xref: /dflybsd-src/libexec/rtld-elf/rtld.c (revision 0402ebbc7d4b6f34d02791995169d25c4aec3b15)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD: src/libexec/rtld-elf/rtld.c,v 1.43.2.15 2003/02/20 20:42:46 kan Exp $
27  * $DragonFly: src/libexec/rtld-elf/rtld.c,v 1.22 2005/04/27 11:59:11 joerg Exp $
28  */
29 
30 /*
31  * Dynamic linker for ELF.
32  *
33  * John Polstra <jdp@polstra.com>.
34  */
35 
36 #ifndef __GNUC__
37 #error "GCC is needed to compile this file"
38 #endif
39 
40 #include <sys/param.h>
41 #include <sys/mman.h>
42 #include <sys/stat.h>
43 #include <sys/resident.h>
44 #include <sys/tls.h>
45 
46 #include <machine/tls.h>
47 
48 #include <dlfcn.h>
49 #include <err.h>
50 #include <errno.h>
51 #include <fcntl.h>
52 #include <stdarg.h>
53 #include <stdio.h>
54 #include <stdlib.h>
55 #include <string.h>
56 #include <unistd.h>
57 
58 #include "debug.h"
59 #include "rtld.h"
60 
61 #define PATH_RTLD	"/usr/libexec/ld-elf.so.1"
62 #define LD_ARY_CACHE	16
63 
64 /* Types. */
65 typedef void (*func_ptr_type)();
66 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
67 
68 /*
69  * This structure provides a reentrant way to keep a list of objects and
70  * check which ones have already been processed in some way.
71  */
72 typedef struct Struct_DoneList {
73     const Obj_Entry **objs;		/* Array of object pointers */
74     unsigned int num_alloc;		/* Allocated size of the array */
75     unsigned int num_used;		/* Number of array slots used */
76 } DoneList;
77 
78 /*
79  * Function declarations.
80  */
81 static void die(void);
82 static void digest_dynamic(Obj_Entry *);
83 static const char *_getenv_ld(const char *id);
84 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
85 static Obj_Entry *dlcheck(void *);
86 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
87 static bool donelist_check(DoneList *, const Obj_Entry *);
88 static void errmsg_restore(char *);
89 static char *errmsg_save(void);
90 static void *fill_search_info(const char *, size_t, void *);
91 static char *find_library(const char *, const Obj_Entry *);
92 static Obj_Entry *find_object(const char *);
93 static Obj_Entry *find_object2(const char *, int *, struct stat *);
94 static const char *gethints(void);
95 static void init_dag(Obj_Entry *);
96 static void init_dag1(Obj_Entry *root, Obj_Entry *obj, DoneList *);
97 static void init_rtld(caddr_t);
98 static void initlist_add_neededs(Needed_Entry *needed, Objlist *list);
99 static void initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail,
100   Objlist *list);
101 static bool is_exported(const Elf_Sym *);
102 static void linkmap_add(Obj_Entry *);
103 static void linkmap_delete(Obj_Entry *);
104 static int load_needed_objects(Obj_Entry *);
105 static int load_preload_objects(void);
106 static Obj_Entry *load_object(char *);
107 static void lock_check(void);
108 static Obj_Entry *obj_from_addr(const void *);
109 static void objlist_call_fini(Objlist *);
110 static void objlist_call_init(Objlist *);
111 static void objlist_clear(Objlist *);
112 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
113 static void objlist_init(Objlist *);
114 static void objlist_push_head(Objlist *, Obj_Entry *);
115 static void objlist_push_tail(Objlist *, Obj_Entry *);
116 static void objlist_remove(Objlist *, Obj_Entry *);
117 static void objlist_remove_unref(Objlist *);
118 static void *path_enumerate(const char *, path_enum_proc, void *);
119 static int relocate_objects(Obj_Entry *, bool);
120 static int rtld_dirname(const char *, char *);
121 static void rtld_exit(void);
122 static char *search_library_path(const char *, const char *);
123 static const void **get_program_var_addr(const char *name);
124 static void set_program_var(const char *, const void *);
125 static const Elf_Sym *symlook_default(const char *, unsigned long hash,
126   const Obj_Entry *refobj, const Obj_Entry **defobj_out, bool in_plt);
127 static const Elf_Sym *symlook_list(const char *, unsigned long,
128   Objlist *, const Obj_Entry **, bool in_plt, DoneList *);
129 static void trace_loaded_objects(Obj_Entry *obj);
130 static void unlink_object(Obj_Entry *);
131 static void unload_object(Obj_Entry *);
132 static void unref_dag(Obj_Entry *);
133 
134 void r_debug_state(struct r_debug*, struct link_map*);
135 
136 /*
137  * Data declarations.
138  */
139 static char *error_message;	/* Message for dlerror(), or NULL */
140 struct r_debug r_debug;		/* for GDB; */
141 static bool trust;		/* False for setuid and setgid programs */
142 static const char *ld_bind_now;	/* Environment variable for immediate binding */
143 static const char *ld_debug;	/* Environment variable for debugging */
144 static const char *ld_library_path; /* Environment variable for search path */
145 static char *ld_preload;	/* Environment variable for libraries to
146 				   load first */
147 static const char *ld_tracing;	/* Called from ldd(1) to print libs */
148 static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
149 static Obj_Entry **obj_tail;	/* Link field of last object in list */
150 static Obj_Entry **preload_tail;
151 static Obj_Entry *obj_main;	/* The main program shared object */
152 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
153 static unsigned int obj_count;	/* Number of objects in obj_list */
154 static int	ld_resident;	/* Non-zero if resident */
155 static const char *ld_ary[LD_ARY_CACHE];
156 static int	ld_index;
157 
158 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
159   STAILQ_HEAD_INITIALIZER(list_global);
160 static Objlist list_main =	/* Objects loaded at program startup */
161   STAILQ_HEAD_INITIALIZER(list_main);
162 static Objlist list_fini =	/* Objects needing fini() calls */
163   STAILQ_HEAD_INITIALIZER(list_fini);
164 
165 static LockInfo lockinfo;
166 
167 static Elf_Sym sym_zero;	/* For resolving undefined weak refs. */
168 
169 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
170 
171 extern Elf_Dyn _DYNAMIC;
172 #pragma weak _DYNAMIC
173 
174 /*
175  * These are the functions the dynamic linker exports to application
176  * programs.  They are the only symbols the dynamic linker is willing
177  * to export from itself.
178  */
179 static func_ptr_type exports[] = {
180     (func_ptr_type) &_rtld_error,
181     (func_ptr_type) &dlclose,
182     (func_ptr_type) &dlerror,
183     (func_ptr_type) &dlopen,
184     (func_ptr_type) &dlsym,
185     (func_ptr_type) &dladdr,
186     (func_ptr_type) &dlinfo,
187 #ifdef __i386__
188     (func_ptr_type) &___tls_get_addr,
189 #endif
190     (func_ptr_type) &__tls_get_addr,
191     (func_ptr_type) &_rtld_allocate_tls,
192     (func_ptr_type) &_rtld_free_tls,
193     NULL
194 };
195 
196 /*
197  * Global declarations normally provided by crt1.  The dynamic linker is
198  * not built with crt1, so we have to provide them ourselves.
199  */
200 char *__progname;
201 char **environ;
202 
203 /*
204  * Globals to control TLS allocation.
205  */
206 size_t tls_last_offset;		/* Static TLS offset of last module */
207 size_t tls_last_size;		/* Static TLS size of last module */
208 size_t tls_static_space;	/* Static TLS space allocated */
209 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
210 int tls_max_index = 1;		/* Largest module index allocated */
211 
212 /*
213  * Fill in a DoneList with an allocation large enough to hold all of
214  * the currently-loaded objects.  Keep this as a macro since it calls
215  * alloca and we want that to occur within the scope of the caller.
216  */
217 #define donelist_init(dlp)					\
218     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
219     assert((dlp)->objs != NULL),				\
220     (dlp)->num_alloc = obj_count,				\
221     (dlp)->num_used = 0)
222 
223 static __inline void
224 rlock_acquire(void)
225 {
226     lockinfo.rlock_acquire(lockinfo.thelock);
227     atomic_incr_int(&lockinfo.rcount);
228     lock_check();
229 }
230 
231 static __inline void
232 wlock_acquire(void)
233 {
234     lockinfo.wlock_acquire(lockinfo.thelock);
235     atomic_incr_int(&lockinfo.wcount);
236     lock_check();
237 }
238 
239 static __inline void
240 rlock_release(void)
241 {
242     atomic_decr_int(&lockinfo.rcount);
243     lockinfo.rlock_release(lockinfo.thelock);
244 }
245 
246 static __inline void
247 wlock_release(void)
248 {
249     atomic_decr_int(&lockinfo.wcount);
250     lockinfo.wlock_release(lockinfo.thelock);
251 }
252 
253 /*
254  * Main entry point for dynamic linking.  The first argument is the
255  * stack pointer.  The stack is expected to be laid out as described
256  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
257  * Specifically, the stack pointer points to a word containing
258  * ARGC.  Following that in the stack is a null-terminated sequence
259  * of pointers to argument strings.  Then comes a null-terminated
260  * sequence of pointers to environment strings.  Finally, there is a
261  * sequence of "auxiliary vector" entries.
262  *
263  * The second argument points to a place to store the dynamic linker's
264  * exit procedure pointer and the third to a place to store the main
265  * program's object.
266  *
267  * The return value is the main program's entry point.
268  */
269 func_ptr_type
270 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
271 {
272     Elf_Auxinfo *aux_info[AT_COUNT];
273     int i;
274     int argc;
275     char **argv;
276     char **env;
277     Elf_Auxinfo *aux;
278     Elf_Auxinfo *auxp;
279     const char *argv0;
280     Objlist_Entry *entry;
281     Obj_Entry *obj;
282     Objlist initlist;
283 
284     ld_index = 0;	/* don't use old env cache in case we are resident */
285 
286     /*
287      * On entry, the dynamic linker itself has not been relocated yet.
288      * Be very careful not to reference any global data until after
289      * init_rtld has returned.  It is OK to reference file-scope statics
290      * and string constants, and to call static and global functions.
291      */
292 
293     /* Find the auxiliary vector on the stack. */
294     argc = *sp++;
295     argv = (char **) sp;
296     sp += argc + 1;	/* Skip over arguments and NULL terminator */
297     env = (char **) sp;
298 
299     /*
300      * If we aren't already resident we have to dig out some more info.
301      * Note that auxinfo does not exist when we are resident.
302      */
303     if (ld_resident == 0) {
304 	while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
305 	    ;
306 	aux = (Elf_Auxinfo *) sp;
307 
308 	/* Digest the auxiliary vector. */
309 	for (i = 0;  i < AT_COUNT;  i++)
310 	    aux_info[i] = NULL;
311 	for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
312 	    if (auxp->a_type < AT_COUNT)
313 		aux_info[auxp->a_type] = auxp;
314 	}
315 
316 	/* Initialize and relocate ourselves. */
317 	assert(aux_info[AT_BASE] != NULL);
318 	init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
319     }
320 
321     __progname = obj_rtld.path;
322     argv0 = argv[0] != NULL ? argv[0] : "(null)";
323     environ = env;
324 
325     trust = (geteuid() == getuid()) && (getegid() == getgid());
326 
327     ld_bind_now = _getenv_ld("LD_BIND_NOW");
328     if (trust) {
329 	ld_debug = _getenv_ld("LD_DEBUG");
330 	ld_library_path = _getenv_ld("LD_LIBRARY_PATH");
331 	ld_preload = (char *)_getenv_ld("LD_PRELOAD");
332     }
333     ld_tracing = _getenv_ld("LD_TRACE_LOADED_OBJECTS");
334 
335     if (ld_debug != NULL && *ld_debug != '\0')
336 	debug = 1;
337     dbg("%s is initialized, base address = %p", __progname,
338 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
339     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
340     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
341 
342     /*
343      * If we are resident we can skip work that we have already done.
344      * Note that the stack is reset and there is no Elf_Auxinfo
345      * when running from a resident image, and the static globals setup
346      * between here and resident_skip will have already been setup.
347      */
348     if (ld_resident)
349 	goto resident_skip1;
350 
351     /*
352      * Load the main program, or process its program header if it is
353      * already loaded.
354      */
355     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
356 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
357 	dbg("loading main program");
358 	obj_main = map_object(fd, argv0, NULL);
359 	close(fd);
360 	if (obj_main == NULL)
361 	    die();
362     } else {				/* Main program already loaded. */
363 	const Elf_Phdr *phdr;
364 	int phnum;
365 	caddr_t entry;
366 
367 	dbg("processing main program's program header");
368 	assert(aux_info[AT_PHDR] != NULL);
369 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
370 	assert(aux_info[AT_PHNUM] != NULL);
371 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
372 	assert(aux_info[AT_PHENT] != NULL);
373 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
374 	assert(aux_info[AT_ENTRY] != NULL);
375 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
376 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
377 	    die();
378     }
379 
380     obj_main->path = xstrdup(argv0);
381     obj_main->mainprog = true;
382 
383     /*
384      * Get the actual dynamic linker pathname from the executable if
385      * possible.  (It should always be possible.)  That ensures that
386      * gdb will find the right dynamic linker even if a non-standard
387      * one is being used.
388      */
389     if (obj_main->interp != NULL &&
390       strcmp(obj_main->interp, obj_rtld.path) != 0) {
391 	free(obj_rtld.path);
392 	obj_rtld.path = xstrdup(obj_main->interp);
393 	__progname = obj_rtld.path;
394     }
395 
396     digest_dynamic(obj_main);
397 
398     linkmap_add(obj_main);
399     linkmap_add(&obj_rtld);
400 
401     /* Link the main program into the list of objects. */
402     *obj_tail = obj_main;
403     obj_tail = &obj_main->next;
404     obj_count++;
405     obj_main->refcount++;
406     /* Make sure we don't call the main program's init and fini functions. */
407     obj_main->init = obj_main->fini = NULL;
408 
409     /* Initialize a fake symbol for resolving undefined weak references. */
410     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
411     sym_zero.st_shndx = SHN_ABS;
412 
413     dbg("loading LD_PRELOAD libraries");
414     if (load_preload_objects() == -1)
415 	die();
416     preload_tail = obj_tail;
417 
418     dbg("loading needed objects");
419     if (load_needed_objects(obj_main) == -1)
420 	die();
421 
422     /* Make a list of all objects loaded at startup. */
423     for (obj = obj_list;  obj != NULL;  obj = obj->next)
424 	objlist_push_tail(&list_main, obj);
425 
426 resident_skip1:
427 
428     if (ld_tracing) {		/* We're done */
429 	trace_loaded_objects(obj_main);
430 	exit(0);
431     }
432 
433     if (ld_resident)		/* XXX clean this up! */
434 	goto resident_skip2;
435 
436     if (getenv("LD_DUMP_REL_PRE") != NULL) {
437        dump_relocations(obj_main);
438        exit (0);
439     }
440 
441     /* setup TLS for main thread */
442     dbg("initializing initial thread local storage");
443     STAILQ_FOREACH(entry, &list_main, link) {
444 	/*
445 	 * Allocate all the initial objects out of the static TLS
446 	 * block even if they didn't ask for it.
447 	 */
448 	allocate_tls_offset(entry->obj);
449     }
450     allocate_initial_tls(obj_list);
451 
452     if (relocate_objects(obj_main,
453 	ld_bind_now != NULL && *ld_bind_now != '\0') == -1)
454 	die();
455 
456     dbg("doing copy relocations");
457     if (do_copy_relocations(obj_main) == -1)
458 	die();
459 
460 resident_skip2:
461 
462     if (_getenv_ld("LD_RESIDENT_UNREGISTER_NOW")) {
463 	if (exec_sys_unregister(-1) < 0) {
464 	    dbg("exec_sys_unregister failed %d\n", errno);
465 	    exit(errno);
466 	}
467 	dbg("exec_sys_unregister success\n");
468 	exit(0);
469     }
470 
471     if (getenv("LD_DUMP_REL_POST") != NULL) {
472        dump_relocations(obj_main);
473        exit (0);
474     }
475 
476     dbg("initializing key program variables");
477     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
478     set_program_var("environ", env);
479 
480     if (_getenv_ld("LD_RESIDENT_REGISTER_NOW")) {
481 	extern void resident_start(void);
482 	ld_resident = 1;
483 	if (exec_sys_register(resident_start) < 0) {
484 	    dbg("exec_sys_register failed %d\n", errno);
485 	    exit(errno);
486 	}
487 	dbg("exec_sys_register success\n");
488 	exit(0);
489     }
490 
491     dbg("initializing thread locks");
492     lockdflt_init(&lockinfo);
493     lockinfo.thelock = lockinfo.lock_create(lockinfo.context);
494 
495     /* Make a list of init functions to call. */
496     objlist_init(&initlist);
497     initlist_add_objects(obj_list, preload_tail, &initlist);
498 
499     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
500 
501     objlist_call_init(&initlist);
502     wlock_acquire();
503     objlist_clear(&initlist);
504     wlock_release();
505 
506 
507 
508     dbg("transferring control to program entry point = %p", obj_main->entry);
509 
510     /* Return the exit procedure and the program entry point. */
511     *exit_proc = rtld_exit;
512     *objp = obj_main;
513     return (func_ptr_type) obj_main->entry;
514 }
515 
516 Elf_Addr
517 _rtld_bind(Obj_Entry *obj, Elf_Word reloff)
518 {
519     const Elf_Rel *rel;
520     const Elf_Sym *def;
521     const Obj_Entry *defobj;
522     Elf_Addr *where;
523     Elf_Addr target;
524 
525     rlock_acquire();
526     if (obj->pltrel)
527 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
528     else
529 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
530 
531     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
532     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL);
533     if (def == NULL)
534 	die();
535 
536     target = (Elf_Addr)(defobj->relocbase + def->st_value);
537 
538     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
539       defobj->strtab + def->st_name, basename(obj->path),
540       (void *)target, basename(defobj->path));
541 
542     reloc_jmpslot(where, target);
543     rlock_release();
544     return target;
545 }
546 
547 /*
548  * Error reporting function.  Use it like printf.  If formats the message
549  * into a buffer, and sets things up so that the next call to dlerror()
550  * will return the message.
551  */
552 void
553 _rtld_error(const char *fmt, ...)
554 {
555     static char buf[512];
556     va_list ap;
557 
558     va_start(ap, fmt);
559     vsnprintf(buf, sizeof buf, fmt, ap);
560     error_message = buf;
561     va_end(ap);
562 }
563 
564 /*
565  * Return a dynamically-allocated copy of the current error message, if any.
566  */
567 static char *
568 errmsg_save(void)
569 {
570     return error_message == NULL ? NULL : xstrdup(error_message);
571 }
572 
573 /*
574  * Restore the current error message from a copy which was previously saved
575  * by errmsg_save().  The copy is freed.
576  */
577 static void
578 errmsg_restore(char *saved_msg)
579 {
580     if (saved_msg == NULL)
581 	error_message = NULL;
582     else {
583 	_rtld_error("%s", saved_msg);
584 	free(saved_msg);
585     }
586 }
587 
588 const char *
589 basename(const char *name)
590 {
591     const char *p = strrchr(name, '/');
592     return p != NULL ? p + 1 : name;
593 }
594 
595 static void
596 die(void)
597 {
598     const char *msg = dlerror();
599 
600     if (msg == NULL)
601 	msg = "Fatal error";
602     errx(1, "%s", msg);
603 }
604 
605 /*
606  * Process a shared object's DYNAMIC section, and save the important
607  * information in its Obj_Entry structure.
608  */
609 static void
610 digest_dynamic(Obj_Entry *obj)
611 {
612     const Elf_Dyn *dynp;
613     Needed_Entry **needed_tail = &obj->needed;
614     const Elf_Dyn *dyn_rpath = NULL;
615     int plttype = DT_REL;
616 
617     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
618 	switch (dynp->d_tag) {
619 
620 	case DT_REL:
621 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
622 	    break;
623 
624 	case DT_RELSZ:
625 	    obj->relsize = dynp->d_un.d_val;
626 	    break;
627 
628 	case DT_RELENT:
629 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
630 	    break;
631 
632 	case DT_JMPREL:
633 	    obj->pltrel = (const Elf_Rel *)
634 	      (obj->relocbase + dynp->d_un.d_ptr);
635 	    break;
636 
637 	case DT_PLTRELSZ:
638 	    obj->pltrelsize = dynp->d_un.d_val;
639 	    break;
640 
641 	case DT_RELA:
642 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
643 	    break;
644 
645 	case DT_RELASZ:
646 	    obj->relasize = dynp->d_un.d_val;
647 	    break;
648 
649 	case DT_RELAENT:
650 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
651 	    break;
652 
653 	case DT_PLTREL:
654 	    plttype = dynp->d_un.d_val;
655 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
656 	    break;
657 
658 	case DT_SYMTAB:
659 	    obj->symtab = (const Elf_Sym *)
660 	      (obj->relocbase + dynp->d_un.d_ptr);
661 	    break;
662 
663 	case DT_SYMENT:
664 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
665 	    break;
666 
667 	case DT_STRTAB:
668 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
669 	    break;
670 
671 	case DT_STRSZ:
672 	    obj->strsize = dynp->d_un.d_val;
673 	    break;
674 
675 	case DT_HASH:
676 	    {
677 		const Elf_Addr *hashtab = (const Elf_Addr *)
678 		  (obj->relocbase + dynp->d_un.d_ptr);
679 		obj->nbuckets = hashtab[0];
680 		obj->nchains = hashtab[1];
681 		obj->buckets = hashtab + 2;
682 		obj->chains = obj->buckets + obj->nbuckets;
683 	    }
684 	    break;
685 
686 	case DT_NEEDED:
687 	    if (!obj->rtld) {
688 		Needed_Entry *nep = NEW(Needed_Entry);
689 		nep->name = dynp->d_un.d_val;
690 		nep->obj = NULL;
691 		nep->next = NULL;
692 
693 		*needed_tail = nep;
694 		needed_tail = &nep->next;
695 	    }
696 	    break;
697 
698 	case DT_PLTGOT:
699 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
700 	    break;
701 
702 	case DT_TEXTREL:
703 	    obj->textrel = true;
704 	    break;
705 
706 	case DT_SYMBOLIC:
707 	    obj->symbolic = true;
708 	    break;
709 
710 	case DT_RPATH:
711 	case DT_RUNPATH:	/* XXX: process separately */
712 	    /*
713 	     * We have to wait until later to process this, because we
714 	     * might not have gotten the address of the string table yet.
715 	     */
716 	    dyn_rpath = dynp;
717 	    break;
718 
719 	case DT_SONAME:
720 	    /* Not used by the dynamic linker. */
721 	    break;
722 
723 	case DT_INIT:
724 	    obj->init = (InitFunc) (obj->relocbase + dynp->d_un.d_ptr);
725 	    break;
726 
727 	case DT_FINI:
728 	    obj->fini = (InitFunc) (obj->relocbase + dynp->d_un.d_ptr);
729 	    break;
730 
731 	case DT_DEBUG:
732 	    /* XXX - not implemented yet */
733 	    dbg("Filling in DT_DEBUG entry");
734 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
735 	    break;
736 
737 	case DT_FLAGS:
738 		if (dynp->d_un.d_val & DF_ORIGIN) {
739 		    obj->origin_path = xmalloc(PATH_MAX);
740 		    if (rtld_dirname(obj->path, obj->origin_path) == -1)
741 			die();
742 		}
743 		if (dynp->d_un.d_val & DF_SYMBOLIC)
744 		    obj->symbolic = true;
745 		if (dynp->d_un.d_val & DF_TEXTREL)
746 		    obj->textrel = true;
747 		if (dynp->d_un.d_val & DF_BIND_NOW)
748 		    obj->bind_now = true;
749 		if (dynp->d_un.d_val & DF_STATIC_TLS)
750 		    ;
751 	    break;
752 
753 	default:
754 	    dbg("Ignoring d_tag %d = %#x", dynp->d_tag, dynp->d_tag);
755 	    break;
756 	}
757     }
758 
759     obj->traced = false;
760 
761     if (plttype == DT_RELA) {
762 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
763 	obj->pltrel = NULL;
764 	obj->pltrelasize = obj->pltrelsize;
765 	obj->pltrelsize = 0;
766     }
767 
768     if (dyn_rpath != NULL)
769 	obj->rpath = obj->strtab + dyn_rpath->d_un.d_val;
770 }
771 
772 /*
773  * Process a shared object's program header.  This is used only for the
774  * main program, when the kernel has already loaded the main program
775  * into memory before calling the dynamic linker.  It creates and
776  * returns an Obj_Entry structure.
777  */
778 static Obj_Entry *
779 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
780 {
781     Obj_Entry *obj;
782     const Elf_Phdr *phlimit = phdr + phnum;
783     const Elf_Phdr *ph;
784     int nsegs = 0;
785 
786     obj = obj_new();
787     for (ph = phdr;  ph < phlimit;  ph++) {
788 	switch (ph->p_type) {
789 
790 	case PT_PHDR:
791 	    if ((const Elf_Phdr *)ph->p_vaddr != phdr) {
792 		_rtld_error("%s: invalid PT_PHDR", path);
793 		return NULL;
794 	    }
795 	    obj->phdr = (const Elf_Phdr *) ph->p_vaddr;
796 	    obj->phsize = ph->p_memsz;
797 	    break;
798 
799 	case PT_INTERP:
800 	    obj->interp = (const char *) ph->p_vaddr;
801 	    break;
802 
803 	case PT_LOAD:
804 	    if (nsegs == 0) {	/* First load segment */
805 		obj->vaddrbase = trunc_page(ph->p_vaddr);
806 		obj->mapbase = (caddr_t) obj->vaddrbase;
807 		obj->relocbase = obj->mapbase - obj->vaddrbase;
808 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
809 		  obj->vaddrbase;
810 	    } else {		/* Last load segment */
811 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
812 		  obj->vaddrbase;
813 	    }
814 	    nsegs++;
815 	    break;
816 
817 	case PT_DYNAMIC:
818 	    obj->dynamic = (const Elf_Dyn *) ph->p_vaddr;
819 	    break;
820 
821 	case PT_TLS:
822 	    obj->tlsindex = 1;
823 	    obj->tlssize = ph->p_memsz;
824 	    obj->tlsalign = ph->p_align;
825 	    obj->tlsinitsize = ph->p_filesz;
826 	    obj->tlsinit = (void*) ph->p_vaddr;
827 	    break;
828 	}
829     }
830     if (nsegs < 1) {
831 	_rtld_error("%s: too few PT_LOAD segments", path);
832 	return NULL;
833     }
834 
835     obj->entry = entry;
836     return obj;
837 }
838 
839 static Obj_Entry *
840 dlcheck(void *handle)
841 {
842     Obj_Entry *obj;
843 
844     for (obj = obj_list;  obj != NULL;  obj = obj->next)
845 	if (obj == (Obj_Entry *) handle)
846 	    break;
847 
848     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
849 	_rtld_error("Invalid shared object handle %p", handle);
850 	return NULL;
851     }
852     return obj;
853 }
854 
855 /*
856  * If the given object is already in the donelist, return true.  Otherwise
857  * add the object to the list and return false.
858  */
859 static bool
860 donelist_check(DoneList *dlp, const Obj_Entry *obj)
861 {
862     unsigned int i;
863 
864     for (i = 0;  i < dlp->num_used;  i++)
865 	if (dlp->objs[i] == obj)
866 	    return true;
867     /*
868      * Our donelist allocation should always be sufficient.  But if
869      * our threads locking isn't working properly, more shared objects
870      * could have been loaded since we allocated the list.  That should
871      * never happen, but we'll handle it properly just in case it does.
872      */
873     if (dlp->num_used < dlp->num_alloc)
874 	dlp->objs[dlp->num_used++] = obj;
875     return false;
876 }
877 
878 /*
879  * Hash function for symbol table lookup.  Don't even think about changing
880  * this.  It is specified by the System V ABI.
881  */
882 unsigned long
883 elf_hash(const char *name)
884 {
885     const unsigned char *p = (const unsigned char *) name;
886     unsigned long h = 0;
887     unsigned long g;
888 
889     while (*p != '\0') {
890 	h = (h << 4) + *p++;
891 	if ((g = h & 0xf0000000) != 0)
892 	    h ^= g >> 24;
893 	h &= ~g;
894     }
895     return h;
896 }
897 
898 /*
899  * Find the library with the given name, and return its full pathname.
900  * The returned string is dynamically allocated.  Generates an error
901  * message and returns NULL if the library cannot be found.
902  *
903  * If the second argument is non-NULL, then it refers to an already-
904  * loaded shared object, whose library search path will be searched.
905  *
906  * The search order is:
907  *   LD_LIBRARY_PATH
908  *   rpath in the referencing file
909  *   ldconfig hints
910  *   /usr/lib
911  */
912 static char *
913 find_library(const char *name, const Obj_Entry *refobj)
914 {
915     char *pathname;
916 
917     if (strchr(name, '/') != NULL) {	/* Hard coded pathname */
918 	if (name[0] != '/' && !trust) {
919 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
920 	      name);
921 	    return NULL;
922 	}
923 	return xstrdup(name);
924     }
925 
926     dbg(" Searching for \"%s\"", name);
927 
928     if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
929       (refobj != NULL &&
930       (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
931       (pathname = search_library_path(name, gethints())) != NULL ||
932       (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
933 	return pathname;
934 
935     if(refobj != NULL && refobj->path != NULL) {
936 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
937 	  name, basename(refobj->path));
938     } else {
939 	_rtld_error("Shared object \"%s\" not found", name);
940     }
941     return NULL;
942 }
943 
944 /*
945  * Given a symbol number in a referencing object, find the corresponding
946  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
947  * no definition was found.  Returns a pointer to the Obj_Entry of the
948  * defining object via the reference parameter DEFOBJ_OUT.
949  */
950 const Elf_Sym *
951 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
952     const Obj_Entry **defobj_out, bool in_plt, SymCache *cache)
953 {
954     const Elf_Sym *ref;
955     const Elf_Sym *def;
956     const Obj_Entry *defobj;
957     const char *name;
958     unsigned long hash;
959 
960     /*
961      * If we have already found this symbol, get the information from
962      * the cache.
963      */
964     if (symnum >= refobj->nchains)
965 	return NULL;	/* Bad object */
966     if (cache != NULL && cache[symnum].sym != NULL) {
967 	*defobj_out = cache[symnum].obj;
968 	return cache[symnum].sym;
969     }
970 
971     ref = refobj->symtab + symnum;
972     name = refobj->strtab + ref->st_name;
973     hash = elf_hash(name);
974     defobj = NULL;
975 
976     def = symlook_default(name, hash, refobj, &defobj, in_plt);
977 
978     /*
979      * If we found no definition and the reference is weak, treat the
980      * symbol as having the value zero.
981      */
982     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
983 	def = &sym_zero;
984 	defobj = obj_main;
985     }
986 
987     if (def != NULL) {
988 	*defobj_out = defobj;
989 	/* Record the information in the cache to avoid subsequent lookups. */
990 	if (cache != NULL) {
991 	    cache[symnum].sym = def;
992 	    cache[symnum].obj = defobj;
993 	}
994     } else
995 	_rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
996     return def;
997 }
998 
999 /*
1000  * Return the search path from the ldconfig hints file, reading it if
1001  * necessary.  Returns NULL if there are problems with the hints file,
1002  * or if the search path there is empty.
1003  */
1004 static const char *
1005 gethints(void)
1006 {
1007     static char *hints;
1008 
1009     if (hints == NULL) {
1010 	int fd;
1011 	struct elfhints_hdr hdr;
1012 	char *p;
1013 
1014 	/* Keep from trying again in case the hints file is bad. */
1015 	hints = "";
1016 
1017 	if ((fd = open(_PATH_ELF_HINTS, O_RDONLY)) == -1)
1018 	    return NULL;
1019 	if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1020 	  hdr.magic != ELFHINTS_MAGIC ||
1021 	  hdr.version != 1) {
1022 	    close(fd);
1023 	    return NULL;
1024 	}
1025 	p = xmalloc(hdr.dirlistlen + 1);
1026 	if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1027 	  read(fd, p, hdr.dirlistlen + 1) != hdr.dirlistlen + 1) {
1028 	    free(p);
1029 	    close(fd);
1030 	    return NULL;
1031 	}
1032 	hints = p;
1033 	close(fd);
1034     }
1035     return hints[0] != '\0' ? hints : NULL;
1036 }
1037 
1038 static void
1039 init_dag(Obj_Entry *root)
1040 {
1041     DoneList donelist;
1042 
1043     donelist_init(&donelist);
1044     init_dag1(root, root, &donelist);
1045 }
1046 
1047 static void
1048 init_dag1(Obj_Entry *root, Obj_Entry *obj, DoneList *dlp)
1049 {
1050     const Needed_Entry *needed;
1051 
1052     if (donelist_check(dlp, obj))
1053 	return;
1054     objlist_push_tail(&obj->dldags, root);
1055     objlist_push_tail(&root->dagmembers, obj);
1056     for (needed = obj->needed;  needed != NULL;  needed = needed->next)
1057 	if (needed->obj != NULL)
1058 	    init_dag1(root, needed->obj, dlp);
1059 }
1060 
1061 /*
1062  * Initialize the dynamic linker.  The argument is the address at which
1063  * the dynamic linker has been mapped into memory.  The primary task of
1064  * this function is to relocate the dynamic linker.
1065  */
1066 static void
1067 init_rtld(caddr_t mapbase)
1068 {
1069     /*
1070      * Conjure up an Obj_Entry structure for the dynamic linker.
1071      *
1072      * The "path" member is supposed to be dynamically-allocated, but we
1073      * aren't yet initialized sufficiently to do that.  Below we will
1074      * replace the static version with a dynamically-allocated copy.
1075      */
1076     obj_rtld.path = PATH_RTLD;
1077     obj_rtld.rtld = true;
1078     obj_rtld.mapbase = mapbase;
1079 #ifdef PIC
1080     obj_rtld.relocbase = mapbase;
1081 #endif
1082     if (&_DYNAMIC != 0) {
1083 	obj_rtld.dynamic = rtld_dynamic(&obj_rtld);
1084 	digest_dynamic(&obj_rtld);
1085 	assert(obj_rtld.needed == NULL);
1086 	assert(!obj_rtld.textrel);
1087 
1088 	/*
1089 	 * Temporarily put the dynamic linker entry into the object list, so
1090 	 * that symbols can be found.
1091 	 */
1092 	obj_list = &obj_rtld;
1093 	obj_tail = &obj_rtld.next;
1094 	obj_count = 1;
1095 
1096 	relocate_objects(&obj_rtld, true);
1097     }
1098 
1099     /* Make the object list empty again. */
1100     obj_list = NULL;
1101     obj_tail = &obj_list;
1102     obj_count = 0;
1103 
1104     /* Replace the path with a dynamically allocated copy. */
1105     obj_rtld.path = xstrdup(obj_rtld.path);
1106 
1107     r_debug.r_brk = r_debug_state;
1108     r_debug.r_state = RT_CONSISTENT;
1109 }
1110 
1111 /*
1112  * Add the init functions from a needed object list (and its recursive
1113  * needed objects) to "list".  This is not used directly; it is a helper
1114  * function for initlist_add_objects().  The write lock must be held
1115  * when this function is called.
1116  */
1117 static void
1118 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1119 {
1120     /* Recursively process the successor needed objects. */
1121     if (needed->next != NULL)
1122 	initlist_add_neededs(needed->next, list);
1123 
1124     /* Process the current needed object. */
1125     if (needed->obj != NULL)
1126 	initlist_add_objects(needed->obj, &needed->obj->next, list);
1127 }
1128 
1129 /*
1130  * Scan all of the DAGs rooted in the range of objects from "obj" to
1131  * "tail" and add their init functions to "list".  This recurses over
1132  * the DAGs and ensure the proper init ordering such that each object's
1133  * needed libraries are initialized before the object itself.  At the
1134  * same time, this function adds the objects to the global finalization
1135  * list "list_fini" in the opposite order.  The write lock must be
1136  * held when this function is called.
1137  */
1138 static void
1139 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1140 {
1141     if (obj->init_done)
1142 	return;
1143     obj->init_done = true;
1144 
1145     /* Recursively process the successor objects. */
1146     if (&obj->next != tail)
1147 	initlist_add_objects(obj->next, tail, list);
1148 
1149     /* Recursively process the needed objects. */
1150     if (obj->needed != NULL)
1151 	initlist_add_neededs(obj->needed, list);
1152 
1153     /* Add the object to the init list. */
1154     if (obj->init != NULL)
1155 	objlist_push_tail(list, obj);
1156 
1157     /* Add the object to the global fini list in the reverse order. */
1158     if (obj->fini != NULL)
1159 	objlist_push_head(&list_fini, obj);
1160 }
1161 
1162 static bool
1163 is_exported(const Elf_Sym *def)
1164 {
1165     func_ptr_type value;
1166     const func_ptr_type *p;
1167 
1168     value = (func_ptr_type)(obj_rtld.relocbase + def->st_value);
1169     for (p = exports;  *p != NULL;  p++)
1170 	if (*p == value)
1171 	    return true;
1172     return false;
1173 }
1174 
1175 /*
1176  * Given a shared object, traverse its list of needed objects, and load
1177  * each of them.  Returns 0 on success.  Generates an error message and
1178  * returns -1 on failure.
1179  */
1180 static int
1181 load_needed_objects(Obj_Entry *first)
1182 {
1183     Obj_Entry *obj;
1184 
1185     for (obj = first;  obj != NULL;  obj = obj->next) {
1186 	Needed_Entry *needed;
1187 
1188 	for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
1189 	    const char *name = obj->strtab + needed->name;
1190 	    char *path = find_library(name, obj);
1191 
1192 	    needed->obj = NULL;
1193 	    if (path == NULL && !ld_tracing)
1194 		return -1;
1195 
1196 	    if (path) {
1197 		needed->obj = load_object(path);
1198 		if (needed->obj == NULL && !ld_tracing)
1199 		    return -1;		/* XXX - cleanup */
1200 	    }
1201 	}
1202     }
1203 
1204     return 0;
1205 }
1206 
1207 static int
1208 load_preload_objects(void)
1209 {
1210     char *p = ld_preload;
1211     static const char delim[] = " \t:;";
1212 
1213     if (p == NULL)
1214 	return NULL;
1215 
1216     p += strspn(p, delim);
1217     while (*p != '\0') {
1218 	size_t len = strcspn(p, delim);
1219 	char *path;
1220 	char savech;
1221 
1222 	savech = p[len];
1223 	p[len] = '\0';
1224 	if ((path = find_library(p, NULL)) == NULL)
1225 	    return -1;
1226 	if (load_object(path) == NULL)
1227 	    return -1;	/* XXX - cleanup */
1228 	p[len] = savech;
1229 	p += len;
1230 	p += strspn(p, delim);
1231     }
1232     return 0;
1233 }
1234 
1235 /*
1236  * Returns a pointer to the Obj_Entry for the object with the given path.
1237  * Returns NULL if no matching object was found.
1238  */
1239 static Obj_Entry *
1240 find_object(const char *path)
1241 {
1242     Obj_Entry *obj;
1243 
1244     for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
1245 	if (strcmp(obj->path, path) == 0)
1246 	    return(obj);
1247     }
1248     return(NULL);
1249 }
1250 
1251 /*
1252  * Returns a pointer to the Obj_Entry for the object matching device and
1253  * inode of the given path. If no matching object was found, the descriptor
1254  * is returned in fd.
1255  * Returns with obj == NULL && fd == -1 on error.
1256  */
1257 static Obj_Entry *
1258 find_object2(const char *path, int *fd, struct stat *sb)
1259 {
1260     Obj_Entry *obj;
1261 
1262     if ((*fd = open(path, O_RDONLY)) == -1) {
1263 	_rtld_error("Cannot open \"%s\"", path);
1264 	return(NULL);
1265     }
1266 
1267     if (fstat(*fd, sb) == -1) {
1268 	_rtld_error("Cannot fstat \"%s\"", path);
1269 	close(*fd);
1270 	*fd = -1;
1271 	return NULL;
1272     }
1273 
1274     for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
1275 	if (obj->ino == sb->st_ino && obj->dev == sb->st_dev) {
1276 	    close(*fd);
1277 	    break;
1278 	}
1279     }
1280 
1281     return(obj);
1282 }
1283 
1284 /*
1285  * Load a shared object into memory, if it is not already loaded.  The
1286  * argument must be a string allocated on the heap.  This function assumes
1287  * responsibility for freeing it when necessary.
1288  *
1289  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
1290  * on failure.
1291  */
1292 static Obj_Entry *
1293 load_object(char *path)
1294 {
1295     Obj_Entry *obj;
1296     int fd = -1;
1297     struct stat sb;
1298 
1299     obj = find_object(path);
1300     if (obj != NULL) {
1301 	obj->refcount++;
1302 	free(path);
1303 	return(obj);
1304     }
1305 
1306     obj = find_object2(path, &fd, &sb);
1307     if (obj != NULL) {
1308 	obj->refcount++;
1309 	free(path);
1310 	return(obj);
1311     } else if (fd == -1) {
1312 	free(path);
1313 	return(NULL);
1314     }
1315 
1316     dbg("loading \"%s\"", path);
1317     obj = map_object(fd, path, &sb);
1318     close(fd);
1319     if (obj == NULL) {
1320 	free(path);
1321         return NULL;
1322     }
1323 
1324     obj->path = path;
1325     digest_dynamic(obj);
1326 
1327     *obj_tail = obj;
1328     obj_tail = &obj->next;
1329     obj_count++;
1330     linkmap_add(obj);	/* for GDB & dlinfo() */
1331 
1332     dbg("  %p .. %p: %s", obj->mapbase, obj->mapbase + obj->mapsize - 1,
1333 	obj->path);
1334     if (obj->textrel)
1335         dbg("  WARNING: %s has impure text", obj->path);
1336 
1337     obj->refcount++;
1338     return obj;
1339 }
1340 
1341 /*
1342  * Check for locking violations and die if one is found.
1343  */
1344 static void
1345 lock_check(void)
1346 {
1347     int rcount, wcount;
1348 
1349     rcount = lockinfo.rcount;
1350     wcount = lockinfo.wcount;
1351     assert(rcount >= 0);
1352     assert(wcount >= 0);
1353     if (wcount > 1 || (wcount != 0 && rcount != 0)) {
1354 	_rtld_error("Application locking error: %d readers and %d writers"
1355 	  " in dynamic linker.  See DLLOCKINIT(3) in manual pages.",
1356 	  rcount, wcount);
1357 	die();
1358     }
1359 }
1360 
1361 static Obj_Entry *
1362 obj_from_addr(const void *addr)
1363 {
1364     Obj_Entry *obj;
1365 
1366     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
1367 	if (addr < (void *) obj->mapbase)
1368 	    continue;
1369 	if (addr < (void *) (obj->mapbase + obj->mapsize))
1370 	    return obj;
1371     }
1372     return NULL;
1373 }
1374 
1375 /*
1376  * Call the finalization functions for each of the objects in "list"
1377  * which are unreferenced.  All of the objects are expected to have
1378  * non-NULL fini functions.
1379  */
1380 static void
1381 objlist_call_fini(Objlist *list)
1382 {
1383     Objlist_Entry *elm;
1384     char *saved_msg;
1385 
1386     /*
1387      * Preserve the current error message since a fini function might
1388      * call into the dynamic linker and overwrite it.
1389      */
1390     saved_msg = errmsg_save();
1391     STAILQ_FOREACH(elm, list, link) {
1392 	if (elm->obj->refcount == 0) {
1393 	    dbg("calling fini function for %s", elm->obj->path);
1394 	    (*elm->obj->fini)();
1395 	}
1396     }
1397     errmsg_restore(saved_msg);
1398 }
1399 
1400 /*
1401  * Call the initialization functions for each of the objects in
1402  * "list".  All of the objects are expected to have non-NULL init
1403  * functions.
1404  */
1405 static void
1406 objlist_call_init(Objlist *list)
1407 {
1408     Objlist_Entry *elm;
1409     char *saved_msg;
1410 
1411     /*
1412      * Preserve the current error message since an init function might
1413      * call into the dynamic linker and overwrite it.
1414      */
1415     saved_msg = errmsg_save();
1416     STAILQ_FOREACH(elm, list, link) {
1417 	dbg("calling init function for %s", elm->obj->path);
1418 	(*elm->obj->init)();
1419     }
1420     errmsg_restore(saved_msg);
1421 }
1422 
1423 static void
1424 objlist_clear(Objlist *list)
1425 {
1426     Objlist_Entry *elm;
1427 
1428     while (!STAILQ_EMPTY(list)) {
1429 	elm = STAILQ_FIRST(list);
1430 	STAILQ_REMOVE_HEAD(list, link);
1431 	free(elm);
1432     }
1433 }
1434 
1435 static Objlist_Entry *
1436 objlist_find(Objlist *list, const Obj_Entry *obj)
1437 {
1438     Objlist_Entry *elm;
1439 
1440     STAILQ_FOREACH(elm, list, link)
1441 	if (elm->obj == obj)
1442 	    return elm;
1443     return NULL;
1444 }
1445 
1446 static void
1447 objlist_init(Objlist *list)
1448 {
1449     STAILQ_INIT(list);
1450 }
1451 
1452 static void
1453 objlist_push_head(Objlist *list, Obj_Entry *obj)
1454 {
1455     Objlist_Entry *elm;
1456 
1457     elm = NEW(Objlist_Entry);
1458     elm->obj = obj;
1459     STAILQ_INSERT_HEAD(list, elm, link);
1460 }
1461 
1462 static void
1463 objlist_push_tail(Objlist *list, Obj_Entry *obj)
1464 {
1465     Objlist_Entry *elm;
1466 
1467     elm = NEW(Objlist_Entry);
1468     elm->obj = obj;
1469     STAILQ_INSERT_TAIL(list, elm, link);
1470 }
1471 
1472 static void
1473 objlist_remove(Objlist *list, Obj_Entry *obj)
1474 {
1475     Objlist_Entry *elm;
1476 
1477     if ((elm = objlist_find(list, obj)) != NULL) {
1478 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
1479 	free(elm);
1480     }
1481 }
1482 
1483 /*
1484  * Remove all of the unreferenced objects from "list".
1485  */
1486 static void
1487 objlist_remove_unref(Objlist *list)
1488 {
1489     Objlist newlist;
1490     Objlist_Entry *elm;
1491 
1492     STAILQ_INIT(&newlist);
1493     while (!STAILQ_EMPTY(list)) {
1494 	elm = STAILQ_FIRST(list);
1495 	STAILQ_REMOVE_HEAD(list, link);
1496 	if (elm->obj->refcount == 0)
1497 	    free(elm);
1498 	else
1499 	    STAILQ_INSERT_TAIL(&newlist, elm, link);
1500     }
1501     *list = newlist;
1502 }
1503 
1504 /*
1505  * Relocate newly-loaded shared objects.  The argument is a pointer to
1506  * the Obj_Entry for the first such object.  All objects from the first
1507  * to the end of the list of objects are relocated.  Returns 0 on success,
1508  * or -1 on failure.
1509  */
1510 static int
1511 relocate_objects(Obj_Entry *first, bool bind_now)
1512 {
1513     Obj_Entry *obj;
1514 
1515     for (obj = first;  obj != NULL;  obj = obj->next) {
1516 	if (obj != &obj_rtld)
1517 	    dbg("relocating \"%s\"", obj->path);
1518 	if (obj->nbuckets == 0 || obj->nchains == 0 || obj->buckets == NULL ||
1519 	    obj->symtab == NULL || obj->strtab == NULL) {
1520 	    _rtld_error("%s: Shared object has no run-time symbol table",
1521 	      obj->path);
1522 	    return -1;
1523 	}
1524 
1525 	if (obj->textrel) {
1526 	    /* There are relocations to the write-protected text segment. */
1527 	    if (mprotect(obj->mapbase, obj->textsize,
1528 	      PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
1529 		_rtld_error("%s: Cannot write-enable text segment: %s",
1530 		  obj->path, strerror(errno));
1531 		return -1;
1532 	    }
1533 	}
1534 
1535 	/* Process the non-PLT relocations. */
1536 	if (reloc_non_plt(obj, &obj_rtld))
1537 		return -1;
1538 
1539 	/*
1540 	 * Reprotect the text segment.  Make sure it is included in the
1541 	 * core dump since we modified it.  This unfortunately causes the
1542 	 * entire text segment to core-out but we don't have much of a
1543 	 * choice.  We could try to only reenable core dumps on pages
1544 	 * in which relocations occured but that is likely most of the text
1545 	 * pages anyway, and even that would not work because the rest of
1546 	 * the text pages would wind up as a read-only OBJT_DEFAULT object
1547 	 * (created due to our modifications) backed by the original OBJT_VNODE
1548 	 * object, and the ELF coredump code is currently only able to dump
1549 	 * vnode records for pure vnode-backed mappings, not vnode backings
1550 	 * to memory objects.
1551 	 */
1552 	if (obj->textrel) {
1553 	    madvise(obj->mapbase, obj->textsize, MADV_CORE);
1554 	    if (mprotect(obj->mapbase, obj->textsize,
1555 	      PROT_READ|PROT_EXEC) == -1) {
1556 		_rtld_error("%s: Cannot write-protect text segment: %s",
1557 		  obj->path, strerror(errno));
1558 		return -1;
1559 	    }
1560 	}
1561 
1562 	/* Process the PLT relocations. */
1563 	if (reloc_plt(obj) == -1)
1564 	    return -1;
1565 	/* Relocate the jump slots if we are doing immediate binding. */
1566 	if (obj->bind_now || bind_now)
1567 	    if (reloc_jmpslots(obj) == -1)
1568 		return -1;
1569 
1570 
1571 	/*
1572 	 * Set up the magic number and version in the Obj_Entry.  These
1573 	 * were checked in the crt1.o from the original ElfKit, so we
1574 	 * set them for backward compatibility.
1575 	 */
1576 	obj->magic = RTLD_MAGIC;
1577 	obj->version = RTLD_VERSION;
1578 
1579 	/* Set the special PLT or GOT entries. */
1580 	init_pltgot(obj);
1581     }
1582 
1583     return 0;
1584 }
1585 
1586 /*
1587  * Cleanup procedure.  It will be called (by the atexit mechanism) just
1588  * before the process exits.
1589  */
1590 static void
1591 rtld_exit(void)
1592 {
1593     Obj_Entry *obj;
1594 
1595     dbg("rtld_exit()");
1596     /* Clear all the reference counts so the fini functions will be called. */
1597     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1598 	obj->refcount = 0;
1599     objlist_call_fini(&list_fini);
1600     /* No need to remove the items from the list, since we are exiting. */
1601 }
1602 
1603 static void *
1604 path_enumerate(const char *path, path_enum_proc callback, void *arg)
1605 {
1606     if (path == NULL)
1607 	return (NULL);
1608 
1609     path += strspn(path, ":;");
1610     while (*path != '\0') {
1611 	size_t len;
1612 	char  *res;
1613 
1614 	len = strcspn(path, ":;");
1615 	res = callback(path, len, arg);
1616 
1617 	if (res != NULL)
1618 	    return (res);
1619 
1620 	path += len;
1621 	path += strspn(path, ":;");
1622     }
1623 
1624     return (NULL);
1625 }
1626 
1627 struct try_library_args {
1628     const char	*name;
1629     size_t	 namelen;
1630     char	*buffer;
1631     size_t	 buflen;
1632 };
1633 
1634 static void *
1635 try_library_path(const char *dir, size_t dirlen, void *param)
1636 {
1637     struct try_library_args *arg;
1638 
1639     arg = param;
1640     if (*dir == '/' || trust) {
1641 	char *pathname;
1642 
1643 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
1644 		return (NULL);
1645 
1646 	pathname = arg->buffer;
1647 	strncpy(pathname, dir, dirlen);
1648 	pathname[dirlen] = '/';
1649 	strcpy(pathname + dirlen + 1, arg->name);
1650 
1651 	dbg("  Trying \"%s\"", pathname);
1652 	if (access(pathname, F_OK) == 0) {		/* We found it */
1653 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
1654 	    strcpy(pathname, arg->buffer);
1655 	    return (pathname);
1656 	}
1657     }
1658     return (NULL);
1659 }
1660 
1661 static char *
1662 search_library_path(const char *name, const char *path)
1663 {
1664     char *p;
1665     struct try_library_args arg;
1666 
1667     if (path == NULL)
1668 	return NULL;
1669 
1670     arg.name = name;
1671     arg.namelen = strlen(name);
1672     arg.buffer = xmalloc(PATH_MAX);
1673     arg.buflen = PATH_MAX;
1674 
1675     p = path_enumerate(path, try_library_path, &arg);
1676 
1677     free(arg.buffer);
1678 
1679     return (p);
1680 }
1681 
1682 int
1683 dlclose(void *handle)
1684 {
1685     Obj_Entry *root;
1686 
1687     wlock_acquire();
1688     root = dlcheck(handle);
1689     if (root == NULL) {
1690 	wlock_release();
1691 	return -1;
1692     }
1693 
1694     /* Unreference the object and its dependencies. */
1695     root->dl_refcount--;
1696     unref_dag(root);
1697 
1698     if (root->refcount == 0) {
1699 	/*
1700 	 * The object is no longer referenced, so we must unload it.
1701 	 * First, call the fini functions with no locks held.
1702 	 */
1703 	wlock_release();
1704 	objlist_call_fini(&list_fini);
1705 	wlock_acquire();
1706 	objlist_remove_unref(&list_fini);
1707 
1708 	/* Finish cleaning up the newly-unreferenced objects. */
1709 	GDB_STATE(RT_DELETE,&root->linkmap);
1710 	unload_object(root);
1711 	GDB_STATE(RT_CONSISTENT,NULL);
1712     }
1713     wlock_release();
1714     return 0;
1715 }
1716 
1717 const char *
1718 dlerror(void)
1719 {
1720     char *msg = error_message;
1721     error_message = NULL;
1722     return msg;
1723 }
1724 
1725 void *
1726 dlopen(const char *name, int mode)
1727 {
1728     Obj_Entry **old_obj_tail;
1729     Obj_Entry *obj;
1730     Objlist initlist;
1731     int result;
1732 
1733     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
1734     if (ld_tracing != NULL)
1735 	environ = (char **)*get_program_var_addr("environ");
1736 
1737     objlist_init(&initlist);
1738 
1739     wlock_acquire();
1740     GDB_STATE(RT_ADD,NULL);
1741 
1742     old_obj_tail = obj_tail;
1743     obj = NULL;
1744     if (name == NULL) {
1745 	obj = obj_main;
1746 	obj->refcount++;
1747     } else {
1748 	char *path = find_library(name, obj_main);
1749 	if (path != NULL)
1750 	    obj = load_object(path);
1751     }
1752 
1753     if (obj) {
1754 	obj->dl_refcount++;
1755 	if ((mode & RTLD_GLOBAL) && objlist_find(&list_global, obj) == NULL)
1756 	    objlist_push_tail(&list_global, obj);
1757 	mode &= RTLD_MODEMASK;
1758 	if (*old_obj_tail != NULL) {		/* We loaded something new. */
1759 	    assert(*old_obj_tail == obj);
1760 
1761 	    result = load_needed_objects(obj);
1762 	    if (result != -1 && ld_tracing)
1763 		goto trace;
1764 
1765 	    if (result == -1 ||
1766 	      (init_dag(obj), relocate_objects(obj, mode == RTLD_NOW)) == -1) {
1767 		obj->dl_refcount--;
1768 		unref_dag(obj);
1769 		if (obj->refcount == 0)
1770 		    unload_object(obj);
1771 		obj = NULL;
1772 	    } else {
1773 		/* Make list of init functions to call. */
1774 		initlist_add_objects(obj, &obj->next, &initlist);
1775 	    }
1776 	} else if (ld_tracing)
1777 	    goto trace;
1778     }
1779 
1780     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
1781 
1782     /* Call the init functions with no locks held. */
1783     wlock_release();
1784     objlist_call_init(&initlist);
1785     wlock_acquire();
1786     objlist_clear(&initlist);
1787     wlock_release();
1788     return obj;
1789 trace:
1790     trace_loaded_objects(obj);
1791     wlock_release();
1792     exit(0);
1793 }
1794 
1795 void *
1796 dlsym(void *handle, const char *name)
1797 {
1798     const Obj_Entry *obj;
1799     unsigned long hash;
1800     const Elf_Sym *def;
1801     const Obj_Entry *defobj;
1802 
1803     hash = elf_hash(name);
1804     def = NULL;
1805     defobj = NULL;
1806 
1807     rlock_acquire();
1808     if (handle == NULL || handle == RTLD_NEXT ||
1809 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
1810 	void *retaddr;
1811 
1812 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
1813 	if ((obj = obj_from_addr(retaddr)) == NULL) {
1814 	    _rtld_error("Cannot determine caller's shared object");
1815 	    rlock_release();
1816 	    return NULL;
1817 	}
1818 	if (handle == NULL) {	/* Just the caller's shared object. */
1819 	    def = symlook_obj(name, hash, obj, true);
1820 	    defobj = obj;
1821 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
1822 		   handle == RTLD_SELF) { /* ... caller included */
1823 	    if (handle == RTLD_NEXT)
1824 		obj = obj->next;
1825 	    for (; obj != NULL; obj = obj->next) {
1826 		if ((def = symlook_obj(name, hash, obj, true)) != NULL) {
1827 		    defobj = obj;
1828 		    break;
1829 		}
1830 	    }
1831 	} else {
1832 	    assert(handle == RTLD_DEFAULT);
1833 	    def = symlook_default(name, hash, obj, &defobj, true);
1834 	}
1835     } else {
1836 	if ((obj = dlcheck(handle)) == NULL) {
1837 	    rlock_release();
1838 	    return NULL;
1839 	}
1840 
1841 	if (obj->mainprog) {
1842 	    DoneList donelist;
1843 
1844 	    /* Search main program and all libraries loaded by it. */
1845 	    donelist_init(&donelist);
1846 	    def = symlook_list(name, hash, &list_main, &defobj, true,
1847 	      &donelist);
1848 	} else {
1849 	    /*
1850 	     * XXX - This isn't correct.  The search should include the whole
1851 	     * DAG rooted at the given object.
1852 	     */
1853 	    def = symlook_obj(name, hash, obj, true);
1854 	    defobj = obj;
1855 	}
1856     }
1857 
1858     if (def != NULL) {
1859 	rlock_release();
1860 	return defobj->relocbase + def->st_value;
1861     }
1862 
1863     _rtld_error("Undefined symbol \"%s\"", name);
1864     rlock_release();
1865     return NULL;
1866 }
1867 
1868 int
1869 dladdr(const void *addr, Dl_info *info)
1870 {
1871     const Obj_Entry *obj;
1872     const Elf_Sym *def;
1873     void *symbol_addr;
1874     unsigned long symoffset;
1875 
1876     rlock_acquire();
1877     obj = obj_from_addr(addr);
1878     if (obj == NULL) {
1879         _rtld_error("No shared object contains address");
1880 	rlock_release();
1881         return 0;
1882     }
1883     info->dli_fname = obj->path;
1884     info->dli_fbase = obj->mapbase;
1885     info->dli_saddr = (void *)0;
1886     info->dli_sname = NULL;
1887 
1888     /*
1889      * Walk the symbol list looking for the symbol whose address is
1890      * closest to the address sent in.
1891      */
1892     for (symoffset = 0; symoffset < obj->nchains; symoffset++) {
1893         def = obj->symtab + symoffset;
1894 
1895         /*
1896          * For skip the symbol if st_shndx is either SHN_UNDEF or
1897          * SHN_COMMON.
1898          */
1899         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
1900             continue;
1901 
1902         /*
1903          * If the symbol is greater than the specified address, or if it
1904          * is further away from addr than the current nearest symbol,
1905          * then reject it.
1906          */
1907         symbol_addr = obj->relocbase + def->st_value;
1908         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
1909             continue;
1910 
1911         /* Update our idea of the nearest symbol. */
1912         info->dli_sname = obj->strtab + def->st_name;
1913         info->dli_saddr = symbol_addr;
1914 
1915         /* Exact match? */
1916         if (info->dli_saddr == addr)
1917             break;
1918     }
1919     rlock_release();
1920     return 1;
1921 }
1922 
1923 int
1924 dlinfo(void *handle, int request, void *p)
1925 {
1926     const Obj_Entry *obj;
1927     int error;
1928 
1929     rlock_acquire();
1930 
1931     if (handle == NULL || handle == RTLD_SELF) {
1932 	void *retaddr;
1933 
1934 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
1935 	if ((obj = obj_from_addr(retaddr)) == NULL)
1936 	    _rtld_error("Cannot determine caller's shared object");
1937     } else
1938 	obj = dlcheck(handle);
1939 
1940     if (obj == NULL) {
1941 	rlock_release();
1942 	return (-1);
1943     }
1944 
1945     error = 0;
1946     switch (request) {
1947     case RTLD_DI_LINKMAP:
1948 	*((struct link_map const **)p) = &obj->linkmap;
1949 	break;
1950     case RTLD_DI_ORIGIN:
1951 	error = rtld_dirname(obj->path, p);
1952 	break;
1953 
1954     case RTLD_DI_SERINFOSIZE:
1955     case RTLD_DI_SERINFO:
1956 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
1957 	break;
1958 
1959     default:
1960 	_rtld_error("Invalid request %d passed to dlinfo()", request);
1961 	error = -1;
1962     }
1963 
1964     rlock_release();
1965 
1966     return (error);
1967 }
1968 
1969 struct fill_search_info_args {
1970     int		 request;
1971     unsigned int flags;
1972     Dl_serinfo  *serinfo;
1973     Dl_serpath  *serpath;
1974     char	*strspace;
1975 };
1976 
1977 static void *
1978 fill_search_info(const char *dir, size_t dirlen, void *param)
1979 {
1980     struct fill_search_info_args *arg;
1981 
1982     arg = param;
1983 
1984     if (arg->request == RTLD_DI_SERINFOSIZE) {
1985 	arg->serinfo->dls_cnt ++;
1986 	arg->serinfo->dls_size += dirlen + 1;
1987     } else {
1988 	struct dl_serpath *s_entry;
1989 
1990 	s_entry = arg->serpath;
1991 	s_entry->dls_name  = arg->strspace;
1992 	s_entry->dls_flags = arg->flags;
1993 
1994 	strncpy(arg->strspace, dir, dirlen);
1995 	arg->strspace[dirlen] = '\0';
1996 
1997 	arg->strspace += dirlen + 1;
1998 	arg->serpath++;
1999     }
2000 
2001     return (NULL);
2002 }
2003 
2004 static int
2005 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
2006 {
2007     struct dl_serinfo _info;
2008     struct fill_search_info_args args;
2009 
2010     args.request = RTLD_DI_SERINFOSIZE;
2011     args.serinfo = &_info;
2012 
2013     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2014     _info.dls_cnt  = 0;
2015 
2016     path_enumerate(ld_library_path, fill_search_info, &args);
2017     path_enumerate(obj->rpath, fill_search_info, &args);
2018     path_enumerate(gethints(), fill_search_info, &args);
2019     path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
2020 
2021 
2022     if (request == RTLD_DI_SERINFOSIZE) {
2023 	info->dls_size = _info.dls_size;
2024 	info->dls_cnt = _info.dls_cnt;
2025 	return (0);
2026     }
2027 
2028     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
2029 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
2030 	return (-1);
2031     }
2032 
2033     args.request  = RTLD_DI_SERINFO;
2034     args.serinfo  = info;
2035     args.serpath  = &info->dls_serpath[0];
2036     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
2037 
2038     args.flags = LA_SER_LIBPATH;
2039     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
2040 	return (-1);
2041 
2042     args.flags = LA_SER_RUNPATH;
2043     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
2044 	return (-1);
2045 
2046     args.flags = LA_SER_CONFIG;
2047     if (path_enumerate(gethints(), fill_search_info, &args) != NULL)
2048 	return (-1);
2049 
2050     args.flags = LA_SER_DEFAULT;
2051     if (path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
2052 	return (-1);
2053     return (0);
2054 }
2055 
2056 static int
2057 rtld_dirname(const char *path, char *bname)
2058 {
2059     const char *endp;
2060 
2061     /* Empty or NULL string gets treated as "." */
2062     if (path == NULL || *path == '\0') {
2063 	bname[0] = '.';
2064 	bname[1] = '\0';
2065 	return (0);
2066     }
2067 
2068     /* Strip trailing slashes */
2069     endp = path + strlen(path) - 1;
2070     while (endp > path && *endp == '/')
2071 	endp--;
2072 
2073     /* Find the start of the dir */
2074     while (endp > path && *endp != '/')
2075 	endp--;
2076 
2077     /* Either the dir is "/" or there are no slashes */
2078     if (endp == path) {
2079 	bname[0] = *endp == '/' ? '/' : '.';
2080 	bname[1] = '\0';
2081 	return (0);
2082     } else {
2083 	do {
2084 	    endp--;
2085 	} while (endp > path && *endp == '/');
2086     }
2087 
2088     if (endp - path + 2 > PATH_MAX)
2089     {
2090 	_rtld_error("Filename is too long: %s", path);
2091 	return(-1);
2092     }
2093 
2094     strncpy(bname, path, endp - path + 1);
2095     bname[endp - path + 1] = '\0';
2096     return (0);
2097 }
2098 
2099 static void
2100 linkmap_add(Obj_Entry *obj)
2101 {
2102     struct link_map *l = &obj->linkmap;
2103     struct link_map *prev;
2104 
2105     obj->linkmap.l_name = obj->path;
2106     obj->linkmap.l_addr = obj->mapbase;
2107     obj->linkmap.l_ld = obj->dynamic;
2108 #ifdef __mips__
2109     /* GDB needs load offset on MIPS to use the symbols */
2110     obj->linkmap.l_offs = obj->relocbase;
2111 #endif
2112 
2113     if (r_debug.r_map == NULL) {
2114 	r_debug.r_map = l;
2115 	return;
2116     }
2117 
2118     /*
2119      * Scan to the end of the list, but not past the entry for the
2120      * dynamic linker, which we want to keep at the very end.
2121      */
2122     for (prev = r_debug.r_map;
2123       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
2124       prev = prev->l_next)
2125 	;
2126 
2127     /* Link in the new entry. */
2128     l->l_prev = prev;
2129     l->l_next = prev->l_next;
2130     if (l->l_next != NULL)
2131 	l->l_next->l_prev = l;
2132     prev->l_next = l;
2133 }
2134 
2135 static void
2136 linkmap_delete(Obj_Entry *obj)
2137 {
2138     struct link_map *l = &obj->linkmap;
2139 
2140     if (l->l_prev == NULL) {
2141 	if ((r_debug.r_map = l->l_next) != NULL)
2142 	    l->l_next->l_prev = NULL;
2143 	return;
2144     }
2145 
2146     if ((l->l_prev->l_next = l->l_next) != NULL)
2147 	l->l_next->l_prev = l->l_prev;
2148 }
2149 
2150 /*
2151  * Function for the debugger to set a breakpoint on to gain control.
2152  *
2153  * The two parameters allow the debugger to easily find and determine
2154  * what the runtime loader is doing and to whom it is doing it.
2155  *
2156  * When the loadhook trap is hit (r_debug_state, set at program
2157  * initialization), the arguments can be found on the stack:
2158  *
2159  *  +8   struct link_map *m
2160  *  +4   struct r_debug  *rd
2161  *  +0   RetAddr
2162  */
2163 void
2164 r_debug_state(struct r_debug* rd, struct link_map *m)
2165 {
2166 }
2167 
2168 /*
2169  * Get address of the pointer variable in the main program.
2170  */
2171 static const void **
2172 get_program_var_addr(const char *name)
2173 {
2174     const Obj_Entry *obj;
2175     unsigned long hash;
2176 
2177     hash = elf_hash(name);
2178     for (obj = obj_main;  obj != NULL;  obj = obj->next) {
2179 	const Elf_Sym *def;
2180 
2181 	if ((def = symlook_obj(name, hash, obj, false)) != NULL) {
2182 	    const void **addr;
2183 
2184 	    addr = (const void **)(obj->relocbase + def->st_value);
2185 	    return addr;
2186 	}
2187     }
2188     return NULL;
2189 }
2190 
2191 /*
2192  * Set a pointer variable in the main program to the given value.  This
2193  * is used to set key variables such as "environ" before any of the
2194  * init functions are called.
2195  */
2196 static void
2197 set_program_var(const char *name, const void *value)
2198 {
2199     const void **addr;
2200 
2201     if ((addr = get_program_var_addr(name)) != NULL) {
2202 	dbg("\"%s\": *%p <-- %p", name, addr, value);
2203 	*addr = value;
2204     }
2205 }
2206 
2207 /*
2208  * This is a special version of getenv which is far more efficient
2209  * at finding LD_ environment vars.
2210  */
2211 static
2212 const char *
2213 _getenv_ld(const char *id)
2214 {
2215     const char *envp;
2216     int i, j;
2217     int idlen = strlen(id);
2218 
2219     if (ld_index == LD_ARY_CACHE)
2220 	return(getenv(id));
2221     if (ld_index == 0) {
2222 	for (i = j = 0; (envp = environ[i]) != NULL && j < LD_ARY_CACHE; ++i) {
2223 	    if (envp[0] == 'L' && envp[1] == 'D' && envp[2] == '_')
2224 		ld_ary[j++] = envp;
2225 	}
2226 	if (j == 0)
2227 		ld_ary[j++] = "";
2228 	ld_index = j;
2229     }
2230     for (i = ld_index - 1; i >= 0; --i) {
2231 	if (strncmp(ld_ary[i], id, idlen) == 0 && ld_ary[i][idlen] == '=')
2232 	    return(ld_ary[i] + idlen + 1);
2233     }
2234     return(NULL);
2235 }
2236 
2237 /*
2238  * Given a symbol name in a referencing object, find the corresponding
2239  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
2240  * no definition was found.  Returns a pointer to the Obj_Entry of the
2241  * defining object via the reference parameter DEFOBJ_OUT.
2242  */
2243 static const Elf_Sym *
2244 symlook_default(const char *name, unsigned long hash,
2245     const Obj_Entry *refobj, const Obj_Entry **defobj_out, bool in_plt)
2246 {
2247     DoneList donelist;
2248     const Elf_Sym *def;
2249     const Elf_Sym *symp;
2250     const Obj_Entry *obj;
2251     const Obj_Entry *defobj;
2252     const Objlist_Entry *elm;
2253     def = NULL;
2254     defobj = NULL;
2255     donelist_init(&donelist);
2256 
2257     /* Look first in the referencing object if linked symbolically. */
2258     if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
2259 	symp = symlook_obj(name, hash, refobj, in_plt);
2260 	if (symp != NULL) {
2261 	    def = symp;
2262 	    defobj = refobj;
2263 	}
2264     }
2265 
2266     /* Search all objects loaded at program start up. */
2267     if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2268 	symp = symlook_list(name, hash, &list_main, &obj, in_plt, &donelist);
2269 	if (symp != NULL &&
2270 	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2271 	    def = symp;
2272 	    defobj = obj;
2273 	}
2274     }
2275 
2276     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
2277     STAILQ_FOREACH(elm, &list_global, link) {
2278        if (def != NULL && ELF_ST_BIND(def->st_info) != STB_WEAK)
2279            break;
2280        symp = symlook_list(name, hash, &elm->obj->dagmembers, &obj, in_plt,
2281          &donelist);
2282 	if (symp != NULL &&
2283 	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2284 	    def = symp;
2285 	    defobj = obj;
2286 	}
2287     }
2288 
2289     /* Search all dlopened DAGs containing the referencing object. */
2290     STAILQ_FOREACH(elm, &refobj->dldags, link) {
2291 	if (def != NULL && ELF_ST_BIND(def->st_info) != STB_WEAK)
2292 	    break;
2293 	symp = symlook_list(name, hash, &elm->obj->dagmembers, &obj, in_plt,
2294 	  &donelist);
2295 	if (symp != NULL &&
2296 	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2297 	    def = symp;
2298 	    defobj = obj;
2299 	}
2300     }
2301 
2302     /*
2303      * Search the dynamic linker itself, and possibly resolve the
2304      * symbol from there.  This is how the application links to
2305      * dynamic linker services such as dlopen.  Only the values listed
2306      * in the "exports" array can be resolved from the dynamic linker.
2307      */
2308     if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2309 	symp = symlook_obj(name, hash, &obj_rtld, in_plt);
2310 	if (symp != NULL && is_exported(symp)) {
2311 	    def = symp;
2312 	    defobj = &obj_rtld;
2313 	}
2314     }
2315 
2316     if (def != NULL)
2317 	*defobj_out = defobj;
2318     return def;
2319 }
2320 
2321 static const Elf_Sym *
2322 symlook_list(const char *name, unsigned long hash, Objlist *objlist,
2323   const Obj_Entry **defobj_out, bool in_plt, DoneList *dlp)
2324 {
2325     const Elf_Sym *symp;
2326     const Elf_Sym *def;
2327     const Obj_Entry *defobj;
2328     const Objlist_Entry *elm;
2329 
2330     def = NULL;
2331     defobj = NULL;
2332     STAILQ_FOREACH(elm, objlist, link) {
2333 	if (donelist_check(dlp, elm->obj))
2334 	    continue;
2335 	if ((symp = symlook_obj(name, hash, elm->obj, in_plt)) != NULL) {
2336 	    if (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK) {
2337 		def = symp;
2338 		defobj = elm->obj;
2339 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2340 		    break;
2341 	    }
2342 	}
2343     }
2344     if (def != NULL)
2345 	*defobj_out = defobj;
2346     return def;
2347 }
2348 
2349 /*
2350  * Search the symbol table of a single shared object for a symbol of
2351  * the given name.  Returns a pointer to the symbol, or NULL if no
2352  * definition was found.
2353  *
2354  * The symbol's hash value is passed in for efficiency reasons; that
2355  * eliminates many recomputations of the hash value.
2356  */
2357 const Elf_Sym *
2358 symlook_obj(const char *name, unsigned long hash, const Obj_Entry *obj,
2359   bool in_plt)
2360 {
2361     if (obj->buckets != NULL) {
2362 	unsigned long symnum = obj->buckets[hash % obj->nbuckets];
2363 
2364 	while (symnum != STN_UNDEF) {
2365 	    const Elf_Sym *symp;
2366 	    const char *strp;
2367 
2368 	    if (symnum >= obj->nchains)
2369 		return NULL;	/* Bad object */
2370 	    symp = obj->symtab + symnum;
2371 	    strp = obj->strtab + symp->st_name;
2372 
2373 	    if (name[0] == strp[0] && strcmp(name, strp) == 0)
2374 		return symp->st_shndx != SHN_UNDEF ||
2375 		  (!in_plt && symp->st_value != 0 &&
2376 		  ELF_ST_TYPE(symp->st_info) == STT_FUNC) ? symp : NULL;
2377 
2378 	    symnum = obj->chains[symnum];
2379 	}
2380     }
2381     return NULL;
2382 }
2383 
2384 static void
2385 trace_loaded_objects(Obj_Entry *obj)
2386 {
2387     const char *fmt1, *fmt2, *fmt, *main_local;
2388     int		c;
2389 
2390     if ((main_local = _getenv_ld("LD_TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
2391 	main_local = "";
2392 
2393     if ((fmt1 = _getenv_ld("LD_TRACE_LOADED_OBJECTS_FMT1")) == NULL)
2394 	fmt1 = "\t%o => %p (%x)\n";
2395 
2396     if ((fmt2 = _getenv_ld("LD_TRACE_LOADED_OBJECTS_FMT2")) == NULL)
2397 	fmt2 = "\t%o (%x)\n";
2398 
2399     for (; obj; obj = obj->next) {
2400 	Needed_Entry		*needed;
2401 	char			*name, *path;
2402 	bool			is_lib;
2403 
2404 	for (needed = obj->needed; needed; needed = needed->next) {
2405 	    if (needed->obj != NULL) {
2406 		if (needed->obj->traced)
2407 		    continue;
2408 		needed->obj->traced = true;
2409 		path = needed->obj->path;
2410 	    } else
2411 		path = "not found";
2412 
2413 	    name = (char *)obj->strtab + needed->name;
2414 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
2415 
2416 	    fmt = is_lib ? fmt1 : fmt2;
2417 	    while ((c = *fmt++) != '\0') {
2418 		switch (c) {
2419 		default:
2420 		    putchar(c);
2421 		    continue;
2422 		case '\\':
2423 		    switch (c = *fmt) {
2424 		    case '\0':
2425 			continue;
2426 		    case 'n':
2427 			putchar('\n');
2428 			break;
2429 		    case 't':
2430 			putchar('\t');
2431 			break;
2432 		    }
2433 		    break;
2434 		case '%':
2435 		    switch (c = *fmt) {
2436 		    case '\0':
2437 			continue;
2438 		    case '%':
2439 		    default:
2440 			putchar(c);
2441 			break;
2442 		    case 'A':
2443 			printf("%s", main_local);
2444 			break;
2445 		    case 'a':
2446 			printf("%s", obj_main->path);
2447 			break;
2448 		    case 'o':
2449 			printf("%s", name);
2450 			break;
2451 #if 0
2452 		    case 'm':
2453 			printf("%d", sodp->sod_major);
2454 			break;
2455 		    case 'n':
2456 			printf("%d", sodp->sod_minor);
2457 			break;
2458 #endif
2459 		    case 'p':
2460 			printf("%s", path);
2461 			break;
2462 		    case 'x':
2463 			printf("%p", needed->obj ? needed->obj->mapbase : 0);
2464 			break;
2465 		    }
2466 		    break;
2467 		}
2468 		++fmt;
2469 	    }
2470 	}
2471     }
2472 }
2473 
2474 /*
2475  * Unload a dlopened object and its dependencies from memory and from
2476  * our data structures.  It is assumed that the DAG rooted in the
2477  * object has already been unreferenced, and that the object has a
2478  * reference count of 0.
2479  */
2480 static void
2481 unload_object(Obj_Entry *root)
2482 {
2483     Obj_Entry *obj;
2484     Obj_Entry **linkp;
2485 
2486     assert(root->refcount == 0);
2487 
2488     /*
2489      * Pass over the DAG removing unreferenced objects from
2490      * appropriate lists.
2491      */
2492     unlink_object(root);
2493 
2494     /* Unmap all objects that are no longer referenced. */
2495     linkp = &obj_list->next;
2496     while ((obj = *linkp) != NULL) {
2497 	if (obj->refcount == 0) {
2498 	    dbg("unloading \"%s\"", obj->path);
2499 	    munmap(obj->mapbase, obj->mapsize);
2500 	    linkmap_delete(obj);
2501 	    *linkp = obj->next;
2502 	    obj_count--;
2503 	    obj_free(obj);
2504 	} else
2505 	    linkp = &obj->next;
2506     }
2507     obj_tail = linkp;
2508 }
2509 
2510 static void
2511 unlink_object(Obj_Entry *root)
2512 {
2513     const Needed_Entry *needed;
2514     Objlist_Entry *elm;
2515 
2516     if (root->refcount == 0) {
2517 	/* Remove the object from the RTLD_GLOBAL list. */
2518 	objlist_remove(&list_global, root);
2519 
2520     	/* Remove the object from all objects' DAG lists. */
2521     	STAILQ_FOREACH(elm, &root->dagmembers , link)
2522 	    objlist_remove(&elm->obj->dldags, root);
2523     }
2524 
2525     for (needed = root->needed;  needed != NULL;  needed = needed->next)
2526 	if (needed->obj != NULL)
2527 	    unlink_object(needed->obj);
2528 }
2529 
2530 static void
2531 unref_dag(Obj_Entry *root)
2532 {
2533     const Needed_Entry *needed;
2534 
2535     if (root->refcount == 0)
2536 	return;
2537     root->refcount--;
2538     if (root->refcount == 0)
2539 	for (needed = root->needed;  needed != NULL;  needed = needed->next)
2540 	    if (needed->obj != NULL)
2541 		unref_dag(needed->obj);
2542 }
2543 
2544 /*
2545  * Common code for MD __tls_get_addr().
2546  */
2547 void *
2548 tls_get_addr_common(void **dtvp, int index, size_t offset)
2549 {
2550     Elf_Addr* dtv = *dtvp;
2551 
2552     /* Check dtv generation in case new modules have arrived */
2553     if (dtv[0] != tls_dtv_generation) {
2554 	Elf_Addr* newdtv;
2555 	int to_copy;
2556 
2557 	wlock_acquire();
2558 
2559 	newdtv = calloc(1, (tls_max_index + 2) * sizeof(Elf_Addr));
2560 	to_copy = dtv[1];
2561 	if (to_copy > tls_max_index)
2562 	    to_copy = tls_max_index;
2563 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
2564 	newdtv[0] = tls_dtv_generation;
2565 	newdtv[1] = tls_max_index;
2566 	free(dtv);
2567 	*dtvp = newdtv;
2568 
2569 	wlock_release();
2570     }
2571 
2572     /* Dynamically allocate module TLS if necessary */
2573     if (!dtv[index + 1]) {
2574 	/* XXX
2575 	 * here we should avoid to be re-entered by signal handler
2576 	 * code, I assume wlock_acquire will masked all signals,
2577 	 * otherwise there is race and dead lock thread itself.
2578 	 */
2579 	wlock_acquire();
2580     	if (!dtv[index + 1])
2581 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
2582 	wlock_release();
2583     }
2584 
2585     return (void*) (dtv[index + 1] + offset);
2586 }
2587 
2588 #if defined(RTLD_STATIC_TLS_VARIANT_II)
2589 
2590 /*
2591  * Allocate the static TLS area.  Return a pointer to the TCB.  The
2592  * static area is based on negative offsets relative to the tcb.
2593  */
2594 struct tls_tcb *
2595 allocate_tls(Obj_Entry *objs, struct tls_tcb *old_tcb)
2596 {
2597     Obj_Entry *obj;
2598     size_t data_size;
2599     size_t dtv_size;
2600     struct tls_tcb *tcb;
2601     Elf_Addr *dtv, *old_dtv;
2602     Elf_Addr addr;
2603     int i;
2604 
2605     /*
2606      * Allocate the new TCB.  static TLS storage is placed just before the
2607      * TCB to support the %gs:OFFSET (negative offset) model.
2608      */
2609     data_size = (tls_static_space + RTLD_STATIC_TLS_ALIGN_MASK) &
2610 		~RTLD_STATIC_TLS_ALIGN_MASK;
2611     tcb = malloc(data_size + sizeof(*tcb));
2612     tcb = (void *)((char *)tcb + data_size);	/* actual tcb location */
2613 
2614     dtv_size = (tls_max_index + 2) * sizeof(Elf_Addr);
2615     dtv = malloc(dtv_size);
2616     bzero(dtv, dtv_size);
2617 
2618 #ifdef RTLD_TCB_HAS_SELF_POINTER
2619     tcb->tcb_self = tcb;
2620 #endif
2621     tcb->tcb_dtv = dtv;
2622     tcb->tcb_pthread = NULL;
2623 
2624     dtv[0] = tls_dtv_generation;
2625     dtv[1] = tls_max_index;
2626 
2627     /*
2628      * If a template tcb is supplied, copy the TLS storage from the template
2629      * to the new tcb, otherwise create a pristine data set.
2630      */
2631     if (old_tcb) {
2632 	/*
2633 	 * Copy the static TLS block over whole.
2634 	 */
2635 	memcpy((char *)tcb - data_size, (char *)old_tcb - data_size, data_size);
2636 
2637 	/*
2638 	 * If any dynamic TLS blocks have been created tls_get_addr(),
2639 	 * move them over.
2640 	 */
2641 	old_dtv = old_tcb->tcb_dtv;
2642 	for (i = 0; i < old_dtv[1]; i++) {
2643 	    if (old_dtv[i+2] < (Elf_Addr)((char *)old_tcb - data_size) ||
2644 		old_dtv[i+2] >= (Elf_Addr)((char *)old_tcb)
2645 	    ) {
2646 		dtv[i + 2] = old_dtv[i + 2];
2647 		old_dtv[i + 2] = 0;
2648 	    }
2649 	}
2650 	free_tls(old_tcb);
2651     } else {
2652 	for (obj = objs; obj; obj = obj->next) {
2653 	    if (obj->tlsoffset) {
2654 		addr = (Elf_Addr)tcb - obj->tlsoffset;
2655 		memset((void *)(addr + obj->tlsinitsize),
2656 		       0, obj->tlssize - obj->tlsinitsize);
2657 		if (obj->tlsinit)
2658 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
2659 		dtv[obj->tlsindex + 1] = addr;
2660 	    }
2661 	}
2662     }
2663     return(tcb);
2664 }
2665 
2666 void
2667 free_tls(struct tls_tcb *tcb)
2668 {
2669     Elf_Addr *dtv;
2670     int dtv_size, i;
2671     Elf_Addr tls_start, tls_end;
2672     size_t data_size;
2673 
2674     data_size = (tls_static_space + RTLD_STATIC_TLS_ALIGN_MASK) &
2675 		~RTLD_STATIC_TLS_ALIGN_MASK;
2676     dtv = tcb->tcb_dtv;
2677     dtv_size = dtv[1];
2678     tls_end = (Elf_Addr)tcb;
2679     tls_start = (Elf_Addr)tcb - data_size;
2680     for (i = 0; i < dtv_size; i++) {
2681 	if (dtv[i+2] != NULL && (dtv[i+2] < tls_start || dtv[i+2] > tls_end)) {
2682 	    free((void *)dtv[i+2]);
2683 	}
2684     }
2685     free((void *)tls_start);
2686 }
2687 
2688 #else
2689 #error "Unsupported TLS layout"
2690 #endif
2691 
2692 /*
2693  * Allocate TLS block for module with given index.
2694  */
2695 void *
2696 allocate_module_tls(int index)
2697 {
2698     Obj_Entry* obj;
2699     char* p;
2700 
2701     for (obj = obj_list; obj; obj = obj->next) {
2702 	if (obj->tlsindex == index)
2703 	    break;
2704     }
2705     if (!obj) {
2706 	_rtld_error("Can't find module with TLS index %d", index);
2707 	die();
2708     }
2709 
2710     p = malloc(obj->tlssize);
2711     memcpy(p, obj->tlsinit, obj->tlsinitsize);
2712     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
2713 
2714     return p;
2715 }
2716 
2717 bool
2718 allocate_tls_offset(Obj_Entry *obj)
2719 {
2720     size_t off;
2721 
2722     if (obj->tls_done)
2723 	return true;
2724 
2725     if (obj->tlssize == 0) {
2726 	obj->tls_done = true;
2727 	return true;
2728     }
2729 
2730     if (obj->tlsindex == 1)
2731 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
2732     else
2733 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
2734 				   obj->tlssize, obj->tlsalign);
2735 
2736     /*
2737      * If we have already fixed the size of the static TLS block, we
2738      * must stay within that size. When allocating the static TLS, we
2739      * leave a small amount of space spare to be used for dynamically
2740      * loading modules which use static TLS.
2741      */
2742     if (tls_static_space) {
2743 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
2744 	    return false;
2745     }
2746 
2747     tls_last_offset = obj->tlsoffset = off;
2748     tls_last_size = obj->tlssize;
2749     obj->tls_done = true;
2750 
2751     return true;
2752 }
2753 
2754 void
2755 free_tls_offset(Obj_Entry *obj)
2756 {
2757 #ifdef RTLD_STATIC_TLS_VARIANT_II
2758     /*
2759      * If we were the last thing to allocate out of the static TLS
2760      * block, we give our space back to the 'allocator'. This is a
2761      * simplistic workaround to allow libGL.so.1 to be loaded and
2762      * unloaded multiple times. We only handle the Variant II
2763      * mechanism for now - this really needs a proper allocator.
2764      */
2765     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
2766 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
2767 	tls_last_offset -= obj->tlssize;
2768 	tls_last_size = 0;
2769     }
2770 #endif
2771 }
2772 
2773 struct tls_tcb *
2774 _rtld_allocate_tls(struct tls_tcb *old_tcb)
2775 {
2776     struct tls_tcb *new_tcb;
2777 
2778     wlock_acquire();
2779     new_tcb = allocate_tls(obj_list, old_tcb);
2780     wlock_release();
2781 
2782     return (new_tcb);
2783 }
2784 
2785 void
2786 _rtld_free_tls(struct tls_tcb *tcb)
2787 {
2788     wlock_acquire();
2789     free_tls(tcb);
2790     wlock_release();
2791 }
2792 
2793