xref: /dflybsd-src/sys/bus/pci/pci.c (revision d54592ee9e96c920b951af2e00cd72c0081ccae3)
1 /*
2  * Copyright (c) 1997, Stefan Esser <se@freebsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/pci/pci.c,v 1.141.2.15 2002/04/30 17:48:18 tmm Exp $
27  * $DragonFly: src/sys/bus/pci/pci.c,v 1.53 2008/08/02 01:14:40 dillon Exp $
28  *
29  */
30 
31 #include "opt_bus.h"
32 #include "opt_pci.h"
33 
34 #include "opt_compat_oldpci.h"
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/module.h>
40 #include <sys/fcntl.h>
41 #include <sys/conf.h>
42 #include <sys/kernel.h>
43 #include <sys/queue.h>
44 #include <sys/types.h>
45 #include <sys/buf.h>
46 
47 #include <vm/vm.h>
48 #include <vm/pmap.h>
49 #include <vm/vm_extern.h>
50 
51 #include <sys/bus.h>
52 #include <sys/rman.h>
53 #include <machine/smp.h>
54 #include "pci_cfgreg.h"
55 
56 #include <sys/pciio.h>
57 #include "pcireg.h"
58 #include "pcivar.h"
59 #include "pci_private.h"
60 
61 #include "pcib_if.h"
62 
63 devclass_t	pci_devclass;
64 const char	*pcib_owner;
65 
66 static void		pci_read_capabilities(device_t dev, pcicfgregs *cfg);
67 static int		pcie_slotimpl(const pcicfgregs *);
68 
69 struct pci_quirk {
70 	u_int32_t devid;	/* Vendor/device of the card */
71 	int	type;
72 #define PCI_QUIRK_MAP_REG	1 /* PCI map register in weird place */
73 	int	arg1;
74 	int	arg2;
75 };
76 
77 struct pci_quirk pci_quirks[] = {
78 	/*
79 	 * The Intel 82371AB and 82443MX has a map register at offset 0x90.
80 	 */
81 	{ 0x71138086, PCI_QUIRK_MAP_REG,	0x90,	 0 },
82 	{ 0x719b8086, PCI_QUIRK_MAP_REG,	0x90,	 0 },
83 	/* As does the Serverworks OSB4 (the SMBus mapping register) */
84 	{ 0x02001166, PCI_QUIRK_MAP_REG,	0x90,	 0 },
85 
86 	{ 0 }
87 };
88 
89 /* map register information */
90 #define PCI_MAPMEM	0x01	/* memory map */
91 #define PCI_MAPMEMP	0x02	/* prefetchable memory map */
92 #define PCI_MAPPORT	0x04	/* port map */
93 
94 static STAILQ_HEAD(devlist, pci_devinfo) pci_devq;
95 u_int32_t pci_numdevs = 0;
96 static u_int32_t pci_generation = 0;
97 
98 device_t
99 pci_find_bsf(u_int8_t bus, u_int8_t slot, u_int8_t func)
100 {
101 	struct pci_devinfo *dinfo;
102 
103 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
104 		if ((dinfo->cfg.bus == bus) &&
105 		    (dinfo->cfg.slot == slot) &&
106 		    (dinfo->cfg.func == func)) {
107 			return (dinfo->cfg.dev);
108 		}
109 	}
110 
111 	return (NULL);
112 }
113 
114 device_t
115 pci_find_device(u_int16_t vendor, u_int16_t device)
116 {
117 	struct pci_devinfo *dinfo;
118 
119 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
120 		if ((dinfo->cfg.vendor == vendor) &&
121 		    (dinfo->cfg.device == device)) {
122 			return (dinfo->cfg.dev);
123 		}
124 	}
125 
126 	return (NULL);
127 }
128 
129 int
130 pcie_slot_implemented(device_t dev)
131 {
132 	struct pci_devinfo *dinfo = device_get_ivars(dev);
133 
134 	return pcie_slotimpl(&dinfo->cfg);
135 }
136 
137 /* return base address of memory or port map */
138 
139 static u_int32_t
140 pci_mapbase(unsigned mapreg)
141 {
142 	int mask = 0x03;
143 	if ((mapreg & 0x01) == 0)
144 		mask = 0x0f;
145 	return (mapreg & ~mask);
146 }
147 
148 /* return map type of memory or port map */
149 
150 static int
151 pci_maptype(unsigned mapreg)
152 {
153 	static u_int8_t maptype[0x10] = {
154 		PCI_MAPMEM,		PCI_MAPPORT,
155 		PCI_MAPMEM,		0,
156 		PCI_MAPMEM,		PCI_MAPPORT,
157 		0,			0,
158 		PCI_MAPMEM|PCI_MAPMEMP,	PCI_MAPPORT,
159 		PCI_MAPMEM|PCI_MAPMEMP, 0,
160 		PCI_MAPMEM|PCI_MAPMEMP,	PCI_MAPPORT,
161 		0,			0,
162 	};
163 
164 	return maptype[mapreg & 0x0f];
165 }
166 
167 /* return log2 of map size decoded for memory or port map */
168 
169 static int
170 pci_mapsize(unsigned testval)
171 {
172 	int ln2size;
173 
174 	testval = pci_mapbase(testval);
175 	ln2size = 0;
176 	if (testval != 0) {
177 		while ((testval & 1) == 0)
178 		{
179 			ln2size++;
180 			testval >>= 1;
181 		}
182 	}
183 	return (ln2size);
184 }
185 
186 /* return log2 of address range supported by map register */
187 
188 static int
189 pci_maprange(unsigned mapreg)
190 {
191 	int ln2range = 0;
192 	switch (mapreg & 0x07) {
193 	case 0x00:
194 	case 0x01:
195 	case 0x05:
196 		ln2range = 32;
197 		break;
198 	case 0x02:
199 		ln2range = 20;
200 		break;
201 	case 0x04:
202 		ln2range = 64;
203 		break;
204 	}
205 	return (ln2range);
206 }
207 
208 /* adjust some values from PCI 1.0 devices to match 2.0 standards ... */
209 
210 static void
211 pci_fixancient(pcicfgregs *cfg)
212 {
213 	if (cfg->hdrtype != 0)
214 		return;
215 
216 	/* PCI to PCI bridges use header type 1 */
217 	if (cfg->baseclass == PCIC_BRIDGE && cfg->subclass == PCIS_BRIDGE_PCI)
218 		cfg->hdrtype = 1;
219 }
220 
221 /* read config data specific to header type 1 device (PCI to PCI bridge) */
222 
223 static void *
224 pci_readppb(device_t pcib, int b, int s, int f)
225 {
226 	pcih1cfgregs *p;
227 
228 	p = kmalloc(sizeof (pcih1cfgregs), M_DEVBUF, M_WAITOK | M_ZERO);
229 
230 	p->secstat = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_SECSTAT_1, 2);
231 	p->bridgectl = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_BRIDGECTL_1, 2);
232 
233 	p->seclat = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_SECLAT_1, 1);
234 
235 	p->iobase = PCI_PPBIOBASE (PCIB_READ_CONFIG(pcib, b, s, f,
236 						    PCIR_IOBASEH_1, 2),
237 				   PCIB_READ_CONFIG(pcib, b, s, f,
238 				   		    PCIR_IOBASEL_1, 1));
239 	p->iolimit = PCI_PPBIOLIMIT (PCIB_READ_CONFIG(pcib, b, s, f,
240 						      PCIR_IOLIMITH_1, 2),
241 				     PCIB_READ_CONFIG(pcib, b, s, f,
242 				     		      PCIR_IOLIMITL_1, 1));
243 
244 	p->membase = PCI_PPBMEMBASE (0,
245 				     PCIB_READ_CONFIG(pcib, b, s, f,
246 				     		      PCIR_MEMBASE_1, 2));
247 	p->memlimit = PCI_PPBMEMLIMIT (0,
248 				       PCIB_READ_CONFIG(pcib, b, s, f,
249 				       		        PCIR_MEMLIMIT_1, 2));
250 
251 	p->pmembase = PCI_PPBMEMBASE (
252 		(pci_addr_t)PCIB_READ_CONFIG(pcib, b, s, f, PCIR_PMBASEH_1, 4),
253 		PCIB_READ_CONFIG(pcib, b, s, f, PCIR_PMBASEL_1, 2));
254 
255 	p->pmemlimit = PCI_PPBMEMLIMIT (
256 		(pci_addr_t)PCIB_READ_CONFIG(pcib, b, s, f,
257 					     PCIR_PMLIMITH_1, 4),
258 		PCIB_READ_CONFIG(pcib, b, s, f, PCIR_PMLIMITL_1, 2));
259 
260 	return (p);
261 }
262 
263 /* read config data specific to header type 2 device (PCI to CardBus bridge) */
264 
265 static void *
266 pci_readpcb(device_t pcib, int b, int s, int f)
267 {
268 	pcih2cfgregs *p;
269 
270 	p = kmalloc(sizeof (pcih2cfgregs), M_DEVBUF, M_WAITOK | M_ZERO);
271 
272 	p->secstat = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_SECSTAT_2, 2);
273 	p->bridgectl = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_BRIDGECTL_2, 2);
274 
275 	p->seclat = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_SECLAT_2, 1);
276 
277 	p->membase0 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_MEMBASE0_2, 4);
278 	p->memlimit0 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_MEMLIMIT0_2, 4);
279 	p->membase1 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_MEMBASE1_2, 4);
280 	p->memlimit1 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_MEMLIMIT1_2, 4);
281 
282 	p->iobase0 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_IOBASE0_2, 4);
283 	p->iolimit0 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_IOLIMIT0_2, 4);
284 	p->iobase1 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_IOBASE1_2, 4);
285 	p->iolimit1 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_IOLIMIT1_2, 4);
286 
287 	p->pccardif = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_PCCARDIF_2, 4);
288 	return p;
289 }
290 
291 /* extract header type specific config data */
292 
293 static void
294 pci_hdrtypedata(device_t pcib, int b, int s, int f, pcicfgregs *cfg)
295 {
296 #define REG(n,w)	PCIB_READ_CONFIG(pcib, b, s, f, n, w)
297 	switch (cfg->hdrtype) {
298 	case 0:
299 		cfg->subvendor      = REG(PCIR_SUBVEND_0, 2);
300 		cfg->subdevice      = REG(PCIR_SUBDEV_0, 2);
301 		cfg->nummaps	    = PCI_MAXMAPS_0;
302 		break;
303 	case 1:
304 		cfg->subvendor      = REG(PCIR_SUBVEND_1, 2);
305 		cfg->subdevice      = REG(PCIR_SUBDEV_1, 2);
306 		cfg->secondarybus   = REG(PCIR_SECBUS_1, 1);
307 		cfg->subordinatebus = REG(PCIR_SUBBUS_1, 1);
308 		cfg->nummaps	    = PCI_MAXMAPS_1;
309 		cfg->hdrspec        = pci_readppb(pcib, b, s, f);
310 		break;
311 	case 2:
312 		cfg->subvendor      = REG(PCIR_SUBVEND_2, 2);
313 		cfg->subdevice      = REG(PCIR_SUBDEV_2, 2);
314 		cfg->secondarybus   = REG(PCIR_SECBUS_2, 1);
315 		cfg->subordinatebus = REG(PCIR_SUBBUS_2, 1);
316 		cfg->nummaps	    = PCI_MAXMAPS_2;
317 		cfg->hdrspec        = pci_readpcb(pcib, b, s, f);
318 		break;
319 	}
320 #undef REG
321 }
322 
323 /* read configuration header into pcicfgrect structure */
324 
325 struct pci_devinfo *
326 pci_read_device(device_t pcib, int b, int s, int f, size_t size)
327 {
328 #define REG(n, w)	PCIB_READ_CONFIG(pcib, b, s, f, n, w)
329 
330 	pcicfgregs *cfg = NULL;
331 	struct pci_devinfo *devlist_entry;
332 	struct devlist *devlist_head;
333 
334 	devlist_head = &pci_devq;
335 
336 	devlist_entry = NULL;
337 
338 	if (PCIB_READ_CONFIG(pcib, b, s, f, PCIR_DEVVENDOR, 4) != -1) {
339 
340 		devlist_entry = kmalloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
341 
342 		cfg = &devlist_entry->cfg;
343 
344 		cfg->bus		= b;
345 		cfg->slot		= s;
346 		cfg->func		= f;
347 		cfg->vendor		= REG(PCIR_VENDOR, 2);
348 		cfg->device		= REG(PCIR_DEVICE, 2);
349 		cfg->cmdreg		= REG(PCIR_COMMAND, 2);
350 		cfg->statreg		= REG(PCIR_STATUS, 2);
351 		cfg->baseclass		= REG(PCIR_CLASS, 1);
352 		cfg->subclass		= REG(PCIR_SUBCLASS, 1);
353 		cfg->progif		= REG(PCIR_PROGIF, 1);
354 		cfg->revid		= REG(PCIR_REVID, 1);
355 		cfg->hdrtype		= REG(PCIR_HDRTYPE, 1);
356 		cfg->cachelnsz		= REG(PCIR_CACHELNSZ, 1);
357 		cfg->lattimer		= REG(PCIR_LATTIMER, 1);
358 		cfg->intpin		= REG(PCIR_INTPIN, 1);
359 		cfg->intline		= REG(PCIR_INTLINE, 1);
360 
361 #ifdef APIC_IO
362 		/*
363 		 * If using the APIC the intpin is probably wrong, since it
364 		 * is often setup by the BIOS with the PIC in mind.
365 		 */
366 		if (cfg->intpin != 0) {
367 			int airq;
368 
369 			airq = pci_apic_irq(cfg->bus, cfg->slot, cfg->intpin);
370 			if (airq >= 0) {
371 				/* PCI specific entry found in MP table */
372 				if (airq != cfg->intline) {
373 					undirect_pci_irq(cfg->intline);
374 					cfg->intline = airq;
375 				}
376 			} else {
377 				/*
378 				 * PCI interrupts might be redirected to the
379 				 * ISA bus according to some MP tables. Use the
380 				 * same methods as used by the ISA devices
381 				 * devices to find the proper IOAPIC int pin.
382 				 */
383 				airq = isa_apic_irq(cfg->intline);
384 				if ((airq >= 0) && (airq != cfg->intline)) {
385 					/* XXX: undirect_pci_irq() ? */
386 					undirect_isa_irq(cfg->intline);
387 					cfg->intline = airq;
388 				}
389 			}
390 		}
391 #endif /* APIC_IO */
392 
393 		cfg->mingnt		= REG(PCIR_MINGNT, 1);
394 		cfg->maxlat		= REG(PCIR_MAXLAT, 1);
395 
396 		cfg->mfdev		= (cfg->hdrtype & PCIM_MFDEV) != 0;
397 		cfg->hdrtype		&= ~PCIM_MFDEV;
398 
399 		pci_fixancient(cfg);
400 		pci_hdrtypedata(pcib, b, s, f, cfg);
401 		pci_read_capabilities(pcib, cfg);
402 
403 		STAILQ_INSERT_TAIL(devlist_head, devlist_entry, pci_links);
404 
405 		devlist_entry->conf.pc_sel.pc_bus = cfg->bus;
406 		devlist_entry->conf.pc_sel.pc_dev = cfg->slot;
407 		devlist_entry->conf.pc_sel.pc_func = cfg->func;
408 		devlist_entry->conf.pc_hdr = cfg->hdrtype;
409 
410 		devlist_entry->conf.pc_subvendor = cfg->subvendor;
411 		devlist_entry->conf.pc_subdevice = cfg->subdevice;
412 		devlist_entry->conf.pc_vendor = cfg->vendor;
413 		devlist_entry->conf.pc_device = cfg->device;
414 
415 		devlist_entry->conf.pc_class = cfg->baseclass;
416 		devlist_entry->conf.pc_subclass = cfg->subclass;
417 		devlist_entry->conf.pc_progif = cfg->progif;
418 		devlist_entry->conf.pc_revid = cfg->revid;
419 
420 		pci_numdevs++;
421 		pci_generation++;
422 	}
423 	return (devlist_entry);
424 #undef REG
425 }
426 
427 static int
428 pci_fixup_nextptr(int *nextptr0)
429 {
430 	int nextptr = *nextptr0;
431 
432 	/* "Next pointer" is only one byte */
433 	KASSERT(nextptr <= 0xff, ("Illegal next pointer %d\n", nextptr));
434 
435 	if (nextptr & 0x3) {
436 		/*
437 		 * PCI local bus spec 3.0:
438 		 *
439 		 * "... The bottom two bits of all pointers are reserved
440 		 *  and must be implemented as 00b although software must
441 		 *  mask them to allow for future uses of these bits ..."
442 		 */
443 		if (bootverbose) {
444 			kprintf("Illegal PCI extended capability "
445 				"offset, fixup 0x%02x -> 0x%02x\n",
446 				nextptr, nextptr & ~0x3);
447 		}
448 		nextptr &= ~0x3;
449 	}
450 	*nextptr0 = nextptr;
451 
452 	if (nextptr < 0x40) {
453 		if (nextptr != 0) {
454 			kprintf("Illegal PCI extended capability "
455 				"offset 0x%02x", nextptr);
456 		}
457 		return 0;
458 	}
459 	return 1;
460 }
461 
462 static void
463 pci_read_cap_pmgt(device_t pcib, int ptr, pcicfgregs *cfg)
464 {
465 #define REG(n, w)	\
466 	PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, w)
467 
468 	struct pcicfg_pmgt *pmgt = &cfg->pmgt;
469 
470 	if (pmgt->pp_cap)
471 		return;
472 
473 	pmgt->pp_cap = REG(ptr + PCIR_POWER_CAP, 2);
474 	pmgt->pp_status = ptr + PCIR_POWER_STATUS;
475 	pmgt->pp_pmcsr = ptr + PCIR_POWER_PMCSR;
476 	/*
477 	 * XXX
478 	 * Following way may be used to to test whether
479 	 * 'data' register exists:
480 	 * if 'data_select' register of
481 	 * PCIR_POWER_STATUS(bits[12,9]) is read-only
482 	 * then 'data' register is _not_ implemented.
483 	 */
484 	pmgt->pp_data = 0;
485 
486 #undef REG
487 }
488 
489 static int
490 pcie_slotimpl(const pcicfgregs *cfg)
491 {
492 	const struct pcicfg_expr *expr = &cfg->expr;
493 	uint16_t port_type;
494 
495 	/*
496 	 * Only version 1 can be parsed currently
497 	 */
498 	if ((expr->expr_cap & PCIEM_CAP_VER_MASK) != PCIEM_CAP_VER_1)
499 		return 0;
500 
501 	/*
502 	 * - Slot implemented bit is meaningful iff current port is
503 	 *   root port or down stream port.
504 	 * - Testing for root port or down stream port is meanningful
505 	 *   iff PCI configure has type 1 header.
506 	 */
507 
508 	if (cfg->hdrtype != 1)
509 		return 0;
510 
511 	port_type = expr->expr_cap & PCIEM_CAP_PORT_TYPE;
512 	if (port_type != PCIE_ROOT_PORT && port_type != PCIE_DOWN_STREAM_PORT)
513 		return 0;
514 
515 	if (!(expr->expr_cap & PCIEM_CAP_SLOT_IMPL))
516 		return 0;
517 
518 	return 1;
519 }
520 
521 static void
522 pci_read_cap_expr(device_t pcib, int ptr, pcicfgregs *cfg)
523 {
524 #define REG(n, w)	\
525 	PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, w)
526 
527 	struct pcicfg_expr *expr = &cfg->expr;
528 
529 	expr->expr_ptr = ptr;
530 	expr->expr_cap = REG(ptr + PCIER_CAPABILITY, 2);
531 
532 	/*
533 	 * Only version 1 can be parsed currently
534 	 */
535 	if ((expr->expr_cap & PCIEM_CAP_VER_MASK) != PCIEM_CAP_VER_1)
536 		return;
537 
538 	/*
539 	 * Read slot capabilities.  Slot capabilities exists iff
540 	 * current port's slot is implemented
541 	 */
542 	if (pcie_slotimpl(cfg))
543 		expr->expr_slotcap = REG(ptr + PCIER_SLOTCAP, 4);
544 
545 #undef REG
546 }
547 
548 static void
549 pci_read_capabilities(device_t pcib, pcicfgregs *cfg)
550 {
551 #define REG(n, w)	\
552 	PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, w)
553 
554 	int nextptr, ptrptr;
555 
556 	if ((REG(PCIR_STATUS, 2) & PCIM_STATUS_CAPPRESENT) == 0) {
557 		/* No capabilities */
558 		return;
559 	}
560 
561 	switch (cfg->hdrtype) {
562 	case 0:
563 	case 1:
564 		ptrptr = PCIR_CAP_PTR;
565 		break;
566 	case 2:
567 		ptrptr = PCIR_CAP_PTR_2;
568 		break;
569 	default:
570 		return;		/* No capabilities support */
571 	}
572 	nextptr = REG(ptrptr, 1);
573 
574 	/*
575 	 * Read capability entries.
576 	 */
577 	while (pci_fixup_nextptr(&nextptr)) {
578 		int ptr = nextptr;
579 
580 		/* Process this entry */
581 		switch (REG(ptr, 1)) {
582 		case PCIY_PMG:		/* PCI power management */
583 			pci_read_cap_pmgt(pcib, ptr, cfg);
584 			break;
585 		case PCIY_PCIX:		/* PCI-X */
586 			cfg->pcixcap_ptr = ptr;
587 			break;
588 		case PCIY_EXPRESS:	/* PCI Express */
589 			pci_read_cap_expr(pcib, ptr, cfg);
590 			break;
591 		default:
592 			break;
593 		}
594 
595 		/* Find the next entry */
596 		nextptr = REG(ptr + 1, 1);
597 	}
598 
599 #undef REG
600 }
601 
602 /* free pcicfgregs structure and all depending data structures */
603 
604 int
605 pci_freecfg(struct pci_devinfo *dinfo)
606 {
607 	struct devlist *devlist_head;
608 
609 	devlist_head = &pci_devq;
610 
611 	if (dinfo->cfg.hdrspec != NULL)
612 		kfree(dinfo->cfg.hdrspec, M_DEVBUF);
613 	/* XXX this hasn't been tested */
614 	STAILQ_REMOVE(devlist_head, dinfo, pci_devinfo, pci_links);
615 	kfree(dinfo, M_DEVBUF);
616 
617 	/* increment the generation count */
618 	pci_generation++;
619 
620 	/* we're losing one device */
621 	pci_numdevs--;
622 	return (0);
623 }
624 
625 
626 /*
627  * PCI power manangement
628  */
629 int
630 pci_set_powerstate_method(device_t dev, device_t child, int state)
631 {
632 	struct pci_devinfo *dinfo = device_get_ivars(child);
633 	pcicfgregs *cfg = &dinfo->cfg;
634 	struct pcicfg_pmgt *pmgt = &cfg->pmgt;
635 	u_int16_t status;
636 	int result;
637 
638 	if (pmgt->pp_cap != 0) {
639 		status = PCI_READ_CONFIG(dev, child, pmgt->pp_status, 2) & ~PCIM_PSTAT_DMASK;
640 		result = 0;
641 		switch (state) {
642 		case PCI_POWERSTATE_D0:
643 			status |= PCIM_PSTAT_D0;
644 			break;
645 		case PCI_POWERSTATE_D1:
646 			if (pmgt->pp_cap & PCIM_PCAP_D1SUPP) {
647 				status |= PCIM_PSTAT_D1;
648 			} else {
649 				result = EOPNOTSUPP;
650 			}
651 			break;
652 		case PCI_POWERSTATE_D2:
653 			if (pmgt->pp_cap & PCIM_PCAP_D2SUPP) {
654 				status |= PCIM_PSTAT_D2;
655 			} else {
656 				result = EOPNOTSUPP;
657 			}
658 			break;
659 		case PCI_POWERSTATE_D3:
660 			status |= PCIM_PSTAT_D3;
661 			break;
662 		default:
663 			result = EINVAL;
664 		}
665 		if (result == 0)
666 			PCI_WRITE_CONFIG(dev, child, pmgt->pp_status, status, 2);
667 	} else {
668 		result = ENXIO;
669 	}
670 	return(result);
671 }
672 
673 int
674 pci_get_powerstate_method(device_t dev, device_t child)
675 {
676 	struct pci_devinfo *dinfo = device_get_ivars(child);
677 	pcicfgregs *cfg = &dinfo->cfg;
678 	struct pcicfg_pmgt *pmgt = &cfg->pmgt;
679 	u_int16_t status;
680 	int result;
681 
682 	if (pmgt->pp_cap != 0) {
683 		status = PCI_READ_CONFIG(dev, child, pmgt->pp_status, 2);
684 		switch (status & PCIM_PSTAT_DMASK) {
685 		case PCIM_PSTAT_D0:
686 			result = PCI_POWERSTATE_D0;
687 			break;
688 		case PCIM_PSTAT_D1:
689 			result = PCI_POWERSTATE_D1;
690 			break;
691 		case PCIM_PSTAT_D2:
692 			result = PCI_POWERSTATE_D2;
693 			break;
694 		case PCIM_PSTAT_D3:
695 			result = PCI_POWERSTATE_D3;
696 			break;
697 		default:
698 			result = PCI_POWERSTATE_UNKNOWN;
699 			break;
700 		}
701 	} else {
702 		/* No support, device is always at D0 */
703 		result = PCI_POWERSTATE_D0;
704 	}
705 	return(result);
706 }
707 
708 /*
709  * Some convenience functions for PCI device drivers.
710  */
711 
712 static __inline void
713 pci_set_command_bit(device_t dev, device_t child, u_int16_t bit)
714 {
715     u_int16_t	command;
716 
717     command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
718     command |= bit;
719     PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2);
720 }
721 
722 static __inline void
723 pci_clear_command_bit(device_t dev, device_t child, u_int16_t bit)
724 {
725     u_int16_t	command;
726 
727     command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
728     command &= ~bit;
729     PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2);
730 }
731 
732 int
733 pci_enable_busmaster_method(device_t dev, device_t child)
734 {
735     pci_set_command_bit(dev, child, PCIM_CMD_BUSMASTEREN);
736     return(0);
737 }
738 
739 int
740 pci_disable_busmaster_method(device_t dev, device_t child)
741 {
742     pci_clear_command_bit(dev, child, PCIM_CMD_BUSMASTEREN);
743     return(0);
744 }
745 
746 int
747 pci_enable_io_method(device_t dev, device_t child, int space)
748 {
749     uint16_t command;
750     uint16_t bit;
751     char *error;
752 
753     bit = 0;
754     error = NULL;
755 
756     switch(space) {
757     case SYS_RES_IOPORT:
758 	bit = PCIM_CMD_PORTEN;
759 	error = "port";
760 	break;
761     case SYS_RES_MEMORY:
762 	bit = PCIM_CMD_MEMEN;
763 	error = "memory";
764 	break;
765     default:
766 	return(EINVAL);
767     }
768     pci_set_command_bit(dev, child, bit);
769     command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
770     if (command & bit)
771 	return(0);
772     device_printf(child, "failed to enable %s mapping!\n", error);
773     return(ENXIO);
774 }
775 
776 int
777 pci_disable_io_method(device_t dev, device_t child, int space)
778 {
779     uint16_t command;
780     uint16_t bit;
781     char *error;
782 
783     bit = 0;
784     error = NULL;
785 
786     switch(space) {
787     case SYS_RES_IOPORT:
788 	bit = PCIM_CMD_PORTEN;
789 	error = "port";
790 	break;
791     case SYS_RES_MEMORY:
792 	bit = PCIM_CMD_MEMEN;
793 	error = "memory";
794 	break;
795     default:
796 	return (EINVAL);
797     }
798     pci_clear_command_bit(dev, child, bit);
799     command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
800     if (command & bit) {
801 	device_printf(child, "failed to disable %s mapping!\n", error);
802 	return (ENXIO);
803     }
804     return (0);
805 }
806 
807 /*
808  * This is the user interface to PCI configuration space.
809  */
810 
811 static int
812 pci_open(struct dev_open_args *ap)
813 {
814 	if ((ap->a_oflags & FWRITE) && securelevel > 0) {
815 		return EPERM;
816 	}
817 	return 0;
818 }
819 
820 static int
821 pci_close(struct dev_close_args *ap)
822 {
823 	return 0;
824 }
825 
826 /*
827  * Match a single pci_conf structure against an array of pci_match_conf
828  * structures.  The first argument, 'matches', is an array of num_matches
829  * pci_match_conf structures.  match_buf is a pointer to the pci_conf
830  * structure that will be compared to every entry in the matches array.
831  * This function returns 1 on failure, 0 on success.
832  */
833 static int
834 pci_conf_match(struct pci_match_conf *matches, int num_matches,
835 	       struct pci_conf *match_buf)
836 {
837 	int i;
838 
839 	if ((matches == NULL) || (match_buf == NULL) || (num_matches <= 0))
840 		return(1);
841 
842 	for (i = 0; i < num_matches; i++) {
843 		/*
844 		 * I'm not sure why someone would do this...but...
845 		 */
846 		if (matches[i].flags == PCI_GETCONF_NO_MATCH)
847 			continue;
848 
849 		/*
850 		 * Look at each of the match flags.  If it's set, do the
851 		 * comparison.  If the comparison fails, we don't have a
852 		 * match, go on to the next item if there is one.
853 		 */
854 		if (((matches[i].flags & PCI_GETCONF_MATCH_BUS) != 0)
855 		 && (match_buf->pc_sel.pc_bus != matches[i].pc_sel.pc_bus))
856 			continue;
857 
858 		if (((matches[i].flags & PCI_GETCONF_MATCH_DEV) != 0)
859 		 && (match_buf->pc_sel.pc_dev != matches[i].pc_sel.pc_dev))
860 			continue;
861 
862 		if (((matches[i].flags & PCI_GETCONF_MATCH_FUNC) != 0)
863 		 && (match_buf->pc_sel.pc_func != matches[i].pc_sel.pc_func))
864 			continue;
865 
866 		if (((matches[i].flags & PCI_GETCONF_MATCH_VENDOR) != 0)
867 		 && (match_buf->pc_vendor != matches[i].pc_vendor))
868 			continue;
869 
870 		if (((matches[i].flags & PCI_GETCONF_MATCH_DEVICE) != 0)
871 		 && (match_buf->pc_device != matches[i].pc_device))
872 			continue;
873 
874 		if (((matches[i].flags & PCI_GETCONF_MATCH_CLASS) != 0)
875 		 && (match_buf->pc_class != matches[i].pc_class))
876 			continue;
877 
878 		if (((matches[i].flags & PCI_GETCONF_MATCH_UNIT) != 0)
879 		 && (match_buf->pd_unit != matches[i].pd_unit))
880 			continue;
881 
882 		if (((matches[i].flags & PCI_GETCONF_MATCH_NAME) != 0)
883 		 && (strncmp(matches[i].pd_name, match_buf->pd_name,
884 			     sizeof(match_buf->pd_name)) != 0))
885 			continue;
886 
887 		return(0);
888 	}
889 
890 	return(1);
891 }
892 
893 /*
894  * Locate the parent of a PCI device by scanning the PCI devlist
895  * and return the entry for the parent.
896  * For devices on PCI Bus 0 (the host bus), this is the PCI Host.
897  * For devices on secondary PCI busses, this is that bus' PCI-PCI Bridge.
898  */
899 
900 pcicfgregs *
901 pci_devlist_get_parent(pcicfgregs *cfg)
902 {
903 	struct devlist *devlist_head;
904 	struct pci_devinfo *dinfo;
905 	pcicfgregs *bridge_cfg;
906 	int i;
907 
908 	dinfo = STAILQ_FIRST(devlist_head = &pci_devq);
909 
910 	/* If the device is on PCI bus 0, look for the host */
911 	if (cfg->bus == 0) {
912 		for (i = 0; (dinfo != NULL) && (i < pci_numdevs);
913 		dinfo = STAILQ_NEXT(dinfo, pci_links), i++) {
914 			bridge_cfg = &dinfo->cfg;
915 			if (bridge_cfg->baseclass == PCIC_BRIDGE
916 				&& bridge_cfg->subclass == PCIS_BRIDGE_HOST
917 		    		&& bridge_cfg->bus == cfg->bus) {
918 				return bridge_cfg;
919 			}
920 		}
921 	}
922 
923 	/* If the device is not on PCI bus 0, look for the PCI-PCI bridge */
924 	if (cfg->bus > 0) {
925 		for (i = 0; (dinfo != NULL) && (i < pci_numdevs);
926 		dinfo = STAILQ_NEXT(dinfo, pci_links), i++) {
927 			bridge_cfg = &dinfo->cfg;
928 			if (bridge_cfg->baseclass == PCIC_BRIDGE
929 				&& bridge_cfg->subclass == PCIS_BRIDGE_PCI
930 				&& bridge_cfg->secondarybus == cfg->bus) {
931 				return bridge_cfg;
932 			}
933 		}
934 	}
935 
936 	return NULL;
937 }
938 
939 static int
940 pci_ioctl(struct dev_ioctl_args *ap)
941 {
942 	device_t pci, pcib;
943 	struct pci_io *io;
944 	const char *name;
945 	int error;
946 
947 	if (!(ap->a_fflag & FWRITE))
948 		return EPERM;
949 
950 	switch(ap->a_cmd) {
951 	case PCIOCGETCONF:
952 		{
953 		struct pci_devinfo *dinfo;
954 		struct pci_conf_io *cio;
955 		struct devlist *devlist_head;
956 		struct pci_match_conf *pattern_buf;
957 		int num_patterns;
958 		size_t iolen;
959 		int ionum, i;
960 
961 		cio = (struct pci_conf_io *)ap->a_data;
962 
963 		num_patterns = 0;
964 		dinfo = NULL;
965 
966 		/*
967 		 * Hopefully the user won't pass in a null pointer, but it
968 		 * can't hurt to check.
969 		 */
970 		if (cio == NULL) {
971 			error = EINVAL;
972 			break;
973 		}
974 
975 		/*
976 		 * If the user specified an offset into the device list,
977 		 * but the list has changed since they last called this
978 		 * ioctl, tell them that the list has changed.  They will
979 		 * have to get the list from the beginning.
980 		 */
981 		if ((cio->offset != 0)
982 		 && (cio->generation != pci_generation)){
983 			cio->num_matches = 0;
984 			cio->status = PCI_GETCONF_LIST_CHANGED;
985 			error = 0;
986 			break;
987 		}
988 
989 		/*
990 		 * Check to see whether the user has asked for an offset
991 		 * past the end of our list.
992 		 */
993 		if (cio->offset >= pci_numdevs) {
994 			cio->num_matches = 0;
995 			cio->status = PCI_GETCONF_LAST_DEVICE;
996 			error = 0;
997 			break;
998 		}
999 
1000 		/* get the head of the device queue */
1001 		devlist_head = &pci_devq;
1002 
1003 		/*
1004 		 * Determine how much room we have for pci_conf structures.
1005 		 * Round the user's buffer size down to the nearest
1006 		 * multiple of sizeof(struct pci_conf) in case the user
1007 		 * didn't specify a multiple of that size.
1008 		 */
1009 		iolen = min(cio->match_buf_len -
1010 			    (cio->match_buf_len % sizeof(struct pci_conf)),
1011 			    pci_numdevs * sizeof(struct pci_conf));
1012 
1013 		/*
1014 		 * Since we know that iolen is a multiple of the size of
1015 		 * the pciconf union, it's okay to do this.
1016 		 */
1017 		ionum = iolen / sizeof(struct pci_conf);
1018 
1019 		/*
1020 		 * If this test is true, the user wants the pci_conf
1021 		 * structures returned to match the supplied entries.
1022 		 */
1023 		if ((cio->num_patterns > 0)
1024 		 && (cio->pat_buf_len > 0)) {
1025 			/*
1026 			 * pat_buf_len needs to be:
1027 			 * num_patterns * sizeof(struct pci_match_conf)
1028 			 * While it is certainly possible the user just
1029 			 * allocated a large buffer, but set the number of
1030 			 * matches correctly, it is far more likely that
1031 			 * their kernel doesn't match the userland utility
1032 			 * they're using.  It's also possible that the user
1033 			 * forgot to initialize some variables.  Yes, this
1034 			 * may be overly picky, but I hazard to guess that
1035 			 * it's far more likely to just catch folks that
1036 			 * updated their kernel but not their userland.
1037 			 */
1038 			if ((cio->num_patterns *
1039 			    sizeof(struct pci_match_conf)) != cio->pat_buf_len){
1040 				/* The user made a mistake, return an error*/
1041 				cio->status = PCI_GETCONF_ERROR;
1042 				kprintf("pci_ioctl: pat_buf_len %d != "
1043 				       "num_patterns (%d) * sizeof(struct "
1044 				       "pci_match_conf) (%d)\npci_ioctl: "
1045 				       "pat_buf_len should be = %d\n",
1046 				       cio->pat_buf_len, cio->num_patterns,
1047 				       (int)sizeof(struct pci_match_conf),
1048 				       (int)sizeof(struct pci_match_conf) *
1049 				       cio->num_patterns);
1050 				kprintf("pci_ioctl: do your headers match your "
1051 				       "kernel?\n");
1052 				cio->num_matches = 0;
1053 				error = EINVAL;
1054 				break;
1055 			}
1056 
1057 			/*
1058 			 * Check the user's buffer to make sure it's readable.
1059 			 */
1060 			if (!useracc((caddr_t)cio->patterns,
1061 				    cio->pat_buf_len, VM_PROT_READ)) {
1062 				kprintf("pci_ioctl: pattern buffer %p, "
1063 				       "length %u isn't user accessible for"
1064 				       " READ\n", cio->patterns,
1065 				       cio->pat_buf_len);
1066 				error = EACCES;
1067 				break;
1068 			}
1069 			/*
1070 			 * Allocate a buffer to hold the patterns.
1071 			 */
1072 			pattern_buf = kmalloc(cio->pat_buf_len, M_TEMP,
1073 					     M_WAITOK);
1074 			error = copyin(cio->patterns, pattern_buf,
1075 				       cio->pat_buf_len);
1076 			if (error != 0)
1077 				break;
1078 			num_patterns = cio->num_patterns;
1079 
1080 		} else if ((cio->num_patterns > 0)
1081 			|| (cio->pat_buf_len > 0)) {
1082 			/*
1083 			 * The user made a mistake, spit out an error.
1084 			 */
1085 			cio->status = PCI_GETCONF_ERROR;
1086 			cio->num_matches = 0;
1087 			kprintf("pci_ioctl: invalid GETCONF arguments\n");
1088 			error = EINVAL;
1089 			break;
1090 		} else
1091 			pattern_buf = NULL;
1092 
1093 		/*
1094 		 * Make sure we can write to the match buffer.
1095 		 */
1096 		if (!useracc((caddr_t)cio->matches,
1097 			     cio->match_buf_len, VM_PROT_WRITE)) {
1098 			kprintf("pci_ioctl: match buffer %p, length %u "
1099 			       "isn't user accessible for WRITE\n",
1100 			       cio->matches, cio->match_buf_len);
1101 			error = EACCES;
1102 			break;
1103 		}
1104 
1105 		/*
1106 		 * Go through the list of devices and copy out the devices
1107 		 * that match the user's criteria.
1108 		 */
1109 		for (cio->num_matches = 0, error = 0, i = 0,
1110 		     dinfo = STAILQ_FIRST(devlist_head);
1111 		     (dinfo != NULL) && (cio->num_matches < ionum)
1112 		     && (error == 0) && (i < pci_numdevs);
1113 		     dinfo = STAILQ_NEXT(dinfo, pci_links), i++) {
1114 
1115 			if (i < cio->offset)
1116 				continue;
1117 
1118 			/* Populate pd_name and pd_unit */
1119 			name = NULL;
1120 			if (dinfo->cfg.dev && dinfo->conf.pd_name[0] == '\0')
1121 				name = device_get_name(dinfo->cfg.dev);
1122 			if (name) {
1123 				strncpy(dinfo->conf.pd_name, name,
1124 					sizeof(dinfo->conf.pd_name));
1125 				dinfo->conf.pd_name[PCI_MAXNAMELEN] = 0;
1126 				dinfo->conf.pd_unit =
1127 					device_get_unit(dinfo->cfg.dev);
1128 			}
1129 
1130 			if ((pattern_buf == NULL) ||
1131 			    (pci_conf_match(pattern_buf, num_patterns,
1132 					    &dinfo->conf) == 0)) {
1133 
1134 				/*
1135 				 * If we've filled up the user's buffer,
1136 				 * break out at this point.  Since we've
1137 				 * got a match here, we'll pick right back
1138 				 * up at the matching entry.  We can also
1139 				 * tell the user that there are more matches
1140 				 * left.
1141 				 */
1142 				if (cio->num_matches >= ionum)
1143 					break;
1144 
1145 				error = copyout(&dinfo->conf,
1146 					        &cio->matches[cio->num_matches],
1147 						sizeof(struct pci_conf));
1148 				cio->num_matches++;
1149 			}
1150 		}
1151 
1152 		/*
1153 		 * Set the pointer into the list, so if the user is getting
1154 		 * n records at a time, where n < pci_numdevs,
1155 		 */
1156 		cio->offset = i;
1157 
1158 		/*
1159 		 * Set the generation, the user will need this if they make
1160 		 * another ioctl call with offset != 0.
1161 		 */
1162 		cio->generation = pci_generation;
1163 
1164 		/*
1165 		 * If this is the last device, inform the user so he won't
1166 		 * bother asking for more devices.  If dinfo isn't NULL, we
1167 		 * know that there are more matches in the list because of
1168 		 * the way the traversal is done.
1169 		 */
1170 		if (dinfo == NULL)
1171 			cio->status = PCI_GETCONF_LAST_DEVICE;
1172 		else
1173 			cio->status = PCI_GETCONF_MORE_DEVS;
1174 
1175 		if (pattern_buf != NULL)
1176 			kfree(pattern_buf, M_TEMP);
1177 
1178 		break;
1179 		}
1180 	case PCIOCREAD:
1181 		io = (struct pci_io *)ap->a_data;
1182 		switch(io->pi_width) {
1183 		case 4:
1184 		case 2:
1185 		case 1:
1186 			/*
1187 			 * Assume that the user-level bus number is
1188 			 * actually the pciN instance number. We map
1189 			 * from that to the real pcib+bus combination.
1190 			 */
1191 			pci = devclass_get_device(pci_devclass,
1192 						  io->pi_sel.pc_bus);
1193 			if (pci) {
1194 				/*
1195 				 * pci is the pci device and may contain
1196 				 * several children (for each function code).
1197 				 * The governing pci bus is the parent to
1198 				 * the pci device.
1199 				 */
1200 				int b;
1201 
1202 				pcib = device_get_parent(pci);
1203 				b = pcib_get_bus(pcib);
1204 				io->pi_data =
1205 					PCIB_READ_CONFIG(pcib,
1206 							 b,
1207 							 io->pi_sel.pc_dev,
1208 							 io->pi_sel.pc_func,
1209 							 io->pi_reg,
1210 							 io->pi_width);
1211 				error = 0;
1212 			} else {
1213 				error = ENODEV;
1214 			}
1215 			break;
1216 		default:
1217 			error = ENODEV;
1218 			break;
1219 		}
1220 		break;
1221 
1222 	case PCIOCWRITE:
1223 		io = (struct pci_io *)ap->a_data;
1224 		switch(io->pi_width) {
1225 		case 4:
1226 		case 2:
1227 		case 1:
1228 			/*
1229 			 * Assume that the user-level bus number is
1230 			 * actually the pciN instance number. We map
1231 			 * from that to the real pcib+bus combination.
1232 			 */
1233 			pci = devclass_get_device(pci_devclass,
1234 						  io->pi_sel.pc_bus);
1235 			if (pci) {
1236 				/*
1237 				 * pci is the pci device and may contain
1238 				 * several children (for each function code).
1239 				 * The governing pci bus is the parent to
1240 				 * the pci device.
1241 				 */
1242 				int b;
1243 
1244 				pcib = device_get_parent(pci);
1245 				b = pcib_get_bus(pcib);
1246 				PCIB_WRITE_CONFIG(pcib,
1247 						  b,
1248 						  io->pi_sel.pc_dev,
1249 						  io->pi_sel.pc_func,
1250 						  io->pi_reg,
1251 						  io->pi_data,
1252 						  io->pi_width);
1253 				error = 0;
1254 			} else {
1255 				error = ENODEV;
1256 			}
1257 			break;
1258 		default:
1259 			error = ENODEV;
1260 			break;
1261 		}
1262 		break;
1263 
1264 	default:
1265 		error = ENOTTY;
1266 		break;
1267 	}
1268 
1269 	return (error);
1270 }
1271 
1272 #define	PCI_CDEV	78
1273 
1274 static struct dev_ops pcic_ops = {
1275 	{ "pci", PCI_CDEV, 0 },
1276 	.d_open =	pci_open,
1277 	.d_close =	pci_close,
1278 	.d_ioctl =	pci_ioctl,
1279 };
1280 
1281 #include "pci_if.h"
1282 
1283 /*
1284  * New style pci driver.  Parent device is either a pci-host-bridge or a
1285  * pci-pci-bridge.  Both kinds are represented by instances of pcib.
1286  */
1287 const char *
1288 pci_class_to_string(int baseclass)
1289 {
1290 	const char *name;
1291 
1292 	switch(baseclass) {
1293 	case PCIC_OLD:
1294 		name = "OLD";
1295 		break;
1296 	case PCIC_STORAGE:
1297 		name = "STORAGE";
1298 		break;
1299 	case PCIC_NETWORK:
1300 		name = "NETWORK";
1301 		break;
1302 	case PCIC_DISPLAY:
1303 		name = "DISPLAY";
1304 		break;
1305 	case PCIC_MULTIMEDIA:
1306 		name = "MULTIMEDIA";
1307 		break;
1308 	case PCIC_MEMORY:
1309 		name = "MEMORY";
1310 		break;
1311 	case PCIC_BRIDGE:
1312 		name = "BRIDGE";
1313 		break;
1314 	case PCIC_SIMPLECOMM:
1315 		name = "SIMPLECOMM";
1316 		break;
1317 	case PCIC_BASEPERIPH:
1318 		name = "BASEPERIPH";
1319 		break;
1320 	case PCIC_INPUTDEV:
1321 		name = "INPUTDEV";
1322 		break;
1323 	case PCIC_DOCKING:
1324 		name = "DOCKING";
1325 		break;
1326 	case PCIC_PROCESSOR:
1327 		name = "PROCESSOR";
1328 		break;
1329 	case PCIC_SERIALBUS:
1330 		name = "SERIALBUS";
1331 		break;
1332 	case PCIC_WIRELESS:
1333 		name = "WIRELESS";
1334 		break;
1335 	case PCIC_I2O:
1336 		name = "I20";
1337 		break;
1338 	case PCIC_SATELLITE:
1339 		name = "SATELLITE";
1340 		break;
1341 	case PCIC_CRYPTO:
1342 		name = "CRYPTO";
1343 		break;
1344 	case PCIC_SIGPROC:
1345 		name = "SIGPROC";
1346 		break;
1347 	case PCIC_OTHER:
1348 		name = "OTHER";
1349 		break;
1350 	default:
1351 		name = "?";
1352 		break;
1353 	}
1354 	return(name);
1355 }
1356 
1357 static void
1358 pci_print_verbose_expr(const pcicfgregs *cfg)
1359 {
1360 	const struct pcicfg_expr *expr = &cfg->expr;
1361 	const char *port_name;
1362 	uint16_t port_type;
1363 
1364 	if (!bootverbose)
1365 		return;
1366 
1367 	if (expr->expr_ptr == 0) /* No PCI Express capability */
1368 		return;
1369 
1370 	kprintf("\tPCI Express ver.%d cap=0x%04x",
1371 		expr->expr_cap & PCIEM_CAP_VER_MASK, expr->expr_cap);
1372 	if ((expr->expr_cap & PCIEM_CAP_VER_MASK) != PCIEM_CAP_VER_1)
1373 		goto back;
1374 
1375 	port_type = expr->expr_cap & PCIEM_CAP_PORT_TYPE;
1376 
1377 	switch (port_type) {
1378 	case PCIE_END_POINT:
1379 		port_name = "DEVICE";
1380 		break;
1381 	case PCIE_LEG_END_POINT:
1382 		port_name = "LEGDEV";
1383 		break;
1384 	case PCIE_ROOT_PORT:
1385 		port_name = "ROOT";
1386 		break;
1387 	case PCIE_UP_STREAM_PORT:
1388 		port_name = "UPSTREAM";
1389 		break;
1390 	case PCIE_DOWN_STREAM_PORT:
1391 		port_name = "DOWNSTRM";
1392 		break;
1393 	case PCIE_PCIE2PCI_BRIDGE:
1394 		port_name = "PCIE2PCI";
1395 		break;
1396 	case PCIE_PCI2PCIE_BRIDGE:
1397 		port_name = "PCI2PCIE";
1398 		break;
1399 	default:
1400 		port_name = NULL;
1401 		break;
1402 	}
1403 	if ((port_type == PCIE_ROOT_PORT ||
1404 	     port_type == PCIE_DOWN_STREAM_PORT) &&
1405 	    !(expr->expr_cap & PCIEM_CAP_SLOT_IMPL))
1406 		port_name = NULL;
1407 	if (port_name != NULL)
1408 		kprintf("[%s]", port_name);
1409 
1410 	if (pcie_slotimpl(cfg)) {
1411 		kprintf(", slotcap=0x%08x", expr->expr_slotcap);
1412 		if (expr->expr_slotcap & PCIEM_SLTCAP_HP_CAP)
1413 			kprintf("[HOTPLUG]");
1414 	}
1415 back:
1416 	kprintf("\n");
1417 }
1418 
1419 void
1420 pci_print_verbose(struct pci_devinfo *dinfo)
1421 {
1422 	if (bootverbose) {
1423 		pcicfgregs *cfg = &dinfo->cfg;
1424 
1425 		kprintf("found->\tvendor=0x%04x, dev=0x%04x, revid=0x%02x\n",
1426 		       cfg->vendor, cfg->device, cfg->revid);
1427 		kprintf("\tbus=%d, slot=%d, func=%d\n",
1428 		       cfg->bus, cfg->slot, cfg->func);
1429 		kprintf("\tclass=[%s]%02x-%02x-%02x, hdrtype=0x%02x, mfdev=%d\n",
1430 		       pci_class_to_string(cfg->baseclass),
1431 		       cfg->baseclass, cfg->subclass, cfg->progif,
1432 		       cfg->hdrtype, cfg->mfdev);
1433 		kprintf("\tsubordinatebus=%x \tsecondarybus=%x\n",
1434 		       cfg->subordinatebus, cfg->secondarybus);
1435 #ifdef PCI_DEBUG
1436 		kprintf("\tcmdreg=0x%04x, statreg=0x%04x, cachelnsz=%d (dwords)\n",
1437 		       cfg->cmdreg, cfg->statreg, cfg->cachelnsz);
1438 		kprintf("\tlattimer=0x%02x (%d ns), mingnt=0x%02x (%d ns), maxlat=0x%02x (%d ns)\n",
1439 		       cfg->lattimer, cfg->lattimer * 30,
1440 		       cfg->mingnt, cfg->mingnt * 250, cfg->maxlat, cfg->maxlat * 250);
1441 #endif /* PCI_DEBUG */
1442 		if (cfg->intpin > 0)
1443 			kprintf("\tintpin=%c, irq=%d\n", cfg->intpin +'a' -1, cfg->intline);
1444 
1445 		pci_print_verbose_expr(cfg);
1446 	}
1447 }
1448 
1449 static int
1450 pci_porten(device_t pcib, int b, int s, int f)
1451 {
1452 	return (PCIB_READ_CONFIG(pcib, b, s, f, PCIR_COMMAND, 2)
1453 		& PCIM_CMD_PORTEN) != 0;
1454 }
1455 
1456 static int
1457 pci_memen(device_t pcib, int b, int s, int f)
1458 {
1459 	return (PCIB_READ_CONFIG(pcib, b, s, f, PCIR_COMMAND, 2)
1460 		& PCIM_CMD_MEMEN) != 0;
1461 }
1462 
1463 /*
1464  * Add a resource based on a pci map register. Return 1 if the map
1465  * register is a 32bit map register or 2 if it is a 64bit register.
1466  */
1467 static int
1468 pci_add_map(device_t pcib, int b, int s, int f, int reg,
1469 	    struct resource_list *rl)
1470 {
1471 	u_int32_t map;
1472 	u_int64_t base;
1473 	u_int8_t ln2size;
1474 	u_int8_t ln2range;
1475 	u_int32_t testval;
1476 
1477 
1478 #ifdef PCI_ENABLE_IO_MODES
1479 	u_int16_t cmd;
1480 #endif
1481 	int type;
1482 
1483 	map = PCIB_READ_CONFIG(pcib, b, s, f, reg, 4);
1484 
1485 	if (map == 0 || map == 0xffffffff)
1486 		return 1; /* skip invalid entry */
1487 
1488 	PCIB_WRITE_CONFIG(pcib, b, s, f, reg, 0xffffffff, 4);
1489 	testval = PCIB_READ_CONFIG(pcib, b, s, f, reg, 4);
1490 	PCIB_WRITE_CONFIG(pcib, b, s, f, reg, map, 4);
1491 
1492 	base = pci_mapbase(map);
1493 	if (pci_maptype(map) & PCI_MAPMEM)
1494 		type = SYS_RES_MEMORY;
1495 	else
1496 		type = SYS_RES_IOPORT;
1497 	ln2size = pci_mapsize(testval);
1498 	ln2range = pci_maprange(testval);
1499 	if (ln2range == 64) {
1500 		/* Read the other half of a 64bit map register */
1501 		base |= (u_int64_t) PCIB_READ_CONFIG(pcib, b, s, f, reg+4, 4);
1502 	}
1503 
1504 	/*
1505 	 * This code theoretically does the right thing, but has
1506 	 * undesirable side effects in some cases where
1507 	 * peripherals respond oddly to having these bits
1508 	 * enabled.  Leave them alone by default.
1509 	 */
1510 #ifdef PCI_ENABLE_IO_MODES
1511 	if (type == SYS_RES_IOPORT && !pci_porten(pcib, b, s, f)) {
1512 		cmd = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_COMMAND, 2);
1513 		cmd |= PCIM_CMD_PORTEN;
1514 		PCIB_WRITE_CONFIG(pcib, b, s, f, PCIR_COMMAND, cmd, 2);
1515 	}
1516 	if (type == SYS_RES_MEMORY && !pci_memen(pcib, b, s, f)) {
1517 		cmd = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_COMMAND, 2);
1518 		cmd |= PCIM_CMD_MEMEN;
1519 		PCIB_WRITE_CONFIG(pcib, b, s, f, PCIR_COMMAND, cmd, 2);
1520 	}
1521 #else
1522         if (type == SYS_RES_IOPORT && !pci_porten(pcib, b, s, f))
1523                 return 1;
1524         if (type == SYS_RES_MEMORY && !pci_memen(pcib, b, s, f))
1525 		return 1;
1526 #endif
1527 
1528 	resource_list_add(rl, type, reg,
1529 			  base, base + (1 << ln2size) - 1,
1530 			  (1 << ln2size));
1531 
1532 	if (bootverbose) {
1533 		kprintf("\tmap[%02x]: type %x, range %2d, base %08x, size %2d\n",
1534 		       reg, pci_maptype(base), ln2range,
1535 		       (unsigned int) base, ln2size);
1536 	}
1537 
1538 	return (ln2range == 64) ? 2 : 1;
1539 }
1540 
1541 #ifdef PCI_MAP_FIXUP
1542 /*
1543  * For ATA devices we need to decide early on what addressing mode to use.
1544  * Legacy demands that the primary and secondary ATA ports sits on the
1545  * same addresses that old ISA hardware did. This dictates that we use
1546  * those addresses and ignore the BARs if we cannot set PCI native
1547  * addressing mode.
1548  */
1549 static void
1550 pci_ata_maps(device_t pcib, device_t bus, device_t dev, int b, int s, int f,
1551 	     struct resource_list *rl)
1552 {
1553 	int rid, type, progif;
1554 #if 0
1555 	/* if this device supports PCI native addressing use it */
1556 	progif = pci_read_config(dev, PCIR_PROGIF, 1);
1557 	if ((progif &0x8a) == 0x8a) {
1558 		if (pci_mapbase(pci_read_config(dev, PCIR_BAR(0), 4)) &&
1559 		    pci_mapbase(pci_read_config(dev, PCIR_BAR(2), 4))) {
1560 			kprintf("Trying ATA native PCI addressing mode\n");
1561 			pci_write_config(dev, PCIR_PROGIF, progif | 0x05, 1);
1562 		}
1563 	}
1564 #endif
1565 	/*
1566 	 * Because we return any preallocated resources for lazy
1567 	 * allocation for PCI devices in pci_alloc_resource(), we can
1568 	 * allocate our legacy resources here.
1569 	 */
1570 	progif = pci_read_config(dev, PCIR_PROGIF, 1);
1571 	type = SYS_RES_IOPORT;
1572 	if (progif & PCIP_STORAGE_IDE_MODEPRIM) {
1573 		pci_add_map(pcib, b, s, f, PCIR_BAR(0), rl);
1574 		pci_add_map(pcib, b, s, f, PCIR_BAR(1), rl);
1575 	} else {
1576 		rid = PCIR_BAR(0);
1577 		resource_list_add(rl, type, rid, 0x1f0, 0x1f7, 8);
1578 		resource_list_alloc(rl, bus, dev, type, &rid, 0x1f0, 0x1f7, 8,
1579 				    0);
1580 		rid = PCIR_BAR(1);
1581 		resource_list_add(rl, type, rid, 0x3f6, 0x3f6, 1);
1582 		resource_list_alloc(rl, bus, dev, type, &rid, 0x3f6, 0x3f6, 1,
1583 				    0);
1584 	}
1585 	if (progif & PCIP_STORAGE_IDE_MODESEC) {
1586 		pci_add_map(pcib, b, s, f, PCIR_BAR(2), rl);
1587 		pci_add_map(pcib, b, s, f, PCIR_BAR(3), rl);
1588 	} else {
1589 		rid = PCIR_BAR(2);
1590 		resource_list_add(rl, type, rid, 0x170, 0x177, 8);
1591 		resource_list_alloc(rl, bus, dev, type, &rid, 0x170, 0x177, 8,
1592 				    0);
1593 		rid = PCIR_BAR(3);
1594 		resource_list_add(rl, type, rid, 0x376, 0x376, 1);
1595 		resource_list_alloc(rl, bus, dev, type, &rid, 0x376, 0x376, 1,
1596 				    0);
1597 	}
1598 	pci_add_map(pcib, b, s, f, PCIR_BAR(4), rl);
1599 	pci_add_map(pcib, b, s, f, PCIR_BAR(5), rl);
1600 }
1601 #endif /* PCI_MAP_FIXUP */
1602 
1603 static void
1604 pci_add_resources(device_t pcib, device_t bus, device_t dev)
1605 {
1606 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1607 	pcicfgregs *cfg = &dinfo->cfg;
1608 	struct resource_list *rl = &dinfo->resources;
1609 	struct pci_quirk *q;
1610 	int b, i, f, s;
1611 #if 0	/* WILL BE USED WITH ADDITIONAL IMPORT FROM FREEBSD-5 XXX */
1612 	int irq;
1613 #endif
1614 
1615 	b = cfg->bus;
1616 	s = cfg->slot;
1617 	f = cfg->func;
1618 #ifdef PCI_MAP_FIXUP
1619 	/* atapci devices in legacy mode need special map treatment */
1620 	if ((pci_get_class(dev) == PCIC_STORAGE) &&
1621 	    (pci_get_subclass(dev) == PCIS_STORAGE_IDE) &&
1622 	    ((pci_get_progif(dev) & PCIP_STORAGE_IDE_MASTERDEV) ||
1623 	     (!pci_read_config(dev, PCIR_BAR(0), 4) &&
1624 	      !pci_read_config(dev, PCIR_BAR(2), 4))) )
1625 		pci_ata_maps(pcib, bus, dev, b, s, f, rl);
1626 	else
1627 #endif /* PCI_MAP_FIXUP */
1628 		for (i = 0; i < cfg->nummaps;) {
1629 			i += pci_add_map(pcib, b, s, f, PCIR_BAR(i),rl);
1630 		}
1631 
1632 	for (q = &pci_quirks[0]; q->devid; q++) {
1633 		if (q->devid == ((cfg->device << 16) | cfg->vendor)
1634 		    && q->type == PCI_QUIRK_MAP_REG)
1635 			pci_add_map(pcib, b, s, f, q->arg1, rl);
1636 	}
1637 
1638 	if (cfg->intpin > 0 && cfg->intline != 255)
1639 		resource_list_add(rl, SYS_RES_IRQ, 0,
1640 				  cfg->intline, cfg->intline, 1);
1641 }
1642 
1643 void
1644 pci_add_children(device_t dev, int busno, size_t dinfo_size)
1645 {
1646 #define REG(n, w)       PCIB_READ_CONFIG(pcib, busno, s, f, n, w)
1647 	device_t pcib = device_get_parent(dev);
1648 	struct pci_devinfo *dinfo;
1649 	int maxslots;
1650 	int s, f, pcifunchigh;
1651 	uint8_t hdrtype;
1652 
1653 	KKASSERT(dinfo_size >= sizeof(struct pci_devinfo));
1654 
1655 	maxslots = PCIB_MAXSLOTS(pcib);
1656 
1657 	for (s = 0; s <= maxslots; s++) {
1658 		pcifunchigh = 0;
1659 		f = 0;
1660 		hdrtype = REG(PCIR_HDRTYPE, 1);
1661 		if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE)
1662 			continue;
1663 		if (hdrtype & PCIM_MFDEV)
1664 			pcifunchigh = PCI_FUNCMAX;
1665 		for (f = 0; f <= pcifunchigh; f++) {
1666 			dinfo = pci_read_device(pcib, busno, s, f, dinfo_size);
1667 			if (dinfo != NULL) {
1668 				pci_add_child(dev, dinfo);
1669 			}
1670 		}
1671 	}
1672 #undef REG
1673 }
1674 
1675 /*
1676  * The actual PCI child that we add has a NULL driver whos parent
1677  * device will be "pci".  The child contains the ivars, not the parent.
1678  */
1679 void
1680 pci_add_child(device_t bus, struct pci_devinfo *dinfo)
1681 {
1682 	device_t pcib;
1683 
1684 	pcib = device_get_parent(bus);
1685 	dinfo->cfg.dev = device_add_child(bus, NULL, -1);
1686 	device_set_ivars(dinfo->cfg.dev, dinfo);
1687 	pci_add_resources(pcib, bus, dinfo->cfg.dev);
1688 	pci_print_verbose(dinfo);
1689 }
1690 
1691 /*
1692  * Probe the PCI bus.  Note: probe code is not supposed to add children
1693  * or call attach.
1694  */
1695 static int
1696 pci_probe(device_t dev)
1697 {
1698 	device_set_desc(dev, "PCI bus");
1699 
1700 	/* Allow other subclasses to override this driver */
1701 	return(-1000);
1702 }
1703 
1704 static int
1705 pci_attach(device_t dev)
1706 {
1707 	int busno;
1708 	int lunit = device_get_unit(dev);
1709 
1710 	dev_ops_add(&pcic_ops, -1, lunit);
1711 	make_dev(&pcic_ops, lunit, UID_ROOT, GID_WHEEL, 0644, "pci%d", lunit);
1712 
1713         /*
1714          * Since there can be multiple independantly numbered PCI
1715          * busses on some large alpha systems, we can't use the unit
1716          * number to decide what bus we are probing. We ask the parent
1717          * pcib what our bus number is.
1718 	 *
1719 	 * pcib_get_bus() must act on the pci bus device, not on the pci
1720 	 * device, because it uses badly hacked nexus-based ivars to
1721 	 * store and retrieve the physical bus number.  XXX
1722          */
1723         busno = pcib_get_bus(device_get_parent(dev));
1724         if (bootverbose)
1725                 device_printf(dev, "pci_attach() physical bus=%d\n", busno);
1726 
1727         pci_add_children(dev, busno, sizeof(struct pci_devinfo));
1728 
1729         return (bus_generic_attach(dev));
1730 }
1731 
1732 static int
1733 pci_print_resources(struct resource_list *rl, const char *name, int type,
1734 		    const char *format)
1735 {
1736 	struct resource_list_entry *rle;
1737 	int printed, retval;
1738 
1739 	printed = 0;
1740 	retval = 0;
1741 	/* Yes, this is kinda cheating */
1742 	SLIST_FOREACH(rle, rl, link) {
1743 		if (rle->type == type) {
1744 			if (printed == 0)
1745 				retval += kprintf(" %s ", name);
1746 			else if (printed > 0)
1747 				retval += kprintf(",");
1748 			printed++;
1749 			retval += kprintf(format, rle->start);
1750 			if (rle->count > 1) {
1751 				retval += kprintf("-");
1752 				retval += kprintf(format, rle->start +
1753 						 rle->count - 1);
1754 			}
1755 		}
1756 	}
1757 	return retval;
1758 }
1759 
1760 int
1761 pci_print_child(device_t dev, device_t child)
1762 {
1763 	struct pci_devinfo *dinfo;
1764 	struct resource_list *rl;
1765 	pcicfgregs *cfg;
1766 	int retval = 0;
1767 
1768 	dinfo = device_get_ivars(child);
1769 	cfg = &dinfo->cfg;
1770 	rl = &dinfo->resources;
1771 
1772 	retval += bus_print_child_header(dev, child);
1773 
1774 	retval += pci_print_resources(rl, "port", SYS_RES_IOPORT, "%#lx");
1775 	retval += pci_print_resources(rl, "mem", SYS_RES_MEMORY, "%#lx");
1776 	retval += pci_print_resources(rl, "irq", SYS_RES_IRQ, "%ld");
1777 	if (device_get_flags(dev))
1778 		retval += kprintf(" flags %#x", device_get_flags(dev));
1779 
1780 	retval += kprintf(" at device %d.%d", pci_get_slot(child),
1781 			 pci_get_function(child));
1782 
1783 	retval += bus_print_child_footer(dev, child);
1784 
1785 	return (retval);
1786 }
1787 
1788 void
1789 pci_probe_nomatch(device_t dev, device_t child)
1790 {
1791 	struct pci_devinfo *dinfo;
1792 	pcicfgregs *cfg;
1793 	const char *desc;
1794 	int unknown;
1795 
1796 	unknown = 0;
1797 	dinfo = device_get_ivars(child);
1798 	cfg = &dinfo->cfg;
1799 	desc = pci_ata_match(child);
1800 	if (!desc) desc = pci_usb_match(child);
1801 	if (!desc) desc = pci_vga_match(child);
1802 	if (!desc) desc = pci_chip_match(child);
1803 	if (!desc) {
1804 		desc = "unknown card";
1805 		unknown++;
1806 	}
1807 	device_printf(dev, "<%s>", desc);
1808 	if (bootverbose || unknown) {
1809 		kprintf(" (vendor=0x%04x, dev=0x%04x)",
1810 			cfg->vendor,
1811 			cfg->device);
1812 	}
1813 	kprintf(" at %d.%d",
1814 		pci_get_slot(child),
1815 		pci_get_function(child));
1816 	if (cfg->intpin > 0 && cfg->intline != 255) {
1817 		kprintf(" irq %d", cfg->intline);
1818 	}
1819 	kprintf("\n");
1820 
1821 	return;
1822 }
1823 
1824 int
1825 pci_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
1826 {
1827 	struct pci_devinfo *dinfo;
1828 	pcicfgregs *cfg;
1829 
1830 	dinfo = device_get_ivars(child);
1831 	cfg = &dinfo->cfg;
1832 
1833 	switch (which) {
1834 	case PCI_IVAR_SUBVENDOR:
1835 		*result = cfg->subvendor;
1836 		break;
1837 	case PCI_IVAR_SUBDEVICE:
1838 		*result = cfg->subdevice;
1839 		break;
1840 	case PCI_IVAR_VENDOR:
1841 		*result = cfg->vendor;
1842 		break;
1843 	case PCI_IVAR_DEVICE:
1844 		*result = cfg->device;
1845 		break;
1846 	case PCI_IVAR_DEVID:
1847 		*result = (cfg->device << 16) | cfg->vendor;
1848 		break;
1849 	case PCI_IVAR_CLASS:
1850 		*result = cfg->baseclass;
1851 		break;
1852 	case PCI_IVAR_SUBCLASS:
1853 		*result = cfg->subclass;
1854 		break;
1855 	case PCI_IVAR_PROGIF:
1856 		*result = cfg->progif;
1857 		break;
1858 	case PCI_IVAR_REVID:
1859 		*result = cfg->revid;
1860 		break;
1861 	case PCI_IVAR_INTPIN:
1862 		*result = cfg->intpin;
1863 		break;
1864 	case PCI_IVAR_IRQ:
1865 		*result = cfg->intline;
1866 		break;
1867 	case PCI_IVAR_BUS:
1868 		*result = cfg->bus;
1869 		break;
1870 	case PCI_IVAR_SLOT:
1871 		*result = cfg->slot;
1872 		break;
1873 	case PCI_IVAR_FUNCTION:
1874 		*result = cfg->func;
1875 		break;
1876 	case PCI_IVAR_SECONDARYBUS:
1877 		*result = cfg->secondarybus;
1878 		break;
1879 	case PCI_IVAR_SUBORDINATEBUS:
1880 		*result = cfg->subordinatebus;
1881 		break;
1882 	case PCI_IVAR_ETHADDR:
1883 		/*
1884 		 * The generic accessor doesn't deal with failure, so
1885 		 * we set the return value, then return an error.
1886 		 */
1887 		*result = 0;
1888 		return (EINVAL);
1889 	case PCI_IVAR_PCIXCAP_PTR:
1890 		*result = cfg->pcixcap_ptr;
1891 		break;
1892 	case PCI_IVAR_PCIECAP_PTR:
1893 		*result = cfg->expr.expr_ptr;
1894 		break;
1895 	default:
1896 		return ENOENT;
1897 	}
1898 	return 0;
1899 }
1900 
1901 int
1902 pci_write_ivar(device_t dev, device_t child, int which, uintptr_t value)
1903 {
1904 	struct pci_devinfo *dinfo;
1905 	pcicfgregs *cfg;
1906 
1907 	dinfo = device_get_ivars(child);
1908 	cfg = &dinfo->cfg;
1909 
1910 	switch (which) {
1911 	case PCI_IVAR_SUBVENDOR:
1912 	case PCI_IVAR_SUBDEVICE:
1913 	case PCI_IVAR_VENDOR:
1914 	case PCI_IVAR_DEVICE:
1915 	case PCI_IVAR_DEVID:
1916 	case PCI_IVAR_CLASS:
1917 	case PCI_IVAR_SUBCLASS:
1918 	case PCI_IVAR_PROGIF:
1919 	case PCI_IVAR_REVID:
1920 	case PCI_IVAR_INTPIN:
1921 	case PCI_IVAR_IRQ:
1922 	case PCI_IVAR_BUS:
1923 	case PCI_IVAR_SLOT:
1924 	case PCI_IVAR_FUNCTION:
1925 	case PCI_IVAR_ETHADDR:
1926 	case PCI_IVAR_PCIXCAP_PTR:
1927 	case PCI_IVAR_PCIECAP_PTR:
1928 		return EINVAL;	/* disallow for now */
1929 
1930 	case PCI_IVAR_SECONDARYBUS:
1931 		cfg->secondarybus = value;
1932 		break;
1933 	case PCI_IVAR_SUBORDINATEBUS:
1934 		cfg->subordinatebus = value;
1935 		break;
1936 	default:
1937 		return ENOENT;
1938 	}
1939 	return 0;
1940 }
1941 
1942 #ifdef PCI_MAP_FIXUP
1943 static struct resource *
1944 pci_alloc_map(device_t dev, device_t child, int type, int *rid, u_long start,
1945 	      u_long end, u_long count, u_int flags)
1946 {
1947 	struct pci_devinfo *dinfo = device_get_ivars(child);
1948 	struct resource_list *rl = &dinfo->resources;
1949 	struct resource_list_entry *rle;
1950 	struct resource *res;
1951 	uint32_t map, testval;
1952 	int mapsize;
1953 
1954 	/*
1955 	 * Weed out the bogons, and figure out how large the BAR/map
1956 	 * is. BARs that read back 0 here are bogus and unimplemented.
1957 	 *
1958 	 * Note: atapci in legacy mode are special and handled elsewhere
1959 	 * in the code. If you have an atapci device in legacy mode and
1960 	 * it fails here, that other code is broken.
1961 	 */
1962 	res = NULL;
1963 	map = pci_read_config(child, *rid, 4);
1964 	pci_write_config(child, *rid, 0xffffffff, 4);
1965 	testval = pci_read_config(child, *rid, 4);
1966 	if (pci_mapbase(testval) == 0)
1967 		goto out;
1968 	if (pci_maptype(testval) & PCI_MAPMEM) {
1969 		if (type != SYS_RES_MEMORY) {
1970 			if (bootverbose)
1971 				device_printf(dev, "child %s requested type %d"
1972 					      " for rid %#x, but the BAR says "
1973 					      "it is a memio\n",
1974 					      device_get_nameunit(child), type,
1975 					      *rid);
1976 			goto out;
1977 		}
1978 	} else {
1979 		if (type != SYS_RES_IOPORT) {
1980 			if (bootverbose)
1981 				device_printf(dev, "child %s requested type %d"
1982 					      " for rid %#x, but the BAR says "
1983 					      "it is an ioport\n",
1984 					      device_get_nameunit(child), type,
1985 					      *rid);
1986 			goto out;
1987 		}
1988 	}
1989 	/*
1990 	 * For real BARs, we need to override the size that
1991 	 * the driver requests, because that's what the BAR
1992 	 * actually uses and we would otherwise have a
1993 	 * situation where we might allocate the excess to
1994 	 * another driver, which won't work.
1995 	 */
1996 	mapsize = pci_mapsize(testval);
1997 	count = 1 << mapsize;
1998 	if (RF_ALIGNMENT(flags) < mapsize)
1999 		flags = (flags & ~RF_ALIGNMENT_MASK) |
2000 		   RF_ALIGNMENT_LOG2(mapsize);
2001 	/*
2002 	 * Allocate enough resource, and then write back the
2003 	 * appropriate BAR for that resource.
2004 	 */
2005 	res = BUS_ALLOC_RESOURCE(device_get_parent(dev), child, type, rid,
2006 				 start, end, count, flags);
2007 	if (res == NULL) {
2008 		device_printf(child, "%#lx bytes at rid %#x res %d failed "
2009 			      "(%#lx, %#lx)\n", count, *rid, type, start, end);
2010 		goto out;
2011 	}
2012 	resource_list_add(rl, type, *rid, start, end, count);
2013 	rle = resource_list_find(rl, type, *rid);
2014 	if (rle == NULL)
2015 		panic("pci_alloc_map: unexpectedly can't find resource.");
2016 	rle->res = res;
2017 	rle->start = rman_get_start(res);
2018 	rle->end = rman_get_end(res);
2019 	rle->count = count;
2020 	if (bootverbose)
2021 		device_printf(child, "lazy allocation of %#lx bytes rid %#x "
2022 			      "type %d at %#lx\n", count, *rid, type,
2023 			      rman_get_start(res));
2024 	map = rman_get_start(res);
2025 out:;
2026 	pci_write_config(child, *rid, map, 4);
2027 	return res;
2028 }
2029 #endif /* PCI_MAP_FIXUP */
2030 
2031 struct resource *
2032 pci_alloc_resource(device_t dev, device_t child, int type, int *rid,
2033 		   u_long start, u_long end, u_long count, u_int flags)
2034 {
2035 	struct pci_devinfo *dinfo = device_get_ivars(child);
2036 	struct resource_list *rl = &dinfo->resources;
2037 #ifdef PCI_MAP_FIXUP
2038 	struct resource_list_entry *rle;
2039 #endif /* PCI_MAP_FIXUP */
2040 	pcicfgregs *cfg = &dinfo->cfg;
2041 
2042 	/*
2043 	 * Perform lazy resource allocation
2044 	 */
2045 	if (device_get_parent(child) == dev) {
2046 		switch (type) {
2047 		case SYS_RES_IRQ:
2048 #ifdef __i386__
2049 		/*
2050 		 * If device doesn't have an interrupt routed, and is
2051 		 * deserving of an interrupt, try to assign it one.
2052 		 */
2053 			if ((cfg->intline == 255 || cfg->intline == 0) &&
2054 			    (cfg->intpin != 0) &&
2055 			    (start == 0) && (end == ~0UL)) {
2056 				cfg->intline = PCIB_ROUTE_INTERRUPT(
2057 					device_get_parent(dev), child,
2058 					cfg->intpin);
2059 				if (cfg->intline != 255) {
2060 					pci_write_config(child, PCIR_INTLINE,
2061 					    cfg->intline, 1);
2062 					resource_list_add(rl, SYS_RES_IRQ, 0,
2063 					    cfg->intline, cfg->intline, 1);
2064 				}
2065 			}
2066 			break;
2067 #endif
2068 		case SYS_RES_IOPORT:
2069 			/* FALLTHROUGH */
2070 		case SYS_RES_MEMORY:
2071 			if (*rid < PCIR_BAR(cfg->nummaps)) {
2072 				/*
2073 				 * Enable the I/O mode.  We should
2074 				 * also be assigning resources too
2075 				 * when none are present.  The
2076 				 * resource_list_alloc kind of sorta does
2077 				 * this...
2078 				 */
2079 				if (PCI_ENABLE_IO(dev, child, type))
2080 					return (NULL);
2081 			}
2082 #ifdef PCI_MAP_FIXUP
2083 			rle = resource_list_find(rl, type, *rid);
2084 			if (rle == NULL)
2085 				return pci_alloc_map(dev, child, type, rid,
2086 						     start, end, count, flags);
2087 #endif /* PCI_MAP_FIXUP */
2088 			break;
2089 		}
2090 #ifdef PCI_MAP_FIXUP
2091 		/*
2092 		 * If we've already allocated the resource, then
2093 		 * return it now. But first we may need to activate
2094 		 * it, since we don't allocate the resource as active
2095 		 * above. Normally this would be done down in the
2096 		 * nexus, but since we short-circuit that path we have
2097 		 * to do its job here. Not sure if we should free the
2098 		 * resource if it fails to activate.
2099 		 *
2100 		 * Note: this also finds and returns resources for
2101 		 * atapci devices in legacy mode as allocated in
2102 		 * pci_ata_maps().
2103 		 */
2104 		rle = resource_list_find(rl, type, *rid);
2105 		if (rle != NULL && rle->res != NULL) {
2106 			if (bootverbose)
2107 				device_printf(child, "reserved %#lx bytes for "
2108 					      "rid %#x type %d at %#lx\n",
2109 					      rman_get_size(rle->res), *rid,
2110 					      type, rman_get_start(rle->res));
2111 			if ((flags & RF_ACTIVE) &&
2112 			    bus_generic_activate_resource(dev, child, type,
2113 							  *rid, rle->res) != 0)
2114 				return NULL;
2115 			return rle->res;
2116 		}
2117 #endif /* PCI_MAP_FIXUP */
2118 	}
2119 	return resource_list_alloc(rl, dev, child, type, rid,
2120 				   start, end, count, flags);
2121 }
2122 
2123 static int
2124 pci_release_resource(device_t dev, device_t child, int type, int rid,
2125 		     struct resource *r)
2126 {
2127 	struct pci_devinfo *dinfo = device_get_ivars(child);
2128 	struct resource_list *rl = &dinfo->resources;
2129 
2130 	return resource_list_release(rl, dev, child, type, rid, r);
2131 }
2132 
2133 static int
2134 pci_set_resource(device_t dev, device_t child, int type, int rid,
2135 		 u_long start, u_long count)
2136 {
2137 	struct pci_devinfo *dinfo = device_get_ivars(child);
2138 	struct resource_list *rl = &dinfo->resources;
2139 
2140 	resource_list_add(rl, type, rid, start, start + count - 1, count);
2141 	return 0;
2142 }
2143 
2144 static int
2145 pci_get_resource(device_t dev, device_t child, int type, int rid,
2146 		 u_long *startp, u_long *countp)
2147 {
2148 	struct pci_devinfo *dinfo = device_get_ivars(child);
2149 	struct resource_list *rl = &dinfo->resources;
2150 	struct resource_list_entry *rle;
2151 
2152 	rle = resource_list_find(rl, type, rid);
2153 	if (!rle)
2154 		return ENOENT;
2155 
2156 	if (startp)
2157 		*startp = rle->start;
2158 	if (countp)
2159 		*countp = rle->count;
2160 
2161 	return 0;
2162 }
2163 
2164 void
2165 pci_delete_resource(device_t dev, device_t child, int type, int rid)
2166 {
2167 	kprintf("pci_delete_resource: PCI resources can not be deleted\n");
2168 }
2169 
2170 struct resource_list *
2171 pci_get_resource_list (device_t dev, device_t child)
2172 {
2173 	struct pci_devinfo *dinfo = device_get_ivars(child);
2174 
2175 	if (dinfo == NULL)
2176 		return (NULL);
2177 	return (&dinfo->resources);
2178 }
2179 
2180 u_int32_t
2181 pci_read_config_method(device_t dev, device_t child, int reg, int width)
2182 {
2183 	struct pci_devinfo *dinfo = device_get_ivars(child);
2184 	pcicfgregs *cfg = &dinfo->cfg;
2185 
2186 	return PCIB_READ_CONFIG(device_get_parent(dev),
2187 				 cfg->bus, cfg->slot, cfg->func,
2188 				 reg, width);
2189 }
2190 
2191 void
2192 pci_write_config_method(device_t dev, device_t child, int reg,
2193 			u_int32_t val, int width)
2194 {
2195 	struct pci_devinfo *dinfo = device_get_ivars(child);
2196 	pcicfgregs *cfg = &dinfo->cfg;
2197 
2198 	PCIB_WRITE_CONFIG(device_get_parent(dev),
2199 			  cfg->bus, cfg->slot, cfg->func,
2200 			  reg, val, width);
2201 }
2202 
2203 int
2204 pci_child_location_str_method(device_t cbdev, device_t child, char *buf,
2205     size_t buflen)
2206 {
2207 	struct pci_devinfo *dinfo;
2208 
2209 	dinfo = device_get_ivars(child);
2210 	ksnprintf(buf, buflen, "slot=%d function=%d", pci_get_slot(child),
2211 	    pci_get_function(child));
2212 	return (0);
2213 }
2214 
2215 int
2216 pci_child_pnpinfo_str_method(device_t cbdev, device_t child, char *buf,
2217     size_t buflen)
2218 {
2219 	struct pci_devinfo *dinfo;
2220 	pcicfgregs *cfg;
2221 
2222 	dinfo = device_get_ivars(child);
2223 	cfg = &dinfo->cfg;
2224 	ksnprintf(buf, buflen, "vendor=0x%04x device=0x%04x subvendor=0x%04x "
2225 	    "subdevice=0x%04x class=0x%02x%02x%02x", cfg->vendor, cfg->device,
2226 	    cfg->subvendor, cfg->subdevice, cfg->baseclass, cfg->subclass,
2227 	    cfg->progif);
2228 	return (0);
2229 }
2230 
2231 int
2232 pci_assign_interrupt_method(device_t dev, device_t child)
2233 {
2234         struct pci_devinfo *dinfo = device_get_ivars(child);
2235         pcicfgregs *cfg = &dinfo->cfg;
2236 
2237         return (PCIB_ROUTE_INTERRUPT(device_get_parent(dev), child,
2238             cfg->intpin));
2239 }
2240 
2241 static int
2242 pci_modevent(module_t mod, int what, void *arg)
2243 {
2244 	switch (what) {
2245 	case MOD_LOAD:
2246 		STAILQ_INIT(&pci_devq);
2247 		break;
2248 	case MOD_UNLOAD:
2249 		break;
2250 	}
2251 
2252 	return 0;
2253 }
2254 
2255 int
2256 pci_resume(device_t dev)
2257 {
2258         int                     numdevs;
2259         int                     i;
2260         device_t                *children;
2261         device_t                child;
2262         struct pci_devinfo      *dinfo;
2263         pcicfgregs              *cfg;
2264 
2265         device_get_children(dev, &children, &numdevs);
2266 
2267         for (i = 0; i < numdevs; i++) {
2268                 child = children[i];
2269 
2270                 dinfo = device_get_ivars(child);
2271                 cfg = &dinfo->cfg;
2272                 if (cfg->intpin > 0 && PCI_INTERRUPT_VALID(cfg->intline)) {
2273                         cfg->intline = PCI_ASSIGN_INTERRUPT(dev, child);
2274                         if (PCI_INTERRUPT_VALID(cfg->intline)) {
2275                                 pci_write_config(child, PCIR_INTLINE,
2276                                     cfg->intline, 1);
2277                         }
2278                 }
2279         }
2280 
2281         kfree(children, M_TEMP);
2282 
2283         return (bus_generic_resume(dev));
2284 }
2285 
2286 static device_method_t pci_methods[] = {
2287 	/* Device interface */
2288 	DEVMETHOD(device_probe,		pci_probe),
2289 	DEVMETHOD(device_attach,	pci_attach),
2290 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
2291 	DEVMETHOD(device_suspend,	bus_generic_suspend),
2292 	DEVMETHOD(device_resume,	pci_resume),
2293 
2294 	/* Bus interface */
2295 	DEVMETHOD(bus_print_child,	pci_print_child),
2296 	DEVMETHOD(bus_probe_nomatch,	pci_probe_nomatch),
2297 	DEVMETHOD(bus_read_ivar,	pci_read_ivar),
2298 	DEVMETHOD(bus_write_ivar,	pci_write_ivar),
2299 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
2300 	DEVMETHOD(bus_setup_intr,	bus_generic_setup_intr),
2301 	DEVMETHOD(bus_teardown_intr,	bus_generic_teardown_intr),
2302 
2303 	DEVMETHOD(bus_get_resource_list,pci_get_resource_list),
2304 	DEVMETHOD(bus_set_resource,	pci_set_resource),
2305 	DEVMETHOD(bus_get_resource,	pci_get_resource),
2306 	DEVMETHOD(bus_delete_resource,	pci_delete_resource),
2307 	DEVMETHOD(bus_alloc_resource,	pci_alloc_resource),
2308 	DEVMETHOD(bus_release_resource,	pci_release_resource),
2309 	DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
2310 	DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
2311 	DEVMETHOD(bus_child_pnpinfo_str, pci_child_pnpinfo_str_method),
2312 	DEVMETHOD(bus_child_location_str, pci_child_location_str_method),
2313 
2314 	/* PCI interface */
2315 	DEVMETHOD(pci_read_config,	pci_read_config_method),
2316 	DEVMETHOD(pci_write_config,	pci_write_config_method),
2317 	DEVMETHOD(pci_enable_busmaster,	pci_enable_busmaster_method),
2318 	DEVMETHOD(pci_disable_busmaster, pci_disable_busmaster_method),
2319 	DEVMETHOD(pci_enable_io,	pci_enable_io_method),
2320 	DEVMETHOD(pci_disable_io,	pci_disable_io_method),
2321 	DEVMETHOD(pci_get_powerstate,	pci_get_powerstate_method),
2322 	DEVMETHOD(pci_set_powerstate,	pci_set_powerstate_method),
2323 	DEVMETHOD(pci_assign_interrupt, pci_assign_interrupt_method),
2324 
2325 	{ 0, 0 }
2326 };
2327 
2328 driver_t pci_driver = {
2329 	"pci",
2330 	pci_methods,
2331 	1,			/* no softc */
2332 };
2333 
2334 DRIVER_MODULE(pci, pcib, pci_driver, pci_devclass, pci_modevent, 0);
2335 MODULE_VERSION(pci, 1);
2336