1 /*- 2 * Copyright (c) 2003-2005 Nate Lawson (SDG) 3 * Copyright (c) 2001 Michael Smith 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 * 27 * $FreeBSD: src/sys/dev/acpica/acpi_cpu.c,v 1.72 2008/04/12 12:06:00 rpaulo Exp $ 28 */ 29 30 #include "opt_acpi.h" 31 #include <sys/param.h> 32 #include <sys/bus.h> 33 #include <sys/kernel.h> 34 #include <sys/malloc.h> 35 #include <sys/globaldata.h> 36 #include <sys/power.h> 37 #include <sys/proc.h> 38 #include <sys/sbuf.h> 39 #include <sys/thread2.h> 40 #include <sys/serialize.h> 41 42 #include <bus/pci/pcivar.h> 43 #include <machine/atomic.h> 44 #include <machine/globaldata.h> 45 #include <machine/md_var.h> 46 #include <machine/smp.h> 47 #include <sys/rman.h> 48 49 #include "acpi.h" 50 #include "acpivar.h" 51 #include "acpi_cpu.h" 52 53 /* 54 * Support for ACPI Processor devices, including C[1-3] sleep states. 55 */ 56 57 /* Hooks for the ACPI CA debugging infrastructure */ 58 #define _COMPONENT ACPI_PROCESSOR 59 ACPI_MODULE_NAME("PROCESSOR") 60 61 struct acpi_cx { 62 struct resource *p_lvlx; /* Register to read to enter state. */ 63 int rid; /* rid of p_lvlx */ 64 uint32_t type; /* C1-3 (C4 and up treated as C3). */ 65 uint32_t trans_lat; /* Transition latency (usec). */ 66 uint32_t power; /* Power consumed (mW). */ 67 int res_type; /* Resource type for p_lvlx. */ 68 }; 69 #define MAX_CX_STATES 8 70 71 struct acpi_cpu_softc { 72 device_t cpu_dev; 73 struct acpi_cpux_softc *cpu_parent; 74 ACPI_HANDLE cpu_handle; 75 int cpu_id; 76 uint32_t cpu_p_blk; /* ACPI P_BLK location */ 77 uint32_t cpu_p_blk_len; /* P_BLK length (must be 6). */ 78 struct acpi_cx cpu_cx_states[MAX_CX_STATES]; 79 int cpu_cx_count; /* Number of valid Cx states. */ 80 int cpu_prev_sleep;/* Last idle sleep duration. */ 81 /* Runtime state. */ 82 int cpu_non_c3; /* Index of lowest non-C3 state. */ 83 u_int cpu_cx_stats[MAX_CX_STATES];/* Cx usage history. */ 84 /* Values for sysctl. */ 85 int cpu_cx_lowest; /* Current Cx lowest */ 86 int cpu_cx_lowest_req; /* Requested Cx lowest */ 87 char cpu_cx_supported[64]; 88 }; 89 90 struct acpi_cpu_device { 91 struct resource_list ad_rl; 92 }; 93 94 #define CPU_GET_REG(reg, width) \ 95 (bus_space_read_ ## width(rman_get_bustag((reg)), \ 96 rman_get_bushandle((reg)), 0)) 97 #define CPU_SET_REG(reg, width, val) \ 98 (bus_space_write_ ## width(rman_get_bustag((reg)), \ 99 rman_get_bushandle((reg)), 0, (val))) 100 101 #define PM_USEC(x) ((x) >> 2) /* ~4 clocks per usec (3.57955 Mhz) */ 102 103 #define ACPI_NOTIFY_CX_STATES 0x81 /* _CST changed. */ 104 105 #define CPU_QUIRK_NO_C3 (1<<0) /* C3-type states are not usable. */ 106 #define CPU_QUIRK_NO_BM_CTRL (1<<2) /* No bus mastering control. */ 107 108 #define PCI_VENDOR_INTEL 0x8086 109 #define PCI_DEVICE_82371AB_3 0x7113 /* PIIX4 chipset for quirks. */ 110 #define PCI_REVISION_A_STEP 0 111 #define PCI_REVISION_B_STEP 1 112 #define PCI_REVISION_4E 2 113 #define PCI_REVISION_4M 3 114 #define PIIX4_DEVACTB_REG 0x58 115 #define PIIX4_BRLD_EN_IRQ0 (1<<0) 116 #define PIIX4_BRLD_EN_IRQ (1<<1) 117 #define PIIX4_BRLD_EN_IRQ8 (1<<5) 118 #define PIIX4_STOP_BREAK_MASK (PIIX4_BRLD_EN_IRQ0 | PIIX4_BRLD_EN_IRQ | PIIX4_BRLD_EN_IRQ8) 119 #define PIIX4_PCNTRL_BST_EN (1<<10) 120 121 /* Platform hardware resource information. */ 122 static uint32_t cpu_smi_cmd; /* Value to write to SMI_CMD. */ 123 static uint8_t cpu_cst_cnt; /* Indicate we are _CST aware. */ 124 static int cpu_quirks; /* Indicate any hardware bugs. */ 125 126 /* Runtime state. */ 127 static int cpu_disable_idle; /* Disable entry to idle function */ 128 static int cpu_cx_count; /* Number of valid Cx states */ 129 130 /* Values for sysctl. */ 131 static int cpu_cx_generic; 132 static int cpu_cx_lowest; /* Current Cx lowest */ 133 static int cpu_cx_lowest_req; /* Requested Cx lowest */ 134 static struct lwkt_serialize cpu_cx_slize = LWKT_SERIALIZE_INITIALIZER; 135 136 /* C3 state transition */ 137 static int cpu_c3_ncpus; 138 139 static device_t *cpu_devices; 140 static int cpu_ndevices; 141 static struct acpi_cpu_softc **cpu_softc; 142 143 static int acpi_cpu_cst_probe(device_t dev); 144 static int acpi_cpu_cst_attach(device_t dev); 145 static int acpi_cpu_cst_suspend(device_t dev); 146 static int acpi_cpu_cst_resume(device_t dev); 147 static struct resource_list *acpi_cpu_cst_get_rlist(device_t dev, 148 device_t child); 149 static device_t acpi_cpu_cst_add_child(device_t bus, device_t parent, 150 int order, const char *name, int unit); 151 static int acpi_cpu_cst_read_ivar(device_t dev, device_t child, 152 int index, uintptr_t *result); 153 static int acpi_cpu_cst_shutdown(device_t dev); 154 static void acpi_cpu_cx_probe(struct acpi_cpu_softc *sc); 155 static void acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc); 156 static int acpi_cpu_cx_cst(struct acpi_cpu_softc *sc); 157 static void acpi_cpu_startup(void *arg); 158 static void acpi_cpu_startup_cx(struct acpi_cpu_softc *sc); 159 static void acpi_cpu_cx_list(struct acpi_cpu_softc *sc); 160 static void acpi_cpu_idle(void); 161 static void acpi_cpu_cst_notify(device_t); 162 static int acpi_cpu_quirks(void); 163 static int acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS); 164 static int acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc, int val); 165 static int acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS); 166 static int acpi_cpu_cx_lowest_use_sysctl(SYSCTL_HANDLER_ARGS); 167 static int acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS); 168 static int acpi_cpu_global_cx_lowest_use_sysctl(SYSCTL_HANDLER_ARGS); 169 170 static void acpi_cpu_c1(void); /* XXX */ 171 172 static device_method_t acpi_cpu_cst_methods[] = { 173 /* Device interface */ 174 DEVMETHOD(device_probe, acpi_cpu_cst_probe), 175 DEVMETHOD(device_attach, acpi_cpu_cst_attach), 176 DEVMETHOD(device_detach, bus_generic_detach), 177 DEVMETHOD(device_shutdown, acpi_cpu_cst_shutdown), 178 DEVMETHOD(device_suspend, acpi_cpu_cst_suspend), 179 DEVMETHOD(device_resume, acpi_cpu_cst_resume), 180 181 /* Bus interface */ 182 DEVMETHOD(bus_add_child, acpi_cpu_cst_add_child), 183 DEVMETHOD(bus_read_ivar, acpi_cpu_cst_read_ivar), 184 DEVMETHOD(bus_get_resource_list, acpi_cpu_cst_get_rlist), 185 DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource), 186 DEVMETHOD(bus_set_resource, bus_generic_rl_set_resource), 187 DEVMETHOD(bus_alloc_resource, bus_generic_rl_alloc_resource), 188 DEVMETHOD(bus_release_resource, bus_generic_rl_release_resource), 189 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 190 DEVMETHOD(bus_activate_resource, bus_generic_activate_resource), 191 DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource), 192 DEVMETHOD(bus_setup_intr, bus_generic_setup_intr), 193 DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr), 194 DEVMETHOD_END 195 }; 196 197 static driver_t acpi_cpu_cst_driver = { 198 "cpu_cst", 199 acpi_cpu_cst_methods, 200 sizeof(struct acpi_cpu_softc), 201 }; 202 203 static devclass_t acpi_cpu_cst_devclass; 204 DRIVER_MODULE(cpu_cst, cpu, acpi_cpu_cst_driver, acpi_cpu_cst_devclass, NULL, NULL); 205 MODULE_DEPEND(cpu_cst, acpi, 1, 1, 1); 206 207 static int 208 acpi_cpu_cst_probe(device_t dev) 209 { 210 int cpu_id; 211 212 if (acpi_disabled("cpu_cst") || acpi_get_type(dev) != ACPI_TYPE_PROCESSOR) 213 return (ENXIO); 214 215 cpu_id = acpi_get_magic(dev); 216 217 if (cpu_softc == NULL) 218 cpu_softc = kmalloc(sizeof(struct acpi_cpu_softc *) * 219 SMP_MAXCPU, M_TEMP /* XXX */, M_INTWAIT | M_ZERO); 220 221 /* 222 * Check if we already probed this processor. We scan the bus twice 223 * so it's possible we've already seen this one. 224 */ 225 if (cpu_softc[cpu_id] != NULL) { 226 device_printf(dev, "CPU%d cstate already exist\n", cpu_id); 227 return (ENXIO); 228 } 229 230 /* Mark this processor as in-use and save our derived id for attach. */ 231 cpu_softc[cpu_id] = (void *)1; 232 device_set_desc(dev, "ACPI CPU C-State"); 233 234 return (0); 235 } 236 237 static int 238 acpi_cpu_cst_attach(device_t dev) 239 { 240 ACPI_BUFFER buf; 241 ACPI_OBJECT *obj; 242 struct acpi_cpu_softc *sc; 243 ACPI_STATUS status; 244 245 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 246 247 sc = device_get_softc(dev); 248 sc->cpu_dev = dev; 249 sc->cpu_parent = device_get_softc(device_get_parent(dev)); 250 sc->cpu_handle = acpi_get_handle(dev); 251 sc->cpu_id = acpi_get_magic(dev); 252 cpu_softc[sc->cpu_id] = sc; 253 cpu_smi_cmd = AcpiGbl_FADT.SmiCommand; 254 cpu_cst_cnt = AcpiGbl_FADT.CstControl; 255 256 buf.Pointer = NULL; 257 buf.Length = ACPI_ALLOCATE_BUFFER; 258 status = AcpiEvaluateObject(sc->cpu_handle, NULL, NULL, &buf); 259 if (ACPI_FAILURE(status)) { 260 device_printf(dev, "attach failed to get Processor obj - %s\n", 261 AcpiFormatException(status)); 262 return (ENXIO); 263 } 264 obj = (ACPI_OBJECT *)buf.Pointer; 265 sc->cpu_p_blk = obj->Processor.PblkAddress; 266 sc->cpu_p_blk_len = obj->Processor.PblkLength; 267 AcpiOsFree(obj); 268 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_BLK at %#x/%d\n", 269 device_get_unit(dev), sc->cpu_p_blk, sc->cpu_p_blk_len)); 270 271 /* 272 * If this is the first cpu we attach, create and initialize the generic 273 * resources that will be used by all acpi cpu devices. 274 */ 275 if (device_get_unit(dev) == 0) { 276 /* Assume we won't be using generic Cx mode by default */ 277 cpu_cx_generic = FALSE; 278 279 /* Queue post cpu-probing task handler */ 280 AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_cpu_startup, NULL); 281 } 282 283 /* Probe for Cx state support. */ 284 acpi_cpu_cx_probe(sc); 285 286 /* Finally, call identify and probe/attach for child devices. */ 287 bus_generic_probe(dev); 288 bus_generic_attach(dev); 289 290 return (0); 291 } 292 293 /* 294 * Disable any entry to the idle function during suspend and re-enable it 295 * during resume. 296 */ 297 static int 298 acpi_cpu_cst_suspend(device_t dev) 299 { 300 int error; 301 302 error = bus_generic_suspend(dev); 303 if (error) 304 return (error); 305 cpu_disable_idle = TRUE; 306 return (0); 307 } 308 309 static int 310 acpi_cpu_cst_resume(device_t dev) 311 { 312 313 cpu_disable_idle = FALSE; 314 return (bus_generic_resume(dev)); 315 } 316 317 static struct resource_list * 318 acpi_cpu_cst_get_rlist(device_t dev, device_t child) 319 { 320 struct acpi_cpu_device *ad; 321 322 ad = device_get_ivars(child); 323 if (ad == NULL) 324 return (NULL); 325 return (&ad->ad_rl); 326 } 327 328 static device_t 329 acpi_cpu_cst_add_child(device_t bus, device_t parent, int order, 330 const char *name, int unit) 331 { 332 struct acpi_cpu_device *ad; 333 device_t child; 334 335 if ((ad = kmalloc(sizeof(*ad), M_TEMP, M_NOWAIT | M_ZERO)) == NULL) 336 return (NULL); 337 338 resource_list_init(&ad->ad_rl); 339 340 child = device_add_child_ordered(parent, order, name, unit); 341 if (child != NULL) 342 device_set_ivars(child, ad); 343 else 344 kfree(ad, M_TEMP); 345 return (child); 346 } 347 348 static int 349 acpi_cpu_cst_read_ivar(device_t dev, device_t child, int index, 350 uintptr_t *result) 351 { 352 struct acpi_cpu_softc *sc; 353 354 sc = device_get_softc(dev); 355 switch (index) { 356 case ACPI_IVAR_HANDLE: 357 *result = (uintptr_t)sc->cpu_handle; 358 break; 359 #if 0 360 case CPU_IVAR_PCPU: 361 *result = (uintptr_t)sc->cpu_pcpu; 362 break; 363 #endif 364 default: 365 return (ENOENT); 366 } 367 return (0); 368 } 369 370 static int 371 acpi_cpu_cst_shutdown(device_t dev) 372 { 373 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 374 375 /* Allow children to shutdown first. */ 376 bus_generic_shutdown(dev); 377 378 /* 379 * Disable any entry to the idle function. There is a small race where 380 * an idle thread have passed this check but not gone to sleep. This 381 * is ok since device_shutdown() does not free the softc, otherwise 382 * we'd have to be sure all threads were evicted before returning. 383 */ 384 cpu_disable_idle = TRUE; 385 386 return_VALUE (0); 387 } 388 389 static void 390 acpi_cpu_cx_probe(struct acpi_cpu_softc *sc) 391 { 392 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 393 394 /* Use initial sleep value of 1 sec. to start with lowest idle state. */ 395 sc->cpu_prev_sleep = 1000000; 396 sc->cpu_cx_lowest = 0; 397 sc->cpu_cx_lowest_req = 0; 398 399 /* 400 * Check for the ACPI 2.0 _CST sleep states object. If we can't find 401 * any, we'll revert to generic FADT/P_BLK Cx control method which will 402 * be handled by acpi_cpu_startup. We need to defer to after having 403 * probed all the cpus in the system before probing for generic Cx 404 * states as we may already have found cpus with valid _CST packages 405 */ 406 if (!cpu_cx_generic && acpi_cpu_cx_cst(sc) != 0) { 407 /* 408 * We were unable to find a _CST package for this cpu or there 409 * was an error parsing it. Switch back to generic mode. 410 */ 411 cpu_cx_generic = TRUE; 412 if (bootverbose) 413 device_printf(sc->cpu_dev, "switching to generic Cx mode\n"); 414 } 415 416 /* 417 * TODO: _CSD Package should be checked here. 418 */ 419 } 420 421 static void 422 acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc) 423 { 424 ACPI_GENERIC_ADDRESS gas; 425 struct acpi_cx *cx_ptr; 426 427 sc->cpu_cx_count = 0; 428 cx_ptr = sc->cpu_cx_states; 429 430 /* Use initial sleep value of 1 sec. to start with lowest idle state. */ 431 sc->cpu_prev_sleep = 1000000; 432 433 /* C1 has been required since just after ACPI 1.0 */ 434 cx_ptr->type = ACPI_STATE_C1; 435 cx_ptr->trans_lat = 0; 436 cx_ptr++; 437 sc->cpu_cx_count++; 438 439 /* 440 * The spec says P_BLK must be 6 bytes long. However, some systems 441 * use it to indicate a fractional set of features present so we 442 * take 5 as C2. Some may also have a value of 7 to indicate 443 * another C3 but most use _CST for this (as required) and having 444 * "only" C1-C3 is not a hardship. 445 */ 446 if (sc->cpu_p_blk_len < 5) 447 return; 448 449 /* Validate and allocate resources for C2 (P_LVL2). */ 450 gas.SpaceId = ACPI_ADR_SPACE_SYSTEM_IO; 451 gas.BitWidth = 8; 452 if (AcpiGbl_FADT.C2Latency <= 100) { 453 gas.Address = sc->cpu_p_blk + 4; 454 455 cx_ptr->rid = sc->cpu_parent->cpux_next_rid; 456 acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->type, &cx_ptr->rid, &gas, &cx_ptr->p_lvlx, 457 RF_SHAREABLE); 458 if (cx_ptr->p_lvlx != NULL) { 459 sc->cpu_parent->cpux_next_rid++; 460 cx_ptr->type = ACPI_STATE_C2; 461 cx_ptr->trans_lat = AcpiGbl_FADT.C2Latency; 462 cx_ptr++; 463 sc->cpu_cx_count++; 464 sc->cpu_non_c3 = 1; 465 } 466 } 467 if (sc->cpu_p_blk_len < 6) 468 return; 469 470 /* Validate and allocate resources for C3 (P_LVL3). */ 471 if (AcpiGbl_FADT.C3Latency <= 1000 && !(cpu_quirks & CPU_QUIRK_NO_C3)) { 472 gas.Address = sc->cpu_p_blk + 5; 473 474 cx_ptr->rid = sc->cpu_parent->cpux_next_rid; 475 acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->type, &cx_ptr->rid, &gas, 476 &cx_ptr->p_lvlx, RF_SHAREABLE); 477 if (cx_ptr->p_lvlx != NULL) { 478 sc->cpu_parent->cpux_next_rid++; 479 cx_ptr->type = ACPI_STATE_C3; 480 cx_ptr->trans_lat = AcpiGbl_FADT.C3Latency; 481 cx_ptr++; 482 sc->cpu_cx_count++; 483 } 484 } 485 } 486 487 /* 488 * Parse a _CST package and set up its Cx states. Since the _CST object 489 * can change dynamically, our notify handler may call this function 490 * to clean up and probe the new _CST package. 491 */ 492 static int 493 acpi_cpu_cx_cst(struct acpi_cpu_softc *sc) 494 { 495 struct acpi_cx *cx_ptr; 496 ACPI_STATUS status; 497 ACPI_BUFFER buf; 498 ACPI_OBJECT *top; 499 ACPI_OBJECT *pkg; 500 uint32_t count; 501 int i; 502 503 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 504 505 buf.Pointer = NULL; 506 buf.Length = ACPI_ALLOCATE_BUFFER; 507 status = AcpiEvaluateObject(sc->cpu_handle, "_CST", NULL, &buf); 508 if (ACPI_FAILURE(status)) 509 return (ENXIO); 510 511 /* _CST is a package with a count and at least one Cx package. */ 512 top = (ACPI_OBJECT *)buf.Pointer; 513 if (!ACPI_PKG_VALID(top, 2) || acpi_PkgInt32(top, 0, &count) != 0) { 514 device_printf(sc->cpu_dev, "invalid _CST package\n"); 515 AcpiOsFree(buf.Pointer); 516 return (ENXIO); 517 } 518 if (count != top->Package.Count - 1) { 519 device_printf(sc->cpu_dev, "invalid _CST state count (%d != %d)\n", 520 count, top->Package.Count - 1); 521 count = top->Package.Count - 1; 522 } 523 if (count > MAX_CX_STATES) { 524 device_printf(sc->cpu_dev, "_CST has too many states (%d)\n", count); 525 count = MAX_CX_STATES; 526 } 527 528 /* Set up all valid states. */ 529 sc->cpu_cx_count = 0; 530 cx_ptr = sc->cpu_cx_states; 531 for (i = 0; i < count; i++) { 532 pkg = &top->Package.Elements[i + 1]; 533 if (!ACPI_PKG_VALID(pkg, 4) || 534 acpi_PkgInt32(pkg, 1, &cx_ptr->type) != 0 || 535 acpi_PkgInt32(pkg, 2, &cx_ptr->trans_lat) != 0 || 536 acpi_PkgInt32(pkg, 3, &cx_ptr->power) != 0) { 537 538 device_printf(sc->cpu_dev, "skipping invalid Cx state package\n"); 539 continue; 540 } 541 542 /* Validate the state to see if we should use it. */ 543 switch (cx_ptr->type) { 544 case ACPI_STATE_C1: 545 sc->cpu_non_c3 = i; 546 cx_ptr++; 547 sc->cpu_cx_count++; 548 continue; 549 case ACPI_STATE_C2: 550 sc->cpu_non_c3 = i; 551 break; 552 case ACPI_STATE_C3: 553 default: 554 if ((cpu_quirks & CPU_QUIRK_NO_C3) != 0) { 555 556 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 557 "acpi_cpu%d: C3[%d] not available.\n", 558 device_get_unit(sc->cpu_dev), i)); 559 continue; 560 } 561 break; 562 } 563 564 #ifdef notyet 565 /* Free up any previous register. */ 566 if (cx_ptr->p_lvlx != NULL) { 567 bus_release_resource(sc->cpu_dev, 0, 0, cx_ptr->p_lvlx); 568 cx_ptr->p_lvlx = NULL; 569 } 570 #endif 571 572 /* Allocate the control register for C2 or C3. */ 573 cx_ptr->rid = sc->cpu_parent->cpux_next_rid; 574 acpi_PkgGas(sc->cpu_dev, pkg, 0, &cx_ptr->res_type, &cx_ptr->rid, &cx_ptr->p_lvlx, 575 RF_SHAREABLE); 576 if (cx_ptr->p_lvlx) { 577 sc->cpu_parent->cpux_next_rid++; 578 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 579 "acpi_cpu%d: Got C%d - %d latency\n", 580 device_get_unit(sc->cpu_dev), cx_ptr->type, 581 cx_ptr->trans_lat)); 582 cx_ptr++; 583 sc->cpu_cx_count++; 584 } 585 } 586 AcpiOsFree(buf.Pointer); 587 588 /* 589 * Fix up the lowest Cx being used 590 */ 591 if (sc->cpu_cx_lowest_req < sc->cpu_cx_count) 592 sc->cpu_cx_lowest = sc->cpu_cx_lowest_req; 593 if (sc->cpu_cx_lowest > sc->cpu_cx_count - 1) 594 sc->cpu_cx_lowest = sc->cpu_cx_count - 1; 595 596 return (0); 597 } 598 599 /* 600 * Call this *after* all CPUs have been attached. 601 */ 602 static void 603 acpi_cpu_startup(void *arg) 604 { 605 struct acpi_cpu_softc *sc; 606 int i; 607 608 /* Get set of CPU devices */ 609 devclass_get_devices(acpi_cpu_cst_devclass, &cpu_devices, &cpu_ndevices); 610 611 /* 612 * Setup any quirks that might necessary now that we have probed 613 * all the CPUs 614 */ 615 acpi_cpu_quirks(); 616 617 cpu_cx_count = 0; 618 if (cpu_cx_generic) { 619 /* 620 * We are using generic Cx mode, probe for available Cx states 621 * for all processors. 622 */ 623 for (i = 0; i < cpu_ndevices; i++) { 624 sc = device_get_softc(cpu_devices[i]); 625 acpi_cpu_generic_cx_probe(sc); 626 if (sc->cpu_cx_count > cpu_cx_count) 627 cpu_cx_count = sc->cpu_cx_count; 628 } 629 630 /* 631 * Find the highest Cx state common to all CPUs 632 * in the system, taking quirks into account. 633 */ 634 for (i = 0; i < cpu_ndevices; i++) { 635 sc = device_get_softc(cpu_devices[i]); 636 if (sc->cpu_cx_count < cpu_cx_count) 637 cpu_cx_count = sc->cpu_cx_count; 638 } 639 } else { 640 /* 641 * We are using _CST mode, remove C3 state if necessary. 642 * Update the largest Cx state supported in the global cpu_cx_count. 643 * It will be used in the global Cx sysctl handler. 644 * As we now know for sure that we will be using _CST mode 645 * install our notify handler. 646 */ 647 for (i = 0; i < cpu_ndevices; i++) { 648 sc = device_get_softc(cpu_devices[i]); 649 if (cpu_quirks & CPU_QUIRK_NO_C3) 650 sc->cpu_cx_count = sc->cpu_non_c3 + 1; 651 if (sc->cpu_cx_count > cpu_cx_count) 652 cpu_cx_count = sc->cpu_cx_count; 653 sc->cpu_parent->cpux_cst_notify = acpi_cpu_cst_notify; 654 } 655 } 656 657 /* Perform Cx final initialization. */ 658 for (i = 0; i < cpu_ndevices; i++) { 659 sc = device_get_softc(cpu_devices[i]); 660 acpi_cpu_startup_cx(sc); 661 662 if (sc->cpu_parent->glob_sysctl_tree != NULL) { 663 struct acpi_cpux_softc *cpux = sc->cpu_parent; 664 665 /* Add a sysctl handler to handle global Cx lowest setting */ 666 SYSCTL_ADD_PROC(&cpux->glob_sysctl_ctx, 667 SYSCTL_CHILDREN(cpux->glob_sysctl_tree), 668 OID_AUTO, "cx_lowest", 669 CTLTYPE_STRING | CTLFLAG_RW, NULL, 0, 670 acpi_cpu_global_cx_lowest_sysctl, "A", 671 "Requested global lowest Cx sleep state"); 672 SYSCTL_ADD_PROC(&cpux->glob_sysctl_ctx, 673 SYSCTL_CHILDREN(cpux->glob_sysctl_tree), 674 OID_AUTO, "cx_lowest_use", 675 CTLTYPE_STRING | CTLFLAG_RD, NULL, 0, 676 acpi_cpu_global_cx_lowest_use_sysctl, "A", 677 "Global lowest Cx sleep state to use"); 678 } 679 } 680 681 /* Take over idling from cpu_idle_default(). */ 682 cpu_cx_lowest = 0; 683 cpu_cx_lowest_req = 0; 684 cpu_disable_idle = FALSE; 685 cpu_idle_hook = acpi_cpu_idle; 686 } 687 688 static void 689 acpi_cpu_cx_list(struct acpi_cpu_softc *sc) 690 { 691 struct sbuf sb; 692 int i; 693 694 /* 695 * Set up the list of Cx states 696 */ 697 sbuf_new(&sb, sc->cpu_cx_supported, sizeof(sc->cpu_cx_supported), 698 SBUF_FIXEDLEN); 699 for (i = 0; i < sc->cpu_cx_count; i++) 700 sbuf_printf(&sb, "C%d/%d ", i + 1, sc->cpu_cx_states[i].trans_lat); 701 sbuf_trim(&sb); 702 sbuf_finish(&sb); 703 } 704 705 static void 706 acpi_cpu_startup_cx(struct acpi_cpu_softc *sc) 707 { 708 struct acpi_cpux_softc *cpux = sc->cpu_parent; 709 710 acpi_cpu_cx_list(sc); 711 712 SYSCTL_ADD_STRING(&cpux->pcpu_sysctl_ctx, 713 SYSCTL_CHILDREN(cpux->pcpu_sysctl_tree), 714 OID_AUTO, "cx_supported", CTLFLAG_RD, 715 sc->cpu_cx_supported, 0, 716 "Cx/microsecond values for supported Cx states"); 717 SYSCTL_ADD_PROC(&cpux->pcpu_sysctl_ctx, 718 SYSCTL_CHILDREN(cpux->pcpu_sysctl_tree), 719 OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW, 720 (void *)sc, 0, acpi_cpu_cx_lowest_sysctl, "A", 721 "requested lowest Cx sleep state"); 722 SYSCTL_ADD_PROC(&cpux->pcpu_sysctl_ctx, 723 SYSCTL_CHILDREN(cpux->pcpu_sysctl_tree), 724 OID_AUTO, "cx_lowest_use", CTLTYPE_STRING | CTLFLAG_RD, 725 (void *)sc, 0, acpi_cpu_cx_lowest_use_sysctl, "A", 726 "lowest Cx sleep state to use"); 727 SYSCTL_ADD_PROC(&cpux->pcpu_sysctl_ctx, 728 SYSCTL_CHILDREN(cpux->pcpu_sysctl_tree), 729 OID_AUTO, "cx_usage", CTLTYPE_STRING | CTLFLAG_RD, 730 (void *)sc, 0, acpi_cpu_usage_sysctl, "A", 731 "percent usage for each Cx state"); 732 733 #ifdef notyet 734 /* Signal platform that we can handle _CST notification. */ 735 if (!cpu_cx_generic && cpu_cst_cnt != 0) { 736 ACPI_LOCK(acpi); 737 AcpiOsWritePort(cpu_smi_cmd, cpu_cst_cnt, 8); 738 ACPI_UNLOCK(acpi); 739 } 740 #endif 741 } 742 743 /* 744 * Idle the CPU in the lowest state possible. This function is called with 745 * interrupts disabled. Note that once it re-enables interrupts, a task 746 * switch can occur so do not access shared data (i.e. the softc) after 747 * interrupts are re-enabled. 748 */ 749 static void 750 acpi_cpu_idle(void) 751 { 752 struct acpi_cpu_softc *sc; 753 struct acpi_cx *cx_next; 754 uint64_t start_time, end_time; 755 int bm_active, cx_next_idx, i; 756 757 /* If disabled, return immediately. */ 758 if (cpu_disable_idle) { 759 ACPI_ENABLE_IRQS(); 760 return; 761 } 762 763 /* 764 * Look up our CPU id to get our softc. If it's NULL, we'll use C1 765 * since there is no ACPI processor object for this CPU. This occurs 766 * for logical CPUs in the HTT case. 767 */ 768 sc = cpu_softc[mdcpu->mi.gd_cpuid]; 769 if (sc == NULL) { 770 acpi_cpu_c1(); 771 return; 772 } 773 774 /* Find the lowest state that has small enough latency. */ 775 cx_next_idx = 0; 776 for (i = sc->cpu_cx_lowest; i >= 0; i--) { 777 if (sc->cpu_cx_states[i].trans_lat * 3 <= sc->cpu_prev_sleep) { 778 cx_next_idx = i; 779 break; 780 } 781 } 782 783 /* 784 * Check for bus master activity. If there was activity, clear 785 * the bit and use the lowest non-C3 state. Note that the USB 786 * driver polling for new devices keeps this bit set all the 787 * time if USB is loaded. 788 */ 789 if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) { 790 AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, &bm_active); 791 if (bm_active != 0) { 792 AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1); 793 cx_next_idx = min(cx_next_idx, sc->cpu_non_c3); 794 } 795 } 796 797 /* Select the next state and update statistics. */ 798 cx_next = &sc->cpu_cx_states[cx_next_idx]; 799 sc->cpu_cx_stats[cx_next_idx]++; 800 KASSERT(cx_next->type != ACPI_STATE_C0, ("acpi_cpu_idle: C0 sleep")); 801 802 /* 803 * Execute HLT (or equivalent) and wait for an interrupt. We can't 804 * calculate the time spent in C1 since the place we wake up is an 805 * ISR. Assume we slept half of quantum and return. 806 */ 807 if (cx_next->type == ACPI_STATE_C1) { 808 sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + 500000 / hz) / 4; 809 acpi_cpu_c1(); 810 return; 811 } 812 813 /* 814 * For C3(+), disable bus master arbitration and enable bus master wake 815 * if BM control is available, otherwise flush the CPU cache. 816 */ 817 if (cx_next->type >= ACPI_STATE_C3) { 818 if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) { 819 AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 1); 820 AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 1); 821 } else 822 ACPI_FLUSH_CPU_CACHE(); 823 } 824 825 /* 826 * Read from P_LVLx to enter C2(+), checking time spent asleep. 827 * Use the ACPI timer for measuring sleep time. Since we need to 828 * get the time very close to the CPU start/stop clock logic, this 829 * is the only reliable time source. 830 */ 831 AcpiRead(&start_time, &AcpiGbl_FADT.XPmTimerBlock); 832 CPU_GET_REG(cx_next->p_lvlx, 1); 833 834 /* 835 * Read the end time twice. Since it may take an arbitrary time 836 * to enter the idle state, the first read may be executed before 837 * the processor has stopped. Doing it again provides enough 838 * margin that we are certain to have a correct value. 839 */ 840 AcpiRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock); 841 AcpiRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock); 842 843 /* Enable bus master arbitration and disable bus master wakeup. */ 844 if (cx_next->type >= ACPI_STATE_C3) { 845 if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) { 846 AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 0); 847 AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0); 848 } 849 } 850 ACPI_ENABLE_IRQS(); 851 852 /* Find the actual time asleep in microseconds. */ 853 end_time = acpi_TimerDelta(end_time, start_time); 854 sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + PM_USEC(end_time)) / 4; 855 } 856 857 /* 858 * Re-evaluate the _CST object when we are notified that it changed. 859 */ 860 static void 861 acpi_cpu_cst_notify(device_t dev) 862 { 863 struct acpi_cpu_softc *sc = device_get_softc(dev); 864 struct acpi_cpu_softc *isc; 865 int i; 866 867 KASSERT(curthread->td_type != TD_TYPE_NETISR, 868 ("notify in netisr%d", mycpuid)); 869 870 lwkt_serialize_enter(&cpu_cx_slize); 871 872 /* Update the list of Cx states. */ 873 acpi_cpu_cx_cst(sc); 874 acpi_cpu_cx_list(sc); 875 876 /* Update the new lowest useable Cx state for all CPUs. */ 877 cpu_cx_count = 0; 878 for (i = 0; i < cpu_ndevices; i++) { 879 isc = device_get_softc(cpu_devices[i]); 880 if (isc->cpu_cx_count > cpu_cx_count) 881 cpu_cx_count = isc->cpu_cx_count; 882 } 883 884 /* 885 * Fix up the lowest Cx being used 886 */ 887 if (cpu_cx_lowest_req < cpu_cx_count) 888 cpu_cx_lowest = cpu_cx_lowest_req; 889 if (cpu_cx_lowest > cpu_cx_count - 1) 890 cpu_cx_lowest = cpu_cx_count - 1; 891 892 lwkt_serialize_exit(&cpu_cx_slize); 893 } 894 895 static int 896 acpi_cpu_quirks(void) 897 { 898 device_t acpi_dev; 899 uint32_t val; 900 901 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 902 903 /* 904 * Bus mastering arbitration control is needed to keep caches coherent 905 * while sleeping in C3. If it's not present but a working flush cache 906 * instruction is present, flush the caches before entering C3 instead. 907 * Otherwise, just disable C3 completely. 908 */ 909 if (AcpiGbl_FADT.Pm2ControlBlock == 0 || 910 AcpiGbl_FADT.Pm2ControlLength == 0) { 911 if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD) && 912 (AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD_FLUSH) == 0) { 913 cpu_quirks |= CPU_QUIRK_NO_BM_CTRL; 914 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 915 "acpi_cpu: no BM control, using flush cache method\n")); 916 } else { 917 cpu_quirks |= CPU_QUIRK_NO_C3; 918 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 919 "acpi_cpu: no BM control, C3 not available\n")); 920 } 921 } 922 923 /* 924 * If we are using generic Cx mode, C3 on multiple CPUs requires using 925 * the expensive flush cache instruction. 926 */ 927 if (cpu_cx_generic && ncpus > 1) { 928 cpu_quirks |= CPU_QUIRK_NO_BM_CTRL; 929 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 930 "acpi_cpu: SMP, using flush cache mode for C3\n")); 931 } 932 933 /* Look for various quirks of the PIIX4 part. */ 934 acpi_dev = pci_find_device(PCI_VENDOR_INTEL, PCI_DEVICE_82371AB_3); 935 if (acpi_dev != NULL) { 936 switch (pci_get_revid(acpi_dev)) { 937 /* 938 * Disable C3 support for all PIIX4 chipsets. Some of these parts 939 * do not report the BMIDE status to the BM status register and 940 * others have a livelock bug if Type-F DMA is enabled. Linux 941 * works around the BMIDE bug by reading the BM status directly 942 * but we take the simpler approach of disabling C3 for these 943 * parts. 944 * 945 * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA 946 * Livelock") from the January 2002 PIIX4 specification update. 947 * Applies to all PIIX4 models. 948 * 949 * Also, make sure that all interrupts cause a "Stop Break" 950 * event to exit from C2 state. 951 * Also, BRLD_EN_BM (ACPI_BITREG_BUS_MASTER_RLD in ACPI-speak) 952 * should be set to zero, otherwise it causes C2 to short-sleep. 953 * PIIX4 doesn't properly support C3 and bus master activity 954 * need not break out of C2. 955 */ 956 case PCI_REVISION_A_STEP: 957 case PCI_REVISION_B_STEP: 958 case PCI_REVISION_4E: 959 case PCI_REVISION_4M: 960 cpu_quirks |= CPU_QUIRK_NO_C3; 961 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 962 "acpi_cpu: working around PIIX4 bug, disabling C3\n")); 963 964 val = pci_read_config(acpi_dev, PIIX4_DEVACTB_REG, 4); 965 if ((val & PIIX4_STOP_BREAK_MASK) != PIIX4_STOP_BREAK_MASK) { 966 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 967 "acpi_cpu: PIIX4: enabling IRQs to generate Stop Break\n")); 968 val |= PIIX4_STOP_BREAK_MASK; 969 pci_write_config(acpi_dev, PIIX4_DEVACTB_REG, val, 4); 970 } 971 AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_RLD, &val); 972 if (val) { 973 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 974 "acpi_cpu: PIIX4: reset BRLD_EN_BM\n")); 975 AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0); 976 } 977 break; 978 default: 979 break; 980 } 981 } 982 983 return (0); 984 } 985 986 static int 987 acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS) 988 { 989 struct acpi_cpu_softc *sc; 990 struct sbuf sb; 991 char buf[128]; 992 int i; 993 uintmax_t fract, sum, whole; 994 995 sc = (struct acpi_cpu_softc *) arg1; 996 sum = 0; 997 for (i = 0; i < sc->cpu_cx_count; i++) 998 sum += sc->cpu_cx_stats[i]; 999 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); 1000 for (i = 0; i < sc->cpu_cx_count; i++) { 1001 if (sum > 0) { 1002 whole = (uintmax_t)sc->cpu_cx_stats[i] * 100; 1003 fract = (whole % sum) * 100; 1004 sbuf_printf(&sb, "%u.%02u%% ", (u_int)(whole / sum), 1005 (u_int)(fract / sum)); 1006 } else 1007 sbuf_printf(&sb, "0.00%% "); 1008 } 1009 sbuf_printf(&sb, "last %dus", sc->cpu_prev_sleep); 1010 sbuf_trim(&sb); 1011 sbuf_finish(&sb); 1012 sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); 1013 sbuf_delete(&sb); 1014 1015 return (0); 1016 } 1017 1018 static int 1019 acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc, int val) 1020 { 1021 int i, old_lowest, error = 0; 1022 uint32_t old_type, type; 1023 1024 sc->cpu_cx_lowest_req = val; 1025 if (val > sc->cpu_cx_count - 1) 1026 val = sc->cpu_cx_count - 1; 1027 old_lowest = atomic_swap_int(&sc->cpu_cx_lowest, val); 1028 1029 old_type = sc->cpu_cx_states[old_lowest].type; 1030 type = sc->cpu_cx_states[val].type; 1031 if (old_type >= ACPI_STATE_C3 && type < ACPI_STATE_C3) { 1032 KKASSERT(cpu_c3_ncpus > 0); 1033 if (atomic_fetchadd_int(&cpu_c3_ncpus, -1) == 1) { 1034 /* 1035 * All of the CPUs exit C3 state, use a better 1036 * one shot timer. 1037 */ 1038 error = cputimer_intr_select_caps(CPUTIMER_INTR_CAP_NONE); 1039 KKASSERT(!error || error == ERESTART); 1040 if (error == ERESTART) { 1041 if (bootverbose) 1042 kprintf("exit C3, restart intr cputimer\n"); 1043 cputimer_intr_restart(); 1044 } 1045 } 1046 } else if (type >= ACPI_STATE_C3 && old_type < ACPI_STATE_C3) { 1047 if (atomic_fetchadd_int(&cpu_c3_ncpus, 1) == 0) { 1048 /* 1049 * When the first CPU enters C3(+) state, switch 1050 * to an one shot timer, which could handle 1051 * C3(+) state, i.e. the timer will not hang. 1052 */ 1053 error = cputimer_intr_select_caps(CPUTIMER_INTR_CAP_PS); 1054 if (error == ERESTART) { 1055 if (bootverbose) 1056 kprintf("enter C3, restart intr cputimer\n"); 1057 cputimer_intr_restart(); 1058 } else if (error) { 1059 kprintf("no suitable intr cputimer found\n"); 1060 1061 /* Restore */ 1062 sc->cpu_cx_lowest = old_lowest; 1063 atomic_fetchadd_int(&cpu_c3_ncpus, -1); 1064 } 1065 } 1066 } 1067 1068 if (error) 1069 return error; 1070 1071 /* If not disabling, cache the new lowest non-C3 state. */ 1072 sc->cpu_non_c3 = 0; 1073 for (i = sc->cpu_cx_lowest; i >= 0; i--) { 1074 if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) { 1075 sc->cpu_non_c3 = i; 1076 break; 1077 } 1078 } 1079 1080 /* Reset the statistics counters. */ 1081 bzero(sc->cpu_cx_stats, sizeof(sc->cpu_cx_stats)); 1082 return (0); 1083 } 1084 1085 static int 1086 acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS) 1087 { 1088 struct acpi_cpu_softc *sc; 1089 char state[8]; 1090 int val, error; 1091 1092 sc = (struct acpi_cpu_softc *)arg1; 1093 ksnprintf(state, sizeof(state), "C%d", sc->cpu_cx_lowest_req + 1); 1094 error = sysctl_handle_string(oidp, state, sizeof(state), req); 1095 if (error != 0 || req->newptr == NULL) 1096 return (error); 1097 if (strlen(state) < 2 || toupper(state[0]) != 'C') 1098 return (EINVAL); 1099 val = (int) strtol(state + 1, NULL, 10) - 1; 1100 if (val < 0) 1101 return (EINVAL); 1102 1103 lwkt_serialize_enter(&cpu_cx_slize); 1104 error = acpi_cpu_set_cx_lowest(sc, val); 1105 lwkt_serialize_exit(&cpu_cx_slize); 1106 1107 return error; 1108 } 1109 1110 static int 1111 acpi_cpu_cx_lowest_use_sysctl(SYSCTL_HANDLER_ARGS) 1112 { 1113 struct acpi_cpu_softc *sc; 1114 char state[8]; 1115 1116 sc = (struct acpi_cpu_softc *)arg1; 1117 ksnprintf(state, sizeof(state), "C%d", sc->cpu_cx_lowest + 1); 1118 return sysctl_handle_string(oidp, state, sizeof(state), req); 1119 } 1120 1121 static int 1122 acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS) 1123 { 1124 struct acpi_cpu_softc *sc; 1125 char state[8]; 1126 int val, error, i; 1127 1128 ksnprintf(state, sizeof(state), "C%d", cpu_cx_lowest_req + 1); 1129 error = sysctl_handle_string(oidp, state, sizeof(state), req); 1130 if (error != 0 || req->newptr == NULL) 1131 return (error); 1132 if (strlen(state) < 2 || toupper(state[0]) != 'C') 1133 return (EINVAL); 1134 val = (int) strtol(state + 1, NULL, 10) - 1; 1135 if (val < 0) 1136 return (EINVAL); 1137 1138 lwkt_serialize_enter(&cpu_cx_slize); 1139 1140 cpu_cx_lowest_req = val; 1141 cpu_cx_lowest = val; 1142 if (cpu_cx_lowest > cpu_cx_count - 1) 1143 cpu_cx_lowest = cpu_cx_count - 1; 1144 1145 /* Update the new lowest useable Cx state for all CPUs. */ 1146 for (i = 0; i < cpu_ndevices; i++) { 1147 sc = device_get_softc(cpu_devices[i]); 1148 error = acpi_cpu_set_cx_lowest(sc, val); 1149 if (error) { 1150 KKASSERT(i == 0); 1151 break; 1152 } 1153 } 1154 1155 lwkt_serialize_exit(&cpu_cx_slize); 1156 1157 return error; 1158 } 1159 1160 static int 1161 acpi_cpu_global_cx_lowest_use_sysctl(SYSCTL_HANDLER_ARGS) 1162 { 1163 char state[8]; 1164 1165 ksnprintf(state, sizeof(state), "C%d", cpu_cx_lowest + 1); 1166 return sysctl_handle_string(oidp, state, sizeof(state), req); 1167 } 1168 1169 /* 1170 * Put the CPU in C1 in a machine-dependant way. 1171 * XXX: shouldn't be here! 1172 */ 1173 static void 1174 acpi_cpu_c1(void) 1175 { 1176 #ifdef __ia64__ 1177 ia64_call_pal_static(PAL_HALT_LIGHT, 0, 0, 0); 1178 #else 1179 splz(); 1180 if ((mycpu->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) 1181 __asm __volatile("sti; hlt"); 1182 else 1183 __asm __volatile("sti; pause"); 1184 #endif /* !__ia64__ */ 1185 } 1186