xref: /dflybsd-src/libexec/rtld-elf/rtld.c (revision 0e6f0e2886bc8da263ff35cca55f08c8c57fac2d)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * Copyright 2009, 2010, 2011 Konstantin Belousov <kib@FreeBSD.ORG>.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  *
27  * $FreeBSD: src/libexec/rtld-elf/rtld.c,v 1.173 2011/02/09 09:20:27 kib Exp $
28  */
29 
30 /*
31  * Dynamic linker for ELF.
32  *
33  * John Polstra <jdp@polstra.com>.
34  */
35 
36 #ifndef __GNUC__
37 #error "GCC is needed to compile this file"
38 #endif
39 
40 #include <sys/param.h>
41 #include <sys/mount.h>
42 #include <sys/mman.h>
43 #include <sys/stat.h>
44 #include <sys/uio.h>
45 #include <sys/utsname.h>
46 #include <sys/ktrace.h>
47 #include <sys/resident.h>
48 #include <sys/tls.h>
49 
50 #include <machine/tls.h>
51 
52 #include <dlfcn.h>
53 #include <err.h>
54 #include <errno.h>
55 #include <fcntl.h>
56 #include <stdarg.h>
57 #include <stdio.h>
58 #include <stdlib.h>
59 #include <string.h>
60 #include <unistd.h>
61 
62 #include "debug.h"
63 #include "rtld.h"
64 #include "libmap.h"
65 
66 #define PATH_RTLD	"/usr/libexec/ld-elf.so.2"
67 #define LD_ARY_CACHE	16
68 
69 /* Types. */
70 typedef void (*func_ptr_type)();
71 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
72 
73 /*
74  * This structure provides a reentrant way to keep a list of objects and
75  * check which ones have already been processed in some way.
76  */
77 typedef struct Struct_DoneList {
78     const Obj_Entry **objs;		/* Array of object pointers */
79     unsigned int num_alloc;		/* Allocated size of the array */
80     unsigned int num_used;		/* Number of array slots used */
81 } DoneList;
82 
83 /*
84  * Function declarations.
85  */
86 static const char *_getenv_ld(const char *id);
87 static void die(void) __dead2;
88 static void digest_dynamic(Obj_Entry *, int);
89 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
90 static Obj_Entry *dlcheck(void *);
91 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
92 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
93 static bool donelist_check(DoneList *, const Obj_Entry *);
94 static void errmsg_restore(char *);
95 static char *errmsg_save(void);
96 static void *fill_search_info(const char *, size_t, void *);
97 static char *find_library(const char *, const Obj_Entry *);
98 static const char *gethints(void);
99 static void init_dag(Obj_Entry *);
100 static void init_dag1(Obj_Entry *, Obj_Entry *, DoneList *);
101 static void init_rtld(caddr_t);
102 static void initlist_add_neededs(Needed_Entry *, Objlist *);
103 static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
104 static bool is_exported(const Elf_Sym *);
105 static void linkmap_add(Obj_Entry *);
106 static void linkmap_delete(Obj_Entry *);
107 static int load_needed_objects(Obj_Entry *, int);
108 static int load_preload_objects(void);
109 static Obj_Entry *load_object(const char *, const Obj_Entry *, int);
110 static Obj_Entry *obj_from_addr(const void *);
111 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
112 static void objlist_call_init(Objlist *, RtldLockState *);
113 static void objlist_clear(Objlist *);
114 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
115 static void objlist_init(Objlist *);
116 static void objlist_push_head(Objlist *, Obj_Entry *);
117 static void objlist_push_tail(Objlist *, Obj_Entry *);
118 static void objlist_remove(Objlist *, Obj_Entry *);
119 static void *path_enumerate(const char *, path_enum_proc, void *);
120 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *);
121 static int rtld_dirname(const char *, char *);
122 static int rtld_dirname_abs(const char *, char *);
123 static void rtld_exit(void);
124 static char *search_library_path(const char *, const char *);
125 static const void **get_program_var_addr(const char *);
126 static void set_program_var(const char *, const void *);
127 static const Elf_Sym *symlook_default(const char *, unsigned long,
128   const Obj_Entry *, const Obj_Entry **, const Ver_Entry *, int);
129 static const Elf_Sym *symlook_list(const char *, unsigned long, const Objlist *,
130   const Obj_Entry **, const Ver_Entry *, int, DoneList *);
131 static const Elf_Sym *symlook_needed(const char *, unsigned long,
132   const Needed_Entry *, const Obj_Entry **, const Ver_Entry *,
133   int, DoneList *);
134 static void trace_loaded_objects(Obj_Entry *);
135 static void unlink_object(Obj_Entry *);
136 static void unload_object(Obj_Entry *);
137 static void unref_dag(Obj_Entry *);
138 static void ref_dag(Obj_Entry *);
139 static int origin_subst_one(char **, const char *, const char *,
140   const char *, char *);
141 static char *origin_subst(const char *, const char *);
142 static int  rtld_verify_versions(const Objlist *);
143 static int  rtld_verify_object_versions(Obj_Entry *);
144 static void object_add_name(Obj_Entry *, const char *);
145 static int  object_match_name(const Obj_Entry *, const char *);
146 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
147 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
148     struct dl_phdr_info *phdr_info);
149 
150 void r_debug_state(struct r_debug *, struct link_map *) __noinline;
151 
152 /*
153  * Data declarations.
154  */
155 static char *error_message;	/* Message for dlerror(), or NULL */
156 struct r_debug r_debug;		/* for GDB; */
157 static bool libmap_disable;	/* Disable libmap */
158 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
159 static bool trust;		/* False for setuid and setgid programs */
160 static bool dangerous_ld_env;	/* True if environment variables have been
161 				   used to affect the libraries loaded */
162 static const char *ld_bind_now;	/* Environment variable for immediate binding */
163 static const char *ld_debug;	/* Environment variable for debugging */
164 static const char *ld_library_path; /* Environment variable for search path */
165 static char *ld_preload;	/* Environment variable for libraries to
166 				   load first */
167 static const char *ld_elf_hints_path; /* Environment variable for alternative hints path */
168 static const char *ld_tracing;	/* Called from ldd(1) to print libs */
169 				/* Optional function call tracing hook */
170 static const char *ld_utrace;	/* Use utrace() to log events. */
171 static int (*rtld_functrace)(const char *caller_obj,
172 			     const char *callee_obj,
173 			     const char *callee_func,
174 			     void *stack);
175 static Obj_Entry *rtld_functrace_obj;	/* Object thereof */
176 static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
177 static Obj_Entry **obj_tail;	/* Link field of last object in list */
178 static Obj_Entry **preload_tail;
179 static Obj_Entry *obj_main;	/* The main program shared object */
180 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
181 static unsigned int obj_count;	/* Number of objects in obj_list */
182 static unsigned int obj_loads;	/* Number of objects in obj_list */
183 
184 static int	ld_resident;	/* Non-zero if resident */
185 static const char *ld_ary[LD_ARY_CACHE];
186 static int	ld_index;
187 static Objlist initlist;
188 
189 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
190   STAILQ_HEAD_INITIALIZER(list_global);
191 static Objlist list_main =	/* Objects loaded at program startup */
192   STAILQ_HEAD_INITIALIZER(list_main);
193 static Objlist list_fini =	/* Objects needing fini() calls */
194   STAILQ_HEAD_INITIALIZER(list_fini);
195 
196 static Elf_Sym sym_zero;	/* For resolving undefined weak refs. */
197 
198 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
199 
200 extern Elf_Dyn _DYNAMIC;
201 #pragma weak _DYNAMIC
202 #ifndef RTLD_IS_DYNAMIC
203 #define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
204 #endif
205 
206 /*
207  * These are the functions the dynamic linker exports to application
208  * programs.  They are the only symbols the dynamic linker is willing
209  * to export from itself.
210  */
211 static func_ptr_type exports[] = {
212     (func_ptr_type) &_rtld_error,
213     (func_ptr_type) &dlclose,
214     (func_ptr_type) &dlerror,
215     (func_ptr_type) &dlopen,
216     (func_ptr_type) &dlfunc,
217     (func_ptr_type) &dlsym,
218     (func_ptr_type) &dlvsym,
219     (func_ptr_type) &dladdr,
220     (func_ptr_type) &dlinfo,
221     (func_ptr_type) &dl_iterate_phdr,
222 #ifdef __i386__
223     (func_ptr_type) &___tls_get_addr,
224 #endif
225     (func_ptr_type) &__tls_get_addr,
226     (func_ptr_type) &__tls_get_addr_tcb,
227     (func_ptr_type) &_rtld_allocate_tls,
228     (func_ptr_type) &_rtld_free_tls,
229     (func_ptr_type) &_rtld_call_init,
230     (func_ptr_type) &_rtld_thread_init,
231     (func_ptr_type) &_rtld_addr_phdr,
232     NULL
233 };
234 
235 /*
236  * Global declarations normally provided by crt1.  The dynamic linker is
237  * not built with crt1, so we have to provide them ourselves.
238  */
239 char *__progname;
240 char **environ;
241 
242 /*
243  * Globals to control TLS allocation.
244  */
245 size_t tls_last_offset;		/* Static TLS offset of last module */
246 size_t tls_last_size;		/* Static TLS size of last module */
247 size_t tls_static_space;	/* Static TLS space allocated */
248 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
249 int tls_max_index = 1;		/* Largest module index allocated */
250 
251 /*
252  * Fill in a DoneList with an allocation large enough to hold all of
253  * the currently-loaded objects.  Keep this as a macro since it calls
254  * alloca and we want that to occur within the scope of the caller.
255  */
256 #define donelist_init(dlp)					\
257     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
258     assert((dlp)->objs != NULL),				\
259     (dlp)->num_alloc = obj_count,				\
260     (dlp)->num_used = 0)
261 
262 #define	UTRACE_DLOPEN_START		1
263 #define	UTRACE_DLOPEN_STOP		2
264 #define	UTRACE_DLCLOSE_START		3
265 #define	UTRACE_DLCLOSE_STOP		4
266 #define	UTRACE_LOAD_OBJECT		5
267 #define	UTRACE_UNLOAD_OBJECT		6
268 #define	UTRACE_ADD_RUNDEP		7
269 #define	UTRACE_PRELOAD_FINISHED		8
270 #define	UTRACE_INIT_CALL		9
271 #define	UTRACE_FINI_CALL		10
272 
273 struct utrace_rtld {
274 	char sig[4];			/* 'RTLD' */
275 	int event;
276 	void *handle;
277 	void *mapbase;			/* Used for 'parent' and 'init/fini' */
278 	size_t mapsize;
279 	int refcnt;			/* Used for 'mode' */
280 	char name[MAXPATHLEN];
281 };
282 
283 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
284 	if (ld_utrace != NULL)					\
285 		ld_utrace_log(e, h, mb, ms, r, n);		\
286 } while (0)
287 
288 static void
289 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
290     int refcnt, const char *name)
291 {
292 	struct utrace_rtld ut;
293 
294 	ut.sig[0] = 'R';
295 	ut.sig[1] = 'T';
296 	ut.sig[2] = 'L';
297 	ut.sig[3] = 'D';
298 	ut.event = event;
299 	ut.handle = handle;
300 	ut.mapbase = mapbase;
301 	ut.mapsize = mapsize;
302 	ut.refcnt = refcnt;
303 	bzero(ut.name, sizeof(ut.name));
304 	if (name)
305 		strlcpy(ut.name, name, sizeof(ut.name));
306 	utrace(&ut, sizeof(ut));
307 }
308 
309 /*
310  * Main entry point for dynamic linking.  The first argument is the
311  * stack pointer.  The stack is expected to be laid out as described
312  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
313  * Specifically, the stack pointer points to a word containing
314  * ARGC.  Following that in the stack is a null-terminated sequence
315  * of pointers to argument strings.  Then comes a null-terminated
316  * sequence of pointers to environment strings.  Finally, there is a
317  * sequence of "auxiliary vector" entries.
318  *
319  * The second argument points to a place to store the dynamic linker's
320  * exit procedure pointer and the third to a place to store the main
321  * program's object.
322  *
323  * The return value is the main program's entry point.
324  */
325 func_ptr_type
326 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
327 {
328     Elf_Auxinfo *aux_info[AT_COUNT];
329     int i;
330     int argc;
331     char **argv;
332     char **env;
333     Elf_Auxinfo *aux;
334     Elf_Auxinfo *auxp;
335     const char *argv0;
336     Objlist_Entry *entry;
337     Obj_Entry *obj;
338 
339     /* marino: DO NOT MOVE THESE VARIABLES TO _rtld
340              Obj_Entry **preload_tail;
341              Objlist initlist;
342        from global to here.  It will break the DRAWF2 unwind scheme.
343        The system compilers were unaffected, but not gcc 4.6
344     */
345 
346     /*
347      * On entry, the dynamic linker itself has not been relocated yet.
348      * Be very careful not to reference any global data until after
349      * init_rtld has returned.  It is OK to reference file-scope statics
350      * and string constants, and to call static and global functions.
351      */
352 
353     /* Find the auxiliary vector on the stack. */
354     argc = *sp++;
355     argv = (char **) sp;
356     sp += argc + 1;	/* Skip over arguments and NULL terminator */
357     env = (char **) sp;
358 
359     /*
360      * If we aren't already resident we have to dig out some more info.
361      * Note that auxinfo does not exist when we are resident.
362      *
363      * I'm not sure about the ld_resident check.  It seems to read zero
364      * prior to relocation, which is what we want.  When running from a
365      * resident copy everything will be relocated so we are definitely
366      * good there.
367      */
368     if (ld_resident == 0)  {
369 	while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
370 	    ;
371 	aux = (Elf_Auxinfo *) sp;
372 
373 	/* Digest the auxiliary vector. */
374 	for (i = 0;  i < AT_COUNT;  i++)
375 	    aux_info[i] = NULL;
376 	for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
377 	    if (auxp->a_type < AT_COUNT)
378 		aux_info[auxp->a_type] = auxp;
379 	}
380 
381 	/* Initialize and relocate ourselves. */
382 	assert(aux_info[AT_BASE] != NULL);
383 	init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
384     }
385 
386     ld_index = 0;	/* don't use old env cache in case we are resident */
387     __progname = obj_rtld.path;
388     argv0 = argv[0] != NULL ? argv[0] : "(null)";
389     environ = env;
390 
391     trust = !issetugid();
392 
393     ld_bind_now = _getenv_ld("LD_BIND_NOW");
394     /*
395      * If the process is tainted, then we un-set the dangerous environment
396      * variables.  The process will be marked as tainted until setuid(2)
397      * is called.  If any child process calls setuid(2) we do not want any
398      * future processes to honor the potentially un-safe variables.
399      */
400     if (!trust) {
401 	if (   unsetenv("LD_DEBUG")
402 	    || unsetenv("LD_PRELOAD")
403 	    || unsetenv("LD_LIBRARY_PATH")
404 	    || unsetenv("LD_ELF_HINTS_PATH")
405 	    || unsetenv("LD_LIBMAP")
406 	    || unsetenv("LD_LIBMAP_DISABLE")
407 	) {
408 	    _rtld_error("environment corrupt; aborting");
409 	    die();
410 	}
411     }
412     ld_debug = _getenv_ld("LD_DEBUG");
413     ld_library_path = _getenv_ld("LD_LIBRARY_PATH");
414     ld_preload = (char *)_getenv_ld("LD_PRELOAD");
415     ld_elf_hints_path = _getenv_ld("LD_ELF_HINTS_PATH");
416     libmap_override = (char *)_getenv_ld("LD_LIBMAP");
417     libmap_disable = _getenv_ld("LD_LIBMAP_DISABLE") != NULL;
418     dangerous_ld_env = (ld_library_path != NULL)
419 			|| (ld_preload != NULL)
420 			|| (ld_elf_hints_path != NULL)
421 			|| (libmap_override != NULL)
422 			|| libmap_disable
423 			;
424     ld_tracing = _getenv_ld("LD_TRACE_LOADED_OBJECTS");
425     ld_utrace = _getenv_ld("LD_UTRACE");
426 
427     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
428 	ld_elf_hints_path = _PATH_ELF_HINTS;
429 
430     if (ld_debug != NULL && *ld_debug != '\0')
431 	debug = 1;
432     dbg("%s is initialized, base address = %p", __progname,
433 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
434     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
435     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
436 
437     dbg("initializing thread locks");
438     lockdflt_init();
439 
440     /*
441      * If we are resident we can skip work that we have already done.
442      * Note that the stack is reset and there is no Elf_Auxinfo
443      * when running from a resident image, and the static globals setup
444      * between here and resident_skip will have already been setup.
445      */
446     if (ld_resident)
447 	goto resident_skip1;
448 
449     /*
450      * Load the main program, or process its program header if it is
451      * already loaded.
452      */
453     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
454 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
455 	dbg("loading main program");
456 	obj_main = map_object(fd, argv0, NULL);
457 	close(fd);
458 	if (obj_main == NULL)
459 	    die();
460     } else {				/* Main program already loaded. */
461 	const Elf_Phdr *phdr;
462 	int phnum;
463 	caddr_t entry;
464 
465 	dbg("processing main program's program header");
466 	assert(aux_info[AT_PHDR] != NULL);
467 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
468 	assert(aux_info[AT_PHNUM] != NULL);
469 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
470 	assert(aux_info[AT_PHENT] != NULL);
471 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
472 	assert(aux_info[AT_ENTRY] != NULL);
473 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
474 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
475 	    die();
476     }
477 
478     char buf[MAXPATHLEN];
479     if (aux_info[AT_EXECPATH] != 0) {
480 	char *kexecpath;
481 
482 	kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
483 	dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
484 	if (kexecpath[0] == '/')
485 		obj_main->path = kexecpath;
486 	else if (getcwd(buf, sizeof(buf)) == NULL ||
487 		strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
488 		strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
489 		obj_main->path = xstrdup(argv0);
490 	else
491 		obj_main->path = xstrdup(buf);
492     } else {
493 	char resolved[MAXPATHLEN];
494 	dbg("No AT_EXECPATH");
495 	if (argv0[0] == '/') {
496 		if (realpath(argv0, resolved) != NULL)
497 			obj_main->path = xstrdup(resolved);
498 		else
499 			obj_main->path = xstrdup(argv0);
500 	} else {
501 		if (getcwd(buf, sizeof(buf)) != NULL
502 		    && strlcat(buf, "/", sizeof(buf)) < sizeof(buf)
503 		    && strlcat(buf, argv0, sizeof (buf)) < sizeof(buf)
504 		    && access(buf, R_OK) == 0
505 		    && realpath(buf, resolved) != NULL)
506 			obj_main->path = xstrdup(resolved);
507 		else
508 			obj_main->path = xstrdup(argv0);
509 	}
510     }
511     dbg("obj_main path %s", obj_main->path);
512     obj_main->mainprog = true;
513 
514     /*
515      * Get the actual dynamic linker pathname from the executable if
516      * possible.  (It should always be possible.)  That ensures that
517      * gdb will find the right dynamic linker even if a non-standard
518      * one is being used.
519      */
520     if (obj_main->interp != NULL &&
521       strcmp(obj_main->interp, obj_rtld.path) != 0) {
522 	free(obj_rtld.path);
523 	obj_rtld.path = xstrdup(obj_main->interp);
524 	__progname = obj_rtld.path;
525     }
526 
527     digest_dynamic(obj_main, 0);
528 
529     linkmap_add(obj_main);
530     linkmap_add(&obj_rtld);
531 
532     /* Link the main program into the list of objects. */
533     *obj_tail = obj_main;
534     obj_tail = &obj_main->next;
535     obj_count++;
536     obj_loads++;
537     /* Make sure we don't call the main program's init and fini functions. */
538     obj_main->init = obj_main->fini = (Elf_Addr)NULL;
539 
540     /* Initialize a fake symbol for resolving undefined weak references. */
541     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
542     sym_zero.st_shndx = SHN_UNDEF;
543     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
544 
545     if (!libmap_disable)
546         libmap_disable = (bool)lm_init(libmap_override);
547 
548     dbg("loading LD_PRELOAD libraries");
549     if (load_preload_objects() == -1)
550 	die();
551     preload_tail = obj_tail;
552 
553     dbg("loading needed objects");
554     if (load_needed_objects(obj_main, 0) == -1)
555 	die();
556 
557     /* Make a list of all objects loaded at startup. */
558     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
559 	objlist_push_tail(&list_main, obj);
560 	obj->refcount++;
561     }
562 
563     dbg("checking for required versions");
564     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
565 	die();
566 
567 resident_skip1:
568 
569     if (ld_tracing) {		/* We're done */
570 	trace_loaded_objects(obj_main);
571 	exit(0);
572     }
573 
574     if (ld_resident)		/* XXX clean this up! */
575 	goto resident_skip2;
576 
577     if (_getenv_ld("LD_DUMP_REL_PRE") != NULL) {
578        dump_relocations(obj_main);
579        exit (0);
580     }
581 
582     /* setup TLS for main thread */
583     dbg("initializing initial thread local storage");
584     STAILQ_FOREACH(entry, &list_main, link) {
585 	/*
586 	 * Allocate all the initial objects out of the static TLS
587 	 * block even if they didn't ask for it.
588 	 */
589 	allocate_tls_offset(entry->obj);
590     }
591 
592     tls_static_space = tls_last_offset + RTLD_STATIC_TLS_EXTRA;
593 
594     /*
595      * Do not try to allocate the TLS here, let libc do it itself.
596      * (crt1 for the program will call _init_tls())
597      */
598 
599     if (relocate_objects(obj_main,
600 	ld_bind_now != NULL && *ld_bind_now != '\0', &obj_rtld) == -1)
601 	die();
602 
603     dbg("doing copy relocations");
604     if (do_copy_relocations(obj_main) == -1)
605 	die();
606 
607 resident_skip2:
608 
609     if (_getenv_ld("LD_RESIDENT_UNREGISTER_NOW")) {
610 	if (exec_sys_unregister(-1) < 0) {
611 	    dbg("exec_sys_unregister failed %d\n", errno);
612 	    exit(errno);
613 	}
614 	dbg("exec_sys_unregister success\n");
615 	exit(0);
616     }
617 
618     if (_getenv_ld("LD_DUMP_REL_POST") != NULL) {
619        dump_relocations(obj_main);
620        exit (0);
621     }
622 
623     dbg("initializing key program variables");
624     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
625     set_program_var("environ", env);
626 
627     if (_getenv_ld("LD_RESIDENT_REGISTER_NOW")) {
628 	extern void resident_start(void);
629 	ld_resident = 1;
630 	if (exec_sys_register(resident_start) < 0) {
631 	    dbg("exec_sys_register failed %d\n", errno);
632 	    exit(errno);
633 	}
634 	dbg("exec_sys_register success\n");
635 	exit(0);
636     }
637 
638     /* Make a list of init functions to call. */
639     objlist_init(&initlist);
640     initlist_add_objects(obj_list, preload_tail, &initlist);
641 
642     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
643 
644     /*
645      * Do NOT call the initlist here, give libc a chance to set up
646      * the initial TLS segment.  crt1 will then call _rtld_call_init().
647      */
648 
649     dbg("transferring control to program entry point = %p", obj_main->entry);
650 
651     /* Return the exit procedure and the program entry point. */
652     *exit_proc = rtld_exit;
653     *objp = obj_main;
654     return (func_ptr_type) obj_main->entry;
655 }
656 
657 /*
658  * Call the initialization list for dynamically loaded libraries.
659  * (called from crt1.c).
660  */
661 void
662 _rtld_call_init(void)
663 {
664     RtldLockState lockstate;
665 
666     wlock_acquire(rtld_bind_lock, &lockstate);
667     objlist_call_init(&initlist, &lockstate);
668     objlist_clear(&initlist);
669     lock_release(rtld_bind_lock, &lockstate);
670 }
671 
672 Elf_Addr
673 _rtld_bind(Obj_Entry *obj, Elf_Size reloff, void *stack)
674 {
675     const Elf_Rel *rel;
676     const Elf_Sym *def;
677     const Obj_Entry *defobj;
678     Elf_Addr *where;
679     Elf_Addr target;
680     RtldLockState lockstate;
681     int do_reloc = 1;
682 
683     rlock_acquire(rtld_bind_lock, &lockstate);
684     if (sigsetjmp(lockstate.env, 0) != 0)
685 	    lock_upgrade(rtld_bind_lock, &lockstate);
686     if (obj->pltrel)
687 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
688     else
689 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
690 
691     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
692     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL);
693     if (def == NULL)
694 	die();
695 
696     target = (Elf_Addr)(defobj->relocbase + def->st_value);
697 
698     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
699       defobj->strtab + def->st_name, basename(obj->path),
700       (void *)target, basename(defobj->path));
701 
702     /*
703      * If we have a function call tracing hook, and the
704      * hook would like to keep tracing this one function,
705      * prevent the relocation so we will wind up here
706      * the next time again.
707      *
708      * We don't want to functrace calls from the functracer
709      * to avoid recursive loops.
710      */
711     if (rtld_functrace != NULL && obj != rtld_functrace_obj) {
712 	if (rtld_functrace(obj->path,
713 			   defobj->path,
714 			   defobj->strtab + def->st_name,
715 			   stack))
716 	    do_reloc = 0;
717     }
718 
719     if (do_reloc)
720 	target = reloc_jmpslot(where, target, defobj, obj, rel);
721     lock_release(rtld_bind_lock, &lockstate);
722     return target;
723 }
724 
725 /*
726  * Error reporting function.  Use it like printf.  If formats the message
727  * into a buffer, and sets things up so that the next call to dlerror()
728  * will return the message.
729  */
730 void
731 _rtld_error(const char *fmt, ...)
732 {
733     static char buf[512];
734     va_list ap;
735 
736     va_start(ap, fmt);
737     vsnprintf(buf, sizeof buf, fmt, ap);
738     error_message = buf;
739     va_end(ap);
740 }
741 
742 /*
743  * Return a dynamically-allocated copy of the current error message, if any.
744  */
745 static char *
746 errmsg_save(void)
747 {
748     return error_message == NULL ? NULL : xstrdup(error_message);
749 }
750 
751 /*
752  * Restore the current error message from a copy which was previously saved
753  * by errmsg_save().  The copy is freed.
754  */
755 static void
756 errmsg_restore(char *saved_msg)
757 {
758     if (saved_msg == NULL)
759 	error_message = NULL;
760     else {
761 	_rtld_error("%s", saved_msg);
762 	free(saved_msg);
763     }
764 }
765 
766 const char *
767 basename(const char *name)
768 {
769     const char *p = strrchr(name, '/');
770     return p != NULL ? p + 1 : name;
771 }
772 
773 static struct utsname uts;
774 
775 static int
776 origin_subst_one(char **res, const char *real, const char *kw, const char *subst,
777     char *may_free)
778 {
779     const char *p, *p1;
780     char *res1;
781     int subst_len;
782     int kw_len;
783 
784     res1 = *res = NULL;
785     p = real;
786     subst_len = kw_len = 0;
787     for (;;) {
788 	 p1 = strstr(p, kw);
789 	 if (p1 != NULL) {
790 	     if (subst_len == 0) {
791 		 subst_len = strlen(subst);
792 		 kw_len = strlen(kw);
793 	     }
794 	     if (*res == NULL) {
795 		 *res = xmalloc(PATH_MAX);
796 		 res1 = *res;
797 	     }
798 	     if ((res1 - *res) + subst_len + (p1 - p) >= PATH_MAX) {
799 		 _rtld_error("Substitution of %s in %s cannot be performed",
800 		     kw, real);
801 		 if (may_free != NULL)
802 		     free(may_free);
803 		 free(res);
804 		 return (false);
805 	     }
806 	     memcpy(res1, p, p1 - p);
807 	     res1 += p1 - p;
808 	     memcpy(res1, subst, subst_len);
809 	     res1 += subst_len;
810 	     p = p1 + kw_len;
811 	 } else {
812 	    if (*res == NULL) {
813 		if (may_free != NULL)
814 		    *res = may_free;
815 		else
816 		    *res = xstrdup(real);
817 		return (true);
818 	    }
819 	    *res1 = '\0';
820 	    if (may_free != NULL)
821 		free(may_free);
822 	    if (strlcat(res1, p, PATH_MAX - (res1 - *res)) >= PATH_MAX) {
823 		free(res);
824 		return (false);
825 	    }
826 	    return (true);
827 	 }
828     }
829 }
830 
831 static char *
832 origin_subst(const char *real, const char *origin_path)
833 {
834     char *res1, *res2, *res3, *res4;
835 
836     if (uts.sysname[0] == '\0') {
837 	if (uname(&uts) != 0) {
838 	    _rtld_error("utsname failed: %d", errno);
839 	    return (NULL);
840 	}
841     }
842     if (!origin_subst_one(&res1, real, "$ORIGIN", origin_path, NULL) ||
843 	!origin_subst_one(&res2, res1, "$OSNAME", uts.sysname, res1) ||
844 	!origin_subst_one(&res3, res2, "$OSREL", uts.release, res2) ||
845 	!origin_subst_one(&res4, res3, "$PLATFORM", uts.machine, res3))
846 	    return (NULL);
847     return (res4);
848 }
849 
850 static void
851 die(void)
852 {
853     const char *msg = dlerror();
854 
855     if (msg == NULL)
856 	msg = "Fatal error";
857     errx(1, "%s", msg);
858 }
859 
860 /*
861  * Process a shared object's DYNAMIC section, and save the important
862  * information in its Obj_Entry structure.
863  */
864 static void
865 digest_dynamic(Obj_Entry *obj, int early)
866 {
867     const Elf_Dyn *dynp;
868     Needed_Entry **needed_tail = &obj->needed;
869     const Elf_Dyn *dyn_rpath = NULL;
870     const Elf_Dyn *dyn_soname = NULL;
871     int plttype = DT_REL;
872 
873     obj->bind_now = false;
874     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
875 	switch (dynp->d_tag) {
876 
877 	case DT_REL:
878 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
879 	    break;
880 
881 	case DT_RELSZ:
882 	    obj->relsize = dynp->d_un.d_val;
883 	    break;
884 
885 	case DT_RELENT:
886 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
887 	    break;
888 
889 	case DT_JMPREL:
890 	    obj->pltrel = (const Elf_Rel *)
891 	      (obj->relocbase + dynp->d_un.d_ptr);
892 	    break;
893 
894 	case DT_PLTRELSZ:
895 	    obj->pltrelsize = dynp->d_un.d_val;
896 	    break;
897 
898 	case DT_RELA:
899 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
900 	    break;
901 
902 	case DT_RELASZ:
903 	    obj->relasize = dynp->d_un.d_val;
904 	    break;
905 
906 	case DT_RELAENT:
907 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
908 	    break;
909 
910 	case DT_PLTREL:
911 	    plttype = dynp->d_un.d_val;
912 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
913 	    break;
914 
915 	case DT_SYMTAB:
916 	    obj->symtab = (const Elf_Sym *)
917 	      (obj->relocbase + dynp->d_un.d_ptr);
918 	    break;
919 
920 	case DT_SYMENT:
921 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
922 	    break;
923 
924 	case DT_STRTAB:
925 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
926 	    break;
927 
928 	case DT_STRSZ:
929 	    obj->strsize = dynp->d_un.d_val;
930 	    break;
931 
932 	case DT_VERNEED:
933 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
934 		dynp->d_un.d_val);
935 	    break;
936 
937 	case DT_VERNEEDNUM:
938 	    obj->verneednum = dynp->d_un.d_val;
939 	    break;
940 
941 	case DT_VERDEF:
942 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
943 		dynp->d_un.d_val);
944 	    break;
945 
946 	case DT_VERDEFNUM:
947 	    obj->verdefnum = dynp->d_un.d_val;
948 	    break;
949 
950 	case DT_VERSYM:
951 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
952 		dynp->d_un.d_val);
953 	    break;
954 
955 	case DT_HASH:
956 	    {
957 		const Elf_Hashelt *hashtab = (const Elf_Hashelt *)
958 		  (obj->relocbase + dynp->d_un.d_ptr);
959 		obj->nbuckets = hashtab[0];
960 		obj->nchains = hashtab[1];
961 		obj->buckets = hashtab + 2;
962 		obj->chains = obj->buckets + obj->nbuckets;
963 	    }
964 	    break;
965 
966 	case DT_NEEDED:
967 	    if (!obj->rtld) {
968 		Needed_Entry *nep = NEW(Needed_Entry);
969 		nep->name = dynp->d_un.d_val;
970 		nep->obj = NULL;
971 		nep->next = NULL;
972 
973 		*needed_tail = nep;
974 		needed_tail = &nep->next;
975 	    }
976 	    break;
977 
978 	case DT_PLTGOT:
979 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
980 	    break;
981 
982 	case DT_TEXTREL:
983 	    obj->textrel = true;
984 	    break;
985 
986 	case DT_SYMBOLIC:
987 	    obj->symbolic = true;
988 	    break;
989 
990 	case DT_RPATH:
991 	case DT_RUNPATH:	/* XXX: process separately */
992 	    /*
993 	     * We have to wait until later to process this, because we
994 	     * might not have gotten the address of the string table yet.
995 	     */
996 	    dyn_rpath = dynp;
997 	    break;
998 
999 	case DT_SONAME:
1000 	    dyn_soname = dynp;
1001 	    break;
1002 
1003 	case DT_INIT:
1004 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1005 	    break;
1006 
1007 	case DT_FINI:
1008 	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1009 	    break;
1010 
1011 	case DT_DEBUG:
1012 	    /* XXX - not implemented yet */
1013 	    if (!early)
1014 		dbg("Filling in DT_DEBUG entry");
1015 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1016 	    break;
1017 
1018 	case DT_FLAGS:
1019 		if ((dynp->d_un.d_val & DF_ORIGIN) && trust)
1020 		    obj->z_origin = true;
1021 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1022 		    obj->symbolic = true;
1023 		if (dynp->d_un.d_val & DF_TEXTREL)
1024 		    obj->textrel = true;
1025 		if (dynp->d_un.d_val & DF_BIND_NOW)
1026 		    obj->bind_now = true;
1027 		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1028 		    ;*/
1029 	    break;
1030 
1031 	case DT_FLAGS_1:
1032 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1033 		    obj->z_noopen = true;
1034 		if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
1035 		    obj->z_origin = true;
1036 		/*if (dynp->d_un.d_val & DF_1_GLOBAL)
1037 		    XXX ;*/
1038 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1039 		    obj->bind_now = true;
1040 		if (dynp->d_un.d_val & DF_1_NODELETE)
1041 		    obj->z_nodelete = true;
1042 	    break;
1043 
1044 	default:
1045 	    if (!early) {
1046 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1047 		    (long)dynp->d_tag);
1048 	    }
1049 	    break;
1050 	}
1051     }
1052 
1053     obj->traced = false;
1054 
1055     if (plttype == DT_RELA) {
1056 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1057 	obj->pltrel = NULL;
1058 	obj->pltrelasize = obj->pltrelsize;
1059 	obj->pltrelsize = 0;
1060     }
1061 
1062     if (obj->z_origin && obj->origin_path == NULL) {
1063 	obj->origin_path = xmalloc(PATH_MAX);
1064 	if (rtld_dirname_abs(obj->path, obj->origin_path) == -1)
1065 	    die();
1066     }
1067 
1068     if (dyn_rpath != NULL) {
1069 	obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1070 	if (obj->z_origin)
1071 	    obj->rpath = origin_subst(obj->rpath, obj->origin_path);
1072     }
1073 
1074     if (dyn_soname != NULL)
1075 	object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1076 }
1077 
1078 /*
1079  * Process a shared object's program header.  This is used only for the
1080  * main program, when the kernel has already loaded the main program
1081  * into memory before calling the dynamic linker.  It creates and
1082  * returns an Obj_Entry structure.
1083  */
1084 static Obj_Entry *
1085 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1086 {
1087     Obj_Entry *obj;
1088     const Elf_Phdr *phlimit = phdr + phnum;
1089     const Elf_Phdr *ph;
1090     int nsegs = 0;
1091 
1092     obj = obj_new();
1093     for (ph = phdr;  ph < phlimit;  ph++) {
1094 	if (ph->p_type != PT_PHDR)
1095 	    continue;
1096 
1097 	obj->phdr = phdr;
1098 	obj->phsize = ph->p_memsz;
1099 	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1100 	break;
1101     }
1102 
1103     for (ph = phdr;  ph < phlimit;  ph++) {
1104 	switch (ph->p_type) {
1105 
1106 	case PT_INTERP:
1107 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1108 	    break;
1109 
1110 	case PT_LOAD:
1111 	    if (nsegs == 0) {	/* First load segment */
1112 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1113 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1114 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1115 		  obj->vaddrbase;
1116 	    } else {		/* Last load segment */
1117 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1118 		  obj->vaddrbase;
1119 	    }
1120 	    nsegs++;
1121 	    break;
1122 
1123 	case PT_DYNAMIC:
1124 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1125 	    break;
1126 
1127 	case PT_TLS:
1128 	    obj->tlsindex = 1;
1129 	    obj->tlssize = ph->p_memsz;
1130 	    obj->tlsalign = ph->p_align;
1131 	    obj->tlsinitsize = ph->p_filesz;
1132 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1133 	    break;
1134 
1135 	case PT_GNU_RELRO:
1136 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1137 	    obj->relro_size = round_page(ph->p_memsz);
1138 	    break;
1139 	}
1140     }
1141     if (nsegs < 1) {
1142 	_rtld_error("%s: too few PT_LOAD segments", path);
1143 	return NULL;
1144     }
1145 
1146     obj->entry = entry;
1147     return obj;
1148 }
1149 
1150 static Obj_Entry *
1151 dlcheck(void *handle)
1152 {
1153     Obj_Entry *obj;
1154 
1155     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1156 	if (obj == (Obj_Entry *) handle)
1157 	    break;
1158 
1159     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1160 	_rtld_error("Invalid shared object handle %p", handle);
1161 	return NULL;
1162     }
1163     return obj;
1164 }
1165 
1166 /*
1167  * If the given object is already in the donelist, return true.  Otherwise
1168  * add the object to the list and return false.
1169  */
1170 static bool
1171 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1172 {
1173     unsigned int i;
1174 
1175     for (i = 0;  i < dlp->num_used;  i++)
1176 	if (dlp->objs[i] == obj)
1177 	    return true;
1178     /*
1179      * Our donelist allocation should always be sufficient.  But if
1180      * our threads locking isn't working properly, more shared objects
1181      * could have been loaded since we allocated the list.  That should
1182      * never happen, but we'll handle it properly just in case it does.
1183      */
1184     if (dlp->num_used < dlp->num_alloc)
1185 	dlp->objs[dlp->num_used++] = obj;
1186     return false;
1187 }
1188 
1189 /*
1190  * Hash function for symbol table lookup.  Don't even think about changing
1191  * this.  It is specified by the System V ABI.
1192  */
1193 unsigned long
1194 elf_hash(const char *name)
1195 {
1196     const unsigned char *p = (const unsigned char *) name;
1197     unsigned long h = 0;
1198     unsigned long g;
1199 
1200     while (*p != '\0') {
1201 	h = (h << 4) + *p++;
1202 	if ((g = h & 0xf0000000) != 0)
1203 	    h ^= g >> 24;
1204 	h &= ~g;
1205     }
1206     return h;
1207 }
1208 
1209 /*
1210  * Find the library with the given name, and return its full pathname.
1211  * The returned string is dynamically allocated.  Generates an error
1212  * message and returns NULL if the library cannot be found.
1213  *
1214  * If the second argument is non-NULL, then it refers to an already-
1215  * loaded shared object, whose library search path will be searched.
1216  *
1217  * The search order is:
1218  *   LD_LIBRARY_PATH
1219  *   rpath in the referencing file
1220  *   ldconfig hints
1221  *   /usr/lib
1222  */
1223 static char *
1224 find_library(const char *xname, const Obj_Entry *refobj)
1225 {
1226     char *pathname;
1227     char *name;
1228 
1229     if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1230 	if (xname[0] != '/' && !trust) {
1231 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1232 	      xname);
1233 	    return NULL;
1234 	}
1235 	if (refobj != NULL && refobj->z_origin)
1236 	    return origin_subst(xname, refobj->origin_path);
1237 	else
1238 	    return xstrdup(xname);
1239     }
1240 
1241     if (libmap_disable || (refobj == NULL) ||
1242 	(name = lm_find(refobj->path, xname)) == NULL)
1243 	name = (char *)xname;
1244 
1245     dbg(" Searching for \"%s\"", name);
1246 
1247     if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1248       (refobj != NULL &&
1249       (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1250       (pathname = search_library_path(name, gethints())) != NULL ||
1251       (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1252 	return pathname;
1253 
1254     if(refobj != NULL && refobj->path != NULL) {
1255 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1256 	  name, basename(refobj->path));
1257     } else {
1258 	_rtld_error("Shared object \"%s\" not found", name);
1259     }
1260     return NULL;
1261 }
1262 
1263 /*
1264  * Given a symbol number in a referencing object, find the corresponding
1265  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1266  * no definition was found.  Returns a pointer to the Obj_Entry of the
1267  * defining object via the reference parameter DEFOBJ_OUT.
1268  */
1269 const Elf_Sym *
1270 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1271     const Obj_Entry **defobj_out, int flags, SymCache *cache)
1272 {
1273     const Elf_Sym *ref;
1274     const Elf_Sym *def;
1275     const Obj_Entry *defobj;
1276     const Ver_Entry *ventry;
1277     const char *name;
1278     unsigned long hash;
1279 
1280     /*
1281      * If we have already found this symbol, get the information from
1282      * the cache.
1283      */
1284     if (symnum >= refobj->nchains)
1285 	return NULL;	/* Bad object */
1286     if (cache != NULL && cache[symnum].sym != NULL) {
1287 	*defobj_out = cache[symnum].obj;
1288 	return cache[symnum].sym;
1289     }
1290 
1291     ref = refobj->symtab + symnum;
1292     name = refobj->strtab + ref->st_name;
1293     defobj = NULL;
1294 
1295     /*
1296      * We don't have to do a full scale lookup if the symbol is local.
1297      * We know it will bind to the instance in this load module; to
1298      * which we already have a pointer (ie ref). By not doing a lookup,
1299      * we not only improve performance, but it also avoids unresolvable
1300      * symbols when local symbols are not in the hash table.
1301      *
1302      * This might occur for TLS module relocations, which simply use
1303      * symbol 0.
1304      */
1305     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1306 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1307 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1308 		symnum);
1309 	}
1310 	ventry = fetch_ventry(refobj, symnum);
1311 	hash = elf_hash(name);
1312 	def = symlook_default(name, hash, refobj, &defobj, ventry, flags);
1313     } else {
1314 	def = ref;
1315 	defobj = refobj;
1316     }
1317 
1318     /*
1319      * If we found no definition and the reference is weak, treat the
1320      * symbol as having the value zero.
1321      */
1322     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1323 	def = &sym_zero;
1324 	defobj = obj_main;
1325     }
1326 
1327     if (def != NULL) {
1328 	*defobj_out = defobj;
1329 	/* Record the information in the cache to avoid subsequent lookups. */
1330 	if (cache != NULL) {
1331 	    cache[symnum].sym = def;
1332 	    cache[symnum].obj = defobj;
1333 	}
1334     } else {
1335 	if (refobj != &obj_rtld)
1336 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1337     }
1338     return def;
1339 }
1340 
1341 /*
1342  * Return the search path from the ldconfig hints file, reading it if
1343  * necessary.  Returns NULL if there are problems with the hints file,
1344  * or if the search path there is empty.
1345  */
1346 static const char *
1347 gethints(void)
1348 {
1349     static char *hints;
1350 
1351     if (hints == NULL) {
1352 	int fd;
1353 	struct elfhints_hdr hdr;
1354 	char *p;
1355 
1356 	/* Keep from trying again in case the hints file is bad. */
1357 	hints = "";
1358 
1359 	if ((fd = open(ld_elf_hints_path, O_RDONLY)) == -1)
1360 	    return NULL;
1361 	if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1362 	  hdr.magic != ELFHINTS_MAGIC ||
1363 	  hdr.version != 1) {
1364 	    close(fd);
1365 	    return NULL;
1366 	}
1367 	p = xmalloc(hdr.dirlistlen + 1);
1368 	if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1369 	  read(fd, p, hdr.dirlistlen + 1) != (ssize_t)hdr.dirlistlen + 1) {
1370 	    free(p);
1371 	    close(fd);
1372 	    return NULL;
1373 	}
1374 	hints = p;
1375 	close(fd);
1376     }
1377     return hints[0] != '\0' ? hints : NULL;
1378 }
1379 
1380 static void
1381 init_dag(Obj_Entry *root)
1382 {
1383     DoneList donelist;
1384 
1385     if (root->dag_inited)
1386 	return;
1387     donelist_init(&donelist);
1388     init_dag1(root, root, &donelist);
1389 }
1390 
1391 static void
1392 init_dag1(Obj_Entry *root, Obj_Entry *obj, DoneList *dlp)
1393 {
1394     const Needed_Entry *needed;
1395 
1396     if (donelist_check(dlp, obj))
1397 	return;
1398 
1399     objlist_push_tail(&obj->dldags, root);
1400     objlist_push_tail(&root->dagmembers, obj);
1401     for (needed = obj->needed;  needed != NULL;  needed = needed->next)
1402 	if (needed->obj != NULL)
1403 	    init_dag1(root, needed->obj, dlp);
1404     root->dag_inited = true;
1405 }
1406 
1407 /*
1408  * Initialize the dynamic linker.  The argument is the address at which
1409  * the dynamic linker has been mapped into memory.  The primary task of
1410  * this function is to relocate the dynamic linker.
1411  */
1412 static void
1413 init_rtld(caddr_t mapbase)
1414 {
1415     Obj_Entry objtmp;	/* Temporary rtld object */
1416 
1417     /*
1418      * Conjure up an Obj_Entry structure for the dynamic linker.
1419      *
1420      * The "path" member can't be initialized yet because string constants
1421      * cannot yet be accessed. Below we will set it correctly.
1422      */
1423     memset(&objtmp, 0, sizeof(objtmp));
1424     objtmp.path = NULL;
1425     objtmp.rtld = true;
1426     objtmp.mapbase = mapbase;
1427 #ifdef PIC
1428     objtmp.relocbase = mapbase;
1429 #endif
1430     if (RTLD_IS_DYNAMIC()) {
1431 	objtmp.dynamic = rtld_dynamic(&objtmp);
1432 	digest_dynamic(&objtmp, 1);
1433 	assert(objtmp.needed == NULL);
1434 	assert(!objtmp.textrel);
1435 
1436 	/*
1437 	 * Temporarily put the dynamic linker entry into the object list, so
1438 	 * that symbols can be found.
1439 	 */
1440 
1441 	relocate_objects(&objtmp, true, &objtmp);
1442     }
1443 
1444     /* Initialize the object list. */
1445     obj_tail = &obj_list;
1446 
1447     /* Now that non-local variables can be accesses, copy out obj_rtld. */
1448     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1449 
1450     /* Replace the path with a dynamically allocated copy. */
1451     obj_rtld.path = xstrdup(PATH_RTLD);
1452 
1453     r_debug.r_brk = r_debug_state;
1454     r_debug.r_state = RT_CONSISTENT;
1455 }
1456 
1457 /*
1458  * Add the init functions from a needed object list (and its recursive
1459  * needed objects) to "list".  This is not used directly; it is a helper
1460  * function for initlist_add_objects().  The write lock must be held
1461  * when this function is called.
1462  */
1463 static void
1464 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1465 {
1466     /* Recursively process the successor needed objects. */
1467     if (needed->next != NULL)
1468 	initlist_add_neededs(needed->next, list);
1469 
1470     /* Process the current needed object. */
1471     if (needed->obj != NULL)
1472 	initlist_add_objects(needed->obj, &needed->obj->next, list);
1473 }
1474 
1475 /*
1476  * Scan all of the DAGs rooted in the range of objects from "obj" to
1477  * "tail" and add their init functions to "list".  This recurses over
1478  * the DAGs and ensure the proper init ordering such that each object's
1479  * needed libraries are initialized before the object itself.  At the
1480  * same time, this function adds the objects to the global finalization
1481  * list "list_fini" in the opposite order.  The write lock must be
1482  * held when this function is called.
1483  */
1484 static void
1485 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1486 {
1487     if (obj->init_scanned || obj->init_done)
1488 	return;
1489     obj->init_scanned = true;
1490 
1491     /* Recursively process the successor objects. */
1492     if (&obj->next != tail)
1493 	initlist_add_objects(obj->next, tail, list);
1494 
1495     /* Recursively process the needed objects. */
1496     if (obj->needed != NULL)
1497 	initlist_add_neededs(obj->needed, list);
1498 
1499     /* Add the object to the init list. */
1500     if (obj->init != (Elf_Addr)NULL)
1501 	objlist_push_tail(list, obj);
1502 
1503     /* Add the object to the global fini list in the reverse order. */
1504     if (obj->fini != (Elf_Addr)NULL && !obj->on_fini_list) {
1505 	objlist_push_head(&list_fini, obj);
1506 	obj->on_fini_list = true;
1507     }
1508 }
1509 
1510 #ifndef FPTR_TARGET
1511 #define FPTR_TARGET(f)	((Elf_Addr) (f))
1512 #endif
1513 
1514 static bool
1515 is_exported(const Elf_Sym *def)
1516 {
1517     Elf_Addr value;
1518     const func_ptr_type *p;
1519 
1520     value = (Elf_Addr)(obj_rtld.relocbase + def->st_value);
1521     for (p = exports;  *p != NULL;  p++)
1522 	if (FPTR_TARGET(*p) == value)
1523 	    return true;
1524     return false;
1525 }
1526 
1527 /*
1528  * Given a shared object, traverse its list of needed objects, and load
1529  * each of them.  Returns 0 on success.  Generates an error message and
1530  * returns -1 on failure.
1531  */
1532 static int
1533 load_needed_objects(Obj_Entry *first, int flags)
1534 {
1535     Obj_Entry *obj, *obj1;
1536 
1537     for (obj = first;  obj != NULL;  obj = obj->next) {
1538 	Needed_Entry *needed;
1539 
1540 	for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
1541 	    obj1 = needed->obj = load_object(obj->strtab + needed->name, obj,
1542 		flags & ~RTLD_LO_NOLOAD);
1543 	    if (obj1 == NULL && !ld_tracing)
1544 		return -1;
1545 	    if (obj1 != NULL && obj1->z_nodelete && !obj1->ref_nodel) {
1546 		dbg("obj %s nodelete", obj1->path);
1547 		init_dag(obj1);
1548 		ref_dag(obj1);
1549 		obj1->ref_nodel = true;
1550 	    }
1551 	}
1552     }
1553     return (0);
1554 }
1555 
1556 #define RTLD_FUNCTRACE "_rtld_functrace"
1557 
1558 static int
1559 load_preload_objects(void)
1560 {
1561     char *p = ld_preload;
1562     static const char delim[] = " \t:;";
1563 
1564     if (p == NULL)
1565 	return 0;
1566 
1567     p += strspn(p, delim);
1568     while (*p != '\0') {
1569 	size_t len = strcspn(p, delim);
1570 	char savech;
1571 	Obj_Entry *obj;
1572 	const Elf_Sym *sym;
1573 
1574 	savech = p[len];
1575 	p[len] = '\0';
1576 	obj = load_object(p, NULL, 0);
1577 	if (obj == NULL)
1578 	    return -1;	/* XXX - cleanup */
1579 	p[len] = savech;
1580 	p += len;
1581 	p += strspn(p, delim);
1582 
1583 	/* Check for the magic tracing function */
1584 	sym = symlook_obj(RTLD_FUNCTRACE, elf_hash(RTLD_FUNCTRACE), obj, NULL, 1);
1585 	if (sym != NULL) {
1586 		rtld_functrace = (void *)(obj->relocbase + sym->st_value);
1587 		rtld_functrace_obj = obj;
1588 	}
1589     }
1590     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
1591     return 0;
1592 }
1593 
1594 /*
1595  * Load a shared object into memory, if it is not already loaded.
1596  *
1597  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
1598  * on failure.
1599  */
1600 static Obj_Entry *
1601 load_object(const char *name, const Obj_Entry *refobj, int flags)
1602 {
1603     Obj_Entry *obj;
1604     int fd = -1;
1605     struct stat sb;
1606     char *path;
1607 
1608     for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
1609 	if (object_match_name(obj, name))
1610 	    return obj;
1611 
1612     path = find_library(name, refobj);
1613     if (path == NULL)
1614 	return NULL;
1615 
1616     /*
1617      * If we didn't find a match by pathname, open the file and check
1618      * again by device and inode.  This avoids false mismatches caused
1619      * by multiple links or ".." in pathnames.
1620      *
1621      * To avoid a race, we open the file and use fstat() rather than
1622      * using stat().
1623      */
1624     if ((fd = open(path, O_RDONLY)) == -1) {
1625 	_rtld_error("Cannot open \"%s\"", path);
1626 	free(path);
1627 	return NULL;
1628     }
1629     if (fstat(fd, &sb) == -1) {
1630 	_rtld_error("Cannot fstat \"%s\"", path);
1631 	close(fd);
1632 	free(path);
1633 	return NULL;
1634     }
1635     for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
1636 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
1637 	    break;
1638     if (obj != NULL) {
1639 	object_add_name(obj, name);
1640 	free(path);
1641 	close(fd);
1642 	return obj;
1643     }
1644     if (flags & RTLD_LO_NOLOAD) {
1645 	free(path);
1646 	close(fd);
1647 	return (NULL);
1648     }
1649 
1650     /* First use of this object, so we must map it in */
1651     obj = do_load_object(fd, name, path, &sb, flags);
1652     if (obj == NULL)
1653 	free(path);
1654     close(fd);
1655 
1656     return obj;
1657 }
1658 
1659 static Obj_Entry *
1660 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
1661   int flags)
1662 {
1663     Obj_Entry *obj;
1664     struct statfs fs;
1665 
1666     /*
1667      * but first, make sure that environment variables haven't been
1668      * used to circumvent the noexec flag on a filesystem.
1669      */
1670     if (dangerous_ld_env) {
1671 	if (fstatfs(fd, &fs) != 0) {
1672 	    _rtld_error("Cannot fstatfs \"%s\"", path);
1673 		return NULL;
1674 	}
1675 	if (fs.f_flags & MNT_NOEXEC) {
1676 	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
1677 	    return NULL;
1678 	}
1679     }
1680     dbg("loading \"%s\"", path);
1681     obj = map_object(fd, path, sbp);
1682     if (obj == NULL)
1683         return NULL;
1684 
1685     object_add_name(obj, name);
1686     obj->path = path;
1687     digest_dynamic(obj, 0);
1688     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
1689       RTLD_LO_DLOPEN) {
1690 	dbg("refusing to load non-loadable \"%s\"", obj->path);
1691 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
1692 	munmap(obj->mapbase, obj->mapsize);
1693 	obj_free(obj);
1694 	return (NULL);
1695     }
1696 
1697     *obj_tail = obj;
1698     obj_tail = &obj->next;
1699     obj_count++;
1700     obj_loads++;
1701     linkmap_add(obj);	/* for GDB & dlinfo() */
1702 
1703     dbg("  %p .. %p: %s", obj->mapbase,
1704          obj->mapbase + obj->mapsize - 1, obj->path);
1705     if (obj->textrel)
1706 	dbg("  WARNING: %s has impure text", obj->path);
1707     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
1708 	obj->path);
1709 
1710     return obj;
1711 }
1712 
1713 static Obj_Entry *
1714 obj_from_addr(const void *addr)
1715 {
1716     Obj_Entry *obj;
1717 
1718     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
1719 	if (addr < (void *) obj->mapbase)
1720 	    continue;
1721 	if (addr < (void *) (obj->mapbase + obj->mapsize))
1722 	    return obj;
1723     }
1724     return NULL;
1725 }
1726 
1727 /*
1728  * Call the finalization functions for each of the objects in "list"
1729  * belonging to the DAG of "root" and referenced once. If NULL "root"
1730  * is specified, every finalization function will be called regardless
1731  * of the reference count and the list elements won't be freed. All of
1732  * the objects are expected to have non-NULL fini functions.
1733  */
1734 static void
1735 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
1736 {
1737     Objlist_Entry *elm;
1738     char *saved_msg;
1739 
1740     assert(root == NULL || root->refcount == 1);
1741 
1742     /*
1743      * Preserve the current error message since a fini function might
1744      * call into the dynamic linker and overwrite it.
1745      */
1746     saved_msg = errmsg_save();
1747     do {
1748 	STAILQ_FOREACH(elm, list, link) {
1749 	    if (root != NULL && (elm->obj->refcount != 1 ||
1750 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
1751 		continue;
1752 	    dbg("calling fini function for %s at %p", elm->obj->path,
1753 	        (void *)elm->obj->fini);
1754 	    LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini, 0, 0,
1755 		elm->obj->path);
1756 	    /* Remove object from fini list to prevent recursive invocation. */
1757 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
1758 	    /*
1759 	     * XXX: If a dlopen() call references an object while the
1760 	     * fini function is in progress, we might end up trying to
1761 	     * unload the referenced object in dlclose() or the object
1762 	     * won't be unloaded although its fini function has been
1763 	     * called.
1764 	     */
1765 	    lock_release(rtld_bind_lock, lockstate);
1766 	    call_initfini_pointer(elm->obj, elm->obj->fini);
1767 	    wlock_acquire(rtld_bind_lock, lockstate);
1768 	    /* No need to free anything if process is going down. */
1769 	    if (root != NULL)
1770 		free(elm);
1771 	    /*
1772 	     * We must restart the list traversal after every fini call
1773 	     * because a dlclose() call from the fini function or from
1774 	     * another thread might have modified the reference counts.
1775 	     */
1776 	    break;
1777 	}
1778     } while (elm != NULL);
1779     errmsg_restore(saved_msg);
1780 }
1781 
1782 /*
1783  * Call the initialization functions for each of the objects in
1784  * "list".  All of the objects are expected to have non-NULL init
1785  * functions.
1786  */
1787 static void
1788 objlist_call_init(Objlist *list, RtldLockState *lockstate)
1789 {
1790     Objlist_Entry *elm;
1791     Obj_Entry *obj;
1792     char *saved_msg;
1793 
1794     /*
1795      * Clean init_scanned flag so that objects can be rechecked and
1796      * possibly initialized earlier if any of vectors called below
1797      * cause the change by using dlopen.
1798      */
1799     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1800 	obj->init_scanned = false;
1801 
1802     /*
1803      * Preserve the current error message since an init function might
1804      * call into the dynamic linker and overwrite it.
1805      */
1806     saved_msg = errmsg_save();
1807     STAILQ_FOREACH(elm, list, link) {
1808 	if (elm->obj->init_done) /* Initialized early. */
1809 	    continue;
1810 	dbg("calling init function for %s at %p", elm->obj->path,
1811 	    (void *)elm->obj->init);
1812 	LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init, 0, 0,
1813 	    elm->obj->path);
1814 	/*
1815 	 * Race: other thread might try to use this object before current
1816 	 * one completes the initilization. Not much can be done here
1817 	 * without better locking.
1818 	 */
1819 	elm->obj->init_done = true;
1820 	lock_release(rtld_bind_lock, lockstate);
1821 	call_initfini_pointer(elm->obj, elm->obj->init);
1822 	wlock_acquire(rtld_bind_lock, lockstate);
1823     }
1824     errmsg_restore(saved_msg);
1825 }
1826 
1827 static void
1828 objlist_clear(Objlist *list)
1829 {
1830     Objlist_Entry *elm;
1831 
1832     while (!STAILQ_EMPTY(list)) {
1833 	elm = STAILQ_FIRST(list);
1834 	STAILQ_REMOVE_HEAD(list, link);
1835 	free(elm);
1836     }
1837 }
1838 
1839 static Objlist_Entry *
1840 objlist_find(Objlist *list, const Obj_Entry *obj)
1841 {
1842     Objlist_Entry *elm;
1843 
1844     STAILQ_FOREACH(elm, list, link)
1845 	if (elm->obj == obj)
1846 	    return elm;
1847     return NULL;
1848 }
1849 
1850 static void
1851 objlist_init(Objlist *list)
1852 {
1853     STAILQ_INIT(list);
1854 }
1855 
1856 static void
1857 objlist_push_head(Objlist *list, Obj_Entry *obj)
1858 {
1859     Objlist_Entry *elm;
1860 
1861     elm = NEW(Objlist_Entry);
1862     elm->obj = obj;
1863     STAILQ_INSERT_HEAD(list, elm, link);
1864 }
1865 
1866 static void
1867 objlist_push_tail(Objlist *list, Obj_Entry *obj)
1868 {
1869     Objlist_Entry *elm;
1870 
1871     elm = NEW(Objlist_Entry);
1872     elm->obj = obj;
1873     STAILQ_INSERT_TAIL(list, elm, link);
1874 }
1875 
1876 static void
1877 objlist_remove(Objlist *list, Obj_Entry *obj)
1878 {
1879     Objlist_Entry *elm;
1880 
1881     if ((elm = objlist_find(list, obj)) != NULL) {
1882 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
1883 	free(elm);
1884     }
1885 }
1886 
1887 /*
1888  * Relocate newly-loaded shared objects.  The argument is a pointer to
1889  * the Obj_Entry for the first such object.  All objects from the first
1890  * to the end of the list of objects are relocated.  Returns 0 on success,
1891  * or -1 on failure.
1892  */
1893 static int
1894 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj)
1895 {
1896     Obj_Entry *obj;
1897 
1898     for (obj = first;  obj != NULL;  obj = obj->next) {
1899 	if (obj != rtldobj)
1900 	    dbg("relocating \"%s\"", obj->path);
1901 	if (obj->nbuckets == 0 || obj->nchains == 0 || obj->buckets == NULL ||
1902 	    obj->symtab == NULL || obj->strtab == NULL) {
1903 	    _rtld_error("%s: Shared object has no run-time symbol table",
1904 	      obj->path);
1905 	    return -1;
1906 	}
1907 
1908 	if (obj->textrel) {
1909 	    /* There are relocations to the write-protected text segment. */
1910 	    if (mprotect(obj->mapbase, obj->textsize,
1911 	      PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
1912 		_rtld_error("%s: Cannot write-enable text segment: %s",
1913 		  obj->path, strerror(errno));
1914 		return -1;
1915 	    }
1916 	}
1917 
1918 	/* Process the non-PLT relocations. */
1919 	if (reloc_non_plt(obj, rtldobj))
1920 		return -1;
1921 
1922 	/*
1923 	 * Reprotect the text segment.  Make sure it is included in the
1924 	 * core dump since we modified it.  This unfortunately causes the
1925 	 * entire text segment to core-out but we don't have much of a
1926 	 * choice.  We could try to only reenable core dumps on pages
1927 	 * in which relocations occured but that is likely most of the text
1928 	 * pages anyway, and even that would not work because the rest of
1929 	 * the text pages would wind up as a read-only OBJT_DEFAULT object
1930 	 * (created due to our modifications) backed by the original OBJT_VNODE
1931 	 * object, and the ELF coredump code is currently only able to dump
1932 	 * vnode records for pure vnode-backed mappings, not vnode backings
1933 	 * to memory objects.
1934 	 */
1935 	if (obj->textrel) {
1936 	    madvise(obj->mapbase, obj->textsize, MADV_CORE);
1937 	    if (mprotect(obj->mapbase, obj->textsize,
1938 	      PROT_READ|PROT_EXEC) == -1) {
1939 		_rtld_error("%s: Cannot write-protect text segment: %s",
1940 		  obj->path, strerror(errno));
1941 		return -1;
1942 	    }
1943 	}
1944 
1945 	/* Process the PLT relocations. */
1946 	if (reloc_plt(obj) == -1)
1947 	    return -1;
1948 	/* Relocate the jump slots if we are doing immediate binding. */
1949 	if (obj->bind_now || bind_now)
1950 	    if (reloc_jmpslots(obj) == -1)
1951 		return -1;
1952 
1953 	/* Set the special PLT or GOT entries. */
1954 	init_pltgot(obj);
1955 
1956 	/*
1957 	 * Set up the magic number and version in the Obj_Entry.  These
1958 	 * were checked in the crt1.o from the original ElfKit, so we
1959 	 * set them for backward compatibility.
1960 	 */
1961 	obj->magic = RTLD_MAGIC;
1962 	obj->version = RTLD_VERSION;
1963 
1964 	/*
1965 	 * Set relocated data to read-only status if protection specified
1966 	 */
1967 
1968 	if (obj->relro_size) {
1969 	    if (mprotect(obj->relro_page, obj->relro_size, PROT_READ) == -1) {
1970 		_rtld_error("%s: Cannot enforce relro relocation: %s",
1971 		  obj->path, strerror(errno));
1972 		return -1;
1973 	    }
1974 	}
1975     }
1976 
1977     return (0);
1978 }
1979 
1980 /*
1981  * Cleanup procedure.  It will be called (by the atexit mechanism) just
1982  * before the process exits.
1983  */
1984 static void
1985 rtld_exit(void)
1986 {
1987     RtldLockState lockstate;
1988 
1989     wlock_acquire(rtld_bind_lock, &lockstate);
1990     dbg("rtld_exit()");
1991     objlist_call_fini(&list_fini, NULL, &lockstate);
1992     /* No need to remove the items from the list, since we are exiting. */
1993     if (!libmap_disable)
1994         lm_fini();
1995     lock_release(rtld_bind_lock, &lockstate);
1996 }
1997 
1998 static void *
1999 path_enumerate(const char *path, path_enum_proc callback, void *arg)
2000 {
2001     if (path == NULL)
2002 	return (NULL);
2003 
2004     path += strspn(path, ":;");
2005     while (*path != '\0') {
2006 	size_t len;
2007 	char  *res;
2008 
2009 	len = strcspn(path, ":;");
2010 	res = callback(path, len, arg);
2011 
2012 	if (res != NULL)
2013 	    return (res);
2014 
2015 	path += len;
2016 	path += strspn(path, ":;");
2017     }
2018 
2019     return (NULL);
2020 }
2021 
2022 struct try_library_args {
2023     const char	*name;
2024     size_t	 namelen;
2025     char	*buffer;
2026     size_t	 buflen;
2027 };
2028 
2029 static void *
2030 try_library_path(const char *dir, size_t dirlen, void *param)
2031 {
2032     struct try_library_args *arg;
2033 
2034     arg = param;
2035     if (*dir == '/' || trust) {
2036 	char *pathname;
2037 
2038 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2039 		return (NULL);
2040 
2041 	pathname = arg->buffer;
2042 	strncpy(pathname, dir, dirlen);
2043 	pathname[dirlen] = '/';
2044 	strcpy(pathname + dirlen + 1, arg->name);
2045 
2046 	dbg("  Trying \"%s\"", pathname);
2047 	if (access(pathname, F_OK) == 0) {		/* We found it */
2048 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2049 	    strcpy(pathname, arg->buffer);
2050 	    return (pathname);
2051 	}
2052     }
2053     return (NULL);
2054 }
2055 
2056 static char *
2057 search_library_path(const char *name, const char *path)
2058 {
2059     char *p;
2060     struct try_library_args arg;
2061 
2062     if (path == NULL)
2063 	return NULL;
2064 
2065     arg.name = name;
2066     arg.namelen = strlen(name);
2067     arg.buffer = xmalloc(PATH_MAX);
2068     arg.buflen = PATH_MAX;
2069 
2070     p = path_enumerate(path, try_library_path, &arg);
2071 
2072     free(arg.buffer);
2073 
2074     return (p);
2075 }
2076 
2077 int
2078 dlclose(void *handle)
2079 {
2080     Obj_Entry *root;
2081     RtldLockState lockstate;
2082 
2083     wlock_acquire(rtld_bind_lock, &lockstate);
2084     root = dlcheck(handle);
2085     if (root == NULL) {
2086 	lock_release(rtld_bind_lock, &lockstate);
2087 	return -1;
2088     }
2089     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2090 	root->path);
2091 
2092     /* Unreference the object and its dependencies. */
2093     root->dl_refcount--;
2094 
2095     if (root->refcount == 1) {
2096 	/*
2097 	 * The object will be no longer referenced, so we must unload it.
2098 	 * First, call the fini functions.
2099 	 */
2100 	objlist_call_fini(&list_fini, root, &lockstate);
2101 
2102 	unref_dag(root);
2103 
2104 	/* Finish cleaning up the newly-unreferenced objects. */
2105 	GDB_STATE(RT_DELETE,&root->linkmap);
2106 	unload_object(root);
2107 	GDB_STATE(RT_CONSISTENT,NULL);
2108     } else
2109 	unref_dag(root);
2110 
2111     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2112     lock_release(rtld_bind_lock, &lockstate);
2113     return 0;
2114 }
2115 
2116 char *
2117 dlerror(void)
2118 {
2119     char *msg = error_message;
2120     error_message = NULL;
2121     return msg;
2122 }
2123 
2124 void *
2125 dlopen(const char *name, int mode)
2126 {
2127     Obj_Entry **old_obj_tail;
2128     Obj_Entry *obj;
2129     Objlist initlist;
2130     RtldLockState lockstate;
2131     int result, lo_flags;
2132 
2133     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2134     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2135     if (ld_tracing != NULL)
2136 	environ = (char **)*get_program_var_addr("environ");
2137     lo_flags = RTLD_LO_DLOPEN;
2138     if (mode & RTLD_NODELETE)
2139 	    lo_flags |= RTLD_LO_NODELETE;
2140     if (mode & RTLD_NOLOAD)
2141 	    lo_flags |= RTLD_LO_NOLOAD;
2142     if (ld_tracing != NULL)
2143 	    lo_flags |= RTLD_LO_TRACE;
2144 
2145     objlist_init(&initlist);
2146 
2147     wlock_acquire(rtld_bind_lock, &lockstate);
2148     GDB_STATE(RT_ADD,NULL);
2149 
2150     old_obj_tail = obj_tail;
2151     obj = NULL;
2152     if (name == NULL) {
2153 	obj = obj_main;
2154 	obj->refcount++;
2155     } else {
2156 	obj = load_object(name, obj_main, lo_flags);
2157     }
2158 
2159     if (obj) {
2160 	obj->dl_refcount++;
2161 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
2162 	    objlist_push_tail(&list_global, obj);
2163 	mode &= RTLD_MODEMASK;
2164 	if (*old_obj_tail != NULL) {		/* We loaded something new. */
2165 	    assert(*old_obj_tail == obj);
2166 	    result = load_needed_objects(obj, RTLD_LO_DLOPEN);
2167 	    init_dag(obj);
2168 	    ref_dag(obj);
2169 	    if (result != -1)
2170 		result = rtld_verify_versions(&obj->dagmembers);
2171 	    if (result != -1 && ld_tracing)
2172 		goto trace;
2173 	    if (result == -1 ||
2174 	      (relocate_objects(obj, mode == RTLD_NOW, &obj_rtld)) == -1) {
2175 		obj->dl_refcount--;
2176 		unref_dag(obj);
2177 		if (obj->refcount == 0)
2178 		    unload_object(obj);
2179 		obj = NULL;
2180 	    } else {
2181 		/* Make list of init functions to call. */
2182 		initlist_add_objects(obj, &obj->next, &initlist);
2183 	    }
2184 	} else {
2185 
2186 	    /*
2187 	     * Bump the reference counts for objects on this DAG.  If
2188 	     * this is the first dlopen() call for the object that was
2189 	     * already loaded as a dependency, initialize the dag
2190 	     * starting at it.
2191 	     */
2192 	    init_dag(obj);
2193 	    ref_dag(obj);
2194 
2195 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
2196 		goto trace;
2197 	}
2198 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
2199 	  obj->z_nodelete) && !obj->ref_nodel) {
2200 	    dbg("obj %s nodelete", obj->path);
2201 	    ref_dag(obj);
2202 	    obj->z_nodelete = obj->ref_nodel = true;
2203 	}
2204     }
2205 
2206     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
2207 	name);
2208     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
2209 
2210     /* Call the init functions. */
2211     objlist_call_init(&initlist, &lockstate);
2212     objlist_clear(&initlist);
2213     lock_release(rtld_bind_lock, &lockstate);
2214     return obj;
2215 trace:
2216     trace_loaded_objects(obj);
2217     lock_release(rtld_bind_lock, &lockstate);
2218     exit(0);
2219 }
2220 
2221 static void *
2222 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
2223     int flags)
2224 {
2225     DoneList donelist;
2226     const Obj_Entry *obj, *defobj;
2227     const Elf_Sym *def, *symp;
2228     unsigned long hash;
2229     RtldLockState lockstate;
2230 
2231     hash = elf_hash(name);
2232     def = NULL;
2233     defobj = NULL;
2234     flags |= SYMLOOK_IN_PLT;
2235 
2236     rlock_acquire(rtld_bind_lock, &lockstate);
2237     if (sigsetjmp(lockstate.env, 0) != 0)
2238 	    lock_upgrade(rtld_bind_lock, &lockstate);
2239     if (handle == NULL || handle == RTLD_NEXT ||
2240 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
2241 
2242 	if ((obj = obj_from_addr(retaddr)) == NULL) {
2243 	    _rtld_error("Cannot determine caller's shared object");
2244 	    lock_release(rtld_bind_lock, &lockstate);
2245 	    return NULL;
2246 	}
2247 	if (handle == NULL) {	/* Just the caller's shared object. */
2248 	    def = symlook_obj(name, hash, obj, ve, flags);
2249 	    defobj = obj;
2250 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
2251 		   handle == RTLD_SELF) { /* ... caller included */
2252 	    if (handle == RTLD_NEXT)
2253 		obj = obj->next;
2254 	    for (; obj != NULL; obj = obj->next) {
2255 		if ((symp = symlook_obj(name, hash, obj, ve, flags)) != NULL) {
2256 		    if (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK) {
2257 			def = symp;
2258 			defobj = obj;
2259 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2260 			    break;
2261 		    }
2262 		}
2263 	    }
2264 	    /*
2265 	     * Search the dynamic linker itself, and possibly resolve the
2266 	     * symbol from there.  This is how the application links to
2267 	     * dynamic linker services such as dlopen.
2268 	     */
2269 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2270 		symp = symlook_obj(name, hash, &obj_rtld, ve, flags);
2271 		if (symp != NULL) {
2272 		    def = symp;
2273 		    defobj = &obj_rtld;
2274 		}
2275 	    }
2276 	} else {
2277 	    assert(handle == RTLD_DEFAULT);
2278 	    def = symlook_default(name, hash, obj, &defobj, ve, flags);
2279 	}
2280     } else {
2281 	if ((obj = dlcheck(handle)) == NULL) {
2282 	    lock_release(rtld_bind_lock, &lockstate);
2283 	    return NULL;
2284 	}
2285 
2286 	donelist_init(&donelist);
2287 	if (obj->mainprog) {
2288 	    /* Search main program and all libraries loaded by it. */
2289 	    def = symlook_list(name, hash, &list_main, &defobj, ve, flags,
2290 			       &donelist);
2291 
2292 	    /*
2293 	     * We do not distinguish between 'main' object and global scope.
2294 	     * If symbol is not defined by objects loaded at startup, continue
2295 	     * search among dynamically loaded objects with RTLD_GLOBAL
2296 	     * scope.
2297 	     */
2298 	    if (def == NULL)
2299 		def = symlook_list(name, hash, &list_global, &defobj, ve,
2300 				   flags, &donelist);
2301 	} else {
2302 	    Needed_Entry fake;
2303 
2304 	    /* Search the whole DAG rooted at the given object. */
2305 	    fake.next = NULL;
2306 	    fake.obj = (Obj_Entry *)obj;
2307 	    fake.name = 0;
2308 	    def = symlook_needed(name, hash, &fake, &defobj, ve, flags,
2309 				 &donelist);
2310 	}
2311     }
2312 
2313     if (def != NULL) {
2314 	lock_release(rtld_bind_lock, &lockstate);
2315 
2316 	/*
2317 	 * The value required by the caller is derived from the value
2318 	 * of the symbol. For the ia64 architecture, we need to
2319 	 * construct a function descriptor which the caller can use to
2320 	 * call the function with the right 'gp' value. For other
2321 	 * architectures and for non-functions, the value is simply
2322 	 * the relocated value of the symbol.
2323 	 */
2324 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
2325 	    return (make_function_pointer(def, defobj));
2326 	else
2327 	    return (defobj->relocbase + def->st_value);
2328     }
2329 
2330     _rtld_error("Undefined symbol \"%s\"", name);
2331     lock_release(rtld_bind_lock, &lockstate);
2332     return NULL;
2333 }
2334 
2335 void *
2336 dlsym(void *handle, const char *name)
2337 {
2338 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
2339 	    SYMLOOK_DLSYM);
2340 }
2341 
2342 dlfunc_t
2343 dlfunc(void *handle, const char *name)
2344 {
2345 	union {
2346 		void *d;
2347 		dlfunc_t f;
2348 	} rv;
2349 
2350 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
2351 	    SYMLOOK_DLSYM);
2352 	return (rv.f);
2353 }
2354 
2355 void *
2356 dlvsym(void *handle, const char *name, const char *version)
2357 {
2358 	Ver_Entry ventry;
2359 
2360 	ventry.name = version;
2361 	ventry.file = NULL;
2362 	ventry.hash = elf_hash(version);
2363 	ventry.flags= 0;
2364 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
2365 	    SYMLOOK_DLSYM);
2366 }
2367 
2368 int
2369 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
2370 {
2371     const Obj_Entry *obj;
2372     RtldLockState lockstate;
2373 
2374     rlock_acquire(rtld_bind_lock, &lockstate);
2375     obj = obj_from_addr(addr);
2376     if (obj == NULL) {
2377         _rtld_error("No shared object contains address");
2378 	lock_release(rtld_bind_lock, &lockstate);
2379         return (0);
2380     }
2381     rtld_fill_dl_phdr_info(obj, phdr_info);
2382     lock_release(rtld_bind_lock, &lockstate);
2383     return (1);
2384 }
2385 
2386 int
2387 dladdr(const void *addr, Dl_info *info)
2388 {
2389     const Obj_Entry *obj;
2390     const Elf_Sym *def;
2391     void *symbol_addr;
2392     unsigned long symoffset;
2393     RtldLockState lockstate;
2394 
2395     rlock_acquire(rtld_bind_lock, &lockstate);
2396     obj = obj_from_addr(addr);
2397     if (obj == NULL) {
2398         _rtld_error("No shared object contains address");
2399 	lock_release(rtld_bind_lock, &lockstate);
2400         return 0;
2401     }
2402     info->dli_fname = obj->path;
2403     info->dli_fbase = obj->mapbase;
2404     info->dli_saddr = NULL;
2405     info->dli_sname = NULL;
2406 
2407     /*
2408      * Walk the symbol list looking for the symbol whose address is
2409      * closest to the address sent in.
2410      */
2411     for (symoffset = 0; symoffset < obj->nchains; symoffset++) {
2412         def = obj->symtab + symoffset;
2413 
2414         /*
2415          * For skip the symbol if st_shndx is either SHN_UNDEF or
2416          * SHN_COMMON.
2417          */
2418         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
2419             continue;
2420 
2421         /*
2422          * If the symbol is greater than the specified address, or if it
2423          * is further away from addr than the current nearest symbol,
2424          * then reject it.
2425          */
2426         symbol_addr = obj->relocbase + def->st_value;
2427         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
2428             continue;
2429 
2430         /* Update our idea of the nearest symbol. */
2431         info->dli_sname = obj->strtab + def->st_name;
2432         info->dli_saddr = symbol_addr;
2433 
2434         /* Exact match? */
2435         if (info->dli_saddr == addr)
2436             break;
2437     }
2438     lock_release(rtld_bind_lock, &lockstate);
2439     return 1;
2440 }
2441 
2442 int
2443 dlinfo(void *handle, int request, void *p)
2444 {
2445     const Obj_Entry *obj;
2446     RtldLockState lockstate;
2447     int error;
2448 
2449     rlock_acquire(rtld_bind_lock, &lockstate);
2450 
2451     if (handle == NULL || handle == RTLD_SELF) {
2452 	void *retaddr;
2453 
2454 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
2455 	if ((obj = obj_from_addr(retaddr)) == NULL)
2456 	    _rtld_error("Cannot determine caller's shared object");
2457     } else
2458 	obj = dlcheck(handle);
2459 
2460     if (obj == NULL) {
2461 	lock_release(rtld_bind_lock, &lockstate);
2462 	return (-1);
2463     }
2464 
2465     error = 0;
2466     switch (request) {
2467     case RTLD_DI_LINKMAP:
2468 	*((struct link_map const **)p) = &obj->linkmap;
2469 	break;
2470     case RTLD_DI_ORIGIN:
2471 	error = rtld_dirname(obj->path, p);
2472 	break;
2473 
2474     case RTLD_DI_SERINFOSIZE:
2475     case RTLD_DI_SERINFO:
2476 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
2477 	break;
2478 
2479     default:
2480 	_rtld_error("Invalid request %d passed to dlinfo()", request);
2481 	error = -1;
2482     }
2483 
2484     lock_release(rtld_bind_lock, &lockstate);
2485 
2486     return (error);
2487 }
2488 
2489 static void
2490 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
2491 {
2492 
2493 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
2494 	phdr_info->dlpi_name = STAILQ_FIRST(&obj->names) ?
2495 	    STAILQ_FIRST(&obj->names)->name : obj->path;
2496 	phdr_info->dlpi_phdr = obj->phdr;
2497 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
2498 	phdr_info->dlpi_tls_modid = obj->tlsindex;
2499 	phdr_info->dlpi_tls_data = obj->tlsinit;
2500 	phdr_info->dlpi_adds = obj_loads;
2501 	phdr_info->dlpi_subs = obj_loads - obj_count;
2502 }
2503 
2504 int
2505 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
2506 {
2507     struct dl_phdr_info phdr_info;
2508     const Obj_Entry *obj;
2509     RtldLockState bind_lockstate, phdr_lockstate;
2510     int error;
2511 
2512     wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
2513     rlock_acquire(rtld_bind_lock, &bind_lockstate);
2514 
2515     error = 0;
2516 
2517     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2518 	rtld_fill_dl_phdr_info(obj, &phdr_info);
2519 	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
2520 		break;
2521 
2522     }
2523     lock_release(rtld_bind_lock, &bind_lockstate);
2524     lock_release(rtld_phdr_lock, &phdr_lockstate);
2525 
2526     return (error);
2527 }
2528 
2529 struct fill_search_info_args {
2530     int		 request;
2531     unsigned int flags;
2532     Dl_serinfo  *serinfo;
2533     Dl_serpath  *serpath;
2534     char	*strspace;
2535 };
2536 
2537 static void *
2538 fill_search_info(const char *dir, size_t dirlen, void *param)
2539 {
2540     struct fill_search_info_args *arg;
2541 
2542     arg = param;
2543 
2544     if (arg->request == RTLD_DI_SERINFOSIZE) {
2545 	arg->serinfo->dls_cnt ++;
2546 	arg->serinfo->dls_size += sizeof(Dl_serpath) + dirlen + 1;
2547     } else {
2548 	struct dl_serpath *s_entry;
2549 
2550 	s_entry = arg->serpath;
2551 	s_entry->dls_name  = arg->strspace;
2552 	s_entry->dls_flags = arg->flags;
2553 
2554 	strncpy(arg->strspace, dir, dirlen);
2555 	arg->strspace[dirlen] = '\0';
2556 
2557 	arg->strspace += dirlen + 1;
2558 	arg->serpath++;
2559     }
2560 
2561     return (NULL);
2562 }
2563 
2564 static int
2565 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
2566 {
2567     struct dl_serinfo _info;
2568     struct fill_search_info_args args;
2569 
2570     args.request = RTLD_DI_SERINFOSIZE;
2571     args.serinfo = &_info;
2572 
2573     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2574     _info.dls_cnt  = 0;
2575 
2576     path_enumerate(ld_library_path, fill_search_info, &args);
2577     path_enumerate(obj->rpath, fill_search_info, &args);
2578     path_enumerate(gethints(), fill_search_info, &args);
2579     path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
2580 
2581 
2582     if (request == RTLD_DI_SERINFOSIZE) {
2583 	info->dls_size = _info.dls_size;
2584 	info->dls_cnt = _info.dls_cnt;
2585 	return (0);
2586     }
2587 
2588     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
2589 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
2590 	return (-1);
2591     }
2592 
2593     args.request  = RTLD_DI_SERINFO;
2594     args.serinfo  = info;
2595     args.serpath  = &info->dls_serpath[0];
2596     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
2597 
2598     args.flags = LA_SER_LIBPATH;
2599     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
2600 	return (-1);
2601 
2602     args.flags = LA_SER_RUNPATH;
2603     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
2604 	return (-1);
2605 
2606     args.flags = LA_SER_CONFIG;
2607     if (path_enumerate(gethints(), fill_search_info, &args) != NULL)
2608 	return (-1);
2609 
2610     args.flags = LA_SER_DEFAULT;
2611     if (path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
2612 	return (-1);
2613     return (0);
2614 }
2615 
2616 static int
2617 rtld_dirname(const char *path, char *bname)
2618 {
2619     const char *endp;
2620 
2621     /* Empty or NULL string gets treated as "." */
2622     if (path == NULL || *path == '\0') {
2623 	bname[0] = '.';
2624 	bname[1] = '\0';
2625 	return (0);
2626     }
2627 
2628     /* Strip trailing slashes */
2629     endp = path + strlen(path) - 1;
2630     while (endp > path && *endp == '/')
2631 	endp--;
2632 
2633     /* Find the start of the dir */
2634     while (endp > path && *endp != '/')
2635 	endp--;
2636 
2637     /* Either the dir is "/" or there are no slashes */
2638     if (endp == path) {
2639 	bname[0] = *endp == '/' ? '/' : '.';
2640 	bname[1] = '\0';
2641 	return (0);
2642     } else {
2643 	do {
2644 	    endp--;
2645 	} while (endp > path && *endp == '/');
2646     }
2647 
2648     if (endp - path + 2 > PATH_MAX)
2649     {
2650 	_rtld_error("Filename is too long: %s", path);
2651 	return(-1);
2652     }
2653 
2654     strncpy(bname, path, endp - path + 1);
2655     bname[endp - path + 1] = '\0';
2656     return (0);
2657 }
2658 
2659 static int
2660 rtld_dirname_abs(const char *path, char *base)
2661 {
2662 	char base_rel[PATH_MAX];
2663 
2664 	if (rtld_dirname(path, base) == -1)
2665 		return (-1);
2666 	if (base[0] == '/')
2667 		return (0);
2668 	if (getcwd(base_rel, sizeof(base_rel)) == NULL ||
2669 	    strlcat(base_rel, "/", sizeof(base_rel)) >= sizeof(base_rel) ||
2670 	    strlcat(base_rel, base, sizeof(base_rel)) >= sizeof(base_rel))
2671 		return (-1);
2672 	strcpy(base, base_rel);
2673 	return (0);
2674 }
2675 
2676 static void
2677 linkmap_add(Obj_Entry *obj)
2678 {
2679     struct link_map *l = &obj->linkmap;
2680     struct link_map *prev;
2681 
2682     obj->linkmap.l_name = obj->path;
2683     obj->linkmap.l_addr = obj->mapbase;
2684     obj->linkmap.l_ld = obj->dynamic;
2685 #ifdef __mips__
2686     /* GDB needs load offset on MIPS to use the symbols */
2687     obj->linkmap.l_offs = obj->relocbase;
2688 #endif
2689 
2690     if (r_debug.r_map == NULL) {
2691 	r_debug.r_map = l;
2692 	return;
2693     }
2694 
2695     /*
2696      * Scan to the end of the list, but not past the entry for the
2697      * dynamic linker, which we want to keep at the very end.
2698      */
2699     for (prev = r_debug.r_map;
2700       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
2701       prev = prev->l_next)
2702 	;
2703 
2704     /* Link in the new entry. */
2705     l->l_prev = prev;
2706     l->l_next = prev->l_next;
2707     if (l->l_next != NULL)
2708 	l->l_next->l_prev = l;
2709     prev->l_next = l;
2710 }
2711 
2712 static void
2713 linkmap_delete(Obj_Entry *obj)
2714 {
2715     struct link_map *l = &obj->linkmap;
2716 
2717     if (l->l_prev == NULL) {
2718 	if ((r_debug.r_map = l->l_next) != NULL)
2719 	    l->l_next->l_prev = NULL;
2720 	return;
2721     }
2722 
2723     if ((l->l_prev->l_next = l->l_next) != NULL)
2724 	l->l_next->l_prev = l->l_prev;
2725 }
2726 
2727 /*
2728  * Function for the debugger to set a breakpoint on to gain control.
2729  *
2730  * The two parameters allow the debugger to easily find and determine
2731  * what the runtime loader is doing and to whom it is doing it.
2732  *
2733  * When the loadhook trap is hit (r_debug_state, set at program
2734  * initialization), the arguments can be found on the stack:
2735  *
2736  *  +8   struct link_map *m
2737  *  +4   struct r_debug  *rd
2738  *  +0   RetAddr
2739  */
2740 void
2741 r_debug_state(struct r_debug* rd, struct link_map *m)
2742 {
2743     /*
2744      * The following is a hack to force the compiler to emit calls to
2745      * this function, even when optimizing.  If the function is empty,
2746      * the compiler is not obliged to emit any code for calls to it,
2747      * even when marked __noinline.  However, gdb depends on those
2748      * calls being made.
2749      */
2750     __asm __volatile("" : : : "memory");
2751 }
2752 
2753 /*
2754  * Get address of the pointer variable in the main program.
2755  */
2756 static const void **
2757 get_program_var_addr(const char *name)
2758 {
2759     const Obj_Entry *obj;
2760     unsigned long hash;
2761 
2762     hash = elf_hash(name);
2763     for (obj = obj_main;  obj != NULL;  obj = obj->next) {
2764 	const Elf_Sym *def;
2765 
2766 	if ((def = symlook_obj(name, hash, obj, NULL, 0)) != NULL) {
2767 	    const void **addr;
2768 
2769 	    addr = (const void **)(obj->relocbase + def->st_value);
2770 	    return addr;
2771 	}
2772     }
2773     return (NULL);
2774 }
2775 
2776 /*
2777  * Set a pointer variable in the main program to the given value.  This
2778  * is used to set key variables such as "environ" before any of the
2779  * init functions are called.
2780  */
2781 static void
2782 set_program_var(const char *name, const void *value)
2783 {
2784     const void **addr;
2785 
2786     if ((addr = get_program_var_addr(name)) != NULL) {
2787 	dbg("\"%s\": *%p <-- %p", name, addr, value);
2788 	*addr = value;
2789     }
2790 }
2791 
2792 /*
2793  * This is a special version of getenv which is far more efficient
2794  * at finding LD_ environment vars.
2795  */
2796 static
2797 const char *
2798 _getenv_ld(const char *id)
2799 {
2800     const char *envp;
2801     int i, j;
2802     int idlen = strlen(id);
2803 
2804     if (ld_index == LD_ARY_CACHE)
2805 	return(getenv(id));
2806     if (ld_index == 0) {
2807 	for (i = j = 0; (envp = environ[i]) != NULL && j < LD_ARY_CACHE; ++i) {
2808 	    if (envp[0] == 'L' && envp[1] == 'D' && envp[2] == '_')
2809 		ld_ary[j++] = envp;
2810 	}
2811 	if (j == 0)
2812 		ld_ary[j++] = "";
2813 	ld_index = j;
2814     }
2815     for (i = ld_index - 1; i >= 0; --i) {
2816 	if (strncmp(ld_ary[i], id, idlen) == 0 && ld_ary[i][idlen] == '=')
2817 	    return(ld_ary[i] + idlen + 1);
2818     }
2819     return(NULL);
2820 }
2821 
2822 /*
2823  * Given a symbol name in a referencing object, find the corresponding
2824  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
2825  * no definition was found.  Returns a pointer to the Obj_Entry of the
2826  * defining object via the reference parameter DEFOBJ_OUT.
2827  */
2828 static const Elf_Sym *
2829 symlook_default(const char *name, unsigned long hash, const Obj_Entry *refobj,
2830     const Obj_Entry **defobj_out, const Ver_Entry *ventry, int flags)
2831 {
2832     DoneList donelist;
2833     const Elf_Sym *def;
2834     const Elf_Sym *symp;
2835     const Obj_Entry *obj;
2836     const Obj_Entry *defobj;
2837     const Objlist_Entry *elm;
2838     def = NULL;
2839     defobj = NULL;
2840     donelist_init(&donelist);
2841 
2842     /* Look first in the referencing object if linked symbolically. */
2843     if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
2844 	symp = symlook_obj(name, hash, refobj, ventry, flags);
2845 	if (symp != NULL) {
2846 	    def = symp;
2847 	    defobj = refobj;
2848 	}
2849     }
2850 
2851     /* Search all objects loaded at program start up. */
2852     if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2853 	symp = symlook_list(name, hash, &list_main, &obj, ventry, flags,
2854 	    &donelist);
2855 	if (symp != NULL &&
2856 	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2857 	    def = symp;
2858 	    defobj = obj;
2859 	}
2860     }
2861 
2862     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
2863     STAILQ_FOREACH(elm, &list_global, link) {
2864        if (def != NULL && ELF_ST_BIND(def->st_info) != STB_WEAK)
2865            break;
2866        symp = symlook_list(name, hash, &elm->obj->dagmembers, &obj, ventry,
2867 	   flags, &donelist);
2868 	if (symp != NULL &&
2869 	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2870 	    def = symp;
2871 	    defobj = obj;
2872 	}
2873     }
2874 
2875     /* Search all dlopened DAGs containing the referencing object. */
2876     STAILQ_FOREACH(elm, &refobj->dldags, link) {
2877 	if (def != NULL && ELF_ST_BIND(def->st_info) != STB_WEAK)
2878 	    break;
2879 	symp = symlook_list(name, hash, &elm->obj->dagmembers, &obj, ventry,
2880 	    flags, &donelist);
2881 	if (symp != NULL &&
2882 	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2883 	    def = symp;
2884 	    defobj = obj;
2885 	}
2886     }
2887 
2888     /*
2889      * Search the dynamic linker itself, and possibly resolve the
2890      * symbol from there.  This is how the application links to
2891      * dynamic linker services such as dlopen.  Only the values listed
2892      * in the "exports" array can be resolved from the dynamic linker.
2893      */
2894     if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2895 	symp = symlook_obj(name, hash, &obj_rtld, ventry, flags);
2896 	if (symp != NULL && is_exported(symp)) {
2897 	    def = symp;
2898 	    defobj = &obj_rtld;
2899 	}
2900     }
2901 
2902     if (def != NULL)
2903 	*defobj_out = defobj;
2904     return def;
2905 }
2906 
2907 static const Elf_Sym *
2908 symlook_list(const char *name, unsigned long hash, const Objlist *objlist,
2909   const Obj_Entry **defobj_out, const Ver_Entry *ventry, int flags,
2910   DoneList *dlp)
2911 {
2912     const Elf_Sym *symp;
2913     const Elf_Sym *def;
2914     const Obj_Entry *defobj;
2915     const Objlist_Entry *elm;
2916 
2917     def = NULL;
2918     defobj = NULL;
2919     STAILQ_FOREACH(elm, objlist, link) {
2920 	if (donelist_check(dlp, elm->obj))
2921 	    continue;
2922 	if ((symp = symlook_obj(name, hash, elm->obj, ventry, flags)) != NULL) {
2923 	    if (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK) {
2924 		def = symp;
2925 		defobj = elm->obj;
2926 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2927 		    break;
2928 	    }
2929 	}
2930     }
2931     if (def != NULL)
2932 	*defobj_out = defobj;
2933     return def;
2934 }
2935 
2936 /*
2937  * Search the symbol table of a shared object and all objects needed
2938  * by it for a symbol of the given name.  Search order is
2939  * breadth-first.  Returns a pointer to the symbol, or NULL if no
2940  * definition was found.
2941  */
2942 static const Elf_Sym *
2943 symlook_needed(const char *name, unsigned long hash, const Needed_Entry *needed,
2944   const Obj_Entry **defobj_out, const Ver_Entry *ventry, int flags,
2945   DoneList *dlp)
2946 {
2947     const Elf_Sym *def, *def_w;
2948     const Needed_Entry *n;
2949     const Obj_Entry *obj, *defobj, *defobj1;
2950 
2951     def = def_w = NULL;
2952     defobj = NULL;
2953     for (n = needed; n != NULL; n = n->next) {
2954 	if ((obj = n->obj) == NULL ||
2955 	    donelist_check(dlp, obj) ||
2956 	    (def = symlook_obj(name, hash, obj, ventry, flags)) == NULL)
2957 	    continue;
2958 	defobj = obj;
2959 	if (ELF_ST_BIND(def->st_info) != STB_WEAK) {
2960 	    *defobj_out = defobj;
2961 	    return (def);
2962 	}
2963     }
2964     /*
2965      * There we come when either symbol definition is not found in
2966      * directly needed objects, or found symbol is weak.
2967      */
2968     for (n = needed; n != NULL; n = n->next) {
2969 	if ((obj = n->obj) == NULL)
2970 	    continue;
2971 	def_w = symlook_needed(name, hash, obj->needed, &defobj1,
2972 			       ventry, flags, dlp);
2973 	if (def_w == NULL)
2974 	    continue;
2975 	if (def == NULL || ELF_ST_BIND(def_w->st_info) != STB_WEAK) {
2976 	    def = def_w;
2977 	    defobj = defobj1;
2978 	}
2979 	if (ELF_ST_BIND(def_w->st_info) != STB_WEAK)
2980 	    break;
2981     }
2982     if (def != NULL)
2983 	*defobj_out = defobj;
2984     return (def);
2985 }
2986 
2987 /*
2988  * Search the symbol table of a single shared object for a symbol of
2989  * the given name and version, if requested.  Returns a pointer to the
2990  * symbol, or NULL if no definition was found.
2991  *
2992  * The symbol's hash value is passed in for efficiency reasons; that
2993  * eliminates many recomputations of the hash value.
2994  */
2995 const Elf_Sym *
2996 symlook_obj(const char *name, unsigned long hash, const Obj_Entry *obj,
2997     const Ver_Entry *ventry, int flags)
2998 {
2999     unsigned long symnum;
3000     const Elf_Sym *vsymp;
3001     Elf_Versym verndx;
3002     int vcount;
3003 
3004     if (obj->buckets == NULL)
3005 	return NULL;
3006 
3007     vsymp = NULL;
3008     vcount = 0;
3009     symnum = obj->buckets[hash % obj->nbuckets];
3010 
3011     for (; symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
3012 	const Elf_Sym *symp;
3013 	const char *strp;
3014 
3015 	if (symnum >= obj->nchains)
3016 	    return NULL;	/* Bad object */
3017 
3018 	symp = obj->symtab + symnum;
3019 	strp = obj->strtab + symp->st_name;
3020 
3021 	switch (ELF_ST_TYPE(symp->st_info)) {
3022 	case STT_FUNC:
3023 	case STT_NOTYPE:
3024 	case STT_OBJECT:
3025 	    if (symp->st_value == 0)
3026 		continue;
3027 		/* fallthrough */
3028 	case STT_TLS:
3029 	    if (symp->st_shndx != SHN_UNDEF)
3030 		break;
3031 	    else if (((flags & SYMLOOK_IN_PLT) == 0) &&
3032 		 (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
3033 		break;
3034 		/* fallthrough */
3035 	default:
3036 	    continue;
3037 	}
3038 	if (name[0] != strp[0] || strcmp(name, strp) != 0)
3039 	    continue;
3040 
3041 	if (ventry == NULL) {
3042 	    if (obj->versyms != NULL) {
3043 		verndx = VER_NDX(obj->versyms[symnum]);
3044 		if (verndx > obj->vernum) {
3045 		    _rtld_error("%s: symbol %s references wrong version %d",
3046 			obj->path, obj->strtab + symnum, verndx);
3047 		    continue;
3048 		}
3049 		/*
3050 		 * If we are not called from dlsym (i.e. this is a normal
3051 		 * relocation from unversioned binary), accept the symbol
3052 		 * immediately if it happens to have first version after
3053 		 * this shared object became versioned. Otherwise, if
3054 		 * symbol is versioned and not hidden, remember it. If it
3055 		 * is the only symbol with this name exported by the
3056 		 * shared object, it will be returned as a match at the
3057 		 * end of the function. If symbol is global (verndx < 2)
3058 		 * accept it unconditionally.
3059 		 */
3060 		if ((flags & SYMLOOK_DLSYM) == 0 && verndx == VER_NDX_GIVEN)
3061 		    return symp;
3062 		else if (verndx >= VER_NDX_GIVEN) {
3063 		    if ((obj->versyms[symnum] & VER_NDX_HIDDEN) == 0) {
3064 			if (vsymp == NULL)
3065 			    vsymp = symp;
3066 			vcount ++;
3067 		    }
3068 		    continue;
3069 		}
3070 	    }
3071 	    return symp;
3072 	} else {
3073 	    if (obj->versyms == NULL) {
3074 		if (object_match_name(obj, ventry->name)) {
3075 		    _rtld_error("%s: object %s should provide version %s for "
3076 			"symbol %s", obj_rtld.path, obj->path, ventry->name,
3077 			obj->strtab + symnum);
3078 		    continue;
3079 		}
3080 	    } else {
3081 		verndx = VER_NDX(obj->versyms[symnum]);
3082 		if (verndx > obj->vernum) {
3083 		    _rtld_error("%s: symbol %s references wrong version %d",
3084 			obj->path, obj->strtab + symnum, verndx);
3085 		    continue;
3086 		}
3087 		if (obj->vertab[verndx].hash != ventry->hash ||
3088 		    strcmp(obj->vertab[verndx].name, ventry->name)) {
3089 		    /*
3090 		     * Version does not match. Look if this is a global symbol
3091 		     * and if it is not hidden. If global symbol (verndx < 2)
3092 		     * is available, use it. Do not return symbol if we are
3093 		     * called by dlvsym, because dlvsym looks for a specific
3094 		     * version and default one is not what dlvsym wants.
3095 		     */
3096 		    if ((flags & SYMLOOK_DLSYM) ||
3097 			(obj->versyms[symnum] & VER_NDX_HIDDEN) ||
3098 			(verndx >= VER_NDX_GIVEN))
3099 			continue;
3100 		}
3101 	    }
3102 	    return symp;
3103 	}
3104     }
3105     return (vcount == 1) ? vsymp : NULL;
3106 }
3107 
3108 static void
3109 trace_loaded_objects(Obj_Entry *obj)
3110 {
3111     const char *fmt1, *fmt2, *fmt, *main_local, *list_containers;
3112     int		c;
3113 
3114     if ((main_local = _getenv_ld("LD_TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
3115 	main_local = "";
3116 
3117     if ((fmt1 = _getenv_ld("LD_TRACE_LOADED_OBJECTS_FMT1")) == NULL)
3118 	fmt1 = "\t%o => %p (%x)\n";
3119 
3120     if ((fmt2 = _getenv_ld("LD_TRACE_LOADED_OBJECTS_FMT2")) == NULL)
3121 	fmt2 = "\t%o (%x)\n";
3122 
3123     list_containers = _getenv_ld("LD_TRACE_LOADED_OBJECTS_ALL");
3124 
3125     for (; obj; obj = obj->next) {
3126 	Needed_Entry		*needed;
3127 	char			*name, *path;
3128 	bool			is_lib;
3129 
3130 	if (list_containers && obj->needed != NULL)
3131 	    printf("%s:\n", obj->path);
3132 	for (needed = obj->needed; needed; needed = needed->next) {
3133 	    if (needed->obj != NULL) {
3134 		if (needed->obj->traced && !list_containers)
3135 		    continue;
3136 		needed->obj->traced = true;
3137 		path = needed->obj->path;
3138 	    } else
3139 		path = "not found";
3140 
3141 	    name = (char *)obj->strtab + needed->name;
3142 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
3143 
3144 	    fmt = is_lib ? fmt1 : fmt2;
3145 	    while ((c = *fmt++) != '\0') {
3146 		switch (c) {
3147 		default:
3148 		    putchar(c);
3149 		    continue;
3150 		case '\\':
3151 		    switch (c = *fmt) {
3152 		    case '\0':
3153 			continue;
3154 		    case 'n':
3155 			putchar('\n');
3156 			break;
3157 		    case 't':
3158 			putchar('\t');
3159 			break;
3160 		    }
3161 		    break;
3162 		case '%':
3163 		    switch (c = *fmt) {
3164 		    case '\0':
3165 			continue;
3166 		    case '%':
3167 		    default:
3168 			putchar(c);
3169 			break;
3170 		    case 'A':
3171 			printf("%s", main_local);
3172 			break;
3173 		    case 'a':
3174 			printf("%s", obj_main->path);
3175 			break;
3176 		    case 'o':
3177 			printf("%s", name);
3178 			break;
3179 		    case 'p':
3180 			printf("%s", path);
3181 			break;
3182 		    case 'x':
3183 			printf("%p", needed->obj ? needed->obj->mapbase : 0);
3184 			break;
3185 		    }
3186 		    break;
3187 		}
3188 		++fmt;
3189 	    }
3190 	}
3191     }
3192 }
3193 
3194 /*
3195  * Unload a dlopened object and its dependencies from memory and from
3196  * our data structures.  It is assumed that the DAG rooted in the
3197  * object has already been unreferenced, and that the object has a
3198  * reference count of 0.
3199  */
3200 static void
3201 unload_object(Obj_Entry *root)
3202 {
3203     Obj_Entry *obj;
3204     Obj_Entry **linkp;
3205 
3206     assert(root->refcount == 0);
3207 
3208     /*
3209      * Pass over the DAG removing unreferenced objects from
3210      * appropriate lists.
3211      */
3212     unlink_object(root);
3213 
3214     /* Unmap all objects that are no longer referenced. */
3215     linkp = &obj_list->next;
3216     while ((obj = *linkp) != NULL) {
3217 	if (obj->refcount == 0) {
3218 	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
3219 		obj->path);
3220 	    dbg("unloading \"%s\"", obj->path);
3221 	    munmap(obj->mapbase, obj->mapsize);
3222 	    linkmap_delete(obj);
3223 	    *linkp = obj->next;
3224 	    obj_count--;
3225 	    obj_free(obj);
3226 	} else
3227 	    linkp = &obj->next;
3228     }
3229     obj_tail = linkp;
3230 }
3231 
3232 static void
3233 unlink_object(Obj_Entry *root)
3234 {
3235     Objlist_Entry *elm;
3236 
3237     if (root->refcount == 0) {
3238 	/* Remove the object from the RTLD_GLOBAL list. */
3239 	objlist_remove(&list_global, root);
3240 
3241     	/* Remove the object from all objects' DAG lists. */
3242 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
3243 	    objlist_remove(&elm->obj->dldags, root);
3244 	    if (elm->obj != root)
3245 		unlink_object(elm->obj);
3246 	}
3247     }
3248 }
3249 
3250 static void
3251 ref_dag(Obj_Entry *root)
3252 {
3253     Objlist_Entry *elm;
3254 
3255     assert(root->dag_inited);
3256     STAILQ_FOREACH(elm, &root->dagmembers, link)
3257 	elm->obj->refcount++;
3258 }
3259 
3260 static void
3261 unref_dag(Obj_Entry *root)
3262 {
3263     Objlist_Entry *elm;
3264 
3265     assert(root->dag_inited);
3266     STAILQ_FOREACH(elm, &root->dagmembers, link)
3267 	elm->obj->refcount--;
3268 }
3269 
3270 /*
3271  * Common code for MD __tls_get_addr().
3272  */
3273 void *
3274 tls_get_addr_common(Elf_Addr** dtvp, int index, size_t offset)
3275 {
3276     Elf_Addr* dtv = *dtvp;
3277     RtldLockState lockstate;
3278 
3279     /* Check dtv generation in case new modules have arrived */
3280     if (dtv[0] != tls_dtv_generation) {
3281 	Elf_Addr* newdtv;
3282 	int to_copy;
3283 
3284 	wlock_acquire(rtld_bind_lock, &lockstate);
3285 	newdtv = calloc(1, (tls_max_index + 2) * sizeof(Elf_Addr));
3286 	to_copy = dtv[1];
3287 	if (to_copy > tls_max_index)
3288 	    to_copy = tls_max_index;
3289 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
3290 	newdtv[0] = tls_dtv_generation;
3291 	newdtv[1] = tls_max_index;
3292 	free(dtv);
3293 	lock_release(rtld_bind_lock, &lockstate);
3294 	dtv = *dtvp = newdtv;
3295     }
3296 
3297     /* Dynamically allocate module TLS if necessary */
3298     if (!dtv[index + 1]) {
3299 	/* Signal safe, wlock will block out signals. */
3300 	wlock_acquire(rtld_bind_lock, &lockstate);
3301 	if (!dtv[index + 1])
3302 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
3303 	lock_release(rtld_bind_lock, &lockstate);
3304     }
3305     return (void*) (dtv[index + 1] + offset);
3306 }
3307 
3308 #if defined(RTLD_STATIC_TLS_VARIANT_II)
3309 
3310 /*
3311  * Allocate the static TLS area.  Return a pointer to the TCB.  The
3312  * static area is based on negative offsets relative to the tcb.
3313  *
3314  * The TCB contains an errno pointer for the system call layer, but because
3315  * we are the RTLD we really have no idea how the caller was compiled so
3316  * the information has to be passed in.  errno can either be:
3317  *
3318  *	type 0	errno is a simple non-TLS global pointer.
3319  *		(special case for e.g. libc_rtld)
3320  *	type 1	errno accessed by GOT entry	(dynamically linked programs)
3321  *	type 2	errno accessed by %gs:OFFSET	(statically linked programs)
3322  */
3323 struct tls_tcb *
3324 allocate_tls(Obj_Entry *objs)
3325 {
3326     Obj_Entry *obj;
3327     size_t data_size;
3328     size_t dtv_size;
3329     struct tls_tcb *tcb;
3330     Elf_Addr *dtv;
3331     Elf_Addr addr;
3332 
3333     /*
3334      * Allocate the new TCB.  static TLS storage is placed just before the
3335      * TCB to support the %gs:OFFSET (negative offset) model.
3336      */
3337     data_size = (tls_static_space + RTLD_STATIC_TLS_ALIGN_MASK) &
3338 		~RTLD_STATIC_TLS_ALIGN_MASK;
3339     tcb = malloc(data_size + sizeof(*tcb));
3340     tcb = (void *)((char *)tcb + data_size);	/* actual tcb location */
3341 
3342     dtv_size = (tls_max_index + 2) * sizeof(Elf_Addr);
3343     dtv = malloc(dtv_size);
3344     bzero(dtv, dtv_size);
3345 
3346 #ifdef RTLD_TCB_HAS_SELF_POINTER
3347     tcb->tcb_self = tcb;
3348 #endif
3349     tcb->tcb_dtv = dtv;
3350     tcb->tcb_pthread = NULL;
3351 
3352     dtv[0] = tls_dtv_generation;
3353     dtv[1] = tls_max_index;
3354 
3355     for (obj = objs; obj; obj = obj->next) {
3356 	if (obj->tlsoffset) {
3357 	    addr = (Elf_Addr)tcb - obj->tlsoffset;
3358 	    memset((void *)(addr + obj->tlsinitsize),
3359 		   0, obj->tlssize - obj->tlsinitsize);
3360 	    if (obj->tlsinit)
3361 		memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
3362 	    dtv[obj->tlsindex + 1] = addr;
3363 	}
3364     }
3365     return(tcb);
3366 }
3367 
3368 void
3369 free_tls(struct tls_tcb *tcb)
3370 {
3371     Elf_Addr *dtv;
3372     int dtv_size, i;
3373     Elf_Addr tls_start, tls_end;
3374     size_t data_size;
3375 
3376     data_size = (tls_static_space + RTLD_STATIC_TLS_ALIGN_MASK) &
3377 		~RTLD_STATIC_TLS_ALIGN_MASK;
3378 
3379     dtv = tcb->tcb_dtv;
3380     dtv_size = dtv[1];
3381     tls_end = (Elf_Addr)tcb;
3382     tls_start = (Elf_Addr)tcb - data_size;
3383     for (i = 0; i < dtv_size; i++) {
3384 	if (dtv[i+2] != 0 && (dtv[i+2] < tls_start || dtv[i+2] > tls_end)) {
3385 	    free((void *)dtv[i+2]);
3386 	}
3387     }
3388 
3389     free((void*) tls_start);
3390 }
3391 
3392 #else
3393 #error "Unsupported TLS layout"
3394 #endif
3395 
3396 /*
3397  * Allocate TLS block for module with given index.
3398  */
3399 void *
3400 allocate_module_tls(int index)
3401 {
3402     Obj_Entry* obj;
3403     char* p;
3404 
3405     for (obj = obj_list; obj; obj = obj->next) {
3406 	if (obj->tlsindex == index)
3407 	    break;
3408     }
3409     if (!obj) {
3410 	_rtld_error("Can't find module with TLS index %d", index);
3411 	die();
3412     }
3413 
3414     p = malloc(obj->tlssize);
3415     if (p == NULL) {
3416 	_rtld_error("Cannot allocate TLS block for index %d", index);
3417 	die();
3418     }
3419     memcpy(p, obj->tlsinit, obj->tlsinitsize);
3420     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
3421 
3422     return p;
3423 }
3424 
3425 bool
3426 allocate_tls_offset(Obj_Entry *obj)
3427 {
3428     size_t off;
3429 
3430     if (obj->tls_done)
3431 	return true;
3432 
3433     if (obj->tlssize == 0) {
3434 	obj->tls_done = true;
3435 	return true;
3436     }
3437 
3438     if (obj->tlsindex == 1)
3439 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
3440     else
3441 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
3442 				   obj->tlssize, obj->tlsalign);
3443 
3444     /*
3445      * If we have already fixed the size of the static TLS block, we
3446      * must stay within that size. When allocating the static TLS, we
3447      * leave a small amount of space spare to be used for dynamically
3448      * loading modules which use static TLS.
3449      */
3450     if (tls_static_space) {
3451 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
3452 	    return false;
3453     }
3454 
3455     tls_last_offset = obj->tlsoffset = off;
3456     tls_last_size = obj->tlssize;
3457     obj->tls_done = true;
3458 
3459     return true;
3460 }
3461 
3462 void
3463 free_tls_offset(Obj_Entry *obj)
3464 {
3465 #ifdef RTLD_STATIC_TLS_VARIANT_II
3466     /*
3467      * If we were the last thing to allocate out of the static TLS
3468      * block, we give our space back to the 'allocator'. This is a
3469      * simplistic workaround to allow libGL.so.1 to be loaded and
3470      * unloaded multiple times. We only handle the Variant II
3471      * mechanism for now - this really needs a proper allocator.
3472      */
3473     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
3474 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
3475 	tls_last_offset -= obj->tlssize;
3476 	tls_last_size = 0;
3477     }
3478 #endif
3479 }
3480 
3481 struct tls_tcb *
3482 _rtld_allocate_tls(void)
3483 {
3484     struct tls_tcb *new_tcb;
3485     RtldLockState lockstate;
3486 
3487     wlock_acquire(rtld_bind_lock, &lockstate);
3488     new_tcb = allocate_tls(obj_list);
3489     lock_release(rtld_bind_lock, &lockstate);
3490     return (new_tcb);
3491 }
3492 
3493 void
3494 _rtld_free_tls(struct tls_tcb *tcb)
3495 {
3496     RtldLockState lockstate;
3497 
3498     wlock_acquire(rtld_bind_lock, &lockstate);
3499     free_tls(tcb);
3500     lock_release(rtld_bind_lock, &lockstate);
3501 }
3502 
3503 static void
3504 object_add_name(Obj_Entry *obj, const char *name)
3505 {
3506     Name_Entry *entry;
3507     size_t len;
3508 
3509     len = strlen(name);
3510     entry = malloc(sizeof(Name_Entry) + len);
3511 
3512     if (entry != NULL) {
3513 	strcpy(entry->name, name);
3514 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
3515     }
3516 }
3517 
3518 static int
3519 object_match_name(const Obj_Entry *obj, const char *name)
3520 {
3521     Name_Entry *entry;
3522 
3523     STAILQ_FOREACH(entry, &obj->names, link) {
3524 	if (strcmp(name, entry->name) == 0)
3525 	    return (1);
3526     }
3527     return (0);
3528 }
3529 
3530 static Obj_Entry *
3531 locate_dependency(const Obj_Entry *obj, const char *name)
3532 {
3533     const Objlist_Entry *entry;
3534     const Needed_Entry *needed;
3535 
3536     STAILQ_FOREACH(entry, &list_main, link) {
3537 	if (object_match_name(entry->obj, name))
3538 	    return entry->obj;
3539     }
3540 
3541     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
3542 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
3543 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
3544 	    /*
3545 	     * If there is DT_NEEDED for the name we are looking for,
3546 	     * we are all set.  Note that object might not be found if
3547 	     * dependency was not loaded yet, so the function can
3548 	     * return NULL here.  This is expected and handled
3549 	     * properly by the caller.
3550 	     */
3551 	    return (needed->obj);
3552 	}
3553     }
3554     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
3555 	obj->path, name);
3556     die();
3557 }
3558 
3559 static int
3560 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
3561     const Elf_Vernaux *vna)
3562 {
3563     const Elf_Verdef *vd;
3564     const char *vername;
3565 
3566     vername = refobj->strtab + vna->vna_name;
3567     vd = depobj->verdef;
3568     if (vd == NULL) {
3569 	_rtld_error("%s: version %s required by %s not defined",
3570 	    depobj->path, vername, refobj->path);
3571 	return (-1);
3572     }
3573     for (;;) {
3574 	if (vd->vd_version != VER_DEF_CURRENT) {
3575 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
3576 		depobj->path, vd->vd_version);
3577 	    return (-1);
3578 	}
3579 	if (vna->vna_hash == vd->vd_hash) {
3580 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
3581 		((char *)vd + vd->vd_aux);
3582 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
3583 		return (0);
3584 	}
3585 	if (vd->vd_next == 0)
3586 	    break;
3587 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3588     }
3589     if (vna->vna_flags & VER_FLG_WEAK)
3590 	return (0);
3591     _rtld_error("%s: version %s required by %s not found",
3592 	depobj->path, vername, refobj->path);
3593     return (-1);
3594 }
3595 
3596 static int
3597 rtld_verify_object_versions(Obj_Entry *obj)
3598 {
3599     const Elf_Verneed *vn;
3600     const Elf_Verdef  *vd;
3601     const Elf_Verdaux *vda;
3602     const Elf_Vernaux *vna;
3603     const Obj_Entry *depobj;
3604     int maxvernum, vernum;
3605 
3606     maxvernum = 0;
3607     /*
3608      * Walk over defined and required version records and figure out
3609      * max index used by any of them. Do very basic sanity checking
3610      * while there.
3611      */
3612     vn = obj->verneed;
3613     while (vn != NULL) {
3614 	if (vn->vn_version != VER_NEED_CURRENT) {
3615 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
3616 		obj->path, vn->vn_version);
3617 	    return (-1);
3618 	}
3619 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
3620 	for (;;) {
3621 	    vernum = VER_NEED_IDX(vna->vna_other);
3622 	    if (vernum > maxvernum)
3623 		maxvernum = vernum;
3624 	    if (vna->vna_next == 0)
3625 		 break;
3626 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
3627 	}
3628 	if (vn->vn_next == 0)
3629 	    break;
3630 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
3631     }
3632 
3633     vd = obj->verdef;
3634     while (vd != NULL) {
3635 	if (vd->vd_version != VER_DEF_CURRENT) {
3636 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
3637 		obj->path, vd->vd_version);
3638 	    return (-1);
3639 	}
3640 	vernum = VER_DEF_IDX(vd->vd_ndx);
3641 	if (vernum > maxvernum)
3642 		maxvernum = vernum;
3643 	if (vd->vd_next == 0)
3644 	    break;
3645 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3646     }
3647 
3648     if (maxvernum == 0)
3649 	return (0);
3650 
3651     /*
3652      * Store version information in array indexable by version index.
3653      * Verify that object version requirements are satisfied along the
3654      * way.
3655      */
3656     obj->vernum = maxvernum + 1;
3657     obj->vertab = calloc(obj->vernum, sizeof(Ver_Entry));
3658 
3659     vd = obj->verdef;
3660     while (vd != NULL) {
3661 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
3662 	    vernum = VER_DEF_IDX(vd->vd_ndx);
3663 	    assert(vernum <= maxvernum);
3664 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
3665 	    obj->vertab[vernum].hash = vd->vd_hash;
3666 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
3667 	    obj->vertab[vernum].file = NULL;
3668 	    obj->vertab[vernum].flags = 0;
3669 	}
3670 	if (vd->vd_next == 0)
3671 	    break;
3672 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3673     }
3674 
3675     vn = obj->verneed;
3676     while (vn != NULL) {
3677 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
3678 	if (depobj == NULL)
3679 	    return (-1);
3680 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
3681 	for (;;) {
3682 	    if (check_object_provided_version(obj, depobj, vna))
3683 		return (-1);
3684 	    vernum = VER_NEED_IDX(vna->vna_other);
3685 	    assert(vernum <= maxvernum);
3686 	    obj->vertab[vernum].hash = vna->vna_hash;
3687 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
3688 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
3689 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
3690 		VER_INFO_HIDDEN : 0;
3691 	    if (vna->vna_next == 0)
3692 		 break;
3693 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
3694 	}
3695 	if (vn->vn_next == 0)
3696 	    break;
3697 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
3698     }
3699     return 0;
3700 }
3701 
3702 static int
3703 rtld_verify_versions(const Objlist *objlist)
3704 {
3705     Objlist_Entry *entry;
3706     int rc;
3707 
3708     rc = 0;
3709     STAILQ_FOREACH(entry, objlist, link) {
3710 	/*
3711 	 * Skip dummy objects or objects that have their version requirements
3712 	 * already checked.
3713 	 */
3714 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
3715 	    continue;
3716 	if (rtld_verify_object_versions(entry->obj) == -1) {
3717 	    rc = -1;
3718 	    if (ld_tracing == NULL)
3719 		break;
3720 	}
3721     }
3722     if (rc == 0 || ld_tracing != NULL)
3723 	rc = rtld_verify_object_versions(&obj_rtld);
3724     return rc;
3725 }
3726 
3727 const Ver_Entry *
3728 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
3729 {
3730     Elf_Versym vernum;
3731 
3732     if (obj->vertab) {
3733 	vernum = VER_NDX(obj->versyms[symnum]);
3734 	if (vernum >= obj->vernum) {
3735 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
3736 		obj->path, obj->strtab + symnum, vernum);
3737 	} else if (obj->vertab[vernum].hash != 0) {
3738 	    return &obj->vertab[vernum];
3739 	}
3740     }
3741     return NULL;
3742 }
3743 
3744 /*
3745  * No unresolved symbols for rtld.
3746  */
3747 void
3748 __pthread_cxa_finalize(struct dl_phdr_info *a)
3749 {
3750 }
3751