1 /*- 2 * Copyright (c) 2000 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 * 26 * $FreeBSD: src/sys/dev/agp/agp.c,v 1.58 2007/11/12 21:51:36 jhb Exp $ 27 * $DragonFly: src/sys/dev/agp/agp.c,v 1.30 2008/01/07 01:34:58 corecode Exp $ 28 */ 29 30 #include "opt_bus.h" 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/device.h> 35 #include <sys/conf.h> 36 #include <sys/malloc.h> 37 #include <sys/kernel.h> 38 #include <sys/bus.h> 39 #include <sys/agpio.h> 40 #include <sys/lock.h> 41 #include <sys/proc.h> 42 #include <sys/rman.h> 43 44 #include <bus/pci/pcivar.h> 45 #include <bus/pci/pcireg.h> 46 #include "agppriv.h" 47 #include "agpvar.h" 48 #include "agpreg.h" 49 50 #include <vm/vm.h> 51 #include <vm/vm_object.h> 52 #include <vm/vm_page.h> 53 #include <vm/vm_pageout.h> 54 #include <vm/pmap.h> 55 56 #include <machine/md_var.h> 57 58 MODULE_VERSION(agp, 1); 59 60 MALLOC_DEFINE(M_AGP, "agp", "AGP data structures"); 61 62 #define CDEV_MAJOR 148 63 /* agp_drv.c */ 64 static d_open_t agp_open; 65 static d_close_t agp_close; 66 static d_ioctl_t agp_ioctl; 67 static d_mmap_t agp_mmap; 68 69 static struct dev_ops agp_ops = { 70 { "agp", CDEV_MAJOR, D_TTY }, 71 .d_open = agp_open, 72 .d_close = agp_close, 73 .d_ioctl = agp_ioctl, 74 .d_mmap = agp_mmap, 75 }; 76 77 static devclass_t agp_devclass; 78 #define KDEV2DEV(kdev) devclass_get_device(agp_devclass, minor(kdev)) 79 80 /* Helper functions for implementing chipset mini drivers. */ 81 82 void 83 agp_flush_cache(void) 84 { 85 #if defined(__i386__) || defined(__x86_64__) 86 wbinvd(); 87 #endif 88 } 89 90 u_int8_t 91 agp_find_caps(device_t dev) 92 { 93 int capreg; 94 95 if (pci_find_extcap(dev, PCIY_AGP, &capreg) != 0) 96 capreg = 0; 97 return (capreg); 98 } 99 100 /* 101 * Find an AGP display device (if any). 102 */ 103 static device_t 104 agp_find_display(void) 105 { 106 devclass_t pci = devclass_find("pci"); 107 device_t bus, dev = 0; 108 device_t *kids; 109 int busnum, numkids, i; 110 111 for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) { 112 bus = devclass_get_device(pci, busnum); 113 if (!bus) 114 continue; 115 device_get_children(bus, &kids, &numkids); 116 for (i = 0; i < numkids; i++) { 117 dev = kids[i]; 118 if (pci_get_class(dev) == PCIC_DISPLAY 119 && pci_get_subclass(dev) == PCIS_DISPLAY_VGA) 120 if (agp_find_caps(dev)) { 121 kfree(kids, M_TEMP); 122 return dev; 123 } 124 125 } 126 kfree(kids, M_TEMP); 127 } 128 129 return 0; 130 } 131 132 struct agp_gatt * 133 agp_alloc_gatt(device_t dev) 134 { 135 u_int32_t apsize = AGP_GET_APERTURE(dev); 136 u_int32_t entries = apsize >> AGP_PAGE_SHIFT; 137 struct agp_gatt *gatt; 138 139 if (bootverbose) 140 device_printf(dev, 141 "allocating GATT for aperture of size %dM\n", 142 apsize / (1024*1024)); 143 144 if (entries == 0) { 145 device_printf(dev, "bad aperture size\n"); 146 return NULL; 147 } 148 149 gatt = kmalloc(sizeof(struct agp_gatt), M_AGP, M_INTWAIT); 150 gatt->ag_entries = entries; 151 gatt->ag_virtual = contigmalloc(entries * sizeof(u_int32_t), M_AGP, 152 M_WAITOK|M_ZERO, 0, ~0, PAGE_SIZE, 0); 153 if (!gatt->ag_virtual) { 154 if (bootverbose) 155 device_printf(dev, "contiguous allocation failed\n"); 156 kfree(gatt, M_AGP); 157 return 0; 158 } 159 gatt->ag_physical = vtophys((vm_offset_t) gatt->ag_virtual); 160 agp_flush_cache(); 161 162 return gatt; 163 } 164 165 void 166 agp_free_gatt(struct agp_gatt *gatt) 167 { 168 contigfree(gatt->ag_virtual, 169 gatt->ag_entries * sizeof(u_int32_t), M_AGP); 170 kfree(gatt, M_AGP); 171 } 172 173 static u_int agp_max[][2] = { 174 {0, 0}, 175 {32, 4}, 176 {64, 28}, 177 {128, 96}, 178 {256, 204}, 179 {512, 440}, 180 {1024, 942}, 181 {2048, 1920}, 182 {4096, 3932} 183 }; 184 #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0])) 185 186 /** 187 * Sets the PCI resource which represents the AGP aperture. 188 * 189 * If not called, the default AGP aperture resource of AGP_APBASE will 190 * be used. Must be called before agp_generic_attach(). 191 */ 192 void 193 agp_set_aperture_resource(device_t dev, int rid) 194 { 195 struct agp_softc *sc = device_get_softc(dev); 196 197 sc->as_aperture_rid = rid; 198 } 199 200 int 201 agp_generic_attach(device_t dev) 202 { 203 struct agp_softc *sc = device_get_softc(dev); 204 int i; 205 u_int memsize; 206 207 /* 208 * Find and map the aperture, RF_SHAREABLE for DRM but not RF_ACTIVE 209 * because the kernel doesn't need to map it. 210 */ 211 if (sc->as_aperture_rid == 0) 212 sc->as_aperture_rid = AGP_APBASE; 213 214 sc->as_aperture = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 215 &sc->as_aperture_rid, RF_SHAREABLE); 216 if (!sc->as_aperture) 217 return ENOMEM; 218 219 /* 220 * Work out an upper bound for agp memory allocation. This 221 * uses a heurisitc table from the Linux driver. 222 */ 223 memsize = ptoa(Maxmem) >> 20; 224 for (i = 0; i < agp_max_size; i++) { 225 if (memsize <= agp_max[i][0]) 226 break; 227 } 228 if (i == agp_max_size) i = agp_max_size - 1; 229 sc->as_maxmem = agp_max[i][1] << 20U; 230 231 /* 232 * The lock is used to prevent re-entry to 233 * agp_generic_bind_memory() since that function can sleep. 234 */ 235 lockinit(&sc->as_lock, "agplk", 0, 0); 236 237 /* 238 * Initialise stuff for the userland device. 239 */ 240 agp_devclass = devclass_find("agp"); 241 TAILQ_INIT(&sc->as_memory); 242 sc->as_nextid = 1; 243 244 make_dev(&agp_ops, device_get_unit(dev), UID_ROOT, GID_WHEEL, 245 0600, "agpgart"); 246 247 return 0; 248 } 249 250 void 251 agp_free_cdev(device_t dev) 252 { 253 dev_ops_remove_minor(&agp_ops, device_get_unit(dev)); 254 } 255 256 void 257 agp_free_res(device_t dev) 258 { 259 struct agp_softc *sc = device_get_softc(dev); 260 261 bus_release_resource(dev, SYS_RES_MEMORY, sc->as_aperture_rid, 262 sc->as_aperture); 263 agp_flush_cache(); 264 } 265 266 int 267 agp_generic_detach(device_t dev) 268 { 269 agp_free_cdev(dev); 270 agp_free_res(dev); 271 return 0; 272 } 273 274 /** 275 * Default AGP aperture size detection which simply returns the size of 276 * the aperture's PCI resource. 277 */ 278 int 279 agp_generic_get_aperture(device_t dev) 280 { 281 struct agp_softc *sc = device_get_softc(dev); 282 283 return rman_get_size(sc->as_aperture); 284 } 285 286 /** 287 * Default AGP aperture size setting function, which simply doesn't allow 288 * changes to resource size. 289 */ 290 int 291 agp_generic_set_aperture(device_t dev, u_int32_t aperture) 292 { 293 u_int32_t current_aperture; 294 295 current_aperture = AGP_GET_APERTURE(dev); 296 if (current_aperture != aperture) 297 return EINVAL; 298 else 299 return 0; 300 } 301 302 /* 303 * This does the enable logic for v3, with the same topology 304 * restrictions as in place for v2 -- one bus, one device on the bus. 305 */ 306 static int 307 agp_v3_enable(device_t dev, device_t mdev, u_int32_t mode) 308 { 309 u_int32_t tstatus, mstatus; 310 u_int32_t command; 311 int rq, sba, fw, rate, arqsz, cal; 312 313 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 314 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 315 316 /* Set RQ to the min of mode, tstatus and mstatus */ 317 rq = AGP_MODE_GET_RQ(mode); 318 if (AGP_MODE_GET_RQ(tstatus) < rq) 319 rq = AGP_MODE_GET_RQ(tstatus); 320 if (AGP_MODE_GET_RQ(mstatus) < rq) 321 rq = AGP_MODE_GET_RQ(mstatus); 322 323 /* 324 * ARQSZ - Set the value to the maximum one. 325 * Don't allow the mode register to override values. 326 */ 327 arqsz = AGP_MODE_GET_ARQSZ(mode); 328 if (AGP_MODE_GET_ARQSZ(tstatus) > rq) 329 rq = AGP_MODE_GET_ARQSZ(tstatus); 330 if (AGP_MODE_GET_ARQSZ(mstatus) > rq) 331 rq = AGP_MODE_GET_ARQSZ(mstatus); 332 333 /* Calibration cycle - don't allow override by mode register */ 334 cal = AGP_MODE_GET_CAL(tstatus); 335 if (AGP_MODE_GET_CAL(mstatus) < cal) 336 cal = AGP_MODE_GET_CAL(mstatus); 337 338 /* SBA must be supported for AGP v3. */ 339 sba = 1; 340 341 /* Set FW if all three support it. */ 342 fw = (AGP_MODE_GET_FW(tstatus) 343 & AGP_MODE_GET_FW(mstatus) 344 & AGP_MODE_GET_FW(mode)); 345 346 /* Figure out the max rate */ 347 rate = (AGP_MODE_GET_RATE(tstatus) 348 & AGP_MODE_GET_RATE(mstatus) 349 & AGP_MODE_GET_RATE(mode)); 350 if (rate & AGP_MODE_V3_RATE_8x) 351 rate = AGP_MODE_V3_RATE_8x; 352 else 353 rate = AGP_MODE_V3_RATE_4x; 354 if (bootverbose) 355 device_printf(dev, "Setting AGP v3 mode %d\n", rate * 4); 356 357 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, 0, 4); 358 359 /* Construct the new mode word and tell the hardware */ 360 command = 0; 361 command = AGP_MODE_SET_RQ(0, rq); 362 command = AGP_MODE_SET_ARQSZ(command, arqsz); 363 command = AGP_MODE_SET_CAL(command, cal); 364 command = AGP_MODE_SET_SBA(command, sba); 365 command = AGP_MODE_SET_FW(command, fw); 366 command = AGP_MODE_SET_RATE(command, rate); 367 command = AGP_MODE_SET_MODE_3(command, 1); 368 command = AGP_MODE_SET_AGP(command, 1); 369 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4); 370 pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4); 371 372 return 0; 373 } 374 375 static int 376 agp_v2_enable(device_t dev, device_t mdev, u_int32_t mode) 377 { 378 u_int32_t tstatus, mstatus; 379 u_int32_t command; 380 int rq, sba, fw, rate; 381 382 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 383 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 384 385 /* Set RQ to the min of mode, tstatus and mstatus */ 386 rq = AGP_MODE_GET_RQ(mode); 387 if (AGP_MODE_GET_RQ(tstatus) < rq) 388 rq = AGP_MODE_GET_RQ(tstatus); 389 if (AGP_MODE_GET_RQ(mstatus) < rq) 390 rq = AGP_MODE_GET_RQ(mstatus); 391 392 /* Set SBA if all three can deal with SBA */ 393 sba = (AGP_MODE_GET_SBA(tstatus) 394 & AGP_MODE_GET_SBA(mstatus) 395 & AGP_MODE_GET_SBA(mode)); 396 397 /* Similar for FW */ 398 fw = (AGP_MODE_GET_FW(tstatus) 399 & AGP_MODE_GET_FW(mstatus) 400 & AGP_MODE_GET_FW(mode)); 401 402 /* Figure out the max rate */ 403 rate = (AGP_MODE_GET_RATE(tstatus) 404 & AGP_MODE_GET_RATE(mstatus) 405 & AGP_MODE_GET_RATE(mode)); 406 if (rate & AGP_MODE_V2_RATE_4x) 407 rate = AGP_MODE_V2_RATE_4x; 408 else if (rate & AGP_MODE_V2_RATE_2x) 409 rate = AGP_MODE_V2_RATE_2x; 410 else 411 rate = AGP_MODE_V2_RATE_1x; 412 if (bootverbose) 413 device_printf(dev, "Setting AGP v2 mode %d\n", rate); 414 415 /* Construct the new mode word and tell the hardware */ 416 command = 0; 417 command = AGP_MODE_SET_RQ(0, rq); 418 command = AGP_MODE_SET_SBA(command, sba); 419 command = AGP_MODE_SET_FW(command, fw); 420 command = AGP_MODE_SET_RATE(command, rate); 421 command = AGP_MODE_SET_AGP(command, 1); 422 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4); 423 pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4); 424 425 return 0; 426 } 427 428 int 429 agp_generic_enable(device_t dev, u_int32_t mode) 430 { 431 device_t mdev = agp_find_display(); 432 u_int32_t tstatus, mstatus; 433 434 if (!mdev) { 435 AGP_DPF("can't find display\n"); 436 return ENXIO; 437 } 438 439 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 440 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 441 442 /* 443 * Check display and bridge for AGP v3 support. AGP v3 allows 444 * more variety in topology than v2, e.g. multiple AGP devices 445 * attached to one bridge, or multiple AGP bridges in one 446 * system. This doesn't attempt to address those situations, 447 * but should work fine for a classic single AGP slot system 448 * with AGP v3. 449 */ 450 if (AGP_MODE_GET_MODE_3(mode) && 451 AGP_MODE_GET_MODE_3(tstatus) && 452 AGP_MODE_GET_MODE_3(mstatus)) 453 return (agp_v3_enable(dev, mdev, mode)); 454 else 455 return (agp_v2_enable(dev, mdev, mode)); 456 } 457 458 struct agp_memory * 459 agp_generic_alloc_memory(device_t dev, int type, vm_size_t size) 460 { 461 struct agp_softc *sc = device_get_softc(dev); 462 struct agp_memory *mem; 463 464 if ((size & (AGP_PAGE_SIZE - 1)) != 0) 465 return 0; 466 467 if (sc->as_allocated + size > sc->as_maxmem) 468 return 0; 469 470 if (type != 0) { 471 kprintf("agp_generic_alloc_memory: unsupported type %d\n", 472 type); 473 return 0; 474 } 475 476 mem = kmalloc(sizeof *mem, M_AGP, M_INTWAIT); 477 mem->am_id = sc->as_nextid++; 478 mem->am_size = size; 479 mem->am_type = 0; 480 mem->am_obj = vm_object_allocate(OBJT_DEFAULT, atop(round_page(size))); 481 mem->am_physical = 0; 482 mem->am_offset = 0; 483 mem->am_is_bound = 0; 484 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link); 485 sc->as_allocated += size; 486 487 return mem; 488 } 489 490 int 491 agp_generic_free_memory(device_t dev, struct agp_memory *mem) 492 { 493 struct agp_softc *sc = device_get_softc(dev); 494 495 if (mem->am_is_bound) 496 return EBUSY; 497 498 sc->as_allocated -= mem->am_size; 499 TAILQ_REMOVE(&sc->as_memory, mem, am_link); 500 vm_object_deallocate(mem->am_obj); 501 kfree(mem, M_AGP); 502 return 0; 503 } 504 505 int 506 agp_generic_bind_memory(device_t dev, struct agp_memory *mem, 507 vm_offset_t offset) 508 { 509 struct agp_softc *sc = device_get_softc(dev); 510 vm_offset_t i, j, k; 511 vm_page_t m; 512 int error; 513 514 lockmgr(&sc->as_lock, LK_EXCLUSIVE); 515 516 if (mem->am_is_bound) { 517 device_printf(dev, "memory already bound\n"); 518 lockmgr(&sc->as_lock, LK_RELEASE); 519 return EINVAL; 520 } 521 522 if (offset < 0 523 || (offset & (AGP_PAGE_SIZE - 1)) != 0 524 || offset + mem->am_size > AGP_GET_APERTURE(dev)) { 525 device_printf(dev, "binding memory at bad offset %#x,%#x,%#x\n", 526 (int) offset, (int)mem->am_size, 527 (int)AGP_GET_APERTURE(dev)); 528 kprintf("Check BIOS's aperature size vs X\n"); 529 lockmgr(&sc->as_lock, LK_RELEASE); 530 return EINVAL; 531 } 532 533 /* 534 * Bind the individual pages and flush the chipset's 535 * TLB. 536 */ 537 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 538 /* 539 * Find a page from the object and wire it 540 * down. This page will be mapped using one or more 541 * entries in the GATT (assuming that PAGE_SIZE >= 542 * AGP_PAGE_SIZE. If this is the first call to bind, 543 * the pages will be allocated and zeroed. 544 */ 545 m = vm_page_grab(mem->am_obj, OFF_TO_IDX(i), 546 VM_ALLOC_NORMAL | VM_ALLOC_ZERO | VM_ALLOC_RETRY); 547 if ((m->flags & PG_ZERO) == 0) 548 vm_page_zero_fill(m); 549 AGP_DPF("found page pa=%#x\n", VM_PAGE_TO_PHYS(m)); 550 vm_page_wire(m); 551 552 /* 553 * Install entries in the GATT, making sure that if 554 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not 555 * aligned to PAGE_SIZE, we don't modify too many GATT 556 * entries. 557 */ 558 for (j = 0; j < PAGE_SIZE && i + j < mem->am_size; 559 j += AGP_PAGE_SIZE) { 560 vm_offset_t pa = VM_PAGE_TO_PHYS(m) + j; 561 AGP_DPF("binding offset %#x to pa %#x\n", 562 offset + i + j, pa); 563 error = AGP_BIND_PAGE(dev, offset + i + j, pa); 564 if (error) { 565 /* 566 * Bail out. Reverse all the mappings 567 * and unwire the pages. 568 */ 569 vm_page_wakeup(m); 570 for (k = 0; k < i + j; k += AGP_PAGE_SIZE) 571 AGP_UNBIND_PAGE(dev, offset + k); 572 lwkt_gettoken(&vm_token); 573 for (k = 0; k <= i; k += PAGE_SIZE) { 574 m = vm_page_lookup(mem->am_obj, 575 OFF_TO_IDX(k)); 576 vm_page_unwire(m, 0); 577 } 578 lwkt_reltoken(&vm_token); 579 lockmgr(&sc->as_lock, LK_RELEASE); 580 return error; 581 } 582 } 583 vm_page_wakeup(m); 584 } 585 586 /* 587 * Flush the cpu cache since we are providing a new mapping 588 * for these pages. 589 */ 590 agp_flush_cache(); 591 592 /* 593 * Make sure the chipset gets the new mappings. 594 */ 595 AGP_FLUSH_TLB(dev); 596 597 mem->am_offset = offset; 598 mem->am_is_bound = 1; 599 600 lockmgr(&sc->as_lock, LK_RELEASE); 601 602 return 0; 603 } 604 605 int 606 agp_generic_unbind_memory(device_t dev, struct agp_memory *mem) 607 { 608 struct agp_softc *sc = device_get_softc(dev); 609 vm_page_t m; 610 int i; 611 612 lockmgr(&sc->as_lock, LK_EXCLUSIVE); 613 614 if (!mem->am_is_bound) { 615 device_printf(dev, "memory is not bound\n"); 616 lockmgr(&sc->as_lock, LK_RELEASE); 617 return EINVAL; 618 } 619 620 621 /* 622 * Unbind the individual pages and flush the chipset's 623 * TLB. Unwire the pages so they can be swapped. 624 */ 625 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE) 626 AGP_UNBIND_PAGE(dev, mem->am_offset + i); 627 lwkt_gettoken(&vm_token); 628 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 629 m = vm_page_lookup(mem->am_obj, atop(i)); 630 vm_page_unwire(m, 0); 631 } 632 lwkt_reltoken(&vm_token); 633 634 agp_flush_cache(); 635 AGP_FLUSH_TLB(dev); 636 637 mem->am_offset = 0; 638 mem->am_is_bound = 0; 639 640 lockmgr(&sc->as_lock, LK_RELEASE); 641 642 return 0; 643 } 644 645 /* Helper functions for implementing user/kernel api */ 646 647 static int 648 agp_acquire_helper(device_t dev, enum agp_acquire_state state) 649 { 650 struct agp_softc *sc = device_get_softc(dev); 651 652 if (sc->as_state != AGP_ACQUIRE_FREE) 653 return EBUSY; 654 sc->as_state = state; 655 656 return 0; 657 } 658 659 static int 660 agp_release_helper(device_t dev, enum agp_acquire_state state) 661 { 662 struct agp_softc *sc = device_get_softc(dev); 663 664 if (sc->as_state == AGP_ACQUIRE_FREE) 665 return 0; 666 667 if (sc->as_state != state) 668 return EBUSY; 669 670 sc->as_state = AGP_ACQUIRE_FREE; 671 return 0; 672 } 673 674 static struct agp_memory * 675 agp_find_memory(device_t dev, int id) 676 { 677 struct agp_softc *sc = device_get_softc(dev); 678 struct agp_memory *mem; 679 680 AGP_DPF("searching for memory block %d\n", id); 681 TAILQ_FOREACH(mem, &sc->as_memory, am_link) { 682 AGP_DPF("considering memory block %d\n", mem->am_id); 683 if (mem->am_id == id) 684 return mem; 685 } 686 return 0; 687 } 688 689 /* Implementation of the userland ioctl api */ 690 691 static int 692 agp_info_user(device_t dev, agp_info *info) 693 { 694 struct agp_softc *sc = device_get_softc(dev); 695 696 bzero(info, sizeof *info); 697 info->bridge_id = pci_get_devid(dev); 698 info->agp_mode = 699 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 700 info->aper_base = rman_get_start(sc->as_aperture); 701 info->aper_size = AGP_GET_APERTURE(dev) >> 20; 702 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT; 703 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT; 704 705 return 0; 706 } 707 708 static int 709 agp_setup_user(device_t dev, agp_setup *setup) 710 { 711 return AGP_ENABLE(dev, setup->agp_mode); 712 } 713 714 static int 715 agp_allocate_user(device_t dev, agp_allocate *alloc) 716 { 717 struct agp_memory *mem; 718 719 mem = AGP_ALLOC_MEMORY(dev, 720 alloc->type, 721 alloc->pg_count << AGP_PAGE_SHIFT); 722 if (mem) { 723 alloc->key = mem->am_id; 724 alloc->physical = mem->am_physical; 725 return 0; 726 } else { 727 return ENOMEM; 728 } 729 } 730 731 static int 732 agp_deallocate_user(device_t dev, int id) 733 { 734 struct agp_memory *mem = agp_find_memory(dev, id); 735 736 if (mem) { 737 AGP_FREE_MEMORY(dev, mem); 738 return 0; 739 } else { 740 return ENOENT; 741 } 742 } 743 744 static int 745 agp_bind_user(device_t dev, agp_bind *bind) 746 { 747 struct agp_memory *mem = agp_find_memory(dev, bind->key); 748 749 if (!mem) 750 return ENOENT; 751 752 return AGP_BIND_MEMORY(dev, mem, bind->pg_start << AGP_PAGE_SHIFT); 753 } 754 755 static int 756 agp_unbind_user(device_t dev, agp_unbind *unbind) 757 { 758 struct agp_memory *mem = agp_find_memory(dev, unbind->key); 759 760 if (!mem) 761 return ENOENT; 762 763 return AGP_UNBIND_MEMORY(dev, mem); 764 } 765 766 static int 767 agp_open(struct dev_open_args *ap) 768 { 769 cdev_t kdev = ap->a_head.a_dev; 770 device_t dev = KDEV2DEV(kdev); 771 struct agp_softc *sc = device_get_softc(dev); 772 773 if (!sc->as_isopen) { 774 sc->as_isopen = 1; 775 device_busy(dev); 776 } 777 778 return 0; 779 } 780 781 static int 782 agp_close(struct dev_close_args *ap) 783 { 784 cdev_t kdev = ap->a_head.a_dev; 785 device_t dev = KDEV2DEV(kdev); 786 struct agp_softc *sc = device_get_softc(dev); 787 struct agp_memory *mem; 788 789 /* 790 * Clear the GATT and force release on last close 791 */ 792 while ((mem = TAILQ_FIRST(&sc->as_memory)) != 0) { 793 if (mem->am_is_bound) 794 AGP_UNBIND_MEMORY(dev, mem); 795 AGP_FREE_MEMORY(dev, mem); 796 } 797 if (sc->as_state == AGP_ACQUIRE_USER) 798 agp_release_helper(dev, AGP_ACQUIRE_USER); 799 sc->as_isopen = 0; 800 device_unbusy(dev); 801 802 return 0; 803 } 804 805 static int 806 agp_ioctl(struct dev_ioctl_args *ap) 807 { 808 cdev_t kdev = ap->a_head.a_dev; 809 device_t dev = KDEV2DEV(kdev); 810 811 switch (ap->a_cmd) { 812 case AGPIOC_INFO: 813 return agp_info_user(dev, (agp_info *)ap->a_data); 814 815 case AGPIOC_ACQUIRE: 816 return agp_acquire_helper(dev, AGP_ACQUIRE_USER); 817 818 case AGPIOC_RELEASE: 819 return agp_release_helper(dev, AGP_ACQUIRE_USER); 820 821 case AGPIOC_SETUP: 822 return agp_setup_user(dev, (agp_setup *)ap->a_data); 823 824 case AGPIOC_ALLOCATE: 825 return agp_allocate_user(dev, (agp_allocate *)ap->a_data); 826 827 case AGPIOC_DEALLOCATE: 828 return agp_deallocate_user(dev, *(int *)ap->a_data); 829 830 case AGPIOC_BIND: 831 return agp_bind_user(dev, (agp_bind *)ap->a_data); 832 833 case AGPIOC_UNBIND: 834 return agp_unbind_user(dev, (agp_unbind *)ap->a_data); 835 836 } 837 838 return EINVAL; 839 } 840 841 static int 842 agp_mmap(struct dev_mmap_args *ap) 843 { 844 cdev_t kdev = ap->a_head.a_dev; 845 device_t dev = KDEV2DEV(kdev); 846 struct agp_softc *sc = device_get_softc(dev); 847 848 if (ap->a_offset > AGP_GET_APERTURE(dev)) 849 return EINVAL; 850 ap->a_result = atop(rman_get_start(sc->as_aperture) + ap->a_offset); 851 return 0; 852 } 853 854 /* Implementation of the kernel api */ 855 856 device_t 857 agp_find_device(void) 858 { 859 device_t *children, child; 860 int i, count; 861 862 if (!agp_devclass) 863 return NULL; 864 if (devclass_get_devices(agp_devclass, &children, &count) != 0) 865 return NULL; 866 child = NULL; 867 for (i = 0; i < count; i++) { 868 if (device_is_attached(children[i])) { 869 child = children[i]; 870 break; 871 } 872 } 873 kfree(children, M_TEMP); 874 return child; 875 } 876 877 enum agp_acquire_state 878 agp_state(device_t dev) 879 { 880 struct agp_softc *sc = device_get_softc(dev); 881 return sc->as_state; 882 } 883 884 void 885 agp_get_info(device_t dev, struct agp_info *info) 886 { 887 struct agp_softc *sc = device_get_softc(dev); 888 889 info->ai_mode = 890 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 891 info->ai_aperture_base = rman_get_start(sc->as_aperture); 892 info->ai_aperture_size = rman_get_size(sc->as_aperture); 893 info->ai_memory_allowed = sc->as_maxmem; 894 info->ai_memory_used = sc->as_allocated; 895 } 896 897 int 898 agp_acquire(device_t dev) 899 { 900 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL); 901 } 902 903 int 904 agp_release(device_t dev) 905 { 906 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL); 907 } 908 909 int 910 agp_enable(device_t dev, u_int32_t mode) 911 { 912 return AGP_ENABLE(dev, mode); 913 } 914 915 void *agp_alloc_memory(device_t dev, int type, vm_size_t bytes) 916 { 917 return (void *) AGP_ALLOC_MEMORY(dev, type, bytes); 918 } 919 920 void agp_free_memory(device_t dev, void *handle) 921 { 922 struct agp_memory *mem = (struct agp_memory *) handle; 923 AGP_FREE_MEMORY(dev, mem); 924 } 925 926 int agp_bind_memory(device_t dev, void *handle, vm_offset_t offset) 927 { 928 struct agp_memory *mem = (struct agp_memory *) handle; 929 return AGP_BIND_MEMORY(dev, mem, offset); 930 } 931 932 int agp_unbind_memory(device_t dev, void *handle) 933 { 934 struct agp_memory *mem = (struct agp_memory *) handle; 935 return AGP_UNBIND_MEMORY(dev, mem); 936 } 937 938 void agp_memory_info(device_t dev, void *handle, struct 939 agp_memory_info *mi) 940 { 941 struct agp_memory *mem = (struct agp_memory *) handle; 942 943 mi->ami_size = mem->am_size; 944 mi->ami_physical = mem->am_physical; 945 mi->ami_offset = mem->am_offset; 946 mi->ami_is_bound = mem->am_is_bound; 947 } 948