1 /* 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $FreeBSD: src/sys/cam/cam_xpt.c,v 1.80.2.18 2002/12/09 17:31:55 gibbs Exp $ 30 * $DragonFly: src/sys/bus/cam/cam_xpt.c,v 1.65 2008/05/18 20:30:19 pavalos Exp $ 31 */ 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/types.h> 35 #include <sys/malloc.h> 36 #include <sys/kernel.h> 37 #include <sys/time.h> 38 #include <sys/conf.h> 39 #include <sys/device.h> 40 #include <sys/fcntl.h> 41 #include <sys/md5.h> 42 #include <sys/devicestat.h> 43 #include <sys/interrupt.h> 44 #include <sys/sbuf.h> 45 #include <sys/taskqueue.h> 46 #include <sys/bus.h> 47 #include <sys/thread.h> 48 #include <sys/thread2.h> 49 #include <sys/lock.h> 50 51 #include <machine/clock.h> 52 #include <machine/stdarg.h> 53 54 #include "cam.h" 55 #include "cam_ccb.h" 56 #include "cam_periph.h" 57 #include "cam_sim.h" 58 #include "cam_xpt.h" 59 #include "cam_xpt_sim.h" 60 #include "cam_xpt_periph.h" 61 #include "cam_debug.h" 62 63 #include "scsi/scsi_all.h" 64 #include "scsi/scsi_message.h" 65 #include "scsi/scsi_pass.h" 66 #include <sys/kthread.h> 67 #include "opt_cam.h" 68 69 /* Datastructures internal to the xpt layer */ 70 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); 71 72 /* Object for defering XPT actions to a taskqueue */ 73 struct xpt_task { 74 struct task task; 75 void *data1; 76 uintptr_t data2; 77 }; 78 79 /* 80 * Definition of an async handler callback block. These are used to add 81 * SIMs and peripherals to the async callback lists. 82 */ 83 struct async_node { 84 SLIST_ENTRY(async_node) links; 85 u_int32_t event_enable; /* Async Event enables */ 86 void (*callback)(void *arg, u_int32_t code, 87 struct cam_path *path, void *args); 88 void *callback_arg; 89 }; 90 91 SLIST_HEAD(async_list, async_node); 92 SLIST_HEAD(periph_list, cam_periph); 93 94 /* 95 * This is the maximum number of high powered commands (e.g. start unit) 96 * that can be outstanding at a particular time. 97 */ 98 #ifndef CAM_MAX_HIGHPOWER 99 #define CAM_MAX_HIGHPOWER 4 100 #endif 101 102 /* 103 * Structure for queueing a device in a run queue. 104 * There is one run queue for allocating new ccbs, 105 * and another for sending ccbs to the controller. 106 */ 107 struct cam_ed_qinfo { 108 cam_pinfo pinfo; 109 struct cam_ed *device; 110 }; 111 112 /* 113 * The CAM EDT (Existing Device Table) contains the device information for 114 * all devices for all busses in the system. The table contains a 115 * cam_ed structure for each device on the bus. 116 */ 117 struct cam_ed { 118 TAILQ_ENTRY(cam_ed) links; 119 struct cam_ed_qinfo alloc_ccb_entry; 120 struct cam_ed_qinfo send_ccb_entry; 121 struct cam_et *target; 122 struct cam_sim *sim; 123 lun_id_t lun_id; 124 struct camq drvq; /* 125 * Queue of type drivers wanting to do 126 * work on this device. 127 */ 128 struct cam_ccbq ccbq; /* Queue of pending ccbs */ 129 struct async_list asyncs; /* Async callback info for this B/T/L */ 130 struct periph_list periphs; /* All attached devices */ 131 u_int generation; /* Generation number */ 132 struct cam_periph *owner; /* Peripheral driver's ownership tag */ 133 struct xpt_quirk_entry *quirk; /* Oddities about this device */ 134 /* Storage for the inquiry data */ 135 cam_proto protocol; 136 u_int protocol_version; 137 cam_xport transport; 138 u_int transport_version; 139 struct scsi_inquiry_data inq_data; 140 u_int8_t inq_flags; /* 141 * Current settings for inquiry flags. 142 * This allows us to override settings 143 * like disconnection and tagged 144 * queuing for a device. 145 */ 146 u_int8_t queue_flags; /* Queue flags from the control page */ 147 u_int8_t serial_num_len; 148 u_int8_t *serial_num; 149 u_int32_t qfrozen_cnt; 150 u_int32_t flags; 151 #define CAM_DEV_UNCONFIGURED 0x01 152 #define CAM_DEV_REL_TIMEOUT_PENDING 0x02 153 #define CAM_DEV_REL_ON_COMPLETE 0x04 154 #define CAM_DEV_REL_ON_QUEUE_EMPTY 0x08 155 #define CAM_DEV_RESIZE_QUEUE_NEEDED 0x10 156 #define CAM_DEV_TAG_AFTER_COUNT 0x20 157 #define CAM_DEV_INQUIRY_DATA_VALID 0x40 158 #define CAM_DEV_IN_DV 0x80 159 #define CAM_DEV_DV_HIT_BOTTOM 0x100 160 u_int32_t tag_delay_count; 161 #define CAM_TAG_DELAY_COUNT 5 162 u_int32_t tag_saved_openings; 163 u_int32_t refcount; 164 struct callout callout; 165 }; 166 167 /* 168 * Each target is represented by an ET (Existing Target). These 169 * entries are created when a target is successfully probed with an 170 * identify, and removed when a device fails to respond after a number 171 * of retries, or a bus rescan finds the device missing. 172 */ 173 struct cam_et { 174 TAILQ_HEAD(, cam_ed) ed_entries; 175 TAILQ_ENTRY(cam_et) links; 176 struct cam_eb *bus; 177 target_id_t target_id; 178 u_int32_t refcount; 179 u_int generation; 180 struct timeval last_reset; /* uptime of last reset */ 181 }; 182 183 /* 184 * Each bus is represented by an EB (Existing Bus). These entries 185 * are created by calls to xpt_bus_register and deleted by calls to 186 * xpt_bus_deregister. 187 */ 188 struct cam_eb { 189 TAILQ_HEAD(, cam_et) et_entries; 190 TAILQ_ENTRY(cam_eb) links; 191 path_id_t path_id; 192 struct cam_sim *sim; 193 struct timeval last_reset; /* uptime of last reset */ 194 u_int32_t flags; 195 #define CAM_EB_RUNQ_SCHEDULED 0x01 196 u_int32_t refcount; 197 u_int generation; 198 }; 199 200 struct cam_path { 201 struct cam_periph *periph; 202 struct cam_eb *bus; 203 struct cam_et *target; 204 struct cam_ed *device; 205 }; 206 207 struct xpt_quirk_entry { 208 struct scsi_inquiry_pattern inq_pat; 209 u_int8_t quirks; 210 #define CAM_QUIRK_NOLUNS 0x01 211 #define CAM_QUIRK_NOSERIAL 0x02 212 #define CAM_QUIRK_HILUNS 0x04 213 #define CAM_QUIRK_NOHILUNS 0x08 214 u_int mintags; 215 u_int maxtags; 216 }; 217 218 static int cam_srch_hi = 0; 219 TUNABLE_INT("kern.cam.cam_srch_hi", &cam_srch_hi); 220 static int sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS); 221 SYSCTL_PROC(_kern_cam, OID_AUTO, cam_srch_hi, CTLTYPE_INT|CTLFLAG_RW, 0, 0, 222 sysctl_cam_search_luns, "I", 223 "allow search above LUN 7 for SCSI3 and greater devices"); 224 225 #define CAM_SCSI2_MAXLUN 8 226 /* 227 * If we're not quirked to search <= the first 8 luns 228 * and we are either quirked to search above lun 8, 229 * or we're > SCSI-2 and we've enabled hilun searching, 230 * or we're > SCSI-2 and the last lun was a success, 231 * we can look for luns above lun 8. 232 */ 233 #define CAN_SRCH_HI_SPARSE(dv) \ 234 (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) \ 235 && ((dv->quirk->quirks & CAM_QUIRK_HILUNS) \ 236 || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2 && cam_srch_hi))) 237 238 #define CAN_SRCH_HI_DENSE(dv) \ 239 (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) \ 240 && ((dv->quirk->quirks & CAM_QUIRK_HILUNS) \ 241 || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2))) 242 243 typedef enum { 244 XPT_FLAG_OPEN = 0x01 245 } xpt_flags; 246 247 struct xpt_softc { 248 xpt_flags flags; 249 u_int32_t xpt_generation; 250 251 /* number of high powered commands that can go through right now */ 252 STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq; 253 int num_highpower; 254 255 /* queue for handling async rescan requests. */ 256 TAILQ_HEAD(, ccb_hdr) ccb_scanq; 257 258 /* Registered busses */ 259 TAILQ_HEAD(,cam_eb) xpt_busses; 260 u_int bus_generation; 261 262 struct intr_config_hook *xpt_config_hook; 263 264 struct lock xpt_topo_lock; 265 struct lock xpt_lock; 266 }; 267 268 static const char quantum[] = "QUANTUM"; 269 static const char sony[] = "SONY"; 270 static const char west_digital[] = "WDIGTL"; 271 static const char samsung[] = "SAMSUNG"; 272 static const char seagate[] = "SEAGATE"; 273 static const char microp[] = "MICROP"; 274 275 static struct xpt_quirk_entry xpt_quirk_table[] = 276 { 277 { 278 /* Reports QUEUE FULL for temporary resource shortages */ 279 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" }, 280 /*quirks*/0, /*mintags*/24, /*maxtags*/32 281 }, 282 { 283 /* Reports QUEUE FULL for temporary resource shortages */ 284 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" }, 285 /*quirks*/0, /*mintags*/24, /*maxtags*/32 286 }, 287 { 288 /* Reports QUEUE FULL for temporary resource shortages */ 289 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" }, 290 /*quirks*/0, /*mintags*/24, /*maxtags*/32 291 }, 292 { 293 /* Broken tagged queuing drive */ 294 { T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" }, 295 /*quirks*/0, /*mintags*/0, /*maxtags*/0 296 }, 297 { 298 /* Broken tagged queuing drive */ 299 { T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" }, 300 /*quirks*/0, /*mintags*/0, /*maxtags*/0 301 }, 302 { 303 /* Broken tagged queuing drive */ 304 { T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" }, 305 /*quirks*/0, /*mintags*/0, /*maxtags*/0 306 }, 307 { 308 /* 309 * Unfortunately, the Quantum Atlas III has the same 310 * problem as the Atlas II drives above. 311 * Reported by: "Johan Granlund" <johan@granlund.nu> 312 * 313 * For future reference, the drive with the problem was: 314 * QUANTUM QM39100TD-SW N1B0 315 * 316 * It's possible that Quantum will fix the problem in later 317 * firmware revisions. If that happens, the quirk entry 318 * will need to be made specific to the firmware revisions 319 * with the problem. 320 * 321 */ 322 /* Reports QUEUE FULL for temporary resource shortages */ 323 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" }, 324 /*quirks*/0, /*mintags*/24, /*maxtags*/32 325 }, 326 { 327 /* 328 * 18 Gig Atlas III, same problem as the 9G version. 329 * Reported by: Andre Albsmeier 330 * <andre.albsmeier@mchp.siemens.de> 331 * 332 * For future reference, the drive with the problem was: 333 * QUANTUM QM318000TD-S N491 334 */ 335 /* Reports QUEUE FULL for temporary resource shortages */ 336 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" }, 337 /*quirks*/0, /*mintags*/24, /*maxtags*/32 338 }, 339 { 340 /* 341 * Broken tagged queuing drive 342 * Reported by: Bret Ford <bford@uop.cs.uop.edu> 343 * and: Martin Renters <martin@tdc.on.ca> 344 */ 345 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" }, 346 /*quirks*/0, /*mintags*/0, /*maxtags*/0 347 }, 348 /* 349 * The Seagate Medalist Pro drives have very poor write 350 * performance with anything more than 2 tags. 351 * 352 * Reported by: Paul van der Zwan <paulz@trantor.xs4all.nl> 353 * Drive: <SEAGATE ST36530N 1444> 354 * 355 * Reported by: Jeremy Lea <reg@shale.csir.co.za> 356 * Drive: <SEAGATE ST34520W 1281> 357 * 358 * No one has actually reported that the 9G version 359 * (ST39140*) of the Medalist Pro has the same problem, but 360 * we're assuming that it does because the 4G and 6.5G 361 * versions of the drive are broken. 362 */ 363 { 364 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"}, 365 /*quirks*/0, /*mintags*/2, /*maxtags*/2 366 }, 367 { 368 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"}, 369 /*quirks*/0, /*mintags*/2, /*maxtags*/2 370 }, 371 { 372 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"}, 373 /*quirks*/0, /*mintags*/2, /*maxtags*/2 374 }, 375 { 376 /* 377 * Slow when tagged queueing is enabled. Write performance 378 * steadily drops off with more and more concurrent 379 * transactions. Best sequential write performance with 380 * tagged queueing turned off and write caching turned on. 381 * 382 * PR: kern/10398 383 * Submitted by: Hideaki Okada <hokada@isl.melco.co.jp> 384 * Drive: DCAS-34330 w/ "S65A" firmware. 385 * 386 * The drive with the problem had the "S65A" firmware 387 * revision, and has also been reported (by Stephen J. 388 * Roznowski <sjr@home.net>) for a drive with the "S61A" 389 * firmware revision. 390 * 391 * Although no one has reported problems with the 2 gig 392 * version of the DCAS drive, the assumption is that it 393 * has the same problems as the 4 gig version. Therefore 394 * this quirk entries disables tagged queueing for all 395 * DCAS drives. 396 */ 397 { T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" }, 398 /*quirks*/0, /*mintags*/0, /*maxtags*/0 399 }, 400 { 401 /* Broken tagged queuing drive */ 402 { T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" }, 403 /*quirks*/0, /*mintags*/0, /*maxtags*/0 404 }, 405 { 406 /* Broken tagged queuing drive */ 407 { T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" }, 408 /*quirks*/0, /*mintags*/0, /*maxtags*/0 409 }, 410 { 411 /* This does not support other than LUN 0 */ 412 { T_DIRECT, SIP_MEDIA_FIXED, "VMware*", "*", "*" }, 413 CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255 414 }, 415 { 416 /* 417 * Broken tagged queuing drive. 418 * Submitted by: 419 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp> 420 * in PR kern/9535 421 */ 422 { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" }, 423 /*quirks*/0, /*mintags*/0, /*maxtags*/0 424 }, 425 { 426 /* 427 * Slow when tagged queueing is enabled. (1.5MB/sec versus 428 * 8MB/sec.) 429 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu> 430 * Best performance with these drives is achieved with 431 * tagged queueing turned off, and write caching turned on. 432 */ 433 { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" }, 434 /*quirks*/0, /*mintags*/0, /*maxtags*/0 435 }, 436 { 437 /* 438 * Slow when tagged queueing is enabled. (1.5MB/sec versus 439 * 8MB/sec.) 440 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu> 441 * Best performance with these drives is achieved with 442 * tagged queueing turned off, and write caching turned on. 443 */ 444 { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" }, 445 /*quirks*/0, /*mintags*/0, /*maxtags*/0 446 }, 447 { 448 /* 449 * Doesn't handle queue full condition correctly, 450 * so we need to limit maxtags to what the device 451 * can handle instead of determining this automatically. 452 */ 453 { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" }, 454 /*quirks*/0, /*mintags*/2, /*maxtags*/32 455 }, 456 { 457 /* Really only one LUN */ 458 { T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA", "*" }, 459 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 460 }, 461 { 462 /* I can't believe we need a quirk for DPT volumes. */ 463 { T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" }, 464 CAM_QUIRK_NOLUNS, 465 /*mintags*/0, /*maxtags*/255 466 }, 467 { 468 /* 469 * Many Sony CDROM drives don't like multi-LUN probing. 470 */ 471 { T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" }, 472 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 473 }, 474 { 475 /* 476 * This drive doesn't like multiple LUN probing. 477 * Submitted by: Parag Patel <parag@cgt.com> 478 */ 479 { T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R CDU9*", "*" }, 480 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 481 }, 482 { 483 { T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" }, 484 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 485 }, 486 { 487 /* 488 * The 8200 doesn't like multi-lun probing, and probably 489 * don't like serial number requests either. 490 */ 491 { 492 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE", 493 "EXB-8200*", "*" 494 }, 495 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 496 }, 497 { 498 /* 499 * Let's try the same as above, but for a drive that says 500 * it's an IPL-6860 but is actually an EXB 8200. 501 */ 502 { 503 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE", 504 "IPL-6860*", "*" 505 }, 506 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 507 }, 508 { 509 /* 510 * These Hitachi drives don't like multi-lun probing. 511 * The PR submitter has a DK319H, but says that the Linux 512 * kernel has a similar work-around for the DK312 and DK314, 513 * so all DK31* drives are quirked here. 514 * PR: misc/18793 515 * Submitted by: Paul Haddad <paul@pth.com> 516 */ 517 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" }, 518 CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255 519 }, 520 { 521 /* 522 * The Hitachi CJ series with J8A8 firmware apparantly has 523 * problems with tagged commands. 524 * PR: 23536 525 * Reported by: amagai@nue.org 526 */ 527 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK32CJ*", "J8A8" }, 528 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 529 }, 530 { 531 /* 532 * These are the large storage arrays. 533 * Submitted by: William Carrel <william.carrel@infospace.com> 534 */ 535 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "OPEN*", "*" }, 536 CAM_QUIRK_HILUNS, 2, 1024 537 }, 538 { 539 /* 540 * This old revision of the TDC3600 is also SCSI-1, and 541 * hangs upon serial number probing. 542 */ 543 { 544 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG", 545 " TDC 3600", "U07:" 546 }, 547 CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0 548 }, 549 { 550 /* 551 * Would repond to all LUNs if asked for. 552 */ 553 { 554 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER", 555 "CP150", "*" 556 }, 557 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 558 }, 559 { 560 /* 561 * Would repond to all LUNs if asked for. 562 */ 563 { 564 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY", 565 "96X2*", "*" 566 }, 567 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 568 }, 569 { 570 /* Submitted by: Matthew Dodd <winter@jurai.net> */ 571 { T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" }, 572 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 573 }, 574 { 575 /* Submitted by: Matthew Dodd <winter@jurai.net> */ 576 { T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" }, 577 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 578 }, 579 { 580 /* TeraSolutions special settings for TRC-22 RAID */ 581 { T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" }, 582 /*quirks*/0, /*mintags*/55, /*maxtags*/255 583 }, 584 { 585 /* Veritas Storage Appliance */ 586 { T_DIRECT, SIP_MEDIA_FIXED, "VERITAS", "*", "*" }, 587 CAM_QUIRK_HILUNS, /*mintags*/2, /*maxtags*/1024 588 }, 589 { 590 /* 591 * Would respond to all LUNs. Device type and removable 592 * flag are jumper-selectable. 593 */ 594 { T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix", 595 "Tahiti 1", "*" 596 }, 597 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 598 }, 599 { 600 /* EasyRAID E5A aka. areca ARC-6010 */ 601 { T_DIRECT, SIP_MEDIA_FIXED, "easyRAID", "*", "*" }, 602 CAM_QUIRK_NOHILUNS, /*mintags*/2, /*maxtags*/255 603 }, 604 { 605 { T_ENCLOSURE, SIP_MEDIA_FIXED, "DP", "BACKPLANE", "*" }, 606 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 607 }, 608 { 609 /* Default tagged queuing parameters for all devices */ 610 { 611 T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, 612 /*vendor*/"*", /*product*/"*", /*revision*/"*" 613 }, 614 /*quirks*/0, /*mintags*/2, /*maxtags*/255 615 }, 616 }; 617 618 static const int xpt_quirk_table_size = 619 sizeof(xpt_quirk_table) / sizeof(*xpt_quirk_table); 620 621 typedef enum { 622 DM_RET_COPY = 0x01, 623 DM_RET_FLAG_MASK = 0x0f, 624 DM_RET_NONE = 0x00, 625 DM_RET_STOP = 0x10, 626 DM_RET_DESCEND = 0x20, 627 DM_RET_ERROR = 0x30, 628 DM_RET_ACTION_MASK = 0xf0 629 } dev_match_ret; 630 631 typedef enum { 632 XPT_DEPTH_BUS, 633 XPT_DEPTH_TARGET, 634 XPT_DEPTH_DEVICE, 635 XPT_DEPTH_PERIPH 636 } xpt_traverse_depth; 637 638 struct xpt_traverse_config { 639 xpt_traverse_depth depth; 640 void *tr_func; 641 void *tr_arg; 642 }; 643 644 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 645 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 646 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 647 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 648 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 649 650 /* Transport layer configuration information */ 651 static struct xpt_softc xsoftc; 652 653 /* Queues for our software interrupt handler */ 654 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t; 655 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t; 656 static cam_simq_t cam_simq; 657 static struct lock cam_simq_lock; 658 659 struct cam_periph *xpt_periph; 660 661 static periph_init_t xpt_periph_init; 662 663 static periph_init_t probe_periph_init; 664 665 static struct periph_driver xpt_driver = 666 { 667 xpt_periph_init, "xpt", 668 TAILQ_HEAD_INITIALIZER(xpt_driver.units) 669 }; 670 671 static struct periph_driver probe_driver = 672 { 673 probe_periph_init, "probe", 674 TAILQ_HEAD_INITIALIZER(probe_driver.units) 675 }; 676 677 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 678 PERIPHDRIVER_DECLARE(probe, probe_driver); 679 680 #define XPT_CDEV_MAJOR 104 681 682 static d_open_t xptopen; 683 static d_close_t xptclose; 684 static d_ioctl_t xptioctl; 685 686 static struct dev_ops xpt_ops = { 687 { "xpt", XPT_CDEV_MAJOR, 0 }, 688 .d_open = xptopen, 689 .d_close = xptclose, 690 .d_ioctl = xptioctl 691 }; 692 693 static void dead_sim_action(struct cam_sim *sim, union ccb *ccb); 694 static void dead_sim_poll(struct cam_sim *sim); 695 696 /* Dummy SIM that is used when the real one has gone. */ 697 static struct cam_sim cam_dead_sim = { 698 .sim_action = dead_sim_action, 699 .sim_poll = dead_sim_poll, 700 .sim_name = "dead_sim", 701 }; 702 703 #define SIM_DEAD(sim) ((sim) == &cam_dead_sim) 704 705 /* Storage for debugging datastructures */ 706 #ifdef CAMDEBUG 707 struct cam_path *cam_dpath; 708 u_int32_t cam_dflags; 709 u_int32_t cam_debug_delay; 710 #endif 711 712 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG) 713 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS" 714 #endif 715 716 /* 717 * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG 718 * enabled. Also, the user must have either none, or all of CAM_DEBUG_BUS, 719 * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified. 720 */ 721 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \ 722 || defined(CAM_DEBUG_LUN) 723 #ifdef CAMDEBUG 724 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \ 725 || !defined(CAM_DEBUG_LUN) 726 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \ 727 and CAM_DEBUG_LUN" 728 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */ 729 #else /* !CAMDEBUG */ 730 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options" 731 #endif /* CAMDEBUG */ 732 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */ 733 734 /* Our boot-time initialization hook */ 735 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 736 737 static moduledata_t cam_moduledata = { 738 "cam", 739 cam_module_event_handler, 740 NULL 741 }; 742 743 static int xpt_init(void *); 744 745 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 746 MODULE_VERSION(cam, 1); 747 748 749 static cam_status xpt_compile_path(struct cam_path *new_path, 750 struct cam_periph *perph, 751 path_id_t path_id, 752 target_id_t target_id, 753 lun_id_t lun_id); 754 755 static void xpt_release_path(struct cam_path *path); 756 757 static void xpt_async_bcast(struct async_list *async_head, 758 u_int32_t async_code, 759 struct cam_path *path, 760 void *async_arg); 761 static void xpt_dev_async(u_int32_t async_code, 762 struct cam_eb *bus, 763 struct cam_et *target, 764 struct cam_ed *device, 765 void *async_arg); 766 static path_id_t xptnextfreepathid(void); 767 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 768 static union ccb *xpt_get_ccb(struct cam_ed *device); 769 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo, 770 u_int32_t new_priority); 771 static void xpt_run_dev_allocq(struct cam_eb *bus); 772 static void xpt_run_dev_sendq(struct cam_eb *bus); 773 static timeout_t xpt_release_devq_timeout; 774 static void xpt_release_bus(struct cam_eb *bus); 775 static void xpt_release_devq_device(struct cam_ed *dev, u_int count, 776 int run_queue); 777 static struct cam_et* 778 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 779 static void xpt_release_target(struct cam_eb *bus, struct cam_et *target); 780 static struct cam_ed* 781 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, 782 lun_id_t lun_id); 783 static void xpt_release_device(struct cam_eb *bus, struct cam_et *target, 784 struct cam_ed *device); 785 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings); 786 static struct cam_eb* 787 xpt_find_bus(path_id_t path_id); 788 static struct cam_et* 789 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 790 static struct cam_ed* 791 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 792 static void xpt_scan_bus(struct cam_periph *periph, union ccb *ccb); 793 static void xpt_scan_lun(struct cam_periph *periph, 794 struct cam_path *path, cam_flags flags, 795 union ccb *ccb); 796 static void xptscandone(struct cam_periph *periph, union ccb *done_ccb); 797 static xpt_busfunc_t xptconfigbuscountfunc; 798 static xpt_busfunc_t xptconfigfunc; 799 static void xpt_config(void *arg); 800 static xpt_devicefunc_t xptpassannouncefunc; 801 static void xpt_finishconfig(struct cam_periph *periph, union ccb *ccb); 802 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 803 static void xptpoll(struct cam_sim *sim); 804 static inthand2_t swi_cambio; 805 static void camisr(void *); 806 static void camisr_runqueue(void *); 807 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 808 u_int num_patterns, struct cam_eb *bus); 809 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 810 u_int num_patterns, 811 struct cam_ed *device); 812 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 813 u_int num_patterns, 814 struct cam_periph *periph); 815 static xpt_busfunc_t xptedtbusfunc; 816 static xpt_targetfunc_t xptedttargetfunc; 817 static xpt_devicefunc_t xptedtdevicefunc; 818 static xpt_periphfunc_t xptedtperiphfunc; 819 static xpt_pdrvfunc_t xptplistpdrvfunc; 820 static xpt_periphfunc_t xptplistperiphfunc; 821 static int xptedtmatch(struct ccb_dev_match *cdm); 822 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 823 static int xptbustraverse(struct cam_eb *start_bus, 824 xpt_busfunc_t *tr_func, void *arg); 825 static int xpttargettraverse(struct cam_eb *bus, 826 struct cam_et *start_target, 827 xpt_targetfunc_t *tr_func, void *arg); 828 static int xptdevicetraverse(struct cam_et *target, 829 struct cam_ed *start_device, 830 xpt_devicefunc_t *tr_func, void *arg); 831 static int xptperiphtraverse(struct cam_ed *device, 832 struct cam_periph *start_periph, 833 xpt_periphfunc_t *tr_func, void *arg); 834 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 835 xpt_pdrvfunc_t *tr_func, void *arg); 836 static int xptpdperiphtraverse(struct periph_driver **pdrv, 837 struct cam_periph *start_periph, 838 xpt_periphfunc_t *tr_func, 839 void *arg); 840 static xpt_busfunc_t xptdefbusfunc; 841 static xpt_targetfunc_t xptdeftargetfunc; 842 static xpt_devicefunc_t xptdefdevicefunc; 843 static xpt_periphfunc_t xptdefperiphfunc; 844 static int xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg); 845 static int xpt_for_all_devices(xpt_devicefunc_t *tr_func, 846 void *arg); 847 static xpt_devicefunc_t xptsetasyncfunc; 848 static xpt_busfunc_t xptsetasyncbusfunc; 849 static cam_status xptregister(struct cam_periph *periph, 850 void *arg); 851 static cam_status proberegister(struct cam_periph *periph, 852 void *arg); 853 static void probeschedule(struct cam_periph *probe_periph); 854 static void probestart(struct cam_periph *periph, union ccb *start_ccb); 855 static void proberequestdefaultnegotiation(struct cam_periph *periph); 856 static int proberequestbackoff(struct cam_periph *periph, 857 struct cam_ed *device); 858 static void probedone(struct cam_periph *periph, union ccb *done_ccb); 859 static void probecleanup(struct cam_periph *periph); 860 static void xpt_find_quirk(struct cam_ed *device); 861 static void xpt_devise_transport(struct cam_path *path); 862 static void xpt_set_transfer_settings(struct ccb_trans_settings *cts, 863 struct cam_ed *device, 864 int async_update); 865 static void xpt_toggle_tags(struct cam_path *path); 866 static void xpt_start_tags(struct cam_path *path); 867 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus, 868 struct cam_ed *dev); 869 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus, 870 struct cam_ed *dev); 871 static __inline int periph_is_queued(struct cam_periph *periph); 872 static __inline int device_is_alloc_queued(struct cam_ed *device); 873 static __inline int device_is_send_queued(struct cam_ed *device); 874 static __inline int dev_allocq_is_runnable(struct cam_devq *devq); 875 876 static __inline int 877 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev) 878 { 879 int retval; 880 881 if (bus->sim->devq && dev->ccbq.devq_openings > 0) { 882 if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) { 883 cam_ccbq_resize(&dev->ccbq, 884 dev->ccbq.dev_openings 885 + dev->ccbq.dev_active); 886 dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED; 887 } 888 /* 889 * The priority of a device waiting for CCB resources 890 * is that of the the highest priority peripheral driver 891 * enqueued. 892 */ 893 retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue, 894 &dev->alloc_ccb_entry.pinfo, 895 CAMQ_GET_HEAD(&dev->drvq)->priority); 896 } else { 897 retval = 0; 898 } 899 900 return (retval); 901 } 902 903 static __inline int 904 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev) 905 { 906 int retval; 907 908 if (bus->sim->devq && dev->ccbq.dev_openings > 0) { 909 /* 910 * The priority of a device waiting for controller 911 * resources is that of the the highest priority CCB 912 * enqueued. 913 */ 914 retval = 915 xpt_schedule_dev(&bus->sim->devq->send_queue, 916 &dev->send_ccb_entry.pinfo, 917 CAMQ_GET_HEAD(&dev->ccbq.queue)->priority); 918 } else { 919 retval = 0; 920 } 921 return (retval); 922 } 923 924 static __inline int 925 periph_is_queued(struct cam_periph *periph) 926 { 927 return (periph->pinfo.index != CAM_UNQUEUED_INDEX); 928 } 929 930 static __inline int 931 device_is_alloc_queued(struct cam_ed *device) 932 { 933 return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX); 934 } 935 936 static __inline int 937 device_is_send_queued(struct cam_ed *device) 938 { 939 return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX); 940 } 941 942 static __inline int 943 dev_allocq_is_runnable(struct cam_devq *devq) 944 { 945 /* 946 * Have work to do. 947 * Have space to do more work. 948 * Allowed to do work. 949 */ 950 return ((devq->alloc_queue.qfrozen_cnt == 0) 951 && (devq->alloc_queue.entries > 0) 952 && (devq->alloc_openings > 0)); 953 } 954 955 static void 956 xpt_periph_init(void) 957 { 958 dev_ops_add(&xpt_ops, 0, 0); 959 make_dev(&xpt_ops, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 960 } 961 962 static void 963 probe_periph_init(void) 964 { 965 } 966 967 968 static void 969 xptdone(struct cam_periph *periph, union ccb *done_ccb) 970 { 971 /* Caller will release the CCB */ 972 wakeup(&done_ccb->ccb_h.cbfcnp); 973 } 974 975 static int 976 xptopen(struct dev_open_args *ap) 977 { 978 cdev_t dev = ap->a_head.a_dev; 979 980 /* 981 * Only allow read-write access. 982 */ 983 if (((ap->a_oflags & FWRITE) == 0) || ((ap->a_oflags & FREAD) == 0)) 984 return(EPERM); 985 986 /* 987 * We don't allow nonblocking access. 988 */ 989 if ((ap->a_oflags & O_NONBLOCK) != 0) { 990 kprintf("%s: can't do nonblocking access\n", devtoname(dev)); 991 return(ENODEV); 992 } 993 994 /* Mark ourselves open */ 995 lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE); 996 xsoftc.flags |= XPT_FLAG_OPEN; 997 lockmgr(&xsoftc.xpt_lock, LK_RELEASE); 998 999 return(0); 1000 } 1001 1002 static int 1003 xptclose(struct dev_close_args *ap) 1004 { 1005 1006 /* Mark ourselves closed */ 1007 lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE); 1008 xsoftc.flags &= ~XPT_FLAG_OPEN; 1009 lockmgr(&xsoftc.xpt_lock, LK_RELEASE); 1010 1011 return(0); 1012 } 1013 1014 /* 1015 * Don't automatically grab the xpt softc lock here even though this is going 1016 * through the xpt device. The xpt device is really just a back door for 1017 * accessing other devices and SIMs, so the right thing to do is to grab 1018 * the appropriate SIM lock once the bus/SIM is located. 1019 */ 1020 static int 1021 xptioctl(struct dev_ioctl_args *ap) 1022 { 1023 int error; 1024 1025 error = 0; 1026 1027 switch(ap->a_cmd) { 1028 /* 1029 * For the transport layer CAMIOCOMMAND ioctl, we really only want 1030 * to accept CCB types that don't quite make sense to send through a 1031 * passthrough driver. 1032 */ 1033 case CAMIOCOMMAND: { 1034 union ccb *ccb; 1035 union ccb *inccb; 1036 struct cam_eb *bus; 1037 1038 inccb = (union ccb *)ap->a_data; 1039 1040 bus = xpt_find_bus(inccb->ccb_h.path_id); 1041 if (bus == NULL) { 1042 error = EINVAL; 1043 break; 1044 } 1045 1046 switch(inccb->ccb_h.func_code) { 1047 case XPT_SCAN_BUS: 1048 case XPT_RESET_BUS: 1049 if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD) 1050 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) { 1051 error = EINVAL; 1052 break; 1053 } 1054 /* FALLTHROUGH */ 1055 case XPT_PATH_INQ: 1056 case XPT_ENG_INQ: 1057 case XPT_SCAN_LUN: 1058 1059 ccb = xpt_alloc_ccb(); 1060 1061 CAM_SIM_LOCK(bus->sim); 1062 1063 /* 1064 * Create a path using the bus, target, and lun the 1065 * user passed in. 1066 */ 1067 if (xpt_create_path(&ccb->ccb_h.path, xpt_periph, 1068 inccb->ccb_h.path_id, 1069 inccb->ccb_h.target_id, 1070 inccb->ccb_h.target_lun) != 1071 CAM_REQ_CMP){ 1072 error = EINVAL; 1073 CAM_SIM_UNLOCK(bus->sim); 1074 xpt_free_ccb(ccb); 1075 break; 1076 } 1077 /* Ensure all of our fields are correct */ 1078 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 1079 inccb->ccb_h.pinfo.priority); 1080 xpt_merge_ccb(ccb, inccb); 1081 ccb->ccb_h.cbfcnp = xptdone; 1082 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 1083 bcopy(ccb, inccb, sizeof(union ccb)); 1084 xpt_free_path(ccb->ccb_h.path); 1085 xpt_free_ccb(ccb); 1086 CAM_SIM_UNLOCK(bus->sim); 1087 break; 1088 1089 case XPT_DEBUG: { 1090 union ccb ccb; 1091 1092 /* 1093 * This is an immediate CCB, so it's okay to 1094 * allocate it on the stack. 1095 */ 1096 1097 CAM_SIM_LOCK(bus->sim); 1098 1099 /* 1100 * Create a path using the bus, target, and lun the 1101 * user passed in. 1102 */ 1103 if (xpt_create_path(&ccb.ccb_h.path, xpt_periph, 1104 inccb->ccb_h.path_id, 1105 inccb->ccb_h.target_id, 1106 inccb->ccb_h.target_lun) != 1107 CAM_REQ_CMP){ 1108 error = EINVAL; 1109 CAM_SIM_UNLOCK(bus->sim); 1110 break; 1111 } 1112 /* Ensure all of our fields are correct */ 1113 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 1114 inccb->ccb_h.pinfo.priority); 1115 xpt_merge_ccb(&ccb, inccb); 1116 ccb.ccb_h.cbfcnp = xptdone; 1117 xpt_action(&ccb); 1118 CAM_SIM_UNLOCK(bus->sim); 1119 bcopy(&ccb, inccb, sizeof(union ccb)); 1120 xpt_free_path(ccb.ccb_h.path); 1121 break; 1122 1123 } 1124 case XPT_DEV_MATCH: { 1125 struct cam_periph_map_info mapinfo; 1126 struct cam_path *old_path; 1127 1128 /* 1129 * We can't deal with physical addresses for this 1130 * type of transaction. 1131 */ 1132 if (inccb->ccb_h.flags & CAM_DATA_PHYS) { 1133 error = EINVAL; 1134 break; 1135 } 1136 1137 /* 1138 * Save this in case the caller had it set to 1139 * something in particular. 1140 */ 1141 old_path = inccb->ccb_h.path; 1142 1143 /* 1144 * We really don't need a path for the matching 1145 * code. The path is needed because of the 1146 * debugging statements in xpt_action(). They 1147 * assume that the CCB has a valid path. 1148 */ 1149 inccb->ccb_h.path = xpt_periph->path; 1150 1151 bzero(&mapinfo, sizeof(mapinfo)); 1152 1153 /* 1154 * Map the pattern and match buffers into kernel 1155 * virtual address space. 1156 */ 1157 error = cam_periph_mapmem(inccb, &mapinfo); 1158 1159 if (error) { 1160 inccb->ccb_h.path = old_path; 1161 break; 1162 } 1163 1164 /* 1165 * This is an immediate CCB, we can send it on directly. 1166 */ 1167 xpt_action(inccb); 1168 1169 /* 1170 * Map the buffers back into user space. 1171 */ 1172 cam_periph_unmapmem(inccb, &mapinfo); 1173 1174 inccb->ccb_h.path = old_path; 1175 1176 error = 0; 1177 break; 1178 } 1179 default: 1180 error = ENOTSUP; 1181 break; 1182 } 1183 xpt_release_bus(bus); 1184 break; 1185 } 1186 /* 1187 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 1188 * with the periphal driver name and unit name filled in. The other 1189 * fields don't really matter as input. The passthrough driver name 1190 * ("pass"), and unit number are passed back in the ccb. The current 1191 * device generation number, and the index into the device peripheral 1192 * driver list, and the status are also passed back. Note that 1193 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 1194 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 1195 * (or rather should be) impossible for the device peripheral driver 1196 * list to change since we look at the whole thing in one pass, and 1197 * we do it with lock protection. 1198 * 1199 */ 1200 case CAMGETPASSTHRU: { 1201 union ccb *ccb; 1202 struct cam_periph *periph; 1203 struct periph_driver **p_drv; 1204 char *name; 1205 u_int unit; 1206 u_int cur_generation; 1207 int base_periph_found; 1208 int splbreaknum; 1209 1210 ccb = (union ccb *)ap->a_data; 1211 unit = ccb->cgdl.unit_number; 1212 name = ccb->cgdl.periph_name; 1213 /* 1214 * Every 100 devices, we want to drop our lock protection to 1215 * give the software interrupt handler a chance to run. 1216 * Most systems won't run into this check, but this should 1217 * avoid starvation in the software interrupt handler in 1218 * large systems. 1219 */ 1220 splbreaknum = 100; 1221 1222 ccb = (union ccb *)ap->a_data; 1223 1224 base_periph_found = 0; 1225 1226 /* 1227 * Sanity check -- make sure we don't get a null peripheral 1228 * driver name. 1229 */ 1230 if (*ccb->cgdl.periph_name == '\0') { 1231 error = EINVAL; 1232 break; 1233 } 1234 1235 /* Keep the list from changing while we traverse it */ 1236 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE); 1237 ptstartover: 1238 cur_generation = xsoftc.xpt_generation; 1239 1240 /* first find our driver in the list of drivers */ 1241 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) { 1242 if (strcmp((*p_drv)->driver_name, name) == 0) 1243 break; 1244 } 1245 1246 if (*p_drv == NULL) { 1247 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE); 1248 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 1249 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 1250 *ccb->cgdl.periph_name = '\0'; 1251 ccb->cgdl.unit_number = 0; 1252 error = ENOENT; 1253 break; 1254 } 1255 1256 /* 1257 * Run through every peripheral instance of this driver 1258 * and check to see whether it matches the unit passed 1259 * in by the user. If it does, get out of the loops and 1260 * find the passthrough driver associated with that 1261 * peripheral driver. 1262 */ 1263 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) { 1264 1265 if (periph->unit_number == unit) { 1266 break; 1267 } else if (--splbreaknum == 0) { 1268 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE); 1269 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE); 1270 splbreaknum = 100; 1271 if (cur_generation != xsoftc.xpt_generation) 1272 goto ptstartover; 1273 } 1274 } 1275 /* 1276 * If we found the peripheral driver that the user passed 1277 * in, go through all of the peripheral drivers for that 1278 * particular device and look for a passthrough driver. 1279 */ 1280 if (periph != NULL) { 1281 struct cam_ed *device; 1282 int i; 1283 1284 base_periph_found = 1; 1285 device = periph->path->device; 1286 for (i = 0, periph = SLIST_FIRST(&device->periphs); 1287 periph != NULL; 1288 periph = SLIST_NEXT(periph, periph_links), i++) { 1289 /* 1290 * Check to see whether we have a 1291 * passthrough device or not. 1292 */ 1293 if (strcmp(periph->periph_name, "pass") == 0) { 1294 /* 1295 * Fill in the getdevlist fields. 1296 */ 1297 strcpy(ccb->cgdl.periph_name, 1298 periph->periph_name); 1299 ccb->cgdl.unit_number = 1300 periph->unit_number; 1301 if (SLIST_NEXT(periph, periph_links)) 1302 ccb->cgdl.status = 1303 CAM_GDEVLIST_MORE_DEVS; 1304 else 1305 ccb->cgdl.status = 1306 CAM_GDEVLIST_LAST_DEVICE; 1307 ccb->cgdl.generation = 1308 device->generation; 1309 ccb->cgdl.index = i; 1310 /* 1311 * Fill in some CCB header fields 1312 * that the user may want. 1313 */ 1314 ccb->ccb_h.path_id = 1315 periph->path->bus->path_id; 1316 ccb->ccb_h.target_id = 1317 periph->path->target->target_id; 1318 ccb->ccb_h.target_lun = 1319 periph->path->device->lun_id; 1320 ccb->ccb_h.status = CAM_REQ_CMP; 1321 break; 1322 } 1323 } 1324 } 1325 1326 /* 1327 * If the periph is null here, one of two things has 1328 * happened. The first possibility is that we couldn't 1329 * find the unit number of the particular peripheral driver 1330 * that the user is asking about. e.g. the user asks for 1331 * the passthrough driver for "da11". We find the list of 1332 * "da" peripherals all right, but there is no unit 11. 1333 * The other possibility is that we went through the list 1334 * of peripheral drivers attached to the device structure, 1335 * but didn't find one with the name "pass". Either way, 1336 * we return ENOENT, since we couldn't find something. 1337 */ 1338 if (periph == NULL) { 1339 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 1340 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 1341 *ccb->cgdl.periph_name = '\0'; 1342 ccb->cgdl.unit_number = 0; 1343 error = ENOENT; 1344 /* 1345 * It is unfortunate that this is even necessary, 1346 * but there are many, many clueless users out there. 1347 * If this is true, the user is looking for the 1348 * passthrough driver, but doesn't have one in his 1349 * kernel. 1350 */ 1351 if (base_periph_found == 1) { 1352 kprintf("xptioctl: pass driver is not in the " 1353 "kernel\n"); 1354 kprintf("xptioctl: put \"device pass\" in " 1355 "your kernel config file\n"); 1356 } 1357 } 1358 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE); 1359 break; 1360 } 1361 default: 1362 error = ENOTTY; 1363 break; 1364 } 1365 1366 return(error); 1367 } 1368 1369 static int 1370 cam_module_event_handler(module_t mod, int what, void *arg) 1371 { 1372 int error; 1373 1374 switch (what) { 1375 case MOD_LOAD: 1376 if ((error = xpt_init(NULL)) != 0) 1377 return (error); 1378 break; 1379 case MOD_UNLOAD: 1380 return EBUSY; 1381 default: 1382 return EOPNOTSUPP; 1383 } 1384 1385 return 0; 1386 } 1387 1388 /* thread to handle bus rescans */ 1389 static void 1390 xpt_scanner_thread(void *dummy) 1391 { 1392 cam_isrq_t queue; 1393 union ccb *ccb; 1394 struct cam_sim *sim; 1395 1396 for (;;) { 1397 /* 1398 * Wait for a rescan request to come in. When it does, splice 1399 * it onto a queue from local storage so that the xpt lock 1400 * doesn't need to be held while the requests are being 1401 * processed. 1402 */ 1403 crit_enter(); 1404 tsleep_interlock(&xsoftc.ccb_scanq); 1405 xpt_unlock_buses(); 1406 tsleep(&xsoftc.ccb_scanq, 0, "ccb_scanq", 0); 1407 xpt_lock_buses(); 1408 crit_exit(); 1409 TAILQ_INIT(&queue); 1410 TAILQ_CONCAT(&queue, &xsoftc.ccb_scanq, sim_links.tqe); 1411 xpt_unlock_buses(); 1412 1413 while ((ccb = (union ccb *)TAILQ_FIRST(&queue)) != NULL) { 1414 TAILQ_REMOVE(&queue, &ccb->ccb_h, sim_links.tqe); 1415 1416 sim = ccb->ccb_h.path->bus->sim; 1417 CAM_SIM_LOCK(sim); 1418 1419 ccb->ccb_h.func_code = XPT_SCAN_BUS; 1420 ccb->ccb_h.cbfcnp = xptdone; 1421 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 5); 1422 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 1423 xpt_free_path(ccb->ccb_h.path); 1424 xpt_free_ccb(ccb); 1425 CAM_SIM_UNLOCK(sim); 1426 } 1427 } 1428 } 1429 1430 void 1431 xpt_rescan(union ccb *ccb) 1432 { 1433 struct ccb_hdr *hdr; 1434 1435 /* 1436 * Don't make duplicate entries for the same paths. 1437 */ 1438 xpt_lock_buses(); 1439 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) { 1440 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) { 1441 xpt_unlock_buses(); 1442 xpt_print(ccb->ccb_h.path, "rescan already queued\n"); 1443 xpt_free_path(ccb->ccb_h.path); 1444 xpt_free_ccb(ccb); 1445 return; 1446 } 1447 } 1448 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 1449 wakeup(&xsoftc.ccb_scanq); 1450 xpt_unlock_buses(); 1451 } 1452 1453 1454 /* Functions accessed by the peripheral drivers */ 1455 static int 1456 xpt_init(void *dummy) 1457 { 1458 struct cam_sim *xpt_sim; 1459 struct cam_path *path; 1460 struct cam_devq *devq; 1461 cam_status status; 1462 1463 TAILQ_INIT(&xsoftc.xpt_busses); 1464 TAILQ_INIT(&cam_simq); 1465 TAILQ_INIT(&xsoftc.ccb_scanq); 1466 STAILQ_INIT(&xsoftc.highpowerq); 1467 xsoftc.num_highpower = CAM_MAX_HIGHPOWER; 1468 1469 lockinit(&cam_simq_lock, "CAM SIMQ lock", 0, LK_CANRECURSE); 1470 lockinit(&xsoftc.xpt_lock, "XPT lock", 0, LK_CANRECURSE); 1471 lockinit(&xsoftc.xpt_topo_lock, "XPT topology lock", 0, LK_CANRECURSE); 1472 1473 /* 1474 * The xpt layer is, itself, the equivelent of a SIM. 1475 * Allow 16 ccbs in the ccb pool for it. This should 1476 * give decent parallelism when we probe busses and 1477 * perform other XPT functions. 1478 */ 1479 devq = cam_simq_alloc(16); 1480 xpt_sim = cam_sim_alloc(xptaction, 1481 xptpoll, 1482 "xpt", 1483 /*softc*/NULL, 1484 /*unit*/0, 1485 /*lock*/&xsoftc.xpt_lock, 1486 /*max_dev_transactions*/0, 1487 /*max_tagged_dev_transactions*/0, 1488 devq); 1489 cam_simq_release(devq); 1490 if (xpt_sim == NULL) 1491 return (ENOMEM); 1492 1493 xpt_sim->max_ccbs = 16; 1494 1495 lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE); 1496 if ((status = xpt_bus_register(xpt_sim, /*bus #*/0)) != CAM_SUCCESS) { 1497 kprintf("xpt_init: xpt_bus_register failed with status %#x," 1498 " failing attach\n", status); 1499 return (EINVAL); 1500 } 1501 1502 /* 1503 * Looking at the XPT from the SIM layer, the XPT is 1504 * the equivelent of a peripheral driver. Allocate 1505 * a peripheral driver entry for us. 1506 */ 1507 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 1508 CAM_TARGET_WILDCARD, 1509 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 1510 kprintf("xpt_init: xpt_create_path failed with status %#x," 1511 " failing attach\n", status); 1512 return (EINVAL); 1513 } 1514 1515 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 1516 path, NULL, 0, xpt_sim); 1517 xpt_free_path(path); 1518 1519 lockmgr(&xsoftc.xpt_lock, LK_RELEASE); 1520 1521 /* 1522 * Register a callback for when interrupts are enabled. 1523 */ 1524 xsoftc.xpt_config_hook = kmalloc(sizeof(struct intr_config_hook), 1525 M_CAMXPT, M_INTWAIT | M_ZERO); 1526 xsoftc.xpt_config_hook->ich_func = xpt_config; 1527 xsoftc.xpt_config_hook->ich_desc = "xpt"; 1528 xsoftc.xpt_config_hook->ich_order = 1000; 1529 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) { 1530 kfree (xsoftc.xpt_config_hook, M_CAMXPT); 1531 kprintf("xpt_init: config_intrhook_establish failed " 1532 "- failing attach\n"); 1533 } 1534 1535 /* fire up rescan thread */ 1536 if (kthread_create(xpt_scanner_thread, NULL, NULL, "xpt_thrd")) { 1537 kprintf("xpt_init: failed to create rescan thread\n"); 1538 } 1539 /* Install our software interrupt handlers */ 1540 register_swi(SWI_CAMBIO, swi_cambio, NULL, "swi_cambio", NULL); 1541 1542 return (0); 1543 } 1544 1545 static cam_status 1546 xptregister(struct cam_periph *periph, void *arg) 1547 { 1548 struct cam_sim *xpt_sim; 1549 1550 if (periph == NULL) { 1551 kprintf("xptregister: periph was NULL!!\n"); 1552 return(CAM_REQ_CMP_ERR); 1553 } 1554 1555 xpt_sim = (struct cam_sim *)arg; 1556 xpt_sim->softc = periph; 1557 xpt_periph = periph; 1558 periph->softc = NULL; 1559 1560 return(CAM_REQ_CMP); 1561 } 1562 1563 int32_t 1564 xpt_add_periph(struct cam_periph *periph) 1565 { 1566 struct cam_ed *device; 1567 int32_t status; 1568 struct periph_list *periph_head; 1569 1570 sim_lock_assert_owned(periph->sim->lock); 1571 1572 device = periph->path->device; 1573 1574 periph_head = &device->periphs; 1575 1576 status = CAM_REQ_CMP; 1577 1578 if (device != NULL) { 1579 /* 1580 * Make room for this peripheral 1581 * so it will fit in the queue 1582 * when it's scheduled to run 1583 */ 1584 status = camq_resize(&device->drvq, 1585 device->drvq.array_size + 1); 1586 1587 device->generation++; 1588 1589 SLIST_INSERT_HEAD(periph_head, periph, periph_links); 1590 } 1591 1592 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE); 1593 xsoftc.xpt_generation++; 1594 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE); 1595 1596 return (status); 1597 } 1598 1599 void 1600 xpt_remove_periph(struct cam_periph *periph) 1601 { 1602 struct cam_ed *device; 1603 1604 sim_lock_assert_owned(periph->sim->lock); 1605 1606 device = periph->path->device; 1607 1608 if (device != NULL) { 1609 struct periph_list *periph_head; 1610 1611 periph_head = &device->periphs; 1612 1613 /* Release the slot for this peripheral */ 1614 camq_resize(&device->drvq, device->drvq.array_size - 1); 1615 1616 device->generation++; 1617 1618 SLIST_REMOVE(periph_head, periph, cam_periph, periph_links); 1619 } 1620 1621 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE); 1622 xsoftc.xpt_generation++; 1623 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE); 1624 } 1625 1626 void 1627 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1628 { 1629 struct ccb_pathinq cpi; 1630 struct ccb_trans_settings cts; 1631 struct cam_path *path; 1632 u_int speed; 1633 u_int freq; 1634 u_int mb; 1635 1636 sim_lock_assert_owned(periph->sim->lock); 1637 1638 path = periph->path; 1639 /* 1640 * To ensure that this is printed in one piece, 1641 * mask out CAM interrupts. 1642 */ 1643 kprintf("%s%d at %s%d bus %d target %d lun %d\n", 1644 periph->periph_name, periph->unit_number, 1645 path->bus->sim->sim_name, 1646 path->bus->sim->unit_number, 1647 path->bus->sim->bus_id, 1648 path->target->target_id, 1649 path->device->lun_id); 1650 kprintf("%s%d: ", periph->periph_name, periph->unit_number); 1651 scsi_print_inquiry(&path->device->inq_data); 1652 if (bootverbose && path->device->serial_num_len > 0) { 1653 /* Don't wrap the screen - print only the first 60 chars */ 1654 kprintf("%s%d: Serial Number %.60s\n", periph->periph_name, 1655 periph->unit_number, path->device->serial_num); 1656 } 1657 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 1658 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 1659 cts.type = CTS_TYPE_CURRENT_SETTINGS; 1660 xpt_action((union ccb*)&cts); 1661 if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 1662 return; 1663 } 1664 1665 /* Ask the SIM for its base transfer speed */ 1666 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 1667 cpi.ccb_h.func_code = XPT_PATH_INQ; 1668 xpt_action((union ccb *)&cpi); 1669 1670 speed = cpi.base_transfer_speed; 1671 freq = 0; 1672 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) { 1673 struct ccb_trans_settings_spi *spi; 1674 1675 spi = &cts.xport_specific.spi; 1676 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0 1677 && spi->sync_offset != 0) { 1678 freq = scsi_calc_syncsrate(spi->sync_period); 1679 speed = freq; 1680 } 1681 1682 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) 1683 speed *= (0x01 << spi->bus_width); 1684 } 1685 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) { 1686 struct ccb_trans_settings_fc *fc = &cts.xport_specific.fc; 1687 if (fc->valid & CTS_FC_VALID_SPEED) { 1688 speed = fc->bitrate; 1689 } 1690 } 1691 1692 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SAS) { 1693 struct ccb_trans_settings_sas *sas = &cts.xport_specific.sas; 1694 if (sas->valid & CTS_SAS_VALID_SPEED) { 1695 speed = sas->bitrate; 1696 } 1697 } 1698 1699 mb = speed / 1000; 1700 if (mb > 0) 1701 kprintf("%s%d: %d.%03dMB/s transfers", 1702 periph->periph_name, periph->unit_number, 1703 mb, speed % 1000); 1704 else 1705 kprintf("%s%d: %dKB/s transfers", periph->periph_name, 1706 periph->unit_number, speed); 1707 /* Report additional information about SPI connections */ 1708 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) { 1709 struct ccb_trans_settings_spi *spi; 1710 1711 spi = &cts.xport_specific.spi; 1712 if (freq != 0) { 1713 kprintf(" (%d.%03dMHz%s, offset %d", freq / 1000, 1714 freq % 1000, 1715 (spi->ppr_options & MSG_EXT_PPR_DT_REQ) != 0 1716 ? " DT" : "", 1717 spi->sync_offset); 1718 } 1719 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0 1720 && spi->bus_width > 0) { 1721 if (freq != 0) { 1722 kprintf(", "); 1723 } else { 1724 kprintf(" ("); 1725 } 1726 kprintf("%dbit)", 8 * (0x01 << spi->bus_width)); 1727 } else if (freq != 0) { 1728 kprintf(")"); 1729 } 1730 } 1731 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) { 1732 struct ccb_trans_settings_fc *fc; 1733 1734 fc = &cts.xport_specific.fc; 1735 if (fc->valid & CTS_FC_VALID_WWNN) 1736 kprintf(" WWNN 0x%llx", (long long) fc->wwnn); 1737 if (fc->valid & CTS_FC_VALID_WWPN) 1738 kprintf(" WWPN 0x%llx", (long long) fc->wwpn); 1739 if (fc->valid & CTS_FC_VALID_PORT) 1740 kprintf(" PortID 0x%x", fc->port); 1741 } 1742 1743 if (path->device->inq_flags & SID_CmdQue 1744 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1745 kprintf("\n%s%d: Command Queueing Enabled", 1746 periph->periph_name, periph->unit_number); 1747 } 1748 kprintf("\n"); 1749 1750 /* 1751 * We only want to print the caller's announce string if they've 1752 * passed one in.. 1753 */ 1754 if (announce_string != NULL) 1755 kprintf("%s%d: %s\n", periph->periph_name, 1756 periph->unit_number, announce_string); 1757 } 1758 1759 static dev_match_ret 1760 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1761 struct cam_eb *bus) 1762 { 1763 dev_match_ret retval; 1764 int i; 1765 1766 retval = DM_RET_NONE; 1767 1768 /* 1769 * If we aren't given something to match against, that's an error. 1770 */ 1771 if (bus == NULL) 1772 return(DM_RET_ERROR); 1773 1774 /* 1775 * If there are no match entries, then this bus matches no 1776 * matter what. 1777 */ 1778 if ((patterns == NULL) || (num_patterns == 0)) 1779 return(DM_RET_DESCEND | DM_RET_COPY); 1780 1781 for (i = 0; i < num_patterns; i++) { 1782 struct bus_match_pattern *cur_pattern; 1783 1784 /* 1785 * If the pattern in question isn't for a bus node, we 1786 * aren't interested. However, we do indicate to the 1787 * calling routine that we should continue descending the 1788 * tree, since the user wants to match against lower-level 1789 * EDT elements. 1790 */ 1791 if (patterns[i].type != DEV_MATCH_BUS) { 1792 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1793 retval |= DM_RET_DESCEND; 1794 continue; 1795 } 1796 1797 cur_pattern = &patterns[i].pattern.bus_pattern; 1798 1799 /* 1800 * If they want to match any bus node, we give them any 1801 * device node. 1802 */ 1803 if (cur_pattern->flags == BUS_MATCH_ANY) { 1804 /* set the copy flag */ 1805 retval |= DM_RET_COPY; 1806 1807 /* 1808 * If we've already decided on an action, go ahead 1809 * and return. 1810 */ 1811 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1812 return(retval); 1813 } 1814 1815 /* 1816 * Not sure why someone would do this... 1817 */ 1818 if (cur_pattern->flags == BUS_MATCH_NONE) 1819 continue; 1820 1821 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1822 && (cur_pattern->path_id != bus->path_id)) 1823 continue; 1824 1825 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1826 && (cur_pattern->bus_id != bus->sim->bus_id)) 1827 continue; 1828 1829 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1830 && (cur_pattern->unit_number != bus->sim->unit_number)) 1831 continue; 1832 1833 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1834 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1835 DEV_IDLEN) != 0)) 1836 continue; 1837 1838 /* 1839 * If we get to this point, the user definitely wants 1840 * information on this bus. So tell the caller to copy the 1841 * data out. 1842 */ 1843 retval |= DM_RET_COPY; 1844 1845 /* 1846 * If the return action has been set to descend, then we 1847 * know that we've already seen a non-bus matching 1848 * expression, therefore we need to further descend the tree. 1849 * This won't change by continuing around the loop, so we 1850 * go ahead and return. If we haven't seen a non-bus 1851 * matching expression, we keep going around the loop until 1852 * we exhaust the matching expressions. We'll set the stop 1853 * flag once we fall out of the loop. 1854 */ 1855 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1856 return(retval); 1857 } 1858 1859 /* 1860 * If the return action hasn't been set to descend yet, that means 1861 * we haven't seen anything other than bus matching patterns. So 1862 * tell the caller to stop descending the tree -- the user doesn't 1863 * want to match against lower level tree elements. 1864 */ 1865 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1866 retval |= DM_RET_STOP; 1867 1868 return(retval); 1869 } 1870 1871 static dev_match_ret 1872 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1873 struct cam_ed *device) 1874 { 1875 dev_match_ret retval; 1876 int i; 1877 1878 retval = DM_RET_NONE; 1879 1880 /* 1881 * If we aren't given something to match against, that's an error. 1882 */ 1883 if (device == NULL) 1884 return(DM_RET_ERROR); 1885 1886 /* 1887 * If there are no match entries, then this device matches no 1888 * matter what. 1889 */ 1890 if ((patterns == NULL) || (num_patterns == 0)) 1891 return(DM_RET_DESCEND | DM_RET_COPY); 1892 1893 for (i = 0; i < num_patterns; i++) { 1894 struct device_match_pattern *cur_pattern; 1895 1896 /* 1897 * If the pattern in question isn't for a device node, we 1898 * aren't interested. 1899 */ 1900 if (patterns[i].type != DEV_MATCH_DEVICE) { 1901 if ((patterns[i].type == DEV_MATCH_PERIPH) 1902 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1903 retval |= DM_RET_DESCEND; 1904 continue; 1905 } 1906 1907 cur_pattern = &patterns[i].pattern.device_pattern; 1908 1909 /* 1910 * If they want to match any device node, we give them any 1911 * device node. 1912 */ 1913 if (cur_pattern->flags == DEV_MATCH_ANY) { 1914 /* set the copy flag */ 1915 retval |= DM_RET_COPY; 1916 1917 1918 /* 1919 * If we've already decided on an action, go ahead 1920 * and return. 1921 */ 1922 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1923 return(retval); 1924 } 1925 1926 /* 1927 * Not sure why someone would do this... 1928 */ 1929 if (cur_pattern->flags == DEV_MATCH_NONE) 1930 continue; 1931 1932 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1933 && (cur_pattern->path_id != device->target->bus->path_id)) 1934 continue; 1935 1936 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1937 && (cur_pattern->target_id != device->target->target_id)) 1938 continue; 1939 1940 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1941 && (cur_pattern->target_lun != device->lun_id)) 1942 continue; 1943 1944 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1945 && (cam_quirkmatch((caddr_t)&device->inq_data, 1946 (caddr_t)&cur_pattern->inq_pat, 1947 1, sizeof(cur_pattern->inq_pat), 1948 scsi_static_inquiry_match) == NULL)) 1949 continue; 1950 1951 /* 1952 * If we get to this point, the user definitely wants 1953 * information on this device. So tell the caller to copy 1954 * the data out. 1955 */ 1956 retval |= DM_RET_COPY; 1957 1958 /* 1959 * If the return action has been set to descend, then we 1960 * know that we've already seen a peripheral matching 1961 * expression, therefore we need to further descend the tree. 1962 * This won't change by continuing around the loop, so we 1963 * go ahead and return. If we haven't seen a peripheral 1964 * matching expression, we keep going around the loop until 1965 * we exhaust the matching expressions. We'll set the stop 1966 * flag once we fall out of the loop. 1967 */ 1968 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1969 return(retval); 1970 } 1971 1972 /* 1973 * If the return action hasn't been set to descend yet, that means 1974 * we haven't seen any peripheral matching patterns. So tell the 1975 * caller to stop descending the tree -- the user doesn't want to 1976 * match against lower level tree elements. 1977 */ 1978 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1979 retval |= DM_RET_STOP; 1980 1981 return(retval); 1982 } 1983 1984 /* 1985 * Match a single peripheral against any number of match patterns. 1986 */ 1987 static dev_match_ret 1988 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1989 struct cam_periph *periph) 1990 { 1991 dev_match_ret retval; 1992 int i; 1993 1994 /* 1995 * If we aren't given something to match against, that's an error. 1996 */ 1997 if (periph == NULL) 1998 return(DM_RET_ERROR); 1999 2000 /* 2001 * If there are no match entries, then this peripheral matches no 2002 * matter what. 2003 */ 2004 if ((patterns == NULL) || (num_patterns == 0)) 2005 return(DM_RET_STOP | DM_RET_COPY); 2006 2007 /* 2008 * There aren't any nodes below a peripheral node, so there's no 2009 * reason to descend the tree any further. 2010 */ 2011 retval = DM_RET_STOP; 2012 2013 for (i = 0; i < num_patterns; i++) { 2014 struct periph_match_pattern *cur_pattern; 2015 2016 /* 2017 * If the pattern in question isn't for a peripheral, we 2018 * aren't interested. 2019 */ 2020 if (patterns[i].type != DEV_MATCH_PERIPH) 2021 continue; 2022 2023 cur_pattern = &patterns[i].pattern.periph_pattern; 2024 2025 /* 2026 * If they want to match on anything, then we will do so. 2027 */ 2028 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 2029 /* set the copy flag */ 2030 retval |= DM_RET_COPY; 2031 2032 /* 2033 * We've already set the return action to stop, 2034 * since there are no nodes below peripherals in 2035 * the tree. 2036 */ 2037 return(retval); 2038 } 2039 2040 /* 2041 * Not sure why someone would do this... 2042 */ 2043 if (cur_pattern->flags == PERIPH_MATCH_NONE) 2044 continue; 2045 2046 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 2047 && (cur_pattern->path_id != periph->path->bus->path_id)) 2048 continue; 2049 2050 /* 2051 * For the target and lun id's, we have to make sure the 2052 * target and lun pointers aren't NULL. The xpt peripheral 2053 * has a wildcard target and device. 2054 */ 2055 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 2056 && ((periph->path->target == NULL) 2057 ||(cur_pattern->target_id != periph->path->target->target_id))) 2058 continue; 2059 2060 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 2061 && ((periph->path->device == NULL) 2062 || (cur_pattern->target_lun != periph->path->device->lun_id))) 2063 continue; 2064 2065 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 2066 && (cur_pattern->unit_number != periph->unit_number)) 2067 continue; 2068 2069 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 2070 && (strncmp(cur_pattern->periph_name, periph->periph_name, 2071 DEV_IDLEN) != 0)) 2072 continue; 2073 2074 /* 2075 * If we get to this point, the user definitely wants 2076 * information on this peripheral. So tell the caller to 2077 * copy the data out. 2078 */ 2079 retval |= DM_RET_COPY; 2080 2081 /* 2082 * The return action has already been set to stop, since 2083 * peripherals don't have any nodes below them in the EDT. 2084 */ 2085 return(retval); 2086 } 2087 2088 /* 2089 * If we get to this point, the peripheral that was passed in 2090 * doesn't match any of the patterns. 2091 */ 2092 return(retval); 2093 } 2094 2095 static int 2096 xptedtbusfunc(struct cam_eb *bus, void *arg) 2097 { 2098 struct ccb_dev_match *cdm; 2099 dev_match_ret retval; 2100 2101 cdm = (struct ccb_dev_match *)arg; 2102 2103 /* 2104 * If our position is for something deeper in the tree, that means 2105 * that we've already seen this node. So, we keep going down. 2106 */ 2107 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2108 && (cdm->pos.cookie.bus == bus) 2109 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2110 && (cdm->pos.cookie.target != NULL)) 2111 retval = DM_RET_DESCEND; 2112 else 2113 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 2114 2115 /* 2116 * If we got an error, bail out of the search. 2117 */ 2118 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2119 cdm->status = CAM_DEV_MATCH_ERROR; 2120 return(0); 2121 } 2122 2123 /* 2124 * If the copy flag is set, copy this bus out. 2125 */ 2126 if (retval & DM_RET_COPY) { 2127 int spaceleft, j; 2128 2129 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2130 sizeof(struct dev_match_result)); 2131 2132 /* 2133 * If we don't have enough space to put in another 2134 * match result, save our position and tell the 2135 * user there are more devices to check. 2136 */ 2137 if (spaceleft < sizeof(struct dev_match_result)) { 2138 bzero(&cdm->pos, sizeof(cdm->pos)); 2139 cdm->pos.position_type = 2140 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 2141 2142 cdm->pos.cookie.bus = bus; 2143 cdm->pos.generations[CAM_BUS_GENERATION]= 2144 xsoftc.bus_generation; 2145 cdm->status = CAM_DEV_MATCH_MORE; 2146 return(0); 2147 } 2148 j = cdm->num_matches; 2149 cdm->num_matches++; 2150 cdm->matches[j].type = DEV_MATCH_BUS; 2151 cdm->matches[j].result.bus_result.path_id = bus->path_id; 2152 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 2153 cdm->matches[j].result.bus_result.unit_number = 2154 bus->sim->unit_number; 2155 strncpy(cdm->matches[j].result.bus_result.dev_name, 2156 bus->sim->sim_name, DEV_IDLEN); 2157 } 2158 2159 /* 2160 * If the user is only interested in busses, there's no 2161 * reason to descend to the next level in the tree. 2162 */ 2163 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 2164 return(1); 2165 2166 /* 2167 * If there is a target generation recorded, check it to 2168 * make sure the target list hasn't changed. 2169 */ 2170 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2171 && (bus == cdm->pos.cookie.bus) 2172 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2173 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0) 2174 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 2175 bus->generation)) { 2176 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2177 return(0); 2178 } 2179 2180 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2181 && (cdm->pos.cookie.bus == bus) 2182 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2183 && (cdm->pos.cookie.target != NULL)) 2184 return(xpttargettraverse(bus, 2185 (struct cam_et *)cdm->pos.cookie.target, 2186 xptedttargetfunc, arg)); 2187 else 2188 return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg)); 2189 } 2190 2191 static int 2192 xptedttargetfunc(struct cam_et *target, void *arg) 2193 { 2194 struct ccb_dev_match *cdm; 2195 2196 cdm = (struct ccb_dev_match *)arg; 2197 2198 /* 2199 * If there is a device list generation recorded, check it to 2200 * make sure the device list hasn't changed. 2201 */ 2202 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2203 && (cdm->pos.cookie.bus == target->bus) 2204 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2205 && (cdm->pos.cookie.target == target) 2206 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2207 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0) 2208 && (cdm->pos.generations[CAM_DEV_GENERATION] != 2209 target->generation)) { 2210 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2211 return(0); 2212 } 2213 2214 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2215 && (cdm->pos.cookie.bus == target->bus) 2216 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2217 && (cdm->pos.cookie.target == target) 2218 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2219 && (cdm->pos.cookie.device != NULL)) 2220 return(xptdevicetraverse(target, 2221 (struct cam_ed *)cdm->pos.cookie.device, 2222 xptedtdevicefunc, arg)); 2223 else 2224 return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg)); 2225 } 2226 2227 static int 2228 xptedtdevicefunc(struct cam_ed *device, void *arg) 2229 { 2230 2231 struct ccb_dev_match *cdm; 2232 dev_match_ret retval; 2233 2234 cdm = (struct ccb_dev_match *)arg; 2235 2236 /* 2237 * If our position is for something deeper in the tree, that means 2238 * that we've already seen this node. So, we keep going down. 2239 */ 2240 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2241 && (cdm->pos.cookie.device == device) 2242 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2243 && (cdm->pos.cookie.periph != NULL)) 2244 retval = DM_RET_DESCEND; 2245 else 2246 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 2247 device); 2248 2249 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2250 cdm->status = CAM_DEV_MATCH_ERROR; 2251 return(0); 2252 } 2253 2254 /* 2255 * If the copy flag is set, copy this device out. 2256 */ 2257 if (retval & DM_RET_COPY) { 2258 int spaceleft, j; 2259 2260 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2261 sizeof(struct dev_match_result)); 2262 2263 /* 2264 * If we don't have enough space to put in another 2265 * match result, save our position and tell the 2266 * user there are more devices to check. 2267 */ 2268 if (spaceleft < sizeof(struct dev_match_result)) { 2269 bzero(&cdm->pos, sizeof(cdm->pos)); 2270 cdm->pos.position_type = 2271 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 2272 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 2273 2274 cdm->pos.cookie.bus = device->target->bus; 2275 cdm->pos.generations[CAM_BUS_GENERATION]= 2276 xsoftc.bus_generation; 2277 cdm->pos.cookie.target = device->target; 2278 cdm->pos.generations[CAM_TARGET_GENERATION] = 2279 device->target->bus->generation; 2280 cdm->pos.cookie.device = device; 2281 cdm->pos.generations[CAM_DEV_GENERATION] = 2282 device->target->generation; 2283 cdm->status = CAM_DEV_MATCH_MORE; 2284 return(0); 2285 } 2286 j = cdm->num_matches; 2287 cdm->num_matches++; 2288 cdm->matches[j].type = DEV_MATCH_DEVICE; 2289 cdm->matches[j].result.device_result.path_id = 2290 device->target->bus->path_id; 2291 cdm->matches[j].result.device_result.target_id = 2292 device->target->target_id; 2293 cdm->matches[j].result.device_result.target_lun = 2294 device->lun_id; 2295 bcopy(&device->inq_data, 2296 &cdm->matches[j].result.device_result.inq_data, 2297 sizeof(struct scsi_inquiry_data)); 2298 2299 /* Let the user know whether this device is unconfigured */ 2300 if (device->flags & CAM_DEV_UNCONFIGURED) 2301 cdm->matches[j].result.device_result.flags = 2302 DEV_RESULT_UNCONFIGURED; 2303 else 2304 cdm->matches[j].result.device_result.flags = 2305 DEV_RESULT_NOFLAG; 2306 } 2307 2308 /* 2309 * If the user isn't interested in peripherals, don't descend 2310 * the tree any further. 2311 */ 2312 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 2313 return(1); 2314 2315 /* 2316 * If there is a peripheral list generation recorded, make sure 2317 * it hasn't changed. 2318 */ 2319 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2320 && (device->target->bus == cdm->pos.cookie.bus) 2321 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2322 && (device->target == cdm->pos.cookie.target) 2323 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2324 && (device == cdm->pos.cookie.device) 2325 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2326 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 2327 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 2328 device->generation)){ 2329 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2330 return(0); 2331 } 2332 2333 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2334 && (cdm->pos.cookie.bus == device->target->bus) 2335 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2336 && (cdm->pos.cookie.target == device->target) 2337 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2338 && (cdm->pos.cookie.device == device) 2339 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2340 && (cdm->pos.cookie.periph != NULL)) 2341 return(xptperiphtraverse(device, 2342 (struct cam_periph *)cdm->pos.cookie.periph, 2343 xptedtperiphfunc, arg)); 2344 else 2345 return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg)); 2346 } 2347 2348 static int 2349 xptedtperiphfunc(struct cam_periph *periph, void *arg) 2350 { 2351 struct ccb_dev_match *cdm; 2352 dev_match_ret retval; 2353 2354 cdm = (struct ccb_dev_match *)arg; 2355 2356 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 2357 2358 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2359 cdm->status = CAM_DEV_MATCH_ERROR; 2360 return(0); 2361 } 2362 2363 /* 2364 * If the copy flag is set, copy this peripheral out. 2365 */ 2366 if (retval & DM_RET_COPY) { 2367 int spaceleft, j; 2368 2369 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2370 sizeof(struct dev_match_result)); 2371 2372 /* 2373 * If we don't have enough space to put in another 2374 * match result, save our position and tell the 2375 * user there are more devices to check. 2376 */ 2377 if (spaceleft < sizeof(struct dev_match_result)) { 2378 bzero(&cdm->pos, sizeof(cdm->pos)); 2379 cdm->pos.position_type = 2380 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 2381 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 2382 CAM_DEV_POS_PERIPH; 2383 2384 cdm->pos.cookie.bus = periph->path->bus; 2385 cdm->pos.generations[CAM_BUS_GENERATION]= 2386 xsoftc.bus_generation; 2387 cdm->pos.cookie.target = periph->path->target; 2388 cdm->pos.generations[CAM_TARGET_GENERATION] = 2389 periph->path->bus->generation; 2390 cdm->pos.cookie.device = periph->path->device; 2391 cdm->pos.generations[CAM_DEV_GENERATION] = 2392 periph->path->target->generation; 2393 cdm->pos.cookie.periph = periph; 2394 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2395 periph->path->device->generation; 2396 cdm->status = CAM_DEV_MATCH_MORE; 2397 return(0); 2398 } 2399 2400 j = cdm->num_matches; 2401 cdm->num_matches++; 2402 cdm->matches[j].type = DEV_MATCH_PERIPH; 2403 cdm->matches[j].result.periph_result.path_id = 2404 periph->path->bus->path_id; 2405 cdm->matches[j].result.periph_result.target_id = 2406 periph->path->target->target_id; 2407 cdm->matches[j].result.periph_result.target_lun = 2408 periph->path->device->lun_id; 2409 cdm->matches[j].result.periph_result.unit_number = 2410 periph->unit_number; 2411 strncpy(cdm->matches[j].result.periph_result.periph_name, 2412 periph->periph_name, DEV_IDLEN); 2413 } 2414 2415 return(1); 2416 } 2417 2418 static int 2419 xptedtmatch(struct ccb_dev_match *cdm) 2420 { 2421 int ret; 2422 2423 cdm->num_matches = 0; 2424 2425 /* 2426 * Check the bus list generation. If it has changed, the user 2427 * needs to reset everything and start over. 2428 */ 2429 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2430 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0) 2431 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) { 2432 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2433 return(0); 2434 } 2435 2436 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2437 && (cdm->pos.cookie.bus != NULL)) 2438 ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus, 2439 xptedtbusfunc, cdm); 2440 else 2441 ret = xptbustraverse(NULL, xptedtbusfunc, cdm); 2442 2443 /* 2444 * If we get back 0, that means that we had to stop before fully 2445 * traversing the EDT. It also means that one of the subroutines 2446 * has set the status field to the proper value. If we get back 1, 2447 * we've fully traversed the EDT and copied out any matching entries. 2448 */ 2449 if (ret == 1) 2450 cdm->status = CAM_DEV_MATCH_LAST; 2451 2452 return(ret); 2453 } 2454 2455 static int 2456 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 2457 { 2458 struct ccb_dev_match *cdm; 2459 2460 cdm = (struct ccb_dev_match *)arg; 2461 2462 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2463 && (cdm->pos.cookie.pdrv == pdrv) 2464 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2465 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 2466 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 2467 (*pdrv)->generation)) { 2468 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2469 return(0); 2470 } 2471 2472 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2473 && (cdm->pos.cookie.pdrv == pdrv) 2474 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2475 && (cdm->pos.cookie.periph != NULL)) 2476 return(xptpdperiphtraverse(pdrv, 2477 (struct cam_periph *)cdm->pos.cookie.periph, 2478 xptplistperiphfunc, arg)); 2479 else 2480 return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg)); 2481 } 2482 2483 static int 2484 xptplistperiphfunc(struct cam_periph *periph, void *arg) 2485 { 2486 struct ccb_dev_match *cdm; 2487 dev_match_ret retval; 2488 2489 cdm = (struct ccb_dev_match *)arg; 2490 2491 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 2492 2493 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2494 cdm->status = CAM_DEV_MATCH_ERROR; 2495 return(0); 2496 } 2497 2498 /* 2499 * If the copy flag is set, copy this peripheral out. 2500 */ 2501 if (retval & DM_RET_COPY) { 2502 int spaceleft, j; 2503 2504 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2505 sizeof(struct dev_match_result)); 2506 2507 /* 2508 * If we don't have enough space to put in another 2509 * match result, save our position and tell the 2510 * user there are more devices to check. 2511 */ 2512 if (spaceleft < sizeof(struct dev_match_result)) { 2513 struct periph_driver **pdrv; 2514 2515 pdrv = NULL; 2516 bzero(&cdm->pos, sizeof(cdm->pos)); 2517 cdm->pos.position_type = 2518 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 2519 CAM_DEV_POS_PERIPH; 2520 2521 /* 2522 * This may look a bit non-sensical, but it is 2523 * actually quite logical. There are very few 2524 * peripheral drivers, and bloating every peripheral 2525 * structure with a pointer back to its parent 2526 * peripheral driver linker set entry would cost 2527 * more in the long run than doing this quick lookup. 2528 */ 2529 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 2530 if (strcmp((*pdrv)->driver_name, 2531 periph->periph_name) == 0) 2532 break; 2533 } 2534 2535 if (*pdrv == NULL) { 2536 cdm->status = CAM_DEV_MATCH_ERROR; 2537 return(0); 2538 } 2539 2540 cdm->pos.cookie.pdrv = pdrv; 2541 /* 2542 * The periph generation slot does double duty, as 2543 * does the periph pointer slot. They are used for 2544 * both edt and pdrv lookups and positioning. 2545 */ 2546 cdm->pos.cookie.periph = periph; 2547 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2548 (*pdrv)->generation; 2549 cdm->status = CAM_DEV_MATCH_MORE; 2550 return(0); 2551 } 2552 2553 j = cdm->num_matches; 2554 cdm->num_matches++; 2555 cdm->matches[j].type = DEV_MATCH_PERIPH; 2556 cdm->matches[j].result.periph_result.path_id = 2557 periph->path->bus->path_id; 2558 2559 /* 2560 * The transport layer peripheral doesn't have a target or 2561 * lun. 2562 */ 2563 if (periph->path->target) 2564 cdm->matches[j].result.periph_result.target_id = 2565 periph->path->target->target_id; 2566 else 2567 cdm->matches[j].result.periph_result.target_id = -1; 2568 2569 if (periph->path->device) 2570 cdm->matches[j].result.periph_result.target_lun = 2571 periph->path->device->lun_id; 2572 else 2573 cdm->matches[j].result.periph_result.target_lun = -1; 2574 2575 cdm->matches[j].result.periph_result.unit_number = 2576 periph->unit_number; 2577 strncpy(cdm->matches[j].result.periph_result.periph_name, 2578 periph->periph_name, DEV_IDLEN); 2579 } 2580 2581 return(1); 2582 } 2583 2584 static int 2585 xptperiphlistmatch(struct ccb_dev_match *cdm) 2586 { 2587 int ret; 2588 2589 cdm->num_matches = 0; 2590 2591 /* 2592 * At this point in the edt traversal function, we check the bus 2593 * list generation to make sure that no busses have been added or 2594 * removed since the user last sent a XPT_DEV_MATCH ccb through. 2595 * For the peripheral driver list traversal function, however, we 2596 * don't have to worry about new peripheral driver types coming or 2597 * going; they're in a linker set, and therefore can't change 2598 * without a recompile. 2599 */ 2600 2601 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2602 && (cdm->pos.cookie.pdrv != NULL)) 2603 ret = xptpdrvtraverse( 2604 (struct periph_driver **)cdm->pos.cookie.pdrv, 2605 xptplistpdrvfunc, cdm); 2606 else 2607 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 2608 2609 /* 2610 * If we get back 0, that means that we had to stop before fully 2611 * traversing the peripheral driver tree. It also means that one of 2612 * the subroutines has set the status field to the proper value. If 2613 * we get back 1, we've fully traversed the EDT and copied out any 2614 * matching entries. 2615 */ 2616 if (ret == 1) 2617 cdm->status = CAM_DEV_MATCH_LAST; 2618 2619 return(ret); 2620 } 2621 2622 static int 2623 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2624 { 2625 struct cam_eb *bus, *next_bus; 2626 int retval; 2627 2628 retval = 1; 2629 2630 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE); 2631 for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses)); 2632 bus != NULL; 2633 bus = next_bus) { 2634 next_bus = TAILQ_NEXT(bus, links); 2635 2636 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE); 2637 CAM_SIM_LOCK(bus->sim); 2638 retval = tr_func(bus, arg); 2639 CAM_SIM_UNLOCK(bus->sim); 2640 if (retval == 0) 2641 return(retval); 2642 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE); 2643 } 2644 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE); 2645 2646 return(retval); 2647 } 2648 2649 static int 2650 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2651 xpt_targetfunc_t *tr_func, void *arg) 2652 { 2653 struct cam_et *target, *next_target; 2654 int retval; 2655 2656 retval = 1; 2657 for (target = (start_target ? start_target : 2658 TAILQ_FIRST(&bus->et_entries)); 2659 target != NULL; target = next_target) { 2660 2661 next_target = TAILQ_NEXT(target, links); 2662 2663 retval = tr_func(target, arg); 2664 2665 if (retval == 0) 2666 return(retval); 2667 } 2668 2669 return(retval); 2670 } 2671 2672 static int 2673 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2674 xpt_devicefunc_t *tr_func, void *arg) 2675 { 2676 struct cam_ed *device, *next_device; 2677 int retval; 2678 2679 retval = 1; 2680 for (device = (start_device ? start_device : 2681 TAILQ_FIRST(&target->ed_entries)); 2682 device != NULL; 2683 device = next_device) { 2684 2685 next_device = TAILQ_NEXT(device, links); 2686 2687 retval = tr_func(device, arg); 2688 2689 if (retval == 0) 2690 return(retval); 2691 } 2692 2693 return(retval); 2694 } 2695 2696 static int 2697 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2698 xpt_periphfunc_t *tr_func, void *arg) 2699 { 2700 struct cam_periph *periph, *next_periph; 2701 int retval; 2702 2703 retval = 1; 2704 2705 for (periph = (start_periph ? start_periph : 2706 SLIST_FIRST(&device->periphs)); 2707 periph != NULL; 2708 periph = next_periph) { 2709 2710 next_periph = SLIST_NEXT(periph, periph_links); 2711 2712 retval = tr_func(periph, arg); 2713 if (retval == 0) 2714 return(retval); 2715 } 2716 2717 return(retval); 2718 } 2719 2720 static int 2721 xptpdrvtraverse(struct periph_driver **start_pdrv, 2722 xpt_pdrvfunc_t *tr_func, void *arg) 2723 { 2724 struct periph_driver **pdrv; 2725 int retval; 2726 2727 retval = 1; 2728 2729 /* 2730 * We don't traverse the peripheral driver list like we do the 2731 * other lists, because it is a linker set, and therefore cannot be 2732 * changed during runtime. If the peripheral driver list is ever 2733 * re-done to be something other than a linker set (i.e. it can 2734 * change while the system is running), the list traversal should 2735 * be modified to work like the other traversal functions. 2736 */ 2737 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2738 *pdrv != NULL; pdrv++) { 2739 retval = tr_func(pdrv, arg); 2740 2741 if (retval == 0) 2742 return(retval); 2743 } 2744 2745 return(retval); 2746 } 2747 2748 static int 2749 xptpdperiphtraverse(struct periph_driver **pdrv, 2750 struct cam_periph *start_periph, 2751 xpt_periphfunc_t *tr_func, void *arg) 2752 { 2753 struct cam_periph *periph, *next_periph; 2754 int retval; 2755 2756 retval = 1; 2757 2758 for (periph = (start_periph ? start_periph : 2759 TAILQ_FIRST(&(*pdrv)->units)); periph != NULL; 2760 periph = next_periph) { 2761 2762 next_periph = TAILQ_NEXT(periph, unit_links); 2763 2764 retval = tr_func(periph, arg); 2765 if (retval == 0) 2766 return(retval); 2767 } 2768 return(retval); 2769 } 2770 2771 static int 2772 xptdefbusfunc(struct cam_eb *bus, void *arg) 2773 { 2774 struct xpt_traverse_config *tr_config; 2775 2776 tr_config = (struct xpt_traverse_config *)arg; 2777 2778 if (tr_config->depth == XPT_DEPTH_BUS) { 2779 xpt_busfunc_t *tr_func; 2780 2781 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2782 2783 return(tr_func(bus, tr_config->tr_arg)); 2784 } else 2785 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2786 } 2787 2788 static int 2789 xptdeftargetfunc(struct cam_et *target, void *arg) 2790 { 2791 struct xpt_traverse_config *tr_config; 2792 2793 tr_config = (struct xpt_traverse_config *)arg; 2794 2795 if (tr_config->depth == XPT_DEPTH_TARGET) { 2796 xpt_targetfunc_t *tr_func; 2797 2798 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2799 2800 return(tr_func(target, tr_config->tr_arg)); 2801 } else 2802 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2803 } 2804 2805 static int 2806 xptdefdevicefunc(struct cam_ed *device, void *arg) 2807 { 2808 struct xpt_traverse_config *tr_config; 2809 2810 tr_config = (struct xpt_traverse_config *)arg; 2811 2812 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2813 xpt_devicefunc_t *tr_func; 2814 2815 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2816 2817 return(tr_func(device, tr_config->tr_arg)); 2818 } else 2819 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2820 } 2821 2822 static int 2823 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2824 { 2825 struct xpt_traverse_config *tr_config; 2826 xpt_periphfunc_t *tr_func; 2827 2828 tr_config = (struct xpt_traverse_config *)arg; 2829 2830 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2831 2832 /* 2833 * Unlike the other default functions, we don't check for depth 2834 * here. The peripheral driver level is the last level in the EDT, 2835 * so if we're here, we should execute the function in question. 2836 */ 2837 return(tr_func(periph, tr_config->tr_arg)); 2838 } 2839 2840 /* 2841 * Execute the given function for every bus in the EDT. 2842 */ 2843 static int 2844 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2845 { 2846 struct xpt_traverse_config tr_config; 2847 2848 tr_config.depth = XPT_DEPTH_BUS; 2849 tr_config.tr_func = tr_func; 2850 tr_config.tr_arg = arg; 2851 2852 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2853 } 2854 2855 /* 2856 * Execute the given function for every device in the EDT. 2857 */ 2858 static int 2859 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2860 { 2861 struct xpt_traverse_config tr_config; 2862 2863 tr_config.depth = XPT_DEPTH_DEVICE; 2864 tr_config.tr_func = tr_func; 2865 tr_config.tr_arg = arg; 2866 2867 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2868 } 2869 2870 static int 2871 xptsetasyncfunc(struct cam_ed *device, void *arg) 2872 { 2873 struct cam_path path; 2874 struct ccb_getdev cgd; 2875 struct async_node *cur_entry; 2876 2877 cur_entry = (struct async_node *)arg; 2878 2879 /* 2880 * Don't report unconfigured devices (Wildcard devs, 2881 * devices only for target mode, device instances 2882 * that have been invalidated but are waiting for 2883 * their last reference count to be released). 2884 */ 2885 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2886 return (1); 2887 2888 xpt_compile_path(&path, 2889 NULL, 2890 device->target->bus->path_id, 2891 device->target->target_id, 2892 device->lun_id); 2893 xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1); 2894 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2895 xpt_action((union ccb *)&cgd); 2896 cur_entry->callback(cur_entry->callback_arg, 2897 AC_FOUND_DEVICE, 2898 &path, &cgd); 2899 xpt_release_path(&path); 2900 2901 return(1); 2902 } 2903 2904 static int 2905 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2906 { 2907 struct cam_path path; 2908 struct ccb_pathinq cpi; 2909 struct async_node *cur_entry; 2910 2911 cur_entry = (struct async_node *)arg; 2912 2913 xpt_compile_path(&path, /*periph*/NULL, 2914 bus->sim->path_id, 2915 CAM_TARGET_WILDCARD, 2916 CAM_LUN_WILDCARD); 2917 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1); 2918 cpi.ccb_h.func_code = XPT_PATH_INQ; 2919 xpt_action((union ccb *)&cpi); 2920 cur_entry->callback(cur_entry->callback_arg, 2921 AC_PATH_REGISTERED, 2922 &path, &cpi); 2923 xpt_release_path(&path); 2924 2925 return(1); 2926 } 2927 2928 static void 2929 xpt_action_sasync_cb(void *context, int pending) 2930 { 2931 struct async_node *cur_entry; 2932 struct xpt_task *task; 2933 uint32_t added; 2934 2935 task = (struct xpt_task *)context; 2936 cur_entry = (struct async_node *)task->data1; 2937 added = task->data2; 2938 2939 if ((added & AC_FOUND_DEVICE) != 0) { 2940 /* 2941 * Get this peripheral up to date with all 2942 * the currently existing devices. 2943 */ 2944 xpt_for_all_devices(xptsetasyncfunc, cur_entry); 2945 } 2946 if ((added & AC_PATH_REGISTERED) != 0) { 2947 /* 2948 * Get this peripheral up to date with all 2949 * the currently existing busses. 2950 */ 2951 xpt_for_all_busses(xptsetasyncbusfunc, cur_entry); 2952 } 2953 2954 kfree(task, M_CAMXPT); 2955 } 2956 2957 void 2958 xpt_action(union ccb *start_ccb) 2959 { 2960 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n")); 2961 2962 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2963 2964 switch (start_ccb->ccb_h.func_code) { 2965 case XPT_SCSI_IO: 2966 { 2967 struct cam_ed *device; 2968 #ifdef CAMDEBUG 2969 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1]; 2970 struct cam_path *path; 2971 2972 path = start_ccb->ccb_h.path; 2973 #endif 2974 2975 /* 2976 * For the sake of compatibility with SCSI-1 2977 * devices that may not understand the identify 2978 * message, we include lun information in the 2979 * second byte of all commands. SCSI-1 specifies 2980 * that luns are a 3 bit value and reserves only 3 2981 * bits for lun information in the CDB. Later 2982 * revisions of the SCSI spec allow for more than 8 2983 * luns, but have deprecated lun information in the 2984 * CDB. So, if the lun won't fit, we must omit. 2985 * 2986 * Also be aware that during initial probing for devices, 2987 * the inquiry information is unknown but initialized to 0. 2988 * This means that this code will be exercised while probing 2989 * devices with an ANSI revision greater than 2. 2990 */ 2991 device = start_ccb->ccb_h.path->device; 2992 if (device->protocol_version <= SCSI_REV_2 2993 && start_ccb->ccb_h.target_lun < 8 2994 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 2995 2996 start_ccb->csio.cdb_io.cdb_bytes[1] |= 2997 start_ccb->ccb_h.target_lun << 5; 2998 } 2999 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 3000 CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n", 3001 scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0], 3002 &path->device->inq_data), 3003 scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes, 3004 cdb_str, sizeof(cdb_str)))); 3005 /* FALLTHROUGH */ 3006 } 3007 case XPT_TARGET_IO: 3008 case XPT_CONT_TARGET_IO: 3009 start_ccb->csio.sense_resid = 0; 3010 start_ccb->csio.resid = 0; 3011 /* FALLTHROUGH */ 3012 case XPT_RESET_DEV: 3013 case XPT_ENG_EXEC: 3014 { 3015 struct cam_path *path; 3016 struct cam_sim *sim; 3017 int runq; 3018 3019 path = start_ccb->ccb_h.path; 3020 3021 sim = path->bus->sim; 3022 if (SIM_DEAD(sim)) { 3023 /* The SIM has gone; just execute the CCB directly. */ 3024 cam_ccbq_send_ccb(&path->device->ccbq, start_ccb); 3025 (*(sim->sim_action))(sim, start_ccb); 3026 break; 3027 } 3028 3029 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 3030 if (path->device->qfrozen_cnt == 0) 3031 runq = xpt_schedule_dev_sendq(path->bus, path->device); 3032 else 3033 runq = 0; 3034 if (runq != 0) 3035 xpt_run_dev_sendq(path->bus); 3036 break; 3037 } 3038 case XPT_SET_TRAN_SETTINGS: 3039 { 3040 xpt_set_transfer_settings(&start_ccb->cts, 3041 start_ccb->ccb_h.path->device, 3042 /*async_update*/FALSE); 3043 break; 3044 } 3045 case XPT_CALC_GEOMETRY: 3046 { 3047 struct cam_sim *sim; 3048 3049 /* Filter out garbage */ 3050 if (start_ccb->ccg.block_size == 0 3051 || start_ccb->ccg.volume_size == 0) { 3052 start_ccb->ccg.cylinders = 0; 3053 start_ccb->ccg.heads = 0; 3054 start_ccb->ccg.secs_per_track = 0; 3055 start_ccb->ccb_h.status = CAM_REQ_CMP; 3056 break; 3057 } 3058 sim = start_ccb->ccb_h.path->bus->sim; 3059 (*(sim->sim_action))(sim, start_ccb); 3060 break; 3061 } 3062 case XPT_ABORT: 3063 { 3064 union ccb* abort_ccb; 3065 3066 abort_ccb = start_ccb->cab.abort_ccb; 3067 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 3068 3069 if (abort_ccb->ccb_h.pinfo.index >= 0) { 3070 struct cam_ccbq *ccbq; 3071 3072 ccbq = &abort_ccb->ccb_h.path->device->ccbq; 3073 cam_ccbq_remove_ccb(ccbq, abort_ccb); 3074 abort_ccb->ccb_h.status = 3075 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 3076 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 3077 xpt_done(abort_ccb); 3078 start_ccb->ccb_h.status = CAM_REQ_CMP; 3079 break; 3080 } 3081 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 3082 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 3083 /* 3084 * We've caught this ccb en route to 3085 * the SIM. Flag it for abort and the 3086 * SIM will do so just before starting 3087 * real work on the CCB. 3088 */ 3089 abort_ccb->ccb_h.status = 3090 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 3091 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 3092 start_ccb->ccb_h.status = CAM_REQ_CMP; 3093 break; 3094 } 3095 } 3096 if (XPT_FC_IS_QUEUED(abort_ccb) 3097 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 3098 /* 3099 * It's already completed but waiting 3100 * for our SWI to get to it. 3101 */ 3102 start_ccb->ccb_h.status = CAM_UA_ABORT; 3103 break; 3104 } 3105 /* 3106 * If we weren't able to take care of the abort request 3107 * in the XPT, pass the request down to the SIM for processing. 3108 */ 3109 /* FALLTHROUGH */ 3110 } 3111 case XPT_ACCEPT_TARGET_IO: 3112 case XPT_EN_LUN: 3113 case XPT_IMMED_NOTIFY: 3114 case XPT_NOTIFY_ACK: 3115 case XPT_GET_TRAN_SETTINGS: 3116 case XPT_RESET_BUS: 3117 { 3118 struct cam_sim *sim; 3119 3120 sim = start_ccb->ccb_h.path->bus->sim; 3121 (*(sim->sim_action))(sim, start_ccb); 3122 break; 3123 } 3124 case XPT_PATH_INQ: 3125 { 3126 struct cam_sim *sim; 3127 3128 sim = start_ccb->ccb_h.path->bus->sim; 3129 (*(sim->sim_action))(sim, start_ccb); 3130 break; 3131 } 3132 case XPT_PATH_STATS: 3133 start_ccb->cpis.last_reset = 3134 start_ccb->ccb_h.path->bus->last_reset; 3135 start_ccb->ccb_h.status = CAM_REQ_CMP; 3136 break; 3137 case XPT_GDEV_TYPE: 3138 { 3139 struct cam_ed *dev; 3140 3141 dev = start_ccb->ccb_h.path->device; 3142 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 3143 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 3144 } else { 3145 struct ccb_getdev *cgd; 3146 struct cam_eb *bus; 3147 struct cam_et *tar; 3148 3149 cgd = &start_ccb->cgd; 3150 bus = cgd->ccb_h.path->bus; 3151 tar = cgd->ccb_h.path->target; 3152 cgd->inq_data = dev->inq_data; 3153 cgd->ccb_h.status = CAM_REQ_CMP; 3154 cgd->serial_num_len = dev->serial_num_len; 3155 if ((dev->serial_num_len > 0) 3156 && (dev->serial_num != NULL)) 3157 bcopy(dev->serial_num, cgd->serial_num, 3158 dev->serial_num_len); 3159 } 3160 break; 3161 } 3162 case XPT_GDEV_STATS: 3163 { 3164 struct cam_ed *dev; 3165 3166 dev = start_ccb->ccb_h.path->device; 3167 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 3168 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 3169 } else { 3170 struct ccb_getdevstats *cgds; 3171 struct cam_eb *bus; 3172 struct cam_et *tar; 3173 3174 cgds = &start_ccb->cgds; 3175 bus = cgds->ccb_h.path->bus; 3176 tar = cgds->ccb_h.path->target; 3177 cgds->dev_openings = dev->ccbq.dev_openings; 3178 cgds->dev_active = dev->ccbq.dev_active; 3179 cgds->devq_openings = dev->ccbq.devq_openings; 3180 cgds->devq_queued = dev->ccbq.queue.entries; 3181 cgds->held = dev->ccbq.held; 3182 cgds->last_reset = tar->last_reset; 3183 cgds->maxtags = dev->quirk->maxtags; 3184 cgds->mintags = dev->quirk->mintags; 3185 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 3186 cgds->last_reset = bus->last_reset; 3187 cgds->ccb_h.status = CAM_REQ_CMP; 3188 } 3189 break; 3190 } 3191 case XPT_GDEVLIST: 3192 { 3193 struct cam_periph *nperiph; 3194 struct periph_list *periph_head; 3195 struct ccb_getdevlist *cgdl; 3196 u_int i; 3197 struct cam_ed *device; 3198 int found; 3199 3200 3201 found = 0; 3202 3203 /* 3204 * Don't want anyone mucking with our data. 3205 */ 3206 device = start_ccb->ccb_h.path->device; 3207 periph_head = &device->periphs; 3208 cgdl = &start_ccb->cgdl; 3209 3210 /* 3211 * Check and see if the list has changed since the user 3212 * last requested a list member. If so, tell them that the 3213 * list has changed, and therefore they need to start over 3214 * from the beginning. 3215 */ 3216 if ((cgdl->index != 0) && 3217 (cgdl->generation != device->generation)) { 3218 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 3219 break; 3220 } 3221 3222 /* 3223 * Traverse the list of peripherals and attempt to find 3224 * the requested peripheral. 3225 */ 3226 for (nperiph = SLIST_FIRST(periph_head), i = 0; 3227 (nperiph != NULL) && (i <= cgdl->index); 3228 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 3229 if (i == cgdl->index) { 3230 strncpy(cgdl->periph_name, 3231 nperiph->periph_name, 3232 DEV_IDLEN); 3233 cgdl->unit_number = nperiph->unit_number; 3234 found = 1; 3235 } 3236 } 3237 if (found == 0) { 3238 cgdl->status = CAM_GDEVLIST_ERROR; 3239 break; 3240 } 3241 3242 if (nperiph == NULL) 3243 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 3244 else 3245 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 3246 3247 cgdl->index++; 3248 cgdl->generation = device->generation; 3249 3250 cgdl->ccb_h.status = CAM_REQ_CMP; 3251 break; 3252 } 3253 case XPT_DEV_MATCH: 3254 { 3255 dev_pos_type position_type; 3256 struct ccb_dev_match *cdm; 3257 int ret; 3258 3259 cdm = &start_ccb->cdm; 3260 3261 /* 3262 * There are two ways of getting at information in the EDT. 3263 * The first way is via the primary EDT tree. It starts 3264 * with a list of busses, then a list of targets on a bus, 3265 * then devices/luns on a target, and then peripherals on a 3266 * device/lun. The "other" way is by the peripheral driver 3267 * lists. The peripheral driver lists are organized by 3268 * peripheral driver. (obviously) So it makes sense to 3269 * use the peripheral driver list if the user is looking 3270 * for something like "da1", or all "da" devices. If the 3271 * user is looking for something on a particular bus/target 3272 * or lun, it's generally better to go through the EDT tree. 3273 */ 3274 3275 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 3276 position_type = cdm->pos.position_type; 3277 else { 3278 u_int i; 3279 3280 position_type = CAM_DEV_POS_NONE; 3281 3282 for (i = 0; i < cdm->num_patterns; i++) { 3283 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 3284 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 3285 position_type = CAM_DEV_POS_EDT; 3286 break; 3287 } 3288 } 3289 3290 if (cdm->num_patterns == 0) 3291 position_type = CAM_DEV_POS_EDT; 3292 else if (position_type == CAM_DEV_POS_NONE) 3293 position_type = CAM_DEV_POS_PDRV; 3294 } 3295 3296 switch(position_type & CAM_DEV_POS_TYPEMASK) { 3297 case CAM_DEV_POS_EDT: 3298 ret = xptedtmatch(cdm); 3299 break; 3300 case CAM_DEV_POS_PDRV: 3301 ret = xptperiphlistmatch(cdm); 3302 break; 3303 default: 3304 cdm->status = CAM_DEV_MATCH_ERROR; 3305 break; 3306 } 3307 3308 if (cdm->status == CAM_DEV_MATCH_ERROR) 3309 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 3310 else 3311 start_ccb->ccb_h.status = CAM_REQ_CMP; 3312 3313 break; 3314 } 3315 case XPT_SASYNC_CB: 3316 { 3317 struct ccb_setasync *csa; 3318 struct async_node *cur_entry; 3319 struct async_list *async_head; 3320 u_int32_t added; 3321 3322 csa = &start_ccb->csa; 3323 added = csa->event_enable; 3324 async_head = &csa->ccb_h.path->device->asyncs; 3325 3326 /* 3327 * If there is already an entry for us, simply 3328 * update it. 3329 */ 3330 cur_entry = SLIST_FIRST(async_head); 3331 while (cur_entry != NULL) { 3332 if ((cur_entry->callback_arg == csa->callback_arg) 3333 && (cur_entry->callback == csa->callback)) 3334 break; 3335 cur_entry = SLIST_NEXT(cur_entry, links); 3336 } 3337 3338 if (cur_entry != NULL) { 3339 /* 3340 * If the request has no flags set, 3341 * remove the entry. 3342 */ 3343 added &= ~cur_entry->event_enable; 3344 if (csa->event_enable == 0) { 3345 SLIST_REMOVE(async_head, cur_entry, 3346 async_node, links); 3347 csa->ccb_h.path->device->refcount--; 3348 kfree(cur_entry, M_CAMXPT); 3349 } else { 3350 cur_entry->event_enable = csa->event_enable; 3351 } 3352 } else { 3353 cur_entry = kmalloc(sizeof(*cur_entry), M_CAMXPT, 3354 M_INTWAIT); 3355 cur_entry->event_enable = csa->event_enable; 3356 cur_entry->callback_arg = csa->callback_arg; 3357 cur_entry->callback = csa->callback; 3358 SLIST_INSERT_HEAD(async_head, cur_entry, links); 3359 csa->ccb_h.path->device->refcount++; 3360 } 3361 3362 /* 3363 * Need to decouple this operation via a taskqueue so that 3364 * the locking doesn't become a mess. 3365 */ 3366 if ((added & (AC_FOUND_DEVICE | AC_PATH_REGISTERED)) != 0) { 3367 struct xpt_task *task; 3368 3369 task = kmalloc(sizeof(struct xpt_task), M_CAMXPT, 3370 M_INTWAIT); 3371 3372 TASK_INIT(&task->task, 0, xpt_action_sasync_cb, task); 3373 task->data1 = cur_entry; 3374 task->data2 = added; 3375 taskqueue_enqueue(taskqueue_thread[mycpuid], 3376 &task->task); 3377 } 3378 3379 start_ccb->ccb_h.status = CAM_REQ_CMP; 3380 break; 3381 } 3382 case XPT_REL_SIMQ: 3383 { 3384 struct ccb_relsim *crs; 3385 struct cam_ed *dev; 3386 3387 crs = &start_ccb->crs; 3388 dev = crs->ccb_h.path->device; 3389 if (dev == NULL) { 3390 3391 crs->ccb_h.status = CAM_DEV_NOT_THERE; 3392 break; 3393 } 3394 3395 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 3396 3397 if (INQ_DATA_TQ_ENABLED(&dev->inq_data)) { 3398 /* Don't ever go below one opening */ 3399 if (crs->openings > 0) { 3400 xpt_dev_ccbq_resize(crs->ccb_h.path, 3401 crs->openings); 3402 3403 if (bootverbose) { 3404 xpt_print(crs->ccb_h.path, 3405 "tagged openings now %d\n", 3406 crs->openings); 3407 } 3408 } 3409 } 3410 } 3411 3412 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 3413 3414 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 3415 3416 /* 3417 * Just extend the old timeout and decrement 3418 * the freeze count so that a single timeout 3419 * is sufficient for releasing the queue. 3420 */ 3421 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3422 callout_stop(&dev->callout); 3423 } else { 3424 3425 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3426 } 3427 3428 callout_reset(&dev->callout, 3429 (crs->release_timeout * hz) / 1000, 3430 xpt_release_devq_timeout, dev); 3431 3432 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 3433 3434 } 3435 3436 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 3437 3438 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 3439 /* 3440 * Decrement the freeze count so that a single 3441 * completion is still sufficient to unfreeze 3442 * the queue. 3443 */ 3444 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3445 } else { 3446 3447 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 3448 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3449 } 3450 } 3451 3452 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 3453 3454 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 3455 || (dev->ccbq.dev_active == 0)) { 3456 3457 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3458 } else { 3459 3460 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 3461 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3462 } 3463 } 3464 3465 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) { 3466 3467 xpt_release_devq(crs->ccb_h.path, /*count*/1, 3468 /*run_queue*/TRUE); 3469 } 3470 start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt; 3471 start_ccb->ccb_h.status = CAM_REQ_CMP; 3472 break; 3473 } 3474 case XPT_SCAN_BUS: 3475 xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb); 3476 break; 3477 case XPT_SCAN_LUN: 3478 xpt_scan_lun(start_ccb->ccb_h.path->periph, 3479 start_ccb->ccb_h.path, start_ccb->crcn.flags, 3480 start_ccb); 3481 break; 3482 case XPT_DEBUG: { 3483 #ifdef CAMDEBUG 3484 #ifdef CAM_DEBUG_DELAY 3485 cam_debug_delay = CAM_DEBUG_DELAY; 3486 #endif 3487 cam_dflags = start_ccb->cdbg.flags; 3488 if (cam_dpath != NULL) { 3489 xpt_free_path(cam_dpath); 3490 cam_dpath = NULL; 3491 } 3492 3493 if (cam_dflags != CAM_DEBUG_NONE) { 3494 if (xpt_create_path(&cam_dpath, xpt_periph, 3495 start_ccb->ccb_h.path_id, 3496 start_ccb->ccb_h.target_id, 3497 start_ccb->ccb_h.target_lun) != 3498 CAM_REQ_CMP) { 3499 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3500 cam_dflags = CAM_DEBUG_NONE; 3501 } else { 3502 start_ccb->ccb_h.status = CAM_REQ_CMP; 3503 xpt_print(cam_dpath, "debugging flags now %x\n", 3504 cam_dflags); 3505 } 3506 } else { 3507 cam_dpath = NULL; 3508 start_ccb->ccb_h.status = CAM_REQ_CMP; 3509 } 3510 #else /* !CAMDEBUG */ 3511 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 3512 #endif /* CAMDEBUG */ 3513 break; 3514 } 3515 case XPT_NOOP: 3516 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 3517 xpt_freeze_devq(start_ccb->ccb_h.path, 1); 3518 start_ccb->ccb_h.status = CAM_REQ_CMP; 3519 break; 3520 default: 3521 case XPT_SDEV_TYPE: 3522 case XPT_TERM_IO: 3523 case XPT_ENG_INQ: 3524 /* XXX Implement */ 3525 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 3526 break; 3527 } 3528 } 3529 3530 void 3531 xpt_polled_action(union ccb *start_ccb) 3532 { 3533 u_int32_t timeout; 3534 struct cam_sim *sim; 3535 struct cam_devq *devq; 3536 struct cam_ed *dev; 3537 3538 timeout = start_ccb->ccb_h.timeout; 3539 sim = start_ccb->ccb_h.path->bus->sim; 3540 devq = sim->devq; 3541 dev = start_ccb->ccb_h.path->device; 3542 3543 sim_lock_assert_owned(sim->lock); 3544 3545 /* 3546 * Steal an opening so that no other queued requests 3547 * can get it before us while we simulate interrupts. 3548 */ 3549 dev->ccbq.devq_openings--; 3550 dev->ccbq.dev_openings--; 3551 3552 while(((devq && devq->send_openings <= 0) || dev->ccbq.dev_openings < 0) 3553 && (--timeout > 0)) { 3554 DELAY(1000); 3555 (*(sim->sim_poll))(sim); 3556 camisr_runqueue(&sim->sim_doneq); 3557 } 3558 3559 dev->ccbq.devq_openings++; 3560 dev->ccbq.dev_openings++; 3561 3562 if (timeout != 0) { 3563 xpt_action(start_ccb); 3564 while(--timeout > 0) { 3565 (*(sim->sim_poll))(sim); 3566 camisr_runqueue(&sim->sim_doneq); 3567 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 3568 != CAM_REQ_INPROG) 3569 break; 3570 DELAY(1000); 3571 } 3572 if (timeout == 0) { 3573 /* 3574 * XXX Is it worth adding a sim_timeout entry 3575 * point so we can attempt recovery? If 3576 * this is only used for dumps, I don't think 3577 * it is. 3578 */ 3579 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3580 } 3581 } else { 3582 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3583 } 3584 } 3585 3586 /* 3587 * Schedule a peripheral driver to receive a ccb when it's 3588 * target device has space for more transactions. 3589 */ 3590 void 3591 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority) 3592 { 3593 struct cam_ed *device; 3594 union ccb *work_ccb; 3595 int runq; 3596 3597 sim_lock_assert_owned(perph->sim->lock); 3598 3599 CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3600 device = perph->path->device; 3601 if (periph_is_queued(perph)) { 3602 /* Simply reorder based on new priority */ 3603 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3604 (" change priority to %d\n", new_priority)); 3605 if (new_priority < perph->pinfo.priority) { 3606 camq_change_priority(&device->drvq, 3607 perph->pinfo.index, 3608 new_priority); 3609 } 3610 runq = 0; 3611 } else if (SIM_DEAD(perph->path->bus->sim)) { 3612 /* The SIM is gone so just call periph_start directly. */ 3613 work_ccb = xpt_get_ccb(perph->path->device); 3614 if (work_ccb == NULL) 3615 return; /* XXX */ 3616 xpt_setup_ccb(&work_ccb->ccb_h, perph->path, new_priority); 3617 perph->pinfo.priority = new_priority; 3618 perph->periph_start(perph, work_ccb); 3619 return; 3620 } else { 3621 /* New entry on the queue */ 3622 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3623 (" added periph to queue\n")); 3624 perph->pinfo.priority = new_priority; 3625 perph->pinfo.generation = ++device->drvq.generation; 3626 camq_insert(&device->drvq, &perph->pinfo); 3627 runq = xpt_schedule_dev_allocq(perph->path->bus, device); 3628 } 3629 if (runq != 0) { 3630 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3631 (" calling xpt_run_devq\n")); 3632 xpt_run_dev_allocq(perph->path->bus); 3633 } 3634 } 3635 3636 3637 /* 3638 * Schedule a device to run on a given queue. 3639 * If the device was inserted as a new entry on the queue, 3640 * return 1 meaning the device queue should be run. If we 3641 * were already queued, implying someone else has already 3642 * started the queue, return 0 so the caller doesn't attempt 3643 * to run the queue. 3644 */ 3645 static int 3646 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3647 u_int32_t new_priority) 3648 { 3649 int retval; 3650 u_int32_t old_priority; 3651 3652 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3653 3654 old_priority = pinfo->priority; 3655 3656 /* 3657 * Are we already queued? 3658 */ 3659 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3660 /* Simply reorder based on new priority */ 3661 if (new_priority < old_priority) { 3662 camq_change_priority(queue, pinfo->index, 3663 new_priority); 3664 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3665 ("changed priority to %d\n", 3666 new_priority)); 3667 } 3668 retval = 0; 3669 } else { 3670 /* New entry on the queue */ 3671 if (new_priority < old_priority) 3672 pinfo->priority = new_priority; 3673 3674 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3675 ("Inserting onto queue\n")); 3676 pinfo->generation = ++queue->generation; 3677 camq_insert(queue, pinfo); 3678 retval = 1; 3679 } 3680 return (retval); 3681 } 3682 3683 static void 3684 xpt_run_dev_allocq(struct cam_eb *bus) 3685 { 3686 struct cam_devq *devq; 3687 3688 if ((devq = bus->sim->devq) == NULL) { 3689 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq: NULL devq\n")); 3690 return; 3691 } 3692 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n")); 3693 3694 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3695 (" qfrozen_cnt == 0x%x, entries == %d, " 3696 "openings == %d, active == %d\n", 3697 devq->alloc_queue.qfrozen_cnt, 3698 devq->alloc_queue.entries, 3699 devq->alloc_openings, 3700 devq->alloc_active)); 3701 3702 devq->alloc_queue.qfrozen_cnt++; 3703 while ((devq->alloc_queue.entries > 0) 3704 && (devq->alloc_openings > 0) 3705 && (devq->alloc_queue.qfrozen_cnt <= 1)) { 3706 struct cam_ed_qinfo *qinfo; 3707 struct cam_ed *device; 3708 union ccb *work_ccb; 3709 struct cam_periph *drv; 3710 struct camq *drvq; 3711 3712 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue, 3713 CAMQ_HEAD); 3714 device = qinfo->device; 3715 3716 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3717 ("running device %p\n", device)); 3718 3719 drvq = &device->drvq; 3720 3721 #ifdef CAMDEBUG 3722 if (drvq->entries <= 0) { 3723 panic("xpt_run_dev_allocq: " 3724 "Device on queue without any work to do"); 3725 } 3726 #endif 3727 if ((work_ccb = xpt_get_ccb(device)) != NULL) { 3728 devq->alloc_openings--; 3729 devq->alloc_active++; 3730 drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD); 3731 xpt_setup_ccb(&work_ccb->ccb_h, drv->path, 3732 drv->pinfo.priority); 3733 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3734 ("calling periph start\n")); 3735 drv->periph_start(drv, work_ccb); 3736 } else { 3737 /* 3738 * Malloc failure in alloc_ccb 3739 */ 3740 /* 3741 * XXX add us to a list to be run from free_ccb 3742 * if we don't have any ccbs active on this 3743 * device queue otherwise we may never get run 3744 * again. 3745 */ 3746 break; 3747 } 3748 3749 if (drvq->entries > 0) { 3750 /* We have more work. Attempt to reschedule */ 3751 xpt_schedule_dev_allocq(bus, device); 3752 } 3753 } 3754 devq->alloc_queue.qfrozen_cnt--; 3755 } 3756 3757 static void 3758 xpt_run_dev_sendq(struct cam_eb *bus) 3759 { 3760 struct cam_devq *devq; 3761 3762 if ((devq = bus->sim->devq) == NULL) { 3763 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq: NULL devq\n")); 3764 return; 3765 } 3766 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n")); 3767 3768 devq->send_queue.qfrozen_cnt++; 3769 while ((devq->send_queue.entries > 0) 3770 && (devq->send_openings > 0)) { 3771 struct cam_ed_qinfo *qinfo; 3772 struct cam_ed *device; 3773 union ccb *work_ccb; 3774 struct cam_sim *sim; 3775 3776 if (devq->send_queue.qfrozen_cnt > 1) { 3777 break; 3778 } 3779 3780 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue, 3781 CAMQ_HEAD); 3782 device = qinfo->device; 3783 3784 /* 3785 * If the device has been "frozen", don't attempt 3786 * to run it. 3787 */ 3788 if (device->qfrozen_cnt > 0) { 3789 continue; 3790 } 3791 3792 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3793 ("running device %p\n", device)); 3794 3795 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3796 if (work_ccb == NULL) { 3797 kprintf("device on run queue with no ccbs???\n"); 3798 continue; 3799 } 3800 3801 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3802 3803 lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE); 3804 if (xsoftc.num_highpower <= 0) { 3805 /* 3806 * We got a high power command, but we 3807 * don't have any available slots. Freeze 3808 * the device queue until we have a slot 3809 * available. 3810 */ 3811 device->qfrozen_cnt++; 3812 STAILQ_INSERT_TAIL(&xsoftc.highpowerq, 3813 &work_ccb->ccb_h, 3814 xpt_links.stqe); 3815 3816 lockmgr(&xsoftc.xpt_lock, LK_RELEASE); 3817 continue; 3818 } else { 3819 /* 3820 * Consume a high power slot while 3821 * this ccb runs. 3822 */ 3823 xsoftc.num_highpower--; 3824 } 3825 lockmgr(&xsoftc.xpt_lock, LK_RELEASE); 3826 } 3827 devq->active_dev = device; 3828 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3829 3830 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3831 3832 devq->send_openings--; 3833 devq->send_active++; 3834 3835 if (device->ccbq.queue.entries > 0) 3836 xpt_schedule_dev_sendq(bus, device); 3837 3838 if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){ 3839 /* 3840 * The client wants to freeze the queue 3841 * after this CCB is sent. 3842 */ 3843 device->qfrozen_cnt++; 3844 } 3845 3846 /* In Target mode, the peripheral driver knows best... */ 3847 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3848 if ((device->inq_flags & SID_CmdQue) != 0 3849 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3850 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3851 else 3852 /* 3853 * Clear this in case of a retried CCB that 3854 * failed due to a rejected tag. 3855 */ 3856 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3857 } 3858 3859 /* 3860 * Device queues can be shared among multiple sim instances 3861 * that reside on different busses. Use the SIM in the queue 3862 * CCB's path, rather than the one in the bus that was passed 3863 * into this function. 3864 */ 3865 sim = work_ccb->ccb_h.path->bus->sim; 3866 (*(sim->sim_action))(sim, work_ccb); 3867 3868 devq->active_dev = NULL; 3869 } 3870 devq->send_queue.qfrozen_cnt--; 3871 } 3872 3873 /* 3874 * This function merges stuff from the slave ccb into the master ccb, while 3875 * keeping important fields in the master ccb constant. 3876 */ 3877 void 3878 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 3879 { 3880 /* 3881 * Pull fields that are valid for peripheral drivers to set 3882 * into the master CCB along with the CCB "payload". 3883 */ 3884 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 3885 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 3886 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 3887 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 3888 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 3889 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3890 } 3891 3892 void 3893 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 3894 { 3895 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3896 callout_init(&ccb_h->timeout_ch); 3897 ccb_h->pinfo.priority = priority; 3898 ccb_h->path = path; 3899 ccb_h->path_id = path->bus->path_id; 3900 if (path->target) 3901 ccb_h->target_id = path->target->target_id; 3902 else 3903 ccb_h->target_id = CAM_TARGET_WILDCARD; 3904 if (path->device) { 3905 ccb_h->target_lun = path->device->lun_id; 3906 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 3907 } else { 3908 ccb_h->target_lun = CAM_TARGET_WILDCARD; 3909 } 3910 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 3911 ccb_h->flags = 0; 3912 } 3913 3914 /* Path manipulation functions */ 3915 cam_status 3916 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 3917 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3918 { 3919 struct cam_path *path; 3920 cam_status status; 3921 3922 path = kmalloc(sizeof(*path), M_CAMXPT, M_INTWAIT); 3923 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 3924 if (status != CAM_REQ_CMP) { 3925 kfree(path, M_CAMXPT); 3926 path = NULL; 3927 } 3928 *new_path_ptr = path; 3929 return (status); 3930 } 3931 3932 cam_status 3933 xpt_create_path_unlocked(struct cam_path **new_path_ptr, 3934 struct cam_periph *periph, path_id_t path_id, 3935 target_id_t target_id, lun_id_t lun_id) 3936 { 3937 struct cam_path *path; 3938 struct cam_eb *bus = NULL; 3939 cam_status status; 3940 int need_unlock = 0; 3941 3942 path = (struct cam_path *)kmalloc(sizeof(*path), M_CAMXPT, M_WAITOK); 3943 3944 if (path_id != CAM_BUS_WILDCARD) { 3945 bus = xpt_find_bus(path_id); 3946 if (bus != NULL) { 3947 need_unlock = 1; 3948 CAM_SIM_LOCK(bus->sim); 3949 } 3950 } 3951 status = xpt_compile_path(path, periph, path_id, target_id, lun_id); 3952 if (need_unlock) 3953 CAM_SIM_UNLOCK(bus->sim); 3954 if (status != CAM_REQ_CMP) { 3955 kfree(path, M_CAMXPT); 3956 path = NULL; 3957 } 3958 *new_path_ptr = path; 3959 return (status); 3960 } 3961 3962 static cam_status 3963 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 3964 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3965 { 3966 struct cam_eb *bus; 3967 struct cam_et *target; 3968 struct cam_ed *device; 3969 cam_status status; 3970 3971 status = CAM_REQ_CMP; /* Completed without error */ 3972 target = NULL; /* Wildcarded */ 3973 device = NULL; /* Wildcarded */ 3974 3975 /* 3976 * We will potentially modify the EDT, so block interrupts 3977 * that may attempt to create cam paths. 3978 */ 3979 bus = xpt_find_bus(path_id); 3980 if (bus == NULL) { 3981 status = CAM_PATH_INVALID; 3982 } else { 3983 target = xpt_find_target(bus, target_id); 3984 if (target == NULL) { 3985 /* Create one */ 3986 struct cam_et *new_target; 3987 3988 new_target = xpt_alloc_target(bus, target_id); 3989 if (new_target == NULL) { 3990 status = CAM_RESRC_UNAVAIL; 3991 } else { 3992 target = new_target; 3993 } 3994 } 3995 if (target != NULL) { 3996 device = xpt_find_device(target, lun_id); 3997 if (device == NULL) { 3998 /* Create one */ 3999 struct cam_ed *new_device; 4000 4001 new_device = xpt_alloc_device(bus, 4002 target, 4003 lun_id); 4004 if (new_device == NULL) { 4005 status = CAM_RESRC_UNAVAIL; 4006 } else { 4007 device = new_device; 4008 } 4009 } 4010 } 4011 } 4012 4013 /* 4014 * Only touch the user's data if we are successful. 4015 */ 4016 if (status == CAM_REQ_CMP) { 4017 new_path->periph = perph; 4018 new_path->bus = bus; 4019 new_path->target = target; 4020 new_path->device = device; 4021 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 4022 } else { 4023 if (device != NULL) 4024 xpt_release_device(bus, target, device); 4025 if (target != NULL) 4026 xpt_release_target(bus, target); 4027 if (bus != NULL) 4028 xpt_release_bus(bus); 4029 } 4030 return (status); 4031 } 4032 4033 static void 4034 xpt_release_path(struct cam_path *path) 4035 { 4036 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 4037 if (path->device != NULL) { 4038 xpt_release_device(path->bus, path->target, path->device); 4039 path->device = NULL; 4040 } 4041 if (path->target != NULL) { 4042 xpt_release_target(path->bus, path->target); 4043 path->target = NULL; 4044 } 4045 if (path->bus != NULL) { 4046 xpt_release_bus(path->bus); 4047 path->bus = NULL; 4048 } 4049 } 4050 4051 void 4052 xpt_free_path(struct cam_path *path) 4053 { 4054 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 4055 xpt_release_path(path); 4056 kfree(path, M_CAMXPT); 4057 } 4058 4059 4060 /* 4061 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 4062 * in path1, 2 for match with wildcards in path2. 4063 */ 4064 int 4065 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 4066 { 4067 int retval = 0; 4068 4069 if (path1->bus != path2->bus) { 4070 if (path1->bus->path_id == CAM_BUS_WILDCARD) 4071 retval = 1; 4072 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 4073 retval = 2; 4074 else 4075 return (-1); 4076 } 4077 if (path1->target != path2->target) { 4078 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 4079 if (retval == 0) 4080 retval = 1; 4081 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 4082 retval = 2; 4083 else 4084 return (-1); 4085 } 4086 if (path1->device != path2->device) { 4087 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 4088 if (retval == 0) 4089 retval = 1; 4090 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 4091 retval = 2; 4092 else 4093 return (-1); 4094 } 4095 return (retval); 4096 } 4097 4098 void 4099 xpt_print_path(struct cam_path *path) 4100 { 4101 4102 if (path == NULL) 4103 kprintf("(nopath): "); 4104 else { 4105 if (path->periph != NULL) 4106 kprintf("(%s%d:", path->periph->periph_name, 4107 path->periph->unit_number); 4108 else 4109 kprintf("(noperiph:"); 4110 4111 if (path->bus != NULL) 4112 kprintf("%s%d:%d:", path->bus->sim->sim_name, 4113 path->bus->sim->unit_number, 4114 path->bus->sim->bus_id); 4115 else 4116 kprintf("nobus:"); 4117 4118 if (path->target != NULL) 4119 kprintf("%d:", path->target->target_id); 4120 else 4121 kprintf("X:"); 4122 4123 if (path->device != NULL) 4124 kprintf("%d): ", path->device->lun_id); 4125 else 4126 kprintf("X): "); 4127 } 4128 } 4129 4130 void 4131 xpt_print(struct cam_path *path, const char *fmt, ...) 4132 { 4133 __va_list ap; 4134 xpt_print_path(path); 4135 __va_start(ap, fmt); 4136 kvprintf(fmt, ap); 4137 __va_end(ap); 4138 } 4139 4140 int 4141 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 4142 { 4143 struct sbuf sb; 4144 4145 sim_lock_assert_owned(path->bus->sim->lock); 4146 4147 sbuf_new(&sb, str, str_len, 0); 4148 4149 if (path == NULL) 4150 sbuf_printf(&sb, "(nopath): "); 4151 else { 4152 if (path->periph != NULL) 4153 sbuf_printf(&sb, "(%s%d:", path->periph->periph_name, 4154 path->periph->unit_number); 4155 else 4156 sbuf_printf(&sb, "(noperiph:"); 4157 4158 if (path->bus != NULL) 4159 sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name, 4160 path->bus->sim->unit_number, 4161 path->bus->sim->bus_id); 4162 else 4163 sbuf_printf(&sb, "nobus:"); 4164 4165 if (path->target != NULL) 4166 sbuf_printf(&sb, "%d:", path->target->target_id); 4167 else 4168 sbuf_printf(&sb, "X:"); 4169 4170 if (path->device != NULL) 4171 sbuf_printf(&sb, "%d): ", path->device->lun_id); 4172 else 4173 sbuf_printf(&sb, "X): "); 4174 } 4175 sbuf_finish(&sb); 4176 4177 return(sbuf_len(&sb)); 4178 } 4179 4180 path_id_t 4181 xpt_path_path_id(struct cam_path *path) 4182 { 4183 sim_lock_assert_owned(path->bus->sim->lock); 4184 4185 return(path->bus->path_id); 4186 } 4187 4188 target_id_t 4189 xpt_path_target_id(struct cam_path *path) 4190 { 4191 sim_lock_assert_owned(path->bus->sim->lock); 4192 4193 if (path->target != NULL) 4194 return (path->target->target_id); 4195 else 4196 return (CAM_TARGET_WILDCARD); 4197 } 4198 4199 lun_id_t 4200 xpt_path_lun_id(struct cam_path *path) 4201 { 4202 sim_lock_assert_owned(path->bus->sim->lock); 4203 4204 if (path->device != NULL) 4205 return (path->device->lun_id); 4206 else 4207 return (CAM_LUN_WILDCARD); 4208 } 4209 4210 struct cam_sim * 4211 xpt_path_sim(struct cam_path *path) 4212 { 4213 return (path->bus->sim); 4214 } 4215 4216 struct cam_periph* 4217 xpt_path_periph(struct cam_path *path) 4218 { 4219 sim_lock_assert_owned(path->bus->sim->lock); 4220 4221 return (path->periph); 4222 } 4223 4224 /* 4225 * Release a CAM control block for the caller. Remit the cost of the structure 4226 * to the device referenced by the path. If the this device had no 'credits' 4227 * and peripheral drivers have registered async callbacks for this notification 4228 * call them now. 4229 */ 4230 void 4231 xpt_release_ccb(union ccb *free_ccb) 4232 { 4233 struct cam_path *path; 4234 struct cam_ed *device; 4235 struct cam_eb *bus; 4236 struct cam_sim *sim; 4237 4238 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 4239 path = free_ccb->ccb_h.path; 4240 device = path->device; 4241 bus = path->bus; 4242 sim = bus->sim; 4243 4244 sim_lock_assert_owned(sim->lock); 4245 4246 cam_ccbq_release_opening(&device->ccbq); 4247 if (sim->ccb_count > sim->max_ccbs) { 4248 xpt_free_ccb(free_ccb); 4249 sim->ccb_count--; 4250 } else { 4251 SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h, 4252 xpt_links.sle); 4253 } 4254 if (sim->devq == NULL) { 4255 return; 4256 } 4257 sim->devq->alloc_openings++; 4258 sim->devq->alloc_active--; 4259 /* XXX Turn this into an inline function - xpt_run_device?? */ 4260 if ((device_is_alloc_queued(device) == 0) 4261 && (device->drvq.entries > 0)) { 4262 xpt_schedule_dev_allocq(bus, device); 4263 } 4264 if (dev_allocq_is_runnable(sim->devq)) 4265 xpt_run_dev_allocq(bus); 4266 } 4267 4268 /* Functions accessed by SIM drivers */ 4269 4270 /* 4271 * A sim structure, listing the SIM entry points and instance 4272 * identification info is passed to xpt_bus_register to hook the SIM 4273 * into the CAM framework. xpt_bus_register creates a cam_eb entry 4274 * for this new bus and places it in the array of busses and assigns 4275 * it a path_id. The path_id may be influenced by "hard wiring" 4276 * information specified by the user. Once interrupt services are 4277 * availible, the bus will be probed. 4278 */ 4279 int32_t 4280 xpt_bus_register(struct cam_sim *sim, u_int32_t bus) 4281 { 4282 struct cam_eb *new_bus; 4283 struct cam_eb *old_bus; 4284 struct ccb_pathinq cpi; 4285 4286 sim_lock_assert_owned(sim->lock); 4287 4288 sim->bus_id = bus; 4289 new_bus = kmalloc(sizeof(*new_bus), M_CAMXPT, M_INTWAIT); 4290 4291 if (strcmp(sim->sim_name, "xpt") != 0) { 4292 sim->path_id = 4293 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 4294 } 4295 4296 TAILQ_INIT(&new_bus->et_entries); 4297 new_bus->path_id = sim->path_id; 4298 new_bus->sim = sim; 4299 ++sim->refcount; 4300 timevalclear(&new_bus->last_reset); 4301 new_bus->flags = 0; 4302 new_bus->refcount = 1; /* Held until a bus_deregister event */ 4303 new_bus->generation = 0; 4304 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE); 4305 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4306 while (old_bus != NULL 4307 && old_bus->path_id < new_bus->path_id) 4308 old_bus = TAILQ_NEXT(old_bus, links); 4309 if (old_bus != NULL) 4310 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 4311 else 4312 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links); 4313 xsoftc.bus_generation++; 4314 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE); 4315 4316 /* Notify interested parties */ 4317 if (sim->path_id != CAM_XPT_PATH_ID) { 4318 struct cam_path path; 4319 4320 xpt_compile_path(&path, /*periph*/NULL, sim->path_id, 4321 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4322 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1); 4323 cpi.ccb_h.func_code = XPT_PATH_INQ; 4324 xpt_action((union ccb *)&cpi); 4325 xpt_async(AC_PATH_REGISTERED, &path, &cpi); 4326 xpt_release_path(&path); 4327 } 4328 return (CAM_SUCCESS); 4329 } 4330 4331 /* 4332 * Deregister a bus. We must clean out all transactions pending on the bus. 4333 * This routine is typically called prior to cam_sim_free() (e.g. see 4334 * dev/usbmisc/umass/umass.c) 4335 */ 4336 int32_t 4337 xpt_bus_deregister(path_id_t pathid) 4338 { 4339 struct cam_path bus_path; 4340 struct cam_ed *device; 4341 struct cam_ed_qinfo *qinfo; 4342 struct cam_devq *devq; 4343 struct cam_periph *periph; 4344 struct cam_sim *ccbsim; 4345 union ccb *work_ccb; 4346 cam_status status; 4347 4348 status = xpt_compile_path(&bus_path, NULL, pathid, 4349 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4350 if (status != CAM_REQ_CMP) 4351 return (status); 4352 4353 /* 4354 * This should clear out all pending requests and timeouts, but 4355 * the ccb's may be queued to a software interrupt. 4356 * 4357 * XXX AC_LOST_DEVICE does not precisely abort the pending requests, 4358 * and it really ought to. 4359 */ 4360 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 4361 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 4362 4363 /* The SIM may be gone, so use a dummy SIM for any stray operations. */ 4364 devq = bus_path.bus->sim->devq; 4365 ccbsim = bus_path.bus->sim; 4366 bus_path.bus->sim = &cam_dead_sim; 4367 4368 /* Execute any pending operations now. */ 4369 while ((qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue, 4370 CAMQ_HEAD)) != NULL || 4371 (qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue, 4372 CAMQ_HEAD)) != NULL) { 4373 do { 4374 device = qinfo->device; 4375 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 4376 if (work_ccb != NULL) { 4377 devq->active_dev = device; 4378 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 4379 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 4380 (*(ccbsim->sim_action))(ccbsim, work_ccb); 4381 } 4382 4383 periph = (struct cam_periph *)camq_remove(&device->drvq, 4384 CAMQ_HEAD); 4385 if (periph != NULL) 4386 xpt_schedule(periph, periph->pinfo.priority); 4387 } while (work_ccb != NULL || periph != NULL); 4388 } 4389 4390 /* Make sure all completed CCBs are processed. */ 4391 while (!TAILQ_EMPTY(&ccbsim->sim_doneq)) { 4392 camisr_runqueue(&ccbsim->sim_doneq); 4393 4394 /* Repeat the async's for the benefit of any new devices. */ 4395 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 4396 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 4397 } 4398 4399 /* Release the reference count held while registered. */ 4400 xpt_release_bus(bus_path.bus); 4401 xpt_release_path(&bus_path); 4402 4403 return (CAM_REQ_CMP); 4404 } 4405 4406 static path_id_t 4407 xptnextfreepathid(void) 4408 { 4409 struct cam_eb *bus; 4410 path_id_t pathid; 4411 char *strval; 4412 4413 pathid = 0; 4414 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE); 4415 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4416 retry: 4417 /* Find an unoccupied pathid */ 4418 while (bus != NULL && bus->path_id <= pathid) { 4419 if (bus->path_id == pathid) 4420 pathid++; 4421 bus = TAILQ_NEXT(bus, links); 4422 } 4423 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE); 4424 4425 /* 4426 * Ensure that this pathid is not reserved for 4427 * a bus that may be registered in the future. 4428 */ 4429 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 4430 ++pathid; 4431 /* Start the search over */ 4432 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE); 4433 goto retry; 4434 } 4435 return (pathid); 4436 } 4437 4438 static path_id_t 4439 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 4440 { 4441 path_id_t pathid; 4442 int i, dunit, val; 4443 char buf[32]; 4444 4445 pathid = CAM_XPT_PATH_ID; 4446 ksnprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 4447 i = -1; 4448 while ((i = resource_query_string(i, "at", buf)) != -1) { 4449 if (strcmp(resource_query_name(i), "scbus")) { 4450 /* Avoid a bit of foot shooting. */ 4451 continue; 4452 } 4453 dunit = resource_query_unit(i); 4454 if (dunit < 0) /* unwired?! */ 4455 continue; 4456 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 4457 if (sim_bus == val) { 4458 pathid = dunit; 4459 break; 4460 } 4461 } else if (sim_bus == 0) { 4462 /* Unspecified matches bus 0 */ 4463 pathid = dunit; 4464 break; 4465 } else { 4466 kprintf("Ambiguous scbus configuration for %s%d " 4467 "bus %d, cannot wire down. The kernel " 4468 "config entry for scbus%d should " 4469 "specify a controller bus.\n" 4470 "Scbus will be assigned dynamically.\n", 4471 sim_name, sim_unit, sim_bus, dunit); 4472 break; 4473 } 4474 } 4475 4476 if (pathid == CAM_XPT_PATH_ID) 4477 pathid = xptnextfreepathid(); 4478 return (pathid); 4479 } 4480 4481 void 4482 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 4483 { 4484 struct cam_eb *bus; 4485 struct cam_et *target, *next_target; 4486 struct cam_ed *device, *next_device; 4487 4488 sim_lock_assert_owned(path->bus->sim->lock); 4489 4490 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n")); 4491 4492 /* 4493 * Most async events come from a CAM interrupt context. In 4494 * a few cases, the error recovery code at the peripheral layer, 4495 * which may run from our SWI or a process context, may signal 4496 * deferred events with a call to xpt_async. 4497 */ 4498 4499 bus = path->bus; 4500 4501 if (async_code == AC_BUS_RESET) { 4502 /* Update our notion of when the last reset occurred */ 4503 microuptime(&bus->last_reset); 4504 } 4505 4506 for (target = TAILQ_FIRST(&bus->et_entries); 4507 target != NULL; 4508 target = next_target) { 4509 4510 next_target = TAILQ_NEXT(target, links); 4511 4512 if (path->target != target 4513 && path->target->target_id != CAM_TARGET_WILDCARD 4514 && target->target_id != CAM_TARGET_WILDCARD) 4515 continue; 4516 4517 if (async_code == AC_SENT_BDR) { 4518 /* Update our notion of when the last reset occurred */ 4519 microuptime(&path->target->last_reset); 4520 } 4521 4522 for (device = TAILQ_FIRST(&target->ed_entries); 4523 device != NULL; 4524 device = next_device) { 4525 4526 next_device = TAILQ_NEXT(device, links); 4527 4528 if (path->device != device 4529 && path->device->lun_id != CAM_LUN_WILDCARD 4530 && device->lun_id != CAM_LUN_WILDCARD) 4531 continue; 4532 4533 xpt_dev_async(async_code, bus, target, 4534 device, async_arg); 4535 4536 xpt_async_bcast(&device->asyncs, async_code, 4537 path, async_arg); 4538 } 4539 } 4540 4541 /* 4542 * If this wasn't a fully wildcarded async, tell all 4543 * clients that want all async events. 4544 */ 4545 if (bus != xpt_periph->path->bus) 4546 xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code, 4547 path, async_arg); 4548 } 4549 4550 static void 4551 xpt_async_bcast(struct async_list *async_head, 4552 u_int32_t async_code, 4553 struct cam_path *path, void *async_arg) 4554 { 4555 struct async_node *cur_entry; 4556 4557 cur_entry = SLIST_FIRST(async_head); 4558 while (cur_entry != NULL) { 4559 struct async_node *next_entry; 4560 /* 4561 * Grab the next list entry before we call the current 4562 * entry's callback. This is because the callback function 4563 * can delete its async callback entry. 4564 */ 4565 next_entry = SLIST_NEXT(cur_entry, links); 4566 if ((cur_entry->event_enable & async_code) != 0) 4567 cur_entry->callback(cur_entry->callback_arg, 4568 async_code, path, 4569 async_arg); 4570 cur_entry = next_entry; 4571 } 4572 } 4573 4574 /* 4575 * Handle any per-device event notifications that require action by the XPT. 4576 */ 4577 static void 4578 xpt_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target, 4579 struct cam_ed *device, void *async_arg) 4580 { 4581 cam_status status; 4582 struct cam_path newpath; 4583 4584 /* 4585 * We only need to handle events for real devices. 4586 */ 4587 if (target->target_id == CAM_TARGET_WILDCARD 4588 || device->lun_id == CAM_LUN_WILDCARD) 4589 return; 4590 4591 /* 4592 * We need our own path with wildcards expanded to 4593 * handle certain types of events. 4594 */ 4595 if ((async_code == AC_SENT_BDR) 4596 || (async_code == AC_BUS_RESET) 4597 || (async_code == AC_INQ_CHANGED)) 4598 status = xpt_compile_path(&newpath, NULL, 4599 bus->path_id, 4600 target->target_id, 4601 device->lun_id); 4602 else 4603 status = CAM_REQ_CMP_ERR; 4604 4605 if (status == CAM_REQ_CMP) { 4606 4607 /* 4608 * Allow transfer negotiation to occur in a 4609 * tag free environment. 4610 */ 4611 if (async_code == AC_SENT_BDR 4612 || async_code == AC_BUS_RESET) 4613 xpt_toggle_tags(&newpath); 4614 4615 if (async_code == AC_INQ_CHANGED) { 4616 /* 4617 * We've sent a start unit command, or 4618 * something similar to a device that 4619 * may have caused its inquiry data to 4620 * change. So we re-scan the device to 4621 * refresh the inquiry data for it. 4622 */ 4623 xpt_scan_lun(newpath.periph, &newpath, 4624 CAM_EXPECT_INQ_CHANGE, NULL); 4625 } 4626 xpt_release_path(&newpath); 4627 } else if (async_code == AC_LOST_DEVICE) { 4628 /* 4629 * When we lose a device the device may be about to detach 4630 * the sim, we have to clear out all pending timeouts and 4631 * requests before that happens. XXX it would be nice if 4632 * we could abort the requests pertaining to the device. 4633 */ 4634 xpt_release_devq_timeout(device); 4635 if ((device->flags & CAM_DEV_UNCONFIGURED) == 0) { 4636 device->flags |= CAM_DEV_UNCONFIGURED; 4637 xpt_release_device(bus, target, device); 4638 } 4639 } else if (async_code == AC_TRANSFER_NEG) { 4640 struct ccb_trans_settings *settings; 4641 4642 settings = (struct ccb_trans_settings *)async_arg; 4643 xpt_set_transfer_settings(settings, device, 4644 /*async_update*/TRUE); 4645 } 4646 } 4647 4648 u_int32_t 4649 xpt_freeze_devq(struct cam_path *path, u_int count) 4650 { 4651 struct ccb_hdr *ccbh; 4652 4653 sim_lock_assert_owned(path->bus->sim->lock); 4654 4655 path->device->qfrozen_cnt += count; 4656 4657 /* 4658 * Mark the last CCB in the queue as needing 4659 * to be requeued if the driver hasn't 4660 * changed it's state yet. This fixes a race 4661 * where a ccb is just about to be queued to 4662 * a controller driver when it's interrupt routine 4663 * freezes the queue. To completly close the 4664 * hole, controller drives must check to see 4665 * if a ccb's status is still CAM_REQ_INPROG 4666 * just before they queue 4667 * the CCB. See ahc_action/ahc_freeze_devq for 4668 * an example. 4669 */ 4670 ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq); 4671 if (ccbh && ccbh->status == CAM_REQ_INPROG) 4672 ccbh->status = CAM_REQUEUE_REQ; 4673 return (path->device->qfrozen_cnt); 4674 } 4675 4676 u_int32_t 4677 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4678 { 4679 sim_lock_assert_owned(sim->lock); 4680 4681 if (sim->devq == NULL) 4682 return(count); 4683 sim->devq->send_queue.qfrozen_cnt += count; 4684 if (sim->devq->active_dev != NULL) { 4685 struct ccb_hdr *ccbh; 4686 4687 ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs, 4688 ccb_hdr_tailq); 4689 if (ccbh && ccbh->status == CAM_REQ_INPROG) 4690 ccbh->status = CAM_REQUEUE_REQ; 4691 } 4692 return (sim->devq->send_queue.qfrozen_cnt); 4693 } 4694 4695 /* 4696 * WARNING: most devices, especially USB/UMASS, may detach their sim early. 4697 * We ref-count the sim (and the bus only NULLs it out when the bus has been 4698 * freed, which is not the case here), but the device queue is also freed XXX 4699 * and we have to check that here. 4700 * 4701 * XXX fixme: could we simply not null-out the device queue via 4702 * cam_sim_free()? 4703 */ 4704 static void 4705 xpt_release_devq_timeout(void *arg) 4706 { 4707 struct cam_ed *device; 4708 4709 device = (struct cam_ed *)arg; 4710 4711 xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE); 4712 } 4713 4714 void 4715 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4716 { 4717 sim_lock_assert_owned(path->bus->sim->lock); 4718 4719 xpt_release_devq_device(path->device, count, run_queue); 4720 } 4721 4722 static void 4723 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) 4724 { 4725 int rundevq; 4726 4727 rundevq = 0; 4728 4729 if (dev->qfrozen_cnt > 0) { 4730 4731 count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count; 4732 dev->qfrozen_cnt -= count; 4733 if (dev->qfrozen_cnt == 0) { 4734 4735 /* 4736 * No longer need to wait for a successful 4737 * command completion. 4738 */ 4739 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4740 4741 /* 4742 * Remove any timeouts that might be scheduled 4743 * to release this queue. 4744 */ 4745 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4746 callout_stop(&dev->callout); 4747 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4748 } 4749 4750 /* 4751 * Now that we are unfrozen schedule the 4752 * device so any pending transactions are 4753 * run. 4754 */ 4755 if ((dev->ccbq.queue.entries > 0) 4756 && (xpt_schedule_dev_sendq(dev->target->bus, dev)) 4757 && (run_queue != 0)) { 4758 rundevq = 1; 4759 } 4760 } 4761 } 4762 if (rundevq != 0) 4763 xpt_run_dev_sendq(dev->target->bus); 4764 } 4765 4766 void 4767 xpt_release_simq(struct cam_sim *sim, int run_queue) 4768 { 4769 struct camq *sendq; 4770 4771 sim_lock_assert_owned(sim->lock); 4772 4773 if (sim->devq == NULL) 4774 return; 4775 4776 sendq = &(sim->devq->send_queue); 4777 if (sendq->qfrozen_cnt > 0) { 4778 sendq->qfrozen_cnt--; 4779 if (sendq->qfrozen_cnt == 0) { 4780 struct cam_eb *bus; 4781 4782 /* 4783 * If there is a timeout scheduled to release this 4784 * sim queue, remove it. The queue frozen count is 4785 * already at 0. 4786 */ 4787 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4788 callout_stop(&sim->callout); 4789 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4790 } 4791 bus = xpt_find_bus(sim->path_id); 4792 4793 if (run_queue) { 4794 /* 4795 * Now that we are unfrozen run the send queue. 4796 */ 4797 xpt_run_dev_sendq(bus); 4798 } 4799 xpt_release_bus(bus); 4800 } 4801 } 4802 } 4803 4804 void 4805 xpt_done(union ccb *done_ccb) 4806 { 4807 struct cam_sim *sim; 4808 4809 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n")); 4810 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) { 4811 /* 4812 * Queue up the request for handling by our SWI handler 4813 * any of the "non-immediate" type of ccbs. 4814 */ 4815 sim = done_ccb->ccb_h.path->bus->sim; 4816 switch (done_ccb->ccb_h.path->periph->type) { 4817 case CAM_PERIPH_BIO: 4818 TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h, 4819 sim_links.tqe); 4820 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4821 if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) { 4822 lockmgr(&cam_simq_lock, LK_EXCLUSIVE); 4823 TAILQ_INSERT_TAIL(&cam_simq, sim, 4824 links); 4825 sim->flags |= CAM_SIM_ON_DONEQ; 4826 lockmgr(&cam_simq_lock, LK_RELEASE); 4827 } 4828 if ((done_ccb->ccb_h.path->periph->flags & 4829 CAM_PERIPH_POLLED) == 0) 4830 setsoftcambio(); 4831 break; 4832 default: 4833 panic("unknown periph type %d", 4834 done_ccb->ccb_h.path->periph->type); 4835 } 4836 } 4837 } 4838 4839 union ccb * 4840 xpt_alloc_ccb(void) 4841 { 4842 union ccb *new_ccb; 4843 4844 new_ccb = kmalloc(sizeof(*new_ccb), M_CAMXPT, M_INTWAIT | M_ZERO); 4845 return (new_ccb); 4846 } 4847 4848 void 4849 xpt_free_ccb(union ccb *free_ccb) 4850 { 4851 kfree(free_ccb, M_CAMXPT); 4852 } 4853 4854 4855 4856 /* Private XPT functions */ 4857 4858 /* 4859 * Get a CAM control block for the caller. Charge the structure to the device 4860 * referenced by the path. If the this device has no 'credits' then the 4861 * device already has the maximum number of outstanding operations under way 4862 * and we return NULL. If we don't have sufficient resources to allocate more 4863 * ccbs, we also return NULL. 4864 */ 4865 static union ccb * 4866 xpt_get_ccb(struct cam_ed *device) 4867 { 4868 union ccb *new_ccb; 4869 struct cam_sim *sim; 4870 4871 sim = device->sim; 4872 if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) { 4873 new_ccb = xpt_alloc_ccb(); 4874 if ((sim->flags & CAM_SIM_MPSAFE) == 0) 4875 callout_init(&new_ccb->ccb_h.timeout_ch); 4876 SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h, 4877 xpt_links.sle); 4878 sim->ccb_count++; 4879 } 4880 cam_ccbq_take_opening(&device->ccbq); 4881 SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle); 4882 return (new_ccb); 4883 } 4884 4885 static void 4886 xpt_release_bus(struct cam_eb *bus) 4887 { 4888 4889 if ((--bus->refcount == 0) 4890 && (TAILQ_FIRST(&bus->et_entries) == NULL)) { 4891 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE); 4892 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links); 4893 xsoftc.bus_generation++; 4894 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE); 4895 kfree(bus, M_CAMXPT); 4896 } 4897 } 4898 4899 static struct cam_et * 4900 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4901 { 4902 struct cam_et *target; 4903 struct cam_et *cur_target; 4904 4905 target = kmalloc(sizeof(*target), M_CAMXPT, M_INTWAIT); 4906 4907 TAILQ_INIT(&target->ed_entries); 4908 target->bus = bus; 4909 target->target_id = target_id; 4910 target->refcount = 1; 4911 target->generation = 0; 4912 timevalclear(&target->last_reset); 4913 /* 4914 * Hold a reference to our parent bus so it 4915 * will not go away before we do. 4916 */ 4917 bus->refcount++; 4918 4919 /* Insertion sort into our bus's target list */ 4920 cur_target = TAILQ_FIRST(&bus->et_entries); 4921 while (cur_target != NULL && cur_target->target_id < target_id) 4922 cur_target = TAILQ_NEXT(cur_target, links); 4923 4924 if (cur_target != NULL) { 4925 TAILQ_INSERT_BEFORE(cur_target, target, links); 4926 } else { 4927 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4928 } 4929 bus->generation++; 4930 return (target); 4931 } 4932 4933 static void 4934 xpt_release_target(struct cam_eb *bus, struct cam_et *target) 4935 { 4936 if (target->refcount == 1) { 4937 KKASSERT(TAILQ_FIRST(&target->ed_entries) == NULL); 4938 TAILQ_REMOVE(&bus->et_entries, target, links); 4939 bus->generation++; 4940 xpt_release_bus(bus); 4941 KKASSERT(target->refcount == 1); 4942 kfree(target, M_CAMXPT); 4943 } else { 4944 --target->refcount; 4945 } 4946 } 4947 4948 static struct cam_ed * 4949 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 4950 { 4951 struct cam_path path; 4952 struct cam_ed *device; 4953 struct cam_devq *devq; 4954 cam_status status; 4955 4956 if (SIM_DEAD(bus->sim)) 4957 return (NULL); 4958 4959 /* Make space for us in the device queue on our bus */ 4960 if (bus->sim->devq == NULL) 4961 return(NULL); 4962 devq = bus->sim->devq; 4963 status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1); 4964 4965 if (status != CAM_REQ_CMP) { 4966 device = NULL; 4967 } else { 4968 device = kmalloc(sizeof(*device), M_CAMXPT, M_INTWAIT); 4969 } 4970 4971 if (device != NULL) { 4972 struct cam_ed *cur_device; 4973 4974 cam_init_pinfo(&device->alloc_ccb_entry.pinfo); 4975 device->alloc_ccb_entry.device = device; 4976 cam_init_pinfo(&device->send_ccb_entry.pinfo); 4977 device->send_ccb_entry.device = device; 4978 device->target = target; 4979 device->lun_id = lun_id; 4980 device->sim = bus->sim; 4981 /* Initialize our queues */ 4982 if (camq_init(&device->drvq, 0) != 0) { 4983 kfree(device, M_CAMXPT); 4984 return (NULL); 4985 } 4986 if (cam_ccbq_init(&device->ccbq, 4987 bus->sim->max_dev_openings) != 0) { 4988 camq_fini(&device->drvq); 4989 kfree(device, M_CAMXPT); 4990 return (NULL); 4991 } 4992 SLIST_INIT(&device->asyncs); 4993 SLIST_INIT(&device->periphs); 4994 device->generation = 0; 4995 device->owner = NULL; 4996 /* 4997 * Take the default quirk entry until we have inquiry 4998 * data and can determine a better quirk to use. 4999 */ 5000 device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1]; 5001 bzero(&device->inq_data, sizeof(device->inq_data)); 5002 device->inq_flags = 0; 5003 device->queue_flags = 0; 5004 device->serial_num = NULL; 5005 device->serial_num_len = 0; 5006 device->qfrozen_cnt = 0; 5007 device->flags = CAM_DEV_UNCONFIGURED; 5008 device->tag_delay_count = 0; 5009 device->tag_saved_openings = 0; 5010 device->refcount = 1; 5011 callout_init(&device->callout); 5012 5013 /* 5014 * Hold a reference to our parent target so it 5015 * will not go away before we do. 5016 */ 5017 target->refcount++; 5018 5019 /* 5020 * XXX should be limited by number of CCBs this bus can 5021 * do. 5022 */ 5023 bus->sim->max_ccbs += device->ccbq.devq_openings; 5024 /* Insertion sort into our target's device list */ 5025 cur_device = TAILQ_FIRST(&target->ed_entries); 5026 while (cur_device != NULL && cur_device->lun_id < lun_id) 5027 cur_device = TAILQ_NEXT(cur_device, links); 5028 if (cur_device != NULL) { 5029 TAILQ_INSERT_BEFORE(cur_device, device, links); 5030 } else { 5031 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 5032 } 5033 target->generation++; 5034 if (lun_id != CAM_LUN_WILDCARD) { 5035 xpt_compile_path(&path, 5036 NULL, 5037 bus->path_id, 5038 target->target_id, 5039 lun_id); 5040 xpt_devise_transport(&path); 5041 xpt_release_path(&path); 5042 } 5043 } 5044 return (device); 5045 } 5046 5047 static void 5048 xpt_reference_device(struct cam_ed *device) 5049 { 5050 ++device->refcount; 5051 } 5052 5053 static void 5054 xpt_release_device(struct cam_eb *bus, struct cam_et *target, 5055 struct cam_ed *device) 5056 { 5057 struct cam_devq *devq; 5058 5059 if (device->refcount == 1) { 5060 KKASSERT(device->flags & CAM_DEV_UNCONFIGURED); 5061 5062 if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX 5063 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX) 5064 panic("Removing device while still queued for ccbs"); 5065 5066 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 5067 device->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 5068 callout_stop(&device->callout); 5069 } 5070 5071 TAILQ_REMOVE(&target->ed_entries, device,links); 5072 target->generation++; 5073 bus->sim->max_ccbs -= device->ccbq.devq_openings; 5074 if (!SIM_DEAD(bus->sim)) { 5075 /* Release our slot in the devq */ 5076 devq = bus->sim->devq; 5077 cam_devq_resize(devq, devq->alloc_queue.array_size - 1); 5078 } 5079 camq_fini(&device->drvq); 5080 camq_fini(&device->ccbq.queue); 5081 xpt_release_target(bus, target); 5082 KKASSERT(device->refcount == 1); 5083 kfree(device, M_CAMXPT); 5084 } else { 5085 --device->refcount; 5086 } 5087 } 5088 5089 static u_int32_t 5090 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 5091 { 5092 int diff; 5093 int result; 5094 struct cam_ed *dev; 5095 5096 dev = path->device; 5097 5098 diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings); 5099 result = cam_ccbq_resize(&dev->ccbq, newopenings); 5100 if (result == CAM_REQ_CMP && (diff < 0)) { 5101 dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED; 5102 } 5103 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5104 || (dev->inq_flags & SID_CmdQue) != 0) 5105 dev->tag_saved_openings = newopenings; 5106 /* Adjust the global limit */ 5107 dev->sim->max_ccbs += diff; 5108 return (result); 5109 } 5110 5111 static struct cam_eb * 5112 xpt_find_bus(path_id_t path_id) 5113 { 5114 struct cam_eb *bus; 5115 5116 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE); 5117 TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) { 5118 if (bus->path_id == path_id) { 5119 bus->refcount++; 5120 break; 5121 } 5122 } 5123 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE); 5124 return (bus); 5125 } 5126 5127 static struct cam_et * 5128 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 5129 { 5130 struct cam_et *target; 5131 5132 TAILQ_FOREACH(target, &bus->et_entries, links) { 5133 if (target->target_id == target_id) { 5134 target->refcount++; 5135 break; 5136 } 5137 } 5138 return (target); 5139 } 5140 5141 static struct cam_ed * 5142 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 5143 { 5144 struct cam_ed *device; 5145 5146 TAILQ_FOREACH(device, &target->ed_entries, links) { 5147 if (device->lun_id == lun_id) { 5148 device->refcount++; 5149 break; 5150 } 5151 } 5152 return (device); 5153 } 5154 5155 typedef struct { 5156 union ccb *request_ccb; 5157 struct ccb_pathinq *cpi; 5158 int counter; 5159 } xpt_scan_bus_info; 5160 5161 /* 5162 * To start a scan, request_ccb is an XPT_SCAN_BUS ccb. 5163 * As the scan progresses, xpt_scan_bus is used as the 5164 * callback on completion function. 5165 */ 5166 static void 5167 xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb) 5168 { 5169 CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE, 5170 ("xpt_scan_bus\n")); 5171 switch (request_ccb->ccb_h.func_code) { 5172 case XPT_SCAN_BUS: 5173 { 5174 xpt_scan_bus_info *scan_info; 5175 union ccb *work_ccb; 5176 struct cam_path *path; 5177 u_int i; 5178 u_int max_target; 5179 u_int initiator_id; 5180 5181 /* Find out the characteristics of the bus */ 5182 work_ccb = xpt_alloc_ccb(); 5183 xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path, 5184 request_ccb->ccb_h.pinfo.priority); 5185 work_ccb->ccb_h.func_code = XPT_PATH_INQ; 5186 xpt_action(work_ccb); 5187 if (work_ccb->ccb_h.status != CAM_REQ_CMP) { 5188 request_ccb->ccb_h.status = work_ccb->ccb_h.status; 5189 xpt_free_ccb(work_ccb); 5190 xpt_done(request_ccb); 5191 return; 5192 } 5193 5194 if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) { 5195 /* 5196 * Can't scan the bus on an adapter that 5197 * cannot perform the initiator role. 5198 */ 5199 request_ccb->ccb_h.status = CAM_REQ_CMP; 5200 xpt_free_ccb(work_ccb); 5201 xpt_done(request_ccb); 5202 return; 5203 } 5204 5205 /* Save some state for use while we probe for devices */ 5206 scan_info = (xpt_scan_bus_info *) 5207 kmalloc(sizeof(xpt_scan_bus_info), M_CAMXPT, M_INTWAIT); 5208 scan_info->request_ccb = request_ccb; 5209 scan_info->cpi = &work_ccb->cpi; 5210 5211 /* Cache on our stack so we can work asynchronously */ 5212 max_target = scan_info->cpi->max_target; 5213 initiator_id = scan_info->cpi->initiator_id; 5214 5215 5216 /* 5217 * We can scan all targets in parallel, or do it sequentially. 5218 */ 5219 if (scan_info->cpi->hba_misc & PIM_SEQSCAN) { 5220 max_target = 0; 5221 scan_info->counter = 0; 5222 } else { 5223 scan_info->counter = scan_info->cpi->max_target + 1; 5224 if (scan_info->cpi->initiator_id < scan_info->counter) { 5225 scan_info->counter--; 5226 } 5227 } 5228 5229 for (i = 0; i <= max_target; i++) { 5230 cam_status status; 5231 if (i == initiator_id) 5232 continue; 5233 5234 status = xpt_create_path(&path, xpt_periph, 5235 request_ccb->ccb_h.path_id, 5236 i, 0); 5237 if (status != CAM_REQ_CMP) { 5238 kprintf("xpt_scan_bus: xpt_create_path failed" 5239 " with status %#x, bus scan halted\n", 5240 status); 5241 kfree(scan_info, M_CAMXPT); 5242 request_ccb->ccb_h.status = status; 5243 xpt_free_ccb(work_ccb); 5244 xpt_done(request_ccb); 5245 break; 5246 } 5247 work_ccb = xpt_alloc_ccb(); 5248 xpt_setup_ccb(&work_ccb->ccb_h, path, 5249 request_ccb->ccb_h.pinfo.priority); 5250 work_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5251 work_ccb->ccb_h.cbfcnp = xpt_scan_bus; 5252 work_ccb->ccb_h.ppriv_ptr0 = scan_info; 5253 work_ccb->crcn.flags = request_ccb->crcn.flags; 5254 xpt_action(work_ccb); 5255 } 5256 break; 5257 } 5258 case XPT_SCAN_LUN: 5259 { 5260 cam_status status; 5261 struct cam_path *path; 5262 xpt_scan_bus_info *scan_info; 5263 path_id_t path_id; 5264 target_id_t target_id; 5265 lun_id_t lun_id; 5266 5267 /* Reuse the same CCB to query if a device was really found */ 5268 scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0; 5269 xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path, 5270 request_ccb->ccb_h.pinfo.priority); 5271 request_ccb->ccb_h.func_code = XPT_GDEV_TYPE; 5272 5273 path_id = request_ccb->ccb_h.path_id; 5274 target_id = request_ccb->ccb_h.target_id; 5275 lun_id = request_ccb->ccb_h.target_lun; 5276 xpt_action(request_ccb); 5277 5278 if (request_ccb->ccb_h.status != CAM_REQ_CMP) { 5279 struct cam_ed *device; 5280 struct cam_et *target; 5281 int phl; 5282 5283 /* 5284 * If we already probed lun 0 successfully, or 5285 * we have additional configured luns on this 5286 * target that might have "gone away", go onto 5287 * the next lun. 5288 */ 5289 target = request_ccb->ccb_h.path->target; 5290 /* 5291 * We may touch devices that we don't 5292 * hold references too, so ensure they 5293 * don't disappear out from under us. 5294 * The target above is referenced by the 5295 * path in the request ccb. 5296 */ 5297 phl = 0; 5298 device = TAILQ_FIRST(&target->ed_entries); 5299 if (device != NULL) { 5300 phl = CAN_SRCH_HI_SPARSE(device); 5301 if (device->lun_id == 0) 5302 device = TAILQ_NEXT(device, links); 5303 } 5304 if ((lun_id != 0) || (device != NULL)) { 5305 if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl) 5306 lun_id++; 5307 } 5308 } else { 5309 struct cam_ed *device; 5310 5311 device = request_ccb->ccb_h.path->device; 5312 5313 if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) { 5314 /* Try the next lun */ 5315 if (lun_id < (CAM_SCSI2_MAXLUN-1) 5316 || CAN_SRCH_HI_DENSE(device)) 5317 lun_id++; 5318 } 5319 } 5320 5321 /* 5322 * Free the current request path- we're done with it. 5323 */ 5324 xpt_free_path(request_ccb->ccb_h.path); 5325 5326 /* 5327 * Check to see if we scan any further luns. 5328 */ 5329 if (lun_id == request_ccb->ccb_h.target_lun 5330 || lun_id > scan_info->cpi->max_lun) { 5331 int done; 5332 5333 hop_again: 5334 done = 0; 5335 if (scan_info->cpi->hba_misc & PIM_SEQSCAN) { 5336 scan_info->counter++; 5337 if (scan_info->counter == 5338 scan_info->cpi->initiator_id) { 5339 scan_info->counter++; 5340 } 5341 if (scan_info->counter >= 5342 scan_info->cpi->max_target+1) { 5343 done = 1; 5344 } 5345 } else { 5346 scan_info->counter--; 5347 if (scan_info->counter == 0) { 5348 done = 1; 5349 } 5350 } 5351 if (done) { 5352 xpt_free_ccb(request_ccb); 5353 xpt_free_ccb((union ccb *)scan_info->cpi); 5354 request_ccb = scan_info->request_ccb; 5355 kfree(scan_info, M_CAMXPT); 5356 request_ccb->ccb_h.status = CAM_REQ_CMP; 5357 xpt_done(request_ccb); 5358 break; 5359 } 5360 5361 if ((scan_info->cpi->hba_misc & PIM_SEQSCAN) == 0) { 5362 break; 5363 } 5364 status = xpt_create_path(&path, xpt_periph, 5365 scan_info->request_ccb->ccb_h.path_id, 5366 scan_info->counter, 0); 5367 if (status != CAM_REQ_CMP) { 5368 kprintf("xpt_scan_bus: xpt_create_path failed" 5369 " with status %#x, bus scan halted\n", 5370 status); 5371 xpt_free_ccb(request_ccb); 5372 xpt_free_ccb((union ccb *)scan_info->cpi); 5373 request_ccb = scan_info->request_ccb; 5374 kfree(scan_info, M_CAMXPT); 5375 request_ccb->ccb_h.status = status; 5376 xpt_done(request_ccb); 5377 break; 5378 } 5379 xpt_setup_ccb(&request_ccb->ccb_h, path, 5380 request_ccb->ccb_h.pinfo.priority); 5381 request_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5382 request_ccb->ccb_h.cbfcnp = xpt_scan_bus; 5383 request_ccb->ccb_h.ppriv_ptr0 = scan_info; 5384 request_ccb->crcn.flags = 5385 scan_info->request_ccb->crcn.flags; 5386 } else { 5387 status = xpt_create_path(&path, xpt_periph, 5388 path_id, target_id, lun_id); 5389 if (status != CAM_REQ_CMP) { 5390 kprintf("xpt_scan_bus: xpt_create_path failed " 5391 "with status %#x, halting LUN scan\n", 5392 status); 5393 goto hop_again; 5394 } 5395 xpt_setup_ccb(&request_ccb->ccb_h, path, 5396 request_ccb->ccb_h.pinfo.priority); 5397 request_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5398 request_ccb->ccb_h.cbfcnp = xpt_scan_bus; 5399 request_ccb->ccb_h.ppriv_ptr0 = scan_info; 5400 request_ccb->crcn.flags = 5401 scan_info->request_ccb->crcn.flags; 5402 } 5403 xpt_action(request_ccb); 5404 break; 5405 } 5406 default: 5407 break; 5408 } 5409 } 5410 5411 typedef enum { 5412 PROBE_TUR, 5413 PROBE_INQUIRY, /* this counts as DV0 for Basic Domain Validation */ 5414 PROBE_FULL_INQUIRY, 5415 PROBE_MODE_SENSE, 5416 PROBE_SERIAL_NUM_0, 5417 PROBE_SERIAL_NUM_1, 5418 PROBE_TUR_FOR_NEGOTIATION, 5419 PROBE_INQUIRY_BASIC_DV1, 5420 PROBE_INQUIRY_BASIC_DV2, 5421 PROBE_DV_EXIT 5422 } probe_action; 5423 5424 typedef enum { 5425 PROBE_INQUIRY_CKSUM = 0x01, 5426 PROBE_SERIAL_CKSUM = 0x02, 5427 PROBE_NO_ANNOUNCE = 0x04 5428 } probe_flags; 5429 5430 typedef struct { 5431 TAILQ_HEAD(, ccb_hdr) request_ccbs; 5432 probe_action action; 5433 union ccb saved_ccb; 5434 probe_flags flags; 5435 MD5_CTX context; 5436 u_int8_t digest[16]; 5437 } probe_softc; 5438 5439 static void 5440 xpt_scan_lun(struct cam_periph *periph, struct cam_path *path, 5441 cam_flags flags, union ccb *request_ccb) 5442 { 5443 struct ccb_pathinq cpi; 5444 cam_status status; 5445 struct cam_path *new_path; 5446 struct cam_periph *old_periph; 5447 5448 CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE, 5449 ("xpt_scan_lun\n")); 5450 5451 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 5452 cpi.ccb_h.func_code = XPT_PATH_INQ; 5453 xpt_action((union ccb *)&cpi); 5454 5455 if (cpi.ccb_h.status != CAM_REQ_CMP) { 5456 if (request_ccb != NULL) { 5457 request_ccb->ccb_h.status = cpi.ccb_h.status; 5458 xpt_done(request_ccb); 5459 } 5460 return; 5461 } 5462 5463 if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) { 5464 /* 5465 * Can't scan the bus on an adapter that 5466 * cannot perform the initiator role. 5467 */ 5468 if (request_ccb != NULL) { 5469 request_ccb->ccb_h.status = CAM_REQ_CMP; 5470 xpt_done(request_ccb); 5471 } 5472 return; 5473 } 5474 5475 if (request_ccb == NULL) { 5476 request_ccb = kmalloc(sizeof(union ccb), M_CAMXPT, M_INTWAIT); 5477 new_path = kmalloc(sizeof(*new_path), M_CAMXPT, M_INTWAIT); 5478 status = xpt_compile_path(new_path, xpt_periph, 5479 path->bus->path_id, 5480 path->target->target_id, 5481 path->device->lun_id); 5482 5483 if (status != CAM_REQ_CMP) { 5484 xpt_print(path, "xpt_scan_lun: can't compile path, " 5485 "can't continue\n"); 5486 kfree(request_ccb, M_CAMXPT); 5487 kfree(new_path, M_CAMXPT); 5488 return; 5489 } 5490 xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1); 5491 request_ccb->ccb_h.cbfcnp = xptscandone; 5492 request_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5493 request_ccb->crcn.flags = flags; 5494 } 5495 5496 if ((old_periph = cam_periph_find(path, "probe")) != NULL) { 5497 probe_softc *softc; 5498 5499 softc = (probe_softc *)old_periph->softc; 5500 TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h, 5501 periph_links.tqe); 5502 } else { 5503 status = cam_periph_alloc(proberegister, NULL, probecleanup, 5504 probestart, "probe", 5505 CAM_PERIPH_BIO, 5506 request_ccb->ccb_h.path, NULL, 0, 5507 request_ccb); 5508 5509 if (status != CAM_REQ_CMP) { 5510 xpt_print(path, "xpt_scan_lun: cam_alloc_periph " 5511 "returned an error, can't continue probe\n"); 5512 request_ccb->ccb_h.status = status; 5513 xpt_done(request_ccb); 5514 } 5515 } 5516 } 5517 5518 static void 5519 xptscandone(struct cam_periph *periph, union ccb *done_ccb) 5520 { 5521 xpt_release_path(done_ccb->ccb_h.path); 5522 kfree(done_ccb->ccb_h.path, M_CAMXPT); 5523 kfree(done_ccb, M_CAMXPT); 5524 } 5525 5526 static cam_status 5527 proberegister(struct cam_periph *periph, void *arg) 5528 { 5529 union ccb *request_ccb; /* CCB representing the probe request */ 5530 cam_status status; 5531 probe_softc *softc; 5532 5533 request_ccb = (union ccb *)arg; 5534 if (periph == NULL) { 5535 kprintf("proberegister: periph was NULL!!\n"); 5536 return(CAM_REQ_CMP_ERR); 5537 } 5538 5539 if (request_ccb == NULL) { 5540 kprintf("proberegister: no probe CCB, " 5541 "can't register device\n"); 5542 return(CAM_REQ_CMP_ERR); 5543 } 5544 5545 softc = kmalloc(sizeof(*softc), M_CAMXPT, M_INTWAIT | M_ZERO); 5546 TAILQ_INIT(&softc->request_ccbs); 5547 TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h, 5548 periph_links.tqe); 5549 softc->flags = 0; 5550 periph->softc = softc; 5551 status = cam_periph_acquire(periph); 5552 if (status != CAM_REQ_CMP) { 5553 return (status); 5554 } 5555 5556 5557 /* 5558 * Ensure we've waited at least a bus settle 5559 * delay before attempting to probe the device. 5560 * For HBAs that don't do bus resets, this won't make a difference. 5561 */ 5562 cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset, 5563 scsi_delay); 5564 probeschedule(periph); 5565 return(CAM_REQ_CMP); 5566 } 5567 5568 static void 5569 probeschedule(struct cam_periph *periph) 5570 { 5571 struct ccb_pathinq cpi; 5572 union ccb *ccb; 5573 probe_softc *softc; 5574 5575 softc = (probe_softc *)periph->softc; 5576 ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs); 5577 5578 xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1); 5579 cpi.ccb_h.func_code = XPT_PATH_INQ; 5580 xpt_action((union ccb *)&cpi); 5581 5582 /* 5583 * If a device has gone away and another device, or the same one, 5584 * is back in the same place, it should have a unit attention 5585 * condition pending. It will not report the unit attention in 5586 * response to an inquiry, which may leave invalid transfer 5587 * negotiations in effect. The TUR will reveal the unit attention 5588 * condition. Only send the TUR for lun 0, since some devices 5589 * will get confused by commands other than inquiry to non-existent 5590 * luns. If you think a device has gone away start your scan from 5591 * lun 0. This will insure that any bogus transfer settings are 5592 * invalidated. 5593 * 5594 * If we haven't seen the device before and the controller supports 5595 * some kind of transfer negotiation, negotiate with the first 5596 * sent command if no bus reset was performed at startup. This 5597 * ensures that the device is not confused by transfer negotiation 5598 * settings left over by loader or BIOS action. 5599 */ 5600 if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0) 5601 && (ccb->ccb_h.target_lun == 0)) { 5602 softc->action = PROBE_TUR; 5603 } else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0 5604 && (cpi.hba_misc & PIM_NOBUSRESET) != 0) { 5605 proberequestdefaultnegotiation(periph); 5606 softc->action = PROBE_INQUIRY; 5607 } else { 5608 softc->action = PROBE_INQUIRY; 5609 } 5610 5611 if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE) 5612 softc->flags |= PROBE_NO_ANNOUNCE; 5613 else 5614 softc->flags &= ~PROBE_NO_ANNOUNCE; 5615 5616 xpt_schedule(periph, ccb->ccb_h.pinfo.priority); 5617 } 5618 5619 static void 5620 probestart(struct cam_periph *periph, union ccb *start_ccb) 5621 { 5622 /* Probe the device that our peripheral driver points to */ 5623 struct ccb_scsiio *csio; 5624 probe_softc *softc; 5625 5626 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n")); 5627 5628 softc = (probe_softc *)periph->softc; 5629 csio = &start_ccb->csio; 5630 5631 switch (softc->action) { 5632 case PROBE_TUR: 5633 case PROBE_TUR_FOR_NEGOTIATION: 5634 case PROBE_DV_EXIT: 5635 { 5636 scsi_test_unit_ready(csio, 5637 /*retries*/4, 5638 probedone, 5639 MSG_SIMPLE_Q_TAG, 5640 SSD_FULL_SIZE, 5641 /*timeout*/60000); 5642 break; 5643 } 5644 case PROBE_INQUIRY: 5645 case PROBE_FULL_INQUIRY: 5646 case PROBE_INQUIRY_BASIC_DV1: 5647 case PROBE_INQUIRY_BASIC_DV2: 5648 { 5649 u_int inquiry_len; 5650 struct scsi_inquiry_data *inq_buf; 5651 5652 inq_buf = &periph->path->device->inq_data; 5653 5654 /* 5655 * If the device is currently configured, we calculate an 5656 * MD5 checksum of the inquiry data, and if the serial number 5657 * length is greater than 0, add the serial number data 5658 * into the checksum as well. Once the inquiry and the 5659 * serial number check finish, we attempt to figure out 5660 * whether we still have the same device. 5661 */ 5662 if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) { 5663 5664 MD5Init(&softc->context); 5665 MD5Update(&softc->context, (unsigned char *)inq_buf, 5666 sizeof(struct scsi_inquiry_data)); 5667 softc->flags |= PROBE_INQUIRY_CKSUM; 5668 if (periph->path->device->serial_num_len > 0) { 5669 MD5Update(&softc->context, 5670 periph->path->device->serial_num, 5671 periph->path->device->serial_num_len); 5672 softc->flags |= PROBE_SERIAL_CKSUM; 5673 } 5674 MD5Final(softc->digest, &softc->context); 5675 } 5676 5677 if (softc->action == PROBE_INQUIRY) 5678 inquiry_len = SHORT_INQUIRY_LENGTH; 5679 else 5680 inquiry_len = SID_ADDITIONAL_LENGTH(inq_buf); 5681 5682 /* 5683 * Some parallel SCSI devices fail to send an 5684 * ignore wide residue message when dealing with 5685 * odd length inquiry requests. Round up to be 5686 * safe. 5687 */ 5688 inquiry_len = roundup2(inquiry_len, 2); 5689 5690 if (softc->action == PROBE_INQUIRY_BASIC_DV1 5691 || softc->action == PROBE_INQUIRY_BASIC_DV2) { 5692 inq_buf = kmalloc(inquiry_len, M_CAMXPT, M_INTWAIT); 5693 } 5694 scsi_inquiry(csio, 5695 /*retries*/4, 5696 probedone, 5697 MSG_SIMPLE_Q_TAG, 5698 (u_int8_t *)inq_buf, 5699 inquiry_len, 5700 /*evpd*/FALSE, 5701 /*page_code*/0, 5702 SSD_MIN_SIZE, 5703 /*timeout*/60 * 1000); 5704 break; 5705 } 5706 case PROBE_MODE_SENSE: 5707 { 5708 void *mode_buf; 5709 int mode_buf_len; 5710 5711 mode_buf_len = sizeof(struct scsi_mode_header_6) 5712 + sizeof(struct scsi_mode_blk_desc) 5713 + sizeof(struct scsi_control_page); 5714 mode_buf = kmalloc(mode_buf_len, M_CAMXPT, M_INTWAIT); 5715 scsi_mode_sense(csio, 5716 /*retries*/4, 5717 probedone, 5718 MSG_SIMPLE_Q_TAG, 5719 /*dbd*/FALSE, 5720 SMS_PAGE_CTRL_CURRENT, 5721 SMS_CONTROL_MODE_PAGE, 5722 mode_buf, 5723 mode_buf_len, 5724 SSD_FULL_SIZE, 5725 /*timeout*/60000); 5726 break; 5727 } 5728 case PROBE_SERIAL_NUM_0: 5729 { 5730 struct scsi_vpd_supported_page_list *vpd_list = NULL; 5731 struct cam_ed *device; 5732 5733 device = periph->path->device; 5734 if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0) { 5735 vpd_list = kmalloc(sizeof(*vpd_list), M_CAMXPT, 5736 M_INTWAIT | M_ZERO); 5737 } 5738 5739 if (vpd_list != NULL) { 5740 scsi_inquiry(csio, 5741 /*retries*/4, 5742 probedone, 5743 MSG_SIMPLE_Q_TAG, 5744 (u_int8_t *)vpd_list, 5745 sizeof(*vpd_list), 5746 /*evpd*/TRUE, 5747 SVPD_SUPPORTED_PAGE_LIST, 5748 SSD_MIN_SIZE, 5749 /*timeout*/60 * 1000); 5750 break; 5751 } 5752 /* 5753 * We'll have to do without, let our probedone 5754 * routine finish up for us. 5755 */ 5756 start_ccb->csio.data_ptr = NULL; 5757 probedone(periph, start_ccb); 5758 return; 5759 } 5760 case PROBE_SERIAL_NUM_1: 5761 { 5762 struct scsi_vpd_unit_serial_number *serial_buf; 5763 struct cam_ed* device; 5764 5765 serial_buf = NULL; 5766 device = periph->path->device; 5767 device->serial_num = NULL; 5768 device->serial_num_len = 0; 5769 5770 serial_buf = (struct scsi_vpd_unit_serial_number *) 5771 kmalloc(sizeof(*serial_buf), M_CAMXPT, 5772 M_INTWAIT | M_ZERO); 5773 scsi_inquiry(csio, 5774 /*retries*/4, 5775 probedone, 5776 MSG_SIMPLE_Q_TAG, 5777 (u_int8_t *)serial_buf, 5778 sizeof(*serial_buf), 5779 /*evpd*/TRUE, 5780 SVPD_UNIT_SERIAL_NUMBER, 5781 SSD_MIN_SIZE, 5782 /*timeout*/60 * 1000); 5783 break; 5784 } 5785 } 5786 xpt_action(start_ccb); 5787 } 5788 5789 static void 5790 proberequestdefaultnegotiation(struct cam_periph *periph) 5791 { 5792 struct ccb_trans_settings cts; 5793 5794 xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1); 5795 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 5796 cts.type = CTS_TYPE_USER_SETTINGS; 5797 xpt_action((union ccb *)&cts); 5798 if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 5799 return; 5800 } 5801 cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS; 5802 cts.type = CTS_TYPE_CURRENT_SETTINGS; 5803 xpt_action((union ccb *)&cts); 5804 } 5805 5806 /* 5807 * Backoff Negotiation Code- only pertinent for SPI devices. 5808 */ 5809 static int 5810 proberequestbackoff(struct cam_periph *periph, struct cam_ed *device) 5811 { 5812 struct ccb_trans_settings cts; 5813 struct ccb_trans_settings_spi *spi; 5814 5815 memset(&cts, 0, sizeof (cts)); 5816 xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1); 5817 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 5818 cts.type = CTS_TYPE_CURRENT_SETTINGS; 5819 xpt_action((union ccb *)&cts); 5820 if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 5821 if (bootverbose) { 5822 xpt_print(periph->path, 5823 "failed to get current device settings\n"); 5824 } 5825 return (0); 5826 } 5827 if (cts.transport != XPORT_SPI) { 5828 if (bootverbose) { 5829 xpt_print(periph->path, "not SPI transport\n"); 5830 } 5831 return (0); 5832 } 5833 spi = &cts.xport_specific.spi; 5834 5835 /* 5836 * We cannot renegotiate sync rate if we don't have one. 5837 */ 5838 if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) { 5839 if (bootverbose) { 5840 xpt_print(periph->path, "no sync rate known\n"); 5841 } 5842 return (0); 5843 } 5844 5845 /* 5846 * We'll assert that we don't have to touch PPR options- the 5847 * SIM will see what we do with period and offset and adjust 5848 * the PPR options as appropriate. 5849 */ 5850 5851 /* 5852 * A sync rate with unknown or zero offset is nonsensical. 5853 * A sync period of zero means Async. 5854 */ 5855 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0 5856 || spi->sync_offset == 0 || spi->sync_period == 0) { 5857 if (bootverbose) { 5858 xpt_print(periph->path, "no sync rate available\n"); 5859 } 5860 return (0); 5861 } 5862 5863 if (device->flags & CAM_DEV_DV_HIT_BOTTOM) { 5864 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, 5865 ("hit async: giving up on DV\n")); 5866 return (0); 5867 } 5868 5869 5870 /* 5871 * Jump sync_period up by one, but stop at 5MHz and fall back to Async. 5872 * We don't try to remember 'last' settings to see if the SIM actually 5873 * gets into the speed we want to set. We check on the SIM telling 5874 * us that a requested speed is bad, but otherwise don't try and 5875 * check the speed due to the asynchronous and handshake nature 5876 * of speed setting. 5877 */ 5878 spi->valid = CTS_SPI_VALID_SYNC_RATE | CTS_SPI_VALID_SYNC_OFFSET; 5879 for (;;) { 5880 spi->sync_period++; 5881 if (spi->sync_period >= 0xf) { 5882 spi->sync_period = 0; 5883 spi->sync_offset = 0; 5884 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, 5885 ("setting to async for DV\n")); 5886 /* 5887 * Once we hit async, we don't want to try 5888 * any more settings. 5889 */ 5890 device->flags |= CAM_DEV_DV_HIT_BOTTOM; 5891 } else if (bootverbose) { 5892 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, 5893 ("DV: period 0x%x\n", spi->sync_period)); 5894 kprintf("setting period to 0x%x\n", spi->sync_period); 5895 } 5896 cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS; 5897 cts.type = CTS_TYPE_CURRENT_SETTINGS; 5898 xpt_action((union ccb *)&cts); 5899 if ((cts.ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { 5900 break; 5901 } 5902 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, 5903 ("DV: failed to set period 0x%x\n", spi->sync_period)); 5904 if (spi->sync_period == 0) { 5905 return (0); 5906 } 5907 } 5908 return (1); 5909 } 5910 5911 static void 5912 probedone(struct cam_periph *periph, union ccb *done_ccb) 5913 { 5914 probe_softc *softc; 5915 struct cam_path *path; 5916 u_int32_t priority; 5917 5918 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n")); 5919 5920 softc = (probe_softc *)periph->softc; 5921 path = done_ccb->ccb_h.path; 5922 priority = done_ccb->ccb_h.pinfo.priority; 5923 5924 switch (softc->action) { 5925 case PROBE_TUR: 5926 { 5927 if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 5928 5929 if (cam_periph_error(done_ccb, 0, 5930 SF_NO_PRINT, NULL) == ERESTART) 5931 return; 5932 else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) 5933 /* Don't wedge the queue */ 5934 xpt_release_devq(done_ccb->ccb_h.path, 5935 /*count*/1, 5936 /*run_queue*/TRUE); 5937 } 5938 softc->action = PROBE_INQUIRY; 5939 xpt_release_ccb(done_ccb); 5940 xpt_schedule(periph, priority); 5941 return; 5942 } 5943 case PROBE_INQUIRY: 5944 case PROBE_FULL_INQUIRY: 5945 { 5946 if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { 5947 struct scsi_inquiry_data *inq_buf; 5948 u_int8_t periph_qual; 5949 5950 path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID; 5951 inq_buf = &path->device->inq_data; 5952 5953 periph_qual = SID_QUAL(inq_buf); 5954 5955 switch(periph_qual) { 5956 case SID_QUAL_LU_CONNECTED: 5957 { 5958 u_int8_t len; 5959 5960 /* 5961 * We conservatively request only 5962 * SHORT_INQUIRY_LEN bytes of inquiry 5963 * information during our first try 5964 * at sending an INQUIRY. If the device 5965 * has more information to give, 5966 * perform a second request specifying 5967 * the amount of information the device 5968 * is willing to give. 5969 */ 5970 len = inq_buf->additional_length 5971 + offsetof(struct scsi_inquiry_data, 5972 additional_length) + 1; 5973 if (softc->action == PROBE_INQUIRY 5974 && len > SHORT_INQUIRY_LENGTH) { 5975 softc->action = PROBE_FULL_INQUIRY; 5976 xpt_release_ccb(done_ccb); 5977 xpt_schedule(periph, priority); 5978 return; 5979 } 5980 5981 xpt_find_quirk(path->device); 5982 5983 xpt_devise_transport(path); 5984 if (INQ_DATA_TQ_ENABLED(inq_buf)) 5985 softc->action = PROBE_MODE_SENSE; 5986 else 5987 softc->action = PROBE_SERIAL_NUM_0; 5988 5989 path->device->flags &= ~CAM_DEV_UNCONFIGURED; 5990 xpt_reference_device(path->device); 5991 5992 xpt_release_ccb(done_ccb); 5993 xpt_schedule(periph, priority); 5994 return; 5995 } 5996 default: 5997 break; 5998 } 5999 } else if (cam_periph_error(done_ccb, 0, 6000 done_ccb->ccb_h.target_lun > 0 6001 ? SF_RETRY_UA|SF_QUIET_IR 6002 : SF_RETRY_UA, 6003 &softc->saved_ccb) == ERESTART) { 6004 return; 6005 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 6006 /* Don't wedge the queue */ 6007 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 6008 /*run_queue*/TRUE); 6009 } 6010 /* 6011 * If we get to this point, we got an error status back 6012 * from the inquiry and the error status doesn't require 6013 * automatically retrying the command. Therefore, the 6014 * inquiry failed. If we had inquiry information before 6015 * for this device, but this latest inquiry command failed, 6016 * the device has probably gone away. If this device isn't 6017 * already marked unconfigured, notify the peripheral 6018 * drivers that this device is no more. 6019 */ 6020 if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0) { 6021 /* Send the async notification. */ 6022 xpt_async(AC_LOST_DEVICE, path, NULL); 6023 } 6024 6025 xpt_release_ccb(done_ccb); 6026 break; 6027 } 6028 case PROBE_MODE_SENSE: 6029 { 6030 struct ccb_scsiio *csio; 6031 struct scsi_mode_header_6 *mode_hdr; 6032 6033 csio = &done_ccb->csio; 6034 mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr; 6035 if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { 6036 struct scsi_control_page *page; 6037 u_int8_t *offset; 6038 6039 offset = ((u_int8_t *)&mode_hdr[1]) 6040 + mode_hdr->blk_desc_len; 6041 page = (struct scsi_control_page *)offset; 6042 path->device->queue_flags = page->queue_flags; 6043 } else if (cam_periph_error(done_ccb, 0, 6044 SF_RETRY_UA|SF_NO_PRINT, 6045 &softc->saved_ccb) == ERESTART) { 6046 return; 6047 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 6048 /* Don't wedge the queue */ 6049 xpt_release_devq(done_ccb->ccb_h.path, 6050 /*count*/1, /*run_queue*/TRUE); 6051 } 6052 xpt_release_ccb(done_ccb); 6053 kfree(mode_hdr, M_CAMXPT); 6054 softc->action = PROBE_SERIAL_NUM_0; 6055 xpt_schedule(periph, priority); 6056 return; 6057 } 6058 case PROBE_SERIAL_NUM_0: 6059 { 6060 struct ccb_scsiio *csio; 6061 struct scsi_vpd_supported_page_list *page_list; 6062 int length, serialnum_supported, i; 6063 6064 serialnum_supported = 0; 6065 csio = &done_ccb->csio; 6066 page_list = 6067 (struct scsi_vpd_supported_page_list *)csio->data_ptr; 6068 6069 if (page_list == NULL) { 6070 /* 6071 * Don't process the command as it was never sent 6072 */ 6073 } else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP 6074 && (page_list->length > 0)) { 6075 length = min(page_list->length, 6076 SVPD_SUPPORTED_PAGES_SIZE); 6077 for (i = 0; i < length; i++) { 6078 if (page_list->list[i] == 6079 SVPD_UNIT_SERIAL_NUMBER) { 6080 serialnum_supported = 1; 6081 break; 6082 } 6083 } 6084 } else if (cam_periph_error(done_ccb, 0, 6085 SF_RETRY_UA|SF_NO_PRINT, 6086 &softc->saved_ccb) == ERESTART) { 6087 return; 6088 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 6089 /* Don't wedge the queue */ 6090 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 6091 /*run_queue*/TRUE); 6092 } 6093 6094 if (page_list != NULL) 6095 kfree(page_list, M_DEVBUF); 6096 6097 if (serialnum_supported) { 6098 xpt_release_ccb(done_ccb); 6099 softc->action = PROBE_SERIAL_NUM_1; 6100 xpt_schedule(periph, priority); 6101 return; 6102 } 6103 xpt_release_ccb(done_ccb); 6104 softc->action = PROBE_TUR_FOR_NEGOTIATION; 6105 xpt_schedule(periph, done_ccb->ccb_h.pinfo.priority); 6106 return; 6107 } 6108 6109 case PROBE_SERIAL_NUM_1: 6110 { 6111 struct ccb_scsiio *csio; 6112 struct scsi_vpd_unit_serial_number *serial_buf; 6113 u_int32_t priority; 6114 int changed; 6115 int have_serialnum; 6116 6117 changed = 1; 6118 have_serialnum = 0; 6119 csio = &done_ccb->csio; 6120 priority = done_ccb->ccb_h.pinfo.priority; 6121 serial_buf = 6122 (struct scsi_vpd_unit_serial_number *)csio->data_ptr; 6123 6124 /* Clean up from previous instance of this device */ 6125 if (path->device->serial_num != NULL) { 6126 kfree(path->device->serial_num, M_CAMXPT); 6127 path->device->serial_num = NULL; 6128 path->device->serial_num_len = 0; 6129 } 6130 6131 if (serial_buf == NULL) { 6132 /* 6133 * Don't process the command as it was never sent 6134 */ 6135 } else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP 6136 && (serial_buf->length > 0)) { 6137 6138 have_serialnum = 1; 6139 path->device->serial_num = 6140 kmalloc((serial_buf->length + 1), 6141 M_CAMXPT, M_INTWAIT); 6142 bcopy(serial_buf->serial_num, 6143 path->device->serial_num, 6144 serial_buf->length); 6145 path->device->serial_num_len = serial_buf->length; 6146 path->device->serial_num[serial_buf->length] = '\0'; 6147 } else if (cam_periph_error(done_ccb, 0, 6148 SF_RETRY_UA|SF_NO_PRINT, 6149 &softc->saved_ccb) == ERESTART) { 6150 return; 6151 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 6152 /* Don't wedge the queue */ 6153 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 6154 /*run_queue*/TRUE); 6155 } 6156 6157 /* 6158 * Let's see if we have seen this device before. 6159 */ 6160 if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) { 6161 MD5_CTX context; 6162 u_int8_t digest[16]; 6163 6164 MD5Init(&context); 6165 6166 MD5Update(&context, 6167 (unsigned char *)&path->device->inq_data, 6168 sizeof(struct scsi_inquiry_data)); 6169 6170 if (have_serialnum) 6171 MD5Update(&context, serial_buf->serial_num, 6172 serial_buf->length); 6173 6174 MD5Final(digest, &context); 6175 if (bcmp(softc->digest, digest, 16) == 0) 6176 changed = 0; 6177 6178 /* 6179 * XXX Do we need to do a TUR in order to ensure 6180 * that the device really hasn't changed??? 6181 */ 6182 if ((changed != 0) 6183 && ((softc->flags & PROBE_NO_ANNOUNCE) == 0)) 6184 xpt_async(AC_LOST_DEVICE, path, NULL); 6185 } 6186 if (serial_buf != NULL) 6187 kfree(serial_buf, M_CAMXPT); 6188 6189 if (changed != 0) { 6190 /* 6191 * Now that we have all the necessary 6192 * information to safely perform transfer 6193 * negotiations... Controllers don't perform 6194 * any negotiation or tagged queuing until 6195 * after the first XPT_SET_TRAN_SETTINGS ccb is 6196 * received. So, on a new device, just retrieve 6197 * the user settings, and set them as the current 6198 * settings to set the device up. 6199 */ 6200 proberequestdefaultnegotiation(periph); 6201 xpt_release_ccb(done_ccb); 6202 6203 /* 6204 * Perform a TUR to allow the controller to 6205 * perform any necessary transfer negotiation. 6206 */ 6207 softc->action = PROBE_TUR_FOR_NEGOTIATION; 6208 xpt_schedule(periph, priority); 6209 return; 6210 } 6211 xpt_release_ccb(done_ccb); 6212 break; 6213 } 6214 case PROBE_TUR_FOR_NEGOTIATION: 6215 case PROBE_DV_EXIT: 6216 if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 6217 /* Don't wedge the queue */ 6218 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 6219 /*run_queue*/TRUE); 6220 } 6221 6222 xpt_reference_device(path->device); 6223 /* 6224 * Do Domain Validation for lun 0 on devices that claim 6225 * to support Synchronous Transfer modes. 6226 */ 6227 if (softc->action == PROBE_TUR_FOR_NEGOTIATION 6228 && done_ccb->ccb_h.target_lun == 0 6229 && (path->device->inq_data.flags & SID_Sync) != 0 6230 && (path->device->flags & CAM_DEV_IN_DV) == 0) { 6231 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, 6232 ("Begin Domain Validation\n")); 6233 path->device->flags |= CAM_DEV_IN_DV; 6234 xpt_release_ccb(done_ccb); 6235 softc->action = PROBE_INQUIRY_BASIC_DV1; 6236 xpt_schedule(periph, priority); 6237 return; 6238 } 6239 if (softc->action == PROBE_DV_EXIT) { 6240 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, 6241 ("Leave Domain Validation\n")); 6242 } 6243 path->device->flags &= 6244 ~(CAM_DEV_UNCONFIGURED|CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM); 6245 if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) { 6246 /* Inform the XPT that a new device has been found */ 6247 done_ccb->ccb_h.func_code = XPT_GDEV_TYPE; 6248 xpt_action(done_ccb); 6249 xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path, 6250 done_ccb); 6251 } 6252 xpt_release_ccb(done_ccb); 6253 break; 6254 case PROBE_INQUIRY_BASIC_DV1: 6255 case PROBE_INQUIRY_BASIC_DV2: 6256 { 6257 struct scsi_inquiry_data *nbuf; 6258 struct ccb_scsiio *csio; 6259 6260 if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 6261 /* Don't wedge the queue */ 6262 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 6263 /*run_queue*/TRUE); 6264 } 6265 csio = &done_ccb->csio; 6266 nbuf = (struct scsi_inquiry_data *)csio->data_ptr; 6267 if (bcmp(nbuf, &path->device->inq_data, SHORT_INQUIRY_LENGTH)) { 6268 xpt_print(path, 6269 "inquiry data fails comparison at DV%d step\n", 6270 softc->action == PROBE_INQUIRY_BASIC_DV1 ? 1 : 2); 6271 if (proberequestbackoff(periph, path->device)) { 6272 path->device->flags &= ~CAM_DEV_IN_DV; 6273 softc->action = PROBE_TUR_FOR_NEGOTIATION; 6274 } else { 6275 /* give up */ 6276 softc->action = PROBE_DV_EXIT; 6277 } 6278 kfree(nbuf, M_CAMXPT); 6279 xpt_release_ccb(done_ccb); 6280 xpt_schedule(periph, priority); 6281 return; 6282 } 6283 kfree(nbuf, M_CAMXPT); 6284 if (softc->action == PROBE_INQUIRY_BASIC_DV1) { 6285 softc->action = PROBE_INQUIRY_BASIC_DV2; 6286 xpt_release_ccb(done_ccb); 6287 xpt_schedule(periph, priority); 6288 return; 6289 } 6290 if (softc->action == PROBE_DV_EXIT) { 6291 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, 6292 ("Leave Domain Validation Successfully\n")); 6293 } 6294 path->device->flags &= 6295 ~(CAM_DEV_UNCONFIGURED|CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM); 6296 if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) { 6297 /* Inform the XPT that a new device has been found */ 6298 done_ccb->ccb_h.func_code = XPT_GDEV_TYPE; 6299 xpt_action(done_ccb); 6300 xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path, 6301 done_ccb); 6302 } 6303 xpt_release_ccb(done_ccb); 6304 break; 6305 } 6306 } 6307 done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs); 6308 TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe); 6309 done_ccb->ccb_h.status = CAM_REQ_CMP; 6310 xpt_done(done_ccb); 6311 if (TAILQ_FIRST(&softc->request_ccbs) == NULL) { 6312 cam_periph_invalidate(periph); 6313 cam_periph_release(periph); 6314 } else { 6315 probeschedule(periph); 6316 } 6317 } 6318 6319 static void 6320 probecleanup(struct cam_periph *periph) 6321 { 6322 kfree(periph->softc, M_CAMXPT); 6323 } 6324 6325 static void 6326 xpt_find_quirk(struct cam_ed *device) 6327 { 6328 caddr_t match; 6329 6330 match = cam_quirkmatch((caddr_t)&device->inq_data, 6331 (caddr_t)xpt_quirk_table, 6332 sizeof(xpt_quirk_table)/sizeof(*xpt_quirk_table), 6333 sizeof(*xpt_quirk_table), scsi_inquiry_match); 6334 6335 if (match == NULL) 6336 panic("xpt_find_quirk: device didn't match wildcard entry!!"); 6337 6338 device->quirk = (struct xpt_quirk_entry *)match; 6339 } 6340 6341 static int 6342 sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS) 6343 { 6344 int error, bool; 6345 6346 bool = cam_srch_hi; 6347 error = sysctl_handle_int(oidp, &bool, 0, req); 6348 if (error != 0 || req->newptr == NULL) 6349 return (error); 6350 if (bool == 0 || bool == 1) { 6351 cam_srch_hi = bool; 6352 return (0); 6353 } else { 6354 return (EINVAL); 6355 } 6356 } 6357 6358 static void 6359 xpt_devise_transport(struct cam_path *path) 6360 { 6361 struct ccb_pathinq cpi; 6362 struct ccb_trans_settings cts; 6363 struct scsi_inquiry_data *inq_buf; 6364 6365 /* Get transport information from the SIM */ 6366 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 6367 cpi.ccb_h.func_code = XPT_PATH_INQ; 6368 xpt_action((union ccb *)&cpi); 6369 6370 inq_buf = NULL; 6371 if ((path->device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0) 6372 inq_buf = &path->device->inq_data; 6373 path->device->protocol = PROTO_SCSI; 6374 path->device->protocol_version = 6375 inq_buf != NULL ? SID_ANSI_REV(inq_buf) : cpi.protocol_version; 6376 path->device->transport = cpi.transport; 6377 path->device->transport_version = cpi.transport_version; 6378 6379 /* 6380 * Any device not using SPI3 features should 6381 * be considered SPI2 or lower. 6382 */ 6383 if (inq_buf != NULL) { 6384 if (path->device->transport == XPORT_SPI 6385 && (inq_buf->spi3data & SID_SPI_MASK) == 0 6386 && path->device->transport_version > 2) 6387 path->device->transport_version = 2; 6388 } else { 6389 struct cam_ed* otherdev; 6390 6391 for (otherdev = TAILQ_FIRST(&path->target->ed_entries); 6392 otherdev != NULL; 6393 otherdev = TAILQ_NEXT(otherdev, links)) { 6394 if (otherdev != path->device) 6395 break; 6396 } 6397 6398 if (otherdev != NULL) { 6399 /* 6400 * Initially assume the same versioning as 6401 * prior luns for this target. 6402 */ 6403 path->device->protocol_version = 6404 otherdev->protocol_version; 6405 path->device->transport_version = 6406 otherdev->transport_version; 6407 } else { 6408 /* Until we know better, opt for safty */ 6409 path->device->protocol_version = 2; 6410 if (path->device->transport == XPORT_SPI) 6411 path->device->transport_version = 2; 6412 else 6413 path->device->transport_version = 0; 6414 } 6415 } 6416 6417 /* 6418 * XXX 6419 * For a device compliant with SPC-2 we should be able 6420 * to determine the transport version supported by 6421 * scrutinizing the version descriptors in the 6422 * inquiry buffer. 6423 */ 6424 6425 /* Tell the controller what we think */ 6426 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 6427 cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS; 6428 cts.type = CTS_TYPE_CURRENT_SETTINGS; 6429 cts.transport = path->device->transport; 6430 cts.transport_version = path->device->transport_version; 6431 cts.protocol = path->device->protocol; 6432 cts.protocol_version = path->device->protocol_version; 6433 cts.proto_specific.valid = 0; 6434 cts.xport_specific.valid = 0; 6435 xpt_action((union ccb *)&cts); 6436 } 6437 6438 static void 6439 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device, 6440 int async_update) 6441 { 6442 struct ccb_pathinq cpi; 6443 struct ccb_trans_settings cur_cts; 6444 struct ccb_trans_settings_scsi *scsi; 6445 struct ccb_trans_settings_scsi *cur_scsi; 6446 struct cam_sim *sim; 6447 struct scsi_inquiry_data *inq_data; 6448 6449 if (device == NULL) { 6450 cts->ccb_h.status = CAM_PATH_INVALID; 6451 xpt_done((union ccb *)cts); 6452 return; 6453 } 6454 6455 if (cts->protocol == PROTO_UNKNOWN 6456 || cts->protocol == PROTO_UNSPECIFIED) { 6457 cts->protocol = device->protocol; 6458 cts->protocol_version = device->protocol_version; 6459 } 6460 6461 if (cts->protocol_version == PROTO_VERSION_UNKNOWN 6462 || cts->protocol_version == PROTO_VERSION_UNSPECIFIED) 6463 cts->protocol_version = device->protocol_version; 6464 6465 if (cts->protocol != device->protocol) { 6466 xpt_print(cts->ccb_h.path, "Uninitialized Protocol %x:%x?\n", 6467 cts->protocol, device->protocol); 6468 cts->protocol = device->protocol; 6469 } 6470 6471 if (cts->protocol_version > device->protocol_version) { 6472 if (bootverbose) { 6473 xpt_print(cts->ccb_h.path, "Down reving Protocol " 6474 "Version from %d to %d?\n", cts->protocol_version, 6475 device->protocol_version); 6476 } 6477 cts->protocol_version = device->protocol_version; 6478 } 6479 6480 if (cts->transport == XPORT_UNKNOWN 6481 || cts->transport == XPORT_UNSPECIFIED) { 6482 cts->transport = device->transport; 6483 cts->transport_version = device->transport_version; 6484 } 6485 6486 if (cts->transport_version == XPORT_VERSION_UNKNOWN 6487 || cts->transport_version == XPORT_VERSION_UNSPECIFIED) 6488 cts->transport_version = device->transport_version; 6489 6490 if (cts->transport != device->transport) { 6491 xpt_print(cts->ccb_h.path, "Uninitialized Transport %x:%x?\n", 6492 cts->transport, device->transport); 6493 cts->transport = device->transport; 6494 } 6495 6496 if (cts->transport_version > device->transport_version) { 6497 if (bootverbose) { 6498 xpt_print(cts->ccb_h.path, "Down reving Transport " 6499 "Version from %d to %d?\n", cts->transport_version, 6500 device->transport_version); 6501 } 6502 cts->transport_version = device->transport_version; 6503 } 6504 6505 sim = cts->ccb_h.path->bus->sim; 6506 6507 /* 6508 * Nothing more of interest to do unless 6509 * this is a device connected via the 6510 * SCSI protocol. 6511 */ 6512 if (cts->protocol != PROTO_SCSI) { 6513 if (async_update == FALSE) 6514 (*(sim->sim_action))(sim, (union ccb *)cts); 6515 return; 6516 } 6517 6518 inq_data = &device->inq_data; 6519 scsi = &cts->proto_specific.scsi; 6520 xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1); 6521 cpi.ccb_h.func_code = XPT_PATH_INQ; 6522 xpt_action((union ccb *)&cpi); 6523 6524 /* SCSI specific sanity checking */ 6525 if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0 6526 || (INQ_DATA_TQ_ENABLED(inq_data)) == 0 6527 || (device->queue_flags & SCP_QUEUE_DQUE) != 0 6528 || (device->quirk->mintags == 0)) { 6529 /* 6530 * Can't tag on hardware that doesn't support tags, 6531 * doesn't have it enabled, or has broken tag support. 6532 */ 6533 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6534 } 6535 6536 if (async_update == FALSE) { 6537 /* 6538 * Perform sanity checking against what the 6539 * controller and device can do. 6540 */ 6541 xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1); 6542 cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 6543 cur_cts.type = cts->type; 6544 xpt_action((union ccb *)&cur_cts); 6545 if ((cur_cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 6546 return; 6547 } 6548 cur_scsi = &cur_cts.proto_specific.scsi; 6549 if ((scsi->valid & CTS_SCSI_VALID_TQ) == 0) { 6550 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6551 scsi->flags |= cur_scsi->flags & CTS_SCSI_FLAGS_TAG_ENB; 6552 } 6553 if ((cur_scsi->valid & CTS_SCSI_VALID_TQ) == 0) 6554 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6555 } 6556 6557 /* SPI specific sanity checking */ 6558 if (cts->transport == XPORT_SPI && async_update == FALSE) { 6559 u_int spi3caps; 6560 struct ccb_trans_settings_spi *spi; 6561 struct ccb_trans_settings_spi *cur_spi; 6562 6563 spi = &cts->xport_specific.spi; 6564 6565 cur_spi = &cur_cts.xport_specific.spi; 6566 6567 /* Fill in any gaps in what the user gave us */ 6568 if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) 6569 spi->sync_period = cur_spi->sync_period; 6570 if ((cur_spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) 6571 spi->sync_period = 0; 6572 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0) 6573 spi->sync_offset = cur_spi->sync_offset; 6574 if ((cur_spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0) 6575 spi->sync_offset = 0; 6576 if ((spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0) 6577 spi->ppr_options = cur_spi->ppr_options; 6578 if ((cur_spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0) 6579 spi->ppr_options = 0; 6580 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0) 6581 spi->bus_width = cur_spi->bus_width; 6582 if ((cur_spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0) 6583 spi->bus_width = 0; 6584 if ((spi->valid & CTS_SPI_VALID_DISC) == 0) { 6585 spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; 6586 spi->flags |= cur_spi->flags & CTS_SPI_FLAGS_DISC_ENB; 6587 } 6588 if ((cur_spi->valid & CTS_SPI_VALID_DISC) == 0) 6589 spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; 6590 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 6591 && (inq_data->flags & SID_Sync) == 0 6592 && cts->type == CTS_TYPE_CURRENT_SETTINGS) 6593 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0) 6594 || (spi->sync_offset == 0) 6595 || (spi->sync_period == 0)) { 6596 /* Force async */ 6597 spi->sync_period = 0; 6598 spi->sync_offset = 0; 6599 } 6600 6601 switch (spi->bus_width) { 6602 case MSG_EXT_WDTR_BUS_32_BIT: 6603 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 6604 || (inq_data->flags & SID_WBus32) != 0 6605 || cts->type == CTS_TYPE_USER_SETTINGS) 6606 && (cpi.hba_inquiry & PI_WIDE_32) != 0) 6607 break; 6608 /* Fall Through to 16-bit */ 6609 case MSG_EXT_WDTR_BUS_16_BIT: 6610 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 6611 || (inq_data->flags & SID_WBus16) != 0 6612 || cts->type == CTS_TYPE_USER_SETTINGS) 6613 && (cpi.hba_inquiry & PI_WIDE_16) != 0) { 6614 spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT; 6615 break; 6616 } 6617 /* Fall Through to 8-bit */ 6618 default: /* New bus width?? */ 6619 case MSG_EXT_WDTR_BUS_8_BIT: 6620 /* All targets can do this */ 6621 spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT; 6622 break; 6623 } 6624 6625 spi3caps = cpi.xport_specific.spi.ppr_options; 6626 if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 6627 && cts->type == CTS_TYPE_CURRENT_SETTINGS) 6628 spi3caps &= inq_data->spi3data; 6629 6630 if ((spi3caps & SID_SPI_CLOCK_DT) == 0) 6631 spi->ppr_options &= ~MSG_EXT_PPR_DT_REQ; 6632 6633 if ((spi3caps & SID_SPI_IUS) == 0) 6634 spi->ppr_options &= ~MSG_EXT_PPR_IU_REQ; 6635 6636 if ((spi3caps & SID_SPI_QAS) == 0) 6637 spi->ppr_options &= ~MSG_EXT_PPR_QAS_REQ; 6638 6639 /* No SPI Transfer settings are allowed unless we are wide */ 6640 if (spi->bus_width == 0) 6641 spi->ppr_options = 0; 6642 6643 if ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) == 0) { 6644 /* 6645 * Can't tag queue without disconnection. 6646 */ 6647 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6648 scsi->valid |= CTS_SCSI_VALID_TQ; 6649 } 6650 6651 /* 6652 * If we are currently performing tagged transactions to 6653 * this device and want to change its negotiation parameters, 6654 * go non-tagged for a bit to give the controller a chance to 6655 * negotiate unhampered by tag messages. 6656 */ 6657 if (cts->type == CTS_TYPE_CURRENT_SETTINGS 6658 && (device->inq_flags & SID_CmdQue) != 0 6659 && (scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0 6660 && (spi->flags & (CTS_SPI_VALID_SYNC_RATE| 6661 CTS_SPI_VALID_SYNC_OFFSET| 6662 CTS_SPI_VALID_BUS_WIDTH)) != 0) 6663 xpt_toggle_tags(cts->ccb_h.path); 6664 } 6665 6666 if (cts->type == CTS_TYPE_CURRENT_SETTINGS 6667 && (scsi->valid & CTS_SCSI_VALID_TQ) != 0) { 6668 int device_tagenb; 6669 6670 /* 6671 * If we are transitioning from tags to no-tags or 6672 * vice-versa, we need to carefully freeze and restart 6673 * the queue so that we don't overlap tagged and non-tagged 6674 * commands. We also temporarily stop tags if there is 6675 * a change in transfer negotiation settings to allow 6676 * "tag-less" negotiation. 6677 */ 6678 if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 6679 || (device->inq_flags & SID_CmdQue) != 0) 6680 device_tagenb = TRUE; 6681 else 6682 device_tagenb = FALSE; 6683 6684 if (((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0 6685 && device_tagenb == FALSE) 6686 || ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) == 0 6687 && device_tagenb == TRUE)) { 6688 6689 if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) { 6690 /* 6691 * Delay change to use tags until after a 6692 * few commands have gone to this device so 6693 * the controller has time to perform transfer 6694 * negotiations without tagged messages getting 6695 * in the way. 6696 */ 6697 device->tag_delay_count = CAM_TAG_DELAY_COUNT; 6698 device->flags |= CAM_DEV_TAG_AFTER_COUNT; 6699 } else { 6700 struct ccb_relsim crs; 6701 6702 xpt_freeze_devq(cts->ccb_h.path, /*count*/1); 6703 device->inq_flags &= ~SID_CmdQue; 6704 xpt_dev_ccbq_resize(cts->ccb_h.path, 6705 sim->max_dev_openings); 6706 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 6707 device->tag_delay_count = 0; 6708 6709 xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path, 6710 /*priority*/1); 6711 crs.ccb_h.func_code = XPT_REL_SIMQ; 6712 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 6713 crs.openings 6714 = crs.release_timeout 6715 = crs.qfrozen_cnt 6716 = 0; 6717 xpt_action((union ccb *)&crs); 6718 } 6719 } 6720 } 6721 if (async_update == FALSE) 6722 (*(sim->sim_action))(sim, (union ccb *)cts); 6723 } 6724 6725 static void 6726 xpt_toggle_tags(struct cam_path *path) 6727 { 6728 struct cam_ed *dev; 6729 6730 /* 6731 * Give controllers a chance to renegotiate 6732 * before starting tag operations. We 6733 * "toggle" tagged queuing off then on 6734 * which causes the tag enable command delay 6735 * counter to come into effect. 6736 */ 6737 dev = path->device; 6738 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 6739 || ((dev->inq_flags & SID_CmdQue) != 0 6740 && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) { 6741 struct ccb_trans_settings cts; 6742 6743 xpt_setup_ccb(&cts.ccb_h, path, 1); 6744 cts.protocol = PROTO_SCSI; 6745 cts.protocol_version = PROTO_VERSION_UNSPECIFIED; 6746 cts.transport = XPORT_UNSPECIFIED; 6747 cts.transport_version = XPORT_VERSION_UNSPECIFIED; 6748 cts.proto_specific.scsi.flags = 0; 6749 cts.proto_specific.scsi.valid = CTS_SCSI_VALID_TQ; 6750 xpt_set_transfer_settings(&cts, path->device, 6751 /*async_update*/TRUE); 6752 cts.proto_specific.scsi.flags = CTS_SCSI_FLAGS_TAG_ENB; 6753 xpt_set_transfer_settings(&cts, path->device, 6754 /*async_update*/TRUE); 6755 } 6756 } 6757 6758 static void 6759 xpt_start_tags(struct cam_path *path) 6760 { 6761 struct ccb_relsim crs; 6762 struct cam_ed *device; 6763 struct cam_sim *sim; 6764 int newopenings; 6765 6766 device = path->device; 6767 sim = path->bus->sim; 6768 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 6769 xpt_freeze_devq(path, /*count*/1); 6770 device->inq_flags |= SID_CmdQue; 6771 if (device->tag_saved_openings != 0) 6772 newopenings = device->tag_saved_openings; 6773 else 6774 newopenings = min(device->quirk->maxtags, 6775 sim->max_tagged_dev_openings); 6776 xpt_dev_ccbq_resize(path, newopenings); 6777 xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1); 6778 crs.ccb_h.func_code = XPT_REL_SIMQ; 6779 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 6780 crs.openings 6781 = crs.release_timeout 6782 = crs.qfrozen_cnt 6783 = 0; 6784 xpt_action((union ccb *)&crs); 6785 } 6786 6787 static int busses_to_config; 6788 static int busses_to_reset; 6789 6790 static int 6791 xptconfigbuscountfunc(struct cam_eb *bus, void *arg) 6792 { 6793 6794 sim_lock_assert_owned(bus->sim->lock); 6795 6796 if (bus->path_id != CAM_XPT_PATH_ID) { 6797 struct cam_path path; 6798 struct ccb_pathinq cpi; 6799 int can_negotiate; 6800 6801 busses_to_config++; 6802 xpt_compile_path(&path, NULL, bus->path_id, 6803 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 6804 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1); 6805 cpi.ccb_h.func_code = XPT_PATH_INQ; 6806 xpt_action((union ccb *)&cpi); 6807 can_negotiate = cpi.hba_inquiry; 6808 can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE); 6809 if ((cpi.hba_misc & PIM_NOBUSRESET) == 0 6810 && can_negotiate) 6811 busses_to_reset++; 6812 xpt_release_path(&path); 6813 } 6814 6815 return(1); 6816 } 6817 6818 static int 6819 xptconfigfunc(struct cam_eb *bus, void *arg) 6820 { 6821 struct cam_path *path; 6822 union ccb *work_ccb; 6823 6824 sim_lock_assert_owned(bus->sim->lock); 6825 6826 if (bus->path_id != CAM_XPT_PATH_ID) { 6827 cam_status status; 6828 int can_negotiate; 6829 6830 work_ccb = xpt_alloc_ccb(); 6831 if ((status = xpt_create_path(&path, xpt_periph, bus->path_id, 6832 CAM_TARGET_WILDCARD, 6833 CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){ 6834 kprintf("xptconfigfunc: xpt_create_path failed with " 6835 "status %#x for bus %d\n", status, bus->path_id); 6836 kprintf("xptconfigfunc: halting bus configuration\n"); 6837 xpt_free_ccb(work_ccb); 6838 busses_to_config--; 6839 xpt_finishconfig(xpt_periph, NULL); 6840 return(0); 6841 } 6842 xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1); 6843 work_ccb->ccb_h.func_code = XPT_PATH_INQ; 6844 xpt_action(work_ccb); 6845 if (work_ccb->ccb_h.status != CAM_REQ_CMP) { 6846 kprintf("xptconfigfunc: CPI failed on bus %d " 6847 "with status %d\n", bus->path_id, 6848 work_ccb->ccb_h.status); 6849 xpt_finishconfig(xpt_periph, work_ccb); 6850 return(1); 6851 } 6852 6853 can_negotiate = work_ccb->cpi.hba_inquiry; 6854 can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE); 6855 if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0 6856 && (can_negotiate != 0)) { 6857 xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1); 6858 work_ccb->ccb_h.func_code = XPT_RESET_BUS; 6859 work_ccb->ccb_h.cbfcnp = NULL; 6860 CAM_DEBUG(path, CAM_DEBUG_SUBTRACE, 6861 ("Resetting Bus\n")); 6862 xpt_action(work_ccb); 6863 xpt_finishconfig(xpt_periph, work_ccb); 6864 } else { 6865 /* Act as though we performed a successful BUS RESET */ 6866 work_ccb->ccb_h.func_code = XPT_RESET_BUS; 6867 xpt_finishconfig(xpt_periph, work_ccb); 6868 } 6869 } 6870 6871 return(1); 6872 } 6873 6874 static void 6875 xpt_config(void *arg) 6876 { 6877 /* 6878 * Now that interrupts are enabled, go find our devices 6879 */ 6880 6881 #ifdef CAMDEBUG 6882 /* Setup debugging flags and path */ 6883 #ifdef CAM_DEBUG_FLAGS 6884 cam_dflags = CAM_DEBUG_FLAGS; 6885 #else /* !CAM_DEBUG_FLAGS */ 6886 cam_dflags = CAM_DEBUG_NONE; 6887 #endif /* CAM_DEBUG_FLAGS */ 6888 #ifdef CAM_DEBUG_BUS 6889 if (cam_dflags != CAM_DEBUG_NONE) { 6890 /* 6891 * Locking is specifically omitted here. No SIMs have 6892 * registered yet, so xpt_create_path will only be searching 6893 * empty lists of targets and devices. 6894 */ 6895 if (xpt_create_path(&cam_dpath, xpt_periph, 6896 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 6897 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 6898 kprintf("xpt_config: xpt_create_path() failed for debug" 6899 " target %d:%d:%d, debugging disabled\n", 6900 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 6901 cam_dflags = CAM_DEBUG_NONE; 6902 } 6903 } else 6904 cam_dpath = NULL; 6905 #else /* !CAM_DEBUG_BUS */ 6906 cam_dpath = NULL; 6907 #endif /* CAM_DEBUG_BUS */ 6908 #endif /* CAMDEBUG */ 6909 6910 /* 6911 * Scan all installed busses. 6912 */ 6913 xpt_for_all_busses(xptconfigbuscountfunc, NULL); 6914 6915 if (busses_to_config == 0) { 6916 /* Call manually because we don't have any busses */ 6917 xpt_finishconfig(xpt_periph, NULL); 6918 } else { 6919 if (busses_to_reset > 0 && scsi_delay >= 2000) { 6920 kprintf("Waiting %d seconds for SCSI " 6921 "devices to settle\n", scsi_delay/1000); 6922 } 6923 xpt_for_all_busses(xptconfigfunc, NULL); 6924 } 6925 } 6926 6927 /* 6928 * If the given device only has one peripheral attached to it, and if that 6929 * peripheral is the passthrough driver, announce it. This insures that the 6930 * user sees some sort of announcement for every peripheral in their system. 6931 */ 6932 static int 6933 xptpassannouncefunc(struct cam_ed *device, void *arg) 6934 { 6935 struct cam_periph *periph; 6936 int i; 6937 6938 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 6939 periph = SLIST_NEXT(periph, periph_links), i++); 6940 6941 periph = SLIST_FIRST(&device->periphs); 6942 if ((i == 1) 6943 && (strncmp(periph->periph_name, "pass", 4) == 0)) 6944 xpt_announce_periph(periph, NULL); 6945 6946 return(1); 6947 } 6948 6949 static void 6950 xpt_finishconfig_task(void *context, int pending) 6951 { 6952 struct periph_driver **p_drv; 6953 int i; 6954 6955 if (busses_to_config == 0) { 6956 /* Register all the peripheral drivers */ 6957 /* XXX This will have to change when we have loadable modules */ 6958 p_drv = periph_drivers; 6959 for (i = 0; p_drv[i] != NULL; i++) { 6960 (*p_drv[i]->init)(); 6961 } 6962 6963 /* 6964 * Check for devices with no "standard" peripheral driver 6965 * attached. For any devices like that, announce the 6966 * passthrough driver so the user will see something. 6967 */ 6968 xpt_for_all_devices(xptpassannouncefunc, NULL); 6969 6970 /* Release our hook so that the boot can continue. */ 6971 config_intrhook_disestablish(xsoftc.xpt_config_hook); 6972 kfree(xsoftc.xpt_config_hook, M_CAMXPT); 6973 xsoftc.xpt_config_hook = NULL; 6974 } 6975 6976 kfree(context, M_CAMXPT); 6977 } 6978 6979 static void 6980 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb) 6981 { 6982 struct xpt_task *task; 6983 6984 if (done_ccb != NULL) { 6985 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 6986 ("xpt_finishconfig\n")); 6987 switch(done_ccb->ccb_h.func_code) { 6988 case XPT_RESET_BUS: 6989 if (done_ccb->ccb_h.status == CAM_REQ_CMP) { 6990 done_ccb->ccb_h.func_code = XPT_SCAN_BUS; 6991 done_ccb->ccb_h.cbfcnp = xpt_finishconfig; 6992 done_ccb->crcn.flags = 0; 6993 xpt_action(done_ccb); 6994 return; 6995 } 6996 /* FALLTHROUGH */ 6997 case XPT_SCAN_BUS: 6998 default: 6999 xpt_free_path(done_ccb->ccb_h.path); 7000 busses_to_config--; 7001 break; 7002 } 7003 } 7004 7005 if (busses_to_config == 0) { 7006 task = kmalloc(sizeof(struct xpt_task), M_CAMXPT, M_INTWAIT); 7007 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task); 7008 taskqueue_enqueue(taskqueue_thread[mycpuid], &task->task); 7009 } 7010 7011 if (done_ccb != NULL) 7012 xpt_free_ccb(done_ccb); 7013 } 7014 7015 cam_status 7016 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg, 7017 struct cam_path *path) 7018 { 7019 struct ccb_setasync csa; 7020 cam_status status; 7021 int xptpath = 0; 7022 7023 if (path == NULL) { 7024 lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE); 7025 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID, 7026 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 7027 if (status != CAM_REQ_CMP) { 7028 lockmgr(&xsoftc.xpt_lock, LK_RELEASE); 7029 return (status); 7030 } 7031 xptpath = 1; 7032 } 7033 7034 xpt_setup_ccb(&csa.ccb_h, path, /*priority*/5); 7035 csa.ccb_h.func_code = XPT_SASYNC_CB; 7036 csa.event_enable = event; 7037 csa.callback = cbfunc; 7038 csa.callback_arg = cbarg; 7039 xpt_action((union ccb *)&csa); 7040 status = csa.ccb_h.status; 7041 if (xptpath) { 7042 xpt_free_path(path); 7043 lockmgr(&xsoftc.xpt_lock, LK_RELEASE); 7044 } 7045 return (status); 7046 } 7047 7048 static void 7049 xptaction(struct cam_sim *sim, union ccb *work_ccb) 7050 { 7051 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 7052 7053 switch (work_ccb->ccb_h.func_code) { 7054 /* Common cases first */ 7055 case XPT_PATH_INQ: /* Path routing inquiry */ 7056 { 7057 struct ccb_pathinq *cpi; 7058 7059 cpi = &work_ccb->cpi; 7060 cpi->version_num = 1; /* XXX??? */ 7061 cpi->hba_inquiry = 0; 7062 cpi->target_sprt = 0; 7063 cpi->hba_misc = 0; 7064 cpi->hba_eng_cnt = 0; 7065 cpi->max_target = 0; 7066 cpi->max_lun = 0; 7067 cpi->initiator_id = 0; 7068 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 7069 strncpy(cpi->hba_vid, "", HBA_IDLEN); 7070 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 7071 cpi->unit_number = sim->unit_number; 7072 cpi->bus_id = sim->bus_id; 7073 cpi->base_transfer_speed = 0; 7074 cpi->protocol = PROTO_UNSPECIFIED; 7075 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 7076 cpi->transport = XPORT_UNSPECIFIED; 7077 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 7078 cpi->ccb_h.status = CAM_REQ_CMP; 7079 xpt_done(work_ccb); 7080 break; 7081 } 7082 default: 7083 work_ccb->ccb_h.status = CAM_REQ_INVALID; 7084 xpt_done(work_ccb); 7085 break; 7086 } 7087 } 7088 7089 /* 7090 * The xpt as a "controller" has no interrupt sources, so polling 7091 * is a no-op. 7092 */ 7093 static void 7094 xptpoll(struct cam_sim *sim) 7095 { 7096 } 7097 7098 void 7099 xpt_lock_buses(void) 7100 { 7101 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE); 7102 } 7103 7104 void 7105 xpt_unlock_buses(void) 7106 { 7107 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE); 7108 } 7109 7110 7111 /* 7112 * Should only be called by the machine interrupt dispatch routines, 7113 * so put these prototypes here instead of in the header. 7114 */ 7115 7116 static void 7117 swi_cambio(void *arg, void *frame) 7118 { 7119 camisr(NULL); 7120 } 7121 7122 static void 7123 camisr(void *dummy) 7124 { 7125 cam_simq_t queue; 7126 struct cam_sim *sim; 7127 7128 lockmgr(&cam_simq_lock, LK_EXCLUSIVE); 7129 TAILQ_INIT(&queue); 7130 TAILQ_CONCAT(&queue, &cam_simq, links); 7131 lockmgr(&cam_simq_lock, LK_RELEASE); 7132 7133 while ((sim = TAILQ_FIRST(&queue)) != NULL) { 7134 TAILQ_REMOVE(&queue, sim, links); 7135 CAM_SIM_LOCK(sim); 7136 sim->flags &= ~CAM_SIM_ON_DONEQ; 7137 camisr_runqueue(&sim->sim_doneq); 7138 CAM_SIM_UNLOCK(sim); 7139 } 7140 } 7141 7142 static void 7143 camisr_runqueue(void *V_queue) 7144 { 7145 cam_isrq_t *queue = V_queue; 7146 struct ccb_hdr *ccb_h; 7147 7148 while ((ccb_h = TAILQ_FIRST(queue)) != NULL) { 7149 int runq; 7150 7151 TAILQ_REMOVE(queue, ccb_h, sim_links.tqe); 7152 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 7153 7154 CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE, 7155 ("camisr\n")); 7156 7157 runq = FALSE; 7158 7159 if (ccb_h->flags & CAM_HIGH_POWER) { 7160 struct highpowerlist *hphead; 7161 struct cam_ed *device; 7162 union ccb *send_ccb; 7163 7164 lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE); 7165 hphead = &xsoftc.highpowerq; 7166 7167 send_ccb = (union ccb *)STAILQ_FIRST(hphead); 7168 7169 /* 7170 * Increment the count since this command is done. 7171 */ 7172 xsoftc.num_highpower++; 7173 7174 /* 7175 * Any high powered commands queued up? 7176 */ 7177 if (send_ccb != NULL) { 7178 device = send_ccb->ccb_h.path->device; 7179 7180 STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe); 7181 lockmgr(&xsoftc.xpt_lock, LK_RELEASE); 7182 7183 xpt_release_devq(send_ccb->ccb_h.path, 7184 /*count*/1, /*runqueue*/TRUE); 7185 } else 7186 lockmgr(&xsoftc.xpt_lock, LK_RELEASE); 7187 } 7188 7189 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 7190 struct cam_ed *dev; 7191 7192 dev = ccb_h->path->device; 7193 7194 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 7195 7196 if (!SIM_DEAD(ccb_h->path->bus->sim)) { 7197 ccb_h->path->bus->sim->devq->send_active--; 7198 ccb_h->path->bus->sim->devq->send_openings++; 7199 } 7200 7201 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 7202 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ) 7203 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 7204 && (dev->ccbq.dev_active == 0))) { 7205 7206 xpt_release_devq(ccb_h->path, /*count*/1, 7207 /*run_queue*/TRUE); 7208 } 7209 7210 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 7211 && (--dev->tag_delay_count == 0)) 7212 xpt_start_tags(ccb_h->path); 7213 7214 if ((dev->ccbq.queue.entries > 0) 7215 && (dev->qfrozen_cnt == 0) 7216 && (device_is_send_queued(dev) == 0)) { 7217 runq = xpt_schedule_dev_sendq(ccb_h->path->bus, 7218 dev); 7219 } 7220 } 7221 7222 if (ccb_h->status & CAM_RELEASE_SIMQ) { 7223 xpt_release_simq(ccb_h->path->bus->sim, 7224 /*run_queue*/TRUE); 7225 ccb_h->status &= ~CAM_RELEASE_SIMQ; 7226 runq = FALSE; 7227 } 7228 7229 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 7230 && (ccb_h->status & CAM_DEV_QFRZN)) { 7231 xpt_release_devq(ccb_h->path, /*count*/1, 7232 /*run_queue*/TRUE); 7233 ccb_h->status &= ~CAM_DEV_QFRZN; 7234 } else if (runq) { 7235 xpt_run_dev_sendq(ccb_h->path->bus); 7236 } 7237 7238 /* Call the peripheral driver's callback */ 7239 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 7240 } 7241 } 7242 7243 static void 7244 dead_sim_action(struct cam_sim *sim, union ccb *ccb) 7245 { 7246 7247 ccb->ccb_h.status = CAM_DEV_NOT_THERE; 7248 xpt_done(ccb); 7249 } 7250 7251 static void 7252 dead_sim_poll(struct cam_sim *sim) 7253 { 7254 } 7255