xref: /dflybsd-src/libexec/rtld-elf/rtld.c (revision 2d0700913d3c55b6181d2b703dd69aae2179ce8c)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>.
5  * Copyright 2012 John Marino <draco@marino.st>.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 /*
32  * Dynamic linker for ELF.
33  *
34  * John Polstra <jdp@polstra.com>.
35  */
36 
37 #ifndef __GNUC__
38 #error "GCC is needed to compile this file"
39 #endif
40 
41 #include <sys/param.h>
42 #include <sys/mount.h>
43 #include <sys/mman.h>
44 #include <sys/stat.h>
45 #include <sys/sysctl.h>
46 #include <sys/uio.h>
47 #include <sys/utsname.h>
48 #include <sys/ktrace.h>
49 #include <sys/resident.h>
50 #include <sys/tls.h>
51 
52 #include <machine/tls.h>
53 
54 #include <dlfcn.h>
55 #include <err.h>
56 #include <errno.h>
57 #include <fcntl.h>
58 #include <stdarg.h>
59 #include <stdio.h>
60 #include <stdlib.h>
61 #include <string.h>
62 #include <unistd.h>
63 
64 #include "debug.h"
65 #include "rtld.h"
66 #include "libmap.h"
67 #include "rtld_printf.h"
68 #include "notes.h"
69 
70 #define PATH_RTLD	"/usr/libexec/ld-elf.so.2"
71 #define LD_ARY_CACHE	16
72 
73 /* Types. */
74 typedef void (*func_ptr_type)();
75 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
76 
77 /*
78  * Function declarations.
79  */
80 static const char *_getenv_ld(const char *id);
81 static void die(void) __dead2;
82 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
83     const Elf_Dyn **, const Elf_Dyn **);
84 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
85     const Elf_Dyn *);
86 static void digest_dynamic(Obj_Entry *, int);
87 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
88 static Obj_Entry *dlcheck(void *);
89 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
90     int lo_flags, int mode, RtldLockState *lockstate);
91 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
92 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
93 static bool donelist_check(DoneList *, const Obj_Entry *);
94 static void errmsg_restore(char *);
95 static char *errmsg_save(void);
96 static void *fill_search_info(const char *, size_t, void *);
97 static char *find_library(const char *, const Obj_Entry *);
98 static const char *gethints(bool);
99 static void init_dag(Obj_Entry *);
100 static void init_rtld(caddr_t, Elf_Auxinfo **);
101 static void initlist_add_neededs(Needed_Entry *, Objlist *);
102 static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
103 static void linkmap_add(Obj_Entry *);
104 static void linkmap_delete(Obj_Entry *);
105 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
106 static void unload_filtees(Obj_Entry *);
107 static int load_needed_objects(Obj_Entry *, int);
108 static int load_preload_objects(void);
109 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
110 static void map_stacks_exec(RtldLockState *);
111 static Obj_Entry *obj_from_addr(const void *);
112 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
113 static void objlist_call_init(Objlist *, RtldLockState *);
114 static void objlist_clear(Objlist *);
115 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
116 static void objlist_init(Objlist *);
117 static void objlist_push_head(Objlist *, Obj_Entry *);
118 static void objlist_push_tail(Objlist *, Obj_Entry *);
119 static void objlist_remove(Objlist *, Obj_Entry *);
120 static void *path_enumerate(const char *, path_enum_proc, void *);
121 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
122     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
123 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
124     int flags, RtldLockState *lockstate);
125 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
126     RtldLockState *);
127 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
128     int flags, RtldLockState *lockstate);
129 static int rtld_dirname(const char *, char *);
130 static int rtld_dirname_abs(const char *, char *);
131 static void *rtld_dlopen(const char *name, int fd, int mode);
132 static void rtld_exit(void);
133 static char *search_library_path(const char *, const char *);
134 static const void **get_program_var_addr(const char *, RtldLockState *);
135 static void set_program_var(const char *, const void *);
136 static int symlook_default(SymLook *, const Obj_Entry *refobj);
137 static int symlook_global(SymLook *, DoneList *);
138 static void symlook_init_from_req(SymLook *, const SymLook *);
139 static int symlook_list(SymLook *, const Objlist *, DoneList *);
140 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
141 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
142 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
143 static void trace_loaded_objects(Obj_Entry *);
144 static void unlink_object(Obj_Entry *);
145 static void unload_object(Obj_Entry *);
146 static void unref_dag(Obj_Entry *);
147 static void ref_dag(Obj_Entry *);
148 static char *origin_subst_one(char *, const char *, const char *, bool);
149 static char *origin_subst(char *, const char *);
150 static void preinit_main(void);
151 static int  rtld_verify_versions(const Objlist *);
152 static int  rtld_verify_object_versions(Obj_Entry *);
153 static void object_add_name(Obj_Entry *, const char *);
154 static int  object_match_name(const Obj_Entry *, const char *);
155 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
156 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
157     struct dl_phdr_info *phdr_info);
158 static uint_fast32_t gnu_hash (const char *);
159 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
160     const unsigned long);
161 
162 void r_debug_state(struct r_debug *, struct link_map *) __noinline;
163 
164 /*
165  * Data declarations.
166  */
167 static char *error_message;	/* Message for dlerror(), or NULL */
168 struct r_debug r_debug;		/* for GDB; */
169 static bool libmap_disable;	/* Disable libmap */
170 static bool ld_loadfltr;	/* Immediate filters processing */
171 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
172 static bool trust;		/* False for setuid and setgid programs */
173 static bool dangerous_ld_env;	/* True if environment variables have been
174 				   used to affect the libraries loaded */
175 static const char *ld_bind_now;	/* Environment variable for immediate binding */
176 static const char *ld_debug;	/* Environment variable for debugging */
177 static const char *ld_library_path; /* Environment variable for search path */
178 static char *ld_preload;	/* Environment variable for libraries to
179 				   load first */
180 static const char *ld_elf_hints_path; /* Environment variable for alternative hints path */
181 static const char *ld_tracing;	/* Called from ldd to print libs */
182 static const char *ld_utrace;	/* Use utrace() to log events. */
183 static int (*rtld_functrace)(   /* Optional function call tracing hook */
184 	const char *caller_obj,
185 	const char *callee_obj,
186 	const char *callee_func,
187 	void *stack);
188 static const Obj_Entry *rtld_functrace_obj;	/* Object thereof */
189 static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
190 static Obj_Entry **obj_tail;	/* Link field of last object in list */
191 static Obj_Entry **preload_tail;
192 static Obj_Entry *obj_main;	/* The main program shared object */
193 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
194 static unsigned int obj_count;	/* Number of objects in obj_list */
195 static unsigned int obj_loads;	/* Number of objects in obj_list */
196 
197 static int	ld_resident;	/* Non-zero if resident */
198 static const char *ld_ary[LD_ARY_CACHE];
199 static int	ld_index;
200 static Objlist initlist;
201 
202 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
203   STAILQ_HEAD_INITIALIZER(list_global);
204 static Objlist list_main =	/* Objects loaded at program startup */
205   STAILQ_HEAD_INITIALIZER(list_main);
206 static Objlist list_fini =	/* Objects needing fini() calls */
207   STAILQ_HEAD_INITIALIZER(list_fini);
208 
209 static Elf_Sym sym_zero;	/* For resolving undefined weak refs. */
210 
211 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
212 
213 extern Elf_Dyn _DYNAMIC;
214 #pragma weak _DYNAMIC
215 #ifndef RTLD_IS_DYNAMIC
216 #define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
217 #endif
218 
219 #ifdef ENABLE_OSRELDATE
220 int osreldate;
221 #endif
222 
223 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
224 static int max_stack_flags;
225 
226 /*
227  * Global declarations normally provided by crt1.  The dynamic linker is
228  * not built with crt1, so we have to provide them ourselves.
229  */
230 char *__progname;
231 char **environ;
232 
233 /*
234  * Used to pass argc, argv to init functions.
235  */
236 int main_argc;
237 char **main_argv;
238 
239 /*
240  * Globals to control TLS allocation.
241  */
242 size_t tls_last_offset;		/* Static TLS offset of last module */
243 size_t tls_last_size;		/* Static TLS size of last module */
244 size_t tls_static_space;	/* Static TLS space allocated */
245 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
246 int tls_max_index = 1;		/* Largest module index allocated */
247 
248 /*
249  * Fill in a DoneList with an allocation large enough to hold all of
250  * the currently-loaded objects.  Keep this as a macro since it calls
251  * alloca and we want that to occur within the scope of the caller.
252  */
253 #define donelist_init(dlp)					\
254     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
255     assert((dlp)->objs != NULL),				\
256     (dlp)->num_alloc = obj_count,				\
257     (dlp)->num_used = 0)
258 
259 #define	UTRACE_DLOPEN_START		1
260 #define	UTRACE_DLOPEN_STOP		2
261 #define	UTRACE_DLCLOSE_START		3
262 #define	UTRACE_DLCLOSE_STOP		4
263 #define	UTRACE_LOAD_OBJECT		5
264 #define	UTRACE_UNLOAD_OBJECT		6
265 #define	UTRACE_ADD_RUNDEP		7
266 #define	UTRACE_PRELOAD_FINISHED		8
267 #define	UTRACE_INIT_CALL		9
268 #define	UTRACE_FINI_CALL		10
269 
270 struct utrace_rtld {
271 	char sig[4];			/* 'RTLD' */
272 	int event;
273 	void *handle;
274 	void *mapbase;			/* Used for 'parent' and 'init/fini' */
275 	size_t mapsize;
276 	int refcnt;			/* Used for 'mode' */
277 	char name[MAXPATHLEN];
278 };
279 
280 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
281 	if (ld_utrace != NULL)					\
282 		ld_utrace_log(e, h, mb, ms, r, n);		\
283 } while (0)
284 
285 static void
286 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
287     int refcnt, const char *name)
288 {
289 	struct utrace_rtld ut;
290 
291 	ut.sig[0] = 'R';
292 	ut.sig[1] = 'T';
293 	ut.sig[2] = 'L';
294 	ut.sig[3] = 'D';
295 	ut.event = event;
296 	ut.handle = handle;
297 	ut.mapbase = mapbase;
298 	ut.mapsize = mapsize;
299 	ut.refcnt = refcnt;
300 	bzero(ut.name, sizeof(ut.name));
301 	if (name)
302 		strlcpy(ut.name, name, sizeof(ut.name));
303 	utrace(&ut, sizeof(ut));
304 }
305 
306 /*
307  * Main entry point for dynamic linking.  The first argument is the
308  * stack pointer.  The stack is expected to be laid out as described
309  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
310  * Specifically, the stack pointer points to a word containing
311  * ARGC.  Following that in the stack is a null-terminated sequence
312  * of pointers to argument strings.  Then comes a null-terminated
313  * sequence of pointers to environment strings.  Finally, there is a
314  * sequence of "auxiliary vector" entries.
315  *
316  * The second argument points to a place to store the dynamic linker's
317  * exit procedure pointer and the third to a place to store the main
318  * program's object.
319  *
320  * The return value is the main program's entry point.
321  */
322 func_ptr_type
323 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
324 {
325     Elf_Auxinfo *aux_info[AT_COUNT];
326     int i;
327     int argc;
328     char **argv;
329     char **env;
330     Elf_Auxinfo *aux;
331     Elf_Auxinfo *auxp;
332     const char *argv0;
333     Objlist_Entry *entry;
334     Obj_Entry *obj;
335 
336     /* marino: DO NOT MOVE THESE VARIABLES TO _rtld
337              Obj_Entry **preload_tail;
338              Objlist initlist;
339        from global to here.  It will break the DWARF2 unwind scheme.
340        The system compilers were unaffected, but not gcc 4.6
341     */
342 
343     /*
344      * On entry, the dynamic linker itself has not been relocated yet.
345      * Be very careful not to reference any global data until after
346      * init_rtld has returned.  It is OK to reference file-scope statics
347      * and string constants, and to call static and global functions.
348      */
349 
350     /* Find the auxiliary vector on the stack. */
351     argc = *sp++;
352     argv = (char **) sp;
353     sp += argc + 1;	/* Skip over arguments and NULL terminator */
354     env = (char **) sp;
355 
356     /*
357      * If we aren't already resident we have to dig out some more info.
358      * Note that auxinfo does not exist when we are resident.
359      *
360      * I'm not sure about the ld_resident check.  It seems to read zero
361      * prior to relocation, which is what we want.  When running from a
362      * resident copy everything will be relocated so we are definitely
363      * good there.
364      */
365     if (ld_resident == 0)  {
366 	while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
367 	    ;
368 	aux = (Elf_Auxinfo *) sp;
369 
370 	/* Digest the auxiliary vector. */
371 	for (i = 0;  i < AT_COUNT;  i++)
372 	    aux_info[i] = NULL;
373 	for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
374 	    if (auxp->a_type < AT_COUNT)
375 		aux_info[auxp->a_type] = auxp;
376 	}
377 
378 	/* Initialize and relocate ourselves. */
379 	assert(aux_info[AT_BASE] != NULL);
380 	init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
381     }
382 
383     ld_index = 0;	/* don't use old env cache in case we are resident */
384     __progname = obj_rtld.path;
385     argv0 = argv[0] != NULL ? argv[0] : "(null)";
386     environ = env;
387     main_argc = argc;
388     main_argv = argv;
389 
390     trust = !issetugid();
391 
392     ld_bind_now = _getenv_ld("LD_BIND_NOW");
393     /*
394      * If the process is tainted, then we un-set the dangerous environment
395      * variables.  The process will be marked as tainted until setuid(2)
396      * is called.  If any child process calls setuid(2) we do not want any
397      * future processes to honor the potentially un-safe variables.
398      */
399     if (!trust) {
400 	if (   unsetenv("LD_DEBUG")
401 	    || unsetenv("LD_PRELOAD")
402 	    || unsetenv("LD_LIBRARY_PATH")
403 	    || unsetenv("LD_ELF_HINTS_PATH")
404 	    || unsetenv("LD_LIBMAP")
405 	    || unsetenv("LD_LIBMAP_DISABLE")
406 	    || unsetenv("LD_LOADFLTR")
407 	) {
408 	    _rtld_error("environment corrupt; aborting");
409 	    die();
410 	}
411     }
412     ld_debug = _getenv_ld("LD_DEBUG");
413     libmap_disable = _getenv_ld("LD_LIBMAP_DISABLE") != NULL;
414     libmap_override = (char *)_getenv_ld("LD_LIBMAP");
415     ld_library_path = _getenv_ld("LD_LIBRARY_PATH");
416     ld_preload = (char *)_getenv_ld("LD_PRELOAD");
417     ld_elf_hints_path = _getenv_ld("LD_ELF_HINTS_PATH");
418     ld_loadfltr = _getenv_ld("LD_LOADFLTR") != NULL;
419     dangerous_ld_env = (ld_library_path != NULL)
420 			|| (ld_preload != NULL)
421 			|| (ld_elf_hints_path != NULL)
422 			|| ld_loadfltr
423 			|| (libmap_override != NULL)
424 			|| libmap_disable
425 			;
426     ld_tracing = _getenv_ld("LD_TRACE_LOADED_OBJECTS");
427     ld_utrace = _getenv_ld("LD_UTRACE");
428 
429     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
430 	ld_elf_hints_path = _PATH_ELF_HINTS;
431 
432     if (ld_debug != NULL && *ld_debug != '\0')
433 	debug = 1;
434     dbg("%s is initialized, base address = %p", __progname,
435 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
436     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
437     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
438 
439     dbg("initializing thread locks");
440     lockdflt_init();
441 
442     /*
443      * If we are resident we can skip work that we have already done.
444      * Note that the stack is reset and there is no Elf_Auxinfo
445      * when running from a resident image, and the static globals setup
446      * between here and resident_skip will have already been setup.
447      */
448     if (ld_resident)
449 	goto resident_skip1;
450 
451     /*
452      * Load the main program, or process its program header if it is
453      * already loaded.
454      */
455     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
456 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
457 	dbg("loading main program");
458 	obj_main = map_object(fd, argv0, NULL);
459 	close(fd);
460 	if (obj_main == NULL)
461 	    die();
462 	max_stack_flags = obj->stack_flags;
463     } else {				/* Main program already loaded. */
464 	const Elf_Phdr *phdr;
465 	int phnum;
466 	caddr_t entry;
467 
468 	dbg("processing main program's program header");
469 	assert(aux_info[AT_PHDR] != NULL);
470 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
471 	assert(aux_info[AT_PHNUM] != NULL);
472 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
473 	assert(aux_info[AT_PHENT] != NULL);
474 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
475 	assert(aux_info[AT_ENTRY] != NULL);
476 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
477 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
478 	    die();
479     }
480 
481     char buf[MAXPATHLEN];
482     if (aux_info[AT_EXECPATH] != NULL) {
483 	char *kexecpath;
484 
485 	kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
486 	dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
487 	if (kexecpath[0] == '/')
488 		obj_main->path = kexecpath;
489 	else if (getcwd(buf, sizeof(buf)) == NULL ||
490 		strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
491 		strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
492 		obj_main->path = xstrdup(argv0);
493 	else
494 		obj_main->path = xstrdup(buf);
495     } else {
496 	char resolved[MAXPATHLEN];
497 	dbg("No AT_EXECPATH");
498 	if (argv0[0] == '/') {
499 		if (realpath(argv0, resolved) != NULL)
500 			obj_main->path = xstrdup(resolved);
501 		else
502 			obj_main->path = xstrdup(argv0);
503 	} else {
504 		if (getcwd(buf, sizeof(buf)) != NULL
505 		    && strlcat(buf, "/", sizeof(buf)) < sizeof(buf)
506 		    && strlcat(buf, argv0, sizeof (buf)) < sizeof(buf)
507 		    && access(buf, R_OK) == 0
508 		    && realpath(buf, resolved) != NULL)
509 			obj_main->path = xstrdup(resolved);
510 		else
511 			obj_main->path = xstrdup(argv0);
512 	}
513     }
514     dbg("obj_main path %s", obj_main->path);
515     obj_main->mainprog = true;
516 
517     if (aux_info[AT_STACKPROT] != NULL &&
518       aux_info[AT_STACKPROT]->a_un.a_val != 0)
519 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
520 
521     /*
522      * Get the actual dynamic linker pathname from the executable if
523      * possible.  (It should always be possible.)  That ensures that
524      * gdb will find the right dynamic linker even if a non-standard
525      * one is being used.
526      */
527     if (obj_main->interp != NULL &&
528       strcmp(obj_main->interp, obj_rtld.path) != 0) {
529 	free(obj_rtld.path);
530 	obj_rtld.path = xstrdup(obj_main->interp);
531 	__progname = obj_rtld.path;
532     }
533 
534     digest_dynamic(obj_main, 0);
535     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
536 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
537 	obj_main->dynsymcount);
538 
539     linkmap_add(obj_main);
540     linkmap_add(&obj_rtld);
541 
542     /* Link the main program into the list of objects. */
543     *obj_tail = obj_main;
544     obj_tail = &obj_main->next;
545     obj_count++;
546     obj_loads++;
547 
548     /* Initialize a fake symbol for resolving undefined weak references. */
549     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
550     sym_zero.st_shndx = SHN_UNDEF;
551     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
552 
553     if (!libmap_disable)
554         libmap_disable = (bool)lm_init(libmap_override);
555 
556     dbg("loading LD_PRELOAD libraries");
557     if (load_preload_objects() == -1)
558 	die();
559     preload_tail = obj_tail;
560 
561     dbg("loading needed objects");
562     if (load_needed_objects(obj_main, 0) == -1)
563 	die();
564 
565     /* Make a list of all objects loaded at startup. */
566     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
567 	objlist_push_tail(&list_main, obj);
568 	obj->refcount++;
569     }
570 
571     dbg("checking for required versions");
572     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
573 	die();
574 
575 resident_skip1:
576 
577     if (ld_tracing) {		/* We're done */
578 	trace_loaded_objects(obj_main);
579 	exit(0);
580     }
581 
582     if (ld_resident)		/* XXX clean this up! */
583 	goto resident_skip2;
584 
585     if (_getenv_ld("LD_DUMP_REL_PRE") != NULL) {
586        dump_relocations(obj_main);
587        exit (0);
588     }
589 
590     /* setup TLS for main thread */
591     dbg("initializing initial thread local storage");
592     STAILQ_FOREACH(entry, &list_main, link) {
593 	/*
594 	 * Allocate all the initial objects out of the static TLS
595 	 * block even if they didn't ask for it.
596 	 */
597 	allocate_tls_offset(entry->obj);
598     }
599 
600     tls_static_space = tls_last_offset + RTLD_STATIC_TLS_EXTRA;
601 
602     /*
603      * Do not try to allocate the TLS here, let libc do it itself.
604      * (crt1 for the program will call _init_tls())
605      */
606 
607     if (relocate_objects(obj_main,
608       ld_bind_now != NULL && *ld_bind_now != '\0',
609       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
610 	die();
611 
612     dbg("doing copy relocations");
613     if (do_copy_relocations(obj_main) == -1)
614 	die();
615 
616 resident_skip2:
617 
618     if (_getenv_ld("LD_RESIDENT_UNREGISTER_NOW")) {
619 	if (exec_sys_unregister(-1) < 0) {
620 	    dbg("exec_sys_unregister failed %d\n", errno);
621 	    exit(errno);
622 	}
623 	dbg("exec_sys_unregister success\n");
624 	exit(0);
625     }
626 
627     if (_getenv_ld("LD_DUMP_REL_POST") != NULL) {
628        dump_relocations(obj_main);
629        exit (0);
630     }
631 
632     dbg("initializing key program variables");
633     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
634     set_program_var("environ", env);
635     set_program_var("__elf_aux_vector", aux);
636 
637     if (_getenv_ld("LD_RESIDENT_REGISTER_NOW")) {
638 	extern void resident_start(void);
639 	ld_resident = 1;
640 	if (exec_sys_register(resident_start) < 0) {
641 	    dbg("exec_sys_register failed %d\n", errno);
642 	    exit(errno);
643 	}
644 	dbg("exec_sys_register success\n");
645 	exit(0);
646     }
647 
648     /* Make a list of init functions to call. */
649     objlist_init(&initlist);
650     initlist_add_objects(obj_list, preload_tail, &initlist);
651 
652     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
653 
654     map_stacks_exec(NULL);
655 
656     dbg("resolving ifuncs");
657     if (resolve_objects_ifunc(obj_main,
658       ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
659       NULL) == -1)
660 	die();
661 
662     /*
663      * Do NOT call the initlist here, give libc a chance to set up
664      * the initial TLS segment.  crt1 will then call _rtld_call_init().
665      */
666 
667     dbg("transferring control to program entry point = %p", obj_main->entry);
668 
669     /* Return the exit procedure and the program entry point. */
670     *exit_proc = rtld_exit;
671     *objp = obj_main;
672     return (func_ptr_type) obj_main->entry;
673 }
674 
675 /*
676  * Call the initialization list for dynamically loaded libraries.
677  * (called from crt1.c).
678  */
679 void
680 _rtld_call_init(void)
681 {
682     RtldLockState lockstate;
683     Obj_Entry *obj;
684 
685     if (!obj_main->note_present && obj_main->valid_hash_gnu) {
686 	/*
687 	 * The use of a linker script with a PHDRS directive that does not include
688 	 * PT_NOTE will block the crt_no_init note.  In this case we'll look for the
689 	 * recently added GNU hash dynamic tag which gets built by default.  It is
690 	 * extremely unlikely to find a pre-3.1 binary without a PT_NOTE header and
691 	 * a gnu hash tag.  If gnu hash found, consider binary to use new crt code.
692 	 */
693 	obj_main->crt_no_init = true;
694 	dbg("Setting crt_no_init without presence of PT_NOTE header");
695     }
696 
697     wlock_acquire(rtld_bind_lock, &lockstate);
698     if (obj_main->crt_no_init)
699 	preinit_main();
700     else {
701 	/*
702 	 * Make sure we don't call the main program's init and fini functions
703 	 * for binaries linked with old crt1 which calls _init itself.
704 	 */
705 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
706 	obj_main->init_array = obj_main->fini_array = (Elf_Addr)NULL;
707     }
708     objlist_call_init(&initlist, &lockstate);
709     objlist_clear(&initlist);
710     dbg("loading filtees");
711     for (obj = obj_list->next; obj != NULL; obj = obj->next) {
712 	if (ld_loadfltr || obj->z_loadfltr)
713 	    load_filtees(obj, 0, &lockstate);
714     }
715     lock_release(rtld_bind_lock, &lockstate);
716 }
717 
718 void *
719 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
720 {
721 	void *ptr;
722 	Elf_Addr target;
723 
724 	ptr = (void *)make_function_pointer(def, obj);
725 	target = ((Elf_Addr (*)(void))ptr)();
726 	return ((void *)target);
727 }
728 
729 Elf_Addr
730 _rtld_bind(Obj_Entry *obj, Elf_Size reloff, void *stack)
731 {
732     const Elf_Rel *rel;
733     const Elf_Sym *def;
734     const Obj_Entry *defobj;
735     Elf_Addr *where;
736     Elf_Addr target;
737     RtldLockState lockstate;
738 
739     rlock_acquire(rtld_bind_lock, &lockstate);
740     if (sigsetjmp(lockstate.env, 0) != 0)
741 	    lock_upgrade(rtld_bind_lock, &lockstate);
742     if (obj->pltrel)
743 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
744     else
745 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
746 
747     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
748     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
749 	&lockstate);
750     if (def == NULL)
751 	die();
752     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
753 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
754     else
755         target = (Elf_Addr)(defobj->relocbase + def->st_value);
756 
757     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
758       defobj->strtab + def->st_name, basename(obj->path),
759       (void *)target, basename(defobj->path));
760 
761     /*
762      * If we have a function call tracing hook, and the
763      * hook would like to keep tracing this one function,
764      * prevent the relocation so we will wind up here
765      * the next time again.
766      *
767      * We don't want to functrace calls from the functracer
768      * to avoid recursive loops.
769      */
770     if (rtld_functrace != NULL && obj != rtld_functrace_obj) {
771 	if (rtld_functrace(obj->path,
772 			   defobj->path,
773 			   defobj->strtab + def->st_name,
774 			   stack)) {
775 	    lock_release(rtld_bind_lock, &lockstate);
776 	    return target;
777 	}
778     }
779 
780     /*
781      * Write the new contents for the jmpslot. Note that depending on
782      * architecture, the value which we need to return back to the
783      * lazy binding trampoline may or may not be the target
784      * address. The value returned from reloc_jmpslot() is the value
785      * that the trampoline needs.
786      */
787     target = reloc_jmpslot(where, target, defobj, obj, rel);
788     lock_release(rtld_bind_lock, &lockstate);
789     return target;
790 }
791 
792 /*
793  * Error reporting function.  Use it like printf.  If formats the message
794  * into a buffer, and sets things up so that the next call to dlerror()
795  * will return the message.
796  */
797 void
798 _rtld_error(const char *fmt, ...)
799 {
800     static char buf[512];
801     va_list ap;
802 
803     va_start(ap, fmt);
804     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
805     error_message = buf;
806     va_end(ap);
807 }
808 
809 /*
810  * Return a dynamically-allocated copy of the current error message, if any.
811  */
812 static char *
813 errmsg_save(void)
814 {
815     return error_message == NULL ? NULL : xstrdup(error_message);
816 }
817 
818 /*
819  * Restore the current error message from a copy which was previously saved
820  * by errmsg_save().  The copy is freed.
821  */
822 static void
823 errmsg_restore(char *saved_msg)
824 {
825     if (saved_msg == NULL)
826 	error_message = NULL;
827     else {
828 	_rtld_error("%s", saved_msg);
829 	free(saved_msg);
830     }
831 }
832 
833 const char *
834 basename(const char *name)
835 {
836     const char *p = strrchr(name, '/');
837     return p != NULL ? p + 1 : name;
838 }
839 
840 static struct utsname uts;
841 
842 static char *
843 origin_subst_one(char *real, const char *kw, const char *subst,
844     bool may_free)
845 {
846 	char *p, *p1, *res, *resp;
847 	int subst_len, kw_len, subst_count, old_len, new_len;
848 
849 	kw_len = strlen(kw);
850 
851 	/*
852 	 * First, count the number of the keyword occurences, to
853 	 * preallocate the final string.
854 	 */
855 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
856 		p1 = strstr(p, kw);
857 		if (p1 == NULL)
858 			break;
859 	}
860 
861 	/*
862 	 * If the keyword is not found, just return.
863 	 */
864 	if (subst_count == 0)
865 		return (may_free ? real : xstrdup(real));
866 
867 	/*
868 	 * There is indeed something to substitute.  Calculate the
869 	 * length of the resulting string, and allocate it.
870 	 */
871 	subst_len = strlen(subst);
872 	old_len = strlen(real);
873 	new_len = old_len + (subst_len - kw_len) * subst_count;
874 	res = xmalloc(new_len + 1);
875 
876 	/*
877 	 * Now, execute the substitution loop.
878 	 */
879 	for (p = real, resp = res, *resp = '\0';;) {
880 		p1 = strstr(p, kw);
881 		if (p1 != NULL) {
882 			/* Copy the prefix before keyword. */
883 			memcpy(resp, p, p1 - p);
884 			resp += p1 - p;
885 			/* Keyword replacement. */
886 			memcpy(resp, subst, subst_len);
887 			resp += subst_len;
888 			*resp = '\0';
889 			p = p1 + kw_len;
890 		} else
891 			break;
892 	}
893 
894 	/* Copy to the end of string and finish. */
895 	strcat(resp, p);
896 	if (may_free)
897 		free(real);
898 	return (res);
899 }
900 
901 static char *
902 origin_subst(char *real, const char *origin_path)
903 {
904 	char *res1, *res2, *res3, *res4;
905 
906 	if (uts.sysname[0] == '\0') {
907 		if (uname(&uts) != 0) {
908 			_rtld_error("utsname failed: %d", errno);
909 			return (NULL);
910 		}
911 	}
912 	res1 = origin_subst_one(real, "$ORIGIN", origin_path, false);
913 	res2 = origin_subst_one(res1, "$OSNAME", uts.sysname, true);
914 	res3 = origin_subst_one(res2, "$OSREL", uts.release, true);
915 	res4 = origin_subst_one(res3, "$PLATFORM", uts.machine, true);
916 	return (res4);
917 }
918 
919 static void
920 die(void)
921 {
922     const char *msg = dlerror();
923 
924     if (msg == NULL)
925 	msg = "Fatal error";
926     rtld_fdputstr(STDERR_FILENO, msg);
927     rtld_fdputchar(STDERR_FILENO, '\n');
928     _exit(1);
929 }
930 
931 /*
932  * Process a shared object's DYNAMIC section, and save the important
933  * information in its Obj_Entry structure.
934  */
935 static void
936 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
937     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
938 {
939     const Elf_Dyn *dynp;
940     Needed_Entry **needed_tail = &obj->needed;
941     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
942     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
943     const Elf_Hashelt *hashtab;
944     const Elf32_Word *hashval;
945     Elf32_Word bkt, nmaskwords;
946     int bloom_size32;
947     bool nmw_power2;
948     int plttype = DT_REL;
949 
950     *dyn_rpath = NULL;
951     *dyn_soname = NULL;
952     *dyn_runpath = NULL;
953 
954     obj->bind_now = false;
955     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
956 	switch (dynp->d_tag) {
957 
958 	case DT_REL:
959 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
960 	    break;
961 
962 	case DT_RELSZ:
963 	    obj->relsize = dynp->d_un.d_val;
964 	    break;
965 
966 	case DT_RELENT:
967 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
968 	    break;
969 
970 	case DT_JMPREL:
971 	    obj->pltrel = (const Elf_Rel *)
972 	      (obj->relocbase + dynp->d_un.d_ptr);
973 	    break;
974 
975 	case DT_PLTRELSZ:
976 	    obj->pltrelsize = dynp->d_un.d_val;
977 	    break;
978 
979 	case DT_RELA:
980 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
981 	    break;
982 
983 	case DT_RELASZ:
984 	    obj->relasize = dynp->d_un.d_val;
985 	    break;
986 
987 	case DT_RELAENT:
988 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
989 	    break;
990 
991 	case DT_PLTREL:
992 	    plttype = dynp->d_un.d_val;
993 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
994 	    break;
995 
996 	case DT_SYMTAB:
997 	    obj->symtab = (const Elf_Sym *)
998 	      (obj->relocbase + dynp->d_un.d_ptr);
999 	    break;
1000 
1001 	case DT_SYMENT:
1002 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1003 	    break;
1004 
1005 	case DT_STRTAB:
1006 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
1007 	    break;
1008 
1009 	case DT_STRSZ:
1010 	    obj->strsize = dynp->d_un.d_val;
1011 	    break;
1012 
1013 	case DT_VERNEED:
1014 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
1015 		dynp->d_un.d_val);
1016 	    break;
1017 
1018 	case DT_VERNEEDNUM:
1019 	    obj->verneednum = dynp->d_un.d_val;
1020 	    break;
1021 
1022 	case DT_VERDEF:
1023 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
1024 		dynp->d_un.d_val);
1025 	    break;
1026 
1027 	case DT_VERDEFNUM:
1028 	    obj->verdefnum = dynp->d_un.d_val;
1029 	    break;
1030 
1031 	case DT_VERSYM:
1032 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1033 		dynp->d_un.d_val);
1034 	    break;
1035 
1036 	case DT_HASH:
1037 	    {
1038 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1039 		    dynp->d_un.d_ptr);
1040 		obj->nbuckets = hashtab[0];
1041 		obj->nchains = hashtab[1];
1042 		obj->buckets = hashtab + 2;
1043 		obj->chains = obj->buckets + obj->nbuckets;
1044 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1045 		  obj->buckets != NULL;
1046 	    }
1047 	    break;
1048 
1049 	case DT_GNU_HASH:
1050 	    {
1051 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1052 		    dynp->d_un.d_ptr);
1053 		obj->nbuckets_gnu = hashtab[0];
1054 		obj->symndx_gnu = hashtab[1];
1055 		nmaskwords = hashtab[2];
1056 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1057 		/* Number of bitmask words is required to be power of 2 */
1058 		nmw_power2 = ((nmaskwords & (nmaskwords - 1)) == 0);
1059 		obj->maskwords_bm_gnu = nmaskwords - 1;
1060 		obj->shift2_gnu = hashtab[3];
1061 		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
1062 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1063 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1064 		  obj->symndx_gnu;
1065 		obj->valid_hash_gnu = nmw_power2 && obj->nbuckets_gnu > 0 &&
1066 		  obj->buckets_gnu != NULL;
1067 	    }
1068 	    break;
1069 
1070 	case DT_NEEDED:
1071 	    if (!obj->rtld) {
1072 		Needed_Entry *nep = NEW(Needed_Entry);
1073 		nep->name = dynp->d_un.d_val;
1074 		nep->obj = NULL;
1075 		nep->next = NULL;
1076 
1077 		*needed_tail = nep;
1078 		needed_tail = &nep->next;
1079 	    }
1080 	    break;
1081 
1082 	case DT_FILTER:
1083 	    if (!obj->rtld) {
1084 		Needed_Entry *nep = NEW(Needed_Entry);
1085 		nep->name = dynp->d_un.d_val;
1086 		nep->obj = NULL;
1087 		nep->next = NULL;
1088 
1089 		*needed_filtees_tail = nep;
1090 		needed_filtees_tail = &nep->next;
1091 	    }
1092 	    break;
1093 
1094 	case DT_AUXILIARY:
1095 	    if (!obj->rtld) {
1096 		Needed_Entry *nep = NEW(Needed_Entry);
1097 		nep->name = dynp->d_un.d_val;
1098 		nep->obj = NULL;
1099 		nep->next = NULL;
1100 
1101 		*needed_aux_filtees_tail = nep;
1102 		needed_aux_filtees_tail = &nep->next;
1103 	    }
1104 	    break;
1105 
1106 	case DT_PLTGOT:
1107 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1108 	    break;
1109 
1110 	case DT_TEXTREL:
1111 	    obj->textrel = true;
1112 	    break;
1113 
1114 	case DT_SYMBOLIC:
1115 	    obj->symbolic = true;
1116 	    break;
1117 
1118 	case DT_RPATH:
1119 	    /*
1120 	     * We have to wait until later to process this, because we
1121 	     * might not have gotten the address of the string table yet.
1122 	     */
1123 	    *dyn_rpath = dynp;
1124 	    break;
1125 
1126 	case DT_SONAME:
1127 	    *dyn_soname = dynp;
1128 	    break;
1129 
1130 	case DT_RUNPATH:
1131 	    *dyn_runpath = dynp;
1132 	    break;
1133 
1134 	case DT_INIT:
1135 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1136 	    break;
1137 
1138 	case DT_FINI:
1139 	    obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1140 	    break;
1141 
1142 	case DT_PREINIT_ARRAY:
1143 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1144 	    break;
1145 
1146 	case DT_INIT_ARRAY:
1147 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1148 	    break;
1149 
1150 	case DT_FINI_ARRAY:
1151 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1152 	    break;
1153 
1154 	case DT_PREINIT_ARRAYSZ:
1155 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1156 	    break;
1157 
1158 	case DT_INIT_ARRAYSZ:
1159 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1160 	    break;
1161 
1162 	case DT_FINI_ARRAYSZ:
1163 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1164 	    break;
1165 
1166 	case DT_DEBUG:
1167 	    /* XXX - not implemented yet */
1168 	    if (!early)
1169 		dbg("Filling in DT_DEBUG entry");
1170 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1171 	    break;
1172 
1173 	case DT_FLAGS:
1174 		if ((dynp->d_un.d_val & DF_ORIGIN) && trust)
1175 		    obj->z_origin = true;
1176 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1177 		    obj->symbolic = true;
1178 		if (dynp->d_un.d_val & DF_TEXTREL)
1179 		    obj->textrel = true;
1180 		if (dynp->d_un.d_val & DF_BIND_NOW)
1181 		    obj->bind_now = true;
1182 		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1183 		    ;*/
1184 	    break;
1185 
1186 	case DT_FLAGS_1:
1187 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1188 		    obj->z_noopen = true;
1189 		if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
1190 		    obj->z_origin = true;
1191 		/*if (dynp->d_un.d_val & DF_1_GLOBAL)
1192 		    XXX ;*/
1193 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1194 		    obj->bind_now = true;
1195 		if (dynp->d_un.d_val & DF_1_NODELETE)
1196 		    obj->z_nodelete = true;
1197 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1198 		    obj->z_loadfltr = true;
1199 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1200 		    obj->z_nodeflib = true;
1201 	    break;
1202 
1203 	default:
1204 	    if (!early) {
1205 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1206 		    (long)dynp->d_tag);
1207 	    }
1208 	    break;
1209 	}
1210     }
1211 
1212     obj->traced = false;
1213 
1214     if (plttype == DT_RELA) {
1215 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1216 	obj->pltrel = NULL;
1217 	obj->pltrelasize = obj->pltrelsize;
1218 	obj->pltrelsize = 0;
1219     }
1220 
1221     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1222     if (obj->valid_hash_sysv)
1223 	obj->dynsymcount = obj->nchains;
1224     else if (obj->valid_hash_gnu) {
1225 	obj->dynsymcount = 0;
1226 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1227 	    if (obj->buckets_gnu[bkt] == 0)
1228 		continue;
1229 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1230 	    do
1231 		obj->dynsymcount++;
1232 	    while ((*hashval++ & 1u) == 0);
1233 	}
1234 	obj->dynsymcount += obj->symndx_gnu;
1235     }
1236 }
1237 
1238 static void
1239 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1240     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1241 {
1242 
1243     if (obj->z_origin && obj->origin_path == NULL) {
1244 	obj->origin_path = xmalloc(PATH_MAX);
1245 	if (rtld_dirname_abs(obj->path, obj->origin_path) == -1)
1246 	    die();
1247     }
1248 
1249     if (dyn_runpath != NULL) {
1250 	obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1251 	if (obj->z_origin)
1252 	    obj->runpath = origin_subst(obj->runpath, obj->origin_path);
1253     }
1254     else if (dyn_rpath != NULL) {
1255 	obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1256 	if (obj->z_origin)
1257 	    obj->rpath = origin_subst(obj->rpath, obj->origin_path);
1258     }
1259 
1260     if (dyn_soname != NULL)
1261 	object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1262 }
1263 
1264 static void
1265 digest_dynamic(Obj_Entry *obj, int early)
1266 {
1267 	const Elf_Dyn *dyn_rpath;
1268 	const Elf_Dyn *dyn_soname;
1269 	const Elf_Dyn *dyn_runpath;
1270 
1271 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1272 	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1273 }
1274 
1275 /*
1276  * Process a shared object's program header.  This is used only for the
1277  * main program, when the kernel has already loaded the main program
1278  * into memory before calling the dynamic linker.  It creates and
1279  * returns an Obj_Entry structure.
1280  */
1281 static Obj_Entry *
1282 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1283 {
1284     Obj_Entry *obj;
1285     const Elf_Phdr *phlimit = phdr + phnum;
1286     const Elf_Phdr *ph;
1287     Elf_Addr note_start, note_end;
1288     int nsegs = 0;
1289 
1290     obj = obj_new();
1291     for (ph = phdr;  ph < phlimit;  ph++) {
1292 	if (ph->p_type != PT_PHDR)
1293 	    continue;
1294 
1295 	obj->phdr = phdr;
1296 	obj->phsize = ph->p_memsz;
1297 	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1298 	break;
1299     }
1300 
1301     obj->stack_flags = PF_X | PF_R | PF_W;
1302 
1303     for (ph = phdr;  ph < phlimit;  ph++) {
1304 	switch (ph->p_type) {
1305 
1306 	case PT_INTERP:
1307 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1308 	    break;
1309 
1310 	case PT_LOAD:
1311 	    if (nsegs == 0) {	/* First load segment */
1312 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1313 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1314 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1315 		  obj->vaddrbase;
1316 	    } else {		/* Last load segment */
1317 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1318 		  obj->vaddrbase;
1319 	    }
1320 	    nsegs++;
1321 	    break;
1322 
1323 	case PT_DYNAMIC:
1324 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1325 	    break;
1326 
1327 	case PT_TLS:
1328 	    obj->tlsindex = 1;
1329 	    obj->tlssize = ph->p_memsz;
1330 	    obj->tlsalign = ph->p_align;
1331 	    obj->tlsinitsize = ph->p_filesz;
1332 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1333 	    break;
1334 
1335 	case PT_GNU_STACK:
1336 	    obj->stack_flags = ph->p_flags;
1337 	    break;
1338 
1339 	case PT_GNU_RELRO:
1340 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1341 	    obj->relro_size = round_page(ph->p_memsz);
1342 	    break;
1343 
1344 	case PT_NOTE:
1345 	    obj->note_present = true;
1346 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1347 	    note_end = note_start + ph->p_filesz;
1348 	    digest_notes(obj, note_start, note_end);
1349 	    break;
1350 	}
1351     }
1352     if (nsegs < 1) {
1353 	_rtld_error("%s: too few PT_LOAD segments", path);
1354 	return NULL;
1355     }
1356 
1357     obj->entry = entry;
1358     return obj;
1359 }
1360 
1361 void
1362 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1363 {
1364 	const Elf_Note *note;
1365 	const char *note_name;
1366 	uintptr_t p;
1367 
1368 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1369 	    note = (const Elf_Note *)((const char *)(note + 1) +
1370 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1371 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1372 		if (note->n_namesz != sizeof(NOTE_VENDOR) ||
1373 		    note->n_descsz != sizeof(int32_t))
1374 			continue;
1375 		if (note->n_type != ABI_NOTETYPE &&
1376 		    note->n_type != CRT_NOINIT_NOTETYPE)
1377 			continue;
1378 		note_name = (const char *)(note + 1);
1379 		if (strncmp(NOTE_VENDOR, note_name, sizeof(NOTE_VENDOR)) != 0)
1380 			continue;
1381 		switch (note->n_type) {
1382 		case ABI_NOTETYPE:
1383 			/* DragonFly osrel note */
1384 			p = (uintptr_t)(note + 1);
1385 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1386 			obj->osrel = *(const int32_t *)(p);
1387 			dbg("note osrel %d", obj->osrel);
1388 			break;
1389 		case CRT_NOINIT_NOTETYPE:
1390 			/* DragonFly 'crt does not call init' note */
1391 			obj->crt_no_init = true;
1392 			dbg("note crt_no_init");
1393 			break;
1394 		}
1395 	}
1396 }
1397 
1398 static Obj_Entry *
1399 dlcheck(void *handle)
1400 {
1401     Obj_Entry *obj;
1402 
1403     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1404 	if (obj == (Obj_Entry *) handle)
1405 	    break;
1406 
1407     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1408 	_rtld_error("Invalid shared object handle %p", handle);
1409 	return NULL;
1410     }
1411     return obj;
1412 }
1413 
1414 /*
1415  * If the given object is already in the donelist, return true.  Otherwise
1416  * add the object to the list and return false.
1417  */
1418 static bool
1419 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1420 {
1421     unsigned int i;
1422 
1423     for (i = 0;  i < dlp->num_used;  i++)
1424 	if (dlp->objs[i] == obj)
1425 	    return true;
1426     /*
1427      * Our donelist allocation should always be sufficient.  But if
1428      * our threads locking isn't working properly, more shared objects
1429      * could have been loaded since we allocated the list.  That should
1430      * never happen, but we'll handle it properly just in case it does.
1431      */
1432     if (dlp->num_used < dlp->num_alloc)
1433 	dlp->objs[dlp->num_used++] = obj;
1434     return false;
1435 }
1436 
1437 /*
1438  * Hash function for symbol table lookup.  Don't even think about changing
1439  * this.  It is specified by the System V ABI.
1440  */
1441 unsigned long
1442 elf_hash(const char *name)
1443 {
1444     const unsigned char *p = (const unsigned char *) name;
1445     unsigned long h = 0;
1446     unsigned long g;
1447 
1448     while (*p != '\0') {
1449 	h = (h << 4) + *p++;
1450 	if ((g = h & 0xf0000000) != 0)
1451 	    h ^= g >> 24;
1452 	h &= ~g;
1453     }
1454     return h;
1455 }
1456 
1457 /*
1458  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1459  * unsigned in case it's implemented with a wider type.
1460  */
1461 static uint_fast32_t
1462 gnu_hash(const char *s)
1463 {
1464 	uint_fast32_t h;
1465 	unsigned char c;
1466 
1467 	h = 5381;
1468 	for (c = *s; c != '\0'; c = *++s)
1469 		h = h * 33 + c;
1470 	return (h & 0xffffffff);
1471 }
1472 
1473 /*
1474  * Find the library with the given name, and return its full pathname.
1475  * The returned string is dynamically allocated.  Generates an error
1476  * message and returns NULL if the library cannot be found.
1477  *
1478  * If the second argument is non-NULL, then it refers to an already-
1479  * loaded shared object, whose library search path will be searched.
1480  *
1481  * The search order is:
1482  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1483  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1484  *   LD_LIBRARY_PATH
1485  *   DT_RUNPATH in the referencing file
1486  *   ldconfig hints (if -z nodefaultlib, filter out /usr/lib from list)
1487  *   /usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1488  *
1489  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1490  */
1491 static char *
1492 find_library(const char *xname, const Obj_Entry *refobj)
1493 {
1494     char *pathname;
1495     char *name;
1496     bool nodeflib, objgiven;
1497 
1498     objgiven = refobj != NULL;
1499     if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1500 	if (xname[0] != '/' && !trust) {
1501 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1502 	      xname);
1503 	    return NULL;
1504 	}
1505 	if (objgiven && refobj->z_origin) {
1506 		return (origin_subst(__DECONST(char *, xname),
1507 		    refobj->origin_path));
1508 	} else {
1509 		return (xstrdup(xname));
1510 	}
1511     }
1512 
1513     if (libmap_disable || !objgiven ||
1514 	(name = lm_find(refobj->path, xname)) == NULL)
1515 	name = (char *)xname;
1516 
1517     dbg(" Searching for \"%s\"", name);
1518 
1519     nodeflib = objgiven ? refobj->z_nodeflib : false;
1520     if ((objgiven &&
1521       (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1522       (objgiven && refobj->runpath == NULL && refobj != obj_main &&
1523       (pathname = search_library_path(name, obj_main->rpath)) != NULL) ||
1524       (pathname = search_library_path(name, ld_library_path)) != NULL ||
1525       (objgiven &&
1526       (pathname = search_library_path(name, refobj->runpath)) != NULL) ||
1527 	  (pathname = search_library_path(name, gethints(nodeflib))) != NULL ||
1528 	  (objgiven && !nodeflib &&
1529       (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL))
1530 	return (pathname);
1531 
1532     if (objgiven && refobj->path != NULL) {
1533 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1534 	  name, basename(refobj->path));
1535     } else {
1536 	_rtld_error("Shared object \"%s\" not found", name);
1537     }
1538     return NULL;
1539 }
1540 
1541 /*
1542  * Given a symbol number in a referencing object, find the corresponding
1543  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1544  * no definition was found.  Returns a pointer to the Obj_Entry of the
1545  * defining object via the reference parameter DEFOBJ_OUT.
1546  */
1547 const Elf_Sym *
1548 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1549     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1550     RtldLockState *lockstate)
1551 {
1552     const Elf_Sym *ref;
1553     const Elf_Sym *def;
1554     const Obj_Entry *defobj;
1555     SymLook req;
1556     const char *name;
1557     int res;
1558 
1559     /*
1560      * If we have already found this symbol, get the information from
1561      * the cache.
1562      */
1563     if (symnum >= refobj->dynsymcount)
1564 	return NULL;	/* Bad object */
1565     if (cache != NULL && cache[symnum].sym != NULL) {
1566 	*defobj_out = cache[symnum].obj;
1567 	return cache[symnum].sym;
1568     }
1569 
1570     ref = refobj->symtab + symnum;
1571     name = refobj->strtab + ref->st_name;
1572     def = NULL;
1573     defobj = NULL;
1574 
1575     /*
1576      * We don't have to do a full scale lookup if the symbol is local.
1577      * We know it will bind to the instance in this load module; to
1578      * which we already have a pointer (ie ref). By not doing a lookup,
1579      * we not only improve performance, but it also avoids unresolvable
1580      * symbols when local symbols are not in the hash table.
1581      *
1582      * This might occur for TLS module relocations, which simply use
1583      * symbol 0.
1584      */
1585     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1586 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1587 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1588 		symnum);
1589 	}
1590 	symlook_init(&req, name);
1591 	req.flags = flags;
1592 	req.ventry = fetch_ventry(refobj, symnum);
1593 	req.lockstate = lockstate;
1594 	res = symlook_default(&req, refobj);
1595 	if (res == 0) {
1596 	    def = req.sym_out;
1597 	    defobj = req.defobj_out;
1598 	}
1599     } else {
1600 	def = ref;
1601 	defobj = refobj;
1602     }
1603 
1604     /*
1605      * If we found no definition and the reference is weak, treat the
1606      * symbol as having the value zero.
1607      */
1608     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1609 	def = &sym_zero;
1610 	defobj = obj_main;
1611     }
1612 
1613     if (def != NULL) {
1614 	*defobj_out = defobj;
1615 	/* Record the information in the cache to avoid subsequent lookups. */
1616 	if (cache != NULL) {
1617 	    cache[symnum].sym = def;
1618 	    cache[symnum].obj = defobj;
1619 	}
1620     } else {
1621 	if (refobj != &obj_rtld)
1622 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1623     }
1624     return def;
1625 }
1626 
1627 /*
1628  * Return the search path from the ldconfig hints file, reading it if
1629  * necessary.  If nostdlib is true, then the default search paths are
1630  * not added to result.
1631  *
1632  * Returns NULL if there are problems with the hints file,
1633  * or if the search path there is empty.
1634  */
1635 static const char *
1636 gethints(bool nostdlib)
1637 {
1638 	static char *hints, *filtered_path;
1639 	struct elfhints_hdr hdr;
1640 	struct fill_search_info_args sargs, hargs;
1641 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1642 	struct dl_serpath *SLPpath, *hintpath;
1643 	char *p;
1644 	unsigned int SLPndx, hintndx, fndx, fcount;
1645 	int fd;
1646 	size_t flen;
1647 	bool skip;
1648 
1649 	/* First call, read the hints file */
1650 	if (hints == NULL) {
1651 		/* Keep from trying again in case the hints file is bad. */
1652 		hints = "";
1653 
1654 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1655 			return (NULL);
1656 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1657 		    hdr.magic != ELFHINTS_MAGIC ||
1658 		    hdr.version != 1) {
1659 			close(fd);
1660 			return (NULL);
1661 		}
1662 		p = xmalloc(hdr.dirlistlen + 1);
1663 		if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1664 		    read(fd, p, hdr.dirlistlen + 1) !=
1665 		    (ssize_t)hdr.dirlistlen + 1) {
1666 			free(p);
1667 			close(fd);
1668 			return (NULL);
1669 		}
1670 		hints = p;
1671 		close(fd);
1672 	}
1673 
1674 	/*
1675 	 * If caller agreed to receive list which includes the default
1676 	 * paths, we are done. Otherwise, if we still have not
1677 	 * calculated filtered result, do it now.
1678 	 */
1679 	if (!nostdlib)
1680 		return (hints[0] != '\0' ? hints : NULL);
1681 	if (filtered_path != NULL)
1682 		goto filt_ret;
1683 
1684 	/*
1685 	 * Obtain the list of all configured search paths, and the
1686 	 * list of the default paths.
1687 	 *
1688 	 * First estimate the size of the results.
1689 	 */
1690 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1691 	smeta.dls_cnt = 0;
1692 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1693 	hmeta.dls_cnt = 0;
1694 
1695 	sargs.request = RTLD_DI_SERINFOSIZE;
1696 	sargs.serinfo = &smeta;
1697 	hargs.request = RTLD_DI_SERINFOSIZE;
1698 	hargs.serinfo = &hmeta;
1699 
1700 	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1701 	path_enumerate(p, fill_search_info, &hargs);
1702 
1703 	SLPinfo = xmalloc(smeta.dls_size);
1704 	hintinfo = xmalloc(hmeta.dls_size);
1705 
1706 	/*
1707 	 * Next fetch both sets of paths.
1708 	 */
1709 	sargs.request = RTLD_DI_SERINFO;
1710 	sargs.serinfo = SLPinfo;
1711 	sargs.serpath = &SLPinfo->dls_serpath[0];
1712 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1713 
1714 	hargs.request = RTLD_DI_SERINFO;
1715 	hargs.serinfo = hintinfo;
1716 	hargs.serpath = &hintinfo->dls_serpath[0];
1717 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1718 
1719 	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1720 	path_enumerate(p, fill_search_info, &hargs);
1721 
1722 	/*
1723 	 * Now calculate the difference between two sets, by excluding
1724 	 * standard paths from the full set.
1725 	 */
1726 	fndx = 0;
1727 	fcount = 0;
1728 	filtered_path = xmalloc(hdr.dirlistlen + 1);
1729 	hintpath = &hintinfo->dls_serpath[0];
1730 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1731 		skip = false;
1732 		SLPpath = &SLPinfo->dls_serpath[0];
1733 		/*
1734 		 * Check each standard path against current.
1735 		 */
1736 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1737 			/* matched, skip the path */
1738 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1739 				skip = true;
1740 				break;
1741 			}
1742 		}
1743 		if (skip)
1744 			continue;
1745 		/*
1746 		 * Not matched against any standard path, add the path
1747 		 * to result. Separate consecutive paths with ':'.
1748 		 */
1749 		if (fcount > 0) {
1750 			filtered_path[fndx] = ':';
1751 			fndx++;
1752 		}
1753 		fcount++;
1754 		flen = strlen(hintpath->dls_name);
1755 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1756 		fndx += flen;
1757 	}
1758 	filtered_path[fndx] = '\0';
1759 
1760 	free(SLPinfo);
1761 	free(hintinfo);
1762 
1763 filt_ret:
1764 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1765 }
1766 
1767 static void
1768 init_dag(Obj_Entry *root)
1769 {
1770     const Needed_Entry *needed;
1771     const Objlist_Entry *elm;
1772     DoneList donelist;
1773 
1774     if (root->dag_inited)
1775 	return;
1776     donelist_init(&donelist);
1777 
1778     /* Root object belongs to own DAG. */
1779     objlist_push_tail(&root->dldags, root);
1780     objlist_push_tail(&root->dagmembers, root);
1781     donelist_check(&donelist, root);
1782 
1783     /*
1784      * Add dependencies of root object to DAG in breadth order
1785      * by exploiting the fact that each new object get added
1786      * to the tail of the dagmembers list.
1787      */
1788     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1789 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1790 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1791 		continue;
1792 	    objlist_push_tail(&needed->obj->dldags, root);
1793 	    objlist_push_tail(&root->dagmembers, needed->obj);
1794 	}
1795     }
1796     root->dag_inited = true;
1797 }
1798 
1799 static void
1800 process_nodelete(Obj_Entry *root)
1801 {
1802 	const Objlist_Entry *elm;
1803 
1804 	/*
1805 	 * Walk over object DAG and process every dependent object that
1806 	 * is marked as DF_1_NODELETE. They need to grow their own DAG,
1807 	 * which then should have its reference upped separately.
1808 	 */
1809 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
1810 		if (elm->obj != NULL && elm->obj->z_nodelete &&
1811 		    !elm->obj->ref_nodel) {
1812 			dbg("obj %s nodelete", elm->obj->path);
1813 			init_dag(elm->obj);
1814 			ref_dag(elm->obj);
1815 			elm->obj->ref_nodel = true;
1816 		}
1817 	}
1818 }
1819 
1820 /*
1821  * Initialize the dynamic linker.  The argument is the address at which
1822  * the dynamic linker has been mapped into memory.  The primary task of
1823  * this function is to relocate the dynamic linker.
1824  */
1825 static void
1826 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1827 {
1828     Obj_Entry objtmp;	/* Temporary rtld object */
1829     const Elf_Dyn *dyn_rpath;
1830     const Elf_Dyn *dyn_soname;
1831     const Elf_Dyn *dyn_runpath;
1832 
1833     /*
1834      * Conjure up an Obj_Entry structure for the dynamic linker.
1835      *
1836      * The "path" member can't be initialized yet because string constants
1837      * cannot yet be accessed. Below we will set it correctly.
1838      */
1839     memset(&objtmp, 0, sizeof(objtmp));
1840     objtmp.path = NULL;
1841     objtmp.rtld = true;
1842     objtmp.mapbase = mapbase;
1843 #ifdef PIC
1844     objtmp.relocbase = mapbase;
1845 #endif
1846     if (RTLD_IS_DYNAMIC()) {
1847 	objtmp.dynamic = rtld_dynamic(&objtmp);
1848 	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
1849 	assert(objtmp.needed == NULL);
1850 	assert(!objtmp.textrel);
1851 
1852 	/*
1853 	 * Temporarily put the dynamic linker entry into the object list, so
1854 	 * that symbols can be found.
1855 	 */
1856 
1857 	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1858     }
1859 
1860     /* Initialize the object list. */
1861     obj_tail = &obj_list;
1862 
1863     /* Now that non-local variables can be accesses, copy out obj_rtld. */
1864     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1865 
1866 #ifdef ENABLE_OSRELDATE
1867     if (aux_info[AT_OSRELDATE] != NULL)
1868 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1869 #endif
1870 
1871     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
1872 
1873     /* Replace the path with a dynamically allocated copy. */
1874     obj_rtld.path = xstrdup(PATH_RTLD);
1875 
1876     r_debug.r_brk = r_debug_state;
1877     r_debug.r_state = RT_CONSISTENT;
1878 }
1879 
1880 /*
1881  * Add the init functions from a needed object list (and its recursive
1882  * needed objects) to "list".  This is not used directly; it is a helper
1883  * function for initlist_add_objects().  The write lock must be held
1884  * when this function is called.
1885  */
1886 static void
1887 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1888 {
1889     /* Recursively process the successor needed objects. */
1890     if (needed->next != NULL)
1891 	initlist_add_neededs(needed->next, list);
1892 
1893     /* Process the current needed object. */
1894     if (needed->obj != NULL)
1895 	initlist_add_objects(needed->obj, &needed->obj->next, list);
1896 }
1897 
1898 /*
1899  * Scan all of the DAGs rooted in the range of objects from "obj" to
1900  * "tail" and add their init functions to "list".  This recurses over
1901  * the DAGs and ensure the proper init ordering such that each object's
1902  * needed libraries are initialized before the object itself.  At the
1903  * same time, this function adds the objects to the global finalization
1904  * list "list_fini" in the opposite order.  The write lock must be
1905  * held when this function is called.
1906  */
1907 static void
1908 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1909 {
1910 
1911     if (obj->init_scanned || obj->init_done)
1912 	return;
1913     obj->init_scanned = true;
1914 
1915     /* Recursively process the successor objects. */
1916     if (&obj->next != tail)
1917 	initlist_add_objects(obj->next, tail, list);
1918 
1919     /* Recursively process the needed objects. */
1920     if (obj->needed != NULL)
1921 	initlist_add_neededs(obj->needed, list);
1922     if (obj->needed_filtees != NULL)
1923 	initlist_add_neededs(obj->needed_filtees, list);
1924     if (obj->needed_aux_filtees != NULL)
1925 	initlist_add_neededs(obj->needed_aux_filtees, list);
1926 
1927     /* Add the object to the init list. */
1928     if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
1929       obj->init_array != (Elf_Addr)NULL)
1930 	objlist_push_tail(list, obj);
1931 
1932     /* Add the object to the global fini list in the reverse order. */
1933     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
1934       && !obj->on_fini_list) {
1935 	objlist_push_head(&list_fini, obj);
1936 	obj->on_fini_list = true;
1937     }
1938 }
1939 
1940 #ifndef FPTR_TARGET
1941 #define FPTR_TARGET(f)	((Elf_Addr) (f))
1942 #endif
1943 
1944 static void
1945 free_needed_filtees(Needed_Entry *n)
1946 {
1947     Needed_Entry *needed, *needed1;
1948 
1949     for (needed = n; needed != NULL; needed = needed->next) {
1950 	if (needed->obj != NULL) {
1951 	    dlclose(needed->obj);
1952 	    needed->obj = NULL;
1953 	}
1954     }
1955     for (needed = n; needed != NULL; needed = needed1) {
1956 	needed1 = needed->next;
1957 	free(needed);
1958     }
1959 }
1960 
1961 static void
1962 unload_filtees(Obj_Entry *obj)
1963 {
1964 
1965     free_needed_filtees(obj->needed_filtees);
1966     obj->needed_filtees = NULL;
1967     free_needed_filtees(obj->needed_aux_filtees);
1968     obj->needed_aux_filtees = NULL;
1969     obj->filtees_loaded = false;
1970 }
1971 
1972 static void
1973 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
1974     RtldLockState *lockstate)
1975 {
1976 
1977     for (; needed != NULL; needed = needed->next) {
1978 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
1979 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
1980 	  RTLD_LOCAL, lockstate);
1981     }
1982 }
1983 
1984 static void
1985 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
1986 {
1987 
1988     lock_restart_for_upgrade(lockstate);
1989     if (!obj->filtees_loaded) {
1990 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
1991 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
1992 	obj->filtees_loaded = true;
1993     }
1994 }
1995 
1996 static int
1997 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
1998 {
1999     Obj_Entry *obj1;
2000 
2001     for (; needed != NULL; needed = needed->next) {
2002 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2003 	  flags & ~RTLD_LO_NOLOAD);
2004 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2005 	    return (-1);
2006     }
2007     return (0);
2008 }
2009 
2010 /*
2011  * Given a shared object, traverse its list of needed objects, and load
2012  * each of them.  Returns 0 on success.  Generates an error message and
2013  * returns -1 on failure.
2014  */
2015 static int
2016 load_needed_objects(Obj_Entry *first, int flags)
2017 {
2018     Obj_Entry *obj;
2019 
2020     for (obj = first;  obj != NULL;  obj = obj->next) {
2021 	if (process_needed(obj, obj->needed, flags) == -1)
2022 	    return (-1);
2023     }
2024     return (0);
2025 }
2026 
2027 static int
2028 load_preload_objects(void)
2029 {
2030     char *p = ld_preload;
2031     static const char delim[] = " \t:;";
2032 
2033     if (p == NULL)
2034 	return 0;
2035 
2036     p += strspn(p, delim);
2037     while (*p != '\0') {
2038 	size_t len = strcspn(p, delim);
2039 	char savech;
2040 	Obj_Entry *obj;
2041 	SymLook req;
2042 	int res;
2043 
2044 	savech = p[len];
2045 	p[len] = '\0';
2046 	obj = load_object(p, -1, NULL, 0);
2047 	if (obj == NULL)
2048 	    return -1;	/* XXX - cleanup */
2049 	p[len] = savech;
2050 	p += len;
2051 	p += strspn(p, delim);
2052 
2053 	/* Check for the magic tracing function */
2054 	symlook_init(&req, RTLD_FUNCTRACE);
2055 	res = symlook_obj(&req, obj);
2056 	if (res == 0) {
2057 	    rtld_functrace = (void *)(req.defobj_out->relocbase +
2058 				      req.sym_out->st_value);
2059 	    rtld_functrace_obj = req.defobj_out;
2060 	}
2061     }
2062     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2063     return 0;
2064 }
2065 
2066 static const char *
2067 printable_path(const char *path)
2068 {
2069 
2070 	return (path == NULL ? "<unknown>" : path);
2071 }
2072 
2073 /*
2074  * Load a shared object into memory, if it is not already loaded.  The
2075  * object may be specified by name or by user-supplied file descriptor
2076  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2077  * duplicate is.
2078  *
2079  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2080  * on failure.
2081  */
2082 static Obj_Entry *
2083 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2084 {
2085     Obj_Entry *obj;
2086     int fd;
2087     struct stat sb;
2088     char *path;
2089 
2090     if (name != NULL) {
2091 	for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
2092 	    if (object_match_name(obj, name))
2093 		return (obj);
2094 	}
2095 
2096 	path = find_library(name, refobj);
2097 	if (path == NULL)
2098 	    return (NULL);
2099     } else
2100 	path = NULL;
2101 
2102     /*
2103      * If we didn't find a match by pathname, or the name is not
2104      * supplied, open the file and check again by device and inode.
2105      * This avoids false mismatches caused by multiple links or ".."
2106      * in pathnames.
2107      *
2108      * To avoid a race, we open the file and use fstat() rather than
2109      * using stat().
2110      */
2111     fd = -1;
2112     if (fd_u == -1) {
2113 	if ((fd = open(path, O_RDONLY | O_CLOEXEC)) == -1) {
2114 	    _rtld_error("Cannot open \"%s\"", path);
2115 	    free(path);
2116 	    return (NULL);
2117 	}
2118     } else {
2119 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2120 	if (fd == -1) {
2121 	    /*
2122 	     * Temporary, remove at 3.6 branch
2123 	     * User might not have latest kernel installed
2124 	     * so fall back to old command for a while
2125 	     */
2126 	    fd = dup(fd_u);
2127 	    if (fd == -1 || (fcntl(fd, F_SETFD, FD_CLOEXEC) == -1)) {
2128 		_rtld_error("Cannot dup fd");
2129 		free(path);
2130 		return (NULL);
2131 	    }
2132 	}
2133     }
2134     if (fstat(fd, &sb) == -1) {
2135 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2136 	close(fd);
2137 	free(path);
2138 	return NULL;
2139     }
2140     for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
2141 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2142 	    break;
2143     if (obj != NULL && name != NULL) {
2144 	object_add_name(obj, name);
2145 	free(path);
2146 	close(fd);
2147 	return obj;
2148     }
2149     if (flags & RTLD_LO_NOLOAD) {
2150 	free(path);
2151 	close(fd);
2152 	return (NULL);
2153     }
2154 
2155     /* First use of this object, so we must map it in */
2156     obj = do_load_object(fd, name, path, &sb, flags);
2157     if (obj == NULL)
2158 	free(path);
2159     close(fd);
2160 
2161     return obj;
2162 }
2163 
2164 static Obj_Entry *
2165 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2166   int flags)
2167 {
2168     Obj_Entry *obj;
2169     struct statfs fs;
2170 
2171     /*
2172      * but first, make sure that environment variables haven't been
2173      * used to circumvent the noexec flag on a filesystem.
2174      */
2175     if (dangerous_ld_env) {
2176 	if (fstatfs(fd, &fs) != 0) {
2177 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2178 		return NULL;
2179 	}
2180 	if (fs.f_flags & MNT_NOEXEC) {
2181 	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2182 	    return NULL;
2183 	}
2184     }
2185     dbg("loading \"%s\"", printable_path(path));
2186     obj = map_object(fd, printable_path(path), sbp);
2187     if (obj == NULL)
2188         return NULL;
2189 
2190     /*
2191      * If DT_SONAME is present in the object, digest_dynamic2 already
2192      * added it to the object names.
2193      */
2194     if (name != NULL)
2195 	object_add_name(obj, name);
2196     obj->path = path;
2197     digest_dynamic(obj, 0);
2198     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2199 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2200     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2201       RTLD_LO_DLOPEN) {
2202 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2203 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2204 	munmap(obj->mapbase, obj->mapsize);
2205 	obj_free(obj);
2206 	return (NULL);
2207     }
2208 
2209     *obj_tail = obj;
2210     obj_tail = &obj->next;
2211     obj_count++;
2212     obj_loads++;
2213     linkmap_add(obj);	/* for GDB & dlinfo() */
2214     max_stack_flags |= obj->stack_flags;
2215 
2216     dbg("  %p .. %p: %s", obj->mapbase,
2217          obj->mapbase + obj->mapsize - 1, obj->path);
2218     if (obj->textrel)
2219 	dbg("  WARNING: %s has impure text", obj->path);
2220     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2221 	obj->path);
2222 
2223     return obj;
2224 }
2225 
2226 static Obj_Entry *
2227 obj_from_addr(const void *addr)
2228 {
2229     Obj_Entry *obj;
2230 
2231     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2232 	if (addr < (void *) obj->mapbase)
2233 	    continue;
2234 	if (addr < (void *) (obj->mapbase + obj->mapsize))
2235 	    return obj;
2236     }
2237     return NULL;
2238 }
2239 
2240 /*
2241  * If the main program is defined with a .preinit_array section, call
2242  * each function in order.  This must occur before the initialization
2243  * of any shared object or the main program.
2244  */
2245 static void
2246 preinit_main(void)
2247 {
2248     Elf_Addr *preinit_addr;
2249     int index;
2250 
2251     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2252     if (preinit_addr == NULL)
2253 	return;
2254 
2255     for (index = 0; index < obj_main->preinit_array_num; index++) {
2256 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2257 	    dbg("calling preinit function for %s at %p", obj_main->path,
2258 		(void *)preinit_addr[index]);
2259 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2260 		0, 0, obj_main->path);
2261 	    call_init_pointer(obj_main, preinit_addr[index]);
2262 	}
2263     }
2264 }
2265 
2266 /*
2267  * Call the finalization functions for each of the objects in "list"
2268  * belonging to the DAG of "root" and referenced once. If NULL "root"
2269  * is specified, every finalization function will be called regardless
2270  * of the reference count and the list elements won't be freed. All of
2271  * the objects are expected to have non-NULL fini functions.
2272  */
2273 static void
2274 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2275 {
2276     Objlist_Entry *elm;
2277     char *saved_msg;
2278     Elf_Addr *fini_addr;
2279     int index;
2280 
2281     assert(root == NULL || root->refcount == 1);
2282 
2283     /*
2284      * Preserve the current error message since a fini function might
2285      * call into the dynamic linker and overwrite it.
2286      */
2287     saved_msg = errmsg_save();
2288     do {
2289 	STAILQ_FOREACH(elm, list, link) {
2290 	    if (root != NULL && (elm->obj->refcount != 1 ||
2291 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2292 		continue;
2293 
2294 	    /* Remove object from fini list to prevent recursive invocation. */
2295 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2296 	    /*
2297 	     * XXX: If a dlopen() call references an object while the
2298 	     * fini function is in progress, we might end up trying to
2299 	     * unload the referenced object in dlclose() or the object
2300 	     * won't be unloaded although its fini function has been
2301 	     * called.
2302 	     */
2303 	    lock_release(rtld_bind_lock, lockstate);
2304 
2305 	    /*
2306 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.  When this
2307 	     * happens, DT_FINI_ARRAY is processed first, and it is also processed
2308 	     * backwards.  It is possible to encounter DT_FINI_ARRAY elements with
2309 	     * values of 0 or 1, but they need to be ignored.
2310 	     */
2311 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2312 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2313 		for (index = elm->obj->fini_array_num - 1; index >= 0; index--) {
2314 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2315 			dbg("calling fini array function for %s at %p",
2316 		            elm->obj->path, (void *)fini_addr[index]);
2317 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2318 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2319 			call_initfini_pointer(elm->obj, fini_addr[index]);
2320 		    }
2321 	        }
2322 	    }
2323 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2324 		dbg("calling fini function for %s at %p", elm->obj->path,
2325 		    (void *)elm->obj->fini);
2326 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2327 		    0, 0, elm->obj->path);
2328 	        call_initfini_pointer(elm->obj, elm->obj->fini);
2329 	    }
2330 	    wlock_acquire(rtld_bind_lock, lockstate);
2331 	    /* No need to free anything if process is going down. */
2332 	    if (root != NULL)
2333 		free(elm);
2334 	    /*
2335 	     * We must restart the list traversal after every fini call
2336 	     * because a dlclose() call from the fini function or from
2337 	     * another thread might have modified the reference counts.
2338 	     */
2339 	    break;
2340 	}
2341     } while (elm != NULL);
2342     errmsg_restore(saved_msg);
2343 }
2344 
2345 /*
2346  * Call the initialization functions for each of the objects in
2347  * "list".  All of the objects are expected to have non-NULL init
2348  * functions.
2349  */
2350 static void
2351 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2352 {
2353     Objlist_Entry *elm;
2354     Obj_Entry *obj;
2355     char *saved_msg;
2356     Elf_Addr *init_addr;
2357     int index;
2358 
2359     /*
2360      * Clean init_scanned flag so that objects can be rechecked and
2361      * possibly initialized earlier if any of vectors called below
2362      * cause the change by using dlopen.
2363      */
2364     for (obj = obj_list;  obj != NULL;  obj = obj->next)
2365 	obj->init_scanned = false;
2366 
2367     /*
2368      * Preserve the current error message since an init function might
2369      * call into the dynamic linker and overwrite it.
2370      */
2371     saved_msg = errmsg_save();
2372     STAILQ_FOREACH(elm, list, link) {
2373 	if (elm->obj->init_done) /* Initialized early. */
2374 	    continue;
2375 
2376 	/*
2377 	 * Race: other thread might try to use this object before current
2378 	 * one completes the initilization. Not much can be done here
2379 	 * without better locking.
2380 	 */
2381 	elm->obj->init_done = true;
2382 	lock_release(rtld_bind_lock, lockstate);
2383 
2384         /*
2385          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.  When
2386          * this happens, DT_INIT is processed first.  It is possible to
2387          * encounter DT_INIT_ARRAY elements with values of 0 or 1, but they
2388          * need to be ignored.
2389          */
2390          if (elm->obj->init != (Elf_Addr)NULL) {
2391 	    dbg("calling init function for %s at %p", elm->obj->path,
2392 	        (void *)elm->obj->init);
2393 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2394 	        0, 0, elm->obj->path);
2395 	    call_initfini_pointer(elm->obj, elm->obj->init);
2396 	}
2397 	init_addr = (Elf_Addr *)elm->obj->init_array;
2398 	if (init_addr != NULL) {
2399 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2400 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2401 		    dbg("calling init array function for %s at %p", elm->obj->path,
2402 			(void *)init_addr[index]);
2403 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2404 			(void *)init_addr[index], 0, 0, elm->obj->path);
2405 		    call_init_pointer(elm->obj, init_addr[index]);
2406 		}
2407 	    }
2408 	}
2409 	wlock_acquire(rtld_bind_lock, lockstate);
2410     }
2411     errmsg_restore(saved_msg);
2412 }
2413 
2414 static void
2415 objlist_clear(Objlist *list)
2416 {
2417     Objlist_Entry *elm;
2418 
2419     while (!STAILQ_EMPTY(list)) {
2420 	elm = STAILQ_FIRST(list);
2421 	STAILQ_REMOVE_HEAD(list, link);
2422 	free(elm);
2423     }
2424 }
2425 
2426 static Objlist_Entry *
2427 objlist_find(Objlist *list, const Obj_Entry *obj)
2428 {
2429     Objlist_Entry *elm;
2430 
2431     STAILQ_FOREACH(elm, list, link)
2432 	if (elm->obj == obj)
2433 	    return elm;
2434     return NULL;
2435 }
2436 
2437 static void
2438 objlist_init(Objlist *list)
2439 {
2440     STAILQ_INIT(list);
2441 }
2442 
2443 static void
2444 objlist_push_head(Objlist *list, Obj_Entry *obj)
2445 {
2446     Objlist_Entry *elm;
2447 
2448     elm = NEW(Objlist_Entry);
2449     elm->obj = obj;
2450     STAILQ_INSERT_HEAD(list, elm, link);
2451 }
2452 
2453 static void
2454 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2455 {
2456     Objlist_Entry *elm;
2457 
2458     elm = NEW(Objlist_Entry);
2459     elm->obj = obj;
2460     STAILQ_INSERT_TAIL(list, elm, link);
2461 }
2462 
2463 static void
2464 objlist_remove(Objlist *list, Obj_Entry *obj)
2465 {
2466     Objlist_Entry *elm;
2467 
2468     if ((elm = objlist_find(list, obj)) != NULL) {
2469 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2470 	free(elm);
2471     }
2472 }
2473 
2474 /*
2475  * Relocate dag rooted in the specified object.
2476  * Returns 0 on success, or -1 on failure.
2477  */
2478 
2479 static int
2480 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2481     int flags, RtldLockState *lockstate)
2482 {
2483 	Objlist_Entry *elm;
2484 	int error;
2485 
2486 	error = 0;
2487 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2488 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2489 		    lockstate);
2490 		if (error == -1)
2491 			break;
2492 	}
2493 	return (error);
2494 }
2495 
2496 /*
2497  * Relocate single object.
2498  * Returns 0 on success, or -1 on failure.
2499  */
2500 static int
2501 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2502     int flags, RtldLockState *lockstate)
2503 {
2504 
2505 	if (obj->relocated)
2506 	    return (0);
2507 	obj->relocated = true;
2508 	if (obj != rtldobj)
2509 	    dbg("relocating \"%s\"", obj->path);
2510 
2511 	if (obj->symtab == NULL || obj->strtab == NULL ||
2512 	  !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2513 	    _rtld_error("%s: Shared object has no run-time symbol table",
2514 	      obj->path);
2515 	    return (-1);
2516 	}
2517 
2518 	if (obj->textrel) {
2519 	    /* There are relocations to the write-protected text segment. */
2520 	    if (mprotect(obj->mapbase, obj->textsize,
2521 	      PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
2522 		_rtld_error("%s: Cannot write-enable text segment: %s",
2523 		  obj->path, rtld_strerror(errno));
2524 		return (-1);
2525 	    }
2526 	}
2527 
2528 	/* Process the non-PLT relocations. */
2529 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2530 		return (-1);
2531 
2532 	/*
2533 	 * Reprotect the text segment.  Make sure it is included in the
2534 	 * core dump since we modified it.  This unfortunately causes the
2535 	 * entire text segment to core-out but we don't have much of a
2536 	 * choice.  We could try to only reenable core dumps on pages
2537 	 * in which relocations occured but that is likely most of the text
2538 	 * pages anyway, and even that would not work because the rest of
2539 	 * the text pages would wind up as a read-only OBJT_DEFAULT object
2540 	 * (created due to our modifications) backed by the original OBJT_VNODE
2541 	 * object, and the ELF coredump code is currently only able to dump
2542 	 * vnode records for pure vnode-backed mappings, not vnode backings
2543 	 * to memory objects.
2544 	 */
2545 	if (obj->textrel) {
2546 	    madvise(obj->mapbase, obj->textsize, MADV_CORE);
2547 	    if (mprotect(obj->mapbase, obj->textsize,
2548 	      PROT_READ|PROT_EXEC) == -1) {
2549 		_rtld_error("%s: Cannot write-protect text segment: %s",
2550 		  obj->path, rtld_strerror(errno));
2551 		return (-1);
2552 	    }
2553 	}
2554 
2555 
2556 	/* Set the special PLT or GOT entries. */
2557 	init_pltgot(obj);
2558 
2559 	/* Process the PLT relocations. */
2560 	if (reloc_plt(obj) == -1)
2561 	    return (-1);
2562 	/* Relocate the jump slots if we are doing immediate binding. */
2563 	if (obj->bind_now || bind_now)
2564 	    if (reloc_jmpslots(obj, flags, lockstate) == -1)
2565 		return (-1);
2566 
2567 	/*
2568 	 * Set up the magic number and version in the Obj_Entry.  These
2569 	 * were checked in the crt1.o from the original ElfKit, so we
2570 	 * set them for backward compatibility.
2571 	 */
2572 	obj->magic = RTLD_MAGIC;
2573 	obj->version = RTLD_VERSION;
2574 
2575 	/*
2576 	 * Set relocated data to read-only status if protection specified
2577 	 */
2578 
2579 	if (obj->relro_size) {
2580 	    if (mprotect(obj->relro_page, obj->relro_size, PROT_READ) == -1) {
2581 		_rtld_error("%s: Cannot enforce relro relocation: %s",
2582 		  obj->path, rtld_strerror(errno));
2583 		return (-1);
2584 	    }
2585 	}
2586 	return (0);
2587 }
2588 
2589 /*
2590  * Relocate newly-loaded shared objects.  The argument is a pointer to
2591  * the Obj_Entry for the first such object.  All objects from the first
2592  * to the end of the list of objects are relocated.  Returns 0 on success,
2593  * or -1 on failure.
2594  */
2595 static int
2596 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2597     int flags, RtldLockState *lockstate)
2598 {
2599 	Obj_Entry *obj;
2600 	int error;
2601 
2602 	for (error = 0, obj = first;  obj != NULL;  obj = obj->next) {
2603 		error = relocate_object(obj, bind_now, rtldobj, flags,
2604 		    lockstate);
2605 		if (error == -1)
2606 			break;
2607 	}
2608 	return (error);
2609 }
2610 
2611 /*
2612  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2613  * referencing STT_GNU_IFUNC symbols is postponed till the other
2614  * relocations are done.  The indirect functions specified as
2615  * ifunc are allowed to call other symbols, so we need to have
2616  * objects relocated before asking for resolution from indirects.
2617  *
2618  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2619  * instead of the usual lazy handling of PLT slots.  It is
2620  * consistent with how GNU does it.
2621  */
2622 static int
2623 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2624     RtldLockState *lockstate)
2625 {
2626 	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2627 		return (-1);
2628 	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2629 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2630 		return (-1);
2631 	return (0);
2632 }
2633 
2634 static int
2635 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2636     RtldLockState *lockstate)
2637 {
2638 	Obj_Entry *obj;
2639 
2640 	for (obj = first;  obj != NULL;  obj = obj->next) {
2641 		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2642 			return (-1);
2643 	}
2644 	return (0);
2645 }
2646 
2647 static int
2648 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2649     RtldLockState *lockstate)
2650 {
2651 	Objlist_Entry *elm;
2652 
2653 	STAILQ_FOREACH(elm, list, link) {
2654 		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2655 		    lockstate) == -1)
2656 			return (-1);
2657 	}
2658 	return (0);
2659 }
2660 
2661 /*
2662  * Cleanup procedure.  It will be called (by the atexit mechanism) just
2663  * before the process exits.
2664  */
2665 static void
2666 rtld_exit(void)
2667 {
2668     RtldLockState lockstate;
2669 
2670     wlock_acquire(rtld_bind_lock, &lockstate);
2671     dbg("rtld_exit()");
2672     objlist_call_fini(&list_fini, NULL, &lockstate);
2673     /* No need to remove the items from the list, since we are exiting. */
2674     if (!libmap_disable)
2675         lm_fini();
2676     lock_release(rtld_bind_lock, &lockstate);
2677 }
2678 
2679 static void *
2680 path_enumerate(const char *path, path_enum_proc callback, void *arg)
2681 {
2682     if (path == NULL)
2683 	return (NULL);
2684 
2685     path += strspn(path, ":;");
2686     while (*path != '\0') {
2687 	size_t len;
2688 	char  *res;
2689 
2690 	len = strcspn(path, ":;");
2691 	res = callback(path, len, arg);
2692 
2693 	if (res != NULL)
2694 	    return (res);
2695 
2696 	path += len;
2697 	path += strspn(path, ":;");
2698     }
2699 
2700     return (NULL);
2701 }
2702 
2703 struct try_library_args {
2704     const char	*name;
2705     size_t	 namelen;
2706     char	*buffer;
2707     size_t	 buflen;
2708 };
2709 
2710 static void *
2711 try_library_path(const char *dir, size_t dirlen, void *param)
2712 {
2713     struct try_library_args *arg;
2714 
2715     arg = param;
2716     if (*dir == '/' || trust) {
2717 	char *pathname;
2718 
2719 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2720 		return (NULL);
2721 
2722 	pathname = arg->buffer;
2723 	strncpy(pathname, dir, dirlen);
2724 	pathname[dirlen] = '/';
2725 	strcpy(pathname + dirlen + 1, arg->name);
2726 
2727 	dbg("  Trying \"%s\"", pathname);
2728 	if (access(pathname, F_OK) == 0) {		/* We found it */
2729 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2730 	    strcpy(pathname, arg->buffer);
2731 	    return (pathname);
2732 	}
2733     }
2734     return (NULL);
2735 }
2736 
2737 static char *
2738 search_library_path(const char *name, const char *path)
2739 {
2740     char *p;
2741     struct try_library_args arg;
2742 
2743     if (path == NULL)
2744 	return NULL;
2745 
2746     arg.name = name;
2747     arg.namelen = strlen(name);
2748     arg.buffer = xmalloc(PATH_MAX);
2749     arg.buflen = PATH_MAX;
2750 
2751     p = path_enumerate(path, try_library_path, &arg);
2752 
2753     free(arg.buffer);
2754 
2755     return (p);
2756 }
2757 
2758 int
2759 dlclose(void *handle)
2760 {
2761     Obj_Entry *root;
2762     RtldLockState lockstate;
2763 
2764     wlock_acquire(rtld_bind_lock, &lockstate);
2765     root = dlcheck(handle);
2766     if (root == NULL) {
2767 	lock_release(rtld_bind_lock, &lockstate);
2768 	return -1;
2769     }
2770     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2771 	root->path);
2772 
2773     /* Unreference the object and its dependencies. */
2774     root->dl_refcount--;
2775 
2776     if (root->refcount == 1) {
2777 	/*
2778 	 * The object will be no longer referenced, so we must unload it.
2779 	 * First, call the fini functions.
2780 	 */
2781 	objlist_call_fini(&list_fini, root, &lockstate);
2782 
2783 	unref_dag(root);
2784 
2785 	/* Finish cleaning up the newly-unreferenced objects. */
2786 	GDB_STATE(RT_DELETE,&root->linkmap);
2787 	unload_object(root);
2788 	GDB_STATE(RT_CONSISTENT,NULL);
2789     } else
2790 	unref_dag(root);
2791 
2792     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2793     lock_release(rtld_bind_lock, &lockstate);
2794     return 0;
2795 }
2796 
2797 char *
2798 dlerror(void)
2799 {
2800     char *msg = error_message;
2801     error_message = NULL;
2802     return msg;
2803 }
2804 
2805 void *
2806 dlopen(const char *name, int mode)
2807 {
2808 
2809 	return (rtld_dlopen(name, -1, mode));
2810 }
2811 
2812 void *
2813 fdlopen(int fd, int mode)
2814 {
2815 
2816 	return (rtld_dlopen(NULL, fd, mode));
2817 }
2818 
2819 static void *
2820 rtld_dlopen(const char *name, int fd, int mode)
2821 {
2822     RtldLockState lockstate;
2823     int lo_flags;
2824 
2825     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2826     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2827     if (ld_tracing != NULL) {
2828 	rlock_acquire(rtld_bind_lock, &lockstate);
2829 	if (sigsetjmp(lockstate.env, 0) != 0)
2830 	    lock_upgrade(rtld_bind_lock, &lockstate);
2831 	environ = (char **)*get_program_var_addr("environ", &lockstate);
2832 	lock_release(rtld_bind_lock, &lockstate);
2833     }
2834     lo_flags = RTLD_LO_DLOPEN;
2835     if (mode & RTLD_NODELETE)
2836 	    lo_flags |= RTLD_LO_NODELETE;
2837     if (mode & RTLD_NOLOAD)
2838 	    lo_flags |= RTLD_LO_NOLOAD;
2839     if (ld_tracing != NULL)
2840 	    lo_flags |= RTLD_LO_TRACE;
2841 
2842     return (dlopen_object(name, fd, obj_main, lo_flags,
2843       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
2844 }
2845 
2846 static void
2847 dlopen_cleanup(Obj_Entry *obj)
2848 {
2849 
2850 	obj->dl_refcount--;
2851 	unref_dag(obj);
2852 	if (obj->refcount == 0)
2853 		unload_object(obj);
2854 }
2855 
2856 static Obj_Entry *
2857 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
2858     int mode, RtldLockState *lockstate)
2859 {
2860     Obj_Entry **old_obj_tail;
2861     Obj_Entry *obj;
2862     Objlist initlist;
2863     RtldLockState mlockstate;
2864     int result;
2865 
2866     objlist_init(&initlist);
2867 
2868     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
2869 	wlock_acquire(rtld_bind_lock, &mlockstate);
2870 	lockstate = &mlockstate;
2871     }
2872     GDB_STATE(RT_ADD,NULL);
2873 
2874     old_obj_tail = obj_tail;
2875     obj = NULL;
2876     if (name == NULL && fd == -1) {
2877 	obj = obj_main;
2878 	obj->refcount++;
2879     } else {
2880 	obj = load_object(name, fd, refobj, lo_flags);
2881     }
2882 
2883     if (obj) {
2884 	obj->dl_refcount++;
2885 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
2886 	    objlist_push_tail(&list_global, obj);
2887 	if (*old_obj_tail != NULL) {		/* We loaded something new. */
2888 	    assert(*old_obj_tail == obj);
2889 	    result = load_needed_objects(obj,
2890 		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
2891 	    init_dag(obj);
2892 	    ref_dag(obj);
2893 	    if (result != -1)
2894 		result = rtld_verify_versions(&obj->dagmembers);
2895 	    if (result != -1 && ld_tracing)
2896 		goto trace;
2897 	    if (result == -1 || relocate_object_dag(obj,
2898 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
2899 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
2900 	      lockstate) == -1) {
2901 		dlopen_cleanup(obj);
2902 		obj = NULL;
2903 	    } else if (lo_flags & RTLD_LO_EARLY) {
2904 		/*
2905 		 * Do not call the init functions for early loaded
2906 		 * filtees.  The image is still not initialized enough
2907 		 * for them to work.
2908 		 *
2909 		 * Our object is found by the global object list and
2910 		 * will be ordered among all init calls done right
2911 		 * before transferring control to main.
2912 		 */
2913 	    } else {
2914 		/* Make list of init functions to call. */
2915 		initlist_add_objects(obj, &obj->next, &initlist);
2916 	    }
2917 	    /*
2918 	     * Process all no_delete objects here, given them own
2919 	     * DAGs to prevent their dependencies from being unloaded.
2920 	     * This has to be done after we have loaded all of the
2921 	     * dependencies, so that we do not miss any.
2922 	     */
2923 	     if (obj != NULL)
2924 		process_nodelete(obj);
2925 	} else {
2926 	    /*
2927 	     * Bump the reference counts for objects on this DAG.  If
2928 	     * this is the first dlopen() call for the object that was
2929 	     * already loaded as a dependency, initialize the dag
2930 	     * starting at it.
2931 	     */
2932 	    init_dag(obj);
2933 	    ref_dag(obj);
2934 
2935 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
2936 		goto trace;
2937 	}
2938 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
2939 	  obj->z_nodelete) && !obj->ref_nodel) {
2940 	    dbg("obj %s nodelete", obj->path);
2941 	    ref_dag(obj);
2942 	    obj->z_nodelete = obj->ref_nodel = true;
2943 	}
2944     }
2945 
2946     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
2947 	name);
2948     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
2949 
2950     if (!(lo_flags & RTLD_LO_EARLY)) {
2951 	map_stacks_exec(lockstate);
2952     }
2953 
2954     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
2955       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
2956       lockstate) == -1) {
2957 	objlist_clear(&initlist);
2958 	dlopen_cleanup(obj);
2959 	if (lockstate == &mlockstate)
2960 	    lock_release(rtld_bind_lock, lockstate);
2961 	return (NULL);
2962     }
2963 
2964     if (!(lo_flags & RTLD_LO_EARLY)) {
2965 	/* Call the init functions. */
2966 	objlist_call_init(&initlist, lockstate);
2967     }
2968     objlist_clear(&initlist);
2969     if (lockstate == &mlockstate)
2970 	lock_release(rtld_bind_lock, lockstate);
2971     return obj;
2972 trace:
2973     trace_loaded_objects(obj);
2974     if (lockstate == &mlockstate)
2975 	lock_release(rtld_bind_lock, lockstate);
2976     exit(0);
2977 }
2978 
2979 static void *
2980 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
2981     int flags)
2982 {
2983     DoneList donelist;
2984     const Obj_Entry *obj, *defobj;
2985     const Elf_Sym *def;
2986     SymLook req;
2987     RtldLockState lockstate;
2988     tls_index ti;
2989     int res;
2990 
2991     def = NULL;
2992     defobj = NULL;
2993     symlook_init(&req, name);
2994     req.ventry = ve;
2995     req.flags = flags | SYMLOOK_IN_PLT;
2996     req.lockstate = &lockstate;
2997 
2998     rlock_acquire(rtld_bind_lock, &lockstate);
2999     if (sigsetjmp(lockstate.env, 0) != 0)
3000 	    lock_upgrade(rtld_bind_lock, &lockstate);
3001     if (handle == NULL || handle == RTLD_NEXT ||
3002 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3003 
3004 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3005 	    _rtld_error("Cannot determine caller's shared object");
3006 	    lock_release(rtld_bind_lock, &lockstate);
3007 	    return NULL;
3008 	}
3009 	if (handle == NULL) {	/* Just the caller's shared object. */
3010 	    res = symlook_obj(&req, obj);
3011 	    if (res == 0) {
3012 		def = req.sym_out;
3013 		defobj = req.defobj_out;
3014 	    }
3015 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3016 		   handle == RTLD_SELF) { /* ... caller included */
3017 	    if (handle == RTLD_NEXT)
3018 		obj = obj->next;
3019 	    for (; obj != NULL; obj = obj->next) {
3020 		res = symlook_obj(&req, obj);
3021 		if (res == 0) {
3022 		    if (def == NULL ||
3023 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3024 			def = req.sym_out;
3025 			defobj = req.defobj_out;
3026 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3027 			    break;
3028 		    }
3029 		}
3030 	    }
3031 	    /*
3032 	     * Search the dynamic linker itself, and possibly resolve the
3033 	     * symbol from there.  This is how the application links to
3034 	     * dynamic linker services such as dlopen.
3035 	     */
3036 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3037 		res = symlook_obj(&req, &obj_rtld);
3038 		if (res == 0) {
3039 		    def = req.sym_out;
3040 		    defobj = req.defobj_out;
3041 		}
3042 	    }
3043 	} else {
3044 	    assert(handle == RTLD_DEFAULT);
3045 	    res = symlook_default(&req, obj);
3046 	    if (res == 0) {
3047 		defobj = req.defobj_out;
3048 		def = req.sym_out;
3049 	    }
3050 	}
3051     } else {
3052 	if ((obj = dlcheck(handle)) == NULL) {
3053 	    lock_release(rtld_bind_lock, &lockstate);
3054 	    return NULL;
3055 	}
3056 
3057 	donelist_init(&donelist);
3058 	if (obj->mainprog) {
3059             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3060 	    res = symlook_global(&req, &donelist);
3061 	    if (res == 0) {
3062 		def = req.sym_out;
3063 		defobj = req.defobj_out;
3064 	    }
3065 	    /*
3066 	     * Search the dynamic linker itself, and possibly resolve the
3067 	     * symbol from there.  This is how the application links to
3068 	     * dynamic linker services such as dlopen.
3069 	     */
3070 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3071 		res = symlook_obj(&req, &obj_rtld);
3072 		if (res == 0) {
3073 		    def = req.sym_out;
3074 		    defobj = req.defobj_out;
3075 		}
3076 	    }
3077 	}
3078 	else {
3079 	    /* Search the whole DAG rooted at the given object. */
3080 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3081 	    if (res == 0) {
3082 		def = req.sym_out;
3083 		defobj = req.defobj_out;
3084 	    }
3085 	}
3086     }
3087 
3088     if (def != NULL) {
3089 	lock_release(rtld_bind_lock, &lockstate);
3090 
3091 	/*
3092 	 * The value required by the caller is derived from the value
3093 	 * of the symbol. For the ia64 architecture, we need to
3094 	 * construct a function descriptor which the caller can use to
3095 	 * call the function with the right 'gp' value. For other
3096 	 * architectures and for non-functions, the value is simply
3097 	 * the relocated value of the symbol.
3098 	 */
3099 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3100 	    return (make_function_pointer(def, defobj));
3101 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3102 	    return (rtld_resolve_ifunc(defobj, def));
3103 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3104 	    ti.ti_module = defobj->tlsindex;
3105 	    ti.ti_offset = def->st_value;
3106 	    return (__tls_get_addr(&ti));
3107 	} else
3108 	    return (defobj->relocbase + def->st_value);
3109     }
3110 
3111     _rtld_error("Undefined symbol \"%s\"", name);
3112     lock_release(rtld_bind_lock, &lockstate);
3113     return NULL;
3114 }
3115 
3116 void *
3117 dlsym(void *handle, const char *name)
3118 {
3119 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3120 	    SYMLOOK_DLSYM);
3121 }
3122 
3123 dlfunc_t
3124 dlfunc(void *handle, const char *name)
3125 {
3126 	union {
3127 		void *d;
3128 		dlfunc_t f;
3129 	} rv;
3130 
3131 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3132 	    SYMLOOK_DLSYM);
3133 	return (rv.f);
3134 }
3135 
3136 void *
3137 dlvsym(void *handle, const char *name, const char *version)
3138 {
3139 	Ver_Entry ventry;
3140 
3141 	ventry.name = version;
3142 	ventry.file = NULL;
3143 	ventry.hash = elf_hash(version);
3144 	ventry.flags= 0;
3145 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3146 	    SYMLOOK_DLSYM);
3147 }
3148 
3149 int
3150 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3151 {
3152     const Obj_Entry *obj;
3153     RtldLockState lockstate;
3154 
3155     rlock_acquire(rtld_bind_lock, &lockstate);
3156     obj = obj_from_addr(addr);
3157     if (obj == NULL) {
3158         _rtld_error("No shared object contains address");
3159 	lock_release(rtld_bind_lock, &lockstate);
3160         return (0);
3161     }
3162     rtld_fill_dl_phdr_info(obj, phdr_info);
3163     lock_release(rtld_bind_lock, &lockstate);
3164     return (1);
3165 }
3166 
3167 int
3168 dladdr(const void *addr, Dl_info *info)
3169 {
3170     const Obj_Entry *obj;
3171     const Elf_Sym *def;
3172     void *symbol_addr;
3173     unsigned long symoffset;
3174     RtldLockState lockstate;
3175 
3176     rlock_acquire(rtld_bind_lock, &lockstate);
3177     obj = obj_from_addr(addr);
3178     if (obj == NULL) {
3179         _rtld_error("No shared object contains address");
3180 	lock_release(rtld_bind_lock, &lockstate);
3181         return 0;
3182     }
3183     info->dli_fname = obj->path;
3184     info->dli_fbase = obj->mapbase;
3185     info->dli_saddr = NULL;
3186     info->dli_sname = NULL;
3187 
3188     /*
3189      * Walk the symbol list looking for the symbol whose address is
3190      * closest to the address sent in.
3191      */
3192     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3193         def = obj->symtab + symoffset;
3194 
3195         /*
3196          * For skip the symbol if st_shndx is either SHN_UNDEF or
3197          * SHN_COMMON.
3198          */
3199         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3200             continue;
3201 
3202         /*
3203          * If the symbol is greater than the specified address, or if it
3204          * is further away from addr than the current nearest symbol,
3205          * then reject it.
3206          */
3207         symbol_addr = obj->relocbase + def->st_value;
3208         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3209             continue;
3210 
3211         /* Update our idea of the nearest symbol. */
3212         info->dli_sname = obj->strtab + def->st_name;
3213         info->dli_saddr = symbol_addr;
3214 
3215         /* Exact match? */
3216         if (info->dli_saddr == addr)
3217             break;
3218     }
3219     lock_release(rtld_bind_lock, &lockstate);
3220     return 1;
3221 }
3222 
3223 int
3224 dlinfo(void *handle, int request, void *p)
3225 {
3226     const Obj_Entry *obj;
3227     RtldLockState lockstate;
3228     int error;
3229 
3230     rlock_acquire(rtld_bind_lock, &lockstate);
3231 
3232     if (handle == NULL || handle == RTLD_SELF) {
3233 	void *retaddr;
3234 
3235 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3236 	if ((obj = obj_from_addr(retaddr)) == NULL)
3237 	    _rtld_error("Cannot determine caller's shared object");
3238     } else
3239 	obj = dlcheck(handle);
3240 
3241     if (obj == NULL) {
3242 	lock_release(rtld_bind_lock, &lockstate);
3243 	return (-1);
3244     }
3245 
3246     error = 0;
3247     switch (request) {
3248     case RTLD_DI_LINKMAP:
3249 	*((struct link_map const **)p) = &obj->linkmap;
3250 	break;
3251     case RTLD_DI_ORIGIN:
3252 	error = rtld_dirname(obj->path, p);
3253 	break;
3254 
3255     case RTLD_DI_SERINFOSIZE:
3256     case RTLD_DI_SERINFO:
3257 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3258 	break;
3259 
3260     default:
3261 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3262 	error = -1;
3263     }
3264 
3265     lock_release(rtld_bind_lock, &lockstate);
3266 
3267     return (error);
3268 }
3269 
3270 static void
3271 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3272 {
3273 
3274 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3275 	phdr_info->dlpi_name = STAILQ_FIRST(&obj->names) ?
3276 	    STAILQ_FIRST(&obj->names)->name : obj->path;
3277 	phdr_info->dlpi_phdr = obj->phdr;
3278 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3279 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3280 	phdr_info->dlpi_tls_data = obj->tlsinit;
3281 	phdr_info->dlpi_adds = obj_loads;
3282 	phdr_info->dlpi_subs = obj_loads - obj_count;
3283 }
3284 
3285 int
3286 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3287 {
3288     struct dl_phdr_info phdr_info;
3289     const Obj_Entry *obj;
3290     RtldLockState bind_lockstate, phdr_lockstate;
3291     int error;
3292 
3293     wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3294     rlock_acquire(rtld_bind_lock, &bind_lockstate);
3295 
3296     error = 0;
3297 
3298     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
3299 	rtld_fill_dl_phdr_info(obj, &phdr_info);
3300 	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
3301 		break;
3302 
3303     }
3304     lock_release(rtld_bind_lock, &bind_lockstate);
3305     lock_release(rtld_phdr_lock, &phdr_lockstate);
3306 
3307     return (error);
3308 }
3309 
3310 static void *
3311 fill_search_info(const char *dir, size_t dirlen, void *param)
3312 {
3313     struct fill_search_info_args *arg;
3314 
3315     arg = param;
3316 
3317     if (arg->request == RTLD_DI_SERINFOSIZE) {
3318 	arg->serinfo->dls_cnt ++;
3319 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3320     } else {
3321 	struct dl_serpath *s_entry;
3322 
3323 	s_entry = arg->serpath;
3324 	s_entry->dls_name  = arg->strspace;
3325 	s_entry->dls_flags = arg->flags;
3326 
3327 	strncpy(arg->strspace, dir, dirlen);
3328 	arg->strspace[dirlen] = '\0';
3329 
3330 	arg->strspace += dirlen + 1;
3331 	arg->serpath++;
3332     }
3333 
3334     return (NULL);
3335 }
3336 
3337 static int
3338 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3339 {
3340     struct dl_serinfo _info;
3341     struct fill_search_info_args args;
3342 
3343     args.request = RTLD_DI_SERINFOSIZE;
3344     args.serinfo = &_info;
3345 
3346     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3347     _info.dls_cnt  = 0;
3348 
3349     path_enumerate(obj->rpath, fill_search_info, &args);
3350     path_enumerate(ld_library_path, fill_search_info, &args);
3351     path_enumerate(obj->runpath, fill_search_info, &args);
3352     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3353     if (!obj->z_nodeflib)
3354       path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
3355 
3356 
3357     if (request == RTLD_DI_SERINFOSIZE) {
3358 	info->dls_size = _info.dls_size;
3359 	info->dls_cnt = _info.dls_cnt;
3360 	return (0);
3361     }
3362 
3363     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3364 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3365 	return (-1);
3366     }
3367 
3368     args.request  = RTLD_DI_SERINFO;
3369     args.serinfo  = info;
3370     args.serpath  = &info->dls_serpath[0];
3371     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3372 
3373     args.flags = LA_SER_RUNPATH;
3374     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3375 	return (-1);
3376 
3377     args.flags = LA_SER_LIBPATH;
3378     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3379 	return (-1);
3380 
3381     args.flags = LA_SER_RUNPATH;
3382     if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3383 	return (-1);
3384 
3385     args.flags = LA_SER_CONFIG;
3386     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3387       != NULL)
3388 	return (-1);
3389 
3390     args.flags = LA_SER_DEFAULT;
3391     if (!obj->z_nodeflib &&
3392       path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
3393 	return (-1);
3394     return (0);
3395 }
3396 
3397 static int
3398 rtld_dirname(const char *path, char *bname)
3399 {
3400     const char *endp;
3401 
3402     /* Empty or NULL string gets treated as "." */
3403     if (path == NULL || *path == '\0') {
3404 	bname[0] = '.';
3405 	bname[1] = '\0';
3406 	return (0);
3407     }
3408 
3409     /* Strip trailing slashes */
3410     endp = path + strlen(path) - 1;
3411     while (endp > path && *endp == '/')
3412 	endp--;
3413 
3414     /* Find the start of the dir */
3415     while (endp > path && *endp != '/')
3416 	endp--;
3417 
3418     /* Either the dir is "/" or there are no slashes */
3419     if (endp == path) {
3420 	bname[0] = *endp == '/' ? '/' : '.';
3421 	bname[1] = '\0';
3422 	return (0);
3423     } else {
3424 	do {
3425 	    endp--;
3426 	} while (endp > path && *endp == '/');
3427     }
3428 
3429     if (endp - path + 2 > PATH_MAX)
3430     {
3431 	_rtld_error("Filename is too long: %s", path);
3432 	return(-1);
3433     }
3434 
3435     strncpy(bname, path, endp - path + 1);
3436     bname[endp - path + 1] = '\0';
3437     return (0);
3438 }
3439 
3440 static int
3441 rtld_dirname_abs(const char *path, char *base)
3442 {
3443 	char base_rel[PATH_MAX];
3444 
3445 	if (rtld_dirname(path, base) == -1)
3446 		return (-1);
3447 	if (base[0] == '/')
3448 		return (0);
3449 	if (getcwd(base_rel, sizeof(base_rel)) == NULL ||
3450 	    strlcat(base_rel, "/", sizeof(base_rel)) >= sizeof(base_rel) ||
3451 	    strlcat(base_rel, base, sizeof(base_rel)) >= sizeof(base_rel))
3452 		return (-1);
3453 	strcpy(base, base_rel);
3454 	return (0);
3455 }
3456 
3457 static void
3458 linkmap_add(Obj_Entry *obj)
3459 {
3460     struct link_map *l = &obj->linkmap;
3461     struct link_map *prev;
3462 
3463     obj->linkmap.l_name = obj->path;
3464     obj->linkmap.l_addr = obj->mapbase;
3465     obj->linkmap.l_ld = obj->dynamic;
3466 #ifdef __mips__
3467     /* GDB needs load offset on MIPS to use the symbols */
3468     obj->linkmap.l_offs = obj->relocbase;
3469 #endif
3470 
3471     if (r_debug.r_map == NULL) {
3472 	r_debug.r_map = l;
3473 	return;
3474     }
3475 
3476     /*
3477      * Scan to the end of the list, but not past the entry for the
3478      * dynamic linker, which we want to keep at the very end.
3479      */
3480     for (prev = r_debug.r_map;
3481       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3482       prev = prev->l_next)
3483 	;
3484 
3485     /* Link in the new entry. */
3486     l->l_prev = prev;
3487     l->l_next = prev->l_next;
3488     if (l->l_next != NULL)
3489 	l->l_next->l_prev = l;
3490     prev->l_next = l;
3491 }
3492 
3493 static void
3494 linkmap_delete(Obj_Entry *obj)
3495 {
3496     struct link_map *l = &obj->linkmap;
3497 
3498     if (l->l_prev == NULL) {
3499 	if ((r_debug.r_map = l->l_next) != NULL)
3500 	    l->l_next->l_prev = NULL;
3501 	return;
3502     }
3503 
3504     if ((l->l_prev->l_next = l->l_next) != NULL)
3505 	l->l_next->l_prev = l->l_prev;
3506 }
3507 
3508 /*
3509  * Function for the debugger to set a breakpoint on to gain control.
3510  *
3511  * The two parameters allow the debugger to easily find and determine
3512  * what the runtime loader is doing and to whom it is doing it.
3513  *
3514  * When the loadhook trap is hit (r_debug_state, set at program
3515  * initialization), the arguments can be found on the stack:
3516  *
3517  *  +8   struct link_map *m
3518  *  +4   struct r_debug  *rd
3519  *  +0   RetAddr
3520  */
3521 void
3522 r_debug_state(struct r_debug* rd, struct link_map *m)
3523 {
3524     /*
3525      * The following is a hack to force the compiler to emit calls to
3526      * this function, even when optimizing.  If the function is empty,
3527      * the compiler is not obliged to emit any code for calls to it,
3528      * even when marked __noinline.  However, gdb depends on those
3529      * calls being made.
3530      */
3531     __asm __volatile("" : : : "memory");
3532 }
3533 
3534 /*
3535  * Get address of the pointer variable in the main program.
3536  * Prefer non-weak symbol over the weak one.
3537  */
3538 static const void **
3539 get_program_var_addr(const char *name, RtldLockState *lockstate)
3540 {
3541     SymLook req;
3542     DoneList donelist;
3543 
3544     symlook_init(&req, name);
3545     req.lockstate = lockstate;
3546     donelist_init(&donelist);
3547     if (symlook_global(&req, &donelist) != 0)
3548 	return (NULL);
3549     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3550 	return ((const void **)make_function_pointer(req.sym_out,
3551 	  req.defobj_out));
3552     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3553 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3554     else
3555 	return ((const void **)(req.defobj_out->relocbase +
3556 	  req.sym_out->st_value));
3557 }
3558 
3559 /*
3560  * Set a pointer variable in the main program to the given value.  This
3561  * is used to set key variables such as "environ" before any of the
3562  * init functions are called.
3563  */
3564 static void
3565 set_program_var(const char *name, const void *value)
3566 {
3567     const void **addr;
3568 
3569     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3570 	dbg("\"%s\": *%p <-- %p", name, addr, value);
3571 	*addr = value;
3572     }
3573 }
3574 
3575 /*
3576  * Search the global objects, including dependencies and main object,
3577  * for the given symbol.
3578  */
3579 static int
3580 symlook_global(SymLook *req, DoneList *donelist)
3581 {
3582     SymLook req1;
3583     const Objlist_Entry *elm;
3584     int res;
3585 
3586     symlook_init_from_req(&req1, req);
3587 
3588     /* Search all objects loaded at program start up. */
3589     if (req->defobj_out == NULL ||
3590       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3591 	res = symlook_list(&req1, &list_main, donelist);
3592 	if (res == 0 && (req->defobj_out == NULL ||
3593 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3594 	    req->sym_out = req1.sym_out;
3595 	    req->defobj_out = req1.defobj_out;
3596 	    assert(req->defobj_out != NULL);
3597 	}
3598     }
3599 
3600     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3601     STAILQ_FOREACH(elm, &list_global, link) {
3602 	if (req->defobj_out != NULL &&
3603 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3604 	    break;
3605 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3606 	if (res == 0 && (req->defobj_out == NULL ||
3607 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3608 	    req->sym_out = req1.sym_out;
3609 	    req->defobj_out = req1.defobj_out;
3610 	    assert(req->defobj_out != NULL);
3611 	}
3612     }
3613 
3614     return (req->sym_out != NULL ? 0 : ESRCH);
3615 }
3616 
3617 /*
3618  * This is a special version of getenv which is far more efficient
3619  * at finding LD_ environment vars.
3620  */
3621 static
3622 const char *
3623 _getenv_ld(const char *id)
3624 {
3625     const char *envp;
3626     int i, j;
3627     int idlen = strlen(id);
3628 
3629     if (ld_index == LD_ARY_CACHE)
3630 	return(getenv(id));
3631     if (ld_index == 0) {
3632 	for (i = j = 0; (envp = environ[i]) != NULL && j < LD_ARY_CACHE; ++i) {
3633 	    if (envp[0] == 'L' && envp[1] == 'D' && envp[2] == '_')
3634 		ld_ary[j++] = envp;
3635 	}
3636 	if (j == 0)
3637 		ld_ary[j++] = "";
3638 	ld_index = j;
3639     }
3640     for (i = ld_index - 1; i >= 0; --i) {
3641 	if (strncmp(ld_ary[i], id, idlen) == 0 && ld_ary[i][idlen] == '=')
3642 	    return(ld_ary[i] + idlen + 1);
3643     }
3644     return(NULL);
3645 }
3646 
3647 /*
3648  * Given a symbol name in a referencing object, find the corresponding
3649  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3650  * no definition was found.  Returns a pointer to the Obj_Entry of the
3651  * defining object via the reference parameter DEFOBJ_OUT.
3652  */
3653 static int
3654 symlook_default(SymLook *req, const Obj_Entry *refobj)
3655 {
3656     DoneList donelist;
3657     const Objlist_Entry *elm;
3658     SymLook req1;
3659     int res;
3660 
3661     donelist_init(&donelist);
3662     symlook_init_from_req(&req1, req);
3663 
3664     /* Look first in the referencing object if linked symbolically. */
3665     if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3666 	res = symlook_obj(&req1, refobj);
3667 	if (res == 0) {
3668 	    req->sym_out = req1.sym_out;
3669 	    req->defobj_out = req1.defobj_out;
3670 	    assert(req->defobj_out != NULL);
3671 	}
3672     }
3673 
3674     symlook_global(req, &donelist);
3675 
3676     /* Search all dlopened DAGs containing the referencing object. */
3677     STAILQ_FOREACH(elm, &refobj->dldags, link) {
3678 	if (req->sym_out != NULL &&
3679 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3680 	    break;
3681 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3682 	if (res == 0 && (req->sym_out == NULL ||
3683 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3684 	    req->sym_out = req1.sym_out;
3685 	    req->defobj_out = req1.defobj_out;
3686 	    assert(req->defobj_out != NULL);
3687 	}
3688     }
3689 
3690     /*
3691      * Search the dynamic linker itself, and possibly resolve the
3692      * symbol from there.  This is how the application links to
3693      * dynamic linker services such as dlopen.
3694      */
3695     if (req->sym_out == NULL ||
3696       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3697 	res = symlook_obj(&req1, &obj_rtld);
3698 	if (res == 0) {
3699 	    req->sym_out = req1.sym_out;
3700 	    req->defobj_out = req1.defobj_out;
3701 	    assert(req->defobj_out != NULL);
3702 	}
3703     }
3704 
3705     return (req->sym_out != NULL ? 0 : ESRCH);
3706 }
3707 
3708 static int
3709 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3710 {
3711     const Elf_Sym *def;
3712     const Obj_Entry *defobj;
3713     const Objlist_Entry *elm;
3714     SymLook req1;
3715     int res;
3716 
3717     def = NULL;
3718     defobj = NULL;
3719     STAILQ_FOREACH(elm, objlist, link) {
3720 	if (donelist_check(dlp, elm->obj))
3721 	    continue;
3722 	symlook_init_from_req(&req1, req);
3723 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3724 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3725 		def = req1.sym_out;
3726 		defobj = req1.defobj_out;
3727 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3728 		    break;
3729 	    }
3730 	}
3731     }
3732     if (def != NULL) {
3733 	req->sym_out = def;
3734 	req->defobj_out = defobj;
3735 	return (0);
3736     }
3737     return (ESRCH);
3738 }
3739 
3740 /*
3741  * Search the chain of DAGS cointed to by the given Needed_Entry
3742  * for a symbol of the given name.  Each DAG is scanned completely
3743  * before advancing to the next one.  Returns a pointer to the symbol,
3744  * or NULL if no definition was found.
3745  */
3746 static int
3747 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3748 {
3749     const Elf_Sym *def;
3750     const Needed_Entry *n;
3751     const Obj_Entry *defobj;
3752     SymLook req1;
3753     int res;
3754 
3755     def = NULL;
3756     defobj = NULL;
3757     symlook_init_from_req(&req1, req);
3758     for (n = needed; n != NULL; n = n->next) {
3759 	if (n->obj == NULL ||
3760 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3761 	    continue;
3762 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3763 	def = req1.sym_out;
3764 	defobj = req1.defobj_out;
3765 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3766 		break;
3767 	}
3768     }
3769     if (def != NULL) {
3770 	req->sym_out = def;
3771 	req->defobj_out = defobj;
3772 	return (0);
3773     }
3774     return (ESRCH);
3775 }
3776 
3777 /*
3778  * Search the symbol table of a single shared object for a symbol of
3779  * the given name and version, if requested.  Returns a pointer to the
3780  * symbol, or NULL if no definition was found.  If the object is
3781  * filter, return filtered symbol from filtee.
3782  *
3783  * The symbol's hash value is passed in for efficiency reasons; that
3784  * eliminates many recomputations of the hash value.
3785  */
3786 int
3787 symlook_obj(SymLook *req, const Obj_Entry *obj)
3788 {
3789     DoneList donelist;
3790     SymLook req1;
3791     int flags, res, mres;
3792 
3793     /*
3794      * If there is at least one valid hash at this point, we prefer to
3795      * use the faster GNU version if available.
3796      */
3797     if (obj->valid_hash_gnu)
3798 	mres = symlook_obj1_gnu(req, obj);
3799     else if (obj->valid_hash_sysv)
3800 	mres = symlook_obj1_sysv(req, obj);
3801     else
3802 	return (EINVAL);
3803 
3804     if (mres == 0) {
3805 	if (obj->needed_filtees != NULL) {
3806 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3807 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3808 	    donelist_init(&donelist);
3809 	    symlook_init_from_req(&req1, req);
3810 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3811 	    if (res == 0) {
3812 		req->sym_out = req1.sym_out;
3813 		req->defobj_out = req1.defobj_out;
3814 	    }
3815 	    return (res);
3816 	}
3817 	if (obj->needed_aux_filtees != NULL) {
3818 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3819 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3820 	    donelist_init(&donelist);
3821 	    symlook_init_from_req(&req1, req);
3822 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
3823 	    if (res == 0) {
3824 		req->sym_out = req1.sym_out;
3825 		req->defobj_out = req1.defobj_out;
3826 		return (res);
3827 	    }
3828 	}
3829     }
3830     return (mres);
3831 }
3832 
3833 /* Symbol match routine common to both hash functions */
3834 static bool
3835 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
3836 	const unsigned long symnum)
3837 {
3838 	Elf_Versym verndx;
3839 	const Elf_Sym *symp;
3840 	const char *strp;
3841 
3842 	symp = obj->symtab + symnum;
3843 	strp = obj->strtab + symp->st_name;
3844 
3845 	switch (ELF_ST_TYPE(symp->st_info)) {
3846 	case STT_FUNC:
3847 	case STT_NOTYPE:
3848 	case STT_OBJECT:
3849 	case STT_COMMON:
3850 	case STT_GNU_IFUNC:
3851 		if (symp->st_value == 0)
3852 			return (false);
3853 		/* fallthrough */
3854 	case STT_TLS:
3855 		if (symp->st_shndx != SHN_UNDEF)
3856 			break;
3857 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
3858 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
3859 			break;
3860 		/* fallthrough */
3861 	default:
3862 		return (false);
3863 	}
3864     if (strcmp(req->name, strp) != 0)
3865 	return (false);
3866 
3867 	if (req->ventry == NULL) {
3868 		if (obj->versyms != NULL) {
3869 			verndx = VER_NDX(obj->versyms[symnum]);
3870 			if (verndx > obj->vernum) {
3871 				_rtld_error(
3872 				    "%s: symbol %s references wrong version %d",
3873 				    obj->path, obj->strtab + symnum, verndx);
3874 				return (false);
3875 			}
3876 			/*
3877 			 * If we are not called from dlsym (i.e. this
3878 			 * is a normal relocation from unversioned
3879 			 * binary), accept the symbol immediately if
3880 			 * it happens to have first version after this
3881 			 * shared object became versioned.  Otherwise,
3882 			 * if symbol is versioned and not hidden,
3883 			 * remember it. If it is the only symbol with
3884 			 * this name exported by the shared object, it
3885 			 * will be returned as a match by the calling
3886 			 * function. If symbol is global (verndx < 2)
3887 			 * accept it unconditionally.
3888 			 */
3889 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
3890 			    verndx == VER_NDX_GIVEN) {
3891 				result->sym_out = symp;
3892 				return (true);
3893 			}
3894 			else if (verndx >= VER_NDX_GIVEN) {
3895 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
3896 				  == 0) {
3897 					if (result->vsymp == NULL)
3898 						result->vsymp = symp;
3899 					result->vcount++;
3900 				}
3901 				return (false);
3902 			}
3903 		}
3904 		result->sym_out = symp;
3905 		return (true);
3906 	}
3907 	if (obj->versyms == NULL) {
3908 		if (object_match_name(obj, req->ventry->name)) {
3909 			_rtld_error("%s: object %s should provide version %s "
3910 			    "for symbol %s", obj_rtld.path, obj->path,
3911 			    req->ventry->name, obj->strtab + symnum);
3912 			return (false);
3913 		}
3914 	} else {
3915 		verndx = VER_NDX(obj->versyms[symnum]);
3916 		if (verndx > obj->vernum) {
3917 			_rtld_error("%s: symbol %s references wrong version %d",
3918 			    obj->path, obj->strtab + symnum, verndx);
3919 			return (false);
3920 		}
3921 		if (obj->vertab[verndx].hash != req->ventry->hash ||
3922 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
3923 			/*
3924 			 * Version does not match. Look if this is a
3925 			 * global symbol and if it is not hidden. If
3926 			 * global symbol (verndx < 2) is available,
3927 			 * use it. Do not return symbol if we are
3928 			 * called by dlvsym, because dlvsym looks for
3929 			 * a specific version and default one is not
3930 			 * what dlvsym wants.
3931 			 */
3932 			if ((req->flags & SYMLOOK_DLSYM) ||
3933 			    (verndx >= VER_NDX_GIVEN) ||
3934 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
3935 				return (false);
3936 		}
3937 	}
3938 	result->sym_out = symp;
3939 	return (true);
3940 }
3941 
3942 /*
3943  * Search for symbol using SysV hash function.
3944  * obj->buckets is known not to be NULL at this point; the test for this was
3945  * performed with the obj->valid_hash_sysv assignment.
3946  */
3947 static int
3948 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
3949 {
3950 	unsigned long symnum;
3951 	Sym_Match_Result matchres;
3952 
3953 	matchres.sym_out = NULL;
3954 	matchres.vsymp = NULL;
3955 	matchres.vcount = 0;
3956 
3957 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
3958 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
3959 		if (symnum >= obj->nchains)
3960 			return (ESRCH);	/* Bad object */
3961 
3962 		if (matched_symbol(req, obj, &matchres, symnum)) {
3963 			req->sym_out = matchres.sym_out;
3964 			req->defobj_out = obj;
3965 			return (0);
3966 		}
3967 	}
3968 	if (matchres.vcount == 1) {
3969 		req->sym_out = matchres.vsymp;
3970 		req->defobj_out = obj;
3971 		return (0);
3972 	}
3973 	return (ESRCH);
3974 }
3975 
3976 /* Search for symbol using GNU hash function */
3977 static int
3978 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
3979 {
3980 	Elf_Addr bloom_word;
3981 	const Elf32_Word *hashval;
3982 	Elf32_Word bucket;
3983 	Sym_Match_Result matchres;
3984 	unsigned int h1, h2;
3985 	unsigned long symnum;
3986 
3987 	matchres.sym_out = NULL;
3988 	matchres.vsymp = NULL;
3989 	matchres.vcount = 0;
3990 
3991 	/* Pick right bitmask word from Bloom filter array */
3992 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
3993 	    obj->maskwords_bm_gnu];
3994 
3995 	/* Calculate modulus word size of gnu hash and its derivative */
3996 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
3997 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
3998 
3999 	/* Filter out the "definitely not in set" queries */
4000 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4001 		return (ESRCH);
4002 
4003 	/* Locate hash chain and corresponding value element*/
4004 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4005 	if (bucket == 0)
4006 		return (ESRCH);
4007 	hashval = &obj->chain_zero_gnu[bucket];
4008 	do {
4009 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4010 			symnum = hashval - obj->chain_zero_gnu;
4011 			if (matched_symbol(req, obj, &matchres, symnum)) {
4012 				req->sym_out = matchres.sym_out;
4013 				req->defobj_out = obj;
4014 				return (0);
4015 			}
4016 		}
4017 	} while ((*hashval++ & 1) == 0);
4018 	if (matchres.vcount == 1) {
4019 		req->sym_out = matchres.vsymp;
4020 		req->defobj_out = obj;
4021 		return (0);
4022 	}
4023 	return (ESRCH);
4024 }
4025 
4026 static void
4027 trace_loaded_objects(Obj_Entry *obj)
4028 {
4029     const char *fmt1, *fmt2, *fmt, *main_local, *list_containers;
4030     int		c;
4031 
4032     if ((main_local = _getenv_ld("LD_TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
4033 	main_local = "";
4034 
4035     if ((fmt1 = _getenv_ld("LD_TRACE_LOADED_OBJECTS_FMT1")) == NULL)
4036 	fmt1 = "\t%o => %p (%x)\n";
4037 
4038     if ((fmt2 = _getenv_ld("LD_TRACE_LOADED_OBJECTS_FMT2")) == NULL)
4039 	fmt2 = "\t%o (%x)\n";
4040 
4041     list_containers = _getenv_ld("LD_TRACE_LOADED_OBJECTS_ALL");
4042 
4043     for (; obj; obj = obj->next) {
4044 	Needed_Entry		*needed;
4045 	char			*name, *path;
4046 	bool			is_lib;
4047 
4048 	if (list_containers && obj->needed != NULL)
4049 	    rtld_printf("%s:\n", obj->path);
4050 	for (needed = obj->needed; needed; needed = needed->next) {
4051 	    if (needed->obj != NULL) {
4052 		if (needed->obj->traced && !list_containers)
4053 		    continue;
4054 		needed->obj->traced = true;
4055 		path = needed->obj->path;
4056 	    } else
4057 		path = "not found";
4058 
4059 	    name = (char *)obj->strtab + needed->name;
4060 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4061 
4062 	    fmt = is_lib ? fmt1 : fmt2;
4063 	    while ((c = *fmt++) != '\0') {
4064 		switch (c) {
4065 		default:
4066 		    rtld_putchar(c);
4067 		    continue;
4068 		case '\\':
4069 		    switch (c = *fmt) {
4070 		    case '\0':
4071 			continue;
4072 		    case 'n':
4073 			rtld_putchar('\n');
4074 			break;
4075 		    case 't':
4076 			rtld_putchar('\t');
4077 			break;
4078 		    }
4079 		    break;
4080 		case '%':
4081 		    switch (c = *fmt) {
4082 		    case '\0':
4083 			continue;
4084 		    case '%':
4085 		    default:
4086 			rtld_putchar(c);
4087 			break;
4088 		    case 'A':
4089 			rtld_putstr(main_local);
4090 			break;
4091 		    case 'a':
4092 			rtld_putstr(obj_main->path);
4093 			break;
4094 		    case 'o':
4095 			rtld_putstr(name);
4096 			break;
4097 		    case 'p':
4098 			rtld_putstr(path);
4099 			break;
4100 		    case 'x':
4101 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4102 			  0);
4103 			break;
4104 		    }
4105 		    break;
4106 		}
4107 		++fmt;
4108 	    }
4109 	}
4110     }
4111 }
4112 
4113 /*
4114  * Unload a dlopened object and its dependencies from memory and from
4115  * our data structures.  It is assumed that the DAG rooted in the
4116  * object has already been unreferenced, and that the object has a
4117  * reference count of 0.
4118  */
4119 static void
4120 unload_object(Obj_Entry *root)
4121 {
4122     Obj_Entry *obj;
4123     Obj_Entry **linkp;
4124 
4125     assert(root->refcount == 0);
4126 
4127     /*
4128      * Pass over the DAG removing unreferenced objects from
4129      * appropriate lists.
4130      */
4131     unlink_object(root);
4132 
4133     /* Unmap all objects that are no longer referenced. */
4134     linkp = &obj_list->next;
4135     while ((obj = *linkp) != NULL) {
4136 	if (obj->refcount == 0) {
4137 	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
4138 		obj->path);
4139 	    dbg("unloading \"%s\"", obj->path);
4140 	    unload_filtees(root);
4141 	    munmap(obj->mapbase, obj->mapsize);
4142 	    linkmap_delete(obj);
4143 	    *linkp = obj->next;
4144 	    obj_count--;
4145 	    obj_free(obj);
4146 	} else
4147 	    linkp = &obj->next;
4148     }
4149     obj_tail = linkp;
4150 }
4151 
4152 static void
4153 unlink_object(Obj_Entry *root)
4154 {
4155     Objlist_Entry *elm;
4156 
4157     if (root->refcount == 0) {
4158 	/* Remove the object from the RTLD_GLOBAL list. */
4159 	objlist_remove(&list_global, root);
4160 
4161     	/* Remove the object from all objects' DAG lists. */
4162 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4163 	    objlist_remove(&elm->obj->dldags, root);
4164 	    if (elm->obj != root)
4165 		unlink_object(elm->obj);
4166 	}
4167     }
4168 }
4169 
4170 static void
4171 ref_dag(Obj_Entry *root)
4172 {
4173     Objlist_Entry *elm;
4174 
4175     assert(root->dag_inited);
4176     STAILQ_FOREACH(elm, &root->dagmembers, link)
4177 	elm->obj->refcount++;
4178 }
4179 
4180 static void
4181 unref_dag(Obj_Entry *root)
4182 {
4183     Objlist_Entry *elm;
4184 
4185     assert(root->dag_inited);
4186     STAILQ_FOREACH(elm, &root->dagmembers, link)
4187 	elm->obj->refcount--;
4188 }
4189 
4190 /*
4191  * Common code for MD __tls_get_addr().
4192  */
4193 void *
4194 tls_get_addr_common(Elf_Addr** dtvp, int index, size_t offset)
4195 {
4196     Elf_Addr* dtv = *dtvp;
4197     RtldLockState lockstate;
4198 
4199     /* Check dtv generation in case new modules have arrived */
4200     if (dtv[0] != tls_dtv_generation) {
4201 	Elf_Addr* newdtv;
4202 	int to_copy;
4203 
4204 	wlock_acquire(rtld_bind_lock, &lockstate);
4205 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4206 	to_copy = dtv[1];
4207 	if (to_copy > tls_max_index)
4208 	    to_copy = tls_max_index;
4209 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4210 	newdtv[0] = tls_dtv_generation;
4211 	newdtv[1] = tls_max_index;
4212 	free(dtv);
4213 	lock_release(rtld_bind_lock, &lockstate);
4214 	dtv = *dtvp = newdtv;
4215     }
4216 
4217     /* Dynamically allocate module TLS if necessary */
4218     if (!dtv[index + 1]) {
4219 	/* Signal safe, wlock will block out signals. */
4220 	wlock_acquire(rtld_bind_lock, &lockstate);
4221 	if (!dtv[index + 1])
4222 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4223 	lock_release(rtld_bind_lock, &lockstate);
4224     }
4225     return (void*) (dtv[index + 1] + offset);
4226 }
4227 
4228 #if defined(RTLD_STATIC_TLS_VARIANT_II)
4229 
4230 /*
4231  * Allocate the static TLS area.  Return a pointer to the TCB.  The
4232  * static area is based on negative offsets relative to the tcb.
4233  *
4234  * The TCB contains an errno pointer for the system call layer, but because
4235  * we are the RTLD we really have no idea how the caller was compiled so
4236  * the information has to be passed in.  errno can either be:
4237  *
4238  *	type 0	errno is a simple non-TLS global pointer.
4239  *		(special case for e.g. libc_rtld)
4240  *	type 1	errno accessed by GOT entry	(dynamically linked programs)
4241  *	type 2	errno accessed by %gs:OFFSET	(statically linked programs)
4242  */
4243 struct tls_tcb *
4244 allocate_tls(Obj_Entry *objs)
4245 {
4246     Obj_Entry *obj;
4247     size_t data_size;
4248     size_t dtv_size;
4249     struct tls_tcb *tcb;
4250     Elf_Addr *dtv;
4251     Elf_Addr addr;
4252 
4253     /*
4254      * Allocate the new TCB.  static TLS storage is placed just before the
4255      * TCB to support the %gs:OFFSET (negative offset) model.
4256      */
4257     data_size = (tls_static_space + RTLD_STATIC_TLS_ALIGN_MASK) &
4258 		~RTLD_STATIC_TLS_ALIGN_MASK;
4259     tcb = malloc(data_size + sizeof(*tcb));
4260     tcb = (void *)((char *)tcb + data_size);	/* actual tcb location */
4261 
4262     dtv_size = (tls_max_index + 2) * sizeof(Elf_Addr);
4263     dtv = malloc(dtv_size);
4264     bzero(dtv, dtv_size);
4265 
4266 #ifdef RTLD_TCB_HAS_SELF_POINTER
4267     tcb->tcb_self = tcb;
4268 #endif
4269     tcb->tcb_dtv = dtv;
4270     tcb->tcb_pthread = NULL;
4271 
4272     dtv[0] = tls_dtv_generation;
4273     dtv[1] = tls_max_index;
4274 
4275     for (obj = objs; obj; obj = obj->next) {
4276 	if (obj->tlsoffset) {
4277 	    addr = (Elf_Addr)tcb - obj->tlsoffset;
4278 	    memset((void *)(addr + obj->tlsinitsize),
4279 		   0, obj->tlssize - obj->tlsinitsize);
4280 	    if (obj->tlsinit)
4281 		memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4282 	    dtv[obj->tlsindex + 1] = addr;
4283 	}
4284     }
4285     return(tcb);
4286 }
4287 
4288 void
4289 free_tls(struct tls_tcb *tcb)
4290 {
4291     Elf_Addr *dtv;
4292     int dtv_size, i;
4293     Elf_Addr tls_start, tls_end;
4294     size_t data_size;
4295 
4296     data_size = (tls_static_space + RTLD_STATIC_TLS_ALIGN_MASK) &
4297 		~RTLD_STATIC_TLS_ALIGN_MASK;
4298 
4299     dtv = tcb->tcb_dtv;
4300     dtv_size = dtv[1];
4301     tls_end = (Elf_Addr)tcb;
4302     tls_start = (Elf_Addr)tcb - data_size;
4303     for (i = 0; i < dtv_size; i++) {
4304 	if (dtv[i+2] != 0 && (dtv[i+2] < tls_start || dtv[i+2] > tls_end)) {
4305 	    free((void *)dtv[i+2]);
4306 	}
4307     }
4308 
4309     free((void*) tls_start);
4310 }
4311 
4312 #else
4313 #error "Unsupported TLS layout"
4314 #endif
4315 
4316 /*
4317  * Allocate TLS block for module with given index.
4318  */
4319 void *
4320 allocate_module_tls(int index)
4321 {
4322     Obj_Entry* obj;
4323     char* p;
4324 
4325     for (obj = obj_list; obj; obj = obj->next) {
4326 	if (obj->tlsindex == index)
4327 	    break;
4328     }
4329     if (!obj) {
4330 	_rtld_error("Can't find module with TLS index %d", index);
4331 	die();
4332     }
4333 
4334     p = malloc(obj->tlssize);
4335     if (p == NULL) {
4336 	_rtld_error("Cannot allocate TLS block for index %d", index);
4337 	die();
4338     }
4339     memcpy(p, obj->tlsinit, obj->tlsinitsize);
4340     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4341 
4342     return p;
4343 }
4344 
4345 bool
4346 allocate_tls_offset(Obj_Entry *obj)
4347 {
4348     size_t off;
4349 
4350     if (obj->tls_done)
4351 	return true;
4352 
4353     if (obj->tlssize == 0) {
4354 	obj->tls_done = true;
4355 	return true;
4356     }
4357 
4358     if (obj->tlsindex == 1)
4359 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4360     else
4361 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4362 				   obj->tlssize, obj->tlsalign);
4363 
4364     /*
4365      * If we have already fixed the size of the static TLS block, we
4366      * must stay within that size. When allocating the static TLS, we
4367      * leave a small amount of space spare to be used for dynamically
4368      * loading modules which use static TLS.
4369      */
4370     if (tls_static_space) {
4371 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4372 	    return false;
4373     }
4374 
4375     tls_last_offset = obj->tlsoffset = off;
4376     tls_last_size = obj->tlssize;
4377     obj->tls_done = true;
4378 
4379     return true;
4380 }
4381 
4382 void
4383 free_tls_offset(Obj_Entry *obj)
4384 {
4385 #ifdef RTLD_STATIC_TLS_VARIANT_II
4386     /*
4387      * If we were the last thing to allocate out of the static TLS
4388      * block, we give our space back to the 'allocator'. This is a
4389      * simplistic workaround to allow libGL.so.1 to be loaded and
4390      * unloaded multiple times. We only handle the Variant II
4391      * mechanism for now - this really needs a proper allocator.
4392      */
4393     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4394 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4395 	tls_last_offset -= obj->tlssize;
4396 	tls_last_size = 0;
4397     }
4398 #endif
4399 }
4400 
4401 struct tls_tcb *
4402 _rtld_allocate_tls(void)
4403 {
4404     struct tls_tcb *new_tcb;
4405     RtldLockState lockstate;
4406 
4407     wlock_acquire(rtld_bind_lock, &lockstate);
4408     new_tcb = allocate_tls(obj_list);
4409     lock_release(rtld_bind_lock, &lockstate);
4410     return (new_tcb);
4411 }
4412 
4413 void
4414 _rtld_free_tls(struct tls_tcb *tcb)
4415 {
4416     RtldLockState lockstate;
4417 
4418     wlock_acquire(rtld_bind_lock, &lockstate);
4419     free_tls(tcb);
4420     lock_release(rtld_bind_lock, &lockstate);
4421 }
4422 
4423 static void
4424 object_add_name(Obj_Entry *obj, const char *name)
4425 {
4426     Name_Entry *entry;
4427     size_t len;
4428 
4429     len = strlen(name);
4430     entry = malloc(sizeof(Name_Entry) + len);
4431 
4432     if (entry != NULL) {
4433 	strcpy(entry->name, name);
4434 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4435     }
4436 }
4437 
4438 static int
4439 object_match_name(const Obj_Entry *obj, const char *name)
4440 {
4441     Name_Entry *entry;
4442 
4443     STAILQ_FOREACH(entry, &obj->names, link) {
4444 	if (strcmp(name, entry->name) == 0)
4445 	    return (1);
4446     }
4447     return (0);
4448 }
4449 
4450 static Obj_Entry *
4451 locate_dependency(const Obj_Entry *obj, const char *name)
4452 {
4453     const Objlist_Entry *entry;
4454     const Needed_Entry *needed;
4455 
4456     STAILQ_FOREACH(entry, &list_main, link) {
4457 	if (object_match_name(entry->obj, name))
4458 	    return entry->obj;
4459     }
4460 
4461     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4462 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4463 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4464 	    /*
4465 	     * If there is DT_NEEDED for the name we are looking for,
4466 	     * we are all set.  Note that object might not be found if
4467 	     * dependency was not loaded yet, so the function can
4468 	     * return NULL here.  This is expected and handled
4469 	     * properly by the caller.
4470 	     */
4471 	    return (needed->obj);
4472 	}
4473     }
4474     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4475 	obj->path, name);
4476     die();
4477 }
4478 
4479 static int
4480 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4481     const Elf_Vernaux *vna)
4482 {
4483     const Elf_Verdef *vd;
4484     const char *vername;
4485 
4486     vername = refobj->strtab + vna->vna_name;
4487     vd = depobj->verdef;
4488     if (vd == NULL) {
4489 	_rtld_error("%s: version %s required by %s not defined",
4490 	    depobj->path, vername, refobj->path);
4491 	return (-1);
4492     }
4493     for (;;) {
4494 	if (vd->vd_version != VER_DEF_CURRENT) {
4495 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4496 		depobj->path, vd->vd_version);
4497 	    return (-1);
4498 	}
4499 	if (vna->vna_hash == vd->vd_hash) {
4500 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4501 		((char *)vd + vd->vd_aux);
4502 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4503 		return (0);
4504 	}
4505 	if (vd->vd_next == 0)
4506 	    break;
4507 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4508     }
4509     if (vna->vna_flags & VER_FLG_WEAK)
4510 	return (0);
4511     _rtld_error("%s: version %s required by %s not found",
4512 	depobj->path, vername, refobj->path);
4513     return (-1);
4514 }
4515 
4516 static int
4517 rtld_verify_object_versions(Obj_Entry *obj)
4518 {
4519     const Elf_Verneed *vn;
4520     const Elf_Verdef  *vd;
4521     const Elf_Verdaux *vda;
4522     const Elf_Vernaux *vna;
4523     const Obj_Entry *depobj;
4524     int maxvernum, vernum;
4525 
4526     if (obj->ver_checked)
4527 	return (0);
4528     obj->ver_checked = true;
4529 
4530     maxvernum = 0;
4531     /*
4532      * Walk over defined and required version records and figure out
4533      * max index used by any of them. Do very basic sanity checking
4534      * while there.
4535      */
4536     vn = obj->verneed;
4537     while (vn != NULL) {
4538 	if (vn->vn_version != VER_NEED_CURRENT) {
4539 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4540 		obj->path, vn->vn_version);
4541 	    return (-1);
4542 	}
4543 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4544 	for (;;) {
4545 	    vernum = VER_NEED_IDX(vna->vna_other);
4546 	    if (vernum > maxvernum)
4547 		maxvernum = vernum;
4548 	    if (vna->vna_next == 0)
4549 		 break;
4550 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4551 	}
4552 	if (vn->vn_next == 0)
4553 	    break;
4554 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4555     }
4556 
4557     vd = obj->verdef;
4558     while (vd != NULL) {
4559 	if (vd->vd_version != VER_DEF_CURRENT) {
4560 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4561 		obj->path, vd->vd_version);
4562 	    return (-1);
4563 	}
4564 	vernum = VER_DEF_IDX(vd->vd_ndx);
4565 	if (vernum > maxvernum)
4566 		maxvernum = vernum;
4567 	if (vd->vd_next == 0)
4568 	    break;
4569 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4570     }
4571 
4572     if (maxvernum == 0)
4573 	return (0);
4574 
4575     /*
4576      * Store version information in array indexable by version index.
4577      * Verify that object version requirements are satisfied along the
4578      * way.
4579      */
4580     obj->vernum = maxvernum + 1;
4581     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
4582 
4583     vd = obj->verdef;
4584     while (vd != NULL) {
4585 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4586 	    vernum = VER_DEF_IDX(vd->vd_ndx);
4587 	    assert(vernum <= maxvernum);
4588 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4589 	    obj->vertab[vernum].hash = vd->vd_hash;
4590 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4591 	    obj->vertab[vernum].file = NULL;
4592 	    obj->vertab[vernum].flags = 0;
4593 	}
4594 	if (vd->vd_next == 0)
4595 	    break;
4596 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4597     }
4598 
4599     vn = obj->verneed;
4600     while (vn != NULL) {
4601 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4602 	if (depobj == NULL)
4603 	    return (-1);
4604 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4605 	for (;;) {
4606 	    if (check_object_provided_version(obj, depobj, vna))
4607 		return (-1);
4608 	    vernum = VER_NEED_IDX(vna->vna_other);
4609 	    assert(vernum <= maxvernum);
4610 	    obj->vertab[vernum].hash = vna->vna_hash;
4611 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4612 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4613 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4614 		VER_INFO_HIDDEN : 0;
4615 	    if (vna->vna_next == 0)
4616 		 break;
4617 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4618 	}
4619 	if (vn->vn_next == 0)
4620 	    break;
4621 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4622     }
4623     return 0;
4624 }
4625 
4626 static int
4627 rtld_verify_versions(const Objlist *objlist)
4628 {
4629     Objlist_Entry *entry;
4630     int rc;
4631 
4632     rc = 0;
4633     STAILQ_FOREACH(entry, objlist, link) {
4634 	/*
4635 	 * Skip dummy objects or objects that have their version requirements
4636 	 * already checked.
4637 	 */
4638 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4639 	    continue;
4640 	if (rtld_verify_object_versions(entry->obj) == -1) {
4641 	    rc = -1;
4642 	    if (ld_tracing == NULL)
4643 		break;
4644 	}
4645     }
4646     if (rc == 0 || ld_tracing != NULL)
4647 	rc = rtld_verify_object_versions(&obj_rtld);
4648     return rc;
4649 }
4650 
4651 const Ver_Entry *
4652 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4653 {
4654     Elf_Versym vernum;
4655 
4656     if (obj->vertab) {
4657 	vernum = VER_NDX(obj->versyms[symnum]);
4658 	if (vernum >= obj->vernum) {
4659 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
4660 		obj->path, obj->strtab + symnum, vernum);
4661 	} else if (obj->vertab[vernum].hash != 0) {
4662 	    return &obj->vertab[vernum];
4663 	}
4664     }
4665     return NULL;
4666 }
4667 
4668 int
4669 _rtld_get_stack_prot(void)
4670 {
4671 
4672 	return (stack_prot);
4673 }
4674 
4675 static void
4676 map_stacks_exec(RtldLockState *lockstate)
4677 {
4678 	return;
4679 	/*
4680 	 * Stack protection must be implemented in the kernel before the dynamic
4681 	 * linker can handle PT_GNU_STACK sections.
4682 	 * The following is the FreeBSD implementation of map_stacks_exec()
4683 	 * void (*thr_map_stacks_exec)(void);
4684 	 *
4685 	 * if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
4686 	 *     return;
4687 	 * thr_map_stacks_exec = (void (*)(void))(uintptr_t)
4688 	 *     get_program_var_addr("__pthread_map_stacks_exec", lockstate);
4689 	 * if (thr_map_stacks_exec != NULL) {
4690 	 *     stack_prot |= PROT_EXEC;
4691 	 *     thr_map_stacks_exec();
4692 	 * }
4693 	 */
4694 }
4695 
4696 void
4697 symlook_init(SymLook *dst, const char *name)
4698 {
4699 
4700 	bzero(dst, sizeof(*dst));
4701 	dst->name = name;
4702 	dst->hash = elf_hash(name);
4703 	dst->hash_gnu = gnu_hash(name);
4704 }
4705 
4706 static void
4707 symlook_init_from_req(SymLook *dst, const SymLook *src)
4708 {
4709 
4710 	dst->name = src->name;
4711 	dst->hash = src->hash;
4712 	dst->hash_gnu = src->hash_gnu;
4713 	dst->ventry = src->ventry;
4714 	dst->flags = src->flags;
4715 	dst->defobj_out = NULL;
4716 	dst->sym_out = NULL;
4717 	dst->lockstate = src->lockstate;
4718 }
4719 
4720 #ifdef ENABLE_OSRELDATE
4721 /*
4722  * Overrides for libc_pic-provided functions.
4723  */
4724 
4725 int
4726 __getosreldate(void)
4727 {
4728 	size_t len;
4729 	int oid[2];
4730 	int error, osrel;
4731 
4732 	if (osreldate != 0)
4733 		return (osreldate);
4734 
4735 	oid[0] = CTL_KERN;
4736 	oid[1] = KERN_OSRELDATE;
4737 	osrel = 0;
4738 	len = sizeof(osrel);
4739 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
4740 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
4741 		osreldate = osrel;
4742 	return (osreldate);
4743 }
4744 #endif
4745 
4746 /*
4747  * No unresolved symbols for rtld.
4748  */
4749 void
4750 __pthread_cxa_finalize(struct dl_phdr_info *a)
4751 {
4752 }
4753 
4754 const char *
4755 rtld_strerror(int errnum)
4756 {
4757 
4758 	if (errnum < 0 || errnum >= sys_nerr)
4759 		return ("Unknown error");
4760 	return (sys_errlist[errnum]);
4761 }
4762