xref: /dflybsd-src/sys/bus/pci/pci.c (revision 744c01d0dc2aa1481a40e5b0988d15691602f5c9)
1 /*
2  * Copyright (c) 1997, Stefan Esser <se@freebsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/pci/pci.c,v 1.141.2.15 2002/04/30 17:48:18 tmm Exp $
27  * $DragonFly: src/sys/bus/pci/pci.c,v 1.36 2006/12/22 23:12:17 swildner Exp $
28  *
29  */
30 
31 #include "opt_bus.h"
32 #include "opt_pci.h"
33 
34 #include "opt_simos.h"
35 #include "opt_compat_oldpci.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/malloc.h>
40 #include <sys/module.h>
41 #include <sys/fcntl.h>
42 #include <sys/conf.h>
43 #include <sys/kernel.h>
44 #include <sys/queue.h>
45 #include <sys/types.h>
46 #include <sys/buf.h>
47 
48 #include <vm/vm.h>
49 #include <vm/pmap.h>
50 #include <vm/vm_extern.h>
51 
52 #include <sys/bus.h>
53 #include <sys/rman.h>
54 #include <machine/smp.h>
55 #ifdef __i386__
56 #include <bus/pci/i386/pci_cfgreg.h>
57 #endif
58 
59 #include <sys/pciio.h>
60 #include "pcireg.h"
61 #include "pcivar.h"
62 #include "pci_private.h"
63 
64 #include "pcib_if.h"
65 
66 devclass_t	pci_devclass;
67 const char	*pcib_owner;
68 
69 static void		pci_read_extcap(device_t dev, pcicfgregs *cfg);
70 
71 struct pci_quirk {
72 	u_int32_t devid;	/* Vendor/device of the card */
73 	int	type;
74 #define PCI_QUIRK_MAP_REG	1 /* PCI map register in weird place */
75 	int	arg1;
76 	int	arg2;
77 };
78 
79 struct pci_quirk pci_quirks[] = {
80 	/*
81 	 * The Intel 82371AB and 82443MX has a map register at offset 0x90.
82 	 */
83 	{ 0x71138086, PCI_QUIRK_MAP_REG,	0x90,	 0 },
84 	{ 0x719b8086, PCI_QUIRK_MAP_REG,	0x90,	 0 },
85 	/* As does the Serverworks OSB4 (the SMBus mapping register) */
86 	{ 0x02001166, PCI_QUIRK_MAP_REG,	0x90,	 0 },
87 
88 	{ 0 }
89 };
90 
91 /* map register information */
92 #define PCI_MAPMEM	0x01	/* memory map */
93 #define PCI_MAPMEMP	0x02	/* prefetchable memory map */
94 #define PCI_MAPPORT	0x04	/* port map */
95 
96 static STAILQ_HEAD(devlist, pci_devinfo) pci_devq;
97 u_int32_t pci_numdevs = 0;
98 static u_int32_t pci_generation = 0;
99 
100 device_t
101 pci_find_bsf (u_int8_t bus, u_int8_t slot, u_int8_t func)
102 {
103 	struct pci_devinfo *dinfo;
104 
105 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
106 		if ((dinfo->cfg.bus == bus) &&
107 		    (dinfo->cfg.slot == slot) &&
108 		    (dinfo->cfg.func == func)) {
109 			return (dinfo->cfg.dev);
110 		}
111 	}
112 
113 	return (NULL);
114 }
115 
116 device_t
117 pci_find_device (u_int16_t vendor, u_int16_t device)
118 {
119 	struct pci_devinfo *dinfo;
120 
121 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
122 		if ((dinfo->cfg.vendor == vendor) &&
123 		    (dinfo->cfg.device == device)) {
124 			return (dinfo->cfg.dev);
125 		}
126 	}
127 
128 	return (NULL);
129 }
130 
131 /* return base address of memory or port map */
132 
133 static u_int32_t
134 pci_mapbase(unsigned mapreg)
135 {
136 	int mask = 0x03;
137 	if ((mapreg & 0x01) == 0)
138 		mask = 0x0f;
139 	return (mapreg & ~mask);
140 }
141 
142 /* return map type of memory or port map */
143 
144 static int
145 pci_maptype(unsigned mapreg)
146 {
147 	static u_int8_t maptype[0x10] = {
148 		PCI_MAPMEM,		PCI_MAPPORT,
149 		PCI_MAPMEM,		0,
150 		PCI_MAPMEM,		PCI_MAPPORT,
151 		0,			0,
152 		PCI_MAPMEM|PCI_MAPMEMP,	PCI_MAPPORT,
153 		PCI_MAPMEM|PCI_MAPMEMP, 0,
154 		PCI_MAPMEM|PCI_MAPMEMP,	PCI_MAPPORT,
155 		0,			0,
156 	};
157 
158 	return maptype[mapreg & 0x0f];
159 }
160 
161 /* return log2 of map size decoded for memory or port map */
162 
163 static int
164 pci_mapsize(unsigned testval)
165 {
166 	int ln2size;
167 
168 	testval = pci_mapbase(testval);
169 	ln2size = 0;
170 	if (testval != 0) {
171 		while ((testval & 1) == 0)
172 		{
173 			ln2size++;
174 			testval >>= 1;
175 		}
176 	}
177 	return (ln2size);
178 }
179 
180 /* return log2 of address range supported by map register */
181 
182 static int
183 pci_maprange(unsigned mapreg)
184 {
185 	int ln2range = 0;
186 	switch (mapreg & 0x07) {
187 	case 0x00:
188 	case 0x01:
189 	case 0x05:
190 		ln2range = 32;
191 		break;
192 	case 0x02:
193 		ln2range = 20;
194 		break;
195 	case 0x04:
196 		ln2range = 64;
197 		break;
198 	}
199 	return (ln2range);
200 }
201 
202 /* adjust some values from PCI 1.0 devices to match 2.0 standards ... */
203 
204 static void
205 pci_fixancient(pcicfgregs *cfg)
206 {
207 	if (cfg->hdrtype != 0)
208 		return;
209 
210 	/* PCI to PCI bridges use header type 1 */
211 	if (cfg->baseclass == PCIC_BRIDGE && cfg->subclass == PCIS_BRIDGE_PCI)
212 		cfg->hdrtype = 1;
213 }
214 
215 /* read config data specific to header type 1 device (PCI to PCI bridge) */
216 
217 static void *
218 pci_readppb(device_t pcib, int b, int s, int f)
219 {
220 	pcih1cfgregs *p;
221 
222 	p = kmalloc(sizeof (pcih1cfgregs), M_DEVBUF, M_WAITOK | M_ZERO);
223 	if (p == NULL)
224 		return (NULL);
225 
226 	p->secstat = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_SECSTAT_1, 2);
227 	p->bridgectl = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_BRIDGECTL_1, 2);
228 
229 	p->seclat = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_SECLAT_1, 1);
230 
231 	p->iobase = PCI_PPBIOBASE (PCIB_READ_CONFIG(pcib, b, s, f,
232 						    PCIR_IOBASEH_1, 2),
233 				   PCIB_READ_CONFIG(pcib, b, s, f,
234 				   		    PCIR_IOBASEL_1, 1));
235 	p->iolimit = PCI_PPBIOLIMIT (PCIB_READ_CONFIG(pcib, b, s, f,
236 						      PCIR_IOLIMITH_1, 2),
237 				     PCIB_READ_CONFIG(pcib, b, s, f,
238 				     		      PCIR_IOLIMITL_1, 1));
239 
240 	p->membase = PCI_PPBMEMBASE (0,
241 				     PCIB_READ_CONFIG(pcib, b, s, f,
242 				     		      PCIR_MEMBASE_1, 2));
243 	p->memlimit = PCI_PPBMEMLIMIT (0,
244 				       PCIB_READ_CONFIG(pcib, b, s, f,
245 				       		        PCIR_MEMLIMIT_1, 2));
246 
247 	p->pmembase = PCI_PPBMEMBASE (
248 		(pci_addr_t)PCIB_READ_CONFIG(pcib, b, s, f, PCIR_PMBASEH_1, 4),
249 		PCIB_READ_CONFIG(pcib, b, s, f, PCIR_PMBASEL_1, 2));
250 
251 	p->pmemlimit = PCI_PPBMEMLIMIT (
252 		(pci_addr_t)PCIB_READ_CONFIG(pcib, b, s, f,
253 					     PCIR_PMLIMITH_1, 4),
254 		PCIB_READ_CONFIG(pcib, b, s, f, PCIR_PMLIMITL_1, 2));
255 
256 	return (p);
257 }
258 
259 /* read config data specific to header type 2 device (PCI to CardBus bridge) */
260 
261 static void *
262 pci_readpcb(device_t pcib, int b, int s, int f)
263 {
264 	pcih2cfgregs *p;
265 
266 	p = kmalloc(sizeof (pcih2cfgregs), M_DEVBUF, M_WAITOK | M_ZERO);
267 	if (p == NULL)
268 		return (NULL);
269 
270 	p->secstat = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_SECSTAT_2, 2);
271 	p->bridgectl = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_BRIDGECTL_2, 2);
272 
273 	p->seclat = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_SECLAT_2, 1);
274 
275 	p->membase0 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_MEMBASE0_2, 4);
276 	p->memlimit0 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_MEMLIMIT0_2, 4);
277 	p->membase1 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_MEMBASE1_2, 4);
278 	p->memlimit1 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_MEMLIMIT1_2, 4);
279 
280 	p->iobase0 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_IOBASE0_2, 4);
281 	p->iolimit0 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_IOLIMIT0_2, 4);
282 	p->iobase1 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_IOBASE1_2, 4);
283 	p->iolimit1 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_IOLIMIT1_2, 4);
284 
285 	p->pccardif = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_PCCARDIF_2, 4);
286 	return p;
287 }
288 
289 /* extract header type specific config data */
290 
291 static void
292 pci_hdrtypedata(device_t pcib, int b, int s, int f, pcicfgregs *cfg)
293 {
294 #define REG(n,w)	PCIB_READ_CONFIG(pcib, b, s, f, n, w)
295 	switch (cfg->hdrtype) {
296 	case 0:
297 		cfg->subvendor      = REG(PCIR_SUBVEND_0, 2);
298 		cfg->subdevice      = REG(PCIR_SUBDEV_0, 2);
299 		cfg->nummaps	    = PCI_MAXMAPS_0;
300 		break;
301 	case 1:
302 		cfg->subvendor      = REG(PCIR_SUBVEND_1, 2);
303 		cfg->subdevice      = REG(PCIR_SUBDEV_1, 2);
304 		cfg->secondarybus   = REG(PCIR_SECBUS_1, 1);
305 		cfg->subordinatebus = REG(PCIR_SUBBUS_1, 1);
306 		cfg->nummaps	    = PCI_MAXMAPS_1;
307 		cfg->hdrspec        = pci_readppb(pcib, b, s, f);
308 		break;
309 	case 2:
310 		cfg->subvendor      = REG(PCIR_SUBVEND_2, 2);
311 		cfg->subdevice      = REG(PCIR_SUBDEV_2, 2);
312 		cfg->secondarybus   = REG(PCIR_SECBUS_2, 1);
313 		cfg->subordinatebus = REG(PCIR_SUBBUS_2, 1);
314 		cfg->nummaps	    = PCI_MAXMAPS_2;
315 		cfg->hdrspec        = pci_readpcb(pcib, b, s, f);
316 		break;
317 	}
318 #undef REG
319 }
320 
321 /* read configuration header into pcicfgrect structure */
322 
323 struct pci_devinfo *
324 pci_read_device(device_t pcib, int b, int s, int f, size_t size)
325 {
326 #define REG(n, w)	PCIB_READ_CONFIG(pcib, b, s, f, n, w)
327 
328 	pcicfgregs *cfg = NULL;
329 	struct pci_devinfo *devlist_entry;
330 	struct devlist *devlist_head;
331 
332 	devlist_head = &pci_devq;
333 
334 	devlist_entry = NULL;
335 
336 	if (PCIB_READ_CONFIG(pcib, b, s, f, PCIR_DEVVENDOR, 4) != -1) {
337 
338 		devlist_entry = kmalloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
339 		if (devlist_entry == NULL)
340 			return (NULL);
341 
342 		cfg = &devlist_entry->cfg;
343 
344 		cfg->bus		= b;
345 		cfg->slot		= s;
346 		cfg->func		= f;
347 		cfg->vendor		= REG(PCIR_VENDOR, 2);
348 		cfg->device		= REG(PCIR_DEVICE, 2);
349 		cfg->cmdreg		= REG(PCIR_COMMAND, 2);
350 		cfg->statreg		= REG(PCIR_STATUS, 2);
351 		cfg->baseclass		= REG(PCIR_CLASS, 1);
352 		cfg->subclass		= REG(PCIR_SUBCLASS, 1);
353 		cfg->progif		= REG(PCIR_PROGIF, 1);
354 		cfg->revid		= REG(PCIR_REVID, 1);
355 		cfg->hdrtype		= REG(PCIR_HDRTYPE, 1);
356 		cfg->cachelnsz		= REG(PCIR_CACHELNSZ, 1);
357 		cfg->lattimer		= REG(PCIR_LATTIMER, 1);
358 		cfg->intpin		= REG(PCIR_INTPIN, 1);
359 		cfg->intline		= REG(PCIR_INTLINE, 1);
360 
361 #ifdef APIC_IO
362 		/*
363 		 * If using the APIC the intpin is probably wrong, since it
364 		 * is often setup by the BIOS with the PIC in mind.
365 		 */
366 		if (cfg->intpin != 0) {
367 			int airq;
368 
369 			airq = pci_apic_irq(cfg->bus, cfg->slot, cfg->intpin);
370 			if (airq >= 0) {
371 				/* PCI specific entry found in MP table */
372 				if (airq != cfg->intline) {
373 					undirect_pci_irq(cfg->intline);
374 					cfg->intline = airq;
375 				}
376 			} else {
377 				/*
378 				 * PCI interrupts might be redirected to the
379 				 * ISA bus according to some MP tables. Use the
380 				 * same methods as used by the ISA devices
381 				 * devices to find the proper IOAPIC int pin.
382 				 */
383 				airq = isa_apic_irq(cfg->intline);
384 				if ((airq >= 0) && (airq != cfg->intline)) {
385 					/* XXX: undirect_pci_irq() ? */
386 					undirect_isa_irq(cfg->intline);
387 					cfg->intline = airq;
388 				}
389 			}
390 		}
391 #endif /* APIC_IO */
392 
393 		cfg->mingnt		= REG(PCIR_MINGNT, 1);
394 		cfg->maxlat		= REG(PCIR_MAXLAT, 1);
395 
396 		cfg->mfdev		= (cfg->hdrtype & PCIM_MFDEV) != 0;
397 		cfg->hdrtype		&= ~PCIM_MFDEV;
398 
399 		pci_fixancient(cfg);
400 		pci_hdrtypedata(pcib, b, s, f, cfg);
401 
402 		if (REG(PCIR_STATUS, 2) & PCIM_STATUS_CAPPRESENT)
403 			pci_read_extcap(pcib, cfg);
404 
405 		STAILQ_INSERT_TAIL(devlist_head, devlist_entry, pci_links);
406 
407 		devlist_entry->conf.pc_sel.pc_bus = cfg->bus;
408 		devlist_entry->conf.pc_sel.pc_dev = cfg->slot;
409 		devlist_entry->conf.pc_sel.pc_func = cfg->func;
410 		devlist_entry->conf.pc_hdr = cfg->hdrtype;
411 
412 		devlist_entry->conf.pc_subvendor = cfg->subvendor;
413 		devlist_entry->conf.pc_subdevice = cfg->subdevice;
414 		devlist_entry->conf.pc_vendor = cfg->vendor;
415 		devlist_entry->conf.pc_device = cfg->device;
416 
417 		devlist_entry->conf.pc_class = cfg->baseclass;
418 		devlist_entry->conf.pc_subclass = cfg->subclass;
419 		devlist_entry->conf.pc_progif = cfg->progif;
420 		devlist_entry->conf.pc_revid = cfg->revid;
421 
422 		pci_numdevs++;
423 		pci_generation++;
424 	}
425 	return (devlist_entry);
426 #undef REG
427 }
428 
429 static void
430 pci_read_extcap(device_t pcib, pcicfgregs *cfg)
431 {
432 #define REG(n, w)	PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, w)
433 	int	ptr, nextptr, ptrptr;
434 
435 	switch (cfg->hdrtype) {
436 	case 0:
437 		ptrptr = 0x34;
438 		break;
439 	case 2:
440 		ptrptr = 0x14;
441 		break;
442 	default:
443 		return;		/* no extended capabilities support */
444 	}
445 	nextptr = REG(ptrptr, 1);	/* sanity check? */
446 
447 	/*
448 	 * Read capability entries.
449 	 */
450 	while (nextptr != 0) {
451 		/* Sanity check */
452 		if (nextptr > 255) {
453 			kprintf("illegal PCI extended capability offset %d\n",
454 			    nextptr);
455 			return;
456 		}
457 		/* Find the next entry */
458 		ptr = nextptr;
459 		nextptr = REG(ptr + 1, 1);
460 
461 		/* Process this entry */
462 		switch (REG(ptr, 1)) {
463 		case 0x01:		/* PCI power management */
464 			if (cfg->pp_cap == 0) {
465 				cfg->pp_cap = REG(ptr + PCIR_POWER_CAP, 2);
466 				cfg->pp_status = ptr + PCIR_POWER_STATUS;
467 				cfg->pp_pmcsr = ptr + PCIR_POWER_PMCSR;
468 				if ((nextptr - ptr) > PCIR_POWER_DATA)
469 					cfg->pp_data = ptr + PCIR_POWER_DATA;
470 			}
471 			break;
472 		default:
473 			break;
474 		}
475 	}
476 #undef REG
477 }
478 
479 /* free pcicfgregs structure and all depending data structures */
480 
481 int
482 pci_freecfg(struct pci_devinfo *dinfo)
483 {
484 	struct devlist *devlist_head;
485 
486 	devlist_head = &pci_devq;
487 
488 	if (dinfo->cfg.hdrspec != NULL)
489 		kfree(dinfo->cfg.hdrspec, M_DEVBUF);
490 	/* XXX this hasn't been tested */
491 	STAILQ_REMOVE(devlist_head, dinfo, pci_devinfo, pci_links);
492 	kfree(dinfo, M_DEVBUF);
493 
494 	/* increment the generation count */
495 	pci_generation++;
496 
497 	/* we're losing one device */
498 	pci_numdevs--;
499 	return (0);
500 }
501 
502 
503 /*
504  * PCI power manangement
505  */
506 int
507 pci_set_powerstate_method(device_t dev, device_t child, int state)
508 {
509 	struct pci_devinfo *dinfo = device_get_ivars(child);
510 	pcicfgregs *cfg = &dinfo->cfg;
511 	u_int16_t status;
512 	int result;
513 
514 	if (cfg->pp_cap != 0) {
515 		status = PCI_READ_CONFIG(dev, child, cfg->pp_status, 2) & ~PCIM_PSTAT_DMASK;
516 		result = 0;
517 		switch (state) {
518 		case PCI_POWERSTATE_D0:
519 			status |= PCIM_PSTAT_D0;
520 			break;
521 		case PCI_POWERSTATE_D1:
522 			if (cfg->pp_cap & PCIM_PCAP_D1SUPP) {
523 				status |= PCIM_PSTAT_D1;
524 			} else {
525 				result = EOPNOTSUPP;
526 			}
527 			break;
528 		case PCI_POWERSTATE_D2:
529 			if (cfg->pp_cap & PCIM_PCAP_D2SUPP) {
530 				status |= PCIM_PSTAT_D2;
531 			} else {
532 				result = EOPNOTSUPP;
533 			}
534 			break;
535 		case PCI_POWERSTATE_D3:
536 			status |= PCIM_PSTAT_D3;
537 			break;
538 		default:
539 			result = EINVAL;
540 		}
541 		if (result == 0)
542 			PCI_WRITE_CONFIG(dev, child, cfg->pp_status, status, 2);
543 	} else {
544 		result = ENXIO;
545 	}
546 	return(result);
547 }
548 
549 int
550 pci_get_powerstate_method(device_t dev, device_t child)
551 {
552 	struct pci_devinfo *dinfo = device_get_ivars(child);
553 	pcicfgregs *cfg = &dinfo->cfg;
554 	u_int16_t status;
555 	int result;
556 
557 	if (cfg->pp_cap != 0) {
558 		status = PCI_READ_CONFIG(dev, child, cfg->pp_status, 2);
559 		switch (status & PCIM_PSTAT_DMASK) {
560 		case PCIM_PSTAT_D0:
561 			result = PCI_POWERSTATE_D0;
562 			break;
563 		case PCIM_PSTAT_D1:
564 			result = PCI_POWERSTATE_D1;
565 			break;
566 		case PCIM_PSTAT_D2:
567 			result = PCI_POWERSTATE_D2;
568 			break;
569 		case PCIM_PSTAT_D3:
570 			result = PCI_POWERSTATE_D3;
571 			break;
572 		default:
573 			result = PCI_POWERSTATE_UNKNOWN;
574 			break;
575 		}
576 	} else {
577 		/* No support, device is always at D0 */
578 		result = PCI_POWERSTATE_D0;
579 	}
580 	return(result);
581 }
582 
583 /*
584  * Some convenience functions for PCI device drivers.
585  */
586 
587 static __inline void
588 pci_set_command_bit(device_t dev, device_t child, u_int16_t bit)
589 {
590     u_int16_t	command;
591 
592     command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
593     command |= bit;
594     PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2);
595 }
596 
597 static __inline void
598 pci_clear_command_bit(device_t dev, device_t child, u_int16_t bit)
599 {
600     u_int16_t	command;
601 
602     command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
603     command &= ~bit;
604     PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2);
605 }
606 
607 int
608 pci_enable_busmaster_method(device_t dev, device_t child)
609 {
610     pci_set_command_bit(dev, child, PCIM_CMD_BUSMASTEREN);
611     return(0);
612 }
613 
614 int
615 pci_disable_busmaster_method(device_t dev, device_t child)
616 {
617     pci_clear_command_bit(dev, child, PCIM_CMD_BUSMASTEREN);
618     return(0);
619 }
620 
621 int
622 pci_enable_io_method(device_t dev, device_t child, int space)
623 {
624     uint16_t command;
625     uint16_t bit;
626     char *error;
627 
628     bit = 0;
629     error = NULL;
630 
631     switch(space) {
632     case SYS_RES_IOPORT:
633 	bit = PCIM_CMD_PORTEN;
634 	error = "port";
635 	break;
636     case SYS_RES_MEMORY:
637 	bit = PCIM_CMD_MEMEN;
638 	error = "memory";
639 	break;
640     default:
641 	return(EINVAL);
642     }
643     pci_set_command_bit(dev, child, bit);
644     command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
645     if (command & bit)
646 	return(0);
647     device_printf(child, "failed to enable %s mapping!\n", error);
648     return(ENXIO);
649 }
650 
651 int
652 pci_disable_io_method(device_t dev, device_t child, int space)
653 {
654     uint16_t command;
655     uint16_t bit;
656     char *error;
657 
658     bit = 0;
659     error = NULL;
660 
661     switch(space) {
662     case SYS_RES_IOPORT:
663 	bit = PCIM_CMD_PORTEN;
664 	error = "port";
665 	break;
666     case SYS_RES_MEMORY:
667 	bit = PCIM_CMD_MEMEN;
668 	error = "memory";
669 	break;
670     default:
671 	return (EINVAL);
672     }
673     pci_clear_command_bit(dev, child, bit);
674     command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
675     if (command & bit) {
676 	device_printf(child, "failed to disable %s mapping!\n", error);
677 	return (ENXIO);
678     }
679     return (0);
680 }
681 
682 /*
683  * This is the user interface to PCI configuration space.
684  */
685 
686 static int
687 pci_open(struct dev_open_args *ap)
688 {
689 	if ((ap->a_oflags & FWRITE) && securelevel > 0) {
690 		return EPERM;
691 	}
692 	return 0;
693 }
694 
695 static int
696 pci_close(struct dev_close_args *ap)
697 {
698 	return 0;
699 }
700 
701 /*
702  * Match a single pci_conf structure against an array of pci_match_conf
703  * structures.  The first argument, 'matches', is an array of num_matches
704  * pci_match_conf structures.  match_buf is a pointer to the pci_conf
705  * structure that will be compared to every entry in the matches array.
706  * This function returns 1 on failure, 0 on success.
707  */
708 static int
709 pci_conf_match(struct pci_match_conf *matches, int num_matches,
710 	       struct pci_conf *match_buf)
711 {
712 	int i;
713 
714 	if ((matches == NULL) || (match_buf == NULL) || (num_matches <= 0))
715 		return(1);
716 
717 	for (i = 0; i < num_matches; i++) {
718 		/*
719 		 * I'm not sure why someone would do this...but...
720 		 */
721 		if (matches[i].flags == PCI_GETCONF_NO_MATCH)
722 			continue;
723 
724 		/*
725 		 * Look at each of the match flags.  If it's set, do the
726 		 * comparison.  If the comparison fails, we don't have a
727 		 * match, go on to the next item if there is one.
728 		 */
729 		if (((matches[i].flags & PCI_GETCONF_MATCH_BUS) != 0)
730 		 && (match_buf->pc_sel.pc_bus != matches[i].pc_sel.pc_bus))
731 			continue;
732 
733 		if (((matches[i].flags & PCI_GETCONF_MATCH_DEV) != 0)
734 		 && (match_buf->pc_sel.pc_dev != matches[i].pc_sel.pc_dev))
735 			continue;
736 
737 		if (((matches[i].flags & PCI_GETCONF_MATCH_FUNC) != 0)
738 		 && (match_buf->pc_sel.pc_func != matches[i].pc_sel.pc_func))
739 			continue;
740 
741 		if (((matches[i].flags & PCI_GETCONF_MATCH_VENDOR) != 0)
742 		 && (match_buf->pc_vendor != matches[i].pc_vendor))
743 			continue;
744 
745 		if (((matches[i].flags & PCI_GETCONF_MATCH_DEVICE) != 0)
746 		 && (match_buf->pc_device != matches[i].pc_device))
747 			continue;
748 
749 		if (((matches[i].flags & PCI_GETCONF_MATCH_CLASS) != 0)
750 		 && (match_buf->pc_class != matches[i].pc_class))
751 			continue;
752 
753 		if (((matches[i].flags & PCI_GETCONF_MATCH_UNIT) != 0)
754 		 && (match_buf->pd_unit != matches[i].pd_unit))
755 			continue;
756 
757 		if (((matches[i].flags & PCI_GETCONF_MATCH_NAME) != 0)
758 		 && (strncmp(matches[i].pd_name, match_buf->pd_name,
759 			     sizeof(match_buf->pd_name)) != 0))
760 			continue;
761 
762 		return(0);
763 	}
764 
765 	return(1);
766 }
767 
768 /*
769  * Locate the parent of a PCI device by scanning the PCI devlist
770  * and return the entry for the parent.
771  * For devices on PCI Bus 0 (the host bus), this is the PCI Host.
772  * For devices on secondary PCI busses, this is that bus' PCI-PCI Bridge.
773  */
774 
775 pcicfgregs *
776 pci_devlist_get_parent(pcicfgregs *cfg)
777 {
778 	struct devlist *devlist_head;
779 	struct pci_devinfo *dinfo;
780 	pcicfgregs *bridge_cfg;
781 	int i;
782 
783 	dinfo = STAILQ_FIRST(devlist_head = &pci_devq);
784 
785 	/* If the device is on PCI bus 0, look for the host */
786 	if (cfg->bus == 0) {
787 		for (i = 0; (dinfo != NULL) && (i < pci_numdevs);
788 		dinfo = STAILQ_NEXT(dinfo, pci_links), i++) {
789 			bridge_cfg = &dinfo->cfg;
790 			if (bridge_cfg->baseclass == PCIC_BRIDGE
791 				&& bridge_cfg->subclass == PCIS_BRIDGE_HOST
792 		    		&& bridge_cfg->bus == cfg->bus) {
793 				return bridge_cfg;
794 			}
795 		}
796 	}
797 
798 	/* If the device is not on PCI bus 0, look for the PCI-PCI bridge */
799 	if (cfg->bus > 0) {
800 		for (i = 0; (dinfo != NULL) && (i < pci_numdevs);
801 		dinfo = STAILQ_NEXT(dinfo, pci_links), i++) {
802 			bridge_cfg = &dinfo->cfg;
803 			if (bridge_cfg->baseclass == PCIC_BRIDGE
804 				&& bridge_cfg->subclass == PCIS_BRIDGE_PCI
805 				&& bridge_cfg->secondarybus == cfg->bus) {
806 				return bridge_cfg;
807 			}
808 		}
809 	}
810 
811 	return NULL;
812 }
813 
814 static int
815 pci_ioctl(struct dev_ioctl_args *ap)
816 {
817 	device_t pci, pcib;
818 	struct pci_io *io;
819 	const char *name;
820 	int error;
821 
822 	if (!(ap->a_fflag & FWRITE))
823 		return EPERM;
824 
825 	switch(ap->a_cmd) {
826 	case PCIOCGETCONF:
827 		{
828 		struct pci_devinfo *dinfo;
829 		struct pci_conf_io *cio;
830 		struct devlist *devlist_head;
831 		struct pci_match_conf *pattern_buf;
832 		int num_patterns;
833 		size_t iolen;
834 		int ionum, i;
835 
836 		cio = (struct pci_conf_io *)ap->a_data;
837 
838 		num_patterns = 0;
839 		dinfo = NULL;
840 
841 		/*
842 		 * Hopefully the user won't pass in a null pointer, but it
843 		 * can't hurt to check.
844 		 */
845 		if (cio == NULL) {
846 			error = EINVAL;
847 			break;
848 		}
849 
850 		/*
851 		 * If the user specified an offset into the device list,
852 		 * but the list has changed since they last called this
853 		 * ioctl, tell them that the list has changed.  They will
854 		 * have to get the list from the beginning.
855 		 */
856 		if ((cio->offset != 0)
857 		 && (cio->generation != pci_generation)){
858 			cio->num_matches = 0;
859 			cio->status = PCI_GETCONF_LIST_CHANGED;
860 			error = 0;
861 			break;
862 		}
863 
864 		/*
865 		 * Check to see whether the user has asked for an offset
866 		 * past the end of our list.
867 		 */
868 		if (cio->offset >= pci_numdevs) {
869 			cio->num_matches = 0;
870 			cio->status = PCI_GETCONF_LAST_DEVICE;
871 			error = 0;
872 			break;
873 		}
874 
875 		/* get the head of the device queue */
876 		devlist_head = &pci_devq;
877 
878 		/*
879 		 * Determine how much room we have for pci_conf structures.
880 		 * Round the user's buffer size down to the nearest
881 		 * multiple of sizeof(struct pci_conf) in case the user
882 		 * didn't specify a multiple of that size.
883 		 */
884 		iolen = min(cio->match_buf_len -
885 			    (cio->match_buf_len % sizeof(struct pci_conf)),
886 			    pci_numdevs * sizeof(struct pci_conf));
887 
888 		/*
889 		 * Since we know that iolen is a multiple of the size of
890 		 * the pciconf union, it's okay to do this.
891 		 */
892 		ionum = iolen / sizeof(struct pci_conf);
893 
894 		/*
895 		 * If this test is true, the user wants the pci_conf
896 		 * structures returned to match the supplied entries.
897 		 */
898 		if ((cio->num_patterns > 0)
899 		 && (cio->pat_buf_len > 0)) {
900 			/*
901 			 * pat_buf_len needs to be:
902 			 * num_patterns * sizeof(struct pci_match_conf)
903 			 * While it is certainly possible the user just
904 			 * allocated a large buffer, but set the number of
905 			 * matches correctly, it is far more likely that
906 			 * their kernel doesn't match the userland utility
907 			 * they're using.  It's also possible that the user
908 			 * forgot to initialize some variables.  Yes, this
909 			 * may be overly picky, but I hazard to guess that
910 			 * it's far more likely to just catch folks that
911 			 * updated their kernel but not their userland.
912 			 */
913 			if ((cio->num_patterns *
914 			    sizeof(struct pci_match_conf)) != cio->pat_buf_len){
915 				/* The user made a mistake, return an error*/
916 				cio->status = PCI_GETCONF_ERROR;
917 				kprintf("pci_ioctl: pat_buf_len %d != "
918 				       "num_patterns (%d) * sizeof(struct "
919 				       "pci_match_conf) (%d)\npci_ioctl: "
920 				       "pat_buf_len should be = %d\n",
921 				       cio->pat_buf_len, cio->num_patterns,
922 				       (int)sizeof(struct pci_match_conf),
923 				       (int)sizeof(struct pci_match_conf) *
924 				       cio->num_patterns);
925 				kprintf("pci_ioctl: do your headers match your "
926 				       "kernel?\n");
927 				cio->num_matches = 0;
928 				error = EINVAL;
929 				break;
930 			}
931 
932 			/*
933 			 * Check the user's buffer to make sure it's readable.
934 			 */
935 			if (!useracc((caddr_t)cio->patterns,
936 				    cio->pat_buf_len, VM_PROT_READ)) {
937 				kprintf("pci_ioctl: pattern buffer %p, "
938 				       "length %u isn't user accessible for"
939 				       " READ\n", cio->patterns,
940 				       cio->pat_buf_len);
941 				error = EACCES;
942 				break;
943 			}
944 			/*
945 			 * Allocate a buffer to hold the patterns.
946 			 */
947 			pattern_buf = kmalloc(cio->pat_buf_len, M_TEMP,
948 					     M_WAITOK);
949 			error = copyin(cio->patterns, pattern_buf,
950 				       cio->pat_buf_len);
951 			if (error != 0)
952 				break;
953 			num_patterns = cio->num_patterns;
954 
955 		} else if ((cio->num_patterns > 0)
956 			|| (cio->pat_buf_len > 0)) {
957 			/*
958 			 * The user made a mistake, spit out an error.
959 			 */
960 			cio->status = PCI_GETCONF_ERROR;
961 			cio->num_matches = 0;
962 			kprintf("pci_ioctl: invalid GETCONF arguments\n");
963 			error = EINVAL;
964 			break;
965 		} else
966 			pattern_buf = NULL;
967 
968 		/*
969 		 * Make sure we can write to the match buffer.
970 		 */
971 		if (!useracc((caddr_t)cio->matches,
972 			     cio->match_buf_len, VM_PROT_WRITE)) {
973 			kprintf("pci_ioctl: match buffer %p, length %u "
974 			       "isn't user accessible for WRITE\n",
975 			       cio->matches, cio->match_buf_len);
976 			error = EACCES;
977 			break;
978 		}
979 
980 		/*
981 		 * Go through the list of devices and copy out the devices
982 		 * that match the user's criteria.
983 		 */
984 		for (cio->num_matches = 0, error = 0, i = 0,
985 		     dinfo = STAILQ_FIRST(devlist_head);
986 		     (dinfo != NULL) && (cio->num_matches < ionum)
987 		     && (error == 0) && (i < pci_numdevs);
988 		     dinfo = STAILQ_NEXT(dinfo, pci_links), i++) {
989 
990 			if (i < cio->offset)
991 				continue;
992 
993 			/* Populate pd_name and pd_unit */
994 			name = NULL;
995 			if (dinfo->cfg.dev && dinfo->conf.pd_name[0] == '\0')
996 				name = device_get_name(dinfo->cfg.dev);
997 			if (name) {
998 				strncpy(dinfo->conf.pd_name, name,
999 					sizeof(dinfo->conf.pd_name));
1000 				dinfo->conf.pd_name[PCI_MAXNAMELEN] = 0;
1001 				dinfo->conf.pd_unit =
1002 					device_get_unit(dinfo->cfg.dev);
1003 			}
1004 
1005 			if ((pattern_buf == NULL) ||
1006 			    (pci_conf_match(pattern_buf, num_patterns,
1007 					    &dinfo->conf) == 0)) {
1008 
1009 				/*
1010 				 * If we've filled up the user's buffer,
1011 				 * break out at this point.  Since we've
1012 				 * got a match here, we'll pick right back
1013 				 * up at the matching entry.  We can also
1014 				 * tell the user that there are more matches
1015 				 * left.
1016 				 */
1017 				if (cio->num_matches >= ionum)
1018 					break;
1019 
1020 				error = copyout(&dinfo->conf,
1021 					        &cio->matches[cio->num_matches],
1022 						sizeof(struct pci_conf));
1023 				cio->num_matches++;
1024 			}
1025 		}
1026 
1027 		/*
1028 		 * Set the pointer into the list, so if the user is getting
1029 		 * n records at a time, where n < pci_numdevs,
1030 		 */
1031 		cio->offset = i;
1032 
1033 		/*
1034 		 * Set the generation, the user will need this if they make
1035 		 * another ioctl call with offset != 0.
1036 		 */
1037 		cio->generation = pci_generation;
1038 
1039 		/*
1040 		 * If this is the last device, inform the user so he won't
1041 		 * bother asking for more devices.  If dinfo isn't NULL, we
1042 		 * know that there are more matches in the list because of
1043 		 * the way the traversal is done.
1044 		 */
1045 		if (dinfo == NULL)
1046 			cio->status = PCI_GETCONF_LAST_DEVICE;
1047 		else
1048 			cio->status = PCI_GETCONF_MORE_DEVS;
1049 
1050 		if (pattern_buf != NULL)
1051 			kfree(pattern_buf, M_TEMP);
1052 
1053 		break;
1054 		}
1055 	case PCIOCREAD:
1056 		io = (struct pci_io *)ap->a_data;
1057 		switch(io->pi_width) {
1058 		case 4:
1059 		case 2:
1060 		case 1:
1061 			/*
1062 			 * Assume that the user-level bus number is
1063 			 * actually the pciN instance number. We map
1064 			 * from that to the real pcib+bus combination.
1065 			 */
1066 			pci = devclass_get_device(pci_devclass,
1067 						  io->pi_sel.pc_bus);
1068 			if (pci) {
1069 				/*
1070 				 * pci is the pci device and may contain
1071 				 * several children (for each function code).
1072 				 * The governing pci bus is the parent to
1073 				 * the pci device.
1074 				 */
1075 				int b;
1076 
1077 				pcib = device_get_parent(pci);
1078 				b = pcib_get_bus(pcib);
1079 				io->pi_data =
1080 					PCIB_READ_CONFIG(pcib,
1081 							 b,
1082 							 io->pi_sel.pc_dev,
1083 							 io->pi_sel.pc_func,
1084 							 io->pi_reg,
1085 							 io->pi_width);
1086 				error = 0;
1087 			} else {
1088 				error = ENODEV;
1089 			}
1090 			break;
1091 		default:
1092 			error = ENODEV;
1093 			break;
1094 		}
1095 		break;
1096 
1097 	case PCIOCWRITE:
1098 		io = (struct pci_io *)ap->a_data;
1099 		switch(io->pi_width) {
1100 		case 4:
1101 		case 2:
1102 		case 1:
1103 			/*
1104 			 * Assume that the user-level bus number is
1105 			 * actually the pciN instance number. We map
1106 			 * from that to the real pcib+bus combination.
1107 			 */
1108 			pci = devclass_get_device(pci_devclass,
1109 						  io->pi_sel.pc_bus);
1110 			if (pci) {
1111 				/*
1112 				 * pci is the pci device and may contain
1113 				 * several children (for each function code).
1114 				 * The governing pci bus is the parent to
1115 				 * the pci device.
1116 				 */
1117 				int b;
1118 
1119 				pcib = device_get_parent(pci);
1120 				b = pcib_get_bus(pcib);
1121 				PCIB_WRITE_CONFIG(pcib,
1122 						  b,
1123 						  io->pi_sel.pc_dev,
1124 						  io->pi_sel.pc_func,
1125 						  io->pi_reg,
1126 						  io->pi_data,
1127 						  io->pi_width);
1128 				error = 0;
1129 			} else {
1130 				error = ENODEV;
1131 			}
1132 			break;
1133 		default:
1134 			error = ENODEV;
1135 			break;
1136 		}
1137 		break;
1138 
1139 	default:
1140 		error = ENOTTY;
1141 		break;
1142 	}
1143 
1144 	return (error);
1145 }
1146 
1147 #define	PCI_CDEV	78
1148 
1149 static struct dev_ops pcic_ops = {
1150 	{ "pci", PCI_CDEV, 0 },
1151 	.d_open =	pci_open,
1152 	.d_close =	pci_close,
1153 	.d_ioctl =	pci_ioctl,
1154 };
1155 
1156 #include "pci_if.h"
1157 
1158 /*
1159  * New style pci driver.  Parent device is either a pci-host-bridge or a
1160  * pci-pci-bridge.  Both kinds are represented by instances of pcib.
1161  */
1162 const char *
1163 pci_class_to_string(int baseclass)
1164 {
1165 	const char *name;
1166 
1167 	switch(baseclass) {
1168 	case PCIC_OLD:
1169 		name = "OLD";
1170 		break;
1171 	case PCIC_STORAGE:
1172 		name = "STORAGE";
1173 		break;
1174 	case PCIC_NETWORK:
1175 		name = "NETWORK";
1176 		break;
1177 	case PCIC_DISPLAY:
1178 		name = "DISPLAY";
1179 		break;
1180 	case PCIC_MULTIMEDIA:
1181 		name = "MULTIMEDIA";
1182 		break;
1183 	case PCIC_MEMORY:
1184 		name = "MEMORY";
1185 		break;
1186 	case PCIC_BRIDGE:
1187 		name = "BRIDGE";
1188 		break;
1189 	case PCIC_SIMPLECOMM:
1190 		name = "SIMPLECOMM";
1191 		break;
1192 	case PCIC_BASEPERIPH:
1193 		name = "BASEPERIPH";
1194 		break;
1195 	case PCIC_INPUTDEV:
1196 		name = "INPUTDEV";
1197 		break;
1198 	case PCIC_DOCKING:
1199 		name = "DOCKING";
1200 		break;
1201 	case PCIC_PROCESSOR:
1202 		name = "PROCESSOR";
1203 		break;
1204 	case PCIC_SERIALBUS:
1205 		name = "SERIALBUS";
1206 		break;
1207 	case PCIC_WIRELESS:
1208 		name = "WIRELESS";
1209 		break;
1210 	case PCIC_I2O:
1211 		name = "I20";
1212 		break;
1213 	case PCIC_SATELLITE:
1214 		name = "SATELLITE";
1215 		break;
1216 	case PCIC_CRYPTO:
1217 		name = "CRYPTO";
1218 		break;
1219 	case PCIC_SIGPROC:
1220 		name = "SIGPROC";
1221 		break;
1222 	case PCIC_OTHER:
1223 		name = "OTHER";
1224 		break;
1225 	default:
1226 		name = "?";
1227 		break;
1228 	}
1229 	return(name);
1230 }
1231 
1232 void
1233 pci_print_verbose(struct pci_devinfo *dinfo)
1234 {
1235 	if (bootverbose) {
1236 		pcicfgregs *cfg = &dinfo->cfg;
1237 
1238 		kprintf("found->\tvendor=0x%04x, dev=0x%04x, revid=0x%02x\n",
1239 		       cfg->vendor, cfg->device, cfg->revid);
1240 		kprintf("\tbus=%d, slot=%d, func=%d\n",
1241 		       cfg->bus, cfg->slot, cfg->func);
1242 		kprintf("\tclass=[%s]%02x-%02x-%02x, hdrtype=0x%02x, mfdev=%d\n",
1243 		       pci_class_to_string(cfg->baseclass),
1244 		       cfg->baseclass, cfg->subclass, cfg->progif,
1245 		       cfg->hdrtype, cfg->mfdev);
1246 		kprintf("\tsubordinatebus=%x \tsecondarybus=%x\n",
1247 		       cfg->subordinatebus, cfg->secondarybus);
1248 #ifdef PCI_DEBUG
1249 		kprintf("\tcmdreg=0x%04x, statreg=0x%04x, cachelnsz=%d (dwords)\n",
1250 		       cfg->cmdreg, cfg->statreg, cfg->cachelnsz);
1251 		kprintf("\tlattimer=0x%02x (%d ns), mingnt=0x%02x (%d ns), maxlat=0x%02x (%d ns)\n",
1252 		       cfg->lattimer, cfg->lattimer * 30,
1253 		       cfg->mingnt, cfg->mingnt * 250, cfg->maxlat, cfg->maxlat * 250);
1254 #endif /* PCI_DEBUG */
1255 		if (cfg->intpin > 0)
1256 			kprintf("\tintpin=%c, irq=%d\n", cfg->intpin +'a' -1, cfg->intline);
1257 	}
1258 }
1259 
1260 static int
1261 pci_porten(device_t pcib, int b, int s, int f)
1262 {
1263 	return (PCIB_READ_CONFIG(pcib, b, s, f, PCIR_COMMAND, 2)
1264 		& PCIM_CMD_PORTEN) != 0;
1265 }
1266 
1267 static int
1268 pci_memen(device_t pcib, int b, int s, int f)
1269 {
1270 	return (PCIB_READ_CONFIG(pcib, b, s, f, PCIR_COMMAND, 2)
1271 		& PCIM_CMD_MEMEN) != 0;
1272 }
1273 
1274 /*
1275  * Add a resource based on a pci map register. Return 1 if the map
1276  * register is a 32bit map register or 2 if it is a 64bit register.
1277  */
1278 static int
1279 pci_add_map(device_t pcib, int b, int s, int f, int reg,
1280 	    struct resource_list *rl)
1281 {
1282 	u_int32_t map;
1283 	u_int64_t base;
1284 	u_int8_t ln2size;
1285 	u_int8_t ln2range;
1286 	u_int32_t testval;
1287 
1288 
1289 #ifdef PCI_ENABLE_IO_MODES
1290 	u_int16_t cmd;
1291 #endif
1292 	int type;
1293 
1294 	map = PCIB_READ_CONFIG(pcib, b, s, f, reg, 4);
1295 
1296 	if (map == 0 || map == 0xffffffff)
1297 		return 1; /* skip invalid entry */
1298 
1299 	PCIB_WRITE_CONFIG(pcib, b, s, f, reg, 0xffffffff, 4);
1300 	testval = PCIB_READ_CONFIG(pcib, b, s, f, reg, 4);
1301 	PCIB_WRITE_CONFIG(pcib, b, s, f, reg, map, 4);
1302 
1303 	base = pci_mapbase(map);
1304 	if (pci_maptype(map) & PCI_MAPMEM)
1305 		type = SYS_RES_MEMORY;
1306 	else
1307 		type = SYS_RES_IOPORT;
1308 	ln2size = pci_mapsize(testval);
1309 	ln2range = pci_maprange(testval);
1310 	if (ln2range == 64) {
1311 		/* Read the other half of a 64bit map register */
1312 		base |= (u_int64_t) PCIB_READ_CONFIG(pcib, b, s, f, reg+4, 4);
1313 	}
1314 
1315 	/*
1316 	 * This code theoretically does the right thing, but has
1317 	 * undesirable side effects in some cases where
1318 	 * peripherals respond oddly to having these bits
1319 	 * enabled.  Leave them alone by default.
1320 	 */
1321 #ifdef PCI_ENABLE_IO_MODES
1322 	if (type == SYS_RES_IOPORT && !pci_porten(pcib, b, s, f)) {
1323 		cmd = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_COMMAND, 2);
1324 		cmd |= PCIM_CMD_PORTEN;
1325 		PCIB_WRITE_CONFIG(pcib, b, s, f, PCIR_COMMAND, cmd, 2);
1326 	}
1327 	if (type == SYS_RES_MEMORY && !pci_memen(pcib, b, s, f)) {
1328 		cmd = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_COMMAND, 2);
1329 		cmd |= PCIM_CMD_MEMEN;
1330 		PCIB_WRITE_CONFIG(pcib, b, s, f, PCIR_COMMAND, cmd, 2);
1331 	}
1332 #else
1333         if (type == SYS_RES_IOPORT && !pci_porten(pcib, b, s, f))
1334                 return 1;
1335         if (type == SYS_RES_MEMORY && !pci_memen(pcib, b, s, f))
1336 		return 1;
1337 #endif
1338 
1339 	resource_list_add(rl, type, reg,
1340 			  base, base + (1 << ln2size) - 1,
1341 			  (1 << ln2size));
1342 
1343 	if (bootverbose) {
1344 		kprintf("\tmap[%02x]: type %x, range %2d, base %08x, size %2d\n",
1345 		       reg, pci_maptype(base), ln2range,
1346 		       (unsigned int) base, ln2size);
1347 	}
1348 
1349 	return (ln2range == 64) ? 2 : 1;
1350 }
1351 
1352 #ifdef PCI_MAP_FIXUP
1353 /*
1354  * For ATA devices we need to decide early on what addressing mode to use.
1355  * Legacy demands that the primary and secondary ATA ports sits on the
1356  * same addresses that old ISA hardware did. This dictates that we use
1357  * those addresses and ignore the BARs if we cannot set PCI native
1358  * addressing mode.
1359  */
1360 static void
1361 pci_ata_maps(device_t pcib, device_t bus, device_t dev, int b, int s, int f,
1362 	     struct resource_list *rl)
1363 {
1364 	int rid, type, progif;
1365 #if 0
1366 	/* if this device supports PCI native addressing use it */
1367 	progif = pci_read_config(dev, PCIR_PROGIF, 1);
1368 	if ((progif &0x8a) == 0x8a) {
1369 		if (pci_mapbase(pci_read_config(dev, PCIR_BAR(0), 4)) &&
1370 		    pci_mapbase(pci_read_config(dev, PCIR_BAR(2), 4))) {
1371 			kprintf("Trying ATA native PCI addressing mode\n");
1372 			pci_write_config(dev, PCIR_PROGIF, progif | 0x05, 1);
1373 		}
1374 	}
1375 #endif
1376 	/*
1377 	 * Because we return any preallocated resources for lazy
1378 	 * allocation for PCI devices in pci_alloc_resource(), we can
1379 	 * allocate our legacy resources here.
1380 	 */
1381 	progif = pci_read_config(dev, PCIR_PROGIF, 1);
1382 	type = SYS_RES_IOPORT;
1383 	if (progif & PCIP_STORAGE_IDE_MODEPRIM) {
1384 		pci_add_map(pcib, b, s, f, PCIR_BAR(0), rl);
1385 		pci_add_map(pcib, b, s, f, PCIR_BAR(1), rl);
1386 	} else {
1387 		rid = PCIR_BAR(0);
1388 		resource_list_add(rl, type, rid, 0x1f0, 0x1f7, 8);
1389 		resource_list_alloc(rl, bus, dev, type, &rid, 0x1f0, 0x1f7, 8,
1390 				    0);
1391 		rid = PCIR_BAR(1);
1392 		resource_list_add(rl, type, rid, 0x3f6, 0x3f6, 1);
1393 		resource_list_alloc(rl, bus, dev, type, &rid, 0x3f6, 0x3f6, 1,
1394 				    0);
1395 	}
1396 	if (progif & PCIP_STORAGE_IDE_MODESEC) {
1397 		pci_add_map(pcib, b, s, f, PCIR_BAR(2), rl);
1398 		pci_add_map(pcib, b, s, f, PCIR_BAR(3), rl);
1399 	} else {
1400 		rid = PCIR_BAR(2);
1401 		resource_list_add(rl, type, rid, 0x170, 0x177, 8);
1402 		resource_list_alloc(rl, bus, dev, type, &rid, 0x170, 0x177, 8,
1403 				    0);
1404 		rid = PCIR_BAR(3);
1405 		resource_list_add(rl, type, rid, 0x376, 0x376, 1);
1406 		resource_list_alloc(rl, bus, dev, type, &rid, 0x376, 0x376, 1,
1407 				    0);
1408 	}
1409 	pci_add_map(pcib, b, s, f, PCIR_BAR(4), rl);
1410 	pci_add_map(pcib, b, s, f, PCIR_BAR(5), rl);
1411 }
1412 #endif /* PCI_MAP_FIXUP */
1413 
1414 static void
1415 pci_add_resources(device_t pcib, device_t bus, device_t dev)
1416 {
1417 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1418 	pcicfgregs *cfg = &dinfo->cfg;
1419 	struct resource_list *rl = &dinfo->resources;
1420 	struct pci_quirk *q;
1421 	int b, i, f, s;
1422 #if 0	/* WILL BE USED WITH ADDITIONAL IMPORT FROM FREEBSD-5 XXX */
1423 	int irq;
1424 #endif
1425 
1426 	b = cfg->bus;
1427 	s = cfg->slot;
1428 	f = cfg->func;
1429 #ifdef PCI_MAP_FIXUP
1430 	/* atapci devices in legacy mode need special map treatment */
1431 	if ((pci_get_class(dev) == PCIC_STORAGE) &&
1432 	    (pci_get_subclass(dev) == PCIS_STORAGE_IDE) &&
1433 	    (pci_get_progif(dev) & PCIP_STORAGE_IDE_MASTERDEV))
1434 		pci_ata_maps(pcib, bus, dev, b, s, f, rl);
1435 	else
1436 #endif /* PCI_MAP_FIXUP */
1437 		for (i = 0; i < cfg->nummaps;) {
1438 			i += pci_add_map(pcib, b, s, f, PCIR_BAR(i),rl);
1439 		}
1440 
1441 	for (q = &pci_quirks[0]; q->devid; q++) {
1442 		if (q->devid == ((cfg->device << 16) | cfg->vendor)
1443 		    && q->type == PCI_QUIRK_MAP_REG)
1444 			pci_add_map(pcib, b, s, f, q->arg1, rl);
1445 	}
1446 
1447 	if (cfg->intpin > 0 && cfg->intline != 255)
1448 		resource_list_add(rl, SYS_RES_IRQ, 0,
1449 				  cfg->intline, cfg->intline, 1);
1450 }
1451 
1452 void
1453 pci_add_children(device_t dev, int busno, size_t dinfo_size)
1454 {
1455 #define REG(n, w)       PCIB_READ_CONFIG(pcib, busno, s, f, n, w)
1456 	device_t pcib = device_get_parent(dev);
1457 	struct pci_devinfo *dinfo;
1458 	int maxslots;
1459 	int s, f, pcifunchigh;
1460 	uint8_t hdrtype;
1461 
1462 	KKASSERT(dinfo_size >= sizeof(struct pci_devinfo));
1463 
1464 	maxslots = PCIB_MAXSLOTS(pcib);
1465 
1466 	for (s = 0; s <= maxslots; s++) {
1467 		pcifunchigh = 0;
1468 		f = 0;
1469 		hdrtype = REG(PCIR_HDRTYPE, 1);
1470 		if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE)
1471 			continue;
1472 		if (hdrtype & PCIM_MFDEV)
1473 			pcifunchigh = PCI_FUNCMAX;
1474 		for (f = 0; f <= pcifunchigh; f++) {
1475 			dinfo = pci_read_device(pcib, busno, s, f, dinfo_size);
1476 			if (dinfo != NULL) {
1477 				pci_add_child(dev, dinfo);
1478 			}
1479 		}
1480 	}
1481 #undef REG
1482 }
1483 
1484 /*
1485  * The actual PCI child that we add has a NULL driver whos parent
1486  * device will be "pci".  The child contains the ivars, not the parent.
1487  */
1488 void
1489 pci_add_child(device_t bus, struct pci_devinfo *dinfo)
1490 {
1491 	device_t pcib;
1492 
1493 	pcib = device_get_parent(bus);
1494 	dinfo->cfg.dev = device_add_child(bus, NULL, -1);
1495 	device_set_ivars(dinfo->cfg.dev, dinfo);
1496 	pci_add_resources(pcib, bus, dinfo->cfg.dev);
1497 	pci_print_verbose(dinfo);
1498 }
1499 
1500 /*
1501  * Probe the PCI bus.  Note: probe code is not supposed to add children
1502  * or call attach.
1503  */
1504 static int
1505 pci_probe(device_t dev)
1506 {
1507 	device_set_desc(dev, "PCI bus");
1508 
1509 	/* Allow other subclasses to override this driver */
1510 	return(-1000);
1511 }
1512 
1513 static int
1514 pci_attach(device_t dev)
1515 {
1516 	int busno;
1517 	int lunit = device_get_unit(dev);
1518 
1519 	dev_ops_add(&pcic_ops, -1, lunit);
1520 	make_dev(&pcic_ops, lunit, UID_ROOT, GID_WHEEL, 0644, "pci%d", lunit);
1521 
1522         /*
1523          * Since there can be multiple independantly numbered PCI
1524          * busses on some large alpha systems, we can't use the unit
1525          * number to decide what bus we are probing. We ask the parent
1526          * pcib what our bus number is.
1527 	 *
1528 	 * pcib_get_bus() must act on the pci bus device, not on the pci
1529 	 * device, because it uses badly hacked nexus-based ivars to
1530 	 * store and retrieve the physical bus number.  XXX
1531          */
1532         busno = pcib_get_bus(device_get_parent(dev));
1533         if (bootverbose)
1534                 device_printf(dev, "pci_attach() physical bus=%d\n", busno);
1535 
1536         pci_add_children(dev, busno, sizeof(struct pci_devinfo));
1537 
1538         return (bus_generic_attach(dev));
1539 }
1540 
1541 static int
1542 pci_print_resources(struct resource_list *rl, const char *name, int type,
1543 		    const char *format)
1544 {
1545 	struct resource_list_entry *rle;
1546 	int printed, retval;
1547 
1548 	printed = 0;
1549 	retval = 0;
1550 	/* Yes, this is kinda cheating */
1551 	SLIST_FOREACH(rle, rl, link) {
1552 		if (rle->type == type) {
1553 			if (printed == 0)
1554 				retval += kprintf(" %s ", name);
1555 			else if (printed > 0)
1556 				retval += kprintf(",");
1557 			printed++;
1558 			retval += kprintf(format, rle->start);
1559 			if (rle->count > 1) {
1560 				retval += kprintf("-");
1561 				retval += kprintf(format, rle->start +
1562 						 rle->count - 1);
1563 			}
1564 		}
1565 	}
1566 	return retval;
1567 }
1568 
1569 int
1570 pci_print_child(device_t dev, device_t child)
1571 {
1572 	struct pci_devinfo *dinfo;
1573 	struct resource_list *rl;
1574 	pcicfgregs *cfg;
1575 	int retval = 0;
1576 
1577 	dinfo = device_get_ivars(child);
1578 	cfg = &dinfo->cfg;
1579 	rl = &dinfo->resources;
1580 
1581 	retval += bus_print_child_header(dev, child);
1582 
1583 	retval += pci_print_resources(rl, "port", SYS_RES_IOPORT, "%#lx");
1584 	retval += pci_print_resources(rl, "mem", SYS_RES_MEMORY, "%#lx");
1585 	retval += pci_print_resources(rl, "irq", SYS_RES_IRQ, "%ld");
1586 	if (device_get_flags(dev))
1587 		retval += kprintf(" flags %#x", device_get_flags(dev));
1588 
1589 	retval += kprintf(" at device %d.%d", pci_get_slot(child),
1590 			 pci_get_function(child));
1591 
1592 	retval += bus_print_child_footer(dev, child);
1593 
1594 	return (retval);
1595 }
1596 
1597 void
1598 pci_probe_nomatch(device_t dev, device_t child)
1599 {
1600 	struct pci_devinfo *dinfo;
1601 	pcicfgregs *cfg;
1602 	const char *desc;
1603 	int unknown;
1604 
1605 	unknown = 0;
1606 	dinfo = device_get_ivars(child);
1607 	cfg = &dinfo->cfg;
1608 	desc = pci_ata_match(child);
1609 	if (!desc) desc = pci_usb_match(child);
1610 	if (!desc) desc = pci_vga_match(child);
1611 	if (!desc) desc = pci_chip_match(child);
1612 	if (!desc) {
1613 		desc = "unknown card";
1614 		unknown++;
1615 	}
1616 	device_printf(dev, "<%s>", desc);
1617 	if (bootverbose || unknown) {
1618 		kprintf(" (vendor=0x%04x, dev=0x%04x)",
1619 			cfg->vendor,
1620 			cfg->device);
1621 	}
1622 	kprintf(" at %d.%d",
1623 		pci_get_slot(child),
1624 		pci_get_function(child));
1625 	if (cfg->intpin > 0 && cfg->intline != 255) {
1626 		kprintf(" irq %d", cfg->intline);
1627 	}
1628 	kprintf("\n");
1629 
1630 	return;
1631 }
1632 
1633 int
1634 pci_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
1635 {
1636 	struct pci_devinfo *dinfo;
1637 	pcicfgregs *cfg;
1638 
1639 	dinfo = device_get_ivars(child);
1640 	cfg = &dinfo->cfg;
1641 
1642 	switch (which) {
1643 	case PCI_IVAR_SUBVENDOR:
1644 		*result = cfg->subvendor;
1645 		break;
1646 	case PCI_IVAR_SUBDEVICE:
1647 		*result = cfg->subdevice;
1648 		break;
1649 	case PCI_IVAR_VENDOR:
1650 		*result = cfg->vendor;
1651 		break;
1652 	case PCI_IVAR_DEVICE:
1653 		*result = cfg->device;
1654 		break;
1655 	case PCI_IVAR_DEVID:
1656 		*result = (cfg->device << 16) | cfg->vendor;
1657 		break;
1658 	case PCI_IVAR_CLASS:
1659 		*result = cfg->baseclass;
1660 		break;
1661 	case PCI_IVAR_SUBCLASS:
1662 		*result = cfg->subclass;
1663 		break;
1664 	case PCI_IVAR_PROGIF:
1665 		*result = cfg->progif;
1666 		break;
1667 	case PCI_IVAR_REVID:
1668 		*result = cfg->revid;
1669 		break;
1670 	case PCI_IVAR_INTPIN:
1671 		*result = cfg->intpin;
1672 		break;
1673 	case PCI_IVAR_IRQ:
1674 		*result = cfg->intline;
1675 		break;
1676 	case PCI_IVAR_BUS:
1677 		*result = cfg->bus;
1678 		break;
1679 	case PCI_IVAR_SLOT:
1680 		*result = cfg->slot;
1681 		break;
1682 	case PCI_IVAR_FUNCTION:
1683 		*result = cfg->func;
1684 		break;
1685 	case PCI_IVAR_SECONDARYBUS:
1686 		*result = cfg->secondarybus;
1687 		break;
1688 	case PCI_IVAR_SUBORDINATEBUS:
1689 		*result = cfg->subordinatebus;
1690 		break;
1691 	case PCI_IVAR_ETHADDR:
1692 		/*
1693 		 * The generic accessor doesn't deal with failure, so
1694 		 * we set the return value, then return an error.
1695 		 */
1696 		*result = NULL;
1697 		return (EINVAL);
1698 	default:
1699 		return ENOENT;
1700 	}
1701 	return 0;
1702 }
1703 
1704 int
1705 pci_write_ivar(device_t dev, device_t child, int which, uintptr_t value)
1706 {
1707 	struct pci_devinfo *dinfo;
1708 	pcicfgregs *cfg;
1709 
1710 	dinfo = device_get_ivars(child);
1711 	cfg = &dinfo->cfg;
1712 
1713 	switch (which) {
1714 	case PCI_IVAR_SUBVENDOR:
1715 	case PCI_IVAR_SUBDEVICE:
1716 	case PCI_IVAR_VENDOR:
1717 	case PCI_IVAR_DEVICE:
1718 	case PCI_IVAR_DEVID:
1719 	case PCI_IVAR_CLASS:
1720 	case PCI_IVAR_SUBCLASS:
1721 	case PCI_IVAR_PROGIF:
1722 	case PCI_IVAR_REVID:
1723 	case PCI_IVAR_INTPIN:
1724 	case PCI_IVAR_IRQ:
1725 	case PCI_IVAR_BUS:
1726 	case PCI_IVAR_SLOT:
1727 	case PCI_IVAR_FUNCTION:
1728 	case PCI_IVAR_ETHADDR:
1729 		return EINVAL;	/* disallow for now */
1730 
1731 	case PCI_IVAR_SECONDARYBUS:
1732 		cfg->secondarybus = value;
1733 		break;
1734 	case PCI_IVAR_SUBORDINATEBUS:
1735 		cfg->subordinatebus = value;
1736 		break;
1737 	default:
1738 		return ENOENT;
1739 	}
1740 	return 0;
1741 }
1742 
1743 #ifdef PCI_MAP_FIXUP
1744 static struct resource *
1745 pci_alloc_map(device_t dev, device_t child, int type, int *rid, u_long start,
1746 	      u_long end, u_long count, u_int flags)
1747 {
1748 	struct pci_devinfo *dinfo = device_get_ivars(child);
1749 	struct resource_list *rl = &dinfo->resources;
1750 	struct resource_list_entry *rle;
1751 	struct resource *res;
1752 	uint32_t map, testval;
1753 	int mapsize;
1754 
1755 	/*
1756 	 * Weed out the bogons, and figure out how large the BAR/map
1757 	 * is. BARs that read back 0 here are bogus and unimplemented.
1758 	 *
1759 	 * Note: atapci in legacy mode are special and handled elsewhere
1760 	 * in the code. If you have an atapci device in legacy mode and
1761 	 * it fails here, that other code is broken.
1762 	 */
1763 	res = NULL;
1764 	map = pci_read_config(child, *rid, 4);
1765 	pci_write_config(child, *rid, 0xffffffff, 4);
1766 	testval = pci_read_config(child, *rid, 4);
1767 	if (pci_mapbase(testval) == 0)
1768 		goto out;
1769 	if (pci_maptype(testval) & PCI_MAPMEM) {
1770 		if (type != SYS_RES_MEMORY) {
1771 			if (bootverbose)
1772 				device_printf(dev, "child %s requested type %d"
1773 					      " for rid %#x, but the BAR says "
1774 					      "it is a memio\n",
1775 					      device_get_nameunit(child), type,
1776 					      *rid);
1777 			goto out;
1778 		}
1779 	} else {
1780 		if (type != SYS_RES_IOPORT) {
1781 			if (bootverbose)
1782 				device_printf(dev, "child %s requested type %d"
1783 					      " for rid %#x, but the BAR says "
1784 					      "it is an ioport\n",
1785 					      device_get_nameunit(child), type,
1786 					      *rid);
1787 			goto out;
1788 		}
1789 	}
1790 	/*
1791 	 * For real BARs, we need to override the size that
1792 	 * the driver requests, because that's what the BAR
1793 	 * actually uses and we would otherwise have a
1794 	 * situation where we might allocate the excess to
1795 	 * another driver, which won't work.
1796 	 */
1797 	mapsize = pci_mapsize(testval);
1798 	count = 1 << mapsize;
1799 	if (RF_ALIGNMENT(flags) < mapsize)
1800 		flags = (flags & ~RF_ALIGNMENT_MASK) |
1801 		   RF_ALIGNMENT_LOG2(mapsize);
1802 	/*
1803 	 * Allocate enough resource, and then write back the
1804 	 * appropriate BAR for that resource.
1805 	 */
1806 	res = BUS_ALLOC_RESOURCE(device_get_parent(dev), child, type, rid,
1807 				 start, end, count, flags);
1808 	if (res == NULL) {
1809 		device_printf(child, "%#lx bytes at rid %#x res %d failed "
1810 			      "(%#lx, %#lx)\n", count, *rid, type, start, end);
1811 		goto out;
1812 	}
1813 	resource_list_add(rl, type, *rid, start, end, count);
1814 	rle = resource_list_find(rl, type, *rid);
1815 	if (rle == NULL)
1816 		panic("pci_alloc_map: unexpectedly can't find resource.");
1817 	rle->res = res;
1818 	rle->start = rman_get_start(res);
1819 	rle->end = rman_get_end(res);
1820 	rle->count = count;
1821 	if (bootverbose)
1822 		device_printf(child, "lazy allocation of %#lx bytes rid %#x "
1823 			      "type %d at %#lx\n", count, *rid, type,
1824 			      rman_get_start(res));
1825 	map = rman_get_start(res);
1826 out:;
1827 	pci_write_config(child, *rid, map, 4);
1828 	return res;
1829 }
1830 #endif /* PCI_MAP_FIXUP */
1831 
1832 struct resource *
1833 pci_alloc_resource(device_t dev, device_t child, int type, int *rid,
1834 		   u_long start, u_long end, u_long count, u_int flags)
1835 {
1836 	struct pci_devinfo *dinfo = device_get_ivars(child);
1837 	struct resource_list *rl = &dinfo->resources;
1838 #ifdef PCI_MAP_FIXUP
1839 	struct resource_list_entry *rle;
1840 #endif /* PCI_MAP_FIXUP */
1841 	pcicfgregs *cfg = &dinfo->cfg;
1842 
1843 	/*
1844 	 * Perform lazy resource allocation
1845 	 */
1846 	if (device_get_parent(child) == dev) {
1847 		switch (type) {
1848 		case SYS_RES_IRQ:
1849 #ifdef __i386__
1850 		/*
1851 		 * If device doesn't have an interrupt routed, and is
1852 		 * deserving of an interrupt, try to assign it one.
1853 		 */
1854 			if ((cfg->intline == 255 || cfg->intline == 0) &&
1855 			    (cfg->intpin != 0) &&
1856 			    (start == 0) && (end == ~0UL)) {
1857 				cfg->intline = PCIB_ROUTE_INTERRUPT(
1858 					device_get_parent(dev), child,
1859 					cfg->intpin);
1860 				if (cfg->intline != 255) {
1861 					pci_write_config(child, PCIR_INTLINE,
1862 					    cfg->intline, 1);
1863 					resource_list_add(rl, SYS_RES_IRQ, 0,
1864 					    cfg->intline, cfg->intline, 1);
1865 				}
1866 			}
1867 			break;
1868 #endif
1869 		case SYS_RES_IOPORT:
1870 			/* FALLTHROUGH */
1871 		case SYS_RES_MEMORY:
1872 			if (*rid < PCIR_BAR(cfg->nummaps)) {
1873 				/*
1874 				 * Enable the I/O mode.  We should
1875 				 * also be assigning resources too
1876 				 * when none are present.  The
1877 				 * resource_list_alloc kind of sorta does
1878 				 * this...
1879 				 */
1880 				if (PCI_ENABLE_IO(dev, child, type))
1881 					return (NULL);
1882 			}
1883 #ifdef PCI_MAP_FIXUP
1884 			rle = resource_list_find(rl, type, *rid);
1885 			if (rle == NULL)
1886 				return pci_alloc_map(dev, child, type, rid,
1887 						     start, end, count, flags);
1888 #endif /* PCI_MAP_FIXUP */
1889 			break;
1890 		}
1891 #ifdef PCI_MAP_FIXUP
1892 		/*
1893 		 * If we've already allocated the resource, then
1894 		 * return it now. But first we may need to activate
1895 		 * it, since we don't allocate the resource as active
1896 		 * above. Normally this would be done down in the
1897 		 * nexus, but since we short-circuit that path we have
1898 		 * to do its job here. Not sure if we should free the
1899 		 * resource if it fails to activate.
1900 		 *
1901 		 * Note: this also finds and returns resources for
1902 		 * atapci devices in legacy mode as allocated in
1903 		 * pci_ata_maps().
1904 		 */
1905 		rle = resource_list_find(rl, type, *rid);
1906 		if (rle != NULL && rle->res != NULL) {
1907 			if (bootverbose)
1908 				device_printf(child, "reserved %#lx bytes for "
1909 					      "rid %#x type %d at %#lx\n",
1910 					      rman_get_size(rle->res), *rid,
1911 					      type, rman_get_start(rle->res));
1912 			if ((flags & RF_ACTIVE) &&
1913 			    bus_generic_activate_resource(dev, child, type,
1914 							  *rid, rle->res) != 0)
1915 				return NULL;
1916 			return rle->res;
1917 		}
1918 #endif /* PCI_MAP_FIXUP */
1919 	}
1920 	return resource_list_alloc(rl, dev, child, type, rid,
1921 				   start, end, count, flags);
1922 }
1923 
1924 static int
1925 pci_release_resource(device_t dev, device_t child, int type, int rid,
1926 		     struct resource *r)
1927 {
1928 	struct pci_devinfo *dinfo = device_get_ivars(child);
1929 	struct resource_list *rl = &dinfo->resources;
1930 
1931 	return resource_list_release(rl, dev, child, type, rid, r);
1932 }
1933 
1934 static int
1935 pci_set_resource(device_t dev, device_t child, int type, int rid,
1936 		 u_long start, u_long count)
1937 {
1938 	struct pci_devinfo *dinfo = device_get_ivars(child);
1939 	struct resource_list *rl = &dinfo->resources;
1940 
1941 	resource_list_add(rl, type, rid, start, start + count - 1, count);
1942 	return 0;
1943 }
1944 
1945 static int
1946 pci_get_resource(device_t dev, device_t child, int type, int rid,
1947 		 u_long *startp, u_long *countp)
1948 {
1949 	struct pci_devinfo *dinfo = device_get_ivars(child);
1950 	struct resource_list *rl = &dinfo->resources;
1951 	struct resource_list_entry *rle;
1952 
1953 	rle = resource_list_find(rl, type, rid);
1954 	if (!rle)
1955 		return ENOENT;
1956 
1957 	if (startp)
1958 		*startp = rle->start;
1959 	if (countp)
1960 		*countp = rle->count;
1961 
1962 	return 0;
1963 }
1964 
1965 void
1966 pci_delete_resource(device_t dev, device_t child, int type, int rid)
1967 {
1968 	kprintf("pci_delete_resource: PCI resources can not be deleted\n");
1969 }
1970 
1971 struct resource_list *
1972 pci_get_resource_list (device_t dev, device_t child)
1973 {
1974 	struct pci_devinfo *    dinfo = device_get_ivars(child);
1975 	struct resource_list *  rl = &dinfo->resources;
1976 
1977 	if (!rl)
1978 		return (NULL);
1979 
1980 	return (rl);
1981 }
1982 
1983 u_int32_t
1984 pci_read_config_method(device_t dev, device_t child, int reg, int width)
1985 {
1986 	struct pci_devinfo *dinfo = device_get_ivars(child);
1987 	pcicfgregs *cfg = &dinfo->cfg;
1988 
1989 	return PCIB_READ_CONFIG(device_get_parent(dev),
1990 				 cfg->bus, cfg->slot, cfg->func,
1991 				 reg, width);
1992 }
1993 
1994 void
1995 pci_write_config_method(device_t dev, device_t child, int reg,
1996 			u_int32_t val, int width)
1997 {
1998 	struct pci_devinfo *dinfo = device_get_ivars(child);
1999 	pcicfgregs *cfg = &dinfo->cfg;
2000 
2001 	PCIB_WRITE_CONFIG(device_get_parent(dev),
2002 			  cfg->bus, cfg->slot, cfg->func,
2003 			  reg, val, width);
2004 }
2005 
2006 int
2007 pci_child_location_str_method(device_t cbdev, device_t child, char *buf,
2008     size_t buflen)
2009 {
2010 	struct pci_devinfo *dinfo;
2011 
2012 	dinfo = device_get_ivars(child);
2013 	ksnprintf(buf, buflen, "slot=%d function=%d", pci_get_slot(child),
2014 	    pci_get_function(child));
2015 	return (0);
2016 }
2017 
2018 int
2019 pci_child_pnpinfo_str_method(device_t cbdev, device_t child, char *buf,
2020     size_t buflen)
2021 {
2022 	struct pci_devinfo *dinfo;
2023 	pcicfgregs *cfg;
2024 
2025 	dinfo = device_get_ivars(child);
2026 	cfg = &dinfo->cfg;
2027 	ksnprintf(buf, buflen, "vendor=0x%04x device=0x%04x subvendor=0x%04x "
2028 	    "subdevice=0x%04x class=0x%02x%02x%02x", cfg->vendor, cfg->device,
2029 	    cfg->subvendor, cfg->subdevice, cfg->baseclass, cfg->subclass,
2030 	    cfg->progif);
2031 	return (0);
2032 }
2033 
2034 int
2035 pci_assign_interrupt_method(device_t dev, device_t child)
2036 {
2037         struct pci_devinfo *dinfo = device_get_ivars(child);
2038         pcicfgregs *cfg = &dinfo->cfg;
2039 
2040         return (PCIB_ROUTE_INTERRUPT(device_get_parent(dev), child,
2041             cfg->intpin));
2042 }
2043 
2044 static int
2045 pci_modevent(module_t mod, int what, void *arg)
2046 {
2047 	switch (what) {
2048 	case MOD_LOAD:
2049 		STAILQ_INIT(&pci_devq);
2050 		break;
2051 	case MOD_UNLOAD:
2052 		break;
2053 	}
2054 
2055 	return 0;
2056 }
2057 
2058 int
2059 pci_resume(device_t dev)
2060 {
2061         int                     numdevs;
2062         int                     i;
2063         device_t                *children;
2064         device_t                child;
2065         struct pci_devinfo      *dinfo;
2066         pcicfgregs              *cfg;
2067 
2068         device_get_children(dev, &children, &numdevs);
2069 
2070         for (i = 0; i < numdevs; i++) {
2071                 child = children[i];
2072 
2073                 dinfo = device_get_ivars(child);
2074                 cfg = &dinfo->cfg;
2075                 if (cfg->intpin > 0 && PCI_INTERRUPT_VALID(cfg->intline)) {
2076                         cfg->intline = PCI_ASSIGN_INTERRUPT(dev, child);
2077                         if (PCI_INTERRUPT_VALID(cfg->intline)) {
2078                                 pci_write_config(child, PCIR_INTLINE,
2079                                     cfg->intline, 1);
2080                         }
2081                 }
2082         }
2083 
2084         kfree(children, M_TEMP);
2085 
2086         return (bus_generic_resume(dev));
2087 }
2088 
2089 static device_method_t pci_methods[] = {
2090 	/* Device interface */
2091 	DEVMETHOD(device_probe,		pci_probe),
2092 	DEVMETHOD(device_attach,	pci_attach),
2093 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
2094 	DEVMETHOD(device_suspend,	bus_generic_suspend),
2095 	DEVMETHOD(device_resume,	pci_resume),
2096 
2097 	/* Bus interface */
2098 	DEVMETHOD(bus_print_child,	pci_print_child),
2099 	DEVMETHOD(bus_probe_nomatch,	pci_probe_nomatch),
2100 	DEVMETHOD(bus_read_ivar,	pci_read_ivar),
2101 	DEVMETHOD(bus_write_ivar,	pci_write_ivar),
2102 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
2103 	DEVMETHOD(bus_setup_intr,	bus_generic_setup_intr),
2104 	DEVMETHOD(bus_teardown_intr,	bus_generic_teardown_intr),
2105 
2106 	DEVMETHOD(bus_get_resource_list,pci_get_resource_list),
2107 	DEVMETHOD(bus_set_resource,	pci_set_resource),
2108 	DEVMETHOD(bus_get_resource,	pci_get_resource),
2109 	DEVMETHOD(bus_delete_resource,	pci_delete_resource),
2110 	DEVMETHOD(bus_alloc_resource,	pci_alloc_resource),
2111 	DEVMETHOD(bus_release_resource,	pci_release_resource),
2112 	DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
2113 	DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
2114 	DEVMETHOD(bus_child_pnpinfo_str, pci_child_pnpinfo_str_method),
2115 	DEVMETHOD(bus_child_location_str, pci_child_location_str_method),
2116 
2117 	/* PCI interface */
2118 	DEVMETHOD(pci_read_config,	pci_read_config_method),
2119 	DEVMETHOD(pci_write_config,	pci_write_config_method),
2120 	DEVMETHOD(pci_enable_busmaster,	pci_enable_busmaster_method),
2121 	DEVMETHOD(pci_disable_busmaster, pci_disable_busmaster_method),
2122 	DEVMETHOD(pci_enable_io,	pci_enable_io_method),
2123 	DEVMETHOD(pci_disable_io,	pci_disable_io_method),
2124 	DEVMETHOD(pci_get_powerstate,	pci_get_powerstate_method),
2125 	DEVMETHOD(pci_set_powerstate,	pci_set_powerstate_method),
2126 	DEVMETHOD(pci_assign_interrupt, pci_assign_interrupt_method),
2127 
2128 	{ 0, 0 }
2129 };
2130 
2131 static driver_t pci_driver = {
2132 	"pci",
2133 	pci_methods,
2134 	1,			/* no softc */
2135 };
2136 
2137 DRIVER_MODULE(pci, pcib, pci_driver, pci_devclass, pci_modevent, 0);
2138 MODULE_VERSION(pci, 1);
2139