xref: /dflybsd-src/lib/libkvm/kvm_proc.c (revision ff3cb46dc85efe9ae4869916ad9a2bdad4d71983)
1 /*-
2  * Copyright (c) 1989, 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software developed by the Computer Systems
6  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7  * BG 91-66 and contributed to Berkeley.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  * $FreeBSD: src/lib/libkvm/kvm_proc.c,v 1.25.2.3 2002/08/24 07:27:46 kris Exp $
34  *
35  * @(#)kvm_proc.c	8.3 (Berkeley) 9/23/93
36  */
37 
38 /*
39  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
40  * users of this code, so we've factored it out into a separate module.
41  * Thus, we keep this grunge out of the other kvm applications (i.e.,
42  * most other applications are interested only in open/close/read/nlist).
43  */
44 
45 #include <sys/user.h>	/* MUST BE FIRST */
46 #include <sys/conf.h>
47 #include <sys/param.h>
48 #include <sys/proc.h>
49 #include <sys/exec.h>
50 #include <sys/stat.h>
51 #include <sys/globaldata.h>
52 #include <sys/ioctl.h>
53 #include <sys/tty.h>
54 #include <sys/file.h>
55 #include <sys/jail.h>
56 #include <stdio.h>
57 #include <stdlib.h>
58 #include <stddef.h>
59 #include <unistd.h>
60 #include <nlist.h>
61 
62 #include <cpu/pmap.h>
63 #include <vm/vm.h>
64 #include <vm/vm_param.h>
65 #include <vm/swap_pager.h>
66 
67 #include <sys/sysctl.h>
68 
69 #include <limits.h>
70 #include <memory.h>
71 #include <paths.h>
72 
73 #include "kvm.h"
74 #include "kvm_private.h"
75 
76 dev_t	devid_from_dev(cdev_t dev);
77 
78 #define KREAD(kd, addr, obj) \
79 	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
80 #define KREADSTR(kd, addr) \
81 	kvm_readstr(kd, (u_long)addr, NULL, NULL)
82 
83 static struct kinfo_proc *
84 kinfo_resize_proc(kvm_t *kd, struct kinfo_proc *bp)
85 {
86 	if (bp < kd->procend)
87 		return bp;
88 
89 	size_t pos = bp - kd->procend;
90 	size_t size = kd->procend - kd->procbase;
91 
92 	if (size == 0)
93 		size = 8;
94 	else
95 		size *= 2;
96 	kd->procbase = _kvm_realloc(kd, kd->procbase, sizeof(*bp) * size);
97 	if (kd->procbase == NULL)
98 		return NULL;
99 	kd->procend = kd->procbase + size;
100 	bp = kd->procbase + pos;
101 	return bp;
102 }
103 
104 /*
105  * note: this function is also used by /usr/src/sys/kern/kern_kinfo.c as
106  * compiled by userland.
107  */
108 dev_t
109 devid_from_dev(cdev_t dev)
110 {
111 	if (dev == NULL)
112 		return NOUDEV;
113 	if ((dev->si_umajor & 0xffffff00) ||
114 	    (dev->si_uminor & 0x0000ff00)) {
115 		return NOUDEV;
116 	}
117 	return((dev->si_umajor << 8) | dev->si_uminor);
118 }
119 
120 /*
121  * Helper routine which traverses the left hand side of a red-black sub-tree.
122  */
123 static uintptr_t
124 kvm_lwptraverse(kvm_t *kd, struct lwp *lwp, uintptr_t lwppos)
125 {
126 	for (;;) {
127 		if (KREAD(kd, lwppos, lwp)) {
128 			_kvm_err(kd, kd->program, "can't read lwp at %p",
129 				 (void *)lwppos);
130 			return ((uintptr_t)-1);
131 		}
132 		if (lwp->u.lwp_rbnode.rbe_left == NULL)
133 			break;
134 		lwppos = (uintptr_t)lwp->u.lwp_rbnode.rbe_left;
135 	}
136 	return(lwppos);
137 }
138 
139 /*
140  * Iterate LWPs in a process.
141  *
142  * The first lwp in a red-black tree is a left-side traversal of the tree.
143  */
144 static uintptr_t
145 kvm_firstlwp(kvm_t *kd, struct lwp *lwp, struct proc *proc)
146 {
147 	return(kvm_lwptraverse(kd, lwp, (uintptr_t)proc->p_lwp_tree.rbh_root));
148 }
149 
150 /*
151  * If the current element is the left side of the parent the next element
152  * will be a left side traversal of the parent's right side.  If the parent
153  * has no right side the next element will be the parent.
154  *
155  * If the current element is the right side of the parent the next element
156  * is the parent.
157  *
158  * If the parent is NULL we are done.
159  */
160 static uintptr_t
161 kvm_nextlwp(kvm_t *kd, uintptr_t lwppos, struct lwp *lwp)
162 {
163 	uintptr_t nextpos;
164 
165 	nextpos = (uintptr_t)lwp->u.lwp_rbnode.rbe_parent;
166 	if (nextpos) {
167 		if (KREAD(kd, nextpos, lwp)) {
168 			_kvm_err(kd, kd->program, "can't read lwp at %p",
169 				 (void *)lwppos);
170 			return ((uintptr_t)-1);
171 		}
172 		if (lwppos == (uintptr_t)lwp->u.lwp_rbnode.rbe_left) {
173 			/*
174 			 * If we had gone down the left side the next element
175 			 * is a left hand traversal of the parent's right
176 			 * side, or the parent itself if there is no right
177 			 * side.
178 			 */
179 			lwppos = (uintptr_t)lwp->u.lwp_rbnode.rbe_right;
180 			if (lwppos)
181 				nextpos = kvm_lwptraverse(kd, lwp, lwppos);
182 		} else {
183 			/*
184 			 * If we had gone down the right side the next
185 			 * element is the parent.
186 			 */
187 			/* nextpos = nextpos */
188 		}
189 	}
190 	return(nextpos);
191 }
192 
193 /*
194  * Read proc's from memory file into buffer bp, which has space to hold
195  * at most maxcnt procs.
196  */
197 static int
198 kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p,
199 	     struct kinfo_proc *bp)
200 {
201 	struct pgrp pgrp;
202 	struct pgrp tpgrp;
203 	struct globaldata gdata;
204 	struct session sess;
205 	struct session tsess;
206 	struct tty tty;
207 	struct proc proc;
208 	struct ucred ucred;
209 	struct thread thread;
210 	struct proc pproc;
211 	struct cdev cdev;
212 	struct vmspace vmspace;
213 	struct prison prison;
214 	struct sigacts sigacts;
215 	struct lwp lwp;
216 	uintptr_t lwppos;
217 	int count;
218 	char *wmesg;
219 
220 	count = 0;
221 
222 	for (; p != NULL; p = proc.p_list.le_next) {
223 		if (KREAD(kd, (u_long)p, &proc)) {
224 			_kvm_err(kd, kd->program, "can't read proc at %p", p);
225 			return (-1);
226 		}
227 		if (KREAD(kd, (u_long)proc.p_ucred, &ucred)) {
228 			_kvm_err(kd, kd->program, "can't read ucred at %p",
229 				 proc.p_ucred);
230 			return (-1);
231 		}
232 		proc.p_ucred = &ucred;
233 
234 		switch(what & ~KERN_PROC_FLAGMASK) {
235 
236 		case KERN_PROC_PID:
237 			if (proc.p_pid != (pid_t)arg)
238 				continue;
239 			break;
240 
241 		case KERN_PROC_UID:
242 			if (ucred.cr_uid != (uid_t)arg)
243 				continue;
244 			break;
245 
246 		case KERN_PROC_RUID:
247 			if (ucred.cr_ruid != (uid_t)arg)
248 				continue;
249 			break;
250 		}
251 
252 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
253 			_kvm_err(kd, kd->program, "can't read pgrp at %p",
254 				 proc.p_pgrp);
255 			return (-1);
256 		}
257 		proc.p_pgrp = &pgrp;
258 		if (proc.p_pptr) {
259 		  if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
260 			_kvm_err(kd, kd->program, "can't read pproc at %p",
261 				 proc.p_pptr);
262 			return (-1);
263 		  }
264 		  proc.p_pptr = &pproc;
265 		}
266 
267 		if (proc.p_sigacts) {
268 			if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) {
269 				_kvm_err(kd, kd->program,
270 					 "can't read sigacts at %p",
271 					 proc.p_sigacts);
272 				return (-1);
273 			}
274 			proc.p_sigacts = &sigacts;
275 		}
276 
277 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
278 			_kvm_err(kd, kd->program, "can't read session at %p",
279 				pgrp.pg_session);
280 			return (-1);
281 		}
282 		pgrp.pg_session = &sess;
283 
284 		if ((proc.p_flags & P_CONTROLT) && sess.s_ttyp != NULL) {
285 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
286 				_kvm_err(kd, kd->program,
287 					 "can't read tty at %p", sess.s_ttyp);
288 				return (-1);
289 			}
290 			sess.s_ttyp = &tty;
291 			if (tty.t_dev != NULL) {
292 				if (KREAD(kd, (u_long)tty.t_dev, &cdev))
293 					tty.t_dev = NULL;
294 				else
295 					tty.t_dev = &cdev;
296 			}
297 			if (tty.t_pgrp != NULL) {
298 				if (KREAD(kd, (u_long)tty.t_pgrp, &tpgrp)) {
299 					_kvm_err(kd, kd->program,
300 						 "can't read tpgrp at %p",
301 						tty.t_pgrp);
302 					return (-1);
303 				}
304 				tty.t_pgrp = &tpgrp;
305 			}
306 			if (tty.t_session != NULL) {
307 				if (KREAD(kd, (u_long)tty.t_session, &tsess)) {
308 					_kvm_err(kd, kd->program,
309 						 "can't read tsess at %p",
310 						tty.t_session);
311 					return (-1);
312 				}
313 				tty.t_session = &tsess;
314 			}
315 		}
316 
317 		if (KREAD(kd, (u_long)proc.p_vmspace, &vmspace)) {
318 			_kvm_err(kd, kd->program, "can't read vmspace at %p",
319 				 proc.p_vmspace);
320 			return (-1);
321 		}
322 		proc.p_vmspace = &vmspace;
323 
324 		if (ucred.cr_prison != NULL) {
325 			if (KREAD(kd, (u_long)ucred.cr_prison, &prison)) {
326 				_kvm_err(kd, kd->program, "can't read prison at %p",
327 					 ucred.cr_prison);
328 				return (-1);
329 			}
330 			ucred.cr_prison = &prison;
331 		}
332 
333 		switch (what & ~KERN_PROC_FLAGMASK) {
334 
335 		case KERN_PROC_PGRP:
336 			if (proc.p_pgrp->pg_id != (pid_t)arg)
337 				continue;
338 			break;
339 
340 		case KERN_PROC_TTY:
341 			if ((proc.p_flags & P_CONTROLT) == 0 ||
342 			    devid_from_dev(proc.p_pgrp->pg_session->s_ttyp->t_dev)
343 					!= (dev_t)arg)
344 				continue;
345 			break;
346 		}
347 
348 		if ((bp = kinfo_resize_proc(kd, bp)) == NULL)
349 			return (-1);
350 		fill_kinfo_proc(&proc, bp);
351 		bp->kp_paddr = (uintptr_t)p;
352 
353 		lwppos = kvm_firstlwp(kd, &lwp, &proc);
354 		if (lwppos == 0) {
355 			bp++;		/* Just export the proc then */
356 			count++;
357 		}
358 		while (lwppos && lwppos != (uintptr_t)-1) {
359 			if (p != lwp.lwp_proc) {
360 				_kvm_err(kd, kd->program, "lwp has wrong parent");
361 				return (-1);
362 			}
363 			lwp.lwp_proc = &proc;
364 			if (KREAD(kd, (u_long)lwp.lwp_thread, &thread)) {
365 				_kvm_err(kd, kd->program, "can't read thread at %p",
366 				    lwp.lwp_thread);
367 				return (-1);
368 			}
369 			lwp.lwp_thread = &thread;
370 
371 			if (thread.td_gd) {
372 				if (KREAD(kd, (u_long)thread.td_gd, &gdata)) {
373 					_kvm_err(kd, kd->program, "can't read"
374 						  " gd at %p",
375 						  thread.td_gd);
376 					return(-1);
377 				}
378 				thread.td_gd = &gdata;
379 			}
380 			if (thread.td_wmesg) {
381 				wmesg = (void *)KREADSTR(kd, thread.td_wmesg);
382 				if (wmesg == NULL) {
383 					_kvm_err(kd, kd->program, "can't read"
384 						  " wmesg %p",
385 						  thread.td_wmesg);
386 					return(-1);
387 				}
388 				thread.td_wmesg = wmesg;
389 			} else {
390 				wmesg = NULL;
391 			}
392 
393 			if ((bp = kinfo_resize_proc(kd, bp)) == NULL)
394 				return (-1);
395 			fill_kinfo_proc(&proc, bp);
396 			fill_kinfo_lwp(&lwp, &bp->kp_lwp);
397 			bp->kp_paddr = (uintptr_t)p;
398 			bp++;
399 			count++;
400 			if (wmesg)
401 				free(wmesg);
402 			if ((what & KERN_PROC_FLAG_LWP) == 0)
403 				break;
404 			lwppos = kvm_nextlwp(kd, lwppos, &lwp);
405 		}
406 		if (lwppos == (uintptr_t)-1)
407 			return(-1);
408 	}
409 	return (count);
410 }
411 
412 /*
413  * Build proc info array by reading in proc list from a crash dump.
414  * We reallocate kd->procbase as necessary.
415  */
416 static int
417 kvm_deadprocs(kvm_t *kd, int what, int arg, int allproc_hsize, long procglob)
418 {
419 	struct kinfo_proc *bp;
420 	struct proc *p;
421 	struct proclist **pl;
422 	int cnt, partcnt, n;
423 	u_long nextoff;
424 	u_long a_allproc;
425 
426 	cnt = partcnt = 0;
427 	nextoff = 0;
428 
429 	/*
430 	 * Dynamically allocate space for all the elements of the
431 	 * allprocs array and KREAD() them.
432 	 */
433 	pl = _kvm_malloc(kd, allproc_hsize * sizeof(struct proclist *));
434 	for (n = 0; n < allproc_hsize; n++) {
435 		pl[n] = _kvm_malloc(kd, sizeof(struct proclist));
436 		a_allproc = procglob +
437 			    sizeof(struct procglob) * n +
438 			    offsetof(struct procglob, allproc);
439 		nextoff = a_allproc;
440 		if (KREAD(kd, (u_long)nextoff, pl[n])) {
441 			_kvm_err(kd, kd->program, "can't read proclist at 0x%lx",
442 				a_allproc);
443 			return (-1);
444 		}
445 
446 		/* Ignore empty proclists */
447 		if (LIST_EMPTY(pl[n]))
448 			continue;
449 
450 		bp = kd->procbase + cnt;
451 		p = pl[n]->lh_first;
452 		partcnt = kvm_proclist(kd, what, arg, p, bp);
453 		if (partcnt < 0) {
454 			free(pl[n]);
455 			return (partcnt);
456 		}
457 
458 		cnt += partcnt;
459 		free(pl[n]);
460 	}
461 
462 	return (cnt);
463 }
464 
465 struct kinfo_proc *
466 kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt)
467 {
468 	int mib[4], st, nprocs, allproc_hsize;
469 	int miblen = ((op & ~KERN_PROC_FLAGMASK) == KERN_PROC_ALL) ? 3 : 4;
470 	size_t size;
471 
472 	if (kd->procbase != NULL) {
473 		free(kd->procbase);
474 		kd->procbase = NULL;
475 	}
476 	if (kvm_ishost(kd)) {
477 		size = 0;
478 		mib[0] = CTL_KERN;
479 		mib[1] = KERN_PROC;
480 		mib[2] = op;
481 		mib[3] = arg;
482 		st = sysctl(mib, miblen, NULL, &size, NULL, 0);
483 		if (st == -1) {
484 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
485 			return (0);
486 		}
487 		do {
488 			size += size / 10;
489 			kd->procbase = (struct kinfo_proc *)
490 			    _kvm_realloc(kd, kd->procbase, size);
491 			if (kd->procbase == 0)
492 				return (0);
493 			st = sysctl(mib, miblen, kd->procbase, &size, NULL, 0);
494 		} while (st == -1 && errno == ENOMEM);
495 		if (st == -1) {
496 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
497 			return (0);
498 		}
499 		if (size % sizeof(struct kinfo_proc) != 0) {
500 			_kvm_err(kd, kd->program,
501 				"proc size mismatch (%zd total, %zd chunks)",
502 				size, sizeof(struct kinfo_proc));
503 			return (0);
504 		}
505 		nprocs = size / sizeof(struct kinfo_proc);
506 	} else {
507 		struct nlist nl[4], *p;
508 		u_long procglob;
509 
510 		nl[0].n_name = "_nprocs";
511 		nl[1].n_name = "_procglob";
512 		nl[2].n_name = "_allproc_hsize";
513 		nl[3].n_name = 0;
514 
515 		if (kvm_nlist(kd, nl) != 0) {
516 			for (p = nl; p->n_type != 0; ++p)
517 				;
518 			_kvm_err(kd, kd->program,
519 				 "%s: no such symbol", p->n_name);
520 			return (0);
521 		}
522 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
523 			_kvm_err(kd, kd->program, "can't read nprocs");
524 			return (0);
525 		}
526 		if (KREAD(kd, nl[2].n_value, &allproc_hsize)) {
527 			_kvm_err(kd, kd->program, "can't read allproc_hsize");
528 			return (0);
529 		}
530 		procglob = nl[1].n_value;
531 		nprocs = kvm_deadprocs(kd, op, arg, allproc_hsize, procglob);
532 #ifdef notdef
533 		size = nprocs * sizeof(struct kinfo_proc);
534 		(void)realloc(kd->procbase, size);
535 #endif
536 	}
537 	*cnt = nprocs;
538 	return (kd->procbase);
539 }
540 
541 void
542 _kvm_freeprocs(kvm_t *kd)
543 {
544 	if (kd->procbase) {
545 		free(kd->procbase);
546 		kd->procbase = 0;
547 	}
548 }
549 
550 void *
551 _kvm_realloc(kvm_t *kd, void *p, size_t n)
552 {
553 	void *np = (void *)realloc(p, n);
554 
555 	if (np == NULL) {
556 		free(p);
557 		_kvm_err(kd, kd->program, "out of memory");
558 	}
559 	return (np);
560 }
561 
562 #ifndef MAX
563 #define MAX(a, b) ((a) > (b) ? (a) : (b))
564 #endif
565 
566 /*
567  * Read in an argument vector from the user address space of process pid.
568  * addr if the user-space base address of narg null-terminated contiguous
569  * strings.  This is used to read in both the command arguments and
570  * environment strings.  Read at most maxcnt characters of strings.
571  */
572 static char **
573 kvm_argv(kvm_t *kd, pid_t pid, u_long addr, int narg, int maxcnt)
574 {
575 	char *np, *cp, *ep, *ap;
576 	u_long oaddr = -1;
577 	u_long addr_min = VM_MIN_USER_ADDRESS;
578 	u_long addr_max = VM_MAX_USER_ADDRESS;
579 	int len, cc;
580 	char **argv;
581 
582 	/*
583 	 * Check that there aren't an unreasonable number of agruments,
584 	 * and that the address is in user space.
585 	 */
586 	if (narg > 512 || addr < addr_min || addr >= addr_max)
587 		return (0);
588 
589 	/*
590 	 * kd->argv : work space for fetching the strings from the target
591 	 *            process's space, and is converted for returning to caller
592 	 */
593 	if (kd->argv == 0) {
594 		/*
595 		 * Try to avoid reallocs.
596 		 */
597 		kd->argc = MAX(narg + 1, 32);
598 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
599 						sizeof(*kd->argv));
600 		if (kd->argv == 0)
601 			return (0);
602 	} else if (narg + 1 > kd->argc) {
603 		kd->argc = MAX(2 * kd->argc, narg + 1);
604 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
605 						sizeof(*kd->argv));
606 		if (kd->argv == 0)
607 			return (0);
608 	}
609 	/*
610 	 * kd->argspc : returned to user, this is where the kd->argv
611 	 *              arrays are left pointing to the collected strings.
612 	 */
613 	if (kd->argspc == 0) {
614 		kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
615 		if (kd->argspc == 0)
616 			return (0);
617 		kd->arglen = PAGE_SIZE;
618 	}
619 	/*
620 	 * kd->argbuf : used to pull in pages from the target process.
621 	 *              the strings are copied out of here.
622 	 */
623 	if (kd->argbuf == 0) {
624 		kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
625 		if (kd->argbuf == 0)
626 			return (0);
627 	}
628 
629 	/* Pull in the target process'es argv vector */
630 	cc = sizeof(char *) * narg;
631 	if (kvm_uread(kd, pid, addr, (char *)kd->argv, cc) != cc)
632 		return (0);
633 	/*
634 	 * ap : saved start address of string we're working on in kd->argspc
635 	 * np : pointer to next place to write in kd->argspc
636 	 * len: length of data in kd->argspc
637 	 * argv: pointer to the argv vector that we are hunting around the
638 	 *       target process space for, and converting to addresses in
639 	 *       our address space (kd->argspc).
640 	 */
641 	ap = np = kd->argspc;
642 	argv = kd->argv;
643 	len = 0;
644 	/*
645 	 * Loop over pages, filling in the argument vector.
646 	 * Note that the argv strings could be pointing *anywhere* in
647 	 * the user address space and are no longer contiguous.
648 	 * Note that *argv is modified when we are going to fetch a string
649 	 * that crosses a page boundary.  We copy the next part of the string
650 	 * into to "np" and eventually convert the pointer.
651 	 */
652 	while (argv < kd->argv + narg && *argv != NULL) {
653 
654 		/* get the address that the current argv string is on */
655 		addr = rounddown2((u_long)*argv, PAGE_SIZE);
656 
657 		/* is it the same page as the last one? */
658 		if (addr != oaddr) {
659 			if (kvm_uread(kd, pid, addr, kd->argbuf, PAGE_SIZE) !=
660 			    PAGE_SIZE)
661 				return (0);
662 			oaddr = addr;
663 		}
664 
665 		/* offset within the page... kd->argbuf */
666 		addr = (u_long)*argv & (PAGE_SIZE - 1);
667 
668 		/* cp = start of string, cc = count of chars in this chunk */
669 		cp = kd->argbuf + addr;
670 		cc = PAGE_SIZE - addr;
671 
672 		/* dont get more than asked for by user process */
673 		if (maxcnt > 0 && cc > maxcnt - len)
674 			cc = maxcnt - len;
675 
676 		/* pointer to end of string if we found it in this page */
677 		ep = memchr(cp, '\0', cc);
678 		if (ep != NULL)
679 			cc = ep - cp + 1;
680 		/*
681 		 * at this point, cc is the count of the chars that we are
682 		 * going to retrieve this time. we may or may not have found
683 		 * the end of it.  (ep points to the null if the end is known)
684 		 */
685 
686 		/* will we exceed the malloc/realloced buffer? */
687 		if (len + cc > kd->arglen) {
688 			size_t off;
689 			char **pp;
690 			char *op = kd->argspc;
691 
692 			kd->arglen *= 2;
693 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
694 							  kd->arglen);
695 			if (kd->argspc == 0)
696 				return (0);
697 			/*
698 			 * Adjust argv pointers in case realloc moved
699 			 * the string space.
700 			 */
701 			off = kd->argspc - op;
702 			for (pp = kd->argv; pp < argv; pp++)
703 				*pp += off;
704 			ap += off;
705 			np += off;
706 		}
707 		/* np = where to put the next part of the string in kd->argspc*/
708 		/* np is kinda redundant.. could use "kd->argspc + len" */
709 		memcpy(np, cp, cc);
710 		np += cc;	/* inc counters */
711 		len += cc;
712 
713 		/*
714 		 * if end of string found, set the *argv pointer to the
715 		 * saved beginning of string, and advance. argv points to
716 		 * somewhere in kd->argv..  This is initially relative
717 		 * to the target process, but when we close it off, we set
718 		 * it to point in our address space.
719 		 */
720 		if (ep != NULL) {
721 			*argv++ = ap;
722 			ap = np;
723 		} else {
724 			/* update the address relative to the target process */
725 			*argv += cc;
726 		}
727 
728 		if (maxcnt > 0 && len >= maxcnt) {
729 			/*
730 			 * We're stopping prematurely.  Terminate the
731 			 * current string.
732 			 */
733 			if (ep == NULL) {
734 				*np = '\0';
735 				*argv++ = ap;
736 			}
737 			break;
738 		}
739 	}
740 	/* Make sure argv is terminated. */
741 	*argv = NULL;
742 	return (kd->argv);
743 }
744 
745 static void
746 ps_str_a(struct ps_strings *p, u_long *addr, int *n)
747 {
748 	*addr = (u_long)p->ps_argvstr;
749 	*n = p->ps_nargvstr;
750 }
751 
752 static void
753 ps_str_e(struct ps_strings *p, u_long *addr, int *n)
754 {
755 	*addr = (u_long)p->ps_envstr;
756 	*n = p->ps_nenvstr;
757 }
758 
759 /*
760  * Determine if the proc indicated by p is still active.
761  * This test is not 100% foolproof in theory, but chances of
762  * being wrong are very low.
763  */
764 static int
765 proc_verify(const struct kinfo_proc *p)
766 {
767 	struct kinfo_proc kp;
768 	int mib[4];
769 	size_t len;
770 	int error;
771 
772 	mib[0] = CTL_KERN;
773 	mib[1] = KERN_PROC;
774 	mib[2] = KERN_PROC_PID;
775 	mib[3] = p->kp_pid;
776 
777 	len = sizeof(kp);
778 	error = sysctl(mib, 4, &kp, &len, NULL, 0);
779 	if (error)
780 		return (0);
781 
782 	error = (p->kp_pid == kp.kp_pid &&
783 	    (kp.kp_stat != SZOMB || p->kp_stat == SZOMB));
784 	return (error);
785 }
786 
787 static char **
788 kvm_doargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr,
789 	   void (*info)(struct ps_strings *, u_long *, int *))
790 {
791 	char **ap;
792 	u_long addr;
793 	int cnt;
794 	static struct ps_strings arginfo;
795 	static u_long ps_strings;
796 	size_t len;
797 
798 	if (ps_strings == 0) {
799 		len = sizeof(ps_strings);
800 		if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL,
801 		    0) == -1)
802 			ps_strings = PS_STRINGS;
803 	}
804 
805 	/*
806 	 * Pointers are stored at the top of the user stack.
807 	 */
808 	if (kp->kp_stat == SZOMB ||
809 	    kvm_uread(kd, kp->kp_pid, ps_strings, (char *)&arginfo,
810 		      sizeof(arginfo)) != sizeof(arginfo))
811 		return (0);
812 
813 	(*info)(&arginfo, &addr, &cnt);
814 	if (cnt == 0)
815 		return (0);
816 	ap = kvm_argv(kd, kp->kp_pid, addr, cnt, nchr);
817 	/*
818 	 * For live kernels, make sure this process didn't go away.
819 	 */
820 	if (ap != NULL && (kvm_ishost(kd) || kvm_isvkernel(kd)) &&
821 	    !proc_verify(kp))
822 		ap = NULL;
823 	return (ap);
824 }
825 
826 /*
827  * Get the command args.  This code is now machine independent.
828  */
829 char **
830 kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
831 {
832 	int oid[8];
833 	int i;
834 	size_t bufsz;
835 	static unsigned long buflen;
836 	static char *buf, *p;
837 	static char **bufp;
838 	static int argc;
839 
840 	if (!kvm_ishost(kd)) { /* XXX: vkernels */
841 		_kvm_err(kd, kd->program,
842 		    "cannot read user space from dead kernel");
843 		return (0);
844 	}
845 
846 	if (!buflen) {
847 		bufsz = sizeof(buflen);
848 		i = sysctlbyname("kern.ps_arg_cache_limit",
849 				 &buflen, &bufsz, NULL, 0);
850 		if (i == -1) {
851 			buflen = 0;
852 		} else {
853 			buf = malloc(buflen);
854 			if (buf == NULL)
855 				buflen = 0;
856 			argc = 32;
857 			bufp = malloc(sizeof(char *) * argc);
858 		}
859 	}
860 	if (buf != NULL) {
861 		oid[0] = CTL_KERN;
862 		oid[1] = KERN_PROC;
863 		oid[2] = KERN_PROC_ARGS;
864 		oid[3] = kp->kp_pid;
865 		oid[4] = kp->kp_lwp.kl_tid;
866 
867 		/*
868 		 * sysctl can take a pid in 5.7 or earlier.  In late
869 		 * 5.7 the sysctl can take a pid (4 args) or pid + tid
870 		 * (5 args).
871 		 */
872 		i = -1;
873 		if (kp->kp_lwp.kl_tid > 0) {
874 			bufsz = buflen;
875 			i = sysctl(oid, 5, buf, &bufsz, 0, 0);
876 		}
877 		if (i < 0) {
878 			bufsz = buflen;
879 			i = sysctl(oid, 4, buf, &bufsz, 0, 0);
880 		}
881 
882 		if (i == 0 && bufsz > 0) {
883 			i = 0;
884 			p = buf;
885 			do {
886 				bufp[i++] = p;
887 				p += strlen(p) + 1;
888 				if (i >= argc) {
889 					argc += argc;
890 					bufp = realloc(bufp,
891 					    sizeof(char *) * argc);
892 				}
893 			} while (p < buf + bufsz);
894 			bufp[i++] = NULL;
895 			return (bufp);
896 		}
897 	}
898 	if (kp->kp_flags & P_SYSTEM)
899 		return (NULL);
900 	return (kvm_doargv(kd, kp, nchr, ps_str_a));
901 }
902 
903 char **
904 kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
905 {
906 	return (kvm_doargv(kd, kp, nchr, ps_str_e));
907 }
908 
909 /*
910  * Read from user space.  The user context is given by pid.
911  */
912 ssize_t
913 kvm_uread(kvm_t *kd, pid_t pid, u_long uva, char *buf, size_t len)
914 {
915 	char *cp;
916 	char procfile[MAXPATHLEN];
917 	ssize_t amount;
918 	int fd;
919 
920 	if (!kvm_ishost(kd)) { /* XXX: vkernels */
921 		_kvm_err(kd, kd->program,
922 		    "cannot read user space from dead kernel");
923 		return (0);
924 	}
925 
926 	sprintf(procfile, "/proc/%d/mem", pid);
927 	fd = open(procfile, O_RDONLY, 0);
928 	if (fd < 0) {
929 		_kvm_err(kd, kd->program, "cannot open %s", procfile);
930 		close(fd);
931 		return (0);
932 	}
933 
934 	cp = buf;
935 	while (len > 0) {
936 		errno = 0;
937 		if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
938 			_kvm_err(kd, kd->program, "invalid address (%lx) in %s",
939 			    uva, procfile);
940 			break;
941 		}
942 		amount = read(fd, cp, len);
943 		if (amount < 0) {
944 			_kvm_syserr(kd, kd->program, "error reading %s",
945 			    procfile);
946 			break;
947 		}
948 		if (amount == 0) {
949 			_kvm_err(kd, kd->program, "EOF reading %s", procfile);
950 			break;
951 		}
952 		cp += amount;
953 		uva += amount;
954 		len -= amount;
955 	}
956 
957 	close(fd);
958 	return ((ssize_t)(cp - buf));
959 }
960