something weird happened, generate our own call back.
1897 	 */
1898 	sc->sc_nqueue2--;
1899 	crit_exit();
1900 	callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
1901 }
1902 #endif /* UBSEC_NO_RNG */
1903 
1904 static void
1905 ubsec_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1906 {
1907 	bus_addr_t *paddr = (bus_addr_t*) arg;
1908 	*paddr = segs->ds_addr;
1909 }
1910 
1911 static int
1912 ubsec_dma_malloc(
1913 	struct ubsec_softc *sc,
1914 	bus_size_t size,
1915 	struct ubsec_dma_alloc *dma,
1916 	int mapflags
1917 )
1918 {
1919 	int r;
1920 
1921 	/* XXX could specify sc_dmat as parent but that just adds overhead */
1922 	r = bus_dma_tag_create(NULL,			/* parent */
1923 			       1, 0,			/* alignment, bounds */
1924 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1925 			       BUS_SPACE_MAXADDR,	/* highaddr */
1926 			       NULL, NULL,		/* filter, filterarg */
1927 			       size,			/* maxsize */
1928 			       1,			/* nsegments */
1929 			       size,			/* maxsegsize */
1930 			       BUS_DMA_ALLOCNOW,	/* flags */
1931 			       &dma->dma_tag);
1932 	if (r != 0) {
1933 		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1934 			"bus_dma_tag_create failed; error %u\n", r);
1935 		goto fail_0;
1936 	}
1937 
1938 	r = bus_dmamap_create(dma->dma_tag, BUS_DMA_NOWAIT, &dma->dma_map);
1939 	if (r != 0) {
1940 		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1941 			"bus_dmamap_create failed; error %u\n", r);
1942 		goto fail_1;
1943 	}
1944 
1945 	r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
1946 			     BUS_DMA_NOWAIT, &dma->dma_map);
1947 	if (r != 0) {
1948 		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1949 			"bus_dmammem_alloc failed; size %ju, error %u\n",
1950 			(intmax_t)size, r);
1951 		goto fail_2;
1952 	}
1953 
1954 	r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
1955 		            size,
1956 			    ubsec_dmamap_cb,
1957 			    &dma->dma_paddr,
1958 			    mapflags | BUS_DMA_NOWAIT);
1959 	if (r != 0) {
1960 		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1961 			"bus_dmamap_load failed; error %u\n", r);
1962 		goto fail_3;
1963 	}
1964 
1965 	dma->dma_size = size;
1966 	return (0);
1967 
1968 fail_3:
1969 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1970 fail_2:
1971 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1972 fail_1:
1973 	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1974 	bus_dma_tag_destroy(dma->dma_tag);
1975 fail_0:
1976 	dma->dma_map = NULL;
1977 	dma->dma_tag = NULL;
1978 	return (r);
1979 }
1980 
1981 static void
1982 ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma)
1983 {
1984 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1985 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1986 	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1987 	bus_dma_tag_destroy(dma->dma_tag);
1988 }
1989 
1990 /*
1991  * Resets the board.  Values in the regesters are left as is
1992  * from the reset (i.e. initial values are assigned elsewhere).
1993  */
1994 static void
1995 ubsec_reset_board(struct ubsec_softc *sc)
1996 {
1997     volatile u_int32_t ctrl;
1998 
1999     ctrl = READ_REG(sc, BS_CTRL);
2000     ctrl |= BS_CTRL_RESET;
2001     WRITE_REG(sc, BS_CTRL, ctrl);
2002 
2003     /*
2004      * Wait aprox. 30 PCI clocks = 900 ns = 0.9 us
2005      */
2006     DELAY(10);
2007 }
2008 
2009 /*
2010  * Init Broadcom registers
2011  */
2012 static void
2013 ubsec_init_board(struct ubsec_softc *sc)
2014 {
2015 	u_int32_t ctrl;
2016 
2017 	ctrl = READ_REG(sc, BS_CTRL);
2018 	ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64);
2019 	ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT;
2020 
2021 	if (sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG))
2022 		ctrl |= BS_CTRL_MCR2INT;
2023 	else
2024 		ctrl &= ~BS_CTRL_MCR2INT;
2025 
2026 	if (sc->sc_flags & UBS_FLAGS_HWNORM)
2027 		ctrl &= ~BS_CTRL_SWNORM;
2028 
2029 	WRITE_REG(sc, BS_CTRL, ctrl);
2030 }
2031 
2032 /*
2033  * Init Broadcom PCI registers
2034  */
2035 static void
2036 ubsec_init_pciregs(device_t dev)
2037 {
2038 #if 0
2039 	u_int32_t misc;
2040 
2041 	misc = pci_conf_read(pc, pa->pa_tag, BS_RTY_TOUT);
2042 	misc = (misc & ~(UBS_PCI_RTY_MASK << UBS_PCI_RTY_SHIFT))
2043 	    | ((UBS_DEF_RTY & 0xff) << UBS_PCI_RTY_SHIFT);
2044 	misc = (misc & ~(UBS_PCI_TOUT_MASK << UBS_PCI_TOUT_SHIFT))
2045 	    | ((UBS_DEF_TOUT & 0xff) << UBS_PCI_TOUT_SHIFT);
2046 	pci_conf_write(pc, pa->pa_tag, BS_RTY_TOUT, misc);
2047 #endif
2048 
2049 	/*
2050 	 * This will set the cache line size to 1, this will
2051 	 * force the BCM58xx chip just to do burst read/writes.
2052 	 * Cache line read/writes are to slow
2053 	 */
2054 	pci_write_config(dev, PCIR_CACHELNSZ, UBS_DEF_CACHELINE, 1);
2055 }
2056 
2057 /*
2058  * Clean up after a chip crash.
2059  * It is assumed that the caller in splimp()
2060  */
2061 static void
2062 ubsec_cleanchip(struct ubsec_softc *sc)
2063 {
2064 	struct ubsec_q *q;
2065 
2066 	while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
2067 		q = SIMPLEQ_FIRST(&sc->sc_qchip);
2068 		SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q_next);
2069 		ubsec_free_q(sc, q);
2070 	}
2071 	sc->sc_nqchip = 0;
2072 }
2073 
2074 /*
2075  * free a ubsec_q
2076  * It is assumed that the caller is within spimp()
2077  */
2078 static int
2079 ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q)
2080 {
2081 	struct ubsec_q *q2;
2082 	struct cryptop *crp;
2083 	int npkts;
2084 	int i;
2085 
2086 	npkts = q->q_nstacked_mcrs;
2087 
2088 	for (i = 0; i < npkts; i++) {
2089 		if(q->q_stacked_mcr[i]) {
2090 			q2 = q->q_stacked_mcr[i];
2091 
2092 			if ((q2->q_dst_m != NULL) && (q2->q_src_m != q2->q_dst_m))
2093 				m_freem(q2->q_dst_m);
2094 
2095 			crp = (struct cryptop *)q2->q_crp;
2096 
2097 			SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next);
2098 
2099 			crp->crp_etype = EFAULT;
2100 			crypto_done(crp);
2101 		} else {
2102 			break;
2103 		}
2104 	}
2105 
2106 	/*
2107 	 * Free header MCR
2108 	 */
2109 	if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
2110 		m_freem(q->q_dst_m);
2111 
2112 	crp = (struct cryptop *)q->q_crp;
2113 
2114 	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
2115 
2116 	crp->crp_etype = EFAULT;
2117 	crypto_done(crp);
2118 	return(0);
2119 }
2120 
2121 /*
2122  * Routine to reset the chip and clean up.
2123  * It is assumed that the caller is in splimp()
2124  */
2125 static void
2126 ubsec_totalreset(struct ubsec_softc *sc)
2127 {
2128 	ubsec_reset_board(sc);
2129 	ubsec_init_board(sc);
2130 	ubsec_cleanchip(sc);
2131 }
2132 
2133 static int
2134 ubsec_dmamap_aligned(struct ubsec_operand *op)
2135 {
2136 	int i;
2137 
2138 	for (i = 0; i < op->nsegs; i++) {
2139 		if (op->segs[i].ds_addr & 3)
2140 			return (0);
2141 		if ((i != (op->nsegs - 1)) &&
2142 		    (op->segs[i].ds_len & 3))
2143 			return (0);
2144 	}
2145 	return (1);
2146 }
2147 
2148 static void
2149 ubsec_kfree(struct ubsec_softc *sc, struct ubsec_q2 *q)
2150 {
2151 	switch (q->q_type) {
2152 	case UBS_CTXOP_MODEXP: {
2153 		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
2154 
2155 		ubsec_dma_free(sc, &me->me_q.q_mcr);
2156 		ubsec_dma_free(sc, &me->me_q.q_ctx);
2157 		ubsec_dma_free(sc, &me->me_M);
2158 		ubsec_dma_free(sc, &me->me_E);
2159 		ubsec_dma_free(sc, &me->me_C);
2160 		ubsec_dma_free(sc, &me->me_epb);
2161 		kfree(me, M_DEVBUF);
2162 		break;
2163 	}
2164 	case UBS_CTXOP_RSAPRIV: {
2165 		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
2166 
2167 		ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2168 		ubsec_dma_free(sc, &rp->rpr_q.q_ctx);
2169 		ubsec_dma_free(sc, &rp->rpr_msgin);
2170 		ubsec_dma_free(sc, &rp->rpr_msgout);
2171 		kfree(rp, M_DEVBUF);
2172 		break;
2173 	}
2174 	default:
2175 		device_printf(sc->sc_dev, "invalid kfree 0x%x\n", q->q_type);
2176 		break;
2177 	}
2178 }
2179 
2180 static int
2181 ubsec_kprocess(void *arg, struct cryptkop *krp, int hint)
2182 {
2183 	struct ubsec_softc *sc = arg;
2184 	int r;
2185 
2186 	if (krp == NULL || krp->krp_callback == NULL)
2187 		return (EINVAL);
2188 
2189 	while (!SIMPLEQ_EMPTY(&sc->sc_q2free)) {
2190 		struct ubsec_q2 *q;
2191 
2192 		q = SIMPLEQ_FIRST(&sc->sc_q2free);
2193 		SIMPLEQ_REMOVE_HEAD(&sc->sc_q2free, q_next);
2194 		ubsec_kfree(sc, q);
2195 	}
2196 
2197 	switch (krp->krp_op) {
2198 	case CRK_MOD_EXP:
2199 		if (sc->sc_flags & UBS_FLAGS_HWNORM)
2200 			r = ubsec_kprocess_modexp_hw(sc, krp, hint);
2201 		else
2202 			r = ubsec_kprocess_modexp_sw(sc, krp, hint);
2203 		break;
2204 	case CRK_MOD_EXP_CRT:
2205 		return (ubsec_kprocess_rsapriv(sc, krp, hint));
2206 	default:
2207 		device_printf(sc->sc_dev, "kprocess: invalid op 0x%x\n",
2208 		    krp->krp_op);
2209 		krp->krp_status = EOPNOTSUPP;
2210 		crypto_kdone(krp);
2211 		return (0);
2212 	}
2213 	return (0);			/* silence compiler */
2214 }
2215 
2216 /*
2217  * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (sw normalization)
2218  */
2219 static int
2220 ubsec_kprocess_modexp_sw(struct ubsec_softc *sc, struct cryptkop *krp, int hint)
2221 {
2222 	struct ubsec_q2_modexp *me;
2223 	struct ubsec_mcr *mcr;
2224 	struct ubsec_ctx_modexp *ctx;
2225 	struct ubsec_pktbuf *epb;
2226 	int err = 0;
2227 	u_int nbits, normbits, mbits, shiftbits, ebits;
2228 
2229 	me = kmalloc(sizeof *me, M_DEVBUF, M_INTWAIT | M_ZERO);
2230 	me->me_krp = krp;
2231 	me->me_q.q_type = UBS_CTXOP_MODEXP;
2232 
2233 	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2234 	if (nbits <= 512)
2235 		normbits = 512;
2236 	else if (nbits <= 768)
2237 		normbits = 768;
2238 	else if (nbits <= 1024)
2239 		normbits = 1024;
2240 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2241 		normbits = 1536;
2242 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2243 		normbits = 2048;
2244 	else {
2245 		err = E2BIG;
2246 		goto errout;
2247 	}
2248 
2249 	shiftbits = normbits - nbits;
2250 
2251 	me->me_modbits = nbits;
2252 	me->me_shiftbits = shiftbits;
2253 	me->me_normbits = normbits;
2254 
2255 	/* Sanity check: result bits must be >= true modulus bits. */
2256 	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2257 		err = ERANGE;
2258 		goto errout;
2259 	}
2260 
2261 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2262 	    &me->me_q.q_mcr, 0)) {
2263 		err = ENOMEM;
2264 		goto errout;
2265 	}
2266 	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2267 
2268 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2269 	    &me->me_q.q_ctx, 0)) {
2270 		err = ENOMEM;
2271 		goto errout;
2272 	}
2273 
2274 	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2275 	if (mbits > nbits) {
2276 		err = E2BIG;
2277 		goto errout;
2278 	}
2279 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2280 		err = ENOMEM;
2281 		goto errout;
2282 	}
2283 	ubsec_kshift_r(shiftbits,
2284 	    krp->krp_param[UBS_MODEXP_PAR_M].crp_p, mbits,
2285 	    me->me_M.dma_vaddr, normbits);
2286 
2287 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2288 		err = ENOMEM;
2289 		goto errout;
2290 	}
2291 	bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2292 
2293 	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2294 	if (ebits > nbits) {
2295 		err = E2BIG;
2296 		goto errout;
2297 	}
2298 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2299 		err = ENOMEM;
2300 		goto errout;
2301 	}
2302 	ubsec_kshift_r(shiftbits,
2303 	    krp->krp_param[UBS_MODEXP_PAR_E].crp_p, ebits,
2304 	    me->me_E.dma_vaddr, normbits);
2305 
2306 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2307 	    &me->me_epb, 0)) {
2308 		err = ENOMEM;
2309 		goto errout;
2310 	}
2311 	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2312 	epb->pb_addr = htole32(me->me_E.dma_paddr);
2313 	epb->pb_next = 0;
2314 	epb->pb_len = htole32(normbits / 8);
2315 
2316 #ifdef UBSEC_DEBUG
2317 	if (ubsec_debug) {
2318 		kprintf("Epb ");
2319 		ubsec_dump_pb(epb);
2320 	}
2321 #endif
2322 
2323 	mcr->mcr_pkts = htole16(1);
2324 	mcr->mcr_flags = 0;
2325 	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2326 	mcr->mcr_reserved = 0;
2327 	mcr->mcr_pktlen = 0;
2328 
2329 	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2330 	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2331 	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2332 
2333 	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2334 	mcr->mcr_opktbuf.pb_next = 0;
2335 	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2336 
2337 #ifdef DIAGNOSTIC
2338 	/* Misaligned output buffer will hang the chip. */
2339 	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2340 		panic("%s: modexp invalid addr 0x%x\n",
2341 		    device_get_nameunit(sc->sc_dev),
2342 		    letoh32(mcr->mcr_opktbuf.pb_addr));
2343 	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2344 		panic("%s: modexp invalid len 0x%x\n",
2345 		    device_get_nameunit(sc->sc_dev),
2346 		    letoh32(mcr->mcr_opktbuf.pb_len));
2347 #endif
2348 
2349 	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2350 	bzero(ctx, sizeof(*ctx));
2351 	ubsec_kshift_r(shiftbits,
2352 	    krp->krp_param[UBS_MODEXP_PAR_N].crp_p, nbits,
2353 	    ctx->me_N, normbits);
2354 	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2355 	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2356 	ctx->me_E_len = htole16(nbits);
2357 	ctx->me_N_len = htole16(nbits);
2358 
2359 #ifdef UBSEC_DEBUG
2360 	if (ubsec_debug) {
2361 		ubsec_dump_mcr(mcr);
2362 		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2363 	}
2364 #endif
2365 
2366 	/*
2367 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2368 	 * everything else.
2369 	 */
2370 	ubsec_dma_sync(&me->me_M, BUS_DMASYNC_PREWRITE);
2371 	ubsec_dma_sync(&me->me_E, BUS_DMASYNC_PREWRITE);
2372 	ubsec_dma_sync(&me->me_C, BUS_DMASYNC_PREREAD);
2373 	ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_PREWRITE);
2374 
2375 	/* Enqueue and we're done... */
2376 	crit_enter();
2377 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2378 	ubsec_feed2(sc);
2379 	ubsecstats.hst_modexp++;
2380 	crit_exit();
2381 
2382 	return (0);
2383 
2384 errout:
2385 	if (me != NULL) {
2386 		if (me->me_q.q_mcr.dma_map != NULL)
2387 			ubsec_dma_free(sc, &me->me_q.q_mcr);
2388 		if (me->me_q.q_ctx.dma_map != NULL) {
2389 			bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
2390 			ubsec_dma_free(sc, &me->me_q.q_ctx);
2391 		}
2392 		if (me->me_M.dma_map != NULL) {
2393 			bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
2394 			ubsec_dma_free(sc, &me->me_M);
2395 		}
2396 		if (me->me_E.dma_map != NULL) {
2397 			bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
2398 			ubsec_dma_free(sc, &me->me_E);
2399 		}
2400 		if (me->me_C.dma_map != NULL) {
2401 			bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2402 			ubsec_dma_free(sc, &me->me_C);
2403 		}
2404 		if (me->me_epb.dma_map != NULL)
2405 			ubsec_dma_free(sc, &me->me_epb);
2406 		kfree(me, M_DEVBUF);
2407 	}
2408 	krp->krp_status = err;
2409 	crypto_kdone(krp);
2410 	return (0);
2411 }
2412 
2413 /*
2414  * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (hw normalization)
2415  */
2416 static int
2417 ubsec_kprocess_modexp_hw(struct ubsec_softc *sc, struct cryptkop *krp, int hint)
2418 {
2419 	struct ubsec_q2_modexp *me;
2420 	struct ubsec_mcr *mcr;
2421 	struct ubsec_ctx_modexp *ctx;
2422 	struct ubsec_pktbuf *epb;
2423 	int err = 0;
2424 	u_int nbits, normbits, mbits, shiftbits, ebits;
2425 
2426 	me = kmalloc(sizeof *me, M_DEVBUF, M_INTWAIT | M_ZERO);
2427 	me->me_krp = krp;
2428 	me->me_q.q_type = UBS_CTXOP_MODEXP;
2429 
2430 	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2431 	if (nbits <= 512)
2432 		normbits = 512;
2433 	else if (nbits <= 768)
2434 		normbits = 768;
2435 	else if (nbits <= 1024)
2436 		normbits = 1024;
2437 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2438 		normbits = 1536;
2439 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2440 		normbits = 2048;
2441 	else {
2442 		err = E2BIG;
2443 		goto errout;
2444 	}
2445 
2446 	shiftbits = normbits - nbits;
2447 
2448 	/* XXX ??? */
2449 	me->me_modbits = nbits;
2450 	me->me_shiftbits = shiftbits;
2451 	me->me_normbits = normbits;
2452 
2453 	/* Sanity check: result bits must be >= true modulus bits. */
2454 	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2455 		err = ERANGE;
2456 		goto errout;
2457 	}
2458 
2459 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2460 	    &me->me_q.q_mcr, 0)) {
2461 		err = ENOMEM;
2462 		goto errout;
2463 	}
2464 	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2465 
2466 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2467 	    &me->me_q.q_ctx, 0)) {
2468 		err = ENOMEM;
2469 		goto errout;
2470 	}
2471 
2472 	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2473 	if (mbits > nbits) {
2474 		err = E2BIG;
2475 		goto errout;
2476 	}
2477 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2478 		err = ENOMEM;
2479 		goto errout;
2480 	}
2481 	bzero(me->me_M.dma_vaddr, normbits / 8);
2482 	bcopy(krp->krp_param[UBS_MODEXP_PAR_M].crp_p,
2483 	    me->me_M.dma_vaddr, (mbits + 7) / 8);
2484 
2485 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2486 		err = ENOMEM;
2487 		goto errout;
2488 	}
2489 	bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2490 
2491 	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2492 	if (ebits > nbits) {
2493 		err = E2BIG;
2494 		goto errout;
2495 	}
2496 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2497 		err = ENOMEM;
2498 		goto errout;
2499 	}
2500 	bzero(me->me_E.dma_vaddr, normbits / 8);
2501 	bcopy(krp->krp_param[UBS_MODEXP_PAR_E].crp_p,
2502 	    me->me_E.dma_vaddr, (ebits + 7) / 8);
2503 
2504 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2505 	    &me->me_epb, 0)) {
2506 		err = ENOMEM;
2507 		goto errout;
2508 	}
2509 	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2510 	epb->pb_addr = htole32(me->me_E.dma_paddr);
2511 	epb->pb_next = 0;
2512 	epb->pb_len = htole32((ebits + 7) / 8);
2513 
2514 #ifdef UBSEC_DEBUG
2515 	if (ubsec_debug) {
2516 		kprintf("Epb ");
2517 		ubsec_dump_pb(epb);
2518 	}
2519 #endif
2520 
2521 	mcr->mcr_pkts = htole16(1);
2522 	mcr->mcr_flags = 0;
2523 	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2524 	mcr->mcr_reserved = 0;
2525 	mcr->mcr_pktlen = 0;
2526 
2527 	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2528 	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2529 	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2530 
2531 	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2532 	mcr->mcr_opktbuf.pb_next = 0;
2533 	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2534 
2535 #ifdef DIAGNOSTIC
2536 	/* Misaligned output buffer will hang the chip. */
2537 	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2538 		panic("%s: modexp invalid addr 0x%x\n",
2539 		    device_get_nameunit(sc->sc_dev),
2540 		    letoh32(mcr->mcr_opktbuf.pb_addr));
2541 	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2542 		panic("%s: modexp invalid len 0x%x\n",
2543 		    device_get_nameunit(sc->sc_dev),
2544 		    letoh32(mcr->mcr_opktbuf.pb_len));
2545 #endif
2546 
2547 	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2548 	bzero(ctx, sizeof(*ctx));
2549 	bcopy(krp->krp_param[UBS_MODEXP_PAR_N].crp_p, ctx->me_N,
2550 	    (nbits + 7) / 8);
2551 	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2552 	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2553 	ctx->me_E_len = htole16(ebits);
2554 	ctx->me_N_len = htole16(nbits);
2555 
2556 #ifdef UBSEC_DEBUG
2557 	if (ubsec_debug) {
2558 		ubsec_dump_mcr(mcr);
2559 		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2560 	}
2561 #endif
2562 
2563 	/*
2564 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2565 	 * everything else.
2566 	 */
2567 	ubsec_dma_sync(&me->me_M, BUS_DMASYNC_PREWRITE);
2568 	ubsec_dma_sync(&me->me_E, BUS_DMASYNC_PREWRITE);
2569 	ubsec_dma_sync(&me->me_C, BUS_DMASYNC_PREREAD);
2570 	ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_PREWRITE);
2571 
2572 	/* Enqueue and we're done... */
2573 	crit_enter();
2574 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2575 	ubsec_feed2(sc);
2576 	crit_exit();
2577 
2578 	return (0);
2579 
2580 errout:
2581 	if (me != NULL) {
2582 		if (me->me_q.q_mcr.dma_map != NULL)
2583 			ubsec_dma_free(sc, &me->me_q.q_mcr);
2584 		if (me->me_q.q_ctx.dma_map != NULL) {
2585 			bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
2586 			ubsec_dma_free(sc, &me->me_q.q_ctx);
2587 		}
2588 		if (me->me_M.dma_map != NULL) {
2589 			bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
2590 			ubsec_dma_free(sc, &me->me_M);
2591 		}
2592 		if (me->me_E.dma_map != NULL) {
2593 			bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
2594 			ubsec_dma_free(sc, &me->me_E);
2595 		}
2596 		if (me->me_C.dma_map != NULL) {
2597 			bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2598 			ubsec_dma_free(sc, &me->me_C);
2599 		}
2600 		if (me->me_epb.dma_map != NULL)
2601 			ubsec_dma_free(sc, &me->me_epb);
2602 		kfree(me, M_DEVBUF);
2603 	}
2604 	krp->krp_status = err;
2605 	crypto_kdone(krp);
2606 	return (0);
2607 }
2608 
2609 static int
2610 ubsec_kprocess_rsapriv(struct ubsec_softc *sc, struct cryptkop *krp, int hint)
2611 {
2612 	struct ubsec_q2_rsapriv *rp = NULL;
2613 	struct ubsec_mcr *mcr;
2614 	struct ubsec_ctx_rsapriv *ctx;
2615 	int err = 0;
2616 	u_int padlen, msglen;
2617 
2618 	msglen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_P]);
2619 	padlen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_Q]);
2620 	if (msglen > padlen)
2621 		padlen = msglen;
2622 
2623 	if (padlen <= 256)
2624 		padlen = 256;
2625 	else if (padlen <= 384)
2626 		padlen = 384;
2627 	else if (padlen <= 512)
2628 		padlen = 512;
2629 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 768)
2630 		padlen = 768;
2631 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 1024)
2632 		padlen = 1024;
2633 	else {
2634 		err = E2BIG;
2635 		goto errout;
2636 	}
2637 
2638 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DP]) > padlen) {
2639 		err = E2BIG;
2640 		goto errout;
2641 	}
2642 
2643 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DQ]) > padlen) {
2644 		err = E2BIG;
2645 		goto errout;
2646 	}
2647 
2648 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_PINV]) > padlen) {
2649 		err = E2BIG;
2650 		goto errout;
2651 	}
2652 
2653 	rp = kmalloc(sizeof *rp, M_DEVBUF, M_INTWAIT | M_ZERO);
2654 	rp->rpr_krp = krp;
2655 	rp->rpr_q.q_type = UBS_CTXOP_RSAPRIV;
2656 
2657 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2658 	    &rp->rpr_q.q_mcr, 0)) {
2659 		err = ENOMEM;
2660 		goto errout;
2661 	}
2662 	mcr = (struct ubsec_mcr *)rp->rpr_q.q_mcr.dma_vaddr;
2663 
2664 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rsapriv),
2665 	    &rp->rpr_q.q_ctx, 0)) {
2666 		err = ENOMEM;
2667 		goto errout;
2668 	}
2669 	ctx = (struct ubsec_ctx_rsapriv *)rp->rpr_q.q_ctx.dma_vaddr;
2670 	bzero(ctx, sizeof *ctx);
2671 
2672 	/* Copy in p */
2673 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_P].crp_p,
2674 	    &ctx->rpr_buf[0 * (padlen / 8)],
2675 	    (krp->krp_param[UBS_RSAPRIV_PAR_P].crp_nbits + 7) / 8);
2676 
2677 	/* Copy in q */
2678 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_p,
2679 	    &ctx->rpr_buf[1 * (padlen / 8)],
2680 	    (krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_nbits + 7) / 8);
2681 
2682 	/* Copy in dp */
2683 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_p,
2684 	    &ctx->rpr_buf[2 * (padlen / 8)],
2685 	    (krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_nbits + 7) / 8);
2686 
2687 	/* Copy in dq */
2688 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_p,
2689 	    &ctx->rpr_buf[3 * (padlen / 8)],
2690 	    (krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_nbits + 7) / 8);
2691 
2692 	/* Copy in pinv */
2693 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_p,
2694 	    &ctx->rpr_buf[4 * (padlen / 8)],
2695 	    (krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_nbits + 7) / 8);
2696 
2697 	msglen = padlen * 2;
2698 
2699 	/* Copy in input message (aligned buffer/length). */
2700 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGIN]) > msglen) {
2701 		/* Is this likely? */
2702 		err = E2BIG;
2703 		goto errout;
2704 	}
2705 	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgin, 0)) {
2706 		err = ENOMEM;
2707 		goto errout;
2708 	}
2709 	bzero(rp->rpr_msgin.dma_vaddr, (msglen + 7) / 8);
2710 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_p,
2711 	    rp->rpr_msgin.dma_vaddr,
2712 	    (krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_nbits + 7) / 8);
2713 
2714 	/* Prepare space for output message (aligned buffer/length). */
2715 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT]) < msglen) {
2716 		/* Is this likely? */
2717 		err = E2BIG;
2718 		goto errout;
2719 	}
2720 	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgout, 0)) {
2721 		err = ENOMEM;
2722 		goto errout;
2723 	}
2724 	bzero(rp->rpr_msgout.dma_vaddr, (msglen + 7) / 8);
2725 
2726 	mcr->mcr_pkts = htole16(1);
2727 	mcr->mcr_flags = 0;
2728 	mcr->mcr_cmdctxp = htole32(rp->rpr_q.q_ctx.dma_paddr);
2729 	mcr->mcr_ipktbuf.pb_addr = htole32(rp->rpr_msgin.dma_paddr);
2730 	mcr->mcr_ipktbuf.pb_next = 0;
2731 	mcr->mcr_ipktbuf.pb_len = htole32(rp->rpr_msgin.dma_size);
2732 	mcr->mcr_reserved = 0;
2733 	mcr->mcr_pktlen = htole16(msglen);
2734 	mcr->mcr_opktbuf.pb_addr = htole32(rp->rpr_msgout.dma_paddr);
2735 	mcr->mcr_opktbuf.pb_next = 0;
2736 	mcr->mcr_opktbuf.pb_len = htole32(rp->rpr_msgout.dma_size);
2737 
2738 #ifdef DIAGNOSTIC
2739 	if (rp->rpr_msgin.dma_paddr & 3 || rp->rpr_msgin.dma_size & 3) {
2740 		panic("%s: rsapriv: invalid msgin %x(0x%jx)",
2741 		    device_get_nameunit(sc->sc_dev),
2742 		    rp->rpr_msgin.dma_paddr,
2743 		    (uintmax_t)rp->rpr_msgin.dma_size);
2744 	}
2745 	if (rp->rpr_msgout.dma_paddr & 3 || rp->rpr_msgout.dma_size & 3) {
2746 		panic("%s: rsapriv: invalid msgout %x(0x%jx)",
2747 		    device_get_nameunit(sc->sc_dev),
2748 		    rp->rpr_msgout.dma_paddr,
2749 		    (uintmax_t)rp->rpr_msgout.dma_size);
2750 	}
2751 #endif
2752 
2753 	ctx->rpr_len = (sizeof(u_int16_t) * 4) + (5 * (padlen / 8));
2754 	ctx->rpr_op = htole16(UBS_CTXOP_RSAPRIV);
2755 	ctx->rpr_q_len = htole16(padlen);
2756 	ctx->rpr_p_len = htole16(padlen);
2757 
2758 	/*
2759 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2760 	 * everything else.
2761 	 */
2762 	ubsec_dma_sync(&rp->rpr_msgin, BUS_DMASYNC_PREWRITE);
2763 	ubsec_dma_sync(&rp->rpr_msgout, BUS_DMASYNC_PREREAD);
2764 
2765 	/* Enqueue and we're done... */
2766 	crit_enter();
2767 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rp->rpr_q, q_next);
2768 	ubsec_feed2(sc);
2769 	ubsecstats.hst_modexpcrt++;
2770 	crit_exit();
2771 	return (0);
2772 
2773 errout:
2774 	if (rp != NULL) {
2775 		if (rp->rpr_q.q_mcr.dma_map != NULL)
2776 			ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2777 		if (rp->rpr_msgin.dma_map != NULL) {
2778 			bzero(rp->rpr_msgin.dma_vaddr, rp->rpr_msgin.dma_size);
2779 			ubsec_dma_free(sc, &rp->rpr_msgin);
2780 		}
2781 		if (rp->rpr_msgout.dma_map != NULL) {
2782 			bzero(rp->rpr_msgout.dma_vaddr, rp->rpr_msgout.dma_size);
2783 			ubsec_dma_free(sc, &rp->rpr_msgout);
2784 		}
2785 		kfree(rp, M_DEVBUF);
2786 	}
2787 	krp->krp_status = err;
2788 	crypto_kdone(krp);
2789 	return (0);
2790 }
2791 
2792 #ifdef UBSEC_DEBUG
2793 static void
2794 ubsec_dump_pb(volatile struct ubsec_pktbuf *pb)
2795 {
2796 	kprintf("addr 0x%x (0x%x) next 0x%x\n",
2797 	    pb->pb_addr, pb->pb_len, pb->pb_next);
2798 }
2799 
2800 static void
2801 ubsec_dump_ctx2(struct ubsec_ctx_keyop *c)
2802 {
2803 	kprintf("CTX (0x%x):\n", c->ctx_len);
2804 	switch (letoh16(c->ctx_op)) {
2805 	case UBS_CTXOP_RNGBYPASS:
2806 	case UBS_CTXOP_RNGSHA1:
2807 		break;
2808 	case UBS_CTXOP_MODEXP:
2809 	{
2810 		struct ubsec_ctx_modexp *cx = (void *)c;
2811 		int i, len;
2812 
2813 		kprintf(" Elen %u, Nlen %u\n",
2814 		    letoh16(cx->me_E_len), letoh16(cx->me_N_len));
2815 		len = (cx->me_N_len + 7)/8;
2816 		for (i = 0; i < len; i++)
2817 			kprintf("%s%02x", (i == 0) ? " N: " : ":", cx->me_N[i]);
2818 		kprintf("\n");
2819 		break;
2820 	}
2821 	default:
2822 		kprintf("unknown context: %x\n", c->ctx_op);
2823 	}
2824 	kprintf("END CTX\n");
2825 }
2826 
2827 static void
2828 ubsec_dump_mcr(struct ubsec_mcr *mcr)
2829 {
2830 	volatile struct ubsec_mcr_add *ma;
2831 	int i;
2832 
2833 	kprintf("MCR:\n");
2834 	kprintf(" pkts: %u, flags 0x%x\n",
2835 	    letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags));
2836 	ma = (volatile struct ubsec_mcr_add *)&mcr->mcr_cmdctxp;
2837 	for (i = 0; i < letoh16(mcr->mcr_pkts); i++) {
2838 		kprintf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i,
2839 		    letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen),
2840 		    letoh16(ma->mcr_reserved));
2841 		kprintf(" %d: ipkt ", i);
2842 		ubsec_dump_pb(&ma->mcr_ipktbuf);
2843 		kprintf(" %d: opkt ", i);
2844 		ubsec_dump_pb(&ma->mcr_opktbuf);
2845 		ma++;
2846 	}
2847 	kprintf("END MCR\n");
2848 }
2849 #endif /* UBSEC_DEBUG */
2850 
2851 /*
2852  * Return the number of significant bits of a big number.
2853  */
2854 static int
2855 ubsec_ksigbits(struct crparam *cr)
2856 {
2857 	u_int plen = (cr->crp_nbits + 7) / 8;
2858 	int i, sig = plen * 8;
2859 	u_int8_t c, *p = cr->crp_p;
2860 
2861 	for (i = plen - 1; i >= 0; i--) {
2862 		c = p[i];
2863 		if (c != 0) {
2864 			while ((c & 0x80) == 0) {
2865 				sig--;
2866 				c <<= 1;
2867 			}
2868 			break;
2869 		}
2870 		sig -= 8;
2871 	}
2872 	return (sig);
2873 }
2874 
2875 static void
2876 ubsec_kshift_r(
2877 	u_int shiftbits,
2878 	u_int8_t *src, u_int srcbits,
2879 	u_int8_t *dst, u_int dstbits)
2880 {
2881 	u_int slen, dlen;
2882 	int i, si, di, n;
2883 
2884 	slen = (srcbits + 7) / 8;
2885 	dlen = (dstbits + 7) / 8;
2886 
2887 	for (i = 0; i < slen; i++)
2888 		dst[i] = src[i];
2889 	for (i = 0; i < dlen - slen; i++)
2890 		dst[slen + i] = 0;
2891 
2892 	n = shiftbits / 8;
2893 	if (n != 0) {
2894 		si = dlen - n - 1;
2895 		di = dlen - 1;
2896 		while (si >= 0)
2897 			dst[di--] = dst[si--];
2898 		while (di >= 0)
2899 			dst[di--] = 0;
2900 	}
2901 
2902 	n = shiftbits % 8;
2903 	if (n != 0) {
2904 		for (i = dlen - 1; i > 0; i--)
2905 			dst[i] = (dst[i] << n) |
2906 			    (dst[i - 1] >> (8 - n));
2907 		dst[0] = dst[0] << n;
2908 	}
2909 }
2910 
2911 static void
2912 ubsec_kshift_l(
2913 	u_int shiftbits,
2914 	u_int8_t *src, u_int srcbits,
2915 	u_int8_t *dst, u_int dstbits)
2916 {
2917 	int slen, dlen, i, n;
2918 
2919 	slen = (srcbits + 7) / 8;
2920 	dlen = (dstbits + 7) / 8;
2921 
2922 	n = shiftbits / 8;
2923 	for (i = 0; i < slen; i++)
2924 		dst[i] = src[i + n];
2925 	for (i = 0; i < dlen - slen; i++)
2926 		dst[slen + i] = 0;
2927 
2928 	n = shiftbits % 8;
2929 	if (n != 0) {
2930 		for (i = 0; i < (dlen - 1); i++)
2931 			dst[i] = (dst[i] >> n) | (dst[i + 1] << (8 - n));
2932 		dst[dlen - 1] = dst[dlen - 1] >> n;
2933 	}
2934 }
2935